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Notation

Notation
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1. Introduction

Solving optimization problems such as finding the shortest connection between two spots or
deciding which grain to sow in order to maximize the harvest has always been a part of human
life. Thanks to mathematics, more abstract problems could be formulated and at the same time
they became more and more complicated, sometimes too complicated to solve them by hand.
This gave rise to a new field in mathematics in which numerical methods for the solution of
such problems were developed. While at first only linear problems could be solved, since the
middle of the last century an in-depth theory and very efficient numerical methods for nonlinear
optimization problems have been developed. However, it turned out that not all optimization
problems can be treated the same way. This lead to the definition of several classes of nonlinear
optimization problems distinguished for example by their constraints.

In this thesis, we focus on the class of mathematical programs with equilibrium constraints,
MPEC for short, which are optimization problems of the form

min
x

f (x) subject to x ∈ X, x2 ∈ S (x1).

Here, an objective function f : Rn1+n2 → R depending on a variable x = (x1, x2) shall be mini-
mized subject to standard constraints represented by x ∈ X with X ⊆ Rn1+n2 and so called equi-
librium constraints x2 ∈ S (x1). The set valued map S : Rn1 ⇒ Rn2 usually represents the solution
set of a lower level problem which may for example be another optimization problem or a Nash
equilibrium problem. For theoretical and numerical purposes, the condition x2 ∈ S (x1) is usually
formulated as a variational inequality, generalized equation or complementarity conditions.

This type of problems appears frequently in economics for example if one generalizes the Nash
equilibrium problem to the so called leader-follower or Stackelberg problem, see [71, 22, 61, 86,
97] for economic MPECs. As we will see in this thesis, another economic problem that can
be formulated as such a Stackelberg game is the effort maximization problem. MPECs appear
also in engineering and physics, see [68, 3, 9, 10, 116, 112, 100, 120] for examples. For more
applications we would like to refer to the monographs [82, 95, 30, 27].

In the theoretical and the numerical part of this thesis, we focus on the case, where the lower
level problem can be represented by a nonlinear complementarity problem. These MPECs are of
the form

minx f (x) subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , q,
Hi(x) ≥ 0 ∀i = 1, . . . , q,
Gi(x)Hi(x) = 0 ∀i = 1, . . . , q,

(1.1)

where the functions f , gi, hi,Gi,Hi : Rn → R are assumed to be continuously differentiable.
This special type of MPECs is called mathematical program with complementarity constraints

1



1. Introduction

(MPCC). Although this problem looks very close to a standard nonlinear optimization problem,
the combinatorial nature of the complementarity conditions causes both theoretical and numer-
ical trouble if one wishes to apply the standard theory. The feasible set of MPCCs is usually
nonconvex and has an empty interior. Most standard constraint qualifications are violated and
therefore the Karush-Kuhn-Tucker conditions are not necessary optimality conditions. Since
these are the basis of most numerical methods to solve nonlinear programs, standard algorithms
applied to MPCCs are likely to fail. For this reason a special theory for MPCCs has been devel-
oped over the last 20 years including several stationarity concepts and MPCC tailored constraint
qualifications. This theory was then used as a basis for numerous numerical methods to solve
MPCCs. For more information, we refer the interested reader to the monographs [95, 82, 30]
and the introductions to the respective parts of this thesis.

The aim of this thesis is threefold: First, we consider the economic problem of effort maxi-
mization in asymmetric n-person contest games in Part I which turns out to be an MPEC. For the
case of constant returns to scale, we extend the existing knowledge in Chapter 2 by proving the
existence of a solution of this problem and deriving an explicit formula for this solution. This
was so far only done for two players or n homogeneous players. We also provide some examples
illustrating our results and a brief comparison with the all-pay auction model. Then we turn to
more general production technologies in Chapter 3 and provide a reformulation as an MPCC for
a class of production technologies, which can be used to solve the effort maximization problem
numerically.

Before we can proceed to the numerical solution of MPCCs however, we need to talk about
theory. This is done in Part II. First, we recall some basic facts about standard nonlinear pro-
grams in Chapter 4 and then we define constraint qualifications and stationarity concepts for
MPCCs in Chapter 5. At that point, we introduce an MPCC analogue of the constant positive
linear dependence constraint qualification which is a very weak constraint qualification that will
turn out to be very useful in the numerical part of this thesis. In contrast to standard nonlinear
programs there are several prominent stationarity concepts for MPCCs which are necessary opti-
mality conditions under different assumptions. To circumvent this, one might want to turn to the
Fritz-John conditions which are known to be necessary optimality conditions without any further
assumptions. In the context of MPCCs however, the standard Fritz-John conditions are rather
useless. For this reason, we derive special MPCC Fritz-John conditions in Chapter 6. These
enhanced Fritz-John conditions give rise to two new constraint qualifications for MPCCs which
each have an interesting application. One of them can be used to obtain a very simple proof for
the fact that M-stationarity is a necessary optimality condition under most of the common MPCC
constraint qualifications. The other one forms the basis of an exact penalty result for MPCCs un-
der much weaker assumptions than commonly used. Additionally, we discuss how the three new
MPCC constraint qualifications fit into the system of existing ones.

In Part III we finally come to the numerical solution of MPCCs. By now, there are several
different approaches to this problem but we focus only on the relaxation approach. We consider
this idea very interesting since it allows the usage of the very efficient nonlinear program solvers,
that have been developed over the last decades, for MPCCs with very little effort. Since several
relaxation methods have been introduced in the last ten years, we chose four of them [105, 79, 67,
109], which are very similar, and take a closer look at their theoretical properties in Chapter 7.

2



We improve the respective convergence results and analyze the existence of Lagrange multipliers
to local minima of the relaxed problems. In Chapter 8, we present a new relaxation method which
can be seen as an enhancement of [67] and analyze its theoretical properties. Chapter 9 is devoted
to the comparison of these five relaxation methods. First, we gather the theoretical results from
the previous two chapters and then we provide a numerical comparison of these methods based on
the MacMPEC collection of test problems [73] which is composed of both academic examples
and real life applications. To close the circle, we finally use the new relaxation method from
Chapter 8 so solve the effort maximization problem from the first part of this thesis. At first, we
test our algorithm on the case of constant returns to scale and regain the theoretically derived
results. Then, we try to solve the effort maximization problem with a more difficult production
technology and obtain results that give hope for a further theoretical investigation of this topic.

Parts of the new results in this thesis have already been published in [69, 60, 58] or are con-
tained in the preprints [48, 59, 70]. All of them are are joint work with my advisor Christian
Kanzow. The papers [60, 58, 59] were created in cooperation with my colleague Tim Hoheisel
and [48] is a cooperation with Jörg Franke and Wolfgang Leininger from the Department of Eco-
nomics, University of Dortmund (TU). Wherever other sources have been used in this thesis, this
is documented by an appropriate reference.

3



1. Introduction

4



Part I.

Effort Maximization in Asymmetric

n-Person Contest Games – an Economic

Example

5





Lobbying, public procurement, affirmative action, promotion tournaments: What do all these
have in common? Although the topics themselves are not closely related, the underlying mecha-
nism is the same in all cases. On the one side, there is a group of people or companies exerting
effort and competing against each other for a prize which has a certain value to them. On the
other side, we have a contest designer or administrator who has the power to set the rules of
the competition and thus influences the effort exerted by the participants. This results in several
coupled optimization problems. The participants choose their effort in order to maximize their
individual gain from the contest which, however, does not only depend on their own effort but
also on the effort exerted by the other contestants and, of course, on the contest itself. The contest
designer, in turn, wishes to maximize his earnings from the contest which depend on the effort
of the participants. Thus, from the contest designer’s point of view, these processes can be mod-
eled as bilevel optimization problems. On the upper level, the contest designer sets the rules of
the contest in order to maximize his gain, and on the lower level, the participants of the contest
solve a Nash equilibrium problem to determine their optimal efforts. Before we delve into the
examples mentioned above, we would like to state our mathematical model.

In order to incorporate the characteristics of the afore mentioned situations, which will be
discussed more in-depth afterwards, we decided to model these processes as an asymmetric
lottery contest game under complete information in the style of Tullock [118], see also [25]. We
assume that there are n participants and denote the set of all players by N := {1, . . . , n}. Every
contestant ν chooses a nonnegative effort xν ≥ 0 in order to maximize his utility function θν.
However, his utility function does not only depend on his decision but also on the chosen efforts
of the other players subsumed under x−ν ∈ Rn−1, i.e., θν : Rn

+ → R is given by

θν(xν, x−ν) =




0 if x = 0,
ανc(xν)�
µ∈N αµc(xµ)

Vν − βνxν else.

These utility functions can be interpreted as follows. All players take part in a lottery where a
prize with the value Vν > 0 for player ν can be won. Every player can increase his probability of
winning, which is given by his relative effort ανc(xν)�

µ∈N αµc(xµ)
, by increasing his effort xν which, how-

ever, also leads to higher costs βνxν. Here, βν > 0 are the individual costs of the ν-th contestant
for exerting effort. The function c : R+ → R indicates what kind of rent-seeking technology is
considered. In the simplest case, one assumes c(x) ≡ x and speaks of constant returns to scale.
This is the case we will deal with most of the time, since only there closed formulas for both the
underlying Nash game and the designer’s optimal solution are known. However, more general
functions are also possible. Usually, one assumes at least c(0) = 0 and c�(x) > 0 for all x > 0
which reflects that zero effort leads to a winning probability of zero and increasing the effort also
increases the probability of winning. We will give a small outlook on this case. The parameters
αµ > 0 are the designer’s variables which he can use to bias the contest in a way that is favorable
for him. His aim is to choose his variable α ∈ Rn

++ in order to maximize his gain

θ0(α) =
n�

µ=1

x∗µ(α),

7



where x∗(α) is the Nash equilibrium of the contest with the parameters αµ. For simplicity, we will
only consider contest games that posses a unique solution. One might wonder why we do not
allow the designer to explicitly exclude someone from the contest by choosing the corresponding
αν = 0. However, as we will see in the case of constant returns to scale, this possibility does not
lead to a more favorable contest from the designer’s point of view but instead causes technical
problems. In the optimal contest, unwanted players can also be excluded by a sufficiently small
but positive αν.

This problem is obviously an MPEC as we defined it in the introduction since we have to solve

max
α,x

n�

µ=1

xµ subject to α > 0, x = x(α).

The standard constraints here are the positivity condition on the designer’s variable α and the,
usually set valued, equilibrium constraint reduces to the equation x = x(α) due to the fact that
we consider only contest games with a unique solution. It turns out that, in the case of constant
returns to scale, the effort maximization problem is one of the rare nontrivial MPECs where one
can prove the existence of a solution and provide a closed form of this solution. For general func-
tions c however, no such solution is known. Thus, in this case one has to use numerical methods
in order to obtain solutions of this MPEC. For this reason, we will provide a reformulation of the
effort maximization problem as MPCC and some numerical results in Part III.

Before we apply this model to the processes mentioned above, let us briefly summarize the
results we are going to derive for the case of constant returns to scale. We will see that in the
optimally biased contest all players, that would have been active if the contest was unbiased,
will exert a positive effort as well, i.e., there is no exclusion of strong players. Instead, the
playing field is leveled to some extend such that some weaker contestants might also decide to
become active. However, whenever there are more than two players and the contestants are not
homogeneous a priori, the playing field is never leveled to the full extend. Finally, we found out
that at least three players will be active in the optimal contest independent of their heterogeneity.
This is somewhat surprising since two active players suffice to obtain a Nash equilibrium of the
contest game.

According to the Center for Responsive Politics, a total of 3.49 Billion US Dollars were spent
by 13.664 registered lobbyists in the year 2009 in the United States of America, not including
campaign contributions, cf. [46]. This figure highlights how important it is to understand the
mechanisms behind lobbying, especially since lobbying to influence political decision making is
of course not a phenomenon solely appearing in the USA. Lots of effort has already been made
in this direction, see for example [54, 15] for two articles on the motivation for firms to engage
in corporate political activities both in the United States of America and the European Union. In
contrast to this, we aim to provide a mathematical model that can be used to describe the relations
between several lobby groups on the one side and the person whose decision these groups try to
influence on the other side. The resulting lobbying process has interesting properties: On the one
hand, it is public since for example in the United States, the “Lobbying Disclosure Act” (1995)
and the “Honest Leadership and Open Government Act” (2007) require lobbyists to register and
disclose their spendings. On the other hand, it is informal, since of course there is no guarantee
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that the effort exerted by a certain lobby group leads to the desired decision of the politician.
Also, the competition might be biased since the politician might favor a certain decision or
lobbying party. By contrast, an effort - how big it might be - by an opposing political fraction is
not very likely to influence the politicians decision. These properties are reflected in our model.
We assume that everyone participating in the lobbying process has full information about his
rivals and can thus try to anticipate their behavior. The uncertainty of the effectiveness of exerted
effort is represented by the lottery character of our contest success function and the possibility of
a biased contest by the weights αµ. Our results allow conclusions on the behavior of a politician
who aims to maximize the aggregated effort of all lobby groups and thus could be used as a basis
for countermeasures to constrain excessive lobbying activities. Such countermeasures and the
difficulties thereof are also discussed in [20, 33], however based on a different model. Another
popular model for the lobbying process is the all-pay auction model, cf. [11, 35, 32]. This,
however, leads to completely different results than our model as we will see in a special section
on the difference between those two approaches.

Another topic which is sometimes closely related to lobbying is public procurement. Here,
several companies compete for one government contract and the government has to decide on a
rule how to choose best contractor. However, the best contractor is not necessarily the one with
the cheapest offer but there might also be other requirements. Sometimes, smaller companies are
preferred or domestic firms are favored over foreign ones, see [88, 87]. Our results prove that
favoring weaker contestants is not necessarily a contradiction to the primary goal of choosing a
cheap contractor but may even improve the result of the competition.

What holds for companies is even more true for single persons. Even nowadays, people often
face competitive situations in which they have advantages or disadvantages due to their race,
origin or sex. In Germany, for example, women still earn 16 to 20 percent less than men with
the same qualifications. A study by the German Institute for Economic Research [76] explains
this as follows: Women perceive lower wages as fair and therefore accept lower wages than men.
It is argumented that women compare themselves to other women in order to determine what
would be a fair wage. And since many women still work in low-paid branches, this leads to
the effect described above. Hence, according to this study, the gender wage gap is not due to
present but past discrimination. One approach to resolve such imbalances is called affirmative
action. The idea here is that in competitive situations such as employment weaker participants
should be favored, i.e., the playing field should be leveled such that all contestant have the same
chance, see for example [49, 47] for a work on affirmative action in college admissions and
a more general work on affirmative action compared to the neutral equal treatment approach.
These two papers prove that affirmative action may have an additional positive effect, namely it
can increase the effort of all participants. By applying the model described above, we will see
that, if we look at such a contest from the contest organizer’s point of view and wish to maximize
the effort of all participants, we automatically end up with a playing field that is leveled to some
extend. Consequently, effort maximization and affirmative action are not as contrary as it is often
assumed.

To provide effort incentives is also a central topic when it comes to designing labor contracts.
One possibility to motivate workers are promotion tournaments, see [72, 117] for two works on
rank-order tournaments and on how to choose a CEO (chief executive officer). These two papers
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analyze the effects of handicapping in such tournaments, however based on a different model.
Nonetheless, our lottery model as described above can also be used to reflect situations in which
for example several employees compete for a better payed position or a bonus payment and, as
it was already mentioned before, we will see that handicapping can have positive effects on the
overall effort in our model as well.

Since there are so many possible applications for this model, it is not surprising that this and
similar contest success functions have been analyzed before, see [108, 23] for an axiomatization
and [65] for a stochastic foundation. So far, the focus of most papers was not the effort maxi-
mization problem but only the underlying contest game or they considered either the two-player
case or the homogeneous n-player case. In [91], the asymmetric two-player case with arbitrary
returns to scale is considered and results on the existence and form of solutions are given. In
[92], the same author considers the asymmetric two-player case with a more general contest suc-
cess function and addresses the question of effort maximization. The existence of equilibria in
the homogeneous n-player case is analyzed in [98] and an effort maximization problem for the
homogeneous n-player case with constant returns to scale is solved in [28]. However, in the latter
case, in contrast to our model, the contest designer is allowed to choose a positive probability in
which he keeps the prize. Existence, uniqueness and properties of solutions of the asymmetric
n-player contest game are the focus of [26, 113], sometimes with again more general contest
success functions and [111] provides an interesting characterization of the active contestants in
the case of constant returns to scale. However, a closed form of the solution to the asymmetric
n-player contest game, which is needed to solve the effort maximization problem, is so far only
available for constant returns to scale.

Another model which is very closely related to the lottery contest considered here is the so
called all-pay auction. The most prominent difference is that in an all-pay auction the player with
the highest bid or effort wins the price with certainty. Therefore, this type of contests is usually
not influenced by scaling the efforts but by explicitly deciding who is allowed to participate.
Although these models are very similar, they exhibit a completely different behavior. In [12] it is
shown that whenever there are more than two players, the auction has not one unique equilibrium
but a whole continuum. The same authors show in [11] that a contest designer, whose incentive
is to maximize the overall effort, will exclude the strongest players, i.e. those with the highest
valuation and the lowest costs, up to a certain threshold from the auction. As we mentioned
before, this is completely opposed to the results we obtained for the optimal lottery contest. We
will go more into detail about these differences later on. Finally, we would like to refer the
interested reader to [4, 32, 35] for a more extensive discussion on relations between the all-pay
auction and the lottery model.

This part of the thesis is structured as follows: Chapter 2 is all about the case of constant
returns to scale. We provide an analysis of the underlying Nash equilibrium, the existence of an
optimally biased contest is proven and we derive a closed form of the optimal weights, the result-
ing equilibrium efforts and other interesting figures. Afterwards, we illustrate our theory on some
well known examples and compare our results to those known for the all-pay auction model. In
Chapter 3, we consider more general rent-seeking technologies, provide some theoretical results,
and reformulate the effort maximization problem as an MPCC.
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2. Constant Returns to Scale

In this chapter, we are concerned with the case of constant returns to scale, i.e., we assume that
c(x) ≡ x. The underlying contest game has already been thoroughly analyzed, see for example
[26, 113, 111], but for completeness sake, we will derive existence and uniqueness of the Nash
equilibrium together with a formula for the equilibrium efforts step by step in Section 2.1. Al-
though there are already results on the optimal contest in the 2-player case and the homogeneous
case where β1 = . . . = βn, cf. [92, 28], the inhomogeneous n-player case has not yet been ana-
lyzed. Thus, we will prove the existence of an optimal contest in Section 2.2 and give a closed
form of the optimal solution in Section 2.3. After providing some well-known examples in Sec-
tion 2.4, we conclude by comparing our results to those known for the all-pay auction in Section
2.5.

2.1. The Underlying Contest Game

Once the designer has decided on his variables, every player ν ∈ N tries to maximize his utility
function

θν(xν, x−ν) =




0 if x = 0,
ανxν�
µ∈N αµxµ

Vν − βνxν else

under the restriction that his effort is nonnegative, i.e. xν ≥ 0. Since his outcome also depends
on the efforts chosen by the other players, he has to predict their choice. Of course, all other
participants try to do the same, hence we end up with n coupled optimization problems. This
type of problem is known as Nash equilibrium problem, cf. [107] for a brief introduction to
game theory, and one defines its solution as follows:

Definition 2.1 A vector x∗ ∈ Rn is called a solution of the Nash equilibrium problem or Nash
equilibrium for short, if for all players ν ∈ N

θν(x∗ν, x
∗
−ν) ≥ θν(xν, x∗−ν) ∀xν ≥ 0.

Obviously, this solution depends on the parameters αµ chosen by the contest designer. In this
section, we will assume that these parameters are fixed, i.e., the designer has made his decision
and thus we will not indicate this dependence in the notation. It is easy to verify that the solutions
of the contest game described above do not change if we replace the utility functions θν by

θ̃ν(xν, x−ν) =




0 if x = 0,
ανxν�
µ∈N αµxµ

− βνVν
xν else.

11



2. Constant Returns to Scale

Hence, we may, redefining βν if necessary, assume without loss of generality Vν = 1 for all
players ν ∈ N. Although the solution of this simplified Nash game still requires some work, the
following lemma states some obvious properties which facilitate the calculation of the solution.

Lemma 2.2 The vector (0, . . . , 0) is never a Nash equilibrium and in every Nash equilibrium x∗
at least two components are positive.

Proof. If (0, . . . , 0) was a Nash equilibrium, then xν = 0 had to be a solution of

max
xν
θν(xν, 0) subject to xν ≥ 0

for every player ν ∈ N. However, in this case, the utility function attains the form

θν(xν, 0) =




0 if xν = 0,
1 − βνxν else

(2.1)

and it is easy to see that θν(xν, 0) > 0 if xν > 0 is chosen sufficiently small. Hence, the vector
(0, . . . , 0) cannot be a Nash equilibrium.

If there was a Nash equilibrium x∗ with only one positive component x∗ν > 0, player ν would
face the utility function (2.1) and could hence increase his gain by choosing any xν ∈ (0, x∗ν)
which contradicts the definition of a Nash equilibrium. �

This lemma implies that a contest with n = 1 players, which is not actually a contest anymore,
does not have a solution. Hence, we will assume n ≥ 2 from now on.

In order to calculate the Nash equilibria of this contest game, we first calculate the best answer
function for every player ν ∈ N and use it to derive some properties of the Nash equilibria in
Section 2.1.1. These properties allow us to identify every Nash equilibrium x∗ with the corre-
sponding set of active players K := {ν ∈ N | x∗ν > 0}. A thorough analysis of these sets in Section
2.1.2 finally yields that the contest game always has a unique Nash equilibrium which is the basis
for our analysis of the optimal contest in the Sections 2.2 and 2.3.

2.1.1. The Best Answer Function

The best answer function S ν : Rn−1
+ → R+ assigns every possible choice x−ν of the other players

the best answer of player ν, i.e. the solutions of the optimization problem

max
xν
θν(xν, x−ν) subject to xν ≥ 0.

Note that it is theoretically possible that this optimization problem has more than one solution
or no solution at all. However, we will see that the problem considered here has exactly one
solution in all interesting cases. To this end, we introduce the following abbreviation

cν(x−ν) :=
�

µ∈N\{ν}
αµxµ

12



2.1. The Underlying Contest Game

for every player ν ∈ N where x−ν ∈ Rn−1
+ is a feasible combination of strategies. The following

lemma provides the best answer function for all feasible strategies x−ν � 0. As we have seen
in the proof of Lemma 2.2, there is no best answer to x−ν = (0, . . . , 0). This, however, is not a
problem since Lemma 2.2 also implies x∗−ν � (0, . . . , 0) in every Nash equilibrium x∗.

Lemma 2.3 For every player ν ∈ N and every combination of strategies x−ν ∈ Rn−1
+ with x−ν �

(0, . . . , 0), the best answer function is given by

S ν(x−ν) = max




0,−cν(x−ν)
αν

+

�
cν(x−ν)
ανβν




Proof. Choose an arbitrary but fixed player ν ∈ N and an arbitrary combination of strategies
x−ν ∈ Rn−1

+ with x−ν � 0. Using the abbreviation introduced above, the player’s utility function
can then be written as

θν(xν, x−ν) =
ανxν

cν(x−ν) + ανxν
− βνxν

and has the properties

lim
xν→∞
θν(xν, x−ν) = −∞ and lim

xν↓− cν(x−ν)
αν

θν(xν, x−ν) = −∞.

The derivative of θν with respect to xν is given by

∇xνθν(xν, x−ν) =
ανcν(x−ν)

(ανxν + cν(x−ν))2 − βν

and has the two roots

xν,1/2 = −
cν(x−ν)
αν

±
�

cν(x−ν)
ανβν

.

Here, we have

lim
xν→∞
∇xνθν(xν, x−ν) = −βν < 0 and lim

xν↓− cν(x−ν)
αν

∇xνθν(xν, x−ν) = +∞.

Hence, θν(·, x−ν) is strictly increasing on the interval

−

cν(x−ν)
αν
,−cν(x−ν)

αν
+

�
cν(x−ν)
ανβν




and strictly decreasing on the interval

−

cν(x−ν)
αν

+

�
cν(x−ν)
ανβν

,+∞
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2. Constant Returns to Scale

and consequently attains its maximum over the union of these intervals in

x̄ν = −
cν(x−ν)
αν

+

�
cν(x−ν)
ανβν

.

Therefore, the unique best answer of player ν is x̄ν if this value is nonnegative and 0 else. �

Now, we are going to use the best answer function to determine the Nash equilibria of this
contest. To this end note that the definition of Nash equilibria implies that x∗ is a solution of the
contest if and only if x∗ν = S ν(x∗−ν) for all players ν ∈ N. We are going to exploit this relation in
the proof of the following result which has already been derived by different means in [111].

Theorem 2.4 Let x∗ ∈ Rn
+ be a Nash equilibrium and K := {ν ∈ N | x∗ν > 0} the set of active

players with k := |K|. Then for all ν ∈ N

x∗ν = max




0,
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ




and the set of active players is characterized by the equivalence

ν ∈ K ⇐⇒ (k − 1)
βν
αν
<
�

µ∈K

βµ
αµ
. (2.2)

Proof. Since x∗ is a Nash equilibrium, Lemma 2.2 implies k ≥ 2. As already mentioned above,
x∗ is a solution of the contest if and only if x∗ν = S ν(x∗−ν) for all players ν ∈ N. Together with
Lemma 2.3, this implies for all ν ∈ K

�

µ∈N
αµx∗µ =

�
αν
βν

� �

µ∈N\{ν}
αµx∗µ

⇐⇒


�

µ∈K
αµx∗µ




2

=
αν
βν



�

µ∈K
αµx∗µ − ανx∗ν




⇐⇒ ανx∗ν =
�

µ∈K
αµx∗µ −

βν
αν



�

µ∈K
αµx∗µ




2

. (2.3)

By adding up this equation for all ν ∈ K, we obtain

�

ν∈K
ανx∗ν = k



�

µ∈K
αµx∗µ


 −


�

ν∈K

βν
αν






�

µ∈K
αµx∗µ




2

⇐⇒


�

ν∈K

βν
αν






�

µ∈K
αµx∗µ


 = k − 1
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2.1. The Underlying Contest Game

⇐⇒
�

µ∈K
αµx∗µ =

k − 1
��
µ∈K

βµ
αµ

� .

Inserting this expression into (2.3) yields for all ν ∈ K

x∗ν =
1
αν



�

µ∈K
αµx∗µ −

βν
αν



�

µ∈K
αµx∗µ




2 =
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ

.

For all ν ∈ N \ K we have x∗ν = 0 by definition of K and according to the best answer function

0 > −
�
µ∈K αµx∗µ
αν

+

��
µ∈K αµx∗µ
ανβν

⇐⇒ 0 >
1
αν




1
βν
− 1
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ

⇐⇒ 0 >
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ

.

Hence, we obtain the postulated formula

x∗ν = max




0,
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ




for all ν ∈ N. Obviously, ν ∈ K if and only if

1 − βν
αν

k − 1
�
µ∈K

βµ
αµ

> 0 ⇐⇒ (k − 1)
βν
αν
<
�

µ∈K

βµ
αµ
,

which gives us the characterization of the set of active players K. �

This theorem should not be overinterpreted. It does not include any statement concerning exis-
tence or uniqueness of a solution and the implicit characterization of the set of active players is
also not very helpful. In the following, we will see that the contest game indeed has a unique
solution and we will also give a more practicable characterization of the set K. But first, we give
some inversion of Theorem 2.4.

Theorem 2.5 Let K ⊆ N be a subset with k := |K| ≥ 2 such that

ν ∈ K ⇐⇒ (k − 1)
βν
αν
<
�

µ∈K

βµ
αµ
.

Then the vector x∗ ∈ Rn with the components

x∗ν = max




0,
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ




is a solution of the contest game.
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2. Constant Returns to Scale

Proof. The assumptions on K guarantee x∗ν = 0 for all ν ∈ N \ K and x∗ν > 0 for all ν ∈ K. To
prove that x∗ is a solution, we will employ Lemma 2.3 and show x∗ν = S ν(x∗−ν) for all ν ∈ N. To
this end, define

c(x) :=
�

µ∈N
αµxµ

and note

c(x∗) =
�

ν∈K


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ

=
k − 1
�
µ∈K

βµ
αµ

�
k − (k − 1)

�
=

k − 1
�
µ∈K

βµ
αµ

.

Now consider an inactive player ν ∈ N \ K. The properties of K then yield ανβν ≤ c(x∗) and hence
S ν(x∗−ν) > 0 would imply

0 < −c(x∗)
αν
+

�
c(x∗)
ανβν

⇐⇒ c(x∗) <

�
ανc(x∗)
βν

⇐⇒ c(x∗) <
αν
βν
,

a contradiction. If we consider an active player ν ∈ K, we know αν
βν
> c(x∗) and can prove

analogously to the considerations above that S ν(x∗−ν) > 0 since S ν(x∗−ν) = 0 would imply

0 ≥ −c(x∗) − ανx∗ν
αν

+

�
c(x∗) − ανx∗ν
ανβν

⇐⇒ c(x∗) − ανx∗ν ≥
�
αν
βν

�
c(x∗) − ανx∗ν

⇐⇒ c(x∗) − ανx∗ν ≥
αν
βν

⇐⇒ c(x∗) −
�
1 − βν
αν

c(x∗)
�

c(x∗) ≥ αν
βν

⇐⇒ c(x∗)2 ≥
�
αν
βν

�2
,

again a contradiction. Here, we used the fact that k ≥ 2, ergo c(x∗) − ανx∗ν > 0, in the second
equivalence and the definition of x∗ in the last but one equivalence. It remains to prove that x∗ν is
in fact equal to S ν(x∗−ν). However, due to Lemma 2.3 and the definition of x∗ν, we have

S ν(x∗−ν) = −
cν(x∗−ν)
αν

+

�
cν(x∗−ν)
ανβν

= x∗ν −
c(x∗)
αν
+

��
c(x∗) −

�
1 − βναν c(x∗)

�
c(x∗)

ανβν
= x∗ν.

This proves that the vector x∗ is indeed a solution of the contest game. �

Thanks to the Theorems 2.4 and 2.5, we can now characterize the solutions of this contest game
in terms of the subset K ⊆ N satisfying the conditions in Theorem 2.5. This is formalized in the
following corollary.
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2.1. The Underlying Contest Game

Corollary 2.6 The set of all Nash equilibria x∗ can be identified with the set of all subsets K ⊆ N
satisfying the conditions in Theorem 2.5 as follows: If x∗ is a Nash equilibrium, then the set of
active players K := {ν ∈ N | x∗ν > 0} satisfies the conditions in Theorem 2.5. If on the other hand
a subset K ⊆ N satisfies the conditions in Theorem 2.5, then the vector x∗ defined in this theorem
is a Nash equilibrium.

This, however, does still not provide any information about existence and uniqueness of solu-
tions. But is does propose a way to obtain these results, namely by analyzing the sets K satisfying
the conditions in Theorem 2.5, which is exactly what we are going to do in the next section.

2.1.2. Existence and Uniqueness of a Solution

To obtain more information about the sets K ⊆ N satisfying the conditions in Theorem 2.5, we
assume from now on without loss of generality that the players are ordered in such a way that

β1

α1
≤ β2

α2
≤ . . . ≤ βn

αn
(2.4)

holds. This ordering enables us to simplify the proof of the following result which guarantees
that, if there is a solution, this solution is unique.

Lemma 2.7 There is at most one set K ⊆ N with k := |K| ≥ 2 and

ν ∈ K ⇐⇒ (k − 1)
βν
αν
<
�

µ∈K

βµ
αµ
.

Proof. Due to the properties of K, we know

max
ν∈K

βν
αν
< min
µ∈N\K

βµ
αµ
.

Together with the assumption in (2.4), this implies K = {1, 2, . . . , k}. Now assume that there was
a second set L � K with the same properties as K. This would imply L = {1, 2, . . . , l} with l < k
or l > k. Without loss of generality, we consider only the case l > k. Due to l � K, we have

(k − 1)
βl

αl
≥
�

µ∈K

βµ
αµ
.

This together with the ordering of the players (2.4) implies

(l − 1)
βl

αl
= (l − k)

βl

αl
+ (k − 1)

βl

αl
≥

l�

µ=k+1

βµ
αµ
+
�

µ∈K

βµ
αµ
=
�

µ∈L

βµ
αµ
,

which is a contradiction to l ∈ L. Ergo, there is at most one set K with these properties. �

Obviously, this lemma implies that the contest game has at most one solution. The next result
provides a more useful characterization of K, which was already obtained in [111], and at the
same time guarantees the existence of a Nash equilibrium.
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2. Constant Returns to Scale

Lemma 2.8 If the players are ordered according to (2.4), then the set

K :=


ν ∈ N

�������
(ν − 1)

βν
αν
<

ν�

µ=1

βµ
αµ




satisfies the conditions in Theorem 2.5. In particular, there is always at least one set K satisfying
the conditions in Theorem 2.5.

Proof. Due to the definition of this set K, obviously ν = 1 ∈ K and ν = 2 ∈ K. Hence, we know
k := |K| ≥ 2. Also, it is easy to see that ν ∈ K directly implies ν− 1 ∈ K, hence K = {1, 2, . . . , k}.
It remains to verify that

(k − 1)
βν
αν
<

k�

µ=1

βµ
αµ

if and only if ν ∈ K. However, due to the ordering of the players, this condition is satisfied for
all ν ∈ K, since by definition of K it is satisfied for the biggest fraction βk

αk
. Analogously, this

condition is not satisfied for all ν ∈ N \K since it is not satisfied for the smallest fraction βk+1
αk+1

due
to

k
βk+1

αk+1
≥

k+1�

µ=1

βµ
αµ

⇐⇒ (k − 1)
βk+1

αk+1
≥

k�

µ=1

βµ
αµ

This proves that K satisfies all conditions from Theorem 2.5. �

Lemma 2.7 together with Lemma 2.8 proves that there is exactly one set K satisfying the con-
ditions in Theorem 2.5 and hence, the contest game has exactly one solution which has already
been derived by different means in [26, 113]. Lemma 2.8 provides a way to calculate the set
of active players in the Nash equilibrium and Theorem 2.5 gives a formula for the equilibrium
efforts. These results are collected in the following corollary.

Corollary 2.9 There is exactly one set K ⊆ N with k := |K| ≥ 2 and

ν ∈ K ⇐⇒ (k − 1)
βν
αν
<
�

µ∈K

βµ
αµ
.

In the unique Nash equilibrium x∗ of the contest game, we have

x∗ν =
1
αν


1 −

βν
αν

k − 1
�
µ∈K

βµ
αµ




k − 1
�
µ∈K

βµ
αµ

for all active players ν ∈ K and x∗ν = 0 else.

We would like to conclude this analysis with another direct corollary of Lemma 2.8. The upper
approximation of the set K derived in this corollary can be useful to calculate this set and will be
used in the subsequent analysis.
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2.2. Existence of an Optimal Contest

Corollary 2.10 If the players are ordered according to (2.4) and K is the unique set satisfying
the conditions in Theorem 2.5, then

K ⊆
�
ν ∈ N

�����
βν
αν
<
β1

α1
+
β2

α2

�
.

Proof. Due to the ordering of the players, K = {1, 2, . . . , k}. The inequality βναν <
β1
α1
+ β2
α2

obviously
holds for ν = 1, 2. For ν = 3, . . . , k this inequality follows inductively from

(ν − 2)
βν
αν
<
ν−1�

µ=1

βµ
αµ
< (ν − 2)

�
β1

α1
+
β2

α2

�
,

where we used the characterization of K given in Lemma 2.8. �

The following example illustrates that the inclusion in this corollary can be an inequality but, in
general, will be a strict inclusion.

Example 2.11 Consider a game with four players and α = (1, 1, 1, 1).

(a) If β = (2, 3, 3.5, 4), we have

K = {1, 2, 3, 4} =
�
ν ∈ N

�����
βν
αν
<
β1

α1
+
β2

α2
= 5
�
.

(b) If, however, β = (2, 3, 3.5, 4.5), we have

K = {1, 2, 3} �
�
ν ∈ N

�����
βν
αν
<
β1

α1
+
β2

α2
= 5
�
,

i.e., in this case K is a strict subset. �

2.2. Existence of an Optimal Contest

Having proven the existence of a unique solution of the contest game in Section 2.1, we can now
focus on the contest designers problem. To this end, we now assume α ∈ Rn

++ to be a variable
again and denote the – due to Corollary 2.9 unique – solution of the contest game with the
variable α by x∗(α), the corresponding set of active players by K(α) and its number of elements
by k(α) := |K(α)|. The values βν, however, are still fixed since they represent the inherent cost
parameters of the participating players and thus cannot be altered neither by the contest designer
nor by the players themselves. Hence, the contest designers problem is

max
α
θ0(α) subject to α > 0, (2.5)

19



2. Constant Returns to Scale

where

θ0(α) =
n�

ν=1

x∗ν(α) =
�

ν∈K(α)

x∗ν(α) =
k(α) − 1
�
µ∈K(α)

βµ
αµ



�

µ∈K(α)

1
αµ
− k(α) − 1
�
µ∈K(α)

βµ
αµ

�

µ∈K(α)

βµ
α2
µ


 (2.6)

and the set of active players is defined by

ν ∈ K(α) ⇐⇒ �
k(α) − 1

�βν
αν
<
�

µ∈K(α)

βµ
αµ
. (2.7)

The aim of this section is to prove that the designers optimization problem (2.5) has a solution.
This is not clear a priori since the feasible set is both unbounded and open and the objective
function might be noncontinuous. In Section 2.2.1 we are going to prove that the value of the
designer’s utility function remains unchanged under certain variations of the variable α. On the
one hand, this enables us to restrict the feasible area for (2.5) to a bounded set, but on the other
hand, it implies that an optimal solution, if it exists, can never be unique. The next step is then
to analyze the continuity properties of θ0 on this bounded set and to prove that the function can
be continuously extended onto the closure of this set. This is done in Section 2.2.2.

2.2.1. Nonuniqueness of the Optimal Contest

Our next step is to analyze some manipulations of the argument α that leave the value of θ0
unchanged. These manipulations are interesting since they shed some light on the influence of
the weights αν on the behavior of the contestants and also imply that, if there is an optimal
contest, it cannot be uniquely determined. On the other hand, these manipulations are also useful
for the analysis of the continuity of θ0. The first result in this section states that the value of the
designer’s utility function does not change if one scales α with a nonnegative factor.

Lemma 2.12 For all α ∈ Rn
++ and all c > 0, we have

K(cα) = K(α) and θ0(cα) = θ0(α).

This is quite obvious since such a variation of α does not change the participants’s utility func-
tions θν (ν ∈ N) and consequently the Nash equilibrium does not change either. However, this
result enables us to restrict the feasible set of the designer’s optimization problem to a bounded
set. To this end, consider an arbitrary α ∈ Rn

++. Lemma 2.12 then implies

θ0(α) = θ0
�

1
�
ν∈N αν

α

�
.

Thus, defining

A :=


α ∈ R

n
++

�������

�

ν∈N
αν = 1


 , (2.8)
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2.2. Existence of an Optimal Contest

we obtain θ0(Rn
++) = θ0(A) and the designer’s utility function attains a global maximum on the

unbounded set Rn
++ if and only if it attains a global maximum on the bounded set A. The set

A, however, is still not closed and the function θ0 is a priori not defined on the closure of A.
We will deal with this problem in the next section. But first, we would like to provide another
manipulation of α that leaves the value of θ0 unchanged. Roughly, this result says that we may
choose the weights αν of inactive players arbitrarily, as long as they remain below a certain
threshold depending on the weights of the active players. In particular, we do not need to put
αν = 0 to exclude a certain player ν, it suffices to choose αν > 0 sufficiently small.

Lemma 2.13 Let α∗ ∈ Rn
++ be arbitrarily given. Then K(α∗) = K(α) and θ0(α∗) = θ0(α) hold for

all α ∈ Rn
++ satisfying the following properties:

(a) For all ν ∈ K(α∗), we have
αν = α

∗
ν.

(b) For all ν � K(α∗), we have

αν ∈

0,

(k(α∗) − 1)βν
�
µ∈K(α∗)

βµ
α∗µ


 .

Proof. Choose α ∈ Rn
++ in such a way that the two properties (a) and (b) hold. Due to Corollary

2.9, the set of active players K(α) corresponding to the choice of α as weights is uniquely defined.
Using property (a), we obtain for all ν ∈ K(α∗)

�
k(α∗) − 1

�βν
αν
=
�
k(α∗) − 1

�βν
α∗ν
<
�

µ∈K(α∗)

βµ
α∗µ
=
�

µ∈K(α∗)

βµ
αµ
.

On the other hand, property (b) implies for all ν � K(α∗)

�
k(α∗) − 1

�βν
αν
≥
�

µ∈K(α∗)

βµ
α∗µ
=
�

µ∈K(α∗)

βµ
αµ
.

The uniqueness of K(α) therefore gives K(α) = K(α∗). Together with property (a) we then obtain
θ0(α) = θ0(α∗). �

This lemma will be used in the next section to prove the existence of a global maximum. It also
provides some insight in the relation between the choice of the weights αν and the behavior of
the players.

2.2.2. Continuous Extension of the Designer’s Utility Function

In order to prove the existence of a global maximum, we first verify that the designer’s utility
function θ0 is continuous on Rn

++. This is not obvious, since the set K(α), which plays a critical
role in the definition of θ0, may change with α.
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Theorem 2.14 The objective function θ0 is continuous on Rn
++. Moreover, this function is con-

tinuously differentiable in an open neighborhood of any vector α∗ ∈ Rn
++ having the following

property:

ν � K(α∗) =⇒ �k(α∗) − 1
�βν
α∗ν
>
�

µ∈K(α∗)

βµ
α∗µ
. (2.9)

Proof. The statement regarding the continuous differentiability is clear since condition (2.9)
guarantees that, locally, the index set K(α∗) is constant, hence K(α) = K(α∗) for all α from a
sufficiently small neighborhood of α∗. In particular, θ0 is continuous in these points.

In order to verify the continuity of θ0 on the whole set Rn
++, it therefore remains to consider a

point α∗ ∈ Rn
++ such that the index set

L :=


ν ∈ N

�������
�
k(α∗) − 1

�βν
α∗ν
=
�

µ∈K(α∗)

βµ
α∗µ




is nonempty. Now, it is not difficult to see that there is a neighborhood U ⊆ Rn
++ of α∗ such that

K ⊆ K(α) ⊆ K ∪ L ∀α ∈ U,

where, for simplicity of notation, we use the abbreviation K := K(α∗). Let us further write
k := |K| und l := |L|. Then, for each α ∈ U, we have K(α) = M for one of the 2l sets M satisfying
K ⊆ M ⊆ K ∪ L. Setting m := |M| and using

βν
α∗ν
=

�
µ∈K

βµ
α∗µ

k − 1

for all ν ∈ M \ K, we obtain for all these index sets M

θM
0 (α∗) :=

m − 1
�
µ∈M

βµ
α∗µ



�

µ∈M

1
α∗µ
− m − 1
�
µ∈M

βµ
α∗µ

�

µ∈M

βµ
(α∗µ)2




=
m − 1

�
µ∈K

βµ
α∗µ
·
�
1 + m−k

k−1

�



�

µ∈K

1
α∗µ
+
�

µ∈M\K

�
λ∈K

βλ
α∗λ

(k − 1)βµ

− m − 1
�
µ∈K

βµ
α∗µ
·
�
1 + m−k

k−1

�




�

µ∈K

βµ
(α∗µ)2 +

�

µ∈M\K

��
λ∈K

βλ
α∗λ

�2

(k − 1)2βµ







=
k − 1
�
µ∈K

βµ
α∗µ



�

µ∈K

1
α∗µ
+

�
µ∈K

βµ
α∗µ

(k − 1)

�

µ∈M\K

1
βµ

− k − 1
�
µ∈K

βµ
α∗µ




�

µ∈K

βµ
(α∗µ)2 +




�
µ∈K

βµ
α∗µ

k − 1




2
�

µ∈M\K

1
βµ
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= θ0(α∗).

Since the 2l functions θM
0 are continuous in α∗, we obtain for an arbitrary ε > 0 and all M a

suitable δM > 0 such that |θM
0 (α) − θM

0 (α∗)| < ε for all α ∈ B(α∗; δM). Define

δ := min{δM | K ⊆ M ⊆ K ∪ L}.

Then we obtain for all α ∈ B(α∗; δ) that K(α) = M for one of the above index sets M and,
therefore,

���θ0(α) − θ0(α∗)
��� =
���θM

0 (α) − θM
0 (α∗)

��� < ε. This proves continuity of θ0 in α∗. �

Now, we know that θ0 is continuous on the feasible set of the contest designer’s optimization
problem (2.5). However, this set is unbounded and open, hence continuity of the objective func-
tion alone is not enough to guarantee the existence of a global maximum. To solve the problem
with the unboundedness of the feasible set, we are now coming back to the set A as defined in
(2.8). Recall that θ0(Rn

++) = θ0(A) and hence the designer’s utility function has a global maximum
on Rn

++ if and only if it has a global maximum on A. Note that the set A is not closed and thus not
compact. Since we want to exploit that continuous functions attain at least one global maximum
on compact sets, our next step is to extend the function θ0 continuously onto the closure cl(A).
Note that, a priori, the designer’s utility function is not defined on cl(A) \ A. In order to simplify
our notation in the following results, let us define the index set

J(α) := {ν ∈ N | αν = 0}

for a given α ∈ Rn
+. Note that by definition of A, one has |J(α)| ∈ {0, 1, . . . , n−1} for all α ∈ cl(A).

The next result extends θ0 onto those α ∈ cl(A) with |J(α)| ≤ n − 2.

Lemma 2.15 The function θ0, viewed as a mapping from A to R, can be extended continuously
onto the set {α ∈ cl(A) | |J(α)| ≤ n − 2}.

Proof. Recall from the proof of Theorem 2.14 that θ0 is continuous on the set

A = {α ∈ cl(A) | |J(α)| = 0}

(in fact, it is continuous on Rn
++). Now, let α∗ ∈ cl(A) with |J(α∗)| ∈ {1, . . . , n − 2} be arbitrarily

given. Then let us define the set of players N∗ := N \ J(α∗). Since we have |N∗| ≥ 2, it follows
that the Nash game with the set of players N∗ replacing the set of players N has all the properties
that were already shown. Consequently, if we let

θ∗0(α) :=
�

ν∈N∗
x∗ν(α)

be the objective function of this new game, we, in particular, obtain from Theorem 2.14 that θ∗0
is continuous in a sufficiently small neighborhood of α∗ simply since we eliminated the critical
players ν with α∗ν = 0 from the set N. We will show in the next paragraph that, for all α from a
sufficiently small neighborhood U of α∗, we have K(α) ⊆ N∗. This then implies θ0(α) = θ∗0(α)
for all α ∈ U and, in this way, we obtain the desired continuous extension of θ0 in α∗.
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To verify the above claim, we have to find a sufficiently small neighborhood U of α∗ such that
K(α) ⊆ N∗ for all α ∈ U, i.e., for all α ∈ U and all indices ν with ν ∈ K(α) we necessarily have
αν > 0. By contraposition, this is equivalent to showing that, for all α ∈ U and all indices ν
with αν = 0, we have ν � K(α). To see this, we first choose a sufficiently small neighborhood
of α∗ such that |J(α)| ∈ {0, 1, . . . , n − 2} for all α ∈ U. We then define a function c(α) on U as
the sum of the two smallest quotients βµαµ (µ ∈ N). Then c(α) is continuous and finite. Moreover,
Corollary 2.10 shows that we always have K(α) ⊆ {ν ∈ N | βναν < c(α)}. By taking a possibly
smaller neighborhood U, we may assume by continuity that c(α) < 2c(α∗) for all α ∈ U and, in
addition, that βναν > 2c(α∗) for all ν ∈ J(α∗). This implies the desired claim since, now, we obtain
βν
αν
> 2c(α∗) > c(α) for all α ∈ U and all ν ∈ J(α∗), hence ν � K(α). �

Now, it remains to consider those α ∈ cl(A) with |J(α)| = n − 1. It turns out that these points are
a little more complicated but it is still possible to extend θ0 continuously into those remaining
points.

Lemma 2.16 The function θ0, viewed as a mapping from {α ∈ cl(A) | |J(α)| ≤ n − 2} to R,
can be extended continuously onto the set cl(A) by setting θ0(α∗) = 0 for all α∗ ∈ cl(A) with
|J(α∗)| = n − 1.

Proof. We begin with some preliminary comments. In order to verify our claim, we have to show
that, given an arbitrary vector α∗ ∈ cl(A) with |J(α∗)| = n − 1 as well as a sequence {α} → α∗
with α ∈ cl(A) satisfying |J(α)| ≤ n − 2 for all α, we have θ0(α)→ θ0(α∗). Now, for all α ∈ A (so
all components of α are positive), we have the representation

θ0(α) =
�

ν∈K(α)

x∗ν(α)

of our objective function, where K(α) is the set of active players, cf. (2.6). On the other hand, if
one or more (at most n − 2) components of α are equal to zero, we obtained θ0 by a continuous
extension in the proof of Lemma 2.15, hence the representation (2.6) does not necessarily hold in
this case. However, we showed in the proof of Lemma 2.15 that K(α) ∩ J(α) = ∅ so that players
ν with αν = 0 are certainly not active. This means that for all α ∈ cl(A) with |J(α)| ≤ n − 2, the
representation (2.6) is still valid, and we will work with it throughout this proof.

Now, take an arbitrary α∗ ∈ cl(A) with |J(α∗)| = n−1, i.e. α∗ = e j for some j ∈ {1, . . . , n}. Then
we obtain for all α ∈ cl(A)\{α∗} sufficiently close to α∗ that, on the one hand, |J(α)| ∈ {0, . . . , n−2}
and, on the other hand,

β j

α j
= min
µ∈K(α)

βµ
αµ
,

hence j ∈ K(α). Consider an arbitrary sequence {α} ⊂ cl(A) \ {α∗} with α → α∗. We can divide
the sequence into finitely many subsequences such that, within each subsequence, the set K(α) is
constant. We verify the statement for each of these subsequences which then, obviously, implies
that the statement holds for the entire sequence. We now consider one of these subsequences and
call it, once again, {α}. In view of the previous remark, we have K(α) ≡ K and k(α) ≡ k for all α.
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We now verify the limit θ0(α) =
�
ν∈K x∗ν(α) → 0 by showing that x∗ν(α) → 0 holds for all ν ∈ K.

For ν = j, this follows immediately from

x∗j(α) =


1 −

β j(k − 1)
�
µ∈K βµ

α j

αµ




(k − 1)
�
µ∈K βµ

α j

αµ

→ (1 − 0)0 = 0.

Moreover, for k = 2, the statement also follows easily for ν ∈ K \ { j}:

x∗ν(α) =

1 −

βν
βν + β j

αν
α j




1
βν + β j

αν
α j

→ (1 − 1)
1
βν
= 0.

It therefore remains to verify x∗ν(α)→ 0 for all ν ∈ K \ { j} in the case k ≥ 3. To this end, we show
that, for all k = 3, 4, . . . and all ν, µ ∈ K \ { j} with ν � µ, we have

lim
α→e j

αν
αµ
=
βν
βµ
. (2.10)

Using (2.10), we then obtain for all ν ∈ K \ { j} and all k ≥ 3

x∗ν(α) =


1 −

(k − 1)
�
µ∈K

βµ
βν

αν
αµ




(k − 1)

βν
�
µ∈K

βµ
βν

αν
αµ

→ (1 − 1)
1
βν
= 0

and therefore the desired statement. To verify (2.10), it suffices to show that, for all k = 3, 4, . . .
and all ν, µ ∈ K \ { j} with ν � µ, we have

lim sup
α→e j

αν
αµ
≤ βν
βµ
. (2.11)

Exchanging the roles of ν and µ then yields (2.10).
To verify (2.11), we first consider the case k = 3. Therefore, let ν, µ ∈ K \ { j} be given with
ν � µ. We then obtain for an arbitrary α, exploiting the characteristic property (2.2) of µ ∈ K,
that

αν
αµ
=
βν
βµ

αν
βν

βµ
αµ
<
βν
βµ

αν
βν

1
2

�
β j

α j
+
βν
αν
+
βµ
αµ

�
.

Rewriting this expression gives
αν
αµ
<
βν
βµ

�
ανβ j

βνα j
+ 1
�
.

Taking into account α→ e j, we obtain (2.11).
Next, consider the case k = 4. To this end, choose arbitrary ν, µ ∈ K \ { j} with ν � µ, and let

K = { j, ν, µ, λ}. Using λ ∈ K, we have

βλ
αλ
<

1
3

�

ρ∈K

βρ
αρ
⇐⇒ βλ

αλ
<

1
2

�
β j

α j
+
βν
αν
+
βµ
αµ

�
. (2.12)
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Exploiting once again (2.2), we obtain from µ ∈ K the inequality

αν
αµ
=
βν
βµ

αν
βν

βµ
αµ
<
βν
βµ

αν
βν

1
3

�
β j

α j
+
βν
αν
+
βµ
αµ
+
βλ
αλ

�
.

Estimating the right-hand side by using (2.12) and rearranging the resulting terms, we obtain the
same inequality

αν
αµ
<
βν
βµ

�
αν
βν

β j

α j
+ 1
�

as above, so that α→ e j also yields (2.11) for the case k = 4. For k = 5, 6, . . ., the statement can
be verified in an analogous way. �

Lemma 2.15 and 2.16 together yield a first result concerning the existence of a global maximum
of the designer’s utility function θ0 on the set cl(A). However, this is not yet the desired result,
since we want a global maximum on the set A, which is a strict subset of cl(A).

Theorem 2.17 The function θ0 : A → R has a continuous extension onto the closure cl(A)
of A and, therefore, attains a global maximum on cl(A). Moreover, no vector α ∈ cl(A) with
|J(α)| = n − 1 is a global maximum.

Proof. The fact that θ0 can be continuously extended from A onto cl(A) follows from Lemmas
2.15 and 2.16, where, in particular, it is shown that this extension satisfies θ0(α) = 0 for all
α ∈ cl(A) with |J(α)| = n − 1, hence none of these vectors is a global maximum of θ0 since θ0
attains positive values on A. The existence of a global maximum then follows immediately from
the fact that cl(A) is a compact set. �

Note, however, that the global maximizer whose existence is proven in the theorem above, might
belong to the set cl(A) \ A. Since the feasible set of the contest designer’s optimization problem
(2.5) is A or without scaling Rn

++, it remains to verify that Theorem 2.17 implies the existence
of a global maximum in Rn

++. This is done in the final result of this section using the variations
of α discussed in Section 2.2.1. Note that the following result shows that we can choose the
maximizer in such a way that it also has some additional differentiability properties that will be
exploited in Section 2.3.

Corollary 2.18 The function θ0 attains a global maximum in Rn
++. Moreover, this global maxi-

mum can be chosen in such a way that condition (2.9) from Theorem 2.14 holds.

Proof. By Theorem 2.17, the function θ0 attains a global maximum in cl(A), and this maximum
necessarily belongs to the set

{α ∈ cl(A) | |J(α)| ∈ {0, . . . , n − 2}}.

However, as a consequence of Lemma 2.12, we have θ0(cα) = θ0(α) for all α from this set and
for all scalars c > 0. Consequently, the function θ0 attains a global maximum α∗ on the set

{α ∈ Rn
+ | |J(α)| ∈ {0, . . . , n − 2}}.
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If, for this maximum, we have |J(α∗)| ∈ {1, . . . , n − 2}, i.e. α∗ � Rn
++, Lemma 2.13 shows that

there is a point α∗∗ ∈ Rn
++ with the same function value so that α∗∗ is also a global maximizer.

Consequently, θ0 has a global maximum in the set Rn
++, too. If this maximum does not satisfy

condition (2.9) from Theorem 2.14, we can apply Lemma 2.13 once more and get another point
in α∗∗∗ ∈ Rn

++ with the same function value (which, therefore, is also a maximum) such that (2.9)
holds. �

The results in this section, apart from guaranteeing the existence of an optimal contest, also back
up our decision to choose Rn

++ as feasible set for the designer’s optimization problem instead of
Rn
+. The latter choice would have enabled the contest designer to explicitly exclude participants

from the contest by choosing their αν = 0. This, however, would have complicated the analysis in
Section 2.1 significantly since most formulae there include terms of the form 1

αν
and consequently

are not well-defined for αν = 0. On the other hand, the results in Section 2.2.2 imply that it is
possible to extend our model meaningful to the case where the designer can choose his variables
from Rn

+, but also that this extension does not lead to a better optimal contest. Hence, to save
ourselves the technical difficulties, we restricted the feasible set in our model to Rn

++, knowing
that this does not impair the possibility to design an optimal contest.

2.3. Closed Form of the Optimal Contest

Having proven the existence of a solution to the contest designer’s optimization problem (2.5)
in the last section, we are now going to derive an explicit formula for the global maximum.
Since Corollary 2.18 implies the existence of a solution α∗ ∈ Rn

++ such that θ0 is continuously
differentiable in α∗, we know ∇θ0(α∗) = 0 from standard analysis. This is the basis of the
subsequent analysis. As a first step, we calculate all stationary points of θ0 in Section 2.3.1. i.e.
all solutions of the nonlinear system ∇θ0(α) = 0 in those points, where the derivative exists. It is
possible to identify these stationary points with certain sets of active players which are analyzed
in Section 2.3.2. Due to the results of Section 2.2, we can determine the set of active players
corresponding to the optimal contest by simply comparing the associated values of θ0. Finally,
we use this knowledge in Section 2.3.3 to determine the optimal weights, the equilibrium effort
and other interesting characteristics of the optimal contest.

Unfortunately, computing the zeros of ∇θ0(α) = 0 is not an easy task, especially since the
derivative with respect to α leads to complicated formulas. In order to simplify our calculations
we therefore use the transformation γ : Rn

++ → Rn
++ defined by

γν(α) :=
βν
αν

(2.13)

for all ν ∈ N. Since β ∈ Rn
++, the mapping γ is a diffeomorphism from Rn

++ onto Rn
++. We further

write γ = βα for the vector whose components are given by βναν . For some γ ∈ Rn
++, we also write

K(γ) :=


ν ∈ N

�������
�
k(γ) − 1

�
γν <

�

µ∈K(γ)

γµ
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with k(γ) := |K(γ)|. Using Corollary 2.9, it follows that for each γ ∈ Rn
++, there is precisely one

such set K(γ). Based on the set K(γ), we now define the function ϕ : Rn
++ → R by

ϕ(γ) :=
k(γ) − 1
�
µ∈K(γ) γµ



�

µ∈K(γ)

γµ
βµ
− k(γ) − 1
�
µ∈K(γ) γµ

�

µ∈K(γ)

γ2
µ

βµ


 .

Since
K(γ(α)) = K(α)

for all α ∈ Rn
++, we have ϕ = θ0 ◦ γ−1. Hence, for all global maxima α∗ of the function θ0

satisfying condition (2.9) of Theorem 2.14, the function ϕ has a global maximum in γ∗ := β
α∗ and

is continuously differentiable in a neighborhood of γ∗, since

�
k(γ∗) − 1

�
γ∗ν =

�
k(α∗) − 1

�βν
α∗ν
>
�

µ∈K(α∗)

βµ
α∗µ
=
�

µ∈K(γ∗)

γ∗µ ∀ν � K(γ∗).

Conversely, if γ∗ denotes a global maximum of ϕ with the property

ν � K(γ∗) =⇒ �
k(γ∗) − 1

�
γ∗ν >

�

µ∈K(γ∗)

γ∗µ, (2.14)

then α∗ = β
γ∗ is a global maximum of θ0 such that condition (2.9) of Theorem 2.14 holds. Hence

we have the following result.

Lemma 2.19 α∗ ∈ Rn
++ is a global maximum of θ0 satisfying property (2.9) of Theorem 2.14 if

and only if γ∗ = β
α∗ is a global maximum of ϕ satisfying condition (2.14).

Consequently, instead of looking for the global maxima of θ0 satisfying condition (2.9), we can
also search for the global maxima of ϕ satisfying (2.14) and a simple retransformation then
yields the optimal weights for the contest. Analogously to the original objective function θ0, the
function ϕ is continuously differentiable around every global maximum γ∗ satisfying (2.14) and
thus satisfies ∇ϕ(γ∗) = 0. Hence, we are going to calculate all solutions of the nonlinear system
∇ϕ(γ) = 0 in those points, where ϕ is differentiable. But before we do so, we would like to state
two properties of ϕ whose analogues have already been proven for θ0 in Section 2.2.1.

Lemma 2.20 (a) For all γ ∈ Rn
++ and all c > 0, we have K(γ) = K(cγ) and ϕ(γ) = ϕ(cγ).

(b) Let γ∗ ∈ Rn
++ be arbitrary. Then K(γ∗) = K(γ) and ϕ(γ∗) = ϕ(γ) hold for all γ ∈ Rn

++

satisfying

γν = γ
∗
ν ∀ν ∈ K(γ∗) and γν ≥

1
k(γ∗) − 1

�

µ∈K(γ∗)

γ∗µ ∀ν � K(γ∗).

Lemma 2.20 (a) implies that it suffices to calculate those maxima γ∗ of ϕ that satisfy
�

µ∈K(γ∗)

γ∗µ = 1. (2.15)
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Note that in contrast to the set A defined in Section 2.2, which was used to prove the existence
of a maximum, this time only the variables corresponding to active contestants are normalized.
The reason for this is part (b) of the lemma above, where it is stated that the variables of inactive
players can be varied in certain bounds without changing the set of active players or the collective
effort. Hence we can restrict our interest at first to those maxima satisfying the scaling (2.15) and
the differentiability condition (2.14). Later on, we obtain all maxima by applying the variations
from the previous lemma. Since the optimization problem considered here is essentially uncon-
strained, all maxima satisfying the differentiability condition are stationary points, i.e. solutions
of the equation ∇ϕ(γ) = 0. Therefore, our next step is to calculate all stationary points satisfying
the two conditions mentioned above.

2.3.1. The Stationary Points

As explained above, in this section we are only interested in points γ satisfying (2.15) and (2.14).
In these points, the objective function ϕ is differentiable and we can calculate the stationary points
γ∗, i.e. the solutions of the system ∇ϕ(γ) = 0. The following result collects some properties of
these points.

Theorem 2.21 Let γ∗ ∈ (0,∞)n be a stationary point of the function ϕ satisfying (2.15) and
(2.14). Then the following statements hold:

(a) For all active players ν ∈ K(γ∗), we have

γ∗ν =
1

2
�
k(γ∗) − 1

�
�
1 + (k(γ∗) − 2)

βν�
µ∈K(γ∗) βµ

�
.

(b) For all inactive players ν � K(γ∗), we have

γ∗ν >
1

k(γ∗) − 1
.

(c) For all active players ν ∈ K(γ∗), we have
�
k(γ∗) − 2

�
βν <

�

µ∈K(γ∗)

βµ.

(d) The total equilibrium effort is given by:

ϕ(γ∗) =
1
4



�

µ∈K(γ∗)

1
βµ
− (k − 2)2
�
µ∈K(γ∗) βµ


 .

Proof. Since γ∗ satisfies condition (2.14), there is a neighborhood U of γ∗ with

K(γ) = K(γ∗) =: K and k(γ) = k(γ∗) =: k
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and since it is stationary, we have ∇ϕ(γ∗) = 0.
The only statement we obtain for the components γν with ν � K follows from (2.14) together

with the scaling (2.15):

γ∗ν >
1

k − 1

�

µ∈K
γ∗µ =

1
k − 1

.

This shows that statement (b) holds.
Moreover, for all ν ∈ K, we have

0 =
∂

∂γν
ϕ(γ∗)

= − k − 1
��
µ∈K γ∗µ

�2
�

µ∈K

γ∗µ
βµ
+

k − 1
�
µ∈K γ∗µ

1
βν
+

2(k − 1)2

��
µ∈K γ∗µ

�3
�

µ∈K

(γ∗µ)2

βµ
− 2(k − 1)2

��
µ∈K γ∗µ

�2
γ∗ν
βν

= −(k − 1)
�

µ∈K

γ∗µ
βµ
+ (k − 1)

1
βν
+ 2(k − 1)2

�

µ∈K

(γ∗µ)2

βµ
− 2(k − 1)2γ

∗
ν

βν
. (2.16)

Summing up equation (2.16) over all ν ∈ K, we get

−(k − 1)
�

µ∈K

γ∗µ
βµ
+ 2(k − 1)2

�

µ∈K

(γ∗µ)2

βµ
=

1
k


2(k − 1)2

�

µ∈K

γ∗µ
βµ
− (k − 1)

�

µ∈K

1
βµ


 .

Inserting this again into (2.16) and cancelling the factor k − 1, we obtain for all ν ∈ K:

2(k − 1)
k

�

µ∈K

γ∗µ
βµ
− 1

k

�

µ∈K

1
βµ
+

1
βν
− 2(k − 1)

γ∗ν
βν
= 0

⇐⇒ γ∗ν −
1
k

�

µ∈K

βν
βµ
γ∗µ =

1
2(k − 1)


1 −

βν
k

�

µ∈K

1
βµ


 .

Consequently, the vector γ∗K := (γ∗ν)ν∈K is a solution of the linear system of equations


Ik×k −

1
k

�
βν
βµ

�

ν,µ∈K



�
γµ
�
µ∈K =

1
2(k − 1)


1 −

βν
k

�

λ∈K

1
βλ



ν∈K
.

Using the abbreviations βK := (βν)ν∈K and β−1
K := ( 1

βν
)ν∈K , the matrix of this linear system can be

written as

Ik×k −
1
k

�
βν
βµ

�

ν,µ∈K
= Ik×k −

1
k
βK(β−1

K )T =: M.

This matrix M is singular, more precisely, it has rank k − 1 and its null space (kernel) is given by
ker(M) = span{βK} (this singularity reflects the fact that the function value ϕ(γ) is independent of
the scaling of γ, cf. Lemma 2.20, hence M cannot be expected to be nonsingular at an arbitrary
stationary point). Now it is easy to see that one particular solution of the above linear system of
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equations is the vector from the right-hand side:

γ̃ν =
1

2(k − 1)


1 −

βν
k

�

λ∈K

1
βλ


 ∀ν ∈ K.

Therefore, the vector γ∗K is of the form γ∗K = γ̃K + cβK , where c ∈ R has to be chosen in such a
way that

�
µ∈K γ

∗
µ = 1. It follows that

c =
1

2(k − 1)




k − 2
�
µ∈K βµ

+
1
k

�

µ∈K

1
βµ




and, therefore,

γ∗ν =
1

2(k − 1)

�
1 + (k − 2)

βν�
µ∈K βµ

�
(> 0)

for all ν ∈ K. Hence statement (a) holds.
By the definition of K = K(γ∗), we have for all ν ∈ K:

(k − 1)γ∗ν <
�

µ∈K
γ∗µ = 1 ⇐⇒ (k − 2)βν <

�

µ∈K
βµ.

This verifies statement (c). Inserting the representation of γ∗K gives the desired representation of
ϕ(γ∗) from assertion (d). �

Note that Theorem 2.21 does not imply that the condition
�
k(γ∗) − 2

�
βν <

�

µ∈K(γ∗)

βµ

is violated for all ν � K(γ∗) in a stationary point γ∗. However, we will see later that the global
maximum can be characterized by the fact that this condition is satisfied only for ν ∈ K(γ∗). But
first, we are going to prove that, in some sense, the converse of Theorem 2.21 also holds, which
allows us to identify stationary points with certain sets of active players.

Lemma 2.22 Let K ⊆ N be arbitrarily given, let k := |K| ≥ 2 and suppose that

(k − 2)βν <
�

µ∈K
βµ ∀ν ∈ K. (2.17)

Define the vector γ∗ ∈ (0,∞)n in such a way that γ∗ν >
1

k−1 is arbitrary for all ν � K and

γ∗ν =
1

2(k − 1)

�
1 + (k − 2)

βν�
µ∈K βµ

�
∀ν ∈ K.

Then the following statements hold:

(a)
�
µ∈K γ

∗
µ = 1.

(b) K(γ∗) = K and γ∗ satisfies condition (2.14).
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(c) The function ϕ is continuously differentiable in a neighborhood of γ∗ with ∇ϕ(γ∗) = 0.

(d) ϕ(γ∗) = 1
4

��
µ∈K

1
βµ
− (k−2)2
�
µ∈K βµ

�
.

Proof. Statement (a) can be verified easily using the definition of γ∗µ for µ ∈ K. Assertions (c)
and (d), on the other hand, follow in essentially the same way as in the proof of Theorem 2.21
since our definition of γ∗ν is exactly the same as the representation of γ∗ν obtained in Theorem
2.21 for γ∗ν (ν ∈ K). To see that statement (b) holds, we verify that

(k − 1)γ∗ν <
�

µ∈K
γ∗µ = 1⇐⇒ ν ∈ K. (2.18)

The definition of the index set K(γ∗) together with the uniqueness of this index set then shows
K = K(γ∗). Now, for ν ∈ K, we obtain from the definition of γ∗ν together with (2.17) that

(k − 1)γ∗ν =
1
2

�
1 + (k − 2)

βν�
µ∈K βµ

�
<

1
2
�
1 + 1

�
= 1,

hence the implication “⇐=” holds in (2.18). On the other hand, for ν � K, we have (k − 1)γ∗ν > 1
which, by contraposition, shows that also the implication “=⇒” holds in (2.18). �

Lemma 2.22 and Theorem 2.21 are the foundation of the following idea how to find all global
maxima which satisfy the scaling (2.15) and the differentiability condition (2.14). As mentioned
above, all other global maxima can be derived from those using the variations from Lemma 2.20.

Theorem 2.21 allows the following interpretation: If γ∗ is a stationary point (and hence a
candidate for a global maximum) of ϕ satisfying (2.15) and (2.14), then we necessarily have

|K(γ∗)| ≥ 2 and
�
k(γ∗) − 2

�
βν <

�

µ∈K(γ∗)

βµ ∀ν ∈ K(γ∗),

whereas statement (d) calculates the corresponding function value ϕ(γ∗). Now, Lemma 2.22
takes an arbitrary index set K ⊆ N with

k := |K| ≥ 2 and (k − 2)βν <
�

µ∈K
βµ ∀ν ∈ K, (2.19)

defines corresponding values for γ∗ν (ν ∈ N) and then states that, in particular, we have K =
K(γ∗) and that γ∗ν satisfies (2.15) as well as (2.14) and ∇ϕ(γ∗) = 0. Consequently, the vector γ∗
corresponding to K is a stationary point. Hence, we can compute all stationary points satisfying
the additional conditions from Theorem 2.21 by searching for those index sets K ⊆ N with (2.19)
and then obtain the global maxima by comparing the function value ϕ(γ∗). Remember that there
are only finitely many index sets K ⊆ N. This is done in the next section.

2.3.2. The Optimal Set of Active Players

To make the idea introduced in the last section more precise, we have to introduce some notation
first. Using the formula for ϕ(γ∗) at a stationary point γ∗ given in Theorem 2.21 (d), we define
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the function

ψ(K) :=
1
4



�

µ∈K

1
βµ
− (k − 2)2
�
µ∈K βµ




for all K ⊆ N with k := |K| ≥ 2 and (k − 2)βν <
�
µ∈K βµ for all ν ∈ K. Furthermore, we want to

introduce the following terminology that will simplify our subsequent discussion to some extent.

Definition 2.23 A set K ⊆ N with k := |K| is called

(a) feasible, if k ≥ 2 and (k − 2)βν <
�
µ∈K βµ for all ν ∈ K.

(b) maximal, if K is feasible and there is no feasible superset K̃ ⊆ N of K.

(c) optimal, if K is feasible and ψ(K) ≥ ψ(K̃) for all feasible sets K̃.

We stress that a feasible set K still allows the existence of players ν � K such that the inequality

(k − 2)βν <
�

µ∈K
βµ

holds. A feasible set is maximal if it is not strictly contained in another feasible set. Furthermore,
an optimal set K is a feasible set such that the expression ψ(K) is maximal among all feasible sets.
The existence of such a set is clear since the number of feasible sets is finite (though typically
exponentially large).

With this terminology, we can state our idea from the end of Section 2.3.1 more formally: Ac-
cording to Lemma 2.22 and Theorem 2.21, γ∗ is a global maximum of ϕ satisfying the conditions
of Theorem 2.21 if and only if K(γ∗) is optimal, i.e., K(γ∗) is a solution of

max ψ(K) subject to K is feasible. (2.20)

So far, we only explained why we introduced feasible and optimal sets. The reason, why we are
interested in maximal sets, is the following proposition.

Proposition 2.24 Let K,M ⊆ N be feasible sets such that M � K. Then we have ψ(M) < ψ(K).

Proof. Using the well-known inequality between the arithmetic and harmonic mean together
with some elementary calculations, we obtain

ψ(K) − ψ(M) =
1
4



�

µ∈K\M

1
βµ
− (k − 2)2
�
µ∈K βµ

+
(m − 2)2
�
µ∈M βµ




≥ 1
4

�
(k − m)2
�
µ∈K\M βµ

− (k − m)2 + 2(k − m)(m − 2) + (m − 2)2
�
µ∈K\M βµ +

�
µ∈M βµ

+
(m − 2)2
�
µ∈M βµ

�

=
1
4




�
(k − m)

�
µ∈M βµ − (m − 2)

�
µ∈K\M βµ

�2
�
µ∈K\M βµ

�
µ∈K βµ

�
µ∈M βµ
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≥ 0,

and equality ψ(K) = ψ(M) holds if and only if

�

µ∈K\M

1
βµ
=

(k − m)2
�
µ∈K\M βµ

and
�

µ∈M

βµ = (m − 2)
�
µ∈K\M βµ

k − m
.

Since all βµ (µ ∈ K \M) are positive, the harmonic mean and the arithmetic mean coincide if and
only if all βµ (µ ∈ K \ M) coincide, i.e. if βµ = β for all µ ∈ K \ M and a suitable β > 0. Hence,
the second equation implies that, for all µ ∈ K \ M, we have

(k − 2)βµ = (k − m)β + (m − 2)β =
�

µ∈K\M
βµ +
�

µ∈M

βµ =
�

µ∈K
βµ,

which, however, is a contradiction to the feasibility of K. �

Proposition 2.24 implies that a feasible set K, which is not maximal, can never be optimal.
Hence, from now on, we can restrict our analysis to maximal sets K. This observation directly
leads to the following conclusion: Consider the case of n ≥ 3 players and note that every subset
M ⊆ N consisting of two players is feasible. Then, take an arbitrary element ν ∈ N \ M and
define K := M ∪ {ν}. This set K consists of three players containing M as a strict subset and is
feasible, too. In view of Proposition 2.24, it follows that M cannot be an optimal set. Hence we
obtain the following result.

Theorem 2.25 Consider the effort maximization problem (2.5) with n ≥ 3. Then there are at
least three active players in every global maximum.

This result is somewhat surprising. From Corollary 2.9, we know that in the Nash equilibrium of
the contest game always at least two contestants exert a positive effort. If a player ν is active in the
equilibrium depends on whether his effective cost parameter γν = βν

αν
is small enough compared

to the other players. Theorem 2.25 says that, independent from the given cost parameters βν of
the contestants, the contest designer will always choose the weights αµ (or γµ respectively) such
that at least three players are active. We will come back to this point later when comparing our
model with the all-pay auction model.

As we will prove later, one of the maximal subsets mentioned above is

K∗ :=


ν ∈ N

���� (|K∗| − 2)βν <
�

µ∈K∗
βµ


 . (2.21)

Our aim is to prove that K∗ is the unique optimal set. To this end, first note that the definition
of K∗ is given in an implicit form since K∗ also occurs in the expression within the parenthesis.
Therefore, it is neither clear whether this object is well-defined and unique nor whether it is a
useful expression for the explicit calculation of the set K∗. The following result gives an alterna-
tive (and explicit) expression for K∗ (provided that, without loss of generality, the coefficients βµ
are ordered in such a way that β1 ≤ β2 ≤ . . . ≤ βn). This expression also implies that K∗ exists.
In fact, it turns out that there is precisely one set K∗ satisfying the definition in (2.21).
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Lemma 2.26 (a) If the coefficients βµ are ordered in such a way that β1 ≤ β2 ≤ . . . ≤ βn, then
the definition of K∗ is equivalent to the following definition:

K∗ :=


ν ∈ N

���� (ν − 2)βν <
ν�

µ=1

βµ


 .

(b) The set K∗ exists and is unique.

Proof. We verify statements (a) and (b) simultaneously, first under the assumption that β1 ≤ β2 ≤
. . . ≤ βn. To this end, let us denote the set mentioned above by

M :=


ν ∈ N

���� (ν − 2)βν <
ν�

µ=1

βµ


 ,

and define m := |M|. Obviously, M exists and is unique. Furthermore, one can use the ordering
of βµ to verify the implications

ν ∈ M =⇒ ν − 1 ∈ M or, equivalently, ν � M =⇒ ν + 1 � M.

Hence, the set M is of the form M = {1, . . . ,m}.
Our first step is to show that the set M has the same properties as K∗. To this end, choose an

arbitrary ν ∈ M. Then the ordering of βµ implies

(m − 2)βν = (ν − 2)βν + (m − ν)βν <
ν�

µ=1

βµ +
m�

µ=ν+1

βµ =
�

µ∈M

βµ.

On the other hand, we can use the definition of M to obtain

((m + 1) − 2)βm+1 ≥
m+1�

µ=1

βµ ⇐⇒ (m − 2)βm+1 ≥
�

µ∈M

βµ.

This, however, implies that the following is true for all ν � M:

(m − 2)βν ≥ (m − 2)βm+1 ≥
�

µ∈M

βµ.

Consequently, M satisfies the conditions imposed on K∗.
So far, we have shown that there is at least one set which suffices the definition of K∗, namely

the set M. Furthermore, the ordering of βµ implies that every set K∗ has to be of the form
K∗ = {1, . . . , k∗}. Now, it remains to prove that every set K∗ has the same properties as M. To
this end, we choose an arbitrary ν � K∗. Then the ordering of βµ implies

(ν − 2)βν = (k∗ − 2)βν + (ν − k∗)βν ≥
�

µ∈K∗
βµ +

ν�

µ=k∗+1

βµ =
ν�

µ=1

βµ.

35



2. Constant Returns to Scale

On the other hand, we know

(k∗ − 2)βk∗ <
�

µ∈K∗
βµ ⇐⇒ ((k∗ − 1) − 2)βk∗ <

k∗−1�

µ=1

βµ.

Using this reformulation and the ordering of the βµ, we obtain

(ν − 2)βν ≤ (ν − 2)βν+1 <
ν�

µ=1

βµ

inductively for all ν = k∗ − 1, . . . , 2 (the case ν = 1 is trivial). Altogether, we have shown that
every set satisfying the definition of K∗ also satisfies the definition of M.

Therefore, we have shown that the definitions of K∗ and M coincide whenever the βµ are
ordered in an increasing way. Note that this implies existence and uniqueness of K∗ in the
ordered case.

Now, let us consider the case where βν are not necessarily sorted in increasing order. The
definition of K∗ is obviously independent of the numbering of the coefficients βµ. Hence, we can
use a permutation π : N → N to obtain an increasing ordering of the form βπ(1) ≤ βπ(2) ≤ . . . ≤
βπ(n). To shorten the notation, we define β̃µ := βπ(µ) and

K̃ :=



ν ∈ N

���� (ν − 2)β̃ν <
�

µ∈K̃
β̃µ



.

We are now in a position to apply the first part of our proof and obtain existence and uniqueness
of K̃. On the other hand, we have ν ∈ K∗ if and only if π−1(ν) ∈ K̃, i.e. K∗ = π(K̃), where the
permutation is meant to be applied elementwise on the set K̃. By combining these two facts, we
can derive existence and uniqueness of the set K∗ as well. �

Note that the assumption β1 ≤ β2 ≤ . . . ≤ βn can be stated without loss of generality. Then
Lemma 2.26 shows that K∗ consists precisely of the k∗ := |K∗| smallest elements of the coeffi-
cients βµ, i.e. K∗ = {1, 2, . . . , k∗}. This is an intuitive efficiency property of any solution: only the
most able contestants, i.e. those with the lowest cost to provide effort, are chosen to be active by
the contest organizer. This expression of K∗ is very useful for the actual computation of this set.
On the other hand, in our subsequent analysis, we typically exploit the implicit definition of K∗
from (2.21).

Since we want to show that K∗ is an optimal (in fact, the optimal) set, we know from Proposi-
tion 2.24 that it has to be at least a maximal set. The following result therefore verifies that K∗ is
indeed a maximal set, so it remains a candidate for being an optimal set.

Lemma 2.27 The set K∗ is maximal in the sense of Definition 2.23.

Proof. By definition, the set K∗ is obviously feasible. In order to prove maximality, we will
assume without loss of generality that β1 ≤ β2 ≤ . . . ≤ βn. Then K∗ has to be of the form
{1, 2, . . . , k∗}. Assume that K∗ is not maximal. Then there is a set M ⊆ N \ K∗ such that m :=
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|M| � 0 and K∗ ∪ M is feasible. Let µ̃ be the largest index in K∗ ∪ M. Then µ̃ � K∗ and thus the
definition of K∗ and the increasing order of the βµ imply

((k + m) − 2)βµ̃ = (k − 2)βµ̃ + mβµ̃ ≥
�

µ∈K∗
βµ +
�

µ∈M

βµ =
�

µ∈K∗∪M

βµ,

a contradiction to the feasibility of K∗ ∪ M. �

The next result is a technical lemma that will be exploited in our subsequent analysis. It is,
however, also of some interest on its own by giving a necessary condition on the size of the βµ
that belong to any feasible set K: These βµ have to be strictly smaller than the sum of the three
smallest elements βν with ν ∈ K. A comparison with the respective condition from Section 2.1.2,
presented in Corollary 2.10, indicates that the active set of players under the optimal weights
might be larger than, for instance, under the neutral weighting scheme, see Section 2.4 for a
detailed example of this comparison.

Lemma 2.28 Let K be feasible with k := |K| ≥ 3. Then all βν (ν ∈ K) are strictly smaller than
the sum of the three smallest βµ (µ ∈ K).

Proof. Assume once again, without loss of generality, that β1 ≤ β2 ≤ . . . ≤ βn and let K =
{µ1, . . . , µk} in increasing order, i.e. βµ1 ≤ βµ2 ≤ . . . ≤ βµk . Then the three smallest βµ (µ ∈ K) are
βµ1 , βµ2 , βµ3 . The definition of K implies

(k − 2)βµk <
k�

j=1

βµ j ⇐⇒ �
(k − 1) − 2

�
βµk <

k−1�

j=1

βµ j .

Using this reformulation and the ordering of the βµ j , we obtain

(i − 2)βµi ≤ (i − 2)βµi+1 <
i�

j=1

βµ j

inductively for all i = k − 1, . . . , 2 (there is nothing to prove for i = 1). Now, the assertion is
obviously true for βµ1 , βµ2 , βµ3 . For βµ4 , . . . , βµk , the statement can be derived inductively using
the formula above. �

In order to state our main result, we need another technical lemma whose proof is quite lengthy
and technical.

Lemma 2.29 Suppose n ≥ 4. For every feasible set K with k := |K| ≥ 3 and K \ K∗ � ∅ the
following estimation holds:

−
�

µ∈K\K∗

1
βµ
+

(k − 2)2
�
µ∈K βµ

≥ −(k − d)(k∗ − 2)
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − 2 + k∗ − d)
�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

,

where d := |K∗ ∩ K|.
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Proof. Our aim is to find a suitable lower bound for the expression

−
�

µ∈K\K∗

1
βµ
+

(k − 2)2
�
µ∈K βµ

= −
�

µ∈K\K∗

1
βµ
+

(k − 2)2
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ βµ

,

because this lower bound is going to play a very crucial role in the proof of our main result,
Theorem 2.30. Standard estimates for this expression do not work in the proof of that result, so
we need a very sharp lower bound. To this end, we compute analytically the solution of a related
optimization problem. More precisely, we will prove that the lower bound given in Lemma 2.29
is the global minimum of the problem

minbν,ν∈K\K∗ −
�

µ∈K\K∗

1
bµ
+

(k − 2)2
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ

s.t. −(k∗ − 2)bν +
�

µ∈K∗
βµ ≤ 0 ∀ν ∈ K \ K∗, (2.22)

(k − 2)bν −
�

µ∈K\K∗
bµ −

�

µ∈K∩K∗
βµ ≤ 0 ∀ν ∈ K \ K∗,

where βν (ν ∈ K ∩ K∗) are viewed as fixed and bν (ν ∈ K \ K∗) are the variables. Obviously, βν
(ν ∈ K \K∗) is feasible for this optimization problem due to the feasibility of K and the definition
of K∗. To do so, we will proceed in two steps: First, we will prove the existence of a global
minimum and then we will calculate it explicitly.

Existence of a global minimum:
Note that the feasible set is nonempty since the definitions of the index sets K and K∗ immediately
imply that the vector βK\K∗ is feasible. Since n ≥ 4, it follows from Theorem 2.25 that k∗ ≥ 3.
The maximality of K∗ together with K \ K∗ � ∅ implies K∗ \ K � ∅, i.e. k∗ − d > 0, where
d := |K∗ ∩ K|. At first, we will deal with the case d ≥ 3.

We claim that, under this additional assumption, the feasible set of (2.22) is bounded, hence
compact. To this end, let bK\K∗ be any feasible vector for this program. This implies that for all
γ ∈ K∗ ∩ K and all ν ∈ K \ K∗

0 < βγ <
�
µ∈K∗ βµ

k∗ − 2
≤ bν.

Because of d ≥ 3, this implies that the three smallest elements of {bν | ν ∈ K \ K∗} ∪ {βν |
ν ∈ K ∩ K∗} belong to indices ν ∈ K∗ ∩ K. Define c as the sum over the three smallest βν
(ν ∈ K∗ ∩K). This constant is independent from bK\K∗ , and one can prove analogously to Lemma
2.28 that every feasible bK\K∗ satisfies bν ≤ c for all ν ∈ K \ K∗. So the feasible set of problem
(2.22) is not only closed but also bounded, i.e., it is compact. Hence, the continuous objective
function attains a global minimum in the feasible set.

Now, we have to deal with the remaining case d < 3. Unfortunately, the feasible set is un-
bounded for d ∈ {0, 1, 2}, so we have to use a slightly different argumentation here. We can
find a sequence of feasible vectors {bm

K\K∗}m such that the corresponding values of the objective
function converge to the infimum of the function on the feasible set (which could be −∞). If
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any subsequence of {bm
K\K∗}m converges to a finite limit point, the closedness of the feasible set

guarantees that this limit point is feasible and thus a global minimum.
Now let us assume that for every subsequence, at least one component bm

ν (ν ∈ K \ K∗) is
unbounded. Then we can find a subsequence of {bm

K\K∗}m such that every component bm
ν (ν ∈

K \ K∗) either converges to a finite bν or diverges to +∞. Denote by I f the index set of the
converging components and by I∞ the index set of the diverging components. Then I∞ � ∅. This,
however, implies d + i f ≤ 2, where i f := |I f |. Otherwise, an argument similar to Lemma 2.28
would yield that all components of the limit point were bounded by the sum of the three smallest
elements of {bν | ν ∈ K \ K∗} ∪ {βν | ν ∈ K ∩ K∗}, hence finite. Using this information, we can
compare the infimum of the objective function, which is then given by

−
�

µ∈I f

1
bµ

with
bν ≥

�
µ∈K∗ βµ

k∗ − 2
∀ν ∈ I f , (2.23)

(by continuity) with the value of the objective function in the point
��
µ∈K∗ βµ
k∗−2

�
K\K∗ , which is feasible

as we will show below. The value of the objective function corresponding to this vector is given
by

−
�

µ∈K\K∗

k∗ − 2
�

j∈K∗ β j
+

(k − 2)2

�
µ∈K∩K∗ βµ +

�
µ∈K\K∗

�
j∈K∗ β j

k∗−2

= −(k − d)
k∗ − 2
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k∗ − 2)
�
µ∈K∩K∗ βµ + (k − d)

�
µ∈K∗ βµ

= −(k − d)
k∗ − 2
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − 2)
�
µ∈K∗ βµ + δ

,

where we used the abbreviation

δ := (k∗ − d)
�

µ∈K∗
βµ − (k∗ − 2)

�

µ∈K∗\K
βµ.

Using the definition of K∗ together with K∗ \ K � ∅, it is not difficult to see that δ > 0. This
yields

�
−(k − d)

k∗ − 2
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − 2)
�
µ∈K∗ βµ + δ

�
−

−
�

µ∈I f

1
bµ




≤ − (k − d − i f )(k∗ − 2)
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − 2)
�
µ∈K∗ βµ + δ

≤ − (k − 2)(k∗ − 2)
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − 2)
�
µ∈K∗ βµ + δ

39



2. Constant Returns to Scale

=
(k − 2)(k∗ − 2)
�
µ∈K∗ βµ

· −δ
(k − 2)

�
µ∈K∗ βµ + δ

< 0,

where the first expression was motivated above, the first inequality follows by estimating the
second term based on (2.23), the second inequality is a consequence of the fact that d + i f ≤ 2,
the subsequent equation follows by direct calculation using some cancellations, and the final
inequality uses the fact that δ > 0.

It remains to prove the feasibility of
��
µ∈K∗ βµ
k∗−2

�
K\K∗ . Obviously, for all ν ∈ K \ K∗

bν =
�
µ∈K∗ βµ

k∗ − 2
≥
�
µ∈K∗ βµ

k∗ − 2
.

On the other hand, we have

�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ

k − 2
=

�
µ∈K∗ βµ −

�
µ∈K∗\K βµ + (k − d)

�
µ∈K∗ βµ
k∗−2

k − 2
>

�
µ∈K∗ βµ

k∗ − 2
= bν

for all ν ∈ K \ K∗, where the strict inequality can be obtained using the fact δ > 0. This proves
the feasibility.

This, however, is a contradiction, because the objective function attains a smaller value in��
µ∈K∗ βµ
k∗−2

�
K\K∗ than in its infimum. Hence, our assumption was wrong and the objective function

always attains a global minimum. In fact, we will prove in the next part that
��
µ∈K∗ βµ
k∗−2

�
K\K∗ is this

global minimum.

Calculation of the global minimum:
As all constraints in (2.22) are linear, the global minimum has to be a stationary point, see
Chapter 4 for a definition. Therefore, our next step is to calculate all stationary points of this
problem. Assume that bK\K∗ is such a stationary point. Then we know that there are multipliers
λu, λl such that the following equations hold for all ν ∈ K \ K∗:

1
b2
ν

− (k − 2)2

(
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ)2 − λ

l
ν(k
∗ − 2) + λu

ν(k − 2) −
�

µ∈K\K∗
λu
µ = 0,

(k∗ − 2)bν ≥
�

µ∈K∗
βµ, λ

l
ν ≥ 0,

�
(k∗ − 2)bν −

�

µ∈K∗
βµ
�
λl
ν = 0,

(k − 2)bν ≤
�

µ∈K∩K∗
βµ +

�

µ∈K\K∗
bµ, λu

ν ≥ 0,
�
(k − 2)bν −

�

µ∈K∩K∗
βµ −

�

µ∈K\K∗
bµ
�
λu
ν = 0.

The feasibility of bK\K∗ implies that

�
µ∈K∗ βµ

k∗ − 2
≤ bν ≤

1
k − 2



�

µ∈K\K∗
bµ +

�

µ∈K∩K∗
βµ


 ∀ν ∈ K \ K∗
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(recall that k∗ − 2 > 0 and k − 2 > 0, so the denominators above are well-defined). However,
the lower estimate for bν (ν ∈ K \ K∗) given in the previous formula is strictly smaller than the
upper estimate. This can be seen in the following way: Using the definition of K∗ together with
K∗ \ K � ∅ as well as the feasibility of bν (ν ∈ K \ K∗), we obtain

bν ≥
�
µ∈K∗ βµ

k∗ − 2
∀ν ∈ K \ K∗ =⇒

�

ν∈K\K∗
bν ≥

k − d
k∗ − 2

�

µ∈K∗
βµ,

βν <

�
µ∈K∗ βµ

k∗ − 2
∀ν ∈ K∗ =⇒

�

ν∈K∗\K
βν <

k∗ − d
k∗ − 2

�

µ∈K∗
βµ,

where the implications follow by taking the summations over all ν ∈ K \ K∗ and all ν ∈ K∗ \ K,
respectively. Using these estimates, we indeed obtain

�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ

k − 2
=

�
µ∈K∗ βµ −

�
µ∈K∗\K βµ +

�
µ∈K\K∗ bµ

k − 2

>

�
µ∈K∗ βµ

�
(k∗ − 2) − (k∗ − d) + (k − d)

�

(k∗ − 2)(k − 2)
(2.24)

=

�
µ∈K∗ βµ

k∗ − 2
.

Hence, every ν ∈ K \ K∗ belongs to exactly one of the following three cases:
Case 1: If bν =

�
µ∈K∗ βµ
k∗−2 , then the KKT conditions together with (2.24) imply λu

ν = 0. We define Il

as the set of all indices ν ∈ K \ K∗ that belong to this case.
Case 2: If bν =

�
µ∈K∩K∗ βµ+

�
µ∈K\K∗ bµ

k−2 , then the KKT conditions together with (2.24) imply λl
ν = 0

and thus
λu
ν(k − 2) −

�

µ∈K\K∗
λu
µ = 0. (2.25)

We define Iu as the set of all indices ν ∈ K \ K∗ that belong to this case.
Case 3: If bν ∈

��
µ∈K∗ βµ
k∗−2 ,

�
µ∈K∩K∗ βµ+

�
µ∈K\K∗ bµ

k−2

�
, then the KKT conditions together with (2.24) imply

λl
ν = λ

u
ν = 0 and

1
b2
ν

− (k − 2)2

(
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ)2 −

�

µ∈K\K∗
λu
µ = 0. (2.26)

Our next step is to show that Case 3 cannot occur. To this end, let iu := |Iu| and add (2.25) for all
ν ∈ Iu. This yields (taking into account that λu

ν = 0 for all ν ∈ Iu)

(k − 2 − iu)
�

ν∈Iu

λu
ν = 0.

We will show that k − 2 − iu > 0. Then the nonnegativity of all λu
ν (ν ∈ Iu) implies λu

ν = 0 for all
ν ∈ Iu and therefore λu

ν = 0 for all ν ∈ K \ K∗. But then (2.26) gives a formula for bν which is
in contradiction to the value of bν in Case 3. Hence Case 3 cannot occur. To prove the assertion,
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assume that k − 2 − iu ≤ 0 or, equivalently, iu ≥ k − 2. Summation over all bν (ν ∈ Iu) with the
expression for bν as in Case 2 and using the fact that K ∩ K∗ is nonempty would then imply

�

ν∈Iu

bν =
iu

k − 2



�

µ∈K∩K∗
βµ +

�

µ∈K\K∗
bµ


 ≥

�

µ∈K∩K∗
βµ +

�

µ∈K\K∗
bµ >

�

µ∈K\K∗
bµ ≥

�

µ∈Iu

bµ

which gives the desired contradiction.
Hence, every stationary point is of the form

bν =




�
µ∈K∗ βµ
k∗−2 , ν ∈ Il,�
µ∈K∩K∗ βµ+

�
µ∈K\K∗ bµ

k−2 , ν ∈ Iu,

with a characteristic partition K \ K∗ = Il ∪ Iu. Using this and the abbreviation il := |Il|, we can
resolve the implicit definition of bν (ν ∈ Iu) in the following way:

(k − 2)bν =
�

µ∈K∩K∗
βµ +

�

µ∈K\K∗
bµ

=
�

µ∈K∩K∗
βµ +
�

µ∈Iu

bµ +
�

µ∈Il

bµ

=
�

µ∈K∗
βµ −

�

µ∈K∗\K
βµ +
�

µ∈Iu

bµ +
il

k∗ − 2

�

µ∈K∗
βµ

=
�

µ∈K∗
βµ −

�

µ∈K∗\K
βµ + iubν +

k − d − iu

k∗ − 2

�

µ∈K∗
βµ,

where the first equation follows from the previous implicit expression of bν, the second equation
takes into account the partition of the set K \ K∗ into the union Iu ∪ Il, the third equation uses a
trivial identity together with the previous explicit representation of bν for all ν ∈ Il, and the fourth
equation takes into account that all bµ (µ ∈ Iu) have a constant value (the same as bν) as well as
the fact that il + iu = |Il ∪ Iu| = |K \ K∗| = k − d. The representation we got in this way can now
be solved for bν in order to get the explicit expression

bν =
(k − d − iu)

�
µ∈K∗ βµ + (k∗ − 2)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

(k∗ − 2)(k − 2 − iu)

=
(k − 2 − iu)

�
µ∈K∗ βµ + (k∗ − d)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

(k∗ − 2)(k − 2 − iu)
(ν ∈ Iu).

Using this and the abbreviations bl := bν for ν ∈ Il and bu := bν for ν ∈ Iu (recall that both
numbers are constant within their corresponding index sets), we can express the value of the
objective function in a stationary point as follows:

−
�

µ∈K\K∗

1
bµ
+

(k − 2)2
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ
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= −
�

µ∈Iu

1
bµ
−
�

µ∈Il

1
bµ
+ (k − 2)

(k − 2)
�
µ∈K∩K∗ βµ +

�
µ∈K\K∗ bµ��������������������������������������������������������

= 1
bu

=
k − 2 − iu

bu
− (k − d − iu)

1
bl

=
(k − 2 − iu)2(k∗ − 2)

(k − 2 − iu)
�
µ∈K∗ βµ + (k∗ − d)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

− (k − d − iu)(k∗ − 2)
�
µ∈K∗ βµ

=
k∗ − 2
�
µ∈K∗ βµ

·
(k − 2 − iu)(d − 2)

�
µ∈K∗ βµ − (k − d − iu)

�
(k∗ − d)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

�

(k − 2 − iu)
�
µ∈K∗ βµ + (k∗ − d)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

,

here the first equation uses the partition of K \ K∗ into Iu ∪ Il, the second equation takes into
account that bµ is constant on the two index sets Iu and Il, respectively, as well as the implicit
representation of bu, the third equation substitutes the explicit values for bl and bu, respectively,
and the final equation can be verified by direct calculation.

We already know that, for every stationary point, we have iu ∈ {0, 1, . . . , k − 3}. Hence, we are
interested in the minimum of the term above for iu ∈ [0, k − 3] (viewed as a continuous variable,
for the moment). To this end, remember the abbreviation

δ := (k∗ − d)
�

µ∈K∗
βµ − (k∗ − 2)

�

µ∈K∗\K
βµ.

Obviously, δ does not depend on iu and we have seen before that δ > 0. Differentiation of the
term above with respect to iu then yields (after some algebraic manipulations)

∂

∂iu

k∗ − 2
�
µ∈K∗ βµ

·
(k − 2 − iu)(d − 2)

�
µ∈K∗ βµ − (k − d − iu)δ

(k − 2 − iu)
�
µ∈K∗ βµ + δ

=
k∗ − 2
�
µ∈K∗ βµ

·




� − (d − 2)
�
µ∈K∗ βµ + δ

��
(k − 2 − iu)

�
µ∈K∗ βµ + δ

�
�
(k − 2 − iu)

�
µ∈K∗ βµ + δ

�2

−
�
(k − 2 − iu)(d − 2)

�
µ∈K∗ βµ − (k − d − iu)δ

�� −�µ∈K∗ βµ
�

�
(k − 2 − iu)

�
µ∈K∗ βµ + δ

�2




=
k∗ − 2
�
µ∈K∗ βµ

· δ2

�
(k − 2 − iu)

�
µ∈K∗ βµ + δ

�2 ,

which is strictly positive for all iu ∈ [0, k − 3] because of δ > 0. Hence the objective function is
strictly increasing with respect to iu. Therefore, the stationary point corresponding to the global
minimum is the one with the smallest iu possible, i.e. the one with iu = 0 (which, fortunately,
turned out to be an integer, though within our intermediate calculations iu was assumed to be a
real number). While proving the existence of a global minimum, we have already shown that
the vector bK\K∗ with Iu = ∅ and Il = K \ K∗ is indeed feasible for (2.22) and thus the global
minimum.
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As we mentioned at the beginning of the proof, the vector βK\K∗ also is feasible for (2.22).
Thus, we obtain the assertion by using the value of the objective function in its global minimum
as a lower bound. �

Based on the previous results, we are now in a position to state the main theorem of this section
which gives the set of active contestants in the optimal contest.

Theorem 2.30 The set K∗ is the unique optimal set (for the given parameters βµ, µ ∈ N).

Proof. For n = 2, K∗ = {1, 2} is the only feasible and thus optimal set. For n = 3, the assertion
follows from Theorem 2.25. Now suppose n ≥ 4. We show that for every feasible set K � K∗,
there exists another feasible set K̃ with ψ(K) < ψ(K̃). To this end, let K � K∗ be an arbitrary
feasible set. If k := |K| = 2 or K � K∗ we can find such a set K̃ according to Proposition
2.24 (note that, in particular, every subset of N consisting of three players is feasible, so every
feasible set K consisting of just two players can be enlarged to a set with three players, and then
Proposition 2.24 can be applied also to this case). Hence, the only remaining case is k ≥ 3 and
K \ K∗ � ∅. Define k∗ := |K∗| and d := |K∗ ∩ K|. In this case, we are in the situation where
Lemma 2.29 can be applied, and we obtain

4
�
ψ(K∗) − ψ(K)

�
=
�

µ∈K∗\K

1
βµ
− (k∗ − 2)2
�
µ∈K∗ βµ

−
�

µ∈K\K∗

1
βµ
+

(k − 2)2
�
µ∈K βµ

≥ (k∗ − d)2
�
µ∈K∗\K βµ

− (k∗ − 2)2
�
µ∈K∗ βµ

− (k − d)(k∗ − 2)
�
µ∈K∗ βµ

+
(k − 2)2(k∗ − 2)

(k − d + k∗ − 2)
�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

=
(k∗ − 2 + k − d)

�
(k∗ − d)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

�2
��
µ∈K∗\K βµ

���
µ∈K∗ βµ

��
(k − d + k∗ − 2)

�
µ∈K∗ βµ − (k∗ − 2)

�
µ∈K∗\K βµ

�

> 0,

where the first equation follows from the definition of the function ψ(K), the first inequality uses
both the inequality between the arithmetic and the harmonic mean applied to the first term and
Lemma 2.29 applied to the last two terms, the second equation follows by direct computation
using a common denominator for all terms, and the final strict inequality exploits the feasibility
of K∗, k∗ ≥ 3 and k > d (the latter holds since K \ K∗ � ∅). This shows ψ(K) < ψ(K∗) for the
remaining case. Consequently, K∗ is the unique optimal set. �

Thus, we have proven what we promised at the beginning of this section, namely that the unique
set of active players in the optimum is given by

K∗ =


ν ∈ N

���� (k∗ − 2)βν <
�

µ∈K∗
βµ


 .

We are going to use this result in the next section to calculate optimal weights and other interest-
ing properties of the optimal contest.
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2.3.3. The Optimal Bias and Other Figures

Using Theorem 2.30 together with Lemma 2.22 and recalling the definition of γ = βα , we are now
able to calculate one solution α∗ of the contest designer’s problem (2.5), namely

α∗ν =
2(k∗ − 1)βν
1 + (k∗−2)βν�

µ∈K∗ βµ

for ν ∈ K∗, α∗ν < (k∗ − 1)βν for ν � K∗. (2.27)

Due to the Lemmas 2.12 and 2.13, we already knew that the contest designer’s optimization
problem does not have a unique solution, but all other solution can be derived from (2.27) using
the variations from these two Lemmas. Nonetheless, the optimal contest is unique in the sense
that the set of active players and their individual equilibrium efforts are uniquely determined
independent from the particular choice of optimal weights. We can also infer from formula
(2.27) that all optimal weights share an equal treatment property, i.e., participants with equal
costs βν get equal weights α∗ν.

The expression for α∗ν is clearly increasing in βν for active players. This implies that under the
optimal weighting scheme players with high costs are favored relatively more than players with
low costs. Hence, with optimally specified weights the heterogeneity between active players is
reduced to some extent. A closer look at the formula from Theorem 2.21 (a) reveals, however,
that the effective cost parameter,

γ∗ν =
βν
α∗ν
=

1
2
�
k∗ − 1

�
�
1 + (k∗ − 2)

βν�
µ∈K∗ βµ

�
,

is still increasing in βν, whenever there are more than two players active under the optimal
weighting scheme. Hence, although the heterogeneity is reduced to some extent, the disad-
vantage of players with a higher cost factor still remains.

Based on the explicit characterization of the active set of players and the corresponding optimal
weighting scheme we are now in a position to derive explicit formulae for equilibrium values.
The optimal effort of player ν is then given by

xν(α∗) =




1
4βν

�
1 −
�

(k∗−2)βν�
µ∈K∗ βµ

�2�
for ν ∈ K∗,

0 for ν � K∗,
(2.28)

and, after some elementary calculations, one obtains

θν
�
xν(α∗), x−ν(α∗)

�
=




1
4

�
1 − (k∗−2)βν�

µ∈K∗ βµ

�2
for ν ∈ K∗,

0 for ν � K∗
(2.29)

as the corresponding payoff for player ν. Note that the expression for equilibrium utility in (2.29)
is never identical for players with different cost parameters, in fact it is decreasing in βν. Hence,
the playing field is not leveled to the full extent (with the exception of the two-player case as
presented in Example 2.31). Finally, the contest designer’s payoff is given by

θ0(α∗) =
1
4



�

µ∈K∗

1
βµ
− (k∗ − 2)2
�
µ∈K∗ βµ


 . (2.30)
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To sum it up, by now we have all information the contest designer needs to design the optimal,
effort maximizing, contest and formulae for the resulting reactions of the contestants such as
their equilibrium effort and utility. We are going to illustrate these results on a few examples in
the next section.

2.4. Examples

To illustrate the results given in the last section, we first consider two examples which are well
known from the literature, cf. [92, 28], and calculate all interesting figures such as the optimal set
of active players (2.21), one set of optimal weights (2.27), the corresponding equilibrium effort
of the individual players (2.28) and their resulting utility (2.29), and finally the designer’s payoff
(2.30). The first example deals with the smallest possible contest with only two participants and
illustrates the gain of optimally leveling the playerfield.

Example 2.31 In the 2-player case, the set of active players in the global maximum is K∗ = {1, 2}
and one possible choice for optimal weighting parameters is

α∗ν = 2βν, hence γ∗ν =
1
2
∀ν = 1, 2.

Since both contestants have the same effective cost parameter γ∗ν, heterogeneity between the
players is completely removed in the optimum. The optimal set of weighting parameters yields
the following equilibrium results:

x∗ν =
1

4βν
∀ν = 1, 2,

θν(x∗) =
1
4
∀ν = 1, 2,

θ0(α∗) =
β1 + β2

4β1β2
.

The complete removal of heterogeneity is also reflected by the fact that expected payoff in equi-
librium is identical for both players.

For comparison, an equal treatment approach with neutral weights, i.e. αν = 1 for both players
ν = 1, 2, would lead to an aggregated effort of

θequal
0 =

1
β1 + β2

.

Since θ0(α∗) is one half of the inverse of the harmonic mean of β1 and β2 and θequal
0 is one half

of the inverse of the respective arithmetic mean, the optimally designed contest always yields a
greater aggregated effort than the equal treatment approach except, of course, for the homoge-
neous case where β1 = β2 and consequently α∗1 = α

∗
2. �
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The following example generalizes the homogeneous two-player case to an arbitrary number of
homogeneous players. We will see that, in this case, the optimally designed contest is exactly
the one with neutral weights where all participants are active and exert the same effort.

Example 2.32 In the homogeneous n-player case, where βν = βµ (=: β) for all ν, µ ∈ N, all
subsets K ⊆ N with k := |K| ≥ 2 are feasible. Hence, as the optimal set has to be a maximal
set, the set of active players in the global maximum is K∗ = N, and the corresponding optimal
parameters are

α∗ν = nβ, hence γ∗ν =
β

α∗ν
=

1
n
∀ν ∈ N.

In particular, all players are active in the optimum and have the same effective cost parameter.
The equilibrium results are as follows:

x∗ν =
n − 1
n2β

∀ν ∈ N,

θν(x∗) =
1
n2 ∀ν ∈ N,

θ0(α∗) =
n − 1

nβ
. �

As we have proven in the last section, the set of active players in the optimal contest is given by

K∗ =


ν ∈ N

���� (|K∗| − 2)βν <
�

µ∈K∗
βµ


 .

On the other hand, the set of active players in the non-biased contest with neutral weights α̂ :=
(1, . . . , 1) is

K(α̂) =


ν ∈ N

���� (|K(α̂)| − 1)βν <
�

µ∈K(α̂)

βµ


 ,

Hence, we always have K(α̂) ⊆ K∗, but it is possible that the set of active contestants in the
optimal contest is actually bigger than in the contest with neutral weights. Thus, the optimal
contest exhibits some kind of inclusion principle since it is possible that motivating weak players
to participate increases the aggregated effort. As we will see in the next section, this is completely
different when interpreting the contest as an all-pay auction. But first, we want to illustrate
this behavior on a few examples. To simplify these examples, we consider only cases where
β1 ≤ β2 ≤ . . . ≤ βn. In these cases, we know

K∗ =


ν ∈ N

���� (ν − 2)βν <
ν�

µ=1

βµ


 and K(α̂) =


ν ∈ N

���� (ν − 1)βν <
ν�

µ=1

βµ


 .

Example 2.33 We consider a contest with four participants with the following distribution of
cost parameters: β = (1, 2, 2, 4)T . Using the above mentioned characterization of the active sets,

47
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it is obvious that the player with β4 = 4 is not active with neutral weights but that he is induced to
participate under the optimal weighting scheme. Hence, in this case there is inclusion of players
due to the optimal weighting scheme. Equilibrium results are presented in Table 2.1 where
the weighting factors are normalized to facilitate the comparison between the two weighting
schemes.

Neutral Weights α̂ Optimal Weights α∗

α (0.25, 0.25, 0.25, 0.25) (0.143, 0.243, 0.243, 0.371)
K(α) {1, 2, 3} {1, 2, 3, 4}

x∗ (0.24, 0.08, 0.08, 0) (0.238, 0.100, 0.100, 0.013)
ανx∗ν�n
µ=1 αµx∗µ

(0.6, 0.2, 0.2, 0) (0.389, 0.278, 0.278, 0.056)
θν(x∗) (0.36, 0.04, 0.04, 0) (0.151, 0.077, 0.077, 0.003)
θ0(α) 0.4 0.451

Table 2.1.: Results for Example 2.33

Under the optimal weighting scheme the last player is induced to participate due to the relatively
large weight that he obtains in comparison to the other players. Note also that the dispersion in
winning probabilities between the other players is reduced in comparison to the neutral weighting
scheme which illustrates that the playing field is more leveled. Both effects, i.e. additional
inclusion in combination with the balanced competition, result in higher total equilibrium effort
under the optimal weighting scheme. �

Of course, if the difference between the contestants is too big, the optimal weighting scheme
might not lead to the inclusion of additional active players. (The one exception to this is the
three-player case, which is considered in Example 2.35.) Nonetheless, the balancing effect of the
optimal weights can still increase the aggregated effort as illustrated in the following example.

Example 2.34 The distribution of cost parameters is slightly altered for the last player: β =
(1, 2, 2, 6)T . In this case the last player even remains inactive under the optimal weights, i.e., the
set of active players coincides for both weighting schemes, see Table 2.2.

Neutral Weights α̂ Optimal Weights α∗

α (0.25, 0.25, 0.25, 0.25) (0.226, 0.387, 0.387, 0)
K(α) {1, 2, 3} {1, 2, 3}

x∗ (0.24, 0.08, 0.08, 0) (0.24, 0.105, 0.105, 0)
ανx∗ν�n
µ=1 αµx∗µ

(0.6, 0.2, 0.2, 0) (0.4, 0.3, 0.3, 0)
θν(x∗) (0.36, 0.04, 0.04, 0) (0.16, 0.09, 0.09, 0)
θ0(α) 0.4 0.45

Table 2.2.: Results for Example 2.34
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As in the previous example the dispersion in winning probabilities of active players declines,
i.e., the heterogeneity among the players is reduced under the optimal weighting scheme. Again,
setting optimal weights results in higher total equilibrium. A comparison with the previous
example also implies that there is a positive effect from the inclusion of players because the total
effort under the optimal weighting scheme is slightly higher in Example 2.33 where all players
are successfully encouraged to participate. �

As mentioned before, Theorem 2.25 implies that there will always be at least three active players
in the optimal contest. If we consider a contest with n = 3 participants, then all of them will be
active in the optimal contest independent from their cost distribution. This effect is illustrated in
the following example.

Example 2.35 Consider a contest with n = 3 participants and cost parameters β = (1, 1, c),
where c ≥ 2. Then it is easy to verify that only the first two players are active in the unbiased
contest whereas all three players have to be active in the optimal contest. One readily verifies the
following results for the unbiased contest with α̂ = (1

3 ,
1
3 ,

1
3 ):

x∗ =
�
1
4
,

1
4
, 0
�
,

(θν(x∗))ν=1,2,3 =

�
1
4
,

1
4
, 0
�
,

θ0(α∗) =
1
2
.

On the other hand, we obtain the following formulae for these figures in the optimal contest:

α∗ν =




4
�
1 − 1

c+3

�
if ν = 1, 2,

4c
�
1 − c

2c+2

�
if ν = 3,

xν(α∗) =




1
4

�
1 − 1

(c+2)2

�
if ν = 1, 2,

1
4c

�
1 − c2

(c+2)2

�
if ν = 3,

θν(x∗) =




1
4

�
1 − 1

c+2

�2
if ν = 1, 2,

1
4

�
1 − c

c+2

�2
if ν = 3,

θ0(α∗) =
1
2

�
1 +

1
c(c + 2)

�
.

Hence, the bigger c becomes, the bigger α∗3 has to be in order to motivate the third player to take
part in the contest. But it can also be seen that, although including the third player increases the
overall effort, this positive effect is very small when the third player has too high costs compared
to the other two, i.e., when c is large. In fact, the figures above (except for α∗) converge to those
from the non-biased contest for c→ ∞. This is illustrated on a few values of c in Table 2.3. Note
that we normalized the weights α∗ in this table in order to simplify comparison with the unbiased
case. �
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c 2 10 100
α∗ (0.273, 0.273, 0.455) (0.126, 0.126, 0.47) (0.019, 0.019, 0.962)

x∗(α∗) (0.234, 0.234, 0.094) (0.248, 0.248, 0.008) (0.250, 0.250, 0.970 ∗ 10−4)
θν(x∗) (0.141, 0, 141, 0, 063) (0.210, 0, 210, 0, 007) (0, 245, 0.245, 0.961 ∗ 10−4)
θ0(α∗) 0.563 0.504 0.500

Table 2.3.: Results for Example 2.35

2.5. Comparison: The All-Pay Auction

A different approach, which is popular to model the situations mentioned in the introduction, is
the so called all-pay auction (with complete information), see for example [11, 12, 35]. In an
all-pay auction, all participants simultaneously place a bid for a certain prize. The player with
the highest bid wins the prize, but all participants have to pay what they bid. Usually, if there
are several highest bids, it is supposed that the prize is split evenly between all participants who
placed one of these bids. The difference to our model is that in the all-pay auction, the partici-
pant with the highest bid or effort is awarded the prize with certainty whereas in our model, every
participant has a chance to obtain the prize proportional to his relative effort. Consequently, the
contest designer cannot influence the participants’ effort by manipulating the winning probabil-
ities. Instead, he will maximize the overall effort by deciding who is allowed to take part in the
contest and who is not. As we will see, this leads to substantially different results than those we
obtained for the lottery approach.

To substantiate these elaborations, consider again a contest with n participants and denote the
set on contestants by N. Let us define a utility function for the participants of the all-pay auction,
that is very close to the lottery model we analyzed in the last sections. This function θA : Rn → R
is given by

θA
ν (xν, x−ν) =




−βνxν if there is a µ ∈ N such that xν < xµ,
Vν
m − βνxν if ν ties the highest bid with m − 1 others,
Vν − βνxν if xν > xµ for all µ � ν.

(2.31)

Again, we denote by βν > 0 the individual cost parameter and by Vν > 0 the personal valuation of
the prize of a participant ν ∈ N. Analogous to the lottery model, we can assume without loss of
generality that all players have the same valuation Vν = 1 of the prize. Otherwise, we could scale
their utility functions by 1

Vν
. A closer look at the utility function reveals that θA

ν is discontinuous.
This hints at the fact that analysis of this contest game is not as straight-forward as in the lottery
case. And in fact, it was proven in [12] that the all-pay auction does not have a Nash equilibrium
in pure strategies but instead usually a whole continuum of Nash equilibria in mixed strategies.
Fortunately, things become easier when we are only interested in the effort maximizing strategy
of the contest designer and the thus generated overall effort. If we assume that all participants
are ordered according to their cost parameter, i.e.

β1 ≤ β2 ≤ . . . ≤ βn,
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then the following result from [11] holds.

Theorem 2.36 (a) The contest designer maximizes the overall effort by excluding all players ν
with costs βν < βkA , where kA ∈ N is chosen such that

�
1 +

βkA

βkA+1

�
1

2βkA+1
≥
�
1 +

βµ
βµ+1

�
1

2βµ+1
(2.32)

for all µ ∈ N.

(b) Using the strategy above, an overall effort of

θA
0 =

�
1 +

βkA

βkA+1

�
1

2βkA+1
(2.33)

is generated.

Hence, someone designing an optimal all-pay auction has an incentive to exclude strong players,
i.e. players with low costs, from the contest. In contrast to this, we have proven that in an optimal
lottery the strongest players are active, weaker players up to a certain threshold are motivated to
participate by choosing the weights in their favor and only the weakest players are inactive.
Consequently, designing an optimal all-pay auction requires a totally different strategy than the
one we derived before for an optimal lottery contest.

Although this is not the scope of this analysis, we would like to point out an interesting and
quite obvious question: Which one of the two models – lottery contest versus all-pay auction
– allows the designer to elicit the highest aggregated effort from the contestants? The answer
is probably not straightforward since the highest possible effort in both models depends heavily
on the heterogeneity of the contestants. In the homogeneous n-player case where βν = β for
all contestants, we know that the optimal lottery yields a maximal effort of n−1

n
1
β whereas the

auction model yields the higher optimal effort 1
β . In the heterogeneous 2-player case, however,

the situation is already more complicated. If we assume β1 ≤ β2, the maximal effort obtained
from the lottery model is β1+β2

4β1β2
and the maximal effort that can be elicited from the auction model

is β1+β2
2β2

2
. Therefore, if β2 ∈ [β1, 2β1), the auction model is better for the contest designer, if

β2 = 2β1, there is no difference, and in the remaining case β2 > 2β1, the lottery model yields the
higher total effort. Some answers to this question can be found in [4, 32, 35].
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3. Outlook

In this chapter, we come back to the general case where the utility functions of the contestants
are given by

θν(xν, x−ν) =




0 if x = 0,
ανc(xν)�
µ∈N αµc(xµ)

Vν − βνxν else,

and c(x) is not necessarily as simple as c(x) = x. Another popular function for rent-seeking
technologies is c(x) = xr with either 0 < r < 1 (decreasing returns to scale) or r > 1 (increasing
returns to scale). In contrast to the case of constant returns to scale which we considered in the
last section, in this general case usually no closed form of the Nash equilibrium is known or it
cannot even be proven that the contest game has a Nash equilibrium. We will collect the available
theoretical results in Section 3.1. Section 3.2 instead is devoted to the reformulation of the effort
maximization problem as a mathematical program with complementarity constraints such that,
even if no closed form of the Nash equilibrium problem is known, we can attempt to solve the
effort maximization problem numerically using one of the algorithms from Part III.

3.1. General Rent-Seeking Technologies

The minimum assumptions usually imposed on the function c : R+ → R representing the rent-
seeking or production technology are c(0) = 0 and c should be continuously differentiable with
c�(x) > 0 for all x > 0. These conditions reflect that zero effort results in zero production and
that a higher effort always yields a higher production. Under these assumptions the function c
possesses a continuous inverse c−1 which is continuously differentiable on c(R++). Thus we can
rewrite the ν-th player’s optimization problem

max
xν
θν(xν, x−µ) subject to xν ≥ 0 (3.1)

using the substitution yµ := c(xµ) for all µ ∈ N as

max
yν
φν(yν, y−µ) subject to yν ≥ 0,

where the new utility functions of the contestants are given by

φν(yν, y−ν) =




0 if y = 0,
ανyν�
µ∈N αµyµ

Vν − βνc−1(yν) else.

We could now again try to calculate the best answer function of every player ν and then search
for Nash equilibria but without more information on c this attempt will most likely be futile. In
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fact, in some cases players may not even have a best answer or the contest game have no solution.
To illustrate this, we would like to refer to [26], where the production function c(x) = xr with
r > 1 is analyzed.

The situation improves if we impose the additional condition that the production function c is
twice continuously differentiable with c��(x) < 0 for all x > 0. Then we know that the inverse
function c−1 satisfies

(c−1)�(y) =
1

c�(c−1(y))
> 0 and (c−1)��(y) = − c��(c−1(y))

c�(c−1(y))3 > 0

for all y ≥ 0, where c−1 is defined. To obtain an existence result for the lower level contest game,
we employ the following simplifying assumptions: We assume again Vν = 1 for all contestants
ν = 1, . . . , n without loss of generality. Otherwise, we could divide the utility functions φν by
Vν and redefine βν appropriately. We will also assume without loss of generality αν = 1 for all
ν = 1, . . . , n. Otherwise, we could substitute zν := ανyν and redefine c−1 or c respectively. Note
that the necessary redefinition of these functions does not change the sign of their derivatives
due to the condition αν > 0. Finally, we substitute dν(y) := βνc−1(y) for all ν ∈ N with d�ν(y) =
βν(c−1)�(y) > 0 and d��ν (y) = βν(c−1)��(y) > 0 for all y > 0. This leads to the simplified utility
functions

φν(yν, y−ν) =




0 if y = 0,
yν�
µ∈N yµ
− dν(yν) else.

Now, one can again try to calculate the best answer function of each player and although one
does not obtain explicit formulae for the best answer function or the Nash equilibrium, it is still
possible to prove the existence and uniqueness of a solution to the contest game. This was done
in [113] and their result is restated for our setting in the following theorem.

Theorem 3.1 For all parameters α, β ∈ Rn
++ and all twice continuously differentiable production

functions c : R+ → R with c(0) = 0, c�(x) > 0 and c��(x) < 0 for all x > 0 the corresponding
contest game (3.1) has a unique Nash equilibrium x∗, where x∗ν > 0 for all contestants ν ∈ N.

In contrast to the situation we considered in the last chapter, the additional condition c��(x) > 0
guarantees that all contestants will actively participate in the solution of the contest game. This
simplifies the situation to some extent since calculating the set of active players was one of the
crucial parts in our analysis of the case of constant returns to scale. On the other hand, we
do not have a closed form of the Nash equilibrium anymore and therefore, one would need a
totally different technique in order to prove the existence of solutions to the effort maximization
problem and we cannot expect to obtain any closed formula for the solution. If we are interested
in concrete instances of the effort maximization problem however, we can also try to solve it
numerically. For this reason, we will reformulate the effort maximization problem in the next
section to facilitate the application of numerical solution methods.
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3.2. Reformulation as MPCC

Most numerical methods for the solution of MPECs expect the equilibrium constraints to be rep-
resented by complementarity conditions. Therefore, if we want to solve the effort maximization
problem numerically, we have to reformulate the equilibrium condition as a complementarity
condition. From game theory it is known that the Nash equilibrium problem (3.1) is equivalent
to the following variational inequality if all utility functions θν are concave as functions of xν, see
[107] for more information: Find x∗ ∈ Rn

+ such that

−F(x∗)T (x − x∗) ≥ 0

for all x ∈ Rn
+, where

F(x) :=




∇x1θ1(x)
∇x2θ2(x)
...

∇xNθN(x)



.

Now, it is easy to verify that x∗ is a solution of this variational inequality if and only if x∗ solves
the complementarity system

x ≥ 0,−F(x) ≥ 0,−F(x)T x = 0.

This is exactly the type of constraints we were looking for. Therefore, it remains to verify the
concavity of the utility functions. This can be done using the fact that a function is concave on a
set if and only if its second derivative is negative semidefinite on this set. We will show that this
condition is satisfied in the case of constant returns to scale and for all functions c with c(0) = 0,
c�(x) > 0, c��(x) < 0 for all x > 0.

Let us first consider the case of constant returns to scale c(x) = x. In this case, the second
order derivative of θν with respect to xν is given by

∇2
xνxνθν(x) =

−2α2
ν

�
µ�ν αµxµ

��
µ∈N αµxµ

�3 ≤ 0 ∀x ∈ Rn
+,

consequently θν is concave with respect to xν on Rn
+.

If we consider the case of an arbitrary function c with c(0) = 0, c�(x) > 0, c��(x) < 0 for all
x > 0, the second order derivative is given by

∇2
xνxνθν(x) = αν

�

µ�ν

αµc(xµ)
c��(xν)

�
µ∈N αµc(xµ) − 2ανc�(xν)2

��
µ∈N αµc(xµ)

�3 ≤ 0 ∀x ∈ Rn
++.

Hence, we have concavity also in this case. One can also see that the condition c��(x) ≤ 0 would
have been enough to be able to reformulate the Nash equilibrium problem as complementarity
condition, whereas for Theorem 3.1 we need the stronger assumption c��(x) < 0.
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With the above considerations we have verified that in both cases considered here, we can
reformulate the effort maximization problem equivalently as

max
α,x

�

µ∈N
xµ subject to α > 0,

x ≥ 0,
−F(α, x) ≥ 0,
−F(α, x)T x = 0,

where F(α, x) is defined as above, but α is now mentioned explicitly as a variable since it is not
fixed anymore. We will use this reformulation in Part III to obtain numerical solutions of some
effort maximization problems.

3.3. Concluding Remarks

In this part, we considered the problem of effort maximization in asymmetric n-person contest
games, an economic example for an MPEC. We first analyzed the case of constant returns to
scale and were able to solve the effort maximization analytically. This was so far only done for
n = 2 or for n homogeneous players and it turns out that these two cases are degenerate in a
certain sense. The 2-player case is the only one where only two contestants participate actively
in the solution. Whenever there are more than two players, at least three of them are active in
the solution of the effort maximization problem. Also, the 2-player and the homogeneous n-
player case are the only ones where all differences between the players are equalized. For n ≥ 3
heterogeneous players, the optimal weights α∗ are chosen such that the playing field is leveled to
a certain extend but never completely. We also included a short comparison of our model with
the similar all-pay auction model since we obtain quite different results than those known for the
auction. For the designer of an all-pay auction, it is favorable to exclude strong players from
the contest. In contrast to this, we do not have exclusion of any players in the considered lottery
model but rather inclusion of weak players. These effects are also illustrated on a few examples.

Secondly, we gave a brief outlook on contest games with general rent-seeking or production
technologies. We introduced a class of rent-seeking technologies for which one can prove ex-
istence and uniqueness of solutions to the contest game and provided a reformulation of the
corresponding effort maximization problems and those corresponding to linear returns to scale
as an MPCC, which will be used for numerical experiments in Part III.
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Theoretical Results
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Although an MPCC (1.1) is at first glance nothing more than a standard optimization prob-
lem, the special structure of its constraints causes almost all standard optimization theory to fail.
As we will see later, most of the constraint qualifications known from optimization have very
little or no chance of being satisfied in a feasible point of (1.1). The well known linear indepen-
dence constraint qualification and Mangasarian-Fromovitz constraint qualification for example
are violated in every feasible point. Even the Abadie constraint qualification, which is one of
the weakest known for nonlinear optimization problems, cannot be expected to hold. The only
standard constraint qualification applicable in the context of MPCCs is the even weaker Guignard
constraint qualification, see [40]. Without constraint qualifications, however, the KKT conditions
cannot be guaranteed to be necessary optimality conditions. And in fact, there are even examples
where all constraint functions g, h,G,H are linear but the global minimum of the corresponding
MPCC is not a stationary point.

For this reason, a number of stationarity concepts for MPCCs have emerged over the last years.
The oldest ones are probably strong stationarity and C-stationarity introduced in [104]. Strong
stationarity however can be proven to be equivalent to the KKT conditions of the MPCC (1.1)
and therefore is a necessary optimality condition only under strong assumptions. Clarke station-
arity on the other hand is weaker than strong stationarity and a necessary optimality condition
under very mild conditions. With Mordukhovich’s limiting calculus, see [89, 90, 103], another
stationarity concept called M-stationarity was born, cf. [93, 94, 122, 124]. M-stationarity can be
shown to be a necessary optimality condition under the same assumptions as C-stationarity but
is a stronger condition. Apart from these three, there is at least one other stationarity concept for
MPCCs called A-stationarity, which was introduced in [37] but will not play a role in this thesis.

In order to guarantee that a local minimum of the MPCC (1.1) is stationary in one of the above
senses, conditions on the representation of the feasible set, so called constraint qualifications, are
needed. Since standard constraint qualifications do not work for MPCCs, a whole zoo of spe-
cialized MPCC constraint qualifications has been developed, most of them analogues of standard
constraint qualifications. We are going to introduce three new MPCC constraint qualifications.
One of them is an MPCC version of the constant positive linear dependence condition which was
introduced in [99] and proven to be a constraint qualification in [5]. This constraint qualification
will play a role in the convergence results of some relaxation methods in Part III.

A different approach to cope with the fact that standard constraint qualifications are usually not
satisfied and the KKT conditions therefore are not necessary optimality conditions is to turn to the
Fritz-John conditions since these are always necessary optimality conditions, i.e., no additional
conditions are required. However, we will show that a direct application of the standard Fritz-
John conditions to the MPCC (1.1) is not really helpful. Fortunately, it is possible to derive
a suitable analogue of the Fritz-John conditions for MPCCs. This was for example done in
[104, 123].

We improve the results from [123] using a completely different approach based on an idea from
[17]. There, the authors consider a standard nonlinear optimization problem with an additional
abstract constraint. Exploiting the special structure of the complementarity constraints, we obtain
a result which is stronger than what we would obtain by direct application of [17] to the MPCC
(1.1). These enhanced Fritz-John conditions motivate the introduction of some new constraint
qualifications for MPCCs. One of these is then used to obtain M-stationarity as a necessary
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optimality condition under various known MPCC constraint qualifications. While this is, in
principle, a known result, we have for the first time a completely elementary proof of this fact. All
other proofs known to us are based on the limiting subdifferential and the limiting coderivative by
Mordukhovich which, albeit being powerful instruments for variational analysis, are not known
to the whole community. Nevertheless, we will also make use of the limiting subdifferential
afterwards in order to obtain an exact penalty result for MPCCs under weaker assumptions than
for example those in [106, 80]. Finally, we close by discussing the relations between the new
MPCC constraint qualifications we introduced and those commonly used for MPCCs.

The theoretical part of this thesis is structured as follows. We begin by recalling some results
and definitions from standard optimization in Chapter 4. In Chapter 5, we define the MPCC-
analogues of constraint qualifications and some stationarity concepts for MPCCs. The new Fritz-
John result is then derived in Chapter 6, where we also state some new constraint qualifications
related to the improved Fritz-John conditions and prove an exact penalty result for MPCCs.
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Programs

Although the focus of this thesis are not standard nonlinear optimization programs (NLP for
short) but mathematical programs with equilibrium constraints, we wish to recall some results
from the theory of NLPs first. These results will be used to illustrate the difference between
MPCCs and NLPs, as a basis for the theory on MPCCs and, last but not least, will be needed
in the numerical part where we solve MPCCs by replacing them by a sequence of NLPs. For
more information on standard nonlinear optimization we refer to [52]. To us, an NLP is an
optimization problem of the form

minx f (x) subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p, (4.1)

where the functions f , gi, hi : Rn → R are assumed to be continuously differentiable. We denote
the set of all feasible points by X and for a point x ∈ X

Ig(x) := {i | gi(x) = 0}

is the set of active inequalities. One of the basic results from standard optimization theory is the
following necessary optimality condition, see for example [52, Theorem 2.53].

Theorem 4.1 Let x∗ be a local minimum of (4.1). Then there are multipliers α, λ, µ such that
(x∗,α, λ, µ) is a Fritz-John point, i.e., the multipliers satisfy α ≥ 0, λ ∈ Rm

+ and µ ∈ Rp with
(α, λ, µ) � 0, λigi(x∗) = 0 for all i = 1, . . . ,m and

α∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) = 0.

Another well-known necessary optimality criterion is the following: When x∗ is a local min-
imum, then the directional derivative in all feasible directions has to be nonnegative or more
precisely

∇ f (x∗)T d ≥ 0 ∀d ∈ TX(x∗),

where TX(x∗) is the Bouligand tangent cone to X in x∗

TX(x∗) :=
�

d ∈ Rn

������∃{x
k} ⊆ X,∃{τk} ↓ 0 such that xk → x∗ and

xk − x∗

τk
→ d
�
,
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see [52, Lemma 2.30] for a proof. Since the tangent cone is difficult to calculate, for practical
purposes one usually uses the linearized tangent cone

LX(x∗) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0 (i ∈ Ig(x∗)),∇hi(x∗)T d = 0 (i = 1 . . . , p)}.

Between the tangent cone and the linearized tangent cone one always has the relation TX(x∗) ⊆
LX(x∗), see for example [52, Lemma 2.32]. The reverse inclusion, however, is in general not true.
By the Farkas Lemma [52, Lemma 2.27],

∇ f (x∗)T d ≥ 0 ∀d ∈ LX(x∗)

is then equivalent to the following condition:

Definition 4.2 A point x∗ is called a stationary point if there are multipliers λ, µ such that
(x∗, λ, µ) is a Karush-Kuhn-Tucker point (KKT point), i.e., the multipliers satisfy λ ∈ Rm

+ and
µ ∈ Rp with λigi(x∗) = 0 for all i = 1, . . . ,m and

∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) = 0.

Due to the fact that TX(x∗) can be a strict subset of LX(x∗), being a stationary point is not a
necessary optimality condition. Hence, in order to guarantee that local minima are stationary
points so called constraint qualifications have been introduced. A constraint qualification, or
CQ for short, is a condition on the constraints representing the feasible set which ensures a
certain regularity of the feasible set such that local minima are also stationary points. This can
be done for example by ensuring the equality of both cones TX(x∗) = LX(x∗) or at least that the
corresponding polar cones coincide TX(x∗)◦ = LX(x∗)◦.

Definition 4.3 Let C ⊆ Rn be a nonempty set. The polar cone of C is defined as

C◦ := {s ∈ Rn | sT c ≤ 0 ∀c ∈ C}.

The most well-known constraint qualifications for NLPs are probably the following.

Definition 4.4 A point x∗ feasible for (4.1) is said to satisfy the

(a) linear independence constraint qualification (LICQ) if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {∇hi(x∗) | i = 1, . . . , p}

are linearly independent;

(b) Mangasarian-Fromovitz constraint qualification (MFCQ) if the gradients {∇hi(x∗) | i =
1, . . . , p} are linearly independent and there is a d ∈ Rn such that

∇gi(x∗)T d < 0 (i ∈ Ig(x∗)) and ∇hi(x∗)T d = 0 (i = 1, . . . , p);
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(c) constant rank constraint qualification (CRCQ) if, for any subsets I1 ⊆ Ig(x∗) and I2 ⊆
{1, . . . , p} such that the gradients

{∇gi(x∗) | i ∈ I1} ∪ {∇hi(x∗) | i ∈ I2}

are linearly dependent, there exists a neighborhood U(x∗) of x∗ such that these gradients
remain linearly dependent;

(d) Abadie constraint qualification (ACQ) if TX(x∗) = LX(x∗);

(e) Guignard constraint qualification (GCQ) if TX(x∗)◦ = LX(x∗)◦.

Whereas LICQ, MFCQ, and ACQ are very famous, CRCQ, which was introduced in [64], and
GCQ, which goes back to [53], might be less familiar. We would like to mention that our defi-
nition of CRCQ is not the classical one but is equivalent to it as one easily verifies. However, in
the context of MPCCs, GCQ turned out to be the only useful standard constraint qualification,
see for example [40]. In order to define another recently introduced constraint qualification, we
need the notion of positive-linearly dependent vectors.

Definition 4.5 A finite set of vectors {ai | i ∈ I1} ∪ {bi | i ∈ I2} is said to be positive-linearly
dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2), not all of them being zero, with αi ≥ 0
for all i ∈ I1 and �

i∈I1

αiai +
�

i∈I2

βibi = 0.

Otherwise, we say that these vectors are positive-linearly independent.

Using this concept, we can now define the constant positive-linear dependence constraint quali-
fication, which was introduced in [99] and proven to be a constraint qualification in [5].

Definition 4.6 A point x∗ feasible for (4.1) is said to satisfy the constant positive-linear depen-
dence constraint qualification (CPLD) if, for any subsets I1 ⊆ Ig(x∗) and I2 ⊆ {1, . . . , p} such that
the gradients

{∇gi(x∗) | i ∈ I1} ∪ {∇hi(x∗) | i ∈ I2}

are positive-linearly dependent, there exists a neighborhood N(x∗) of x∗ such that the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2}

are linearly dependent for all x ∈ N(x∗).

Positive-linear dependent vectors can also be used to give a different characterization of MFCQ
based on Motzkin’s Theorem of alternatives [84].

Lemma 4.7 A point x∗ ∈ X satisfies MFCQ if and only if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {∇hi(x∗) | i = 1, . . . , p}

are positive-linearly independent.
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4. Standard Nonlinear Optimization Programs

Apart from the constraint qualifications introduced above, there are two more, which usually
appear in the context of Fritz-John points and can be found for example in [56, 16].

Definition 4.8 A point x∗ feasible for (4.1) is said to satisfy

(a) pseudonormality if there are no multipliers λ, µ such that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) = 0,

(ii) λ ∈ Rm
+ , λigi(x∗) = 0 for all i = 1, . . . ,m,

(iii) there is a sequence xk → x∗ such that the following is true for all k ∈ N:

m�

i=1

λigi(xk) +
p�

i=1

µihi(xk) > 0;

(b) quasinormality if there are no multipliers λ, µ such that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) = 0,

(ii) λ ∈ Rm
+ , λigi(x∗) = 0 for all i = 1, . . . ,m,

(iii) there is a sequence xk → x∗ such that the following is true for all k ∈ N: For all
λi > 0 we have λigi(xk) > 0 and for all µi � 0 we have µihi(xk) > 0.

The relations that hold between the constraint qualifications introduced above are depicted in
Figure 4.1.

LICQ

MFCQCRCQ

CPLD pseudonormality

quasinormality

ACQ

GCQ

Figure 4.1.: Relations between standard CQs
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The implications between LICQ, MFCQ, CRCQ and CPLD follow directly from the respective
definitions as does the relation between MFCQ, pseudonormality and quasinormality and be-
tween ACQ and GCQ. The fact that CPLD implies quasinormality can be found in [5]. They
also give examples illustrating that CPLD is weaker than both MFCQ and CRCQ, stronger than
quasinormality and that there is no relation between CPLD and pseudonormality. The relation
between quasinormality and ACQ was proven in [16].

As it was already mentioned before, the reason why constraint qualifications are important is
the following well-known result.

Theorem 4.9 A local minimum x∗ of (4.1) that satisfies GCQ or any stronger constraint quali-
fication is a KKT point.
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5. Mathematical Programs with

Complementarity Constraints

Although the MPCC (1.1) is by definition nothing more than an NLP, the special structure of
the equilibrium constraints, in our case complementarity constraints, causes trouble if one wants
to apply standard NLP theory. But before this is illustrated on an few examples, we need some
more notation. The feasible set of the MPCC (1.1) defined in the introduction is denoted by X
and similarly to the NLP we define the following sets of active constraints in an arbitrary x∗ ∈ X:

Ig(x∗) := {i | gi(x∗) = 0},
I00(x∗) := {i | Gi(x∗) = 0,Hi(x∗) = 0},
I0+(x∗) := {i | Gi(x∗) = 0,Hi(x∗) > 0},
I+0(x∗) := {i | Gi(x∗) > 0,Hi(x∗) = 0}.

Note that the first (second) subscript indicates whether Gi(x∗) (Hi(x∗)) is zero or positive at the
given point x∗.

As it was introduced in the last section, being a Fritz-John point is a necessary optimality
criterion for NLPs and thus also for MPCCs. However, in the context of MPCCs, this criterion
is rendered completely useless by the following result.

Lemma 5.1 Let x∗ be feasible for (1.1). Then there are multipliers such that x∗ together with
these is a Fritz-John point.

Proof. Since I00(x∗) ∪ I0+(x∗) ∪ I+0(x∗) = {1, . . . , q}, at least one of these index sets is nonempty.
In case I00(x∗) � ∅ pick an arbitrary i∗ ∈ I00(x∗) and define multipliers α = 0, λ = 0m, µ = 0p,
γ = 0q, ν = 0q and δ ∈ Rq with δi = 0 for all i � i∗ and δi∗ = 1. Then it is easy to verify that x∗
together with these multipliers is a Fritz-John point, i.e., that the equation

α∇ f (x∗)+
m�

i=1

λi∇gi(x∗)+
p�

i=1

µi∇hi(x∗)−
q�

i=1

γi∇Gi(x∗)−
q�

i=1

νi∇Hi(x∗)+
q�

i=1

δi∇(Gi ·Hi)(x∗) = 0

is satisfied together with all other conditions on the multipliers.
In case I0+(x∗) � ∅ pick an arbitrary i∗ ∈ I0+(x∗) and define the multipliers as above with the

only difference that in this case we want γi∗ = Hi(x∗) and not γi∗ = 0. The case I+0(x∗) � ∅ can
be handled analogously. �

While the Fritz-John conditions are useless because they are satisfied in too many points, standard
constraint qualifications in turn are usually not satisfied in feasible points.
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5. Mathematical Programs with Complementarity Constraints

Lemma 5.2 Let x∗ be feasible for (1.1). Then MFCQ is not satisfied in x∗.

This result can easily be verified using the characterization of MFCQ given in Lemma 4.7, see
also [21]. Even very weak constraint qualifications like ACQ are usually violated. The only
standard constraint qualification which has a reasonable chance of being satisfied is GCQ, cf.
[40]. Without constraint qualifications however, the KKT conditions are not necessary optimality
conditions and indeed there are simple MPCCs where the solutions are not stationary points. To
illustrate this consider the following MPCC with linear constraints which is originally due to
[104].

Example 5.3 Consider the following three-dimensional MPCC

min
x1,x2,x3

f (x) = x1 + x2 − x3 subject to g1(x) = −4x1 + x3 ≤ 0,

g2(x) = −4x2 + x3 ≤ 0,
G(x) = x1 ≥ 0,
H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

One can easily verify that the global minimum is x∗ = (0, 0, 0)T , where all inequalities are active.
In order to prove that x∗ is a stationary point, we would therefore have to find multipliers λ ∈ R2

+,
γ ≥ 0, ν ≥ 0 and δ ∈ R such that




1
1
−1


 + λ1




−4
0
1


 + λ2




0
−4
1


 − γ




1
0
0


 − ν




0
1
0


 + δ




0
0
0


 = 0.

This would imply

γ = 1 − 4λ1 ≥ 0 =⇒ λ1 ∈ [0, 0.25],
ν = 1 − 4λ2 ≥ 0 =⇒ λ2 ∈ [0, 0.25],
1 = λ1 + λ2,

which is obviously not possible. �

Since the usual stationarity concepts and constraint qualifications do not work for MPCCs, spe-
cialized versions have been introduced for MPCCs. We will present those relevant in the context
of this thesis in the following two sections.

5.1. Constraint Qualifications

By now, there is a whole zoo of constraint qualifications specially designed to deal with the
structure of the complementarity constraints. We will therefore introduce only those needed later
on and refer for example to [123] for the definition of even more MPCC constraint qualifications.
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5.1. Constraint Qualifications

Most of the constraint qualifications for MPCCs that will appear in this thesis are derived from
standard constraint qualifications via the following NLP. For an arbitrary feasible point x∗ ∈ X
define the auxiliary problem

min f (x)
subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) = 0,Hi(x) ≥ 0 ∀i ∈ I0+(x∗),
Gi(x) ≥ 0,Hi(x) = 0 ∀i ∈ I+0(x∗),
Gi(x) = 0,Hi(x) = 0 ∀i ∈ I00(x∗),

(5.1)

which is called tightened nonlinear program TNLP(x∗). Note that TNLP(x∗) substantially de-
pends on the chosen point x∗ which, by the way, is feasible for TNLP(x∗). Its feasible set,
however, is always a subset of X which is the reason for its name. This NLP can now be utilized
to define constraint qualifications for MPCCs in the following way:

Definition 5.4 A point x∗ feasible for (1.1) is said to satisfy MPCC-LICQ (MPCC-MFCQ,
MPCC-CRCQ, MPCC-CPLD) if standard LICQ (MFCQ, CRCQ, CPLD) for the correspond-
ing TNLP(x∗) is satisfied in x∗.

Since we are going to need these MPCC constraint qualifications quite a lot, let us state them
explicitly which can be done by applying the definitions of the standard constraint qualifications
to TNLP(x∗).

Corollary 5.5 A point x∗ feasible for (1.1) satisfies

(a) MPCC-LICQ if and only if the gradients

∇gi(x∗) (i ∈ Ig(x∗)),
∇hi(x∗) (i = 1, . . . , p),
∇Gi(x∗) (i ∈ I00(x∗) ∪ I0+(x∗)),
∇Hi(x∗) (i ∈ I00(x∗) ∪ I+0(x∗)),

are linearly independent;

(b) MPCC-MFCQ if and only if the gradients

∇hi(x∗) (i = 1, . . . , p),
∇Gi(x∗) (i ∈ I0+(x∗) ∪ I00(x∗)),
∇Hi(x∗) (i ∈ I+0(x∗) ∪ I00(x∗))

are linearly independent, and there exists a vector d ∈ Rn such that

∇gi(x∗)T d < 0 ∀i ∈ Ig(x∗),
∇hi(x∗)T d = 0 ∀i = 1, . . . , p,
∇Gi(x∗)T d = 0 ∀i ∈ I0+(x∗) ∪ I00(x∗),
∇Hi(x∗)T d = 0 ∀i ∈ I+0(x∗) ∪ I00(x∗);
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5. Mathematical Programs with Complementarity Constraints

(c) MPCC-CRCQ if and only if, for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p}, I3 ⊆ I00(x∗) ∪
I0+(x∗) and I4 ⊆ I00(x∗) ∪ I+0(x∗) such that the gradients

{∇gi(x∗) | i ∈ I1} ∪ {∇hi(x∗) | i ∈ I2} ∪ {∇Gi(x∗) | i ∈ I3} ∪ {∇Hi(x∗) | i ∈ I4}

are linearly dependent, there exists a neighborhood U(x∗) of x∗ such that the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

remain linearly dependent for all x ∈ U(x∗);

(d) MPCC-CPLD if and only if, for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . , p}, I3 ⊆ I00(x∗)∪I0+(x∗)
and I4 ⊆ I00(x∗) ∪ I+0(x∗) such that the gradients

{∇gi(x∗) | i ∈ I1} ∪
�{∇hi(x∗) | i ∈ I2} ∪ {∇Gi(x∗) | i ∈ I3} ∪ {∇Hi(x∗) | i ∈ I4}

�

are positive-linearly dependent, there exists a neighborhood U(x∗) of x∗ such that the gra-
dients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

remain linearly dependent for all x ∈ U(x∗).

Note that we used an extra pair of curly brackets in the characterization of MPCC-CPLD in
order to indicate those vectors for which no sign restriction applies in the definition of positive-
linear dependence. While MPCC-LICQ and MPCC-MFCQ have been around for quite some
time now, see [104], MPCC-CRCQ was introduced in [109] and MPCC-CPLD just recently in
[58]. MPCC-CPLD can be seen as a relaxation of both MPCC-MFCQ and MPCC-CPLD and
the following example illustrates that it is in fact strictly weaker than both of them.

Example 5.6 Consider the following two-dimensional MPCC

min
x1,x2

f (x) = 2x2 subject to g1(x) = x1 + x2
2 ≤ 0,

g2(x) = x1 ≤ 0,
G(x) = x2 ≥ 0,
H(x) = x1 + x2 ≥ 0,
G(x)H(x) = x2(x1 + x2) = 0.

It it easy to see that the feasible region is X = {x ∈ R2 | x1 ∈ [−1, 0], x2 = −x1} and that the global
minimum is x∗ = (0, 0)T . All constraints are active in x∗ and the gradients are

∇g1(x∗) =
�
1
0

�
,∇g2(x∗) =

�
1
0

�
,∇G(x∗) =

�
0
1

�
,∇H(x∗) =

�
1
1

�
.

Thus, MPCC-MFCQ is violated in x∗ and MPCC-CRCQ does not hold either since the gradients
of g1 and g2 are linearly dependent in x∗ but linearly independent everywhere else.
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On the other hand, the weaker constraint qualification MPCC-CPLD is satisfied in x∗. To
see this, note first that every subset of gradients that does not include ∇g1(x), is independent of
x. Thus, we only have to consider those subsets of gradients that include ∇g1(x). Now, it is
easy to see that there are only two subsets such that the included gradients are positive-linearly
dependent in x∗, namely {∇g1(x)} ∪ {∇G(x),∇H(x)} and {∇g1(x),∇g2(x)} ∪ {∇G(x),∇H(x)}, and
that those remain linearly dependent in a whole neighborhood. �

Analogously to standard MFCQ, we can also give an alternative characterization of MPCC-
MFCQ using positive-linear independence.

Lemma 5.7 A point x∗ ∈ X satisfies MPCC-MFCQ if and only if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪
�{∇hi(x∗) | i = 1, . . . , p} ∪ {∇Gi(x∗) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x∗) | i ∈ I00(x∗) ∪ I+0(x∗)}�

are positive-linearly independent.

Since these MPCC constraint qualifications are defined via TNLP(x∗), they inherit some proper-
ties from the standard versions, especially the relations between them are the same. Before we
illustrate these relations in Figure 5.1, let us also define analogues of ACQ and GCQ.

If we wanted to apply ACQ directly to MPCCs, we would have to demand TX(x∗) = LX(x∗).
However, LX(x∗) is a linear cone and thus always convex. On the other hand, TX(x∗) is usually
not convex when X is the feasible set of an MPCC. This is illustrated in the following example.

Example 5.8 Consider the most basic MPCC

min
x1,x2

f (x) subject to G(x) = x1 ≥ 0,

H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

If we consider x∗ = (0, 0)T , then we can see that

TX(x∗) = {d ∈ R2
+ | d1d2 = 0},

which is exactly the feasible set X and thus nonconvex, whereas LX(x∗) = R2
+. Consequently,

TX(x∗) and LX(x∗) do not coincide and thus standard ACQ is not satisfied. However, the corre-
sponding polar cone is in both cases R2

−, so standard GCQ is satisfied in x∗. �

The behavior of Example 5.8 is typical for MPCCs. Note that MPCC-LICQ is satisfied in x∗. But
even under this strong MPCC constraint qualification, standard ACQ is not necessarily satisfied.
In contrast to this, it was proven in [40] that standard GCQ is always satisfied under MPCC-
LICQ. Note, however, that this result is not true anymore, if we replace MPCC-LICQ by any
weaker MPCC constraint qualification such as for example MPCC-MFCQ. This effect can be
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5. Mathematical Programs with Complementarity Constraints

seen in Example 5.3. Therefore, one uses a different linearized tangent cone for MPCCs, the so
called MPCC-linearized tangent cone

LMPCC(x∗) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0 ∀i ∈ Ig(x∗),
∇hi(x∗)T d = 0 ∀i = 1, . . . , p,
∇Gi(x∗)T d = 0 ∀i ∈ I0+(x∗),
∇Hi(x∗)T d = 0 ∀i ∈ I+0(x∗),
∇Gi(x∗)T d ≥ 0,∇Hi(x∗)T d ≥ 0 ∀i ∈ I00(x∗),
(∇Gi(x∗)T d)(∇Hi(x∗)T d) = 0 ∀i ∈ I00(x∗)}.

Note that this cone, which was introduced in [104, 96, 38], is not a linear cone anymore and con-
sequently not necessarily convex. However due to [38], one always has the following inclusions

TX(x∗) ⊆ LMPCC(x∗) ⊆ LX(x∗)

and thus LMPCC(x∗) is an appropriate replacement for LX(x∗) in the context of MPCCs.

Example 5.9 (Example 5.8 continued) If we consider once again x∗ = (0, 0)T , we can easily
verify that the MPCC-linearized tangent cone is

LMPCC(x∗) = {d ∈ R2
+ | d1d2 = 0}

and thus coincides with the tangent cone TX(x∗). �

For this reason, ACQ and GCQ for MPCCs are defined as follows.

Definition 5.10 A point x∗ feasible for (1.1) is said to satisfy

(a) MPCC-ACQ if TX(x∗) = LMPCC(x∗);

(b) MPCC-GCQ if TX(x∗)◦ = LMPCC(x∗)◦.

Obviously, MPCC-ACQ implies MPCC-GCQ. The connection to those MPCC constraint quali-
fications defined before is made in the following lemma.

Lemma 5.11 Let x∗ be a feasible point for (1.1) where MPCC-CPLD is satisfied. Then MPCC-
ACQ is also satisfied there.

Proof. Consider the auxiliary nonlinear program NLP(J1, J2)

minx f (x) subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0,Hi(x) = 0 ∀i ∈ I+0(x∗) ∪ J1,
Gi(x) = 0,Hi(x) ≥ 0 ∀i ∈ I0+(x∗) ∪ J2,
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where J1 and J2 form a partition of I00(x∗). Obviously, x∗ is feasible for NLP(J1, J2) and the
active gradients sorted by inequality constraints and equality constraints are

�{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {−∇Gi(x∗) | i ∈ J1} ∪ {−∇Hi(x∗) | i ∈ J2}
�

∪ �{∇hi(x∗) | i = 1, . . . , p} ∪ {∇Gi(x∗) | i ∈ I0+(x∗)} ∪ {∇Hi(x∗) | i ∈ I+0(x∗)}�.

Since MPCC-CPLD is satisfied in x∗, standard CPLD for NLP(J1, J2) and thus also standard
ACQ holds in x∗ for any partition J1, J2 of I00(x∗). This was proven to be a sufficient condition
for MPCC-ACQ in [38]. �

Using this result, we now know that exactly the same relations hold between the MPCC constraint
qualifications as they do between standard constraint qualifications, see Figure 5.1. Later on, we
will also introduce MPCC analogues to pseudonormality and quasinormality and show how they
fit into the set of MPCC constraint qualifications introduced so far.

MPCC-LICQ

MPCC-MFCQMPCC-CRCQ

MPCC-CPLD

MPCC-ACQ

MPCC-GCQ

Figure 5.1.: Relations between MPCC-CQs

5.2. Stationarity Concepts

Let us begin with some MPCC Fritz-John conditions which were introduced by Scheel and
Scholtes in [104] and Ye in [123].

Theorem 5.12 Let x∗ be a local minimum of (1.1).

(a) [104] Then there are multipliers α ≥ 0, λ ∈ Rm
+ , µ ∈ Rp, γ ∈ Rq, and ν ∈ Rq such that
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(α, λ, µ, γ, ν) � 0,
λi = 0 ∀i � Ig(x∗),
γi = 0 ∀i ∈ I+0(x∗),
νi = 0 ∀i ∈ I0+(x∗),
γiνi ≥ 0 ∀i ∈ I00(x∗),

and

α∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗) = 0.

(b) [123] Then there are multipliers α ≥ 0, λ ∈ Rm
+ , µ ∈ Rp, γ ∈ Rq, and ν ∈ Rq such that

(α, λ, µ, γ, ν) � 0,
λi = 0 ∀i � Ig(x∗),
γi = 0 ∀i ∈ I+0(x∗),
νi = 0 ∀i ∈ I0+(x∗),
γi, νi > 0 or γiνi = 0 ∀i ∈ I00(x∗),

and

α∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗) = 0.

The difference between these two Fritz-John results lies only in the conditions on the multipliers
corresponding to the biactive set I00(x∗). This is due to the fact that the result from [104] is based
on Clarke’s subdifferential calculus whereas [123] employs Mordukhovich’s limiting calculus
and thus leads to stronger conditions. In the next chapter, we will extend the above result from
Jane Ye by adding more conditions for the case α = 0. These conditions will give rise to two
new MPCC constraint qualifications which are useful for example in the context of exact penalty
functions.

Whereas KKT points are the one prominent stationarity concept for NLPs, there are lots of
stationarity concepts for MPCCs. We introduce only those needed subsequently but would like
to mention that there is at least one more, called A-stationarity, which was introduced in [37].

Definition 5.13 Let x∗ be feasible for (1.1). Then x∗ is said to be

(a) weakly stationary (W-stationary), if there are multipliers λ ∈ Rm, µ ∈ Rp, γ, ν ∈ Rq such
that

∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µihi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗) = 0

and

λi ≥ 0, λigi(x∗) = 0 (i = 1, . . . ,m)
γi = 0 (i ∈ I+0(x∗)), νi = 0 (i ∈ I0+(x∗));
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(b) Clarke stationary (C-stationary), if it is W-stationary and γiνi ≥ 0 for all i ∈ I00(x∗);

(c) Mordukhovich stationary (M-stationary), if it is W-stationary and either γi > 0, νi > 0 or
γiνi = 0 for all i ∈ I00(x∗);

(d) strongly stationary (S-stationary) if it is W-stationary and γi, νi ≥ 0 for all i ∈ I00(x∗).

(e) Bouligand stationary (B-stationary) if

∇ f (x∗)T d ≥ 0 ∀d ∈ TX(x∗).

W-, C- and S-stationarity were introduced in [104], M-stationarity independently in [124, 93,
94, 122], and S-stationarity may also be found in [82]. A few words on the idea behind these
stationarity concepts: W-stationarity is equivalent to the KKT conditions applied to the nonlinear
program TNLP(x∗) we used to define MPCC constraint qualifications, whereas S-stationarity can
be shown to be equivalent to the KKT conditions applied directly to the MPCC (1.1), cf. [40]. C-
and M-stationarity can be motivated by the respective Fritz-John conditions stated in Theorem
5.12. B-stationarity on the other hand is just the necessary optimality condition already known
to us from standard nonlinear programs.

Obviously, the first four stationarity concepts differ only in the conditions on the multipliers
corresponding to the biactive set I00(x∗) and thus coincide when this set is empty. These condi-
tions are visualized in Figure 5.2.

0
γi

νi

(a) W-stationarity

0
γi

νi

(b) C-stationarity

0
γi

νi

(c) M-stationarity

0
γi

νi

(d) S-stationarity

Figure 5.2.: Feasible sets for multipliers corresponding to i ∈ I00(x∗)

Since S-stationarity is equivalent to the KKT conditions applied to (1.1) it implies B-stationarity.
Thus, the relations depicted in Figure 5.3 hold between these stationarity concepts.
Conversely, if MPCC-LICQ holds in x∗, then B-stationarity also implies S-stationarity. This is
due to the fact that MPCC-LICQ implies GCQ [40] and thus B-stationary points are also S-
stationary. Thus S-stationarity is a necessary optimality condition under MPCC-LICQ. This,
however, is not true anymore if we replace MPCC-LICQ by any weaker MPCC constraint qual-
ification as the following example illustrates.

Example 5.14 (Example 5.3 continued) Consider again the global optimum x∗ = (0, 0, 0)T .
We have already proven in Example 5.3 that x∗ is not a KKT point and thus is not S-stationary
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S-stationarity

M-stationarity B-stationarity

C-stationarity

W-stationarity

Figure 5.3.: Relations between stationarity concepts for MPCCs

although it is the global minimum. On the other hand, it can easily be seen that MPCC-MFCQ
is satisfied and therefore x∗ is M-stationary for example with multipliers λ = (0.25, 0.75), γ = 0
and ν = −2. �

The M-stationarity of the solution in the example above is not a coincidence but due to the
following result from [41].

Theorem 5.15 A local minimum of (1.1) that satisfies MPCC-GCQ or any stronger MPCC con-
straint qualification is an M-stationary point.
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6. Enhanced Fritz John Conditions

6.1. Normal Cones and Subgradients

Before we can derive the Fritz-John conditions, we first need to define some normal cones and
subdifferentials that will appear in the proofs. Let us begin with the normal cones.

Definition 6.1 Let C ⊆ Rn be a closed nonempty set and c∗ ∈ C.

(a) The Fréchet normal cone to C in c∗ is

NF
C (c∗) := TC(c∗)◦.

(b) The limiting (Mordukhovich) normal cone to C in c∗ is

NC(c∗) :=
�
s ∈ Rn

���∃{ck}→C c∗, sk ∈ NF
C (ck) : sk → s

�
.

We would like to illustrate these definitions in the following example.

Example 6.2 Let us consider those sets to which one typically needs a normal cone in optimiza-
tion, namely the feasible sets for equality constraints {0} ⊆ R and for inequality constraints R−.
In these two cases, the Fréchet and the limiting normal cone coincide and one easily verifies

NF
{0}(0) = N{0}(0) = R,

NF
R−

(x) = NR−(x) = {0} ∀x < 0,
NF
R−

(0) = NR−(0) = R+.

For MPCCs one also needs the normal cone to the feasible set for complementarity conditions

C := {(a, b) ∈ R2 | a ≥ 0, b ≥ 0, ab = 0}.
Here, the two cones do not always coincide. If only one of both values a, b is zero, one has

NF
C ((a, 0)) = NC((a, 0)) = {0} × R ∀a > 0,

NF
C ((0, b)) = NC((0, b)) = R × {0} ∀b > 0,

whereas in the biactive case (a, b) = (0, 0) the normal cones are

NF
C ((0, 0)) = R2

−,

NC((0, 0)) = {(a, b) ∈ R2 | a, b < 0 or ab = 0}. �

In order to prove the Fritz-John result we only need the Fréchet normal cone, but to verify
exactness of the penalty function we employ the limiting subdifferential, which is closely related
to the limiting normal cone, see [89, 103] for more information.
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6. Enhanced Fritz John Conditions

Definition 6.3 Let f : Rn → R be continuous.

(a) The Fréchet subdifferential of f in x∗ is defined as

∂F f (x∗) :=
�

s ∈ Rn

������lim inf
x→x∗

f (x) − f (x∗) − sT (x − x∗)
�x − x∗� ≥ 0

�
.

(b) The limiting subdifferential of f in x∗ is defined as

∂ f (x∗) :=
�
s ∈ Rn

���∃{xk}→ x∗, sk ∈ ∂F f (xk) : sk → s
�
.

We would like to mention that there are more subdifferentials used in the theory of MPCCs, the
most prominent among them being probably Clarke’s subdifferential from [24]. However, since
they will not play a role in the subsequent analysis, we do not introduce them in this thesis.

6.2. Enhanced Fritz-John Result

As we have seen in Chapter 4, there exist different ways to obtain first-order optimality conditions
for standard nonlinear programs. One is a geometric approach which requires that the tangent
cone is equal to a suitable linearized cone (or, at least, that the polar cones of these two sets
are identical) and leads to the KKT conditions. Another way is via the Fritz-John conditions
which do not require any constraint qualifications, but have the disadvantage that they involve
a multiplier also in front of the gradient of the objective function. However, under suitable
standard constraint qualifications (like MFCQ), one can show that this multiplier is nonzero and
again ends up at the KKT conditions. A third way is via an exact penalty function P, since
the unconstrained first-order optimality condition 0 ∈ ∂P(x∗) for this penalty function can be
used to obtain corresponding optimality conditions and again one arrives at the KKT conditions.
The only difference between these three approaches is that other CQs are required to ensure the
necessity of the KKT conditions.

The situation is different for MPCCs. Different approaches lead to different optimality con-
ditions (besides the fact that also different MPCC-tailored CQs are needed). Here, similar to
[37, 123, 39], we take the Fritz-John approach. However, as we have seen in Lemma 5.1, a direct
application of the Fritz-John conditions to an MPCC is not very effective. Therefore, we are
interested in an MPCC-tailored Fritz-John condition. The following is the main result of this
kind and motivated by similar ideas (for standard nonlinear programs with an additional abstract
constraint set) from [17].

Theorem 6.4 Let x∗ be a local minimum of the MPCC (1.1). Then, there are multipliers α, λ, µ,
γ, ν such that

(i)

α∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗) = 0,
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6.2. Enhanced Fritz-John Result

(ii) α ≥ 0, λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i � Ig(x∗), γi = 0 for all i ∈ I+0(x∗), νi = 0 for
all i ∈ I0+(x∗) and either γi > 0, νi > 0 or γiνi = 0 for all i ∈ I00(x∗),

(iii) α, λ, µ, γ, ν are not all equal to zero,

(iv) if λ, µ, γ, ν are not all equal to zero, then there is a sequence {xk} → x∗ such that for all
k ∈ N:
f (xk) < f (x∗),
if λi > 0 (i ∈ {1, . . . ,m}), then λigi(xk) > 0,
if µi � 0 (i ∈ {1, . . . , p}), then µihi(xk) > 0,
if γi � 0 (i ∈ {1, . . . , q}), then γiGi(xk) < 0,
if νi � 0 (i ∈ {1, . . . , q}), then νiHi(xk) < 0.

Proof. We first formulate our MPCC (1.1) equivalently as

min
x,y,z

f (x) subject to g(x) ≤ 0,

h(x) = 0,
y −G(x) = 0, (6.1)
z − H(x) = 0,
(x, y, z) ∈ C,

where the set

C := {(x, y, z) ∈ Rn+q+q | yi ≥ 0, zi ≥ 0, yizi = 0 for all i = 1, . . . , q} (6.2)

is nonempty and closed and we have a local minimum in (x∗, y∗, z∗) with y∗ = G(x∗), z∗ = H(x∗).
Now, we can apply the idea behind [17, Proposition 2.1]: Choose ε > 0 such that f (x) ≥ f (x∗)
for all (x, y, z) ∈ S that are feasible for the reformulated MPCC (6.1), where

S := {(x, y, z) | �(x, y, z) − (x∗, y∗, z∗)�2 ≤ ε}.

Then consider the penalized problem

min
x,y,z

Fk(x, y, z) subject to (x, y, z) ∈ S ∩C,

with

Fk(x, y, z) := f (x) +
k
2

m�

i=1

max{0, gi(x)}2 + k
2

p�

i=1

hi(x)2

+
k
2

q�

i=1

(yi −Gi(x))2 +
k
2

q�

i=1

(zi − Hi(x))2 +
1
2
�(x, y, z) − (x∗, y∗, z∗)�22
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6. Enhanced Fritz John Conditions

for every k ∈ N. Because S ∩ C is compact and Fk is continuous, this problem has at least one
solution (xk, yk, zk) for all k ∈ N. Our next step is to show that the sequence {(xk, yk, zk)} converges
to (x∗, y∗, z∗). To this end, note that

f (xk) +
k
2

m�

i=1

max{0, gi(xk)}2 + k
2

p�

i=1

hi(xk)2

+
k
2

q�

i=1

(yk
i −Gi(xk))2 +

k
2

q�

i=1

(zk
i − Hi(xk))2 +

1
2
�(xk, yk, zk) − (x∗, y∗, z∗)�22

= Fk(xk, yk, zk) ≤ Fk(x∗, y∗, z∗) = f (x∗)

for all k ∈ N. Because S ∩C is compact, the sequence { f (xk)} is bounded. This yields

lim
k→∞

max{0, gi(xk)} = 0 ∀i = 1, . . . ,m,

lim
k→∞

hi(xk) = 0 ∀i = 1, . . . , p,

lim
k→∞

yk
i −Gi(xk) = 0 ∀i = 1, . . . , q,

lim
k→∞

zk
i − Hi(xk) = 0 ∀i = 1, . . . , q

because otherwise the left-hand side of the inequality above would become unbounded. Thus,
every accumulation point of {(xk, yk, zk)} is feasible for the reformulated MPCC (6.1). The com-
pactness of S ∩C ensures that there is at least one accumulation point. Let (x̄, ȳ, z̄) be an arbitrary
accumulation point of the sequence. Then we know by continuity that

f (x̄) +
1
2
�(x̄, ȳ, z̄) − (x∗, y∗, z∗)�22 ≤ f (x∗)

and, on the other hand, by the feasibility of (x̄, ȳ, z̄)

f (x∗) ≤ f (x̄).

Together, this yields �(x̄, ȳ, z̄)− (x∗, y∗, z∗)�2 = 0. Thus, the entire sequence {(xk, yk, zk)} converges
to (x∗, y∗, z∗).

Consequently, we may assume without loss of generality that (xk, yk, zk) is an interior point of
S for all k ∈ N. Then, the standard necessary optimality condition says that

−∇Fk(xk, yk, zk) ∈ NF
C (xk, yk, zk)

for all k ∈ N, where the gradient of Fk is given by

−∇Fk(xk, yk, zk)

= −







∇ f (xk)
0
0


 +

m�

i=1

k max{0, gi(xk)}




∇gi(xk)
0
0


 +

p�

i=1

khi(xk)




∇hi(xk)
0
0
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−
q�

i=1

k(yk
i −Gi(xk))




∇Gi(xk)
−ei

0


 −

q�

i=1

k(zk
i − Hi(xk))




∇Hi(xk)
0
−ei




+







xk

yk

zk


 −




x∗
y∗
z∗










and the Fréchet normal cone of C in (xk, yk, zk) is easily seen to be given by

NF
C (xk, yk, zk) =







0
ξ
ζ


 :
ξi = 0, ζi ∈ R if yk

i > 0
ζi = 0, ξi ∈ R if zk

i > 0
ξi ≤ 0, ζi ≤ 0 if yk

i = zk
i = 0



,

see Example 6.2. This yields

0 = ∇ f (xk) +
m�

i=1

k max{0, gi(xk)}∇gi(xk) +
p�

i=1

khi(xk)∇hi(xk)

−
q�

i=1

k(yk
i −Gi(xk))∇Gi(xk) −

q�

i=1

k(zk
i − Hi(xk))∇Hi(xk) + (xk − x∗)

for all k ∈ N and also

k(yk
i −Gi(xk)) = −(yk

i − y∗i ) if yk
i > 0, zk

i = 0,
k(zk

i − Hi(xk)) = −(zk
i − z∗i ) if yk

i = 0, zk
i > 0,

k(yk
i −Gi(xk))

k(zk
i − Hi(xk))

≥
≥

−(yk
i − y∗i )

−(zk
i − z∗i )

�
if yk

i = zk
i = 0.

Now define the multipliers

δk :=

��
1 +

m�

i=1

(k max{0, gi(xk)})2 +

p�

i=1

(khi(xk))2 +

q�

i=1

(k(yk
i −Gi(xk)))2 +

q�

i=1

(k(zk
i − Hi(xk)))2

and

αk :=
1
δk
,

λk
i :=

k max{0, gi(xk)}
δk

∀i = 1, . . . ,m,

µk
i :=

khi(xk)
δk

∀i = 1, . . . , p,

γk
i :=

k(yk
i −Gi(xk))
δk

∀i = 1, . . . , q,

νk
i :=

k(zk
i − Hi(xk))
δk

∀i = 1, . . . , q.
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Because of �(αk, λk, µk, γk, νk)�2 = 1 for all k ∈ N, we may assume without loss of generality that
the sequence of multipliers converges to some limit (α, λ, µ, γ, ν) � 0. Now, we are interested in
some properties of this limit. Because of the convergence of αk → α, we know that the sequence
{δk} either diverges to +∞ or converges to some positive value (greater or equal to one). We
will use this fact later to obtain more information about the signs of γ and ν. By continuity and
because of xk → x∗, we obtain

α∇ f (x∗) +
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗) = 0.

Furthermore, it is easy to see that α ≥ 0 and λ ≥ 0. Additionally, we have λi = 0 for all
i � Ig(x∗) because this implies gi(xk) < 0 for all k ∈ N sufficiently large. Now remember
(y∗, z∗) = (G(x∗),H(x∗)) and (xk, yk, zk) ∈ C for all k ∈ N. If i ∈ I+0(x∗), this yields yk

i > 0, zk
i = 0

for all k sufficiently large. Thus, we know

γi = lim
k→∞

k(yk
i −Gi(xk))
δk

= lim
k→∞

−(yk
i − y∗i )
δk

= 0

for all i ∈ I+0(x∗). Analogously, one can prove νi = 0 for all i ∈ I0+(x∗). For i ∈ I00(x∗) at least
one of the following three cases has to occur: If yk

i > 0, zk
i = 0 for infinitely many k, the same

argumentation as above yields γi = 0. Analogously, if yk
i = 0, zk

i > 0 for infinitely many k, we
obtain νi = 0. If, however, yk

i = zk
i = 0 for infinitely many k, we obtain

γi = lim
k→∞

k(yk
i −Gi(xk))
δk

≥ lim
k→∞

−(yk
i − y∗i )
δk

= 0,

νi = lim
k→∞

k(zk
i − Hi(xk))
δk

≥ lim
k→∞

−(zk
i − z∗i )
δk

= 0.

Thus, for all i ∈ I00(x∗) we have either γi > 0, νi > 0 or γiνi = 0.
Finally, let us assume (λ, µ, γ, ν) � 0. Then (λk, µk, γk, νk) � 0 for all k ∈ N sufficiently large.

Using the definition of these multipliers, it therefore follows that (xk, yk, zk) � (x∗, y∗, z∗) for all k
sufficiently large. Consequently, we have

f (xk) < f (xk) +
1
2
�(xk, yk, zk) − (x∗, y∗, z∗)�22 ≤ f (x∗)

for all k ∈ N sufficiently large. Furthermore, we have the following implication for all i and all k
sufficiently large:

λi > 0 =⇒ λk
i > 0 =⇒ gi(xk) > 0 =⇒ λigi(xk) > 0,

µi � 0 =⇒ µiµ
k
i > 0 =⇒ µihi(xk) > 0.

Now let i ∈ {1, . . . , q} be an index with γi � 0. This implies γiγk
i > 0 or equivalently

γi(yk
i −Gi(xk)) > 0 (6.3)
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for all k sufficiently large. We have seen above that if yk
i > 0 for infinitely many k the multiplier

γi has to be zero. Therefore, in our case yk
i = 0 for all k sufficiently large and consequently

γiGi(xk) < 0

for all those k. One can prove the implication νi � 0 =⇒ νiHi(xk) < 0 for all k sufficiently large
analogously. �

Statements (i)–(iii) of Theorem 6.4 were shown previously in [123] (see also [39]) using a com-
pletely different technique of proof based on the limiting co-derivative. Here we improve the
result from [123, 39] by showing that statement (d) also holds. The idea for this proof (and the
corresponding statements) is inspired by a corresponding result from [17]. We stress, however,
that we did not simply apply the result from [17], but that we exploit the particular structure of
the complementarity constraints within our MPCC in order to obtain suitable sign constraints on
the multipliers. Direct application of [17, Proposition 2.1] would have lead to condition (6.3) for
γ and an analogous condition for ν. However, these conditions are less favorable than ours as
they do not only depend on x but also on the artificial slack variables y and z.

6.3. New Constraint Qualifications

Motivated by Theorem 6.4 and the related discussion in [17], we now define MPCC-analogues
of some constraint qualifications we already introduced in Chapter 4 for standard nonlinear pro-
grams.

Definition 6.5 A vector x∗ ∈ X is said to satisfy

(a) MPCC generalized MFCQ, if there is no multiplier (λ, µ, γ, ν) � (0, 0, 0, 0) such that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) −�q
i=1 γi∇Gi(x∗) −�q

i=1 νi∇Hi(x∗) = 0,

(ii) λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i � Ig(x∗), γi = 0 for all i ∈ I+0(x∗), νi = 0 for
all i ∈ I0+(x∗) and either γi > 0, νi > 0 or γiνi = 0 for all i ∈ I00(x∗).

(b) MPCC generalized pseudonormality, if there is no multiplier (λ, µ, γ, ν) such that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) −�q
i=1 γi∇Gi(x∗) −�q

i=1 νi∇Hi(x∗) = 0,

(ii) λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i � Ig(x∗), γi = 0 for all i ∈ I+0(x∗), νi = 0 for
all i ∈ I0+(x∗) and either γi > 0, νi > 0 or γiνi = 0 for all i ∈ I00(x∗),

(iii) there is a sequence {xk}→ x∗ such that the following is true for all k ∈ N:

m�

i=1

λigi(xk) +
p�

i=1

µihi(xk) −
q�

i=1

γiGi(xk) −
q�

i=1

νiHi(xk) > 0.

(c) MPCC generalized quasinormality, if there is no multiplier (λ, µ, γ, ν) such that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) −�q
i=1 γi∇Gi(x∗) −�q

i=1 νi∇Hi(x∗) = 0,
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(ii) λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i � Ig(x∗), γi = 0 for all i ∈ I+0(x∗), νi = 0 for
all i ∈ I0+(x∗) and either γi > 0, νi > 0 or γiνi = 0 for all i ∈ I00(x∗),

(iii) (λ, µ, γ, ν) � (0, 0, 0, 0),

(iv) there is a sequence {xk} → x∗ such that the following is true for all k ∈ N: For all
λi > 0 we have λigi(xk) > 0, for all µi � 0 we have µihi(xk) > 0, for all γi � 0 we
have −γiGi(xk) > 0, and for all νi � 0 we have −νiHi(xk) > 0.

MPCC generalized MFCQ was already introduced in [123] under a different name, namely
NNAMCQ (No Nonzero Abnormal Multiplier Constraint Qualification). The term MPCC GM-
FCQ, where G stands for generalized, also appears there and it is shown that, although MPCC
GMFCQ is defined differently from our MPCC generalized MFCQ, both are equivalent. Fur-
thermore, it is not difficult to see that it is weaker than the standard MPCC-MFCQ condition, see
Lemma 5.7. Note that MPCC generalized MFCQ is motivated by statements (i)–(iii) of Theorem
6.4 since this CQ guarantees that a local minimum is an M-stationary point for our MPCC, see
also Theorem 6.11 below. On the other hand, MPCC generalized quasinormality is motivated
by statements (i)–(iv). We added the term "generalized" to the names of MPCC generalized
pseudonormality and MPCC generalized quasinormality to distinguish them from those MPCC
constraint qualifications defined via TNLP(x∗). In theory, it is also possible to define MPCC ana-
logues of pseudonormality and quasinormality via TNPL(x∗). This, however, leads to different
(stronger) conditions and, at least in our opinion, does not properly reflect the idea behind these
constraint qualifications. Nonetheless, this idea can be used to prove the following result.

Lemma 6.6 Let x∗ be a feasible point of (1.1) where MPCC-CPLD is satisfied. Then MPCC
generalized quasinormality is also satisfied there.

Proof. Recall that MPCC-CPLD is satisfied in x∗ if and only if standard CPLD for TNLP(x∗) is
satisfied there as well. By [5], we know that then standard quasinormality for TNLP(x∗) also has
to be satisfied. This amounts to the following condition: There is no multiplier (λ, µ, γ, ν) such
that

(i)
�m

i=1 λi∇gi(x∗) +
�p

i=1 µi∇hi(x∗) −�q
i=1 γi∇Gi(x∗) −�q

i=1 νi∇Hi(x∗) = 0,

(ii) λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i � Ig(x∗), γi = 0 for all i ∈ I+0(x∗), νi = 0 for all
i ∈ I0+(x∗),

(iii) (λ, µ, γ, ν) � (0, 0, 0, 0),

(iv) there is a sequence {xk}→ x∗ such that the following is true for all k ∈ N: For all λi > 0 we
have λigi(xk) > 0, for all µi � 0 we have µihi(xk) > 0, for all γi � 0 we have −γiGi(xk) > 0,
and for all νi � 0 we have −νiHi(xk) > 0.

The only difference between these conditions and MPCC generalized quasinormality lies in (ii),
where the restrictions on the multipliers corresponding to the biactive set I00(x∗) are missing.
Therefore, the conditions above imply MPCC generalized quasinormality. �
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We already mentioned that MPCC-MFCQ implies MPCC generalized MFCQ. From the defini-
tions, MPCC generalized MFCQ obviously implies MPCC generalized pseudonormality which
in turn is a sufficient condition for MPCC generalized quasinormality. Thus, we can extend
Figure 5.1 by some implications. All implications known so far are depicted in Figure 6.1.

MPCC-LICQ

MPCC-MFCQMPCC-CRCQ

MPCC generalized MFCQ

MPCC generalized pseudonormality

MPCC generalized quasinormality

MPCC-CPLD

MPCC-ACQ

MPCC-GCQ

Figure 6.1.: Relations between MPCC-CQs

Now, we want to give some examples illustrating that the reverse implications are not true. Let
us begin with MPCC-MFCQ and MPCC generalized MFCQ.

Example 6.7 Consider the following 2-dimensional example with linear constraints

min
x1,x2

f (x) subject to g(x) := x2 ≤ 0,

G(x) := x1 ≥ 0,
H(x) := x1 + x2 ≥ 0,
G(x)H(x) = x1(x1 + x2) = 0,

where f will be specified in a subsequent example. The feasible set is obviously given by

X = {(t,−t) ∈ R2 | t ≥ 0},

hence x∗ := (0, 0)T is feasible. Obviously, MPCC-MFCQ is violated in x∗ as there are multipliers
(λ, γ, ν) � (0, 0, 0) with λ ≥ 0 such that

λ∇g(x∗) − γ∇G(x∗) − ν∇H(x∗) = λ
�

0
1

�
− γ
�

1
0

�
− ν
�

1
1

�
= 0.

On the other hand, it is easy to see that MPCC generalized MFCQ is satisfied. �
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The next example illustrates that MPCC generalized pseudonormality is strictly weaker than
MPCC generalized MFCQ.

Example 6.8 Consider the 2-dimensional minimization problem

min
x1,x2

f (x) subject to g(x) := x1 + x2 ≤ 0,

G(x) := x1 ≥ 0,
H(x) := x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

The origin x∗ = (0, 0)T is feasible, and all constraints are active at x∗. To prove that MPCC
generalized MFCQ is violated, we have to find (λ, γ, ν) � 0 such that λ ≥ 0, either γν = 0 or
γ, ν > 0 and

λ

�
1
1

�
− γ
�

1
0

�
− ν
�

0
1

�
=

�
0
0

�
.

Obviously, all vectors with these properties are of the form (λ, γ, ν) = c(1, 1, 1) with c > 0.
Hence, MPCC generalized MFCQ is violated. MPCC generalized pseudonormality, on the other
hand, is satisfied, because we have

λg(xk) − γG(xk) − νH(xk) = c(xk
1 + xk

2) − cxk
1 − cxk

2 = 0

for all sequences xk → x∗. �

We have already seen that MPCC generalized MFCQ is strictly weaker than MPCC-MFCQ.
The following example, which is based on [5, Counterexample 1], illustrates that it has to be
significantly weaker than MPCC-MFCQ since it is not strong enough to imply MPCC-CPLD
anymore.

Example 6.9 Consider the two-dimensional MPCC

min
x1,x2

f (x) subject to G(x) = ex1 x2 ≥ 0,

H(x) = x2 ≥ 0,
G(x)H(x) = ex1 x2

2 = 0.

Obviously, the feasible set is X = R × {0}. The active gradients in x∗ = (0, 0)T are

∇G(x∗) =
�
0
1

�
,∇H(x∗) =

�
0
1

�
,

hence they are linearly dependent in x∗ but linearly independent as soon as x2 � 0. Consequently,
MPCC-CPLD is violated in x∗. MPCC generalized MFCQ on the other hand holds since there
are no multipliers γ, ν such that γ, ν > 0 or γν = 0 with γ∇G(x∗) + ν∇H(x∗) = 0. �

Since MPCC generalized MFCQ is not strong enough to imply MPCC-CPLD, of course MPCC
generalized pseudonormality and MPCC generalized quasinormality are not strong enough ei-
ther. We have proven above that MPCC-CPLD implies MPCC generalized quasinormality. The
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following example based on [17, Example 3.1] shows that it does not imply MPCC generalized
pseudonormality, in fact it shows that even MPCC-CRCQ does not imply MPCC generalized
pseudonormality.

Example 6.10 Consider the two-dimensional MPCC

min
x1,x2

f (x) subject to g(x) = x2
1 + (x2 − 1)2 − 1 ≤ 0,

G(x) = 1 − (x1 − cos(π/6))2 − (x2 + sin(π/6))2 ≥ 0,
H(x) = 1 − (x1 + cos(π/6))2 − (x2 + sin(π/6))2 ≥ 0,
G(x)H(x) = 0.

The only feasible point here is x∗ = (0, 0)T and the active gradients are

∇g(x∗) =
�

0
−2

�
,∇G(x∗) =

�
2 cos(π/6)
−2 sin(π/6)

�
,∇H(x∗) =

�−2 cos(π/6)
−2 sin(π/6)

�
.

The only subset of linearly dependent gradients contains all three gradients and of course, they
remain linearly dependent, consequently MPCC-CRCQ holds in x∗. On the other hand, we have

∇g(x∗) − ∇G(x∗) − ∇H(x∗) = 0

due to sin(π/6) = 0.5 and

g(x) −G(x) − H(x) = 3(x2
1 + x2

2) > 0

for all x � 0. Thus, MPCC generalized pseudonormality is violated in x∗.
Since MPCC-CRCQ holds in x∗, we already know that MPCC generalized quasinormality is

satisfied as well. This can be seen directly since for all x � 0 sufficiently close to x∗ at least one
of the constraints g(x) ≤ 0, −G(x) ≤ 0 or −H(x) ≤ 0 is satisfied. �

Thus we have shown two things in the example above: Firstly, that MPCC-CRCQ does not imply
MPCC generalized pseudonormality, and secondly, as an immediate consequence, that MPCC
generalized pseudonormality is strictly stronger than MPCC generalized quasinormality.

Some of the implications for which we gave counter examples in this section and in Section
5.1 are gathered in Figure 6.2. We chose not depict all of them for clarity reasons.
We will come back to the relations between our new constraint qualifications and the existing
ones in Section 6.5. Let us close this section with a result which is a direct consequence of
Theorem 6.4.

Theorem 6.11 Let x∗ be a local minimum of (1.1) satisfying MPCC generalized quasinormality.
Then x∗ is an M-stationary point of (1.1).

Proof. Suppose that x∗ is a local minimum of our MPCC. Then Theorem 6.4 implies the ex-
istence of multipliers α, λ, µ, γ, ν such that statements (i)–(iv) of that result hold. Assume that
α = 0. Then the MPCC generalized quasinormality condition implies that λ = µ = γ = ν = 0,
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MPCC-LICQMPCC-CRCQ MPCC-MFCQ

MPCC generalized MFCQ

MPCC generalized pseudonormality

MPCC generalized quasinormality

MPCC-CPLD

/

/

/

/

/

//

Figure 6.2.: Counter examples

contradicting the fact that not all multipliers are zero. Hence α > 0, and we may assume without
loss of generality that α = 1, showing that x∗ is indeed an M-stationary point. �

Since we have shown that MPCC generalized quasinormality is implied by MPCC-CPLD, this
also implies that local minima are M-stationary under MPCC-LICQ, MPCC-MFCQ, MPCC-
CRCQ and of course MPCC-CPLD. However, this was already known to us due to Theorem
5.15. But, in contrast to all previous results known to us where it is shown that a local minimum
is an M-stationary point under suitable MPCC constraint qualifications, the proof of Theorem
6.11 is completely elementary and does not assume any knowledge of the limiting subdifferential
or the limiting co-derivative by Mordukhovich.

At the moment, it is not clear why we also introduced the MPCC generalized pseudonormality
condition since, so far, it is not really used anywhere. In the following section, however, this
constraint qualification will play a fundamental role in the proof an exact penalty result.

6.4. An Exact Penalty Result

Exact penalty results for MPCCs are known in the literature, see [82, 83, 125, 106, 80] for exam-
ple. In particular, it is known that MPCC-MFCQ implies exactness of a certain penalty function
that will also appear in our context as a side-product. Some authors also use a partial penaliza-
tion only, in fact, they sometimes penalize the standard constraints only, whereas (simplified)
complementarity-type constraints are left as constraints (see [80] and also Remark 6.19 below).
However, we believe that one should at least penalize the (complicated) complementarity con-
straints. For the sake of simplicity, we penalize all constraints in this section and obtain an
exactness result for our penalty function under MPCC generalized pseudonormality which, we
recall, is weaker than the usual MPCC-MFCQ condition.

In order to derive the exactness result, let us first rewrite our MPCC equivalently as

min f (x) subject to F(x) ∈ Λ, (6.4)
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where

F(x) :=




gi(x)i=1,...,m
hi(x)i=1,...,p�
Gi(x)
Hi(x)

�

i=1,...,q




and

Λ :=




(−∞, 0]m

{0}p
Cq




with
C := {(a, b) ∈ R2 | a ≥ 0, b ≥ 0, ab = 0}.

The penalty function associated to (6.4) is

Pα(x) := f (x) + αdistΛ(F(x)). (6.5)

Here, the distance function is defined by

distΛ(F(x)) = inf{�y − F(x)� | y ∈ Λ}, (6.6)

where, in principle, the norm can be chosen arbitrarily. Our goal is to prove that the penalty func-
tion (6.5) is exact in the sense of the following definition in every local minimum x∗ satisfying a
suitable constraint qualification.
Definition 6.12 The penalty function Pα is said to be exact in a local minimum x∗ of (1.1) if
there is a finite ᾱ ≥ 0 such that x∗ is an unconstrained local minimum of Pα(x) for all α ≥ ᾱ.

It is well-known that exactness of this function using a specific norm implies exactness for all
other norms as well. Therefore, we will restrict ourselves to the l1-norm. In this case, Pα(x) is of
the form

Pα(x) = f (x) + α



m�

i=1

dist(−∞,0](gi(x)) +
p�

i=1

dist{0}(hi(x)) +
q�

i=1

distC((Gi(x),Hi(x)))

 (6.7)

and elementary calculations lead to the following explicit formulas for the corresponding dis-
tance functions.
Lemma 6.13 Under the l1-norm, the distance functions are given by the following expressions
for a, b ∈ R:

dist(−∞,0](a) = max{a, 0},
dist{0}(a) = |a|,

distC((a, b)) = max{−a,−b,−(a + b),min{a, b}} =




a or b if a = b ≥ 0,
b if a > b > 0,
−b if a > 0, b ≤ 0,
−(a + b) if a ≤ 0, b ≤ 0,
−a if a ≤ 0, b > 0,
a if b > a > 0.
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It follows that the penalty function we consider in this section is explicitly given by

Pα(x) = f (x) + α
��m

i=1 max{0, gi(x)} +�p
i=1 |hi(x)|+

�q
i=1 max

� −Gi(x),−Hi(x),−�Gi(x) + Hi(x)
�
,min{Gi(x),Hi(x)}�

�
,

(6.8)

see also the discussion at the end of this section for the relation between this penalty function
and another one which is used more frequently in the context of MPCCs.

In order to prove the exactness result, we need to calculate the limiting subdifferentials of the
distance functions stated in Lemma 6.13.

Lemma 6.14 The limiting subdifferentials of the distance functions from Lemma 6.13 (recall
that we use the l1-norm here) are given by

∂dist(−∞,0](a) =




{0} if a < 0,
[0, 1] if a = 0,
{1} if a > 0,

∂dist{0}(a) =




{−1} if a < 0,
[−1, 1] if a = 0,
{1} if a > 0,

∂distC((a, b)) =




{(ξ, 0)T , (0, ζ)T | ξ, ζ ∈ [0, 1]} ∪ {(ξ, ζ)T | ξ, ζ ∈ [−1, 0]} if a = b = 0,
{(1, 0)T , (0, 1)T } if a = b > 0,
{(0, 1)T } if a > b > 0,
{(0, ζ)T | ζ ∈ [−1, 1]} if a > 0, b = 0,
{(0,−1)T } if a > 0, b < 0,
{(ξ,−1)T | ξ ∈ [−1, 0]} if a = 0, b < 0,
{(−1,−1)T } if a < 0, b < 0,
{(−1, ζ)T | ζ ∈ [−1, 0]} if a < 0, b = 0,
{(−1, 0)T } if a < 0, b > 0,
{(ξ, 0)T | ξ ∈ [−1, 1]} if a = 0, b > 0,
{(1, 0)T } if b > a > 0.

Proof. For convex functions, both the Fréchet and the limiting subdifferential coincide with the
standard subdifferential from convex analysis, cf. [103]. This gives the expressions for the first
two distance functions.

In order to get the expression for the limiting subdifferential of the third distance function
(a, b) �→ distC((a, b)), we also recall that the Fréchet and the limiting subdifferentials of a locally
continuously differentiable function are equal to a single set, consisting of the gradient of that
function, cf. [103, Example 8.8]. Together with the previous comment regarding (locally) convex
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functions, we obtain all statements except for the first two cases a = b = 0 and a = b > 0 which
we will now treat separately.

First consider the case a = b > 0. We claim that the Fréchet subdifferential is empty. To see
this, assume there exists an element s = (s1, s2) ∈ ∂FdistC((a, b)). Then consider the particular
sequence {(ak, bk)} with (ak, bk) := (a + 1

k , b). An elementary calculation then shows that

distC((ak, bk)) − distC((a, b)) − sT
�

ak − a
bk − b

�

������

�
ak − a
bk − b

�������

=
b − b − 1

k s1
1
k

= −s1,

hence the limit inferior of this expression is nonnegative if and only if s1 ≤ 0. On the other hand,
consider the particular sequence {(ak, bk)} with (ak, bk) := (a − 1

k , b). Again, a simple calculation
gives

distC((ak, bk)) − distC((a, b)) − sT
�

ak − a
bk − b

�

������

�
ak − a
bk − b

�������

=
a − 1

k − a + 1
k s1

1
k

= −1 + s1,

and the limit inferior of this term is nonnegative if and only if s1 ≥ 1. This contradiction shows
that s cannot belong to the Fréchet subdifferential. Hence, to obtain the elements s of the lim-
iting subdifferential ∂distC((a, b)), we only need to consider sequences {sk} converging to s with
sk being an element of the Fréchet subdifferential ∂FdistC((ak, bk)) at points (ak, bk) satisfying
ak, bk > 0 and ak � bk. The corresponding expressions were already calculated and show that the
limiting subdifferential consists of the two vectors (0, 1)T and (1, 0)T .

Finally, consider the case a = b = 0. First, let us calculate the Fréchet subdifferential at this
point. We claim that this Fréchet subdifferential is given by the rectangle [−1, 0] × [−1, 0]. To
see this, note that it is not difficult to see that the numerator

distC((ak, bk)) − distC((0, 0)) − (s1, s2)
�

ak − 0
bk − 0

�

occurring in the definition of the Fréchet subdifferential is always nonnegative for all (s1, s2) ∈
[−1, 0] × [−1, 0], so these elements certainly belong to ∂FdistC((0, 0)). On the other hand, there
cannot exist any other elements since, by taking the particular sequence {(ak, bk)} with (ak, bk) :=
( 1

k , 0), we obtain

distC((ak, bk)) − distC((0, 0)) − (s1, s2)
�

ak − 0
bk − 0

�

������

�
ak − 0
bk − 0

�������

=
0 − 0 − 1

k s1
1
k

= −s1,
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whereas for the particular sequence {(ak, bk)} with (ak, bk) := (−1
k , 0), we get

distC((ak, bk)) − distC((0, 0)) − (s1, s2)
�

ak − 0
bk − 0

�

������

�
ak − 0
bk − 0

�������

=
1
k − 0 + 1

k s1
1
k

= 1 + s1,

so that the definition of the Fréchet subdifferential shows that we necessarily have s1 ∈ [−1, 0]. A
symmetric argument shows that also s2 ∈ [−1, 0] is necessary for the vector s = (s1, s2) belonging
to ∂FdistC((0, 0)). Altogether, we therefore have ∂FdistC((0, 0)) = [−1, 0] × [−1, 0]. Since the
Fréchet subdifferential is a subset of the limiting subdifferential, it follows that [−1, 0]× [−1, 0] ∈
∂distC((0, 0)). The other elements s ∈ ∂distC((0, 0)) can be easily obtained by taking sequences
sk → s with sk ∈ ∂FdistC((ak, bk)) with (ak, bk) → (0, 0) and (ak, bk) � (0, 0) together with the
already known expressions for the Fréchet subdifferentials in these points. �

To prove the central result of this section, we will proceed in three steps. First, we need an auxil-
iary result, then we will prove that MPCC generalized pseudonormality implies the existence of
local error bounds and, finally, we will use this fact to obtain exactness of our penalty function.
Remember that we use the l1-norm to measure distances.

Lemma 6.15 Let x∗ be feasible for (1.1) such that MPCC generalized pseudonormality holds in
x∗. Then there are δ, c > 0 such that for all x ∈ B(x∗; δ) with x � X and all ξ ∈ ∂distΛ(F(x)) the
following estimate holds:

�ξ�1 ≥
1
c
.

Proof. Assume that the statement is wrong. Then, one can find a sequence {xk} → x∗ with
xk � X and ξk ∈ ∂distΛ(F(xk)) for all k ∈ N such that �ξk�1 → 0. To calculate ∂distΛ(F(xk)) we
may apply the sum rule from [19, Theorem 6.4.4] because the distance functions are Lipschitz
continuous. Furthermore, we can use the chain rule stated in [19, p. 151], again because of the
Lipschitz continuity of distance functions. This yields the existence of multipliers

λk
i ∈ ∂dist(−∞,0](gi(xk)) ∀ i = 1, . . . ,m,
µk

i ∈ ∂dist{0}(hi(xk)) ∀ i = 1, . . . , p,
(γk

i , ν
k
i ) ∈ −∂distC(Gi(xk),Hi(xk)) ∀ i = 1, . . . , q

such that

ξk =

m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

q�

i=1

�
γk

i∇Gi(xk) + νk
i∇Hi(xk)

�
(6.9)

for all k ∈ N. Using Lemma 6.14, it is easy to see that the sequence {(λk, µk, γk, νk)} is bounded.
Hence, we may assume without loss of generality that it converges to some limit (λ, µ, γ, ν).
Taking the limit k → ∞ in (6.9) and using the smoothness of g, h,G,H then yields

0 =
m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

�
γi∇Gi(x∗) + νi∇Hi(x∗)

�
.
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Furthermore, Lemma 6.14 yields

λi ≥ 0 ∀i = 1, . . . ,m,
λi = 0 ∀i � Ig(x∗),
γi = 0 ∀i ∈ I+0(x∗),
νi = 0 ∀i ∈ I0+(x∗),

γiνi = 0 or γi > 0, νi > 0 ∀i ∈ I00(x∗).

Additionally, it is easy to see that, for all k ∈ N, we have

λigi(xk) ≥ 0 ∀i = 1, . . . ,m,
µihi(xk) ≥ 0 ∀i = 1, . . . , p,
−γiGi(xk) ≥ 0 ∀i = 1, . . . , q,
−νiHi(xk) ≥ 0 ∀i = 1, . . . , q.

Because of xk � X for all k ∈ N, at least one constraint has to be violated infinitely many times.
Using Lemma 6.14, it is easy to see that the corresponding product is strictly positive for all
k ∈ N such that the constraint is violated, i.e., if the constraint gi(xk) ≤ 0 is violated for infinitely
many k we have λigi(xk) > 0 for all those k, if the constraint hi(xk) = 0 is violated for infinitely
many k we have µihi(xk) > 0 for all those k and finally, if the constraint (Gi(xk),Hi(xk)) ∈ C is
violated for infinitely many k we have −(γiGi(xk) + νiHi(xk)) > 0 for all those k. This yields

m�

i=1

λigi(xk) +
p�

i=1

µihi(xk) −
q�

i=1

�
γiGi(xk) + νiHi(xk)

�
> 0

at least on a subsequence K ⊆ N. This, however, implies that MPCC generalized pseudonormal-
ity is violated in x∗, a contradiction. �

The following result about local error bounds is based on [121, Theorem 2.2], where a more
general setting was considered. Hence, the proof for our special case is easier and therefore
stated here. Again, distances are measured in the l1-norm.

Lemma 6.16 Let x∗ be feasible for (1.1) and δ, c > 0 such that �ξ�1 ≥ 1
c for all x ∈ B(x∗; δ) \ X

and all ξ ∈ ∂distΛ(F(x)). Then the following estimate holds for all x ∈ B(x∗; δ2 ):

distX(x) ≤ nc distΛ(F(x)).

Proof. Assume that the statement is wrong. Then, there is an x̃ ∈ B(x∗; δ2 ) with

distX(x̃) > nc distΛ(F(x̃)).
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Obviously, this implies x̃ � X. Furthermore, we can choose a t > 1 such that

d := tnc distΛ(F(x̃)) < distX(x̃). (6.10)

Because of x̃ � X, we have d > 0. Furthermore, distΛ(F(x̃)) = d
tnc and thus

distΛ(F(x̃)) ≤ inf
x∈Rn

distΛ(F(x)) +
d

tnc
.

Application of Ekeland’s variational principle [24, Theorem 7.5.1] to the continuous nonnegative
function x �→ distΛ(F(x)) with ε = d

tnc and λ = d yields the existence of an x̄ with the following
properties:

�x̄ − x̃�1 ≤ d, (6.11)
distΛ(F(x̄)) ≤ distΛ(F(x̃)), (6.12)

distΛ(F(x)) +
1

tnc
�x − x̄�1 > distΛ(F(x̄)) ∀x ∈ Rn, x � x̄. (6.13)

Equations (6.11) and (6.10) imply

�x̄ − x̃�1 ≤ d < distX(x̃),

thus x̄ � X. According to (6.13), the function x �→ distΛ(F(x)) + 1
tnc�x − x̄�1 attains a global

minimum in x̄. Thus, by Fermat’s rule, we have

0 ∈ ∂
�
distΛ(F(x)) +

1
tnc
�x − x̄�1

�

x=x̄
.

To calculate this subdifferential, we may invoke the sum rule from [19, Theorem 6.4.4] because
distance functions are Lipschitz continuous. Furthermore, it is easy to see that the limiting sub-
differential of the convex function x �→ 1

tnc�x − x̄�1 in x̄ is given by

∂

�
1

tnc
� · −x̄�1

�
(x̄) =

1
tnc
�
ζ ∈ Rn | �ζ�∞ ≤ 1

�
.

Hence, we can find ξ ∈ ∂distΛ(F(x̄)) and ζ with �ζ�∞ ≤ 1 such that

0 = �ξ + 1
tnc
ζ�1 ≥ �ξ�1 −

1
tnc
�ζ�1 ≥ �ξ�1 −

1
tnc

n,

consequently

�ξ�1 ≤
1
tc
<

1
c
.

On the other hand, we have x̄ � X and, using equations (6.11), (6.10) together with x∗ ∈ X,

�x̄ − x∗�1 ≤ �x̄ − x̃�1 + �x̃ − x∗�1 ≤ d + �x̃ − x∗�1 < distX(x̃) + �x̃ − x∗�1 ≤ 2�x̃ − x∗�1 ≤ 2
δ

2
= δ.

94



6.4. An Exact Penalty Result

This, however, is a contradiction to our assumptions. �

Taking into account the previous two results, we can now follow [57] and get an exact penalty
result for MPCCs.

Theorem 6.17 Let x∗ be a local minimizer of (1.1) with f locally Lipschitz-continuous around
x∗ with modulus L > 0. If MPCC generalized pseudonormality holds in x∗, then the penalty
function Pα defined in (6.8) is exact in x∗.

Proof. According to Lemma 6.15 and Lemma 6.16, we can find constants δ, c > 0 such that

distX(x) ≤ c distΛ(F(x))

holds for all x ∈ B(x∗; δ) (note that we redefined the constants δ, c from Lemma 6.16 to shorten
the notation). Now choose ε > 0 such that 2ε < δ and that f attains a global minimum in x∗ on
B(x∗; 2ε) ∩ X. Furthermore, we assume without loss of generality that f is Lipschitz continuous
in B(x∗; 2ε) with the Lipschitz constant L . Then the following holds for every x ∈ B(x∗; ε):
Choose xp ∈ ProjX(x) arbitrary. This implies

�xp − x�1 ≤ �x∗ − x�1 ≤ ε =⇒ �xp − x∗�1 ≤ �xp − x�1 + �x − x∗�1 ≤ 2ε

and consequently we have

f (x∗) ≤ f (xp) ≤ f (x) + L�xp − x�1 = f (x) + L distX(x) ≤ f (x) + cL distΛ(F(x)).

Thus, the penalty function Pα is exact with ᾱ = cL. �

In the proof above we only used that f is locally Lipschitz-continuous around x∗, so it is not
necessary to demand f to be smooth. On the other hand, mere continuity of f is not enough to
guarantee exactness as the following example illustrates:

Example 6.18 (Example 6.7 continued) Since we have already seen that MPCC generalized
MFCQ is satisfied in x∗ = (0, 0)T , we know that the penalty function Pα is exact in x∗ for every
locally Lipschitz continuous function f . Now let us consider the objective function

f (x) := −
�
|x1 + x2|

which is well defined and continuous in R2 but not locally Lipschitz continuous around x∗. Note
that x∗ is a local minimizer of f over X. However, x∗ is not a local minimizer of Pα for any α > 0.
Evaluation of Pα at xk := ( 1

k2 , 0), k ∈ N, for example yields

Pα(xk) =
1
k

�
−1 + α

1
k

�
,

which eventually becomes negative for all α > 0. Hence, x∗ with Pα(x∗) = 0 is not a local
minimizer of Pα for any α > 0 or, equivalently, Pα is not exact in x∗. �

95



6. Enhanced Fritz John Conditions

Theorem 6.17 is particularly interesting, because it also works for nonstrict local minima x∗.
A similar exact penalty result based on pseudonormality can be found in [17, Proposition 4.2],
however, that result requires x∗ to be a strict local minimum, and it is stated in [17, Example 7.7]
that this assumption might be crucial. In our case, we do not need a strict local minimum to
guarantee exactness. We stress, however, that our technique of proof is also completely different
from the one in [17], and it is not clear whether this technique can also be used to improve the
result from [17].

Remark 6.19 Under the stronger MPCC generalized MFCQ condition, exactness of Pα can
also be proven using a result from [80]: If x∗ is a local minimum of (1.1), we know that
(x∗,G(x∗),H(x∗)) is a local minimizer of

min
(x,y,z)

f (x) subject to g(x) ≤ 0, h(x) = 0,G(x) − y = 0, H(x) − z = 0,

(y, z) ∈ Cq,

where C denotes the set from (6.2) (recall that we have used this reformulation before in the
proof of Theorem 6.4). Now suppose that MPCC generalized MFCQ holds in x∗. According to
[80, Theorem 3.5], one can then find a µ > 0 such that (x∗,G(x∗),H(x∗)) is a local minimizer of
the partially penalized problem

min
(x,y,z)

f (x) + µ



m�

i=1

max{0, gi(x)} +
p�

i=1

|hi(x)| +
q�

i=1

|Gi(x) − yi| +
q�

i=1

|Hi(z) − zi|



subject to (y, z) ∈ Cq,

too. By [24, Proposition 2.4.3], there exists an L > 0 such that (x∗,G(x∗),H(x∗)) is a local
minimizer of the now completely penalized and thus unconstrained problem

min
(x,y,z)

f (x)+ µ



m�

i=1

max{0, gi(x)} +
p�

i=1

|hi(x)| +
q�

i=1

|Gi(x) − yi| +
q�

i=1

|Hi(z) − zi|

+ L

q�

i=1

distC((yi, zi)).

If we restrict the feasible area to those (x, y, z), where G(x) − y = 0 and H(x) − z = 0, we obtain
that x∗ is a local minimizer of

min
x

f (x) + µ



m�

i=1

max{0, gi(x)} +
p�

i=1

|hi(x)|+

 + L

q�

i=1

distC
�
Gi(x),Hi(x)

�
.

Thus, we have proven that Pα is exact with α = max{µ, L}.

We recall that (6.8) gives the explicit representation of the penalty function used within this
section. Another popular penalty function that is typically taken by the authors in the MPCC-
setting, see [106, 36], takes into account the equivalence

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0⇐⇒ min{Gi(x),Hi(x)} = 0,
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so that it is a natural idea to add the absolute value of the min-function to our penalty term,
resulting into the mapping

P̃α(x) := f (x) + α



m�

i=1

max{0, gi(x)} +
p�

i=1

|hi(x)| +
q�

i=1

���min{Gi(x),Hi(x)}
���

 . (6.14)

As a consequence of our previous results, we may also obtain an exact penalty result for P̃α. To
this end, let us reconsider the original penalty function from (6.6). Using the l1-norm, we then
obtain the expression (6.7) for this distance-based penalty function. Using once again (for the
sake of consistency) the l1-norm to calculate the distances for all the terms that occur in (6.7) (cf.
Lemma 6.13), we end up with the representation from (6.8). However, we could alternatively
calculate the distances for each term using the l∞-norm. Then it is not difficult to see that the last
expression in Lemma 6.13 becomes

distC((a, b)) =
���min{a, b}

���,

i.e., also this mapping may be viewed as a distance function. Taking into account that all norms
are equivalent in finite dimensions, we immediately see that P̃α is also an exact penalty function
under the assumption of Theorem 6.17. This proves the following result.

Corollary 6.20 Let x∗ be a local minimum of (1.1) such that MPCC generalized pseudonor-
mality holds in x∗. Then the penalty function P̃α(x) from (6.14) is exact in x∗.

We would like to close this section with a few words on the constraint qualification we used to
ensure exactness of the penalty function. The constraint qualification most commonly used in
the context of exact penalty functions is MPCC-MFCQ or MPCC generalized MFCQ, see for
example [106, 80]. The reason for this is as follows: According to our proof of Theorem 6.17,
the existence of local error bounds, i.e. the existence of constants δ, c > 0 such that

distF−1(Λ)(x) ≤ cdistΛ(F(x)) ∀x ∈ B(x∗; δ),

is a sufficient condition for exactness. It was shown in [55, Corollary 1] that the existence of
local error bounds is equivalent to the calmness of the perturbation map

M(r) := {x ∈ Rn | F(x) + r ∈ Λ}

at (0, x∗), where calmness of a multifunction is defined as follows.

Definition 6.21 Let Φ : Rp ⇒ Rq be a multifunction with closed graph and (u, v) ∈ gph(Φ).
Then we say that Φ is calm at (u, v) if there are neighborhoods U of u,V of v, and a modulus
L ≥ 0 such that

Φ(u�) ∩ V ⊆ Φ(u) + L�u� − u�2B(0; 1) ∀u� ∈ U.
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Furthermore, it is well-known that the following condition

∇F(x∗)Tω = 0,
ω ∈ NΛ(F(x∗))

�
=⇒ ω = 0 (6.15)

guarantees calmness of M in (0, x∗), cf. for example [42, Proposition 3.8], and thus exactness of
Pα. In the next result, we want to relate this condition to one of our constraint qualifications.

Lemma 6.22 Condition (6.15) is equivalent to MPCC generalized MFCQ.

Proof. Due to [103, Proposition 6.41], we may rewrite the limiting normal cone as

NΛ(F(x∗)) =
m
�

i=1

N(−∞,0](gi(x∗)) ×
p
�

i=1

N{0}(hi(x∗)) ×
q
�

i=1

NC(Gi(x∗),Hi(x∗)).

Hence, condition (6.15) is equivalent to

�m
i=1 λi∇gi(x∗) +

�p
i=1 µi∇hi(x∗) −�q

i=1
�
γi∇Gi(x∗) + νi∇Hi(x∗)

�
= 0,

λi ∈ N(−∞,0](gi(x∗)) ∀i = 1, . . . ,m,
µi ∈ N{0}(hi(x∗)) ∀i = 1, . . . , p,
(γi, νi) ∈ −NC(Gi(x∗),Hi(x∗)) ∀i = 1, . . . , q,



=⇒ (λ, µ, γ, ν) = 0,

which is exactly MPCC generalized MFCQ. �

Because MPCC-MFCQ implies MPCC generalized MFCQ, MPCC-MFCQ also is a sufficient
condition for exactness of Pα. However, recall from Examples 6.7 and 6.8 that MPCC-MFCQ
is strictly stronger than MPCC generalized pseudonormality. Thus, MPCC-MFCQ is a sufficient
condition for exactness of Pα, but it is by far too restrictive.

6.5. New Constraint Qualifications revisited

In this section, we come back to the question how our new constraint qualifications fit into the
system of existing ones. It is well-known that ACQ is not strong enough to guarantee exactness,
cf. [17, Example 7.3]. Thus, it is not surprising that MPCC generalized pseudonormality is
strictly stronger than MPCC-ACQ. To see this, we first need a technical result concerning the
tangent cone. The proof of this result is rather straightforward, nevertheless, we stress that it is
not a priori clear that this result holds since the set C is not regular in the sense of [103], see, in
particular, Proposition 6.41 and the subsequent discussion in that reference.

Lemma 6.23 Let x∗ be feasible for (1.1). Then the tangent cone is given by

TΛ(F(x∗)) =
m
�

i=1

T(−∞,0](gi(x∗)) ×
p
�

i=1

T{0}(hi(x∗)) ×
q
�

i=1

TC(Gi(x∗),Hi(x∗)).
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Proof. The inclusion “⊆” follows directly from [103, Proposition 6.41]. To prove the inclu-
sion “⊇” consider arbitrary elements dgi ∈ T(−∞,0](gi(x∗)), dhi ∈ T{0}(hi(x∗)) and (dGi , dHi) ∈
TC(Gi(x∗),Hi(x∗)), and define

d := (dgi,i=1,...,m, dhi,i=1,...,p, (dGi , dHi)i=1,...,q).

According to the definition of the tangent cone, there are sequences

dk
gi
→ dgi , t

k
gi
↓ 0 with gi(x∗) + tk

gi
dk

gi
≤ 0,

dk
hi
→ dhi , t

k
hi
↓ 0 with hi(x∗) + tk

hi
dk

hi
= 0,

(dk
Gi
, dk

Hi
)→ (dGi , dHi), t

k
GHi
↓ 0 with 0 ≤ Gi(x∗) + tk

GHi
dk

Gi
⊥ Hi(x∗) + tk

GHi
dk

Hi
≥ 0

for all k ∈ N. Consequently, we have

dk := (dk
gi,i=1,...,m, d

k
hi,i=1,...,p, (d

k
Gi
, dk

Hi
)i=1,...,q)→ d.

To prove d ∈ TΛ(F(x∗)) it suffices to find a sequence tk ↓ 0 such that F(x∗) + tkdk ∈ Λ for all
k ∈ N. Define

tk := min{tk
gi,i=1,...,m, t

k
GHi,i=1,...,q}

for all k ∈ N. Then we know tk ↓ 0 and it remains to show F(x∗) + tkdk ∈ Λ for all k ∈ N. Let
k ∈ N be arbitrary but fixed and recall that x∗ is feasible for (1.1). For all i = 1, . . . ,m two cases
can occur: If dk

gi
< 0, we have

gi(x∗) + tkdk
gi
< gi(x∗) ≤ 0,

and if dk
gi
≥ 0, we have

gi(x∗) + tkdk
gi
≤ gi(x∗) + tk

gi
dk

gi
≤ 0.

For all i = 1, . . . , p we have dk
hi
= 0 because of hi(x∗) = 0 and tk

hi
> 0. Consequently, we obtain

hi(x∗) + tkdk
hi
= 0.

Now consider an i ∈ I+0(x∗). Because of dk
Gi
→ dGi and tk

GHi
↓ 0 this implies

Gi(x∗) + tk
GHi

dk
Gi
> 0

for all k ∈ N sufficiently large and, consequently, dk
Hi
= 0 for these k. This implies

0 ≤ Gi(x∗) + tkdk
Gi
⊥ Hi(x∗) + tkdk

Hi
≥ 0

for all k ∈ N sufficiently large. By symmetry, we also obtain

0 ≤ Gi(x∗) + tkdk
Gi
⊥ Hi(x∗) + tkdk

Hi
≥ 0
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for all i ∈ I0+(x∗). In remains to consider i ∈ I00(x∗). In this case, we know

0 ≤ dk
Gi
⊥ dk

Hi
≥ 0,

which directly implies
0 ≤ Gi(x∗) + tkdk

Gi
⊥ Hi(x∗) + tkdk

Hi
≥ 0

for all k ∈ N. Together, this proves F(x∗) + tkdk ∈ Λ for all k ∈ N sufficiently large. �

With this lemma, we can prove that MPCC generalized pseudonormality implies MPCC-ACQ.

Lemma 6.24 Let x∗ be feasible for (1.1) such that MPCC generalized pseudonormality holds in
x∗. Then MPCC-ACQ also holds in x∗.

Proof. As we have proven in Lemma 6.15 and Lemma 6.16, MPCC generalized pseudonormality
implies the existence of local error bounds. According to [55, Corollary 1], the existence of local
error bounds is equivalent to calmness of the perturbation map

M(r) := {x ∈ Rn | F(x) + r ∈ Λ}

in (0, x∗). Thus, we can apply Proposition 1 from the same paper and obtain TX(x∗) = L(x∗),
where L(x∗) is defined as

L(x∗) := {d ∈ Rn | ∇F(x∗)T d ∈ TΛ(F(x∗))}.

Because of Lemma 6.23, we may write TΛ(F(x∗)) as

TΛ(F(x∗)) =
m
�

i=1

T(−∞,0](gi(x∗)) ×
p
�

i=1

T{0}(hi(x∗)) ×
q
�

i=1

TC(Gi(x∗),Hi(x∗)).

Now, we can apply this knowledge to L(x∗) and obtain

L(x∗) = {d ∈ Rn | ∇gi(x∗)T d ∈ T(−∞,0](gi(x∗)) ∀i = 1, . . . ,m,
∇hi(x∗)T d ∈ T{0}(hi(x∗)) ∀i = 1, . . . , p,
(∇Gi(x∗)T d,∇Hi(x∗)T d) ∈ TC(Gi(x∗),Hi(x∗)) ∀i = 1, . . . , q}

= {d ∈ Rn | ∇gi(x∗)T d ≤ 0 ∀i ∈ Ig(x∗),
∇hi(x∗)T d = 0 ∀i = 1, . . . , p,
∇Gi(x∗)T d = 0 ∀i ∈ I0+(x∗),
∇Hi(x∗)T d = 0 ∀i ∈ I+0(x∗),
∇Gi(x∗)T d ≥ 0 ∀i ∈ I00(x∗),
∇Hi(x∗)T d ≥ 0 ∀i ∈ I00(x∗),
(∇Gi(x∗)T d)(∇Hi(x∗)T d) = 0 ∀i ∈ I00(x∗)}

= LMPCC(x∗),

where LMPCC(x∗) denotes the MPCC-linearized cone from the definition of MPCC-ACQ. Conse-
quently, we have TX(x∗) = L(x∗) = LMPCC(x∗), which is exactly MPCC-ACQ. �
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Conversely, the following example based on [17, Example 7.1] shows that MPCC-ACQ does not
even imply MPCC generalized quasinormality.

Example 6.25 Consider the two-dimensional MPCC

min
x1,x2

f (x) subject to h(x) = x2 = 0,

G(x) = 1 − (x1 − 1)2 − x2
2 ≥ 0,

H(x) = 1 − (x1 + 1)2 − x2
2 ≥ 0,

G(x)H(x) = 0.

The only feasible point here is x∗ = (0, 0)T and the active gradients are

∇h(x∗) =
�
0
1

�
,∇G(x∗) =

�
2
0

�
,∇H(x∗) =

�−2
0

�
.

Consequently TX(x∗) = {0} = LMPCC(x∗), i.e., MPCC-ACQ is satisfied in x∗. On the other hand,
if we choose µ = 0 and γ = ν = 1, it is easy to see that MPCC generalized quasinormality is
violated since there are sequences xk → x∗ with both G(xk) < 0 and H(xk) < 0. �

We have seen that calmness of the multifunction M in (0, x∗) implies both MPCC-ACQ and ex-
actness of Pα if x∗ is a local minimum of (1.1). The following example, which can be found in
[17, Example 7.3] illustrates, that MPCC-ACQ does not imply exactness. Note that this exam-
ple is a standard nonlinear program, however our MPCC constraint qualifications reduce to the
standard ones in absence of complementarity conditions.

Example 6.26 Consider the two-dimensional NLP

min
x1,x2

f (x) subject to g1(x) = x2 ≤ 0,

g2(x) = x6
1 + x3

2 ≤ 0.

One readily verifies that in x∗ = (0, 0)T the equality TX(x∗) = R×R− = LX(x∗), hence ACQ holds
in x∗. If, however, we consider the function f (x) = −x4

1 − x2, which has a strict local minimum
in x∗, the corresponding penalty function

Pα(x) = f (x) + α(max{0, g1(x)} +max{0, g2(x)})

does not have a unconstrained local minimum in x∗ for any α > 0. To see this, one can for
example approach x∗ with a sequence (x1, 0), where Pα takes the form

Pα(x1, 0) = −x4
1 + αx6

1

and thus has a local maximum in x∗. Therefore, ACQ does not imply exactness of Pα. �

Note that this example also allows the conclusion that MPCC-ACQ cannot imply calmness of M.
We would have liked to give another example illustrating that exactness does not imply MPCC-
ACQ. However, the respective example in [17, Example 7.2] seems to be wrong and we were
unfortunately not able to come up with a correct one.
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The following example, which can be found in [55, Example 2] illustrates that calmness of
M in (0, x∗) does not imply MPCC generalized pseudonormality, in fact it does not even imply
MPCC generalized quasinormality.

Example 6.27 Consider the one-dimensional MPCC

min
x

f (x) subject to G(x) = x ≥ 0,

H(x) =




−x2 if x < 0,
0 if x ∈ [0, 1],
(x − 1)2 if x > 1

≥ 0,

G(x)H(x) = 0.

Note that, although H is piecewise defined, it is continuously differentiable. The feasible set
here is X = [0, 1] and we consider the point x∗ = 0, where both constraints are active. The active
gradients here are

∇G(x∗) = 1,∇H(x∗) = 0.

Consequently, MPCC generalized quasinormality does not hold in x∗ since we can for example
choose the multipliers (γ, ν) = (0, 1) � 0 and the sequence xk := −1

k ↑ x∗ with −νG(xk) = 1
k > 0

for all k ∈ N. On the other hand, it was proven in [55] that the corresponding map M is calm in
(0, x∗). �

All in all, we have seen in this chapter that the relations in Figure 6.3 hold and have provided
examples illustrating that the relations in Figure 6.4 do not hold.
Two open questions remain however: Is MPCC generalized quasinormality strong enough to
imply MPCC ACQ? This is true for standard nonlinear optimization problems and problems
with an additional abstract constraint set which is regular, i.e., where the limiting and the Fréchet
normal cone coincide, and was proven in [18]. Unfortunately, we were neither able to prove
this implication nor to provide a counterexample for MPCCs, where the constraint set defined
by the complementarity conditions is not regular. The second question is also connected to
MPCC generalized quasinormality. We know that MPCC generalized pseudonormality implies
calmness of the map M, but we do not know if this also holds for the weaker MPCC generalized
quasinormality.

6.6. Concluding Remarks

In this chapter, we derived an enhanced version of the Fritz-John conditions for MPCCs with
additional conditions for the case where the multiplier corresponding to the gradient of the ob-
jective function is zero. These conditions led to the introduction of two new constraint qualifi-
cations. One of these was used to obtain a very simple proof for local minima of MPCCs to be
M-stationary under most of the common MPCC constraint qualifications such as MPCC-LICQ,
MPCC-MFCQ, and MPCC-CRCQ whereas all previous proofs for this result rely on the limiting
calculus by Mordukhovich. Another one of these new MPCC constraint qualifications could be
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MPCC-LICQ

MPCC-MFCQMPCC-CRCQ

MPCC generalized
MFCQ

MPCC generalized
pseudonormality

MPCC generalized
quasinormality

calmness of M
in (0, x∗)

exactness
of Pα

MPCC-ACQ

MPCC-CPLD

MPCC-GCQ

Figure 6.3.: Relations between MPCC-CQs

utilized to prove an exact penalty result for a penalty function based on the l1-norm, which is
interesting since this constraint qualification is significantly weaker than the assumptions usu-
ally required in this context. Additionally, this result also implies exactness of a more common
MPCC penalty function under the same weak condition.

We also introduced an MPCC analogue of CPLD which will prove to be a very useful con-
straint qualification in the context of relaxation methods for the numerical solution of MPCCs.
We will see in the numerical part that MPCC-CPLD can be used to guarantee M-stationarity of
limit points of a new relaxation method whereas up to now the constraint qualification needed
for such results was MPCC-LICQ. Additionally, we provided numerous relations and counter
examples illustrating how the new constraint qualifications MPCC CPLD, MPCC generalized
pseudonormality, and MPCC generalized quasinormality fit into the existing system of MPCC
constraint qualifications.
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MPCC-LICQ MPCC-MFCQMPCC-CRCQ

MPCC generalized
MFCQ

MPCC generalized
pseudonormality

MPCC generalized
quasinormality

calmness of M
in (0, x∗)

exactness
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/

Figure 6.4.: Counter examples
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Part III.

Numerical Methods

105





As we have seen in the last part, standard optimization theory is usually not working for
MPCCs. Consequently, we have to expect trouble when applying numerical methods for standard
NLPs to MPCCs since certain key assumptions from the convergence theory, like for example
LICQ in the solution, are not satisfied. Another problem is that standard solvers usually converge
to KKT points whereas we have seen that even simple MPCCs may have minima which are M-
stationary but not S-stationary. Hence, even if the MPCC has a solution, a standard solver may
not find it. For this reason, several approaches to solve MPCCs have been developed over the
last years. We will give a brief overview of these methods and then focus for the rest of this part
on relaxation methods. Similar and partly more extensive overviews of existing approaches to
solve MPCCs numerically can be found in [36, 119, 115].

The idea behind a relaxation or regularization method is to find a suitable way to enlarge the
feasible set of the MPCC such that the problem of linearly dependent gradients and the kink in
the origin are removed and then iteratively solve the relaxed nonlinear programs while driving the
relaxation down to zero. To us, this approach is very promising since by now there is a number of
very effective and well tested solvers for NLPs that have been improved over the years to a level
we could not obtain if we wrote an MPCC solver from scratch. A collection of some of these
can be found on the NEOS server [2]. Different relaxations with different theoretical properties
of the feasible set were suggested by [105, 79, 29, 67, 109, 77]. In this part of the thesis, we will
improve the theoretical results known for four of these methods, introduce a new one with strong
convergence properties and provide a numerical comparison of the four existing methods and the
new one. We discarded the approach described in [29] from our analysis since the central idea in
this paper is different. Whereas in all other approaches, there is one relaxation parameter for all
complementarity constraints, the authors of [29] suggest a two-sided relaxation of the feasible set
combined with some kind of active set technique to individually update the relaxation parameter
for each constraint. Similarly, the approach in [77] is not discussed any further since it is based
on different ideas than the remaining four methods.

Another approach which is closely related to the relaxation idea are the so-called smoothing
methods, where the complementarity conditions are reformulated using an NPC-function such as
the minimum function or the Fischer-Burmeister function which is then replaced by its smoothed
counterpart and again a sequence of nonlinear problems with decreasing smoothing parameter
is solved. This is done for example in [34, 66, 127]. These methods differ in the used NCP
function, the underlying NLP solver and the technique for handling the smoothing parameter.

An intuitive idea to deal with the complicated complementarity conditions is to move them
from the constraints to the objective function via a suitable penalty term as it was done in [83, 82,
78, 106, 62]. The differences here lie in the choice of the penalty term and the suggested way how
to solve the penalized problem. In [106] for example, it is suggested to use a modification of the
S l1QP method by Fletcher [43] where in the quadratic subproblems all linearized constraints are
added to the objective function using an appropriate l1 penalty term. Yet another idea comes from
the authors of [80] who suggest to introduce slack variables for the complementarity constraints,
replace all constraints but the now simplified complementarity conditions by a penalty term and
then smooth the resulting penalty function. Compared to the other methods mentioned so far,
this approach has the disadvantage that it is necessary to solve a sequence of MPCCs (with very
simple complementarity constraints however).
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Wherever there are penalty methods, there are also barrier methods and these combined with
the relaxation idea give rise to interior point methods as the ones proposed in [81, 101]. Here,
the complementarity constraints are relaxed and then all inequalities replaced by a slack vari-
able for which a barrier term is added to the objective function. Another interior point method
which is rather a combination of the penalty and the barrier idea can be found in [75], where the
complementarity constraints are not relaxed but added to the objective as a penalty term.

Although we mentioned that the direct application of standard solvers to MPCCs is not very
promising, we have to admit that there are some state of the art NLP solvers that work quite well
when applied to MPCCs. In [45] for example it is suggested to apply a standard SQP method to
the MPCC (1.1) interpreted as standard nonlinear program and in [44] corresponding numerical
results are presented. Similarly, it is suggested to replace the complementarity constraints by a
nonsmooth NPC function and then again apply a standard SQP method in [74]. We wanted to
focus on those numerical approaches relevant in the context of this thesis, but of course there are
much more than those mentioned above. For example there is the implicit approach from [95]
and special SQP methods for MPCCs can be found in [50, 126]. In [7, 6, 8] an elastic mode
formulation is proposed and [110, 63] suggest a lifting approach.

The numerical part of this thesis is structured as follows: In Chapter 7, we improve the conver-
gence results of four existing relaxation methods and analyze what kind of constraint qualifica-
tion the relaxed problems inherit from the MPCC. In Chapter 8, we introduce a new relaxation for
MPCCs and verify that this relaxation has strong convergence properties under relatively weak
assumptions. Having introduced all these methods, we collect the theoretical results and also
give a numerical comparison based on the MacMPEC test suite in Chapter 9. Finally, we return
to the effort maximization problem from Part I in Chapter 10 and solve it numerically using the
new relaxation method from Chapter 8.
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Relaxation Methods

The basic idea of all relaxation schemes is to get rid of the complicated complementarity con-
straints

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

by replacing these conditions in a suitable way such that the corresponding relaxed problem has
nicer properties. The relaxed problem depends on a parameter t > 0 which has to be driven to
zero in order to reobtain the underlying MPCC.

For all relaxation schemes discussed here (we will discuss them in chronological order of their
date of publication), suitable convergence results are already known. Typically, the most ba-
sic convergence results are as follows: Given a sequence tk ↓ 0 and a corresponding sequence
of stationary points xk of the relaxed problems R(tk) such that xk converges to x∗ and such that
a suitable MPCC constraint qualification holds at x∗, then x∗ is a C-stationary point (for three
of the methods to be discussed below) or an M-stationary point (for the remaining two meth-
ods). Furthermore, under additional conditions, one can verify that the limit point x∗ has further
properties, like being M- or even S-stationary.

In our subsequent analysis, we try to improve only the most basic convergence results by relax-
ing the corresponding MPCC constraint qualifications. The additional results which guarantee
stronger properties of the limit point x∗ are not discussed here since a corresponding general-
ization of the existing results are usually straightforward. However, we also show under which
conditions the relaxed problems actually have a stationary point. In some cases, our results
generalize existing ones, in other cases, we prove completely new results.

The following technical lemma will be used in some of the subsequent convergence results. It
can be found in [109, Lemma A.1] but we will present a different, more direct proof here.

Lemma 7.1 Let {ai | i = 1, . . . ,m}, {bi | i = 1, . . . , p} and c be vectors in Rn and α ∈ Rm
+ , β ∈ Rp

multipliers such that
m�

i=1

αiai +

p�

i=1

βibi = c.

Then there exist multipliers α∗ ∈ Rm
+ and β∗ with supp(α∗) ⊆ supp(α), supp(β∗) ⊆ supp(β) and

m�

i=1

α∗i ai +

p�

i=1

β∗i bi = c
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such that the vectors
{ai | i ∈ supp(α∗)} ∪ {bi | i ∈ supp(β∗)}

are linearly independent.

Proof. If the vectors
{ai | i ∈ supp(α)} ∪ {bi | i ∈ supp(β)}

are already linearly independent, we can choose α∗ = α, β∗ = β and are done. Otherwise, there
are scalars δi, i ∈ supp(α) and τi, i ∈ supp(β) not all equal to zero such that

�

i∈supp(α)

δiai +
�

i∈supp(β)

τibi = 0.

If all δi are equal to zero, we can choose an arbitrary i∗ ∈ supp(τ) ⊆ supp(β) and define

α̃ := α, and β̃ :=



βi − βi∗

τi∗
τi if i ∈ supp(β),

0 else.

Otherwise, we can assume without loss of generality that there is at least one αi > 0 and choose
i∗ as an index with

αi∗

δi∗
= min

�
αi

δi

����� i ∈ supp(α), δi > 0
�
.

In this case, we define the new multipliers as

α̃ :=



αi − αi∗

δi∗
δi if i ∈ supp(α),

0 else,
and β̃ :=



βi − αi∗

δi∗
τi if i ∈ supp(β),

0 else.

In both cases we have α̃ ≥ 0 and supp(α̃, β̃) � supp(α, β). Additionally, these multipliers still
have the property that

m�

i=1

α̃iai +

p�

i=1

β̃ibi = c.

If the vectors
{ai | i ∈ supp(α̃)} ∪ {bi | i ∈ supp(β̃)}

are linearly independent, we can finish here. Otherwise, we have to repeat the procedure above.
Since the support of (α̃, β̃) decreases each time, after a finite number of iteration either the vectors
corresponding to nonvanishing multipliers are linearly independent or supp(α̃, β̃) = ∅, in which
case the assertion is trivially satisfied. �

Additionally, we need the following lemma that facilitates the calculation of polar cones to lin-
earized cones. It can be found, for example, in [13, Theorem 3.2.2].

Lemma 7.2 Consider the cones

C1 := {d ∈ Rn | aT
i d ≤ 0, ∀i = 1, . . . ,m, bT

i d = 0 ∀i = 1, . . . , p},

C2 := {s ∈ Rn | s =
m�

i=1

αiai +

p�

i=1

βibi, αi ≥ 0 ∀i = 1, . . . ,m}.

Then C2 = C◦1 and C1 = C◦2.
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7.1. The Global Relaxation by Scholtes

7.1. The Global Relaxation by Scholtes

Probably the first attempt to use a relaxation idea for solving MPCCs goes back to Scholtes [105].
It is closely related to the smoothing-type method by Facchinei et al. [34]. Some local properties
of Scholtes’ approach around an S-stationary point can also be found in Ralph and Wright [102].

The basic idea of the relaxation scheme by Scholtes is to replace the MPCC by a sequence of
parametrized NLPs of the form

min f (x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m,

hj(x) = 0 ∀ j = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , q,
Hi(x) ≥ 0 ∀i = 1, . . . , q,
Gi(x)Hi(x) ≤ t ∀i = 1, . . . , q.

see Figure 7.1 for a geometric illustration.

0 t
Gi

t

Hi

Figure 7.1.: Geometric interpretation of the relaxation method by Scholtes

We denote the relaxed problem by RS (t) and its feasible set by XS (t). Since, geometrically, this is
a global relaxation of the complementarity conditions, we call this approach the global relaxation
method.

7.1.1. Convergence to C-Stationary Points

For the convergence analysis, some index sets are needed:

Ig(x) := {i | gi(x) = 0},
IG(x) := {i | Gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IGH(x; t) := {i | Hi(x)Gi(x) = t}.

The following is the most basic convergence result for the global relaxation method.
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7. Improved Results for Existing Relaxation Methods

Theorem 7.3 Let {tk} ↓ 0 and let xk be a stationary point of RS (tk) with xk → x∗ such that
MPCC-MFCQ holds at x∗. Then x∗ is a C-stationary point of (1.1).

Proof. Since xk is a stationary point of RS (tk) there exist multipliers (λk, µk, γk, νk, δk) such that

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

l�

i=1

γk
i∇Gi(xk)

−
q�

i=1

νk
i∇Hi(xk) +

q�

i=1

δk
i [Hi(xk)∇Gi(xk) +Gi(xk)∇Hi(xk)]

(7.1)

with

λk ≥ 0 and supp(λk) ⊆ Ig(xk),
γk ≥ 0 and supp(γk) ⊆ IG(xk),
νk ≥ 0 and supp(νk) ⊆ IH(xk),
δk ≥ 0 and supp(δk) ⊆ IGH(xk; tk)

for all k ∈ N. This implies

supp(γk) ∩ supp(δk) = ∅, supp(νk) ∩ supp(δk) = ∅ (7.2)

for all k ∈ N. Moreover, for all k ∈ N sufficiently large, we have Ig(xk) ⊆ Ig(x∗), IG(xk) ⊆
I00(x∗) ∪ I0+(x∗), and IH(xk) ⊆ I00(x∗) ∪ I+0(x∗).

Our next step is to define suitable new multipliers

γ̃k
i =




γk
i , if i ∈ supp(γk),
−δk

i Hi(xk), if i ∈ supp(δk) \ I+0(x∗),
0, else,

and

ν̃k
i =




νk
i , if i ∈ supp(νk),
−δk

i Gi(xk), if i ∈ supp(δk) \ I0+(x∗),
0, else.

With these multipliers, we can rewrite (7.1) as

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

q�

i=1

γ̃k
i∇Gi(xk) −

q�

i=1

ν̃k
i∇Hi(xk)

+
�

i∈I+0(x∗)

δk
i Hi(xk)∇Gi(xk) +

�

i∈I0+(x∗)

δk
i Gi(xk)∇Hi(xk).

If we assume that the sequence {(λk, µk, γ̃k, ν̃k, δk
I+0(x∗)∪I0+(x∗))} was unbounded, then we can find a

subsequence K such that the normed sequence converges:

(λk, µk, γ̃k, ν̃k, δk
I+0∪I0+

)

�(λk, µk, γ̃k, ν̃k, δk
I+0∪I0+

)� →K (λ, µ, γ̃, ν̃, δI+0∪I0+) � 0.
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The equation above then yields

0 =

m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γ̃i∇Gi(x∗) −
q�

i=1

ν̃i∇Hi(x∗)

where λ ≥ 0 and for all k ∈ K sufficiently large

supp(λ) ⊆ Ig(xk) ⊆ Ig(x∗),
supp(γ̃) ⊆ IG(xk) ∪ IGH(xk; tk) \ I+0(x∗) ⊆ I00(x∗) ∪ I0+(x∗),
supp(ν̃) ⊆ IH(xk) ∪ IGH(xk; tk) \ I0+(x∗) ⊆ I00(x∗) ∪ I+0(x∗).

Additionally, (λ, µ, γ̃, ν̃) � 0 has to hold. Otherwise, δi > 0 would have to hold for at least one
i ∈ I+0(x∗) ∪ I0+(x∗). Assume without loss of generality δi > 0 for an i ∈ I+0(x∗). This implies
δk

i > 0 for all k sufficiently large and consequently ν̃k
i = −δk

i Gi(xk) for those k. Because of
i ∈ I+0(x∗), this yields ν̃i = limk∈K −δk

i Gi(xk) < 0, a contradiction to our assumption ν̃ = 0.
However, due to Lemma 5.7 (λ, µ, γ̃, ν̃) � 0 is a contradiction to the prerequisite that MPCC-

MFCQ holds in x∗. Thus, we may assume without loss of generality that the sequence is conver-
gent to some vector (λ∗, µ∗, γ̃∗, ν̃∗, δ∗I+0(x∗)∪I0+(x∗)). It is easy to see that λ∗ ≥ 0 and supp(λ∗) ⊆ Ig(x∗).
According to the definition of γ̃k and ν̃k, we have

supp(γ̃∗) ⊆ I00(x∗) ∪ I0+(x∗), supp(ν̃∗) ⊆ I00(x∗) ∪ I+0(x∗).

The continuous differentiability of f , g, h,G,H then implies

0 = ∇ f (x∗) +
m�

i=1

λ∗i∇gi(x∗) +
p�

i=1

µ∗i∇hi(x∗) −
q�

i=1

γ∗i∇Gi(x∗) −
q�

i=1

ν∗i∇Hi(x∗).

To prove the C-stationarity of x∗, it remains to show that γ∗i ν
∗
i ≥ 0 for all i ∈ I00(x∗). Assume

that there is an i ∈ I00(x∗) with γ∗i < 0 and ν∗i > 0 or with ν∗i > 0 and γ∗i < 0. We consider only
the first case, the second one can be treated similarly. Because of γk

i ≥ 0, the condition γ∗i < 0
implies i ∈ supp(δk) for all k ∈ N sufficiently large. This implies i � supp(νk) in view of (7.2)
and, therefore, ν∗i ≤ 0 in contradiction to our assumption. �

Note that the corresponding result in [105] assumes MPCC-LICQ and shows that the sequence
of multipliers corresponding to the stationary points xk converges, whereas here we assume the
weaker MPCC-MFCQ which, obviously, does not guarantee convergence of the corresponding
sequence of multipliers, but the proof shows that one can extract a sequence of multipliers which
stays bounded and is, therefore, convergent at least on a subsequence.

7.1.2. Existence of Multipliers

The assumption of xk being a stationary point of the relaxed problem RS (tk) is based on the
existence of multipliers. A priori, it is not clear that these multipliers really exist. The following
result essentially guarantees the existence of these multipliers by showing that MPCC-MFCQ
at a feasible point x∗ of the original MPCC implies that standard MFCQ holds for the relaxed
problems RS (t), at least locally around x∗.
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Theorem 7.4 Let x∗ be feasible for (1.1) such that MPCC-MFCQ is satisfied at x∗. Then there
exists a neighborhood U(x∗) of x∗ and t̄ > 0 such that the following holds for all t ∈ (0, t̄]: If
x ∈ U(x∗) is feasible for RS (t), then standard MFCQ for RS (t) holds in x.

Proof. First note that, by continuity, for all x ∈ XS (t) sufficiently close to x∗, we have

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),
IH(x) ⊆ I00(x∗) ∪ I+0(x∗),

IGH(x) ∩ IG(x) = ∅,
IGH(x) ∩ IH(x) = ∅.

(7.3)

Since MPCC-MFCQ holds, the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪
�{∇hi(x∗) | i = 1, . . . , p} ∪ {∇Gi(x∗) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x∗) | i ∈ I00(x∗) ∪ I+0(x∗)}�

are positive-linearly independent by Lemma 5.7. In view of [99, Prop. 2.2], this implies that the
set of gradients

{∇gi(x) | i ∈ Ig(x∗)} ∪
�{∇hi(x) | i = 1, . . . , p} ∪ {∇Gi(x) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x) | i ∈ I00(x∗) ∪ I+0(x∗)}�

is also positive-linearly independent for all x ∈ XS (t) sufficiently close to x∗. Taking into account
that

IG(x) ∪ �IGH(x) ∩ I0+(x∗)
� ∪ �IGH(x) ∩ I00(x∗)

� ⊆ I00(x∗) ∪ I0+(x∗)

and
IH(x) ∪ �IGH(x) ∩ I+0(x∗)

� ∪ �IGH(x) ∩ I00(x∗)
� ⊆ I00(x∗) ∪ I+0(x∗)

for all x ∈ XS (t) sufficiently close to x∗ and using the fact that Gi(x) > 0,Hi(x) ≈ 0 for all
i ∈ I+0(x∗) as well as Gi(x) ≈ 0,Hi(x) > 0 for all i ∈ I0+(x∗) whenever x is close to x∗, it follows
that there is a neighborhood U(x∗) such that the set of vectors

∇gi(x) (i ∈ Ig(x)),
∇hi(x) (i = 1, . . . , p),
∇Gi(x) (i ∈ IG(x)),
∇Hi(x) (i ∈ IH(x)),

Gi(x)∇Hi(x) + Hi(x)∇Gi(x) (i ∈ IGH(x) ∩ I0+(x∗)),
Gi(x)∇Hi(x) +Gi(x)∇Hi(x) (i ∈ IGH(x) ∩ I+0(x∗)),

∇Gi(x) (i ∈ IGH(x) ∩ I00(x∗)),
∇Hi(x) (i ∈ IGH(x) ∩ I00(x∗))

(7.4)

is positive-linearly independent for all x ∈ XS (t) ∩ U(x∗).
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7.2. The Smooth Relaxation by Lin and Fukushima

We now claim that standard MFCQ holds for the relaxed program RS (t) whenever x ∈ XS (t)∩
U(x∗). To this end, take an arbitrary x ∈ XS (t) ∩ U(x∗). In view of Lemma 4.7, we have to show
that

0 =
�

i∈Ig(x)

λi∇gi(x) +
p�

i=1

µi∇hi(x) −
�

i∈IG(x)

αi∇Gi(x)

−
�

i∈IH(x)

βi∇Hi(x) +
�

i∈IGH(x)

γi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))
(7.5)

with µ ∈ Rp and λ,α, β, γ ≥ 0 holds only for the null vector. To see this, we rewrite (7.5) as

0 =
�

i∈Ig(x)

λi∇gi(x) +
p�

i=1

µi∇hi(x) −
�

i∈IG(x)

αi∇Gi(x) −
�

i∈IH(x)

βi∇Hi(x)

+
�

i∈IGH(x)∩(I0+(x∗)∪I+0)

γi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))

+
�

i∈I00(x∗)∩IGH(x)

(γiGi(x))∇Hi(x) +
�

i∈I00(x∗)∩IGH(x)

(γiHi(x))∇Gi(x).

(7.6)

Applying the positive-linear independence of the vectors from (7.4) to (7.6) and using (7.3), we
immediately obtain that all coefficients from (7.5) are zero, and this completes the proof. �

7.2. The Smooth Relaxation by Lin and Fukushima

The relaxation scheme proposed by Lin and Fukushima in [79] employs the following relaxation,
see Figure 7.2 for a geometric illustration of the relaxed feasible set:

min f (x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x)Hi(x) − t2 ≤ 0 ∀i = 1, . . . , q,
(Gi(x) + t)(Hi(x) + t) − t2 ≥ 0 ∀i = 1, . . . , q.

The relaxed problem is denoted by RLF(t) and its feasible set by XLF(t). Obviously, the idea
behind this relaxation is very close to the previous one by Scholtes, however with the advantage
of needing less constraints. We call it a smooth relaxation since the kink of the original feasible
set in the origin is completely removed in the relaxed feasible sets.

In order to investigate the modified relaxation scheme in-depth, we need to introduce some
further index sets. To this end, let x ∈ XLF(t) for t > 0. Then we put:

Ig(x) := {i | gi(x) = 0},
I+GH(x; t) := {i | Gi(x)Hi(x) − t2 = 0},
I−GH(x; t) := {i | (Gi(x) + t)(Hi(x) + t) − t2 = 0}.

To facilitate the following proofs, we want to take a closer look at these index sets. Let x be
feasible for RLF(t) and i ∈ I+GH(x; t). This implies Gi(x)Hi(x) = t2 > 0, i.e., Gi(x),Hi(x) � 0 and
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0 t
Gi

t

Hi

Figure 7.2.: Geometric interpretation of the relaxation method by Lin and Fukushima

both have the same sign. Now, assume that both values were negative. This would imply

Gi(x)Hi(x) + t(Gi(x) + Hi(x)) < t2

in contradiction to the feasibility of x. Thus, we have the following implication:

i ∈ I+GH(x; t) =⇒ Gi(x) > 0,Hi(x) > 0. (7.7)

Now consider the case where i ∈ I−GH(x; t). This implies (Gi(x) + t)(Hi(x) + t) = t2 > 0, so either
both values Gi(x) + t,Hi(x) + t are strictly greater or smaller than zero. Assume that both values
are negative. This implies Gi(x),Hi(x) < 0 and thus

Gi(x)Hi(x) − t2 = −t(Gi(x) + Hi(x)) > 0

in contradiction to the feasibility of x. Hence, we obtain the following implication:

i ∈ I−GH(x; t) =⇒ Gi(x) + t > 0,Hi(x) + t > 0. (7.8)

7.2.1. Convergence to C-Stationary points

In this section we state the main convergence result which can be viewed as a refinement of
[79, Theorem 3.3]. It shows that MPCC-MFCQ is sufficient to guarantee that a limit point of a
sequence of stationary points of the relaxed programs RLF(t) is C-stationary. The corresponding
result in [79] requires the stronger MPCC-LICQ condition in order to obtain this statement.

Theorem 7.5 Let {tk} ↓ 0 and let xk be a stationary point of RLF(t) with xk → x∗ such that
MPCC-MFCQ holds in x∗. Then x∗ is C-stationary.

Proof. Since xk is a stationary point of RLF(tk), we have multipliers λk, µk, δ+,k, δ−,k such that

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk)
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+

q�

i=1

δ+,ki [Hi(xk)∇Gi(xk) +Gi(xk)∇Hi(xk)]

−
q�

i=1

δ−,k[(Hi(xk) + tk)∇Gi(xk) + (Gi(xk) + tk)∇Hi(xk)]

with

λk ≥ 0 and supp(λk) ⊆ Ig(xk),
δ+,k ≥ 0 and supp(δ+,k) ⊆ I+GH(xk; tk),
δ−,k ≥ 0 and supp(δ−,k) ⊆ I−GH(xk; tk)

for all k ∈ N. This implies
supp(δ+,k) ∩ supp(δ−,k) = ∅ (7.9)

for all k ∈ N. Hence the following new multipliers are at least well-defined:

γk
i =




−δ+,ki Hi(xk), if i ∈ supp(δ+,k) \ I+0(x∗),
δ−,ki (Hi(xk) + tk) if i ∈ supp(δ−,k) \ I+0(x∗),
0, else

and

νk
i =




−δ+,ki Gi(xk), if i ∈ supp(δ+,k) \ I0+(x∗),
δ−,ki (Gi(xk) + tk) if i ∈ supp(δ−,k) \ I0+(x∗)
0, else.

With these multipliers, we can rewrite the equation from the beginning as

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

q�

i=1

γk
i∇Gi(xk)

−
q�

i=1

νk
i∇Hi(xk) +

�

i∈I+0(x∗)

δ+,ki Hi(xk)∇Gi(xk) +
�

i∈I0+(x∗)

δ+,ki Gi(xk)∇Hi(xk)

−
�

i∈I+0(x∗)

δ−,ki (Hi(xk) + tk)∇Gi(xk) −
�

i∈I0+(x∗)

δ−,ki (Gi(xk) + tk)∇Hi(xk).

If we assume that the sequence {(λk, µk, γk, νk, δ+,kI+0(x∗)∪I0+(x∗), δ
−,k
I+0(x∗)∪I0+(x∗))} is unbounded, then we

can find a subsequence K such that the normed sequence converges:

(λk, µk, γk, νk, δ+,kI+0(x∗)∪I0+(x∗), δ
−,k
I+0(x∗)∪I0+(x∗))

�(λk, µk, γk, νk, δ+,kI+0(x∗)∪I0+(x∗), δ
−,k
I+0(x∗)∪I0+(x∗))�

→K (λ, µ, γ, ν, δ+I+0(x∗)∪I0+(x∗), δ
−
I+0(x∗)∪I0+(x∗)) � 0.

The equation above then yields

0 =

m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗)
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where λ ≥ 0 and for all k ∈ K sufficiently large

supp(λ) ⊆ Ig(xk) ⊆ Ig(x∗),
supp(γ) ⊆ I00(x∗) ∪ I0+(x∗),
supp(ν) ⊆ I00(x∗) ∪ I+0(x∗).

Additionally, (λ, µ, γ, ν) � 0 has to hold. Otherwise, δ+i > 0 or δ−i > 0 would have to hold for at
least one index i ∈ I+0(x∗) ∪ I0+(x∗). Assume first, without loss of generality, that δ+i > 0 for an
i ∈ I+0(x∗). This implies δ+,ki > 0 for all k sufficiently large and consequently νk

i = −δ+,ki Gi(xk)
for those k. Because of i ∈ I+0(x∗), this yields νi = limk∈K −δ+,ki Gi(xk) < 0, a contradiction to
our assumption ν = 0. Now assume δ−i > 0 for an i ∈ I+0(x∗). This implies δ−,ki > 0 for all k
sufficiently large and thus νk

i = δ
−,k
i (Gi(xk) + tk) for those k. Because of i ∈ I+0(x∗), this yields

νi = limk∈K δ
−,k
i (Gi(xk) + tk) > 0, again a contradiction to our assumption ν = 0.

However, because of Lemma 5.7 (λ, µ, γ, ν) � 0 is a contradiction to the prerequisite that
MPCC-MFCQ holds in x∗. Thus, we may assume without loss of generality that the sequence is
convergent to some vector {(λ∗, µ∗, γ∗, ν∗, δ+,∗I+0(x∗)∪I0+(x∗), δ

−,∗
I+0(x∗)∪I0+(x∗))}. It is easy to see that λ∗ ≥ 0

and supp(λ∗) ⊆ Ig(x∗). According to the definition of γk and νk, we have

supp(γ∗) ⊆ I00(x∗) ∪ I0+(x∗), supp(ν∗) ⊆ I00(x∗) ∪ I+0(x∗).

The continuous differentiability of f , g, h,G,H then implies

0 = ∇ f (x∗) +
m�

i=1

λ∗i∇gi(x∗) +
p�

i=1

µ∗i∇hi(x∗) −
q�

i=1

γ∗i∇Gi(x∗) −
q�

i=1

ν∗i∇Hi(x∗).

To prove the C-stationarity of x∗, it remains to show γ∗i ν
∗
i ≥ 0 for all i ∈ I00(x∗). Assume that there

is an i ∈ I00 with γ∗i < 0 and ν∗i > 0 or with γ∗i > 0 and ν∗i < 0. We consider only the first case, the
second one can be treated similarly. Since γ∗i < 0, we have γk

i < 0 for all k ∈ N sufficiently large.
But this implies i ∈ supp(δ+,k) since, otherwise, the definition of γk

i would imply i ∈ supp(δ−,k),
hence i ∈ I−Φ(xk; tk), hence δ−,ki > 0 and Hi(xk) + tk > 0 by (7.8) and, therefore, γk

i > 0 due
to the definition of γk

i . Knowing that i ∈ supp(δ+,k), we have i � supp(δ−,k) in view of (7.9).
This implies that either νk

i = 0 or νk
i = −δ+,ki Gi(xk) for all k ∈ N sufficiently large. However,

i ∈ supp(δ+,k) gives i ∈ I+GH(xk; tk) and, therefore, Gi(xk) > 0 by (7.7). This shows that, in any
case, we have νk

i ≤ 0 which, in turn, gives the contradiction ν∗i ≤ 0. �

Note that the previous proof actually shows that a suitable sequence of multipliers remains
bounded and, therefore, converges at least on a subsequence under the MPCC-MFCQ condition.
The related result in [79], on the other hand, shows convergence of a corresponding sequence of
multipliers under the stronger MPCC-LICQ assumption.

7.2.2. Existence of Multipliers

The subsequent result shows that the relaxed problem RLF(t) is in fact less ill-posed with respect
to constraint qualifications than the original MPCC (1.1).
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Theorem 7.6 Let x∗ be feasible for (1.1) such that MPCC-MFCQ (-LICQ) is satisfied at x∗.
Then there exists t̄ > 0 and a neighborhood U(x∗) of x∗ such that standard MFCQ (LICQ) for
RLF(t) is satisfied at all x ∈ U(x∗) ∩ XLF(t) and for all t ∈ (0, t̄].

Proof. The LICQ part is due to [79, Th. 2.3].
Due to MPCC-MFCQ at x∗, in view of [99, Prop. 2.2], one can see that the following set of

vectors is positive-linearly independent for all x ∈ XLF(t) sufficiently close to x∗ and t sufficiently
close to 0:

∇gi(x)
�
i ∈ Ig(x)

�
,

∇hi(x) (i = 1, . . . , p),
Gi(x)∇Hi(x) + Hi(x)∇Gi(x)

�
i ∈ I+GH(x; t) ∩ (I+0(x∗) ∪ I0+(x∗))

�
,

∇Hi(x)
�
i ∈ I+GH(x; t) ∩ I00(x∗)

�
,

∇Gi(x)
�
i ∈ I+GH(x; t) ∩ I00(x∗)

�
,�

Gi(x) + t
�∇Hi(x) +

�
Hi(x) + t

�∇Gi(x)
�
i ∈ I−GH(x; t) ∩ (I+0(x∗) ∪ I0+(x∗))

�
,

∇Hi(x)
�
i ∈ I−GH(x; t) ∩ I00(x∗)

�
,

∇Gi(x)
�
i ∈ I−GH(x; t) ∩ I00(x∗)

�
.

(7.10)

We now claim that standard MFCQ holds for the relaxed program RLF(t) whenever x ∈ XLF(t) ∩
U(x∗) for some sufficiently small neighborhood U(x∗) of x∗. To this end, let x be such an element.
In view of Lemma 4.7, we have to show that

0 =
�

i∈Ig(x)

λi∇gi(x) +
p�

i=1

µi∇hi(x) +
�

i∈I+GH(x,t)

αi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))

−
�

i∈I−GH(x,t)

βi[(Gi(x) + t)∇Hi(x) + (Hi(x) + t)∇Gi(x)]

with suitable multipliers µ ∈ Rp and λ,α, β ≥ 0 holds only for the zero vector. In order to see
this, let us rewrite the above equation as

0 =
�

i∈Ig(x)

λi∇gi(x) +
p�

i=1

µi∇hi(x)

+
�

i∈I+GH(x;t)∩(I+0(x∗)∪I0+(x∗))

αi(Gi(x)∇Hi(x) + Hi(x)∇Gi(x))

+
�

i∈I+GH(x;t)∩I00(x∗)

αiGi(x)∇Hi(x) +
�

i∈I+GH(x;t)∩I00(x∗)

αiHi(x)∇Gi(x)

−
�

i∈I−GH(x;t)∩(I+0(x∗)∪I0+(x∗))

βi[(Gi(x) + t)∇Hi(x) + (Hi(x) + t)∇Gi(x)]

−
�

i∈I−GH(x;t)∩I00(x∗)

βi(Gi(x) + t)∇Hi(x) −
�

i∈I−GH(x;t)∩I00(x∗)

βi(Hi(x) + t)∇Gi(x).

(7.11)

Now, using the positive-linear independence of the vectors from (7.10) and applying this obser-
vation to (7.11), taking into account (7.7) and (7.8), we immediately see that (λ, µ,α, β) = 0, and
this completes the proof. �
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Altogether, it follows that the relaxation scheme by Lin and Fukushima has the same theoretical
properties as the previous relaxation method by Scholtes.

7.3. The Nonsmooth Relaxation by Kadrani et al.

The approach in [67] proposes the following relaxation, see also Figure 7.3:

min f (x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m,

hj(x) = 0 ∀ j = 1, . . . , p,
Gi(x) ≥ −t ∀i = 1, . . . , q,
Hi(x) ≥ −t ∀i = 1, . . . , q,
(Gi(x) − t)(Hi(x) − t) ≤ 0 ∀i = 1, . . . , q.

0 t
Gi

t

Hi

Figure 7.3.: Geometric interpretation of the relaxation method by Kadrani et al.

The relaxed problems are denoted by RKDB(t) and the corresponding feasible set by XKDB(t). We
call this a nonsmooth relaxation since in contrast to the previous two approaches the feasible set
of the MPCC (1.1) is relaxed but the kink is not smoothed out. As we will see, this has a positive
effect on the convergence properties of this relaxation method.
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7.3.1. Convergence to M-Stationary Points

For a refined convergence result, we need to define certain index sets. To this end, let x be
feasible for RKDB(t). Then we set

Ig(x) := {i | gi(x) = 0},
IG(x; t) := {i | Gi(x) + t = 0},
IH(x; t) := {i | Hi(x) + t = 0},

IGH(x; t) := {i | (Gi(x) − t)(Hi(x) − t) = 0},
I0∗
GH(x; t) := {i ∈ IGH(x; t) | Gi(x) − t = 0},

I0+
GH(x; t) := {i ∈ I0∗

GH(x; t) | Hi(x) − t > 0},
I0−
GH(x; t) := {i ∈ I0∗

GH(x; t) | Hi(x) − t < 0},
I00
GH(x; t) := {i ∈ IGH(x; t) | Gi(x) − t = Hi(x) − t = 0},

I∗0GH(x; t) := {i ∈ IGH(x; t) | Hi(x) − t = 0},
I+0
GH(x; t) := {i ∈ I∗0GH(x; t) | Gi(x) − t > 0},

I−0
GH(x; t) := {i ∈ I∗0GH(x; t) | Gi(x) − t < 0}.

(7.12)

The following is the main convergence result for the relaxation method by Kadrani et al. It
generalizes a corresponding result from [67] by replacing the MPCC-LICQ assumption by the
much weaker MPCC-CPLD condition.

Theorem 7.7 Let {tk} ↓ 0 and assume that xk is a stationary point of RKDB(tk) for all k ∈ N.
Moreover, suppose that xk → x∗ such that MPCC-CPLD holds at x∗. Then x∗ is an M-stationary
point of (1.1).

Proof. Note that in this proof we skip the standard constraints to keep the notation as compact
as possible. The proof can be extended to the case with standard constraints without any serious
changes.

Since xk is a stationary point of RKDB(tk) for all k, there exist multipliers αk, βk, γk ≥ 0 such
that

0 = ∇ f (xk) −
l�

i=1

αk
i∇Gi(xk) −

q�

i=1

βk
i∇Hi(xk) +

q�

i=1

δk
i [(Hi(xk) − tk)∇Gi(xk) + (Gi(xk) − tk)∇Hi(xk)]

and
αk

i (Gi(xk) + tk) = 0, βk
i (Hi(xk) + tk) = 0, δk

i (Gi(xk) − tk)(Hi(xk) − tk) = 0.

Now, put
ηG,k

i := −δk
i (Hi(xk) − tk), ηH,k

i := −δk
i (Gi(xk) − tk).

Then we infer from the equations above that

0 = ∇ f (xk) −
q�

i=1

αk
i∇Gi(xk) −

q�

i=1

βk
i∇Hi(xk) −

q�

i=1

ηG,k
i ∇Gi(xk) −

q�

i=1

ηH,k
i ∇Hi(xk) (7.13)
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7. Improved Results for Existing Relaxation Methods

and, for all k sufficiently large,

supp(αk) ⊆ IG(xk; tk) ⊆ I00(x∗) ∪ I0+(x∗),
supp(βk) ⊆ IH(xk; tk) ⊆ I00(x∗) ∪ I+0(x∗),

supp(ηG,k) ⊆ I0∗
GH(xk; tk) ⊆ I00(x∗) ∪ I0+(x∗),

supp(ηH,k) ⊆ I∗0GH(xk; tk) ⊆ I00(x∗) ∪ I+0(x∗).

(7.14)

Moreover, one sees that
supp(αk) ∩ supp(ηG,k) = ∅,
supp(βk) ∩ supp(ηH,k) = ∅,

supp(ηG,k) ∩ supp(ηH,k) = ∅.
(7.15)

In addition, we have
i ∈ supp(ηG,k) ∩ supp(βk) =⇒ ηG,k

i > 0,
i ∈ supp(ηH,k) ∩ supp(αk) =⇒ ηH,k

i > 0.
(7.16)

Without loss of generality, cf. Lemma 7.1, we may assume that the following gradients
�
∇Gi(xk) | supp(αk) ∪ supp(ηG,k)

�
∪
�
∇Hi(xk) | supp(βk) ∪ supp(ηH,k)

�
(7.17)

are linearly independent. Now, we want to prove that the sequence {(αk, βk, ηG,k, ηH,k)} is bounded.
For this purpose, we assume the contrary. Nevertheless, we may suppose, without loss of gener-
ality, that there is a vector (α̃, β̃, η̃G, η̃H) such that

(αk, βk, ηG,k, ηH,k)
�(αk, βk, ηG,k, ηH,k)� → (α̃, β̃, η̃G, η̃H) � 0,

and, clearly, for all k (sufficiently large) one has

supp(α̃) ⊆ supp(αk), supp(β̃) ⊆ supp(βk),
supp(η̃G) ⊆ supp(ηG,k), supp(η̃H) ⊆ supp(ηH,k). (7.18)

By passing to the limit, (7.13) therefore yields

0 =
q�

i=1

α̃i∇Gi(x∗) +
q�

i=1

β̃i∇Hi(x∗) +
q�

i=1

η̃G
i ∇Gi(x∗) +

q�

i=1

η̃H
i ∇Hi(x∗),

i.e., the gradients
�
∇Gi(x∗) | supp(α̃) ∪ supp(η̃G)

�
∪
�
∇Hi(x∗) | supp(β̃) ∪ supp(η̃H)

�

are (positive-) linearly dependent. This, in view of MPCC-CPLD, remains true for xk instead of
x∗. But in view of (7.18), this contradicts the linear independence in (7.17). Thus, we can infer
that {(αk, βk, ηG,k, ηH,k)} is bounded, that is, at least on a subsequence, we have

(αk, βk, ηG,k, ηH,k)→ (α, β, ηG, ηH)
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7.3. The Nonsmooth Relaxation by Kadrani et al.

for some vectors α, β, ηG, ηH satisfying

supp(α) ⊆ supp(αk), supp(β) ⊆ supp(βk),
supp(ηG) ⊆ supp(ηG,k), supp(ηH) ⊆ supp(ηH,k). (7.19)

Now, for i = 1, . . . , l, put

γi :=




αi, if i ∈ supp(α),
ηG

i , if i ∈ supp(ηG),
0, else,

and νi :=




βi, if i ∈ supp(β),
ηH

i , if i ∈ supp(ηH),
0, else.

In view of (7.19) and (7.15), γ and ν are at least well-defined. We now show that x∗, together
with the multipliers γ, ν, is an M-stationary point. To this end, first note that (7.13) implies

0 = ∇ f (x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗).

Furthermore, note that, for i ∈ I+0(x∗), we have i � supp(αk)∪ supp(ηG,k) in view of (7.14). Using
(7.19), this implies i � supp(α) ∪ supp(ηG), hence the definition of γ gives γi = 0. A symmetric
argument shows that νi = 0 for all i ∈ I0+(x∗). This means that x∗ is at least weakly stationary.
Furthermore, if either γi = 0 or νi = 0, the M-stationarity conditions are satisfied for such an
index i. Consequently, taking into account the definitions of γi, νi, it remains to consider four
cases.

Case 1: i ∈ supp(α) ∩ supp(β). Then γi = αi ≥ 0 and νi = βi ≥ 0, so that the M-stationarity
conditions hold for such an index.

Case 2: i ∈ supp(α)∩ supp(ηH). Then i ∈ supp(αk)∩ supp(ηH,k) for all k ∈ N sufficiently large,
cf. (7.19). Hence (7.16) implies ηH,k

i > 0 for all k ∈ N sufficiently large which, in turn, gives
ηH

i ≥ 0, hence νi ≥ 0. Furthermore, since i ∈ supp(ηH,k), we have i � supp(ηG,k) by (7.15), hence
i � supp(ηG) by (7.16). This implies γi ≥ 0 and shows that the M-stationarity conditions also
hold for an index i from Case 2.

Case 3: i ∈ supp(ηG) ∩ supp(β). Here a symmetric reasoning to Case 2 shows that the M-
stationarity conditions also hold in this case.

Case 4: i ∈ supp(ηG) ∩ supp(ηH). Then (7.16) implies that i ∈ supp(ηG,k) ∩ supp(ηH,k) for all
k ∈ N sufficiently large. In view of (7.15), we see that this case cannot occur.

Altogether, this shows that x∗ is an M-stationary point. �

7.3.2. Existence of Multipliers

The question regarding the existence of KKT multipliers for the relaxed problems, as needed in
the above convergence result, cannot be answered as satisfactory and quickly as for the foregoing
approaches. To illustrate this, let us consider the following example.

Example 7.8 (Example 5.8 continued) Consider once again the two-dimensional MPCC

minx1,x2 f (x) subject to x1 ≥ 0, x2 ≥ 0, x1x2 = 0. (7.20)
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This MPCC satisfies MPCC-LICQ, and hence in particular MPCC-CPLD, at any feasible point.
Now, choose tk := 1

k and xk := (tk, tk) for k ∈ N. Then xk → x∗ := (0, 0) and geometric arguments
and a quick calculation show that TXKDB(tk)(xk) = {d ∈ R2 | d1d2 ≤ 0} � R2 = LXKDB(tk)(xk). Hence,
ACQ is violated at xk, in particular, all stronger concepts like CPLD, MFCQ or LICQ are also
violated at xk. On the other hand, it is easy to see that GCQ is satisfied. �

Despite this counterexample, Kadrani et al. were able to verify existence of KKT multipliers for
the relaxed problem under the MPCC-LICQ assumption. The following result is a refinement of
their observation and partly motivated by Example 7.8.

Theorem 7.9 Let x∗ be feasible for (1.1) such that MPCC-LICQ holds at x∗. Then there exists
t̄ > 0 and a neighborhood U(x∗) of x∗ such that (standard) GCQ for RKDB(t) is fulfilled at all
x̂ ∈ U(x∗) ∩ XKDB(t) for all t ∈ (0, t̄).

Proof. Again, we skip the standard constraints from the proof without loss of generality.
Let t > 0 and x̂ ∈ XKDB(t). Furthermore, let I ⊆ I00

GH(x̂; t) and put Ī := I00
GH(x̂; t) \ I. Herewith,

define the program NLP(I)

min f (x)
s.t. Gi(x) + t ≥ 0 (i = 1, . . . , q),

Hi(x) + t ≥ 0 (i = 1, . . . , q),
Gi(x) − t ≤ 0 (i ∈ I0+

GH(x̂; t) ∪ I),
Gi(x) − t ≥ 0 (i ∈ I0−

GH(x̂; t) ∪ Ī),
Hi(x) − t ≤ 0 (i ∈ I+0

GH(x̂; t) ∪ Ī),
Hi(x) − t ≥ 0 (i ∈ I−0

GH(x̂; t) ∪ I),

and denote its feasible set by X̂(I). Then we have x̂ ∈ X̂(I) and, locally around x̂, we have
X̂(I) ⊆ XKDB(t). We now claim that

TXKDB(t)(x̂) =
�

I⊆I00
GH(x̂,t)

TX̂(I)(x̂). (7.21)

The ⊇-inclusion is obvious. For the converse direction let d ∈ TXKDB(t)(x̂), i.e., there exists {xk} ⊆
XKDB(t) with xk → x̂ and {tk} ↓ 0 such that xk−x̂

tk
→ d. By continuity, for k sufficiently large, we

have

Gi(xk) − t ≤ 0 (i ∈ I0+
GH(x̂; t)),

Gi(xk) − t ≥ 0 (i ∈ I0−
GH(x̂; t)),

Hi(xk) − t ≤ 0 (i ∈ I+0
GH(x̂; t)),

Hi(xk) − t ≥ 0 (i ∈ I−0
GH(x̂; t)),

since xk ∈ XKDB(t). Moreover, we also have Hi(xk) + t ≥ 0,Gi(xk) + t ≥ 0 (i = 1, . . . , l) anyway.
Due to the fact that I00

GH(x̂; t) is finite, there exists an infinite subset K ⊆ N and I ⊆ I00
GH(x̂, t) such

that

Gi(xk) − t ≤ 0 (i ∈ I0+
GH(x̂; t) ∪ I),
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Gi(xk) − t ≥ 0 (i ∈ I0−
GH(x̂; t) ∪ Ī),

Hi(xk) − t ≤ 0 (i ∈ I+0
GH(x̂; t) ∪ Ī),

Hi(xk) − t ≥ 0 (i ∈ I−0
GH(x̂; t) ∪ I),

for all k ∈ K. Therefore, {xk}K ⊆ X̂(I) and hence, d ∈ TX̂(I)(x̂), which gives the desired inclusion.
Now, for an arbitrary I ⊆ I00

GH(x̂; t), the active gradients of NLP(I) at x̂ are

∇Gi(x̂) (i ∈ IG(x̂; t) ⊆ I00(x∗) ∪ I0+(x∗)),
∇Hi(x̂) (i ∈ IH(x̂; t) ⊆ I00(x∗) ∪ I+0(x∗)),
∇Gi(x̂) (i ∈ I0+

GH(x̂; t) ∪ I ⊆ I00(x∗) ∪ I0+(x∗)),
∇Gi(x̂) (i ∈ I0−

GH(x̂; t) ∪ Ī ⊆ I00(x∗) ∪ I0+(x∗)),
∇Hi(x̂) (i ∈ I+0

GH(x̂; t) ∪ Ī ⊆ I00(x∗) ∪ I+0(x∗)),
∇Hi(x̂) (i ∈ I−0

Φ (x̂; t) ∪ I ⊆ I00(x∗) ∪ I+0(x∗)),

where for the index set inclusions, in particular, we exploit the fact that I00
GH(x̂; t) ⊆ I00(x∗).

The above gradients are, in view of MPCC-LICQ at x∗, linearly independent if x̂ is sufficiently
close to x∗, i.e., LICQ and hence ACQ holds for NLP(I) at x̂. This means that TX̂(I)(x̂) = LX̂(I)(x̂)
and in view of (7.21) and invoking [13, Th. 3.1.9], this yields

TXKDB(t)(x̂)◦ =
�

I⊆I00
GH(x̂;t)

LX̂(I)(x̂)◦, (7.22)

where, by means of Lemma 7.2, we have

LX̂(I)(x̂)◦ = {v ∈ Rn | ∃α,β,γ,δ,�,ρ≥0 : v = −
�

i∈IG(x̂;t)

αi∇Gi(x̂) −
�

i∈IH(x̂;t)

βi∇Hi(x̂)

+
�

i∈I0+
GH(x̂;t)∪I

γi∇Gi(x̂) −
�

i∈I0−
GH(x̂;t)∪Ī

δi∇Gi(x̂)

+
�

i∈I+0
GH(x̂;t)∪Ī

�i∇Hi(x̂) −
�

i∈I−0
GH(x̂;t)∪I

ρi∇Hi(x̂)}.

In order to verify GCQ for RKDB(t) at x̂, i.e. TXKDB(t)(x̂)◦ ⊆ LXKDB(t)(x̂)◦, let v ∈ TXKDB(t)(x̂)◦. Using
(7.22), it then follows that, for some I ⊆ I00

GH(x̂; t), we have both d ∈ LX̂(I)(x̂)◦ and d ∈ LX̂(Ī)(x̂)◦.
Then exploiting the representation above and the linear independence of the occurring gradients,
it is quickly argued that the multipliers with indices in I and Ī must vanish and hence, v can be
expressed as

v = −
�

i∈IG(x̂;t)

αi∇Gi(x̂) −
�

i∈IH(x̂;t)

βi∇Hi(x̂) +
�

i∈I0+
GH(x̂;t)

γi∇Gi(x̂)

−
�

i∈I0−
GH(x̂;t)

δi∇Gi(x̂) +
�

i∈I+0
GH(x̂;t)

�i∇Hi(x̂) −
�

i∈I−0
GH(x̂;t)

ρi∇Hi(x̂)
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for some α, β, γ, δ, �, ρ ≥ 0, and this means that v ∈ LXKDB(t)(x̂)◦, again by [13, Th. 3.2.2]. This
concludes the proof. �

Although this result and the preceding example are discouraging, we can obtain a better result in
most feasible points.

Theorem 7.10 Let x∗ be feasible for the MPCC (1.1) such that MPCC-CPLD (MPCC-LICQ)
holds at x∗. Then there is a t̄ > 0 and a neighborhood U(x∗) of x∗ such that the following holds
for all t ∈ (0, t̄ ]: If x ∈ U(x∗) ∩ XKDB(t) with I00

GH(x; t) = ∅ then standard CPLD (LICQ) for
RKDB(t) holds at x.

Proof. Note that we only need to prove the CPLD part, since the assertion on LICQ follows from
[67, Th. 2.4].

Now, suppose our assertion is false. Then there exist sequences {tk} ↓ 0 and {xk} ⊆ XKDB(tk)
with xk → x∗ and I00

GH(xk; tk) = ∅ such that CPLD for RKDB(tk) is violated at xk. This yields
subsets Ik

1 ⊆ Ig(xk), Ik
2 ⊆ {1, . . . , p}, Ik

3 ⊆ IG(xk; tk), Ik
4 ⊆ IH(xk; tk), I5 ⊆ I0∗

GH(xk; tk), I6 ⊆ I∗0GH(xk; tk)
such that the gradients

{∇hi(x) | i ∈ Ik
2} ∪

�
{∇gi(x) | i ∈ Ik

1} ∪ {−∇Gi(x) | i ∈ Ik
3} ∪ {−∇Hi(x) | i ∈ Ik

4}
∪{(Hi(x) − tk)∇Gi(x) | i ∈ Ik

5} ∪ {(Gi(x) − tk)∇Hi(x) | i ∈ Ik
6}
�

are positive-linearly dependent at x = xk, but linearly independent in x arbitrary close to xk.
Moreover, by a finiteness argument, we can assume without loss of generality that Ik

i = Ii for
i = 1, . . . , 6 and all k ∈ N. Then it is easy to see that I1 ⊆ Ig(x∗), I3 ∪ I5 ⊆ I00(x∗) ∪ I0+(x∗), and
I4∪I6 ⊆ I00(x∗)∪I+0(x∗). The positive-linear dependence of the above gradients at xk immediately
implies the positive-linear dependence of the gradients

{∇gi(x) | i ∈ I1} ∪
�
{∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3 ∪ I5} ∪ {∇Hi(x) | i ∈ I4 ∪ I6}

�
.

at x = xk. Due to the violation of CPLD at xk this yields a sequence {yk} → x∗ such that these
gradients are linearly independent at x = yk. If they were positive-linearly independent at x∗, by
[99, Theorem 2.2], they would remain positive-linearly independent nearby, which contradicts
the existence of {xk}. On the other hand, if they were positive-linearly dependent, by MPCC-
CPLD, they would remain linearly dependent in a whole neighborhood, which contradicts the
existence of {yk}. This concludes the proof. �

7.4. The Local Relaxation by Steffensen and Ulbrich

The idea behind the subsequent method is as follows: Geometrically, the complementarity con-
ditions are given by the two nonnegative half-axes in the two-dimensional space. If we rotate
this set by 45◦ counterclockwise, we obtain the graph of the absolute value function which is
nondifferentiable in the origin. The idea is to approximate this absolute value function locally
(say, within the interval [−1, 1] though this will later be scaled to smaller neighborhoods) by a
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suitable smooth function in such a way that it coincides with the absolute value function outside
this local neighborhood. This is made more precise in the following definition going back to
[109].

Definition 7.11 θ : [−1, 1] → R is called a regularization function if it satisfies the following
conditions:

(a) θ is twice continuously differentiable on [−1, 1];

(b) θ(−1) = θ(1) = 1;

(c) θ�(−1) = −1 and θ�(1) = 1;

(d) θ��(−1) = θ��(1) = 0;

(e) θ��(x) > 0 for all x ∈ (−1, 1).

Note that condition (e) implies that θ is strictly convex on [−1, 1]. The following result taken
from [109, Lemma 3.1] reveals an immediate but crucial property of all regularization functions.

Lemma 7.12 Let θ : [−1, 1] → R be a regularization function. Then it holds that θ(x) > |x| for
all x ∈ (−1, 1).

Two simple examples of suitable regularization functions are

θ(x) :=
2
π

sin
�
π

2
x +

3π
2

�
+ 1 and θ(x) :=

1
8

�
−x4 + 6x2 + 3

�
,

cf. [109, 119]. The second function is the Hermite interpolation polynomial satisfying the re-
quirements from Definition 7.11.

This idea leads to the following relaxation from [109] (cf. Figure 7.4 for an illustration)

min f (x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m,

hj(x) = 0 ∀ j = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , q,
Hi(x) ≥ 0 ∀i = 1, . . . , q,
ΦS U(x; t) ≤ 0 ∀i = 1, . . . , q

with

ΦS U : Rn → Rq, ΦS U
i (x; t) := Gi(x) + Hi(x) − ϕ(Gi(x) − Hi(x); t) ∀i = 1, . . . , q

where
ϕ(·; t) : R→ R, ϕ(a; t) :=

�
|a|, if |a| ≥ t,
tθ( a

t ), if |a| < t, (7.23)

and θ is a regularization function.
Again, we denote the relaxed problem by RS U(t) and the feasible set by XS U(t). Before we state
the convergence result for this regularization, let us take a closer look at the relaxed problems.
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0 t
Gi

t

Hi

Figure 7.4.: Geometric interpretation of the relaxation method by Steffensen and Ulbrich

7.4.1. Properties of the Relaxed NLPs

First, we are interested in some properties of the function ϕ defined in (7.23).

Lemma 7.13 Let ϕ be defined as in (7.23). Then we have

(a) ϕ(a; t) > |a| for all a ∈ (−t, t) and for all t > 0;

(b) ϕ(a; t) = |a| for |a| ≥ t and for all t > 0;

(c) limt→0 ϕ(a; t) = |a| for all a ∈ R;

(d) ϕ(·; t) is twice continuously differentiable for all t > 0.

Proof.

(a) Let a ∈ (−t, t) for some t > 0. Then |a|t < 1, and the definition of ϕ therefore implies

ϕ(a; t) = tθ
�a

t

�
> t
|a|
t
= |a|,

where the (strict) inequality comes from Lemma 7.12.

(b), (d) These statements follow directly from the definition of θ.

(c) Let a ∈ R. If a = 0, then the boundedness of θ immediately gives

ϕ(0; t) = tθ
�a

t

�
→ 0 = a for t → 0.

On the other hand, if a � 0, we have |a| ≥ t for all t > 0 sufficiently small. Hence we obtain
ϕ(a; t) = |a| for all t > 0 sufficiently small, and this gives our assertion also for a � 0. �
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With the aid of ϕ(·; t), we defined the function ΦS U(·; t) : Rn → Rq by

ΦS U
i (x; t) := Gi(x) + Hi(x) − ϕ(Gi(x) − Hi(x); t) ∀i = 1, . . . , q. (7.24)

Some useful properties of the function ΦS U(·; t) are stated in the following results.

Lemma 7.14 For t > 0 let ΦS U(·; t) be the function given in (7.24). Then ΦS U
i (·; t) is twice

continuously differentiable for all i = 1, . . . , q with gradient

∇ΦS U
i (x; t) =




2∇Gi(x) if Gi(x) − Hi(x) ≤ −t,
(1 − θ�(Gi(x)−Hi(x)

t ))∇Gi(x) + (1 + θ�( x1−x2
t ))∇Hi(x) if |Gi(x) − Hi(x)| < t,

2∇Hi(x) if Gi(x) − Hi(x) ≥ t.

Proof. The proof follows immediately from the definition of ΦS U applying standard calculus
rules. �

The following result indicates where the function value of ΦS U
i (·; t) is positive, negative, or zero

depending on the sign of Gi(x) and Hi(x). The statement is also illustrated in Figure 7.5. More
precisely, Figure 7.5a gives the sign structure for a function ΦS U

i defined by an arbitrary regular-
ization function θ (note that there is a white triangle in the middle where nothing can be said),
whereas Figure 7.5b shows a typical sign structure including this triangle. Note that the precise
location of the boundary in the formerly white triangle depends on the chosen regularization
function.

0 t
Gi

t

Hi

ΦS U
i > 0

ΦS U
i < 0

ΦS U
i = 0

ΦS U
i = 0

(a) arbitrary regularization function θ

0 t
Gi

t

Hi

ΦS U
i > 0

ΦS U
i < 0

ΦS U
i = 0

(b) typical sign structure

Figure 7.5.: Illustration of Lemma 7.15
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Lemma 7.15 Let ΦS U(·; t) be given by (7.24). Then the following holds true for all i = 1, . . . , q:

ΦS U
i (x; t)




< 0, if Gi(x) < 0 or Hi(x) < 0,
< 0, if Gi(x),Hi(x) ≥ 0 and Gi(x) · Hi(x) = 0 and |Gi(x) − Hi(x)| < t,
= 0, if Gi(x),Hi(x) ≥ 0 and Gi(x) · Hi(x) = 0 and |Gi(x) − Hi(x)| ≥ t,
> 0, if Gi(x),Hi(x) > 0 and |Gi(x) − Hi(x)| ≥ t,
free, if Gi(x),Hi(x) > 0 and |Gi(x) − Hi(x)| < t.

Proof. The proof follows immediately from considering the following cases:

i) For Gi(x),Hi(x) ≤ 0 we have

ΦS U
i (x; t) = Gi(x) + Hi(x)������������������������

≤0

−ϕ(Gi(x) − Hi(x); t)��������������������������������������
>0 by Lemma 7.13

< 0.

ii) For Gi(x) > 0,Hi(x) < 0 we obtain from Lemma 7.13

ΦS U
i (x; t) = Gi(x)+Hi(x)−ϕ(Gi(x)−Hi(x); t) ≤ Gi(x)+Hi(x)− |Gi(x)−Hi(x)| = 2Hi(x) < 0.

iii) For Gi(x) < 0,Hi(x) > 0 it follows again from Lemma 7.13 that

ΦS U
i (x; t) = Gi(x)+Hi(x)−ϕ(Gi(x)−Hi(x); t) ≤ Gi(x)+Hi(x)− |Gi(x)−Hi(x)| = 2Gi(x) < 0.

iv) For Gi(x) > 0,Hi(x) = 0 we obtain from Lemma 7.13

ΦS U
i (x; t) = Gi(x) − ϕ(Gi(x); t)



= 0 if Gi(x) ≥ t,
< 0 if Gi(x) < t.

v) For Gi(x) = 0,Hi(x) > 0 it holds that

ΦS U
i (x; t) = Hi(x) − ϕ(−Hi(x); t)



= 0 if Hi(x) ≥ t,
< 0 if Hi(x) < t.

vi) For Gi(x),Hi(x) > 0 with |Gi(x) − Hi(x)| ≥ t the definition of ϕ implies

ΦS U
i (x; t) = Gi(x) + Hi(x) − ϕ(Gi(x) − Hi(x); t) = Gi(x) + Hi(x) − |Gi(x) − Hi(x)| > 0.

The previous cases also show that, by continuity, the sign of ΦS U
i can be both positive and

negative in the remaining case where Gi(x),Hi(x) > 0 and |Gi(x) − Hi(x)| < t. �

Finally, it is now easy to see that the feasible sets XS U(t) of the relaxed problems have the prop-
erties we would expect.
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Proposition 7.16 For the feasible sets X of (1.1) and XS U(t) of RS U(t), we have the following
relations:

(a) For t > 0, we have X ⊂ XS U(t);

(b) XS U(0) = X;

(c) For t1 < t2 we have XS U(t1) ⊂ XS U(t2).

Proof. The proof of (a) follows directly from Lemma 7.15. Statement (b) is due to ΦS U
i (x; 0) =

Gi(x) + Hi(x) − |Gi(x) − Hi(x)| for all x ∈ Rn and all i = 1, . . . , q, whereas statement (c) can be
found in [109, Lemma 3.2]. �

7.4.2. Convergence to C-Stationary Points

The original convergence result from [109] states that, given a convergent sequence xk → x∗
of stationary points of the relaxed problems RS U(tk) with {tk} ↓ 0, then the limit point x∗ is C-
stationary provided that MPCC-CRCQ holds at x∗. Actually, the following – stronger – result
holds. However, since its proof is exactly the same as the one of the original result in [109], we
do not restate it here. Note that the assertion holds, in particular, under MPCC-MFCQ.

Theorem 7.17 Let {tk} ↓ 0 and let xk be a stationary point of RS U(tk) with xk → x∗ such that
MPCC-CPLD holds in x∗. Then x∗ is a C-stationary point of (1.1).

Although at first glance, this result is not much of an improvement for MPCCs since MPCC-
CRCQ and MPCC-CPLD differ only in the conditions on the multipliers corresponding to the
inequality constraints, the following example shows that in fact there are simple MPCCs where
MPCC-CPLD is the strongest MPCC constraint qualification which is satisfied.

Example 7.18 (Example 5.6 continued) Consider again the two-dimensional MPCC:

min
x1,x2

f (x) = 2x2 subject to g1(x) = x1 + x2
2 ≤ 0,

g2(x) = x1 ≤ 0,
G(x) = x2 ≥ 0, (7.25)
H(x) = x1 + x2 ≥ 0,
G(x)H(x) = x2(x1 + x2) = 0.

We know already that both MPCC-MFCQ and MPCC-CRCQ are violated in the global minimum
x∗ = (0, 0)T whereas MPCC-CPLD holds.

Now consider a sequence of the corresponding relaxed problems RS U(tk), tk ↓ 0, where the
condition G(x)H(x) = 0 is replaced by ΦS U(x; tk) ≤ 0. One can easily verify that x∗ is also the
global minimum of RS U(tk) and that standard CPLD holds in x∗ for all k ∈ N. Thus, {xk} with
xk := x∗ for all k ∈ N is a sequence of stationary points of RS U(tk) that trivially converges to x∗.

131



7. Improved Results for Existing Relaxation Methods

Hence, (7.25) is an example for an MPCC where the relaxation method converges although only
MPCC-CPLD is satisfied. �

The local relaxation scheme discussed in this section also has the advantage that it might not
be necessary to drive the relaxation parameter {tk} down to zero under suitable assumptions, in
particular, when Gi(x∗) + Hi(x∗) > 0 holds for all i = 1, . . . , q. This follows immediately from
the observation that, in this case, the feasible sets of the MPCC itself and of the relaxed problem
RS U(t) coincide locally.

7.4.3. Existence of Multipliers

On the other hand, the question under which assumptions one may expect to get multipliers for
the relaxed problem has not been discussed in [109] and the answer is not trivial as the following
simple example illustrates. At this point, I would like to thank my colleague Tim Hoheisel who
came up with the results in this section.

Example 7.19 (Example 5.8 continued) Consider again the two-dimensional MPCC

min
x1,x2

f (x) subject to x1 ≥ 0, x2 ≥ 0, x1x2 = 0.

Given a sequence {tk} ↓ 0, we define {xk} by xk := (tk, 0)T . Then the active gradients at xk

are −
�

0
1

�
,∇ΦS U(tk, 0; tk) =

�
0
2

�
, which are obviously positive-linearly dependent. On the other

hand, for ε > 0 sufficiently small, the above gradients evaluated at xk
ε := (tk − ε, 0)T become

−
�

0
1

�
,
�1−θ�( tk−ε

tk
)

1+θ�( tk−ε
tk

)

�
, which are obviously linearly independent. Hence, CPLD is violated at xk for all

k, although MPCC-LICQ holds at x∗ = (0, 0)T . However, it is easy to see that ACQ is fulfilled.
�

In order to prove our result on constraint qualifications, some index sets need to be defined. For
these purposes, let t > 0 and x ∈ XS U(t). Then we put

Ig(x) := {i | gi(x) = 0},
IG(x) := {i | Gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IΦ(x; t) := {i | Φi(x; t) = 0}.

Theorem 7.20 Let x∗ be feasible for (1.1) such that MPCC-LICQ holds at x∗. Then there exists
a neighborhood U(x∗) of x∗ and t̄ > 0 such that for all t ∈ (0, t̄) and x̂ ∈ XS U(t)∩U(x∗) (standard)
ACQ for RS U(t) is satisfied at x̂.

Proof. Note that, again, we skip the standard constraints from the proof for clarity’s sake.
Now, if I0+(x∗) ∪ I+0(x∗) � ∅, first, put t̄ := 1

2 min{Gi(x∗) (i ∈ I+0(x∗)),Hi(x∗) (i ∈ I0+(x∗))}.
Then, in particular, one has t̄ > 0. Otherwise choose t̄ > 0 arbitrarily. Now, let t ∈ (0, t̄) and
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x̂ ∈ XS U(t). Then we define the program NLP(x̂) by

min f (x)
s.t. Gi(x) ≥ 0

�
i � IΦ(x̂; t)

�
,

Hi(x) ≥ 0
�
i � IΦ(x̂; t)

�
,

Φi(x; t) = 0
�
i ∈ IΦ(x̂; t) ∩ (IG(x̂) ∪ IH(x̂))

�
,

Φi(x; t) ≤ 0
�
i ∈ IΦ(x̂; t) \ (IG(x̂) ∪ IH(x̂))

�
,

and denote its feasible region by X̂. Then, clearly, x̂ ∈ X̂. Moreover, using Lemma 7.14, the
gradients for the active constraints of RS U(x̂) at x̂ read to

∇Gi(x̂) (i ∈ IG(x̂) \ IΦ(x̂; t)),
∇Hi(x̂) (i ∈ IH(x̂) \ IΦ(x̂; t)),
2∇Gi(x̂) (i ∈ IG(x̂) ∩ IΦ(x̂; t)),
2∇Hi(x̂) (i ∈ IH(x̂) ∩ IΦ(x̂; t)),
αi∇Gi(x̂) + βi∇Hi(x̂) (i ∈ IΦ(x̂; t) \ (IG(x̂) ∪ IH(x̂))),

(7.26)

where αi = 1 − θ�(Gi(x̂)−Hi(x̂)
t ), βi = 1 + θ�(Gi(x̂)−Hi(x̂)

t ). Now, for x̂ sufficiently close to x∗, we have
the inclusions

IG(x̂) ⊆ I00(x∗) ∪ I0+(x∗), IH(x̂) ⊆ I00(x∗) ∪ I+0(x∗),

and by the choice of t̄, we also get

IΦ(x̂; t) \ {IG(x̂) ∪ IH(x̂)} ⊆ I00(x∗).

Hence, in view of MPCC-LICQ at x∗, the gradients in (7.26) are linearly independent for x̂
sufficiently close to x∗, and thus, LICQ and in particular ACQ for RS U(x̂) holds at x̂.

Moreover, we have

LX̂(x̂) =
�
d ∈ Rn | ∇Gi(x̂)T d ≥ 0 (i ∈ IG(x̂) \ IΦ(x̂; t)),

∇Hi(x̂)T d ≥ 0 (i ∈ IH(x̂) \ IΦ(x̂; t)),
∇Gi(x̂)T d = 0 (i ∈ IG(x̂) ∩ IΦ(x̂; t)),
∇Hi(x̂)T d = 0 (i ∈ IH(x̂) ∩ IΦ(x̂; t)),

∇(Φi(x̂; t))T d ≤ 0 (i ∈ IΦ(x̂, t) \ {IG(x̂) ∪ IH(x̂)})
�

= LXS U (t)(x̂),

(7.27)

where the last equality can easily be verified by direct calculation. We now want to show that,
locally around x̂, we have X̂ ⊆ XS U(t).

For these purposes, it remains to see that, for x ∈ X̂ sufficiently close to x̂, we have

Gi(x) ≥ 0 (i ∈ IΦ(x̂; t)) and Hi(x) ≥ 0 (i ∈ IΦ(x̂; t)).

To this end, consider first the case of i ∈ IΦ(x̂; t)∩{IG(x̂)∪ IH(x̂)}. Then, in particular, Φi(x; t) = 0,
which in view of Lemma 7.15 gives Gi(x),Hi(x) ≥ 0. If otherwise i � IG(x̂) ∪ IH(x̂), we get
Gi(x),Hi(x) > 0 by continuity.
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The local inclusion X̂ ⊆ XS U(t) yields TX̂(x̂) ⊆ TXS U (t)(x̂) and hence, by ACQ for RS U(x̂) at x̂
and (7.27), we have

LX̂(x̂) = TX̂(x̂) ⊆ TXS U (t)(x̂) ⊆ LXS U (t)(x̂) = LX̂(x̂),

which gives the assertion. �

In some feasible points, we get a stronger result.

Theorem 7.21 Let x∗ be feasible for (1.1) such that MPCC-LICQ holds at x∗. Then there exists
a neighborhood U(x∗) of x∗ and a t̄ > 0 such that the following holds: If t ∈ (0, t̄] and x ∈
U(x∗) ∩ XS U(t) with IΦ(x; t) ∩ {IG(x) ∪ IH(x)} = ∅ then standard LICQ holds for RS U(t) at x.

Proof. Let x ∈ XS U(t). Then, if IΦ(x; t) ∩ {IG(x) ∪ IH(x)} = ∅, the active gradients for RS U(t) at x
are,

∇gi(x) (i ∈ Ig(x)),
∇hi(x) (i = 1, . . . , p),
∇Gi(x) (i ∈ IG(x)),
∇Hi(x) (i ∈ IH(x)),

αi∇Gi(x) + βi∇Hi(x) (i ∈ IΦ(x; t) \ {IG(x) ∪ IH(x)}),

where αi = 1−θ�(Gi(x)−Hi(x)
t ), βi = 1+θ�(Gi(x)−Hi(x)

t ). Moreover, cf. also the proof of Theorem 7.20,
for x sufficiently close to x∗ and t sufficiently close to 0, we have the inclusions

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),
IH(x) ⊆ I00(x∗) ∪ I+0(x∗),

IΦ(x; t) \ {IG(x) ∪ IH(x)} ⊆ I00(x∗),

and in view of MPCC-LICQ the active gradients from above are linearly independent, i.e., LICQ
holds at x. �
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Among the relaxation methods analyzed above, the one with the by far best convergence prop-
erties is the relaxation by Kadrani et al. from Section 7.3. However, a closer look at the feasible
set of the corresponding relaxed problems reveals two potential drawbacks. First, the feasible
set of the relaxed problem is almost disconnected, so one has to expect severe problems when
solving them by a standard optimization method. Kadrani et al. therefore propose a combination
of their relaxation with a penalty approach and an active set algorithm. In our opinion however,
one of the main advantages of relaxation methods is the possibility to employ the existing and
highly efficient solvers for standard nonlinear problems rather effortless to solve MPCCs as well.
Therefore, we prefer a relaxation method where it is not necessary to develop a special solver for
the relaxed problems. The second disadvantage of the method by Kadrani et al. is the fact that
the feasible set of the MPCC is not contained in the feasible set of the relaxed problems for any
positive relaxation parameter. As we will see in Section 9.2, this is a problem when we have to
decide upon a stopping criterion for the corresponding algorithm.

Inspired by the strengths and weaknesses of the relaxation method by Kadrani et al. we devel-
oped a new relaxation for MPCCs with similar convergence properties, but without the problems
mentioned above. The disadvantage of the relaxation methods by Scholtes, Lin and Fukushima,
and Steffensen and Ulbrich is that only C-stationarity of limit points can be guaranteed. The fol-
lowing well-known example however illustrates that there are MPCCs with C-stationary points
that attract these relaxation methods but which are not local minima.

Example 8.1 Consider the following 2-dimensional MPCC

min
x1,x2

f (x) =
1
2

(x1 − 1)2 +
1
2

(x2 − 1)2 subject to G(x) = x1 ≥ 0,

H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

This optimization problem has two global minima in (0, 1)T and (1, 0)T , which are S-stationary,
and a C-stationary point in (0, 0)T . Now it is easy to verify that the relaxed problems correspond-
ing to the methods by Scholtes, Lin and Fukushima, and Steffensen and Ulbrich have a stationary
point at the intersection of the line, where x1 = x2, with the north-eastern border of the relaxed
feasible set, hence there exists a sequence of stationary points converging to the C-stationary
point in the origin which is not a solution of the MPCC. The relaxed feasible sets of the scheme
by Kadrani et al. however only have stationary points in (t, 1)T and (1, t)T which are converging
to the global minima of the MPCC. �

Another problem with some of these relaxations is that they seem to be quite sensitive to second-
order conditions as the following example from [67] illustrates.
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Example 8.2 Consider again the 2-dimensional MPCC from above, however this time with a
different objective function:

min
x1,x2

f (x) = x2 subject to G(x) = x1 ≥ 0,

H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

This optimization problem has a continuum of local minima in (x1, 0)T , x1 > 0, which are S-
stationary, and an M-stationary point in (0, 0)T . The relaxed problems corresponding to the
methods by Scholtes and Lin and Fukushima, however, do not have a stationary point at all. The
relaxation scheme by Steffensen and Ulbrich benefits from that fact that the feasible set X of the
MPCC is only locally relaxed around the origin and thus the relaxed problems have stationary
points in (x1, 0)T for all x1 ≥ t. Similarly, the relaxed feasible sets of the scheme by Kadrani et
al. have stationary points in (x1, t)T for all x1 > t. �

We will introduce a new relaxation scheme in this chapter which has the same positive properties
as the one by Kadrani et al., that is convergence to M-stationary points under MPCC-CPLD and
convergence to S-stationary points under an additional nondegeneracy condition without any
second order condition. Additionally, we will prove that the relaxed problems inherit CPLD
from the original MPCC almost everywhere and prove the existence of Lagrange multipliers also
for the remaining points. Finally, we will provide a condition under which one can find local
minima of the relaxed problems in a neighborhod of a solution of the MPCC. The advantage of
our method compared to the one by Kadrani et al. is the shape of its feasible set. We do not have
the problem that the feasible set is almost disconnected and additionally the feasible set of the
original MPCC is contained in all relaxed feasible sets. This is an advantage when it comes to
the numerical realization of the relaxation method since we may terminate the algorithm early
when the solution of one of the relaxed problems is already feasible for the MPCC.

8.1. Properties of the Relaxed NLPs

Our relaxation is based on the function ϕ : R2 → R defined by

ϕ(a, b) =




ab, if a + b ≥ 0,
−1

2 (a2 + b2), if a + b < 0.

This function has the following elementary properties.

Lemma 8.3 (a) ϕ is an NCP-function, i.e. ϕ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.

(b) ϕ is continuously differentiable with gradient

∇ϕ(a, b) =




�
b
a

�
, if a + b ≥ 0,

�
−a
−b

�
, if a + b < 0.
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(c) ϕ has the property that

ϕ(a, b)
�
> 0, if a > 0 and b > 0,
< 0, if a < 0 or b < 0.

Proof.

(a) First suppose that a ≥ 0, b ≥ 0, ab = 0. Then a + b ≥ 0, and the definition of ϕ therefore
gives ϕ(a, b) = ab = 0. Conversely, assume that ϕ(a, b) = 0. If a + b ≥ 0, it then follows
that ab = 0 and thus a ≥ 0, b = 0 or a = 0, b ≥ 0. On the other hand, if a + b < 0, we have
−1

2 (a2 + b2) = 0 which, in turn, implies a = b = 0, a contradiction to a + b < 0.

(b) This statement follows immediately from standard calculus rules.

(c) Using the continuity of ϕ together with the NCP-function property of part (a), it follows
that ϕ has the same sign in all points of the positive orthant, as well as the same sign in
all points in the other three orthants. Since ϕ(1, 1) = 1 > 0 and ϕ(−1,−1) = −1 < 0, the
statement follows. �

Based on this function, we define a continuously differentiable mapping Φ : Rn → Rq compo-
nentwise by

Φi(x; t) := ϕ
�
Gi(x) − t,Hi(x) − t

�

=




�
Gi(x) − t

��
Hi(x) − t

�
, if Gi(x) + Hi(x) ≥ 2t,

−1
2
�
(Gi(x) − t)2 + (Hi(x) − t)2�, if Gi(x) + Hi(x) < 2t,

where t ≥ 0 is an arbitrary parameter. With this function, we can formulate the relaxed or
regularized problem RKS (t) for t ≥ 0 as

min f (x) subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , q, (8.1)
Hi(x) ≥ 0 ∀i = 1, . . . , q,
Φi(x; t) ≤ 0 ∀i = 1, . . . , q.

Hence, in our approach, we replace the complementarity conditions

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

by the conditions
Gi(x) ≥ 0, Hi(x) ≥ 0, Φi(x; t) ≤ 0 ∀i = 1, . . . , q

which, from a geometric point of view, gives a set of the form shown in Figure 8.1.
Similar to the index sets used for MPCCs before, we define

Ig(x) := {i | gi(x) = 0},
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0 t
Gi

t

Hi

Figure 8.1.: Geometric interpretation of the new regularization

IG(x) := {i | Gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IΦ(x; t) := {i | Φi(x; t) = 0}

for t ≥ 0 and x feasible for RKS (t). We also use a partition of the index set IΦ(x; t) into the
following three subsets:

I00
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x) − t = 0,Hi(x) − t = 0},

I0+
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x) − t = 0,Hi(x) − t > 0},

I+0
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x) − t > 0,Hi(x) − t = 0}.

Note that these sets form a partition of IΦ(x; t) since the definition of Φ implies that

Φi(x; t) = 0 ⇐⇒ Gi(x) − t ≥ 0, Hi(x) − t ≥ 0,
�
Gi(x) − t

��
Hi(x) − t

�
= 0.

In view of Lemma 8.3, the function Φ is continuously differentiable with its gradient given by

∇Φi(x; t) =




(Hi(x) − t)∇Gi(x) + (Gi(x) − t)∇Hi(x), if Gi(x) + Hi(x) ≥ 2t,
−(Gi(x) − t)∇Gi(x) − (Hi(x) − t)∇Hi(x), if Gi(x) + Hi(x) < 2t

(8.2)

for all i = 1, . . . , q.
The following result summarizes some simple properties of the regularized program RKS (t).

Lemma 8.4 For t > 0 let X and XKS (t) be the feasible sets of the MPCC (1.1) and RKS (t),
respectively. Then the following three statements hold:

(a) XKS (0) = X.

(b) XKS (t1) ⊆ XKS (t2) for all 0 ≤ t1 ≤ t2.

(c)
�

t≥0 XKS (t) = X.
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Proof.

(a) Taking into account the properties of ϕ and the definition of Φ, the complementarity con-
ditions

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

are equivalent to
Gi(x) ≥ 0, Hi(x) ≥ 0, Φi(x; 0) ≤ 0

for all i = 1, . . . , q. This proves XKS (0) = X.

(b) Let 0 ≤ t1 ≤ t2 and x be an arbitrary element of XKS (t1). To prove x ∈ XKS (t2), we
only have to show Φi(x; t2) ≤ 0 for all i = 1, . . . , q. Let i be one of these indices. If
Gi(x)+Hi(x) < 2t2, we immediately obtainΦi(x; t2) ≤ 0 sinceΦi(x; t) is always nonpositive
in this case. Hence, the only case to consider is Gi(x) + Hi(x) ≥ 2t2. We want to prove
Φi(x; t2) = (Gi(x) − t2)(Hi(x) − t2) ≤ 0. Assume this is not true. Then either both values
Gi(x) − t2 and Hi(x) − t2 would have to be positive or both negative. However, if both
values were negative, we would have Gi(x) + Hi(x) < 2t2, a contradiction. If both values
were positive, Gi(x) − t1 and Hi(x) − t1 also were both positive and thus Φi(x; t1) > 0, a
contradiction to x ∈ XKS (t1).

(c) According to part (a) and (b), we know X = XKS (0) ⊆ XKS (t) for all t ≥ 0 and thus
X ⊆ �t≥0 XKS (t). Now let x ∈ �t≥0 XKS (t) be an arbitrary element. To prove x ∈ X, we
only have to show Φi(x; 0) ≤ 0 for all i = 1, . . . , q. Assume that there is an i such that
Φi(x; 0) > 0. This implies (in fact is equivalent to) Gi(x) > 0 and Hi(x) > 0. Now choose
an arbitrary t̄ > 0 with t̄ < min{Gi(x),Hi(x)}. This definition of t̄ yields Gi(x) + Hi(x) > 2t̄
and thus Φi(x; t̄) = (Gi(x) − t̄)(Hi(x) − t̄) > 0. Consequently, x � XKS (t̄) which is a
contradiction to x ∈ �t≥0 XKS (t). �

The previous result shows, in particular, that the feasible set X of the original MPCC is always
contained in the feasible set XKS (t) of the regularized program RKS (t) (in contrast to the approach
by Kadrani et al., and that our relaxation exhibits the desired behavior limt↓0 XKS (t) = X. Note
also that, from a geometric point of view, our regularized problem has a much nicer feasible set
than the one by Kadrani et al. which, we recall, consists of almost disconnected pieces.

Remark 8.5 (a) The particular NCP-function ϕ used here can be replaced by other suitable
NCP-functions. However, we stress that we cannot use an arbitrary NCP-function that,
geometrically, gives the same feasible set for the regularized problem RKS (t) since the
stationary point properties that will be shown in the subsequent section heavily depend on
the particular representation of this feasible set. Nevertheless, one particular alternative is
the mapping ϕ(a, b) := θ(a) + θ(b) − θ(|a − b|) with θ : R→ R given by

θ(τ) :=
�
−1

2τ
2, if τ < 0,

1
2τ

2, if τ ≥ 0 or θ(τ) =
1
3
τ3.

This function is a particular member of a class of NCP-functions introduced in [85]. It is
not difficult to see that our analysis goes through also for this mapping.
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(b) The regularization used in this thesis enlarges the feasible region coming from the com-
plementarity constraints to the north-eastern direction. Alternatively, we may also use a
regularization to the south-western direction by replacing the complementarity conditions
by

Gi(x) ≥ −t, Hi(x) ≥ −t, Φi(x; 0) ≤ 0 ∀i = 1, . . . , q

We may also combine the two relaxations and regularize with respect to the north-eastern
and the south-western direction simultaneously. Figure 8.2 illustrates the three possible
regularizations.

0 t
Gi

t

Hi

(a) north-eastern direction

−t 0
Gi

−t

Hi

(b) south-western direction

−t 0 t
Gi

−t

t

Hi

(c) both directions combined

Figure 8.2.: The three possible relaxations

8.2. Convergence Properties

8.2.1. Convergence to M- and S-Stationary Points

In this section, we are concerned with stationarity properties of limit points of our relaxation
method. If we solve RKS (tk) for a sequence {tk} ↓ 0 and obtain KKT points (xk, λk, µk, γk, νk, δk)
of RKS (tk), where xk → x∗, what kind of MPCC-stationarity can we expect in x∗? The next
theorem gives an answer to this question.

Theorem 8.6 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT points of RKS (tk) with
xk → x∗. If MPCC-CPLD holds in x∗, then x∗ is an M-stationary point of the MPCC (1.1).

Proof. Obviously, x∗ is feasible for the MPCC (1.1) and for all k ∈ N sufficiently large, we have

Ig(xk) ⊆ Ig(x∗),
IG(xk) ∪ I00

Φ (xk; tk) ∪ I0+
Φ (xk; tk) ⊆ I00(x∗) ∪ I0+(x∗), (8.3)

IH(xk) ∪ I00
Φ (xk; tk) ∪ I+0

Φ (xk; tk) ⊆ I00(x∗) ∪ I+0(x∗).
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Since all (xk, λk, µk, γk, νk, δk) are KKT points of RKS (tk), we have

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

q�

i=1

γk
i∇Gi(xk) −

q�

i=1

νk
i∇Hi(xk)

+

q�

i=1

δk
i∇Φi(xk; tk)

with

λk
i = 0 ∀i � Ig(xk) and λk

i ≥ 0 ∀i ∈ Ig(xk),
γk

i = 0 ∀i � IG(xk) and γk
i ≥ 0 ∀i ∈ IG(xk),

νk
i = 0 ∀i � IH(xk) and νk

i ≥ 0 ∀i ∈ IH(xk),
δk

i = 0 ∀i � IΦ(xk; t) and δk
i ≥ 0 ∀i ∈ IΦ(xk; tk).

Since the representation of ∇Φi immediately gives ∇Φi(xk; tk) = 0 for all i ∈ I00
Φ (xk; tk) and all

k ∈ N, we may also assume δk
i = 0 for all i ∈ I00

Φ (xk; tk) and all k ∈ N. Thus, we can rewrite the
equation above as

0 = ∇ f (xk) +
m�

i=1

λk
i∇gi(xk) +

p�

i=1

µk
i∇hi(xk) −

q�

i=1

γk
i∇Gi(xk) −

q�

i=1

νk
i∇Hi(xk)

+

q�

i=1

δG,ki ∇Gi(xk) +
q�

i=1

δH,k
i ∇Hi(xk)

where

δG,ki =



δk

i (Hi(xk) − tk), if i ∈ I0+
Φ (xk; tk),

0, else,

δH,k
i =



δk

i (Gi(xk) − tk), if i ∈ I+0
Φ (xk; tk),

0, else.

Note that the multipliers δG,k and δH,k are nonnegative, too. According to Lemma 7.1, we may
assume without loss of generality that the gradients corresponding to nonvanishing multipliers
in this equation are linearly independent for all k ∈ N (note that this may change the multipliers,
but a previously positive multiplier will stay at least nonnegative and a vanishing multiplier will
remain zero).

Our next step is to prove that the sequence {(λk, µk, γk, νk, δG,k, δH,k)} is bounded. Assuming the
contrary, we can find a subsequence K such that

(λk, µk, γk, νk, δG,k, δH,k)
�(λk, µk, γk, νk, δG,k, δH,k)� →K (λ, µ, γ, ν, δG, δH) � 0.
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Dividing by �(λk, µk, γk, νk, δG,k, δH,k)� and passing to the limit in the equation above yields

0 =

m�

i=1

λi∇gi(x∗) +
p�

i=1

µi∇hi(x∗) −
q�

i=1

γi∇Gi(x∗) −
q�

i=1

νi∇Hi(x∗)

+

q�

i=1

δGi ∇Gi(x∗) +
q�

i=1

δH
i ∇Hi(x∗),

i.e., the gradients

{∇gi(x∗) | i ∈ supp(λ)} ∪ �{∇hi(x∗) | i ∈ supp(µ)}
∪{∇Gi(x∗) | i ∈ supp(γ) ∪ supp(δG)} ∪ {∇Hi(x∗) | i ∈ supp(ν) ∪ supp(δH)}� (8.4)

are positive-linearly dependent. MPCC-CPLD guarantees that they remain linearly dependent
in a whole neighborhood. This, however, is a contradiction to the linear independence of these
gradients in xk. Here, we use

supp(λ, µ, γ, ν, δG, δH) ⊆ supp(λk, µk, γk, νk, δG,k, δH,k)

for all k sufficiently large and (8.3).
Consequently, our assumption was wrong and thus the sequence {(λk, µk, γk, νk, δG,k, δH,k)} is

bounded. Therefore, we can assume without loss of generality that the whole sequence is conver-
gent to some limit (λ∗, µ∗, γ∗, ν∗, δG,∗, δH,∗) . Since IG(xk)∩ I0+

Φ (xk; tk) = ∅ and IH(xk)∩ I+0
Φ (xk; tk) =

∅ for all k ∈ N, it is easy to see that the multipliers

γ̂i =




γ∗i if i ∈ supp(γ∗),
−δG,∗i if i ∈ supp(δG,∗),
0 else

and ν̂i =




ν∗i if i ∈ supp(ν∗),
−δH,∗

i if i ∈ supp(δH,∗),
0 else

are well-defined, and we obtain

0 = ∇ f (x∗) +
m�

i=1

λ∗i∇gi(x∗) +
p�

i=1

µ∗i∇hi(x∗) −
q�

i=1

γ̂i∇Gi(x∗) −
q�

i=1

ν̂i∇Hi(x∗).

Here, λ∗ ≥ 0 and

supp(λ∗) ⊆ Ig(xk) ⊆ Ig(x∗),
supp(γ̂) = supp(γ∗) ∪ supp(δG,∗) ⊆ IG(xk) ∪ I0+

Φ (xk; tk) ⊆ I00(x∗) ∪ I0+(x∗),
supp(ν̂) = supp(ν∗) ∪ supp(δH,∗) ⊆ IH(xk) ∪ I+0

Φ (xk; tk) ⊆ I00(x∗) ∪ I+0(x∗)

for all k sufficiently large. Consequently, we have γ̂i = 0 for all i ∈ I+0(x∗) and ν̂i = 0 for all
i ∈ I0+(x∗), i.e., (x∗, λ∗, µ∗, γ̂, ν̂) is at least a weakly stationary point of the MPCC (1.1). To prove
M-stationarity, assume that there is an i ∈ I00(x∗) with γ̂i < 0 and ν̂i � 0 (the case γ̂i � 0 and ν̂i < 0
can be treated in a symmetric way). The condition γ̂i < 0 implies i ∈ supp(δG,∗) ⊆ I0+

Φ (xk; tk) for
all k sufficiently large. Because of

I0+
Φ (xk; tk) ∩

�
IH(xk) ∪ I+0

Φ (xk; tk)
�
= ∅
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for all k ∈ N, this yields ν̂i = 0 in contradiction to our assumption. �

Under stronger assumptions like the one defined below, we can even obtain S-stationarity of the
limit point.

Definition 8.7 Let {tk} ↓ 0 and {xk} be a sequence of feasible points of RKS (tk) with xk → x∗. If
for all k sufficiently large

Gi(xk)
Hi(xk)

≤ 1 for all i ∈ I+0
Φ (xk; tk)) ∩ I00(x∗), and

Hi(xk)
Gi(xk)

≤ 1 for all i ∈ I0+
Φ (xk; tk) ∩ I00(x∗)

the sequence {xk} is called asymptotically weakly nondegenerate.

Related asymptotic weak nondegeneracy conditions were also used in [96, 81, 67]. A direct
comparison of the different nondegeneracy conditions is not possible in general since they depend
on the particular regularization. However, our impression is that our definition is a relatively
weak assumption that will often be satisfied in practice.

The next result shows that MPCC-CPLD together with the asymptotic weak nondegeneracy
condition already guarantees that the limit point is S-stationary.

Theorem 8.8 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT points of RKS (tk)
with xk → x∗. If MPCC-CPLD holds in x∗ and the sequence {xk} is asymptotically weakly
nondegenerate, then x∗ is an S-stationary point of the MPCC (1.1).

Proof. Using Theorem 8.6, we know that x∗ is at least M-stationary. To verify S-stationarity, we
use the proof of Theorem 8.6 again. The only change is that, in the very end, we now additionally
apply the asymptotic weak nondegeneracy condition: Assume that (x∗, λ∗, µ∗, γ̂, ν̂) is not an S-
stationary point of the MPCC (1.1). Then we can find an i ∈ I00(x∗), where γ̂i < 0 or ν̂i < 0.
Let us assume γ̂i < 0 without loss of generality. The second case can be treated in the same
way. Then, by construction, i ∈ supp(δG,∗) ⊆ I0+

Φ (xk; tk) and consequently Gi(xk) = tk, Hi(xk) > tk

for all k sufficiently large. This however implies Hi(xk)
Gi(xk) > 1 for all those k in contradiction to the

assumption of asymptotic weak nondegeneracy. �

We note that both Theorem 8.6 and Theorem 8.8 require significantly weaker assumptions than
those regularization methods we discussed before, except for the one by Kadrani et al. These
methods need MPCC-MFCQ (except for the one by Steffensen and Ulbrich) instead of MPCC-
CPLD for convergence to C-stationary points, MPCC-LICQ plus an additional second-order
condition, which is not needed here, for convergence to M-stationary points and even more con-
ditions for convergence to S-stationary points. In this context, we also refer to the discussion in
Section 9.1.

To close this section, we would like to briefly come back to Example 8.1 from the beginning
of this chapter. Analogously to the relaxation scheme by Kadrani et al. the relaxed feasible
sets corresponding to this new method only have stationary points in (t, 1)T and (1, t)T , which
are converging to the global minima. Convergence of a sequence of stationary points to the
C-stationary origin is not possible due to Theorem 8.6.
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8.2.2. Existence of Multipliers

There is an implicit assumption used in the previous two convergence results, namely that there
exists a sequence of KKT points for the regularized problems RKS (tk). In particular, we therefore
require the existence of Lagrange multipliers. The aim of this section is to show that these
Lagrange multipliers indeed exist under suitable assumptions. The most natural idea would be
to show that the regularized problems RKS (tk) (at least for tk > 0 sufficiently small) inherit some
constraint qualification from the original MPCC. However, this is not true in general. In fact, the
following example shows that the MPCC itself might satisfy MPCC-LICQ at a feasible point x∗,
whereas the corresponding regularized problem violates standard LICQ.

Example 8.9 (Example 5.8 continued) Consider again the two-dimensional MPCC

min
x1,x2

f (x) subject to 0 ≤ x1 ⊥ x2 ≥ 0.

Obviously, MPCC-LICQ holds at x∗ = (0, 0). Now, consider the sequences tk =
1
k and xk = ( 1

k ,
1
k )

for k ∈ N. It is easy to see that tk ↓ 0 and xk → x∗. Furthermore, xk is feasible for RKS (tk) for all
k ∈ N. However, for all k ∈ N the only active gradient is

∇Φ(xk; tk) =
�
xk

2 − tk

xk
1 − tk

�
=

�
0
0

�
,

hence LICQ for the nonlinear program RKS (tk) does not hold in xk for all k ∈ N. In fact, not even
ACQ, one of the weakest constraint qualifications known for standard nonlinear programs, holds
in xk. However, the even weaker GCQ is satisfied. �

Inspired by this example, we are going to prove that, whenever MPCC-LICQ holds in a point x∗
which is feasible for (1.1), there is a neighborhood of x∗ such that for all t > 0 sufficiently small
and all x in this neighborhood which are feasible for RKS (t), standard GCQ holds. In the proof of
this result, we are going to work with some nonlinear programs that are closely related to RKS (t)
but have better properties concerning constraint qualifications. Let t > 0 and x̂ be feasible for
RKS (t). Let I be an arbitrary subset of I00

Φ (x̂; t) and Ī := I00
Φ (x̂; t) \ I its complement. We define

the nonlinear program NLP(t, I) as

min f (x) subject to gi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0,Hi(x) ≥ 0,Gi(x) ≤ t ∀i ∈ I0+

Φ (x̂; t) ∪ I, (8.5)
Gi(x) ≥ 0,Hi(x) ≥ 0,Hi(x) ≤ t ∀i ∈ I+0

Φ (x̂; t) ∪ Ī,
Gi(x) ≥ 0,Hi(x) ≥ 0,Φi(x; t) ≤ 0 ∀i � IΦ(x̂; t)

and denote its feasible set by X(t, I). Then it is easy to see that X(t, I) ⊆ XKS (t) and that x̂ is
feasible for NLP(t, I), too. The following lemma sheds some light on the relation between the
tangent cone of RKS (t) and the tangent cones of NLP(t, I).
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Lemma 8.10 For all t > 0 and all x̂ feasible for RKS (t),

TXKS (t)(x̂) =
�

I⊆I00
Φ

(x̂;t)

TX(t,I)(x̂).

Proof. To prove the first inclusion, let d be an arbitrary element of TXKS (t)(x̂). This implies
that there exists a sequence xk →XKS (t) x̂ and a sequence τk ↓ 0 such that d = limk→∞

xk−x̂
τk
. If

we can find an I ⊆ I00
Φ (x̂; t) such that xk ∈ X(t, I) for infinitely many k ∈ N, we have proven

d ∈ �I⊆I00
Φ

(x̂;t) TX(t,I)(x̂). However, for every i ∈ I00
Φ (x̂; t) and all k ∈ N, either Gi(xk) ≤ t or

Hi(xk) ≤ t. Hence, by choosing an appropriate subsequence K ⊆ N and defining I as the set of
all indices i where Gi(xk) ≤ t for all k ∈ K, we can construct such a set I.

To prove the second inclusion, choose an arbitrary I ⊆ I00
Φ (x̂, t) and an arbitrary d ∈ TX(t,I)(x̂).

This implies the existence of sequences xk →X(t,I) x̂ and τk ↓ 0 such that d = limk→∞
xk−x̂
τk

.
Because of X(t, I) ⊆ XKS (t), this yields d ∈ TXKS (t)(x̂). �

Now, we are in a position to state and prove the main result of this section.

Theorem 8.11 Let x∗ be feasible for the MPCC (1.1) such that MPCC-LICQ holds in x∗. Then
there is a t̄ > 0 and a neighborhood U(x∗) such that the following holds for all t ∈ (0, t̄]: If
x ∈ U(x∗) is feasible for RKS (t), then standard GCQ for RKS (t) holds in x.

Proof. Since MPCC-LICQ holds in x∗, the gradients

{∇gi(x) | i ∈ Ig}∪ {∇hi(x) | i = 1, . . . , p}∪ {∇Gi(x) | i ∈ I00 ∪ I0+}∪ {∇Hi(x) | i ∈ I00 ∪ I+0} (8.6)

are linearly independent in x∗. Because of the continuity of the derivatives, they remain linearly
independent in a whole neighborhood. Hence, we can choose t̄ > 0 and U(x∗) such that for all
t ∈ (0, t̄] and all x ∈ U(x∗) feasible for RKS (t) the gradients (8.6) are linearly independent in x,
and the following inclusions hold, cf. (8.3):

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),
IH(x) ⊆ I00(x∗) ∪ I+0(x∗),

I00
Φ (x; t) ∪ I0+

Φ (x; t) ⊆ I00(x∗) ∪ I0+(x∗),
I00
Φ (x; t) ∪ I+0

Φ (x; t) ⊆ I00(x∗) ∪ I+0(x∗).

Now, choose an arbitrary t ∈ (0, t̄] and x̂ ∈ U(x∗) such that x̂ is feasible for RKS (t). Then x̂ is also
feasible for NLP(t, I) for all I ⊆ I00

Φ (x̂, t) and the active gradients are

{∇gi(x̂) | i ∈ Ig(x̂)} ∪ {∇hi(x̂) | i = 1, . . . , p} ∪
{∇Gi(x̂) | i ∈ IG(x̂) ∪ I0+

Φ (x̂; t) ∪ I} ∪ {∇Hi(x̂) | i ∈ IH(x̂) ∪ I+0
Φ (x̂; t) ∪ Ī}.

Thus, by construction of t̄ and U(x∗), standard LICQ for NLP(t, I) holds in x̂. Since LICQ implies
ACQ, we have TX(t,I)(x̂) = LX(t,I)(x̂) for all I ⊆ I00

Φ (x̂; t). Together with Lemma 8.10, this yields

TXKS (t)(x̂) =
�

I⊆I00
Φ

(x̂;t)

TX(t,I)(x̂) =
�

I⊆I00
Φ

(x̂;t)

LX(t,I)(x̂).
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Passing to the polar cone, we obtain

TXKS (t)(x̂)◦ =
�

I⊆I00
Φ

(x̂,t)

LX(t,I)(x̂)◦, (8.7)

see [13, Theorem 3.1.9]. To prove that GCQ for RKS (t) holds in x̂, we only have to show the
inclusion TXKS (t)(x̂)◦ ⊆ LXKS (t)(x̂)◦, the opposite inclusion is always true. By definition, the lin-
earized tangent cone of NLP(t, I) in x̂ is given by

LX(t,I)(x̂) = {d ∈ Rn | ∇gi(x̂)T d ≤ 0 ∀i ∈ Ig(x̂),
∇hi(x̂)T d = 0 ∀i = 1, . . . , p,
∇Gi(x̂)T d ≥ 0 ∀i ∈ IG(x̂),
∇Hi(x̂)T d ≥ 0 ∀i ∈ IH(x̂),
∇Gi(x̂)T d ≤ 0 ∀i ∈ I0+

Φ (x̂; t) ∪ I,
∇Hi(x̂)T d ≤ 0 ∀i ∈ I+0

Φ (x̂; t) ∪ Ī}.
Therefore, Lemma 7.2 yields

LX(t,I)(x̂)◦ = {s ∈ Rn | s =
�

i∈Ig(x̂)

λi∇gi(x̂) +
p�

i=1

µi∇hi(x̂) −
�

i∈IG(x̂)

γi∇Gi(x̂)

−
�

i∈IH(x̂)

νi∇Hi(x̂) +
�

i∈I0+
Φ

(x̂;t)∪I

δi∇Gi(x̂) +
�

i∈I+0
Φ

(x̂;t)∪Ī

σi∇Hi(x̂),

λ, γ, ν, δ,σ ≥ 0}.
Now, let s be an arbitrary element of TXKS (t)(x̂)◦. The representation of TXKS (t)(x̂)◦ in (8.7) then
implies s ∈ LX(t,I)(x̂)◦ for all I ⊆ I00

Φ (x̂, t). If we fix such an index set I, we obtain

s =
�

i∈Ig(x̂)

λi∇gi(x̂) +
p�

i=1

µi∇hi(x̂) −
�

i∈IG(x̂)

γi∇Gi(x̂) −
�

i∈IH(x̂)

νi∇Hi(x̂)

+
�

i∈I0+
Φ

(x̂;t)∪I

δi∇Gi(x̂) +
�

i∈I+0
Φ

(x̂;t)∪Ī

σi∇Hi(x̂)

with some multipliers µ ∈ Rp and λ, γ, ν, δ,σ ≥ 0. On the other hand, s ∈ LX(t,Ī)(x̂)◦ also holds,
thus we also have

s =
�

i∈Ig(x̂)

λ̄i∇gi(x̂) +
p�

i=1

µ̄i∇hi(x̂) −
�

i∈IG(x̂)

γ̄i∇Gi(x̂) −
�

i∈IH(x̂)

ν̄i∇Hi(x̂)

+
�

i∈I0+
Φ

(x̂;t)∪Ī

δ̄i∇Gi(x̂) +
�

i∈I+0
Φ

(x̂;t)∪I

σ̄i∇Hi(x̂)

with some multipliers µ̄ ∈ Rp and λ̄, γ̄, ν̄, δ̄, σ̄ ≥ 0. However, by construction of t̄ and U(x∗), the
gradients

{∇gi(x̂) | i ∈ Ig(x̂)} ∪ {∇hi(x̂) | i = 1, . . . , p} ∪
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{∇Gi(x̂) | i ∈ IG(x̂) ∪ I0+
Φ (x̂; t) ∪ I00

Φ (x̂; t)} ∪ {∇Hi(x̂) | i ∈ IH(x̂) ∪ I+0
Φ (x̂; t) ∪ I00

Φ (x̂; t)}
are linearly independent, hence the multipliers have to be the same. In particular, this implies
δi = 0 for all i ∈ I and σi = 0 for all i ∈ Ī. Since an elementary calculation shows that

LXKS (t)(x̂) = {d ∈ Rn | ∇gi(x̂)T d ≤ 0 ∀i ∈ Ig(x̂),
∇hi(x̂)T d = 0 ∀i = 1, . . . , p,
∇Gi(x̂)T d ≥ 0 ∀i ∈ IG(x̂),
∇Hi(x̂)T d ≥ 0 ∀i ∈ IH(x̂),
∇Gi(x̂)T d ≤ 0 ∀i ∈ I0+

Φ (x̂; t),
∇Hi(x̂)T d ≤ 0 ∀i ∈ I+0

Φ (x̂; t)},
application of Lemma 7.2 yields s ∈ LXKS (t)(x̂)◦. Note that the representation of LXKS (t)(x̂) above
exploits the structure of ∇Φ(x; t) as given in (8.2). Since s ∈ TXKS (t)(x̂)◦ was chosen arbitrarily,
we have proven TXKS (t)(x̂)◦ ⊆ LXKS (t)(x̂)◦, i.e., GCQ for RKS (t) holds in x̂. �

The existence of Lagrange multipliers in local minima of RKS (t) is a direct consequence of The-
orem 8.11.

Theorem 8.12 Let x∗ be feasible for the MPCC (1.1) such that MPCC-LICQ holds in x∗. Then
there is a t̄ > 0 and a neighborhood U(x∗) such that the following holds for all t ∈ (0, t̄]:
If x ∈ U(x∗) is a local minimizer of RKS (t), then there exist Lagrange multipliers such that x
together with these multipliers is a KKT point of RKS (t).

Note that Theorem 8.12 implies the existence of multipliers at a local minimum of the regularized
problem RKS (t) since Theorem 8.11 shows that the standard GCQ holds for the regularized prob-
lem under the MPCC-LICQ assumption. Moreover, recall that Example 8.9 indicates that we
cannot expect a stronger result, since even ACQ may not hold for RKS (t) under MPCC-LICQ. In
a sense, this is similar to some results that are known for the MPCC itself, cf. [40]. However, the
following result shows that there is a significant difference between MPCCs themselves and our
regularized problem RKS (t). In fact, it is known that the MPCC does not satisfy standard LICQ
(or even the weaker MFCQ) at an arbitrary feasible point. On the other hand, the next result
shows that standard LICQ holds for RKS (t) if MPCC-LICQ is satisfied and, in addition, the index
set I00

Φ (x; t) is empty. The latter assumption excludes only points where
�
Gi(x),Hi(x)

�
= (t, t)

for at least one index i. In fact, this result also shows that MPCC-CPLD for the original MPCC
implies standard CPLD for the regularized subproblems RKS (t).

Theorem 8.13 Let x∗ be feasible for the MPCC (1.1) such that MPCC-LICQ (MPCC-CPLD)
holds in x∗. Then there is a t̄ > 0 and a neighborhood U(x∗) such that the following holds for all
t ∈ (0, t̄]: If x ∈ U(x∗) is feasible for RKS (t) with I00

Φ (x; t) = ∅, then standard LICQ (CPLD) for
RKS (t) holds in x.

Proof. We first verify the assertion for MPCC-LICQ. Since MPCC-LICQ holds in x∗, the gradi-
ents

{∇gi(x) | i ∈ Ig(x∗)} ∪ {∇hi(x) | i = 1, . . . , p}
∪ {∇Gi(x) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x) | i ∈ I00(x∗) ∪ I+0(x∗)} (8.8)
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are linearly independent in x = x∗. Because of the continuity of the derivatives, they remain
linearly independent in a whole neighborhood. Thus, we can choose t̄ > 0 and U(x∗) such that
for all t ∈ (0, t̄] and all x ∈ U(x∗) feasible for RKS (t), the gradients (8.8) are linearly independent
in x, and the following inclusions hold:

Ig(x) ⊆ Ig(x∗),
IG(x) ⊆ I00(x∗) ∪ I0+(x∗),
IH(x) ⊆ I00(x∗) ∪ I+0(x∗), (8.9)

I00
Φ (x; t) ∪ I0+

Φ (x; t) ⊆ I00(x∗) ∪ I0+(x∗),
I00
Φ (x; t) ∪ I+0

Φ (x; t) ⊆ I00(x∗) ∪ I+0(x∗).

Now, choose an arbitrary t ∈ (0, t̄]. When x ∈ U(x∗) is feasible for RKS (t) with I00
Φ (x; t) = ∅, the

active gradients in x are

{∇gi(x) | i ∈ Ig(x)} ∪ {∇hi(x) | i = 1, . . . , p} ∪
∪{−∇Gi(x) | i ∈ IG(x)} ∪ {(Hi(x) − t)∇Gi(x) | i ∈ I0+

Φ (x; t)}
∪{−∇Hi(x) | i ∈ IH(x)} ∪ {(Gi(x) − t)∇Hi(x) | i ∈ I+0

Φ (x; t)},

where Gi(x) − t > 0 for i ∈ I+0
Φ (x; t) and Hi(x) − t > 0 for i ∈ I0+

Φ (x; t). Hence, the choice of t̄ and
U(x∗) implies that these gradients are linearly independent, too. Therefore, standard LICQ holds
in x.

It remains to prove the assertion under MPCC-CPLD. To this end, assume that there were
sequences tk ↓ 0 and xk → x∗ with xk feasible for RKS (tk) and I00

Φ (xk; tk) = ∅ for all k ∈ N such
that standard CPLD is not satisfied in xk for all k ∈ N. Violation of CPLD means that there are
subsets Ik

1 ⊆ Ig(xk), Ik
2 ⊆ {1, . . . , p}, Ik

3 ⊆ IG(xk), Ik
4 ⊆ IH(xk), Ik

5 ⊆ I0+
Φ (xk; tk), Ik

6 ⊆ I+0
Φ (xk; tk) such

that the gradients
�
{∇gi(xk) | i ∈ Ik

1} ∪ {−∇Gi(xk) | i ∈ Ik
3} ∪ {−∇Hi(xk) | i ∈ Ik

4}
∪{(Hi(xk) − tk)∇Gi(xk) | i ∈ Ik

5} ∪ {(Gi(xk) − tk)∇Hi(xk) | i ∈ Ik
6}
�
∪ {∇hi(xk) | i ∈ Ik

2}

are positive-linearly dependent in xk, but linearly independent in points arbitrary close to xk. We
may assume without loss of generality Ik

i = Ii for all i = 1, . . . , 6. For all k sufficiently large, we
know Ig(xk) ⊆ Ig(x∗) and thus I1 ⊆ Ig(x∗). Analogously, we obtain I3 ∪ I5 ⊆ I00(x∗) ∪ I0+(x∗) and
I4 ∪ I6 ⊆ I00(x∗) ∪ I+0(x∗). Positive-linear dependence in xk as we stated it above also implies
positive-linear dependence of the gradients

{∇gi(xk) | i ∈ I1} ∪
�
{∇hi(xk) | i ∈ I2} ∪ {∇Gi(xk) | i ∈ I3 ∪ I5} ∪ {∇Hi(xk) | i ∈ I4 ∪ I6}

�
,

and because of the violation of CPLD, we can find a sequence yk → x∗ such that these gradi-
ents are linearly independent in yk. If these gradients were positive-linearly independent in x∗,
by continuity they would remain positive-linearly independent in a whole neighborhood. This,
however, contradicts the existence of the sequence xk → x∗. On the other hand, if they were
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positive-linearly dependent in x∗, MPCC-CPLD would imply that they remain linearly depen-
dent in a neighborhood, which contradicts the existence of yk → x∗. This concludes the proof.

�

The previous result also holds for some other constraint qualifications. In fact, it is possible
to show that MPCC-MFCQ for the original MPCC implies standard MFCQ for the regularized
problem. Furthermore, MPCC-CRCQ for the MPCC itself also implies standard CRCQ for the
regularized problem RKS (t). The corresponding proofs are very similar to the one of Theorem
8.13, so we skip the details.

We close this section with the following observation: Theorem 8.11 is based on the assumption
that MPCC-LICQ holds in x∗. This assumption is quite strong in contrast to the one needed for
Theorem 8.6, namely that MPCC-CPLD holds in x∗. However, the following example shows that
it will not be easy to relax the assumptions in Theorem 8.11.

Example 8.14 (Example 5.3 continued) Consider again the following 3-dimensional MPCC

min
x1,x2,x3

f (x) subject to −4x1 + x3 ≤ 0,

−4x2 + x3 ≤ 0,
0 ≤ x1 ⊥ x2 ≥ 0

with x∗ = (0, 0, 0)T . We have already seen that MPCC-LICQ is violated in x∗, whereas MPCC-
MFCQ is satisfied. For t > 0 we define xt := (t, t, 4t)T . Then xt is feasible for RKS (t) and the
cones are given by

TXKS (t)(xt) = {d | min{d1, d2} ≤ 0, d3 ≤ 4 min{d1, d2}},
LXKS (t)(xt) = {d | (−4, 0, 1)d ≤ 0, (0,−4, 1)d ≤ 0}.

Hence, the corresponding polar cones are

TXKS (t)(xt)◦ = {s | s1 ≤ 0, s2 ≤ 0, s3 ≥ −
1
4

(s1 + s2)},

LXKS (t)(xt)◦ = {s | s1 ≤ 0, s2 ≤ 0, s3 = −
1
4

(s1 + s2)}.

Hence, GCQ is violated in all points xt, t > 0. �

8.2.3. Existence of Stationary Points

In the last section, we have proven that, under the assumption that MPCC-LICQ holds in a point
x∗ feasible for the MPCC (1.1), every local minimum x of RKS (t) with t > 0 sufficiently small
which is close to x∗ is a stationary point of RKS (t). Naturally, the following question arises:
When x∗ is a local minimum of the MPCC, under what assumptions can we find local minima
of RKS (t) close to x∗? Recall from Example 8.2 that the existence of local minima and thus
stationary points of the relaxed problems cannot be taken for granted. However, we would like
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to point out that the new relaxation we consider here does, in contrast to some other methods,
have stationary points in the example mentioned above, namely all points (x1, t)T with x1 > t are
stationary. Nonetheless, there are also MPCCs where we cannot find local minima or stationary
points of the relaxed problems close to every solution of the MPCC without further assumptions.
This is illustrated by the following example from [67].

Example 8.15 Consider the following 2-dimensional MPCC

min
x1,x2

f (x) = x1(1 − x2
2) subject to G(x) = x1 ≥ 0,

H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 = 0.

This optimization problem has only global minima, namely all points (0, x2)T with x2 ≥ 0, which
are S-stationary. For t < 1 however, the relaxed problems RKS (t) only have stationary points in
(0, x2)T with x2 ∈ [0, 1]. Hence, we cannot find stationary points of RKS (t) close to the global
minimum (0, 2) for example, even though MPCC-LICQ is satisfied there. �

Analogously to [67], we can give the following answer to the question above. This theorem
based on [67, Theorem 5.1] provides the existence of local minima of RKS (t) in a neighborhood
of a solution of (1.1).

Theorem 8.16 Let x∗ be a strict local minimum of the MPCC (1.1). Then there is a t̄ > 0 and a
neighborhood U(x∗) such that RKS (t) has a local minimum in U(x∗) for all t ∈ (0, t̄].

Proof. Since x∗ is a strict local minimum, we can find an r > 0 such that f (x) > f (x∗) for all
x ∈ X ∩ cl(B(x∗; r)). The existence of an ε > 0 such that

f (x) ≥ f (x∗) + ε

for all x ∈ X ∩ bd(B(x∗; r)) then directly follows.
We are now going to prove that this implies the existence of an t̄ > 0 such that

f (x) ≥ f (x∗) +
ε

2

for all x ∈ XKS (t) ∩ bd(B(x∗; r)), where t ∈ (0, t̄]. To this end, assume by contradiction that there
was a sequence tk ↓ 0 and a sequence xk ∈ XKS (tk) ∩ bd(B(x∗; r)) with f (xk) < f (x∗) + ε2 for
all k ∈ N. Since all xk are elements of the bounded set cl(B(x∗; r)), we can assume without loss
of generality that the sequence xk converges to some limit x̄. Because of tk ↓ 0, we can apply
Lemma 8.4 and obtain x̄ ∈ X. By continuity, we know

f (x̄) ≤ f (x∗) +
ε

2
< f (x∗) + ε

and at the same time x̄ ∈ X ∩ bd(B(x∗; r)). Together, this is a contradiction to the choice of r and
ε.
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Now that we have proven the existence of a t̄ > 0 with the properties mentioned above, choose
an arbitrary t ∈ (0, t̄]. Since f is continuous, it attains a global minimum on the compact set
XKS (t) ∩ cl(B(x∗; r)). Since x∗ ∈ XKS (t) ∩ cl(B(x∗; r)) and by construction f (x) > f (x∗) for all
x ∈ XKS (t) ∩ bd(B(x∗; r)), this global minimum lies in the interior of B(x∗; r) and therefore is
a local minimum of f on XKS (t). Thus, we have proven that the statement holds true with the
neighborhood U(x∗) = B(x∗; r). �

Note that, in the result above, the neighborhood U(x∗) can be chosen arbitrarily small. Hence,
we can find local minima of the relaxed problems RKS (t) for sufficiently small parameters t in
every neighborhood of x∗. When MPCC-LICQ holds in x∗, these local minima are also stationary
points of the relaxed problems due to Theorem 8.11.
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9. Theoretical and Numerical

Comparison of the Relaxation

Methods

Having analyzed the theoretical properties of five relaxation methods in the last two chapters, we
are now going to compare these methods. After collecting the previous results and discussing
the theoretical differences, we make a numerical experiment based on the MacMPEC collection
of test problems to see if they also show a different numerical behavior.

9.1. Comparison of the Theoretical Properties

In Table 9.1, we try to summarize the results of the Chapters 7 and 8 in a very concise way.
The columns contain the five relaxation schemes discussed here. The first two lines then state
under which MPCC constraint qualification a limit point of a sequence generated by one of these
methods is either C- or M-stationary. The second part of the table indicates under which MPCC
constraint qualification the corresponding regularized problem satisfies one of the standard NLP
constraint qualifications. Of course, this part only holds locally around a given feasible point x∗
of the MPCC and for sufficiently small relaxation parameters t.

Relaxation Scholtes Lin–Fukush. Kadrani et al. Steff.–Ulbrich new relax.
stationary point results

Assuming MPCC-MFCQMPCC-MFCQ MPCC-CPLD MPCC-CPLD MPCC-CPLD
limit pts. are C–stationary C–stationary M–stationary C–stationary M–stationary

existence of Lagrange multipliers
Assuming MPCC-MFCQMPCC-MFCQ MPCC-LICQ MPCC-LICQ MPCC-LICQ
R(t) satisf. MFCQ MFCQ GCQ ACQ GCQ

Table 9.1.: Summary of results regarding stationary points and constraint qualifications for the
different relaxation methods

Note, however, that this second part does not cover the complete story. To this end, let us first
note that MPCC-LICQ implies that the MPCC itself satisfies standard GCQ, cf. [40]. Therefore,
when simply looking at the table, it seems that the feasible sets of some of the relaxation methods
do not have better properties than the underlying MPCC, hence one might wonder why using
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such a regularization. In fact, GCQ or the slightly stronger ACQ are relatively weak conditions
which, however, guarantee the existence of Lagrange multipliers at a local minimum. The main
difference is that standard MFCQ (hence also standard LICQ) is violated at any feasible point of
the MPCC itself, while the corresponding results for the three regularization methods by Kadrani
et al. [67], Steffensen and Ulbrich [109], and the new relaxation method from Chapter 8 typically
satisfy LICQ (hence also MFCQ) in many points under the MPCC-LICQ condition.

Let us discuss this point in more detail. The two relaxation methods by Scholtes [105] and Lin
and Fukushima [79], besides being only convergent to C-stationary points, have no problems re-
garding constraint qualifications: MPCC-LICQ implies LICQ for the corresponding regularized
problems, as shown in the original references, and MPCC-MFCQ also implies MFCQ, as shown
in Section 7.1 for the Scholtes-relaxation and in Section 7.2 for the Lin-Fukushima-relaxation.

The situation is completely different with the other three relaxation schemes. These other
three schemes have stronger convergence properties than the first two methods, more precisely,
the relaxation scheme by Kadrani et al. and the one from Chapter 8 converge to M-stationary
points, which is a much stronger property than C-stationarity, whereas the local regularization
approach by Steffensen and Ulbrich only converges to C-stationary points, but has a nice finite
termination property in the sense that it is not always necessary that the relaxation parameter t
has to be driven down to zero. On the other hand, our analysis and the corresponding (counter-)
examples show that the relaxed problems of any of these three methods usually do not inherit the
corresponding standard constraint qualification from an MPCC constraint qualification.

In fact, it is easy to see that the relaxed problem by Steffensen and Ulbrich not only violates
LICQ, but also CRCQ and CPLD, whereas ACQ (hence GCQ) is satisfied under MPCC-LICQ.
Similarly, the relaxed problems by Kadrani et al. and those corresponding to the new relaxation
do not even satisfy ACQ, whereas GCQ holds under MPCC-LICQ. Hence, from this point of
view, it seems that the Steffensen-Ulbrich regularization is slightly better than the other two
relaxations. However, also this is not true in general since, speaking in the (Gi(x),Hi(x))-space,
both the Kadrani et al. and the new regularization satisfy standard LICQ in all points except for
one (locally and assuming MPCC-LICQ, of course), whereas the Steffensen-Ulbrich relaxation
violates standard LICQ in many points, namely in all points on the Gi- and Hi-axes where the
feasible set of the MPCC is not changed by the local relaxation.

9.2. Numerical Comparison Based on the MacMPEC

Collection

Since these five relaxation methods have different theoretical properties, it seems likely that their
numerical realizations also exhibit a different behavior. We will analyze this conjecture using
test problems from the MacMPEC collection by Sven Leyffer [73]. However, before we delve
into the numerical details, let us clarify the aim of this section. So far, we have discussed the
different theoretical properties of these five relaxation methods. Now, we want to find out what
differences there are in the numerical behavior. Therefore, we tried to implement all five methods
as similar as possible to ensure that different numerical results are caused by the different proper-
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ties of the relaxations and not by algorithmic differences. As a consequence, we did not optimize
our implementation individually for every relaxation, i.e., it is possible to obtain better results
by tailoring the algorithms to the characteristics of the relaxations. For example, Steffensen and
Ulbrich [109] and Kadrani et al. [67] proposed numerical approaches that deal with the specific
characteristics of their relaxations. This, however, makes it nearly impossible to compare the
numerical results, since a different performance may not be caused by the properties of the relax-
ation method but by the different numerical approaches. For this reason, we consider only a very
simple realization of the relaxation methods and use the same NLP solver to solve the relaxed
subproblems for each of them.

We implemented all five methods in MATLAB 7.11.0 and performed some tests on a 2.6 Ghz
AMD Opteron and 64 GigaByte RAM running linux with a 2.6.27 kernel. The basic algorithm
is Algorithm 9.1, where the maximum violation of all constraints

maxVio(xopt) = max{max{0, g(xopt)}, |h(xopt)|, |min{G(xopt),H(xopt)}|} (9.1)

is used to measure the feasibility of the final iterate xopt. For the method by Steffensen and
Ulbrich, we used the regularization function

θ(x) :=
2
π

sin
�
π

2
x +

3π
2

�
+ 1.

Algorithm 9.1 Basic relaxation algorithm (x0, t0,σ, tmin)
Require: a starting vector x0, an initial relaxation parameter t0, and parameters σ ∈ (0, 1),

tmin > 0.

Set k := 0.
while tk ≥ tmin do

Find an approximate solution xk+1 of the relaxed problem R(tk). To solve R(tk), use xk as
starting vector.
Let tk+1 ← σ · tk and k ← k + 1.

end while

Return: the final iterate xopt := xk, the corresponding function value f (xopt), and the maximum
constraint violation maxVio(xopt).

All relaxations except for the one by Kadrani et al. have the property that the following inclusion
holds for all 0 ≤ t1 < t2

X(t1) ⊂ X(t2),

where X(t) is the feasible area of the relaxed problem R(t) and X = X(0) is the feasible area
of the MPCC (1.1). This can be used in the numerical implementation in the following way:
If a relaxed problem R(tk) is infeasible, the MPCC is infeasible, too, and we can terminate the
algorithm immediately. We can also terminate the algorithm early if the solution xk+1 of an
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iteration k is feasible for the MPCC because in this case, xk+1 is also a solution of the MPCC.
Finally, if the solution xk+1 is also feasible for R(tk+1), it is a solution of R(tk+1) as well. Thus,
we can skip the next iteration and reduce the relaxation parameter until xk+1 is not feasible for
the next iteration anymore. These changes are incorporated into Algorithm 9.2, where feasibility
of the iterate xk for the original MPCC is measured by the violation of the complementarity
constraints

compVio(xk) = �min{G(xk),H(xk)}�∞.
Note, that the standard constraints g(x) ≤ 0 and h(x) = 0 are part of the relaxed problems R(t)
and therefore do not need to be checked here.

Algorithm 9.2 Improved relaxation algorithm (x0, t0,σ, tmin, ε)
Require: a starting vector x0, an initial relaxation parameter t0, and parameters σ ∈ (0, 1),

tmin > 0, and ε > 0.

Set k := 0.
while (tk ≥ tmin and compVio(xk) > ε) or k = 0 do

Find an approximate solution xk+1 of the relaxed problem R(tk). To solve R(tk), use xk as
starting vector.
If R(tk) is infeasible, terminate the algorithm.
Let tk+1 ← maxl=1,2,3,...{σl · tk | xk+1 � X(σl · tk) and σl · t ≥ tmin} and k ← k + 1.

end while

Return: the final iterate xopt := xk, the corresponding function value f (xopt), and the maximum
constraint violation maxVio(xopt).

We used the improved Algorithm 9.2 for all relaxations except for the one by Kadrani et al.,
where we had to use the basic Algorithm 9.1 since the feasible area of the MPCC (1.1) is not
included in the feasible area of the relaxed problems used in this method.

We used the parameters tmin = 10−15 and ε = 10−6 for all relaxations and the TOMLAB 7.4.0
solver snopt to solve the relaxed problems R(tk). Determining the remaining two parameters
t0 and σ was a little more difficult. The relaxation parameter t enters the relaxed problems
slightly different for some methods and therefore the relaxed feasible sets are of different size. To
illustrate this, consider an arbitrary relaxation parameter t > 0 and calculate for every relaxation
the intersection between the "G = H"-line and the north-eastern border of the relaxed feasible set.
For the methods by Lin and Fukushima, Kadrani et al. and the new relaxation from Chapter 8,
this intersection point is (t, t), for Scholtes’ method it is (

√
t,
√

t) and for the method by Steffensen
and Ulbrich it is π−2

2π (t, t). Hence, if the same initial relaxation t0 and the same reduction factor
σ is chosen for all five methods, the initial feasible set of the Steffensen-Ulbrich relaxation is
much smaller than the other ones and the feasible set of Scholtes’ relaxation is shrinking more
slowly. For this reason, our first approach was to pick two values T > 0 and s ∈ (0, 1) and
use the parameters t0 =

2π
π−2T , σ = s for the Steffensen-Ulbrich method, t0 = T 2 and σ = s2

for Scholtes’ relaxation and t0 = T,σ = s for the remaining three approaches. To test the
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relaxation algorithms, we chose 126 problems from the MacMPEC collection [73]. The other
problems were discarded partly due to their size or form and partly because errors occurred
during the evaluation of the objective function or the constraints by AMPL. Communication
between AMPL and MATLAB was achieved using the mex function amplfunc [114], see also
[51]. However, it turned out that there is no couple of values (T, s) such that all relaxation
methods perform well simultaneously. If, for example, we chose (T, s) = (1, 0.01), the relaxation
method by Scholtes did not solve 11 problems, the relaxation method by Lin and Fukushima 62
problems, Kadrani et al. 19 problems. The relaxation method by Steffensen and Ulbrich failed
to solve 18 problems and the new method from Chapter 8 did not solve 23 problems. Here, we
consider a problem as solved if the maximum violation of all constraints is less than or equal to
10−6 (independent of the optimal function value found by the corresponding method). If, instead,
we chose (T, s) = (1, 0.1), the number of unsolved problems was, in the same order, 12, 73, 26,
24, and 21. For this reason, we decided to make a small parameter study for every method with
T ∈ {10, 2, 10.5, 0.1, 0.01} and s ∈ {0.5, 0.1, 0.01} and counted the number of unsolved problems
for every parameter combination. The results are summarized in Table 9.2.

Relaxation Scholtes Lin–Fukush. Kadrani et al. Steff.–Ulbrich new relax.
min 10 61 14 3 12
max 23 86 32 36 23

median 15 66 19.5 14 17
std 3.95 8.37 5.08 9.11 3.36

Table 9.2.: Summary of parameter study

As we can see, the methods differ significantly in their success in solving the test problems.
The method by Steffensen and Ulbrich for example is able to solve all but three problems with
the right choice of parameters, whereas the method by Lin and Fukushima seems to have trouble
independent of the parameters. However, not only the average number of solved problems differs
from method to method but also the corresponding standard deviation. The method with the
smallest standard deviation is our new relaxation whereas the method by Steffensen and Ulbrich
has the highest one, i.e., the success of their method depends highly on the chosen parameters.
Since it is usually not known a priori which are the best parameters for a problem, we chose
T, s for every relaxation method such that the number of problems is equal to the respective
median. Whenever there was more than one such parameter combination, we picked the one that
produced the most feasible solutions in order to facilitate the subsequent comparison of optimal
function values. The resulting parameters t0,σ and the used Algorithm are given in Table 9.3.
To present the results, we use performance profiles as introduced by Dolan and Moré in [31].
All numerical results displayed in the performance profiles and the respective source code can
be found in the appendix. A test problem, where the results are set to Inf, indicates that an error
occurred during the evaluation of the problem data by AMPL. In Figure 9.1, the performance
profile for the maximum violation of all constraints as defined in (9.1) is depicted.
It can be seen that the relaxation method by Steffensen and Ulbrich produces the smallest con-
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Relaxation Scholtes Lin–Fukush. Kadrani et al. Steff.–Ulbrich new relax.
Algorithm Algorithm 9.2 Algorithm 9.2 Algorithm 9.1 Algorithm 9.2 Algorithm 9.2

t0 0.52 0.5 1 2π
π−20.5 2

σ 0.12 0.1 0.1 0.01 0.01

Table 9.3.: Parameters and algorithms used for the different relaxation methods
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Figure 9.1.: Comparison of constraint violation

straint violation, followed by the relaxation of Scholtes and the new method. According to the
criterion introduced above, the relaxation method by Scholtes did not solve 15 problems, the
relaxation method by Lin and Fukushima 66 problems, Kadrani et al. 19 problems. The relax-
ation method by Steffensen and Ulbrich failed to solve 14 problems and the new method did not
solve 17 problems. Trouble had to be expected for at least some test problems: design-cent-1
is known to be infeasible, ralphmod has an unbounded set of feasible solutions and ex9.2.2,
qpec2, ralph1, and scholtes4 do not have S-stationary solutions, see for example [14, 101].
And in fact, many of them are among the unsolved problems for all approaches. We expected
the relaxation method by Scholtes to be quite successful since it is the relaxation with the most
regular subproblems. For the same reason, we are somewhat surprised by the results of the relax-
ation method by Steffensen and Ulbrich. Although the corresponding relaxed problems satisfy
only very weak constraint qualifications, this method produces highly feasible solutions. This
might be due to the fact that the relaxed feasible area is much smaller than for all other methods
since it is only relaxed locally around the origin. However, in those cases where the maximum
constraint violation is not less than or equal to 10−6, it is mostly between 10−1 and 10, i.e., this
small relaxed area sometimes leads to problems. For comparison, the maximum constraint vi-
olation for the majority of the unsolved problems is around 10−5 to 10−4 for the new relaxation
method from Chapter 8. The two sided relaxation by Lin and Fukushima seems to cause seri-
ous numerical trouble. Here, the constraint violation in the unsolved problems covers the whole
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spectrum from 10−5 up to 10. This might be due to the fact that the functions Gi(x)Hi(x)− t2 and
(Gi(x)+ t)(Hi(x)+ t)− t2 nearly coincide for small relaxation parameters t > 0. Perhaps a different
approach, where we have an individual relaxation parameter for every one of the 2q constraints
replacing the complementarity conditions, would work better for this method. Then we could
take care that, for every couple of constraints Gi(x)Hi(x)− (t+i )2 and (Gi(x)+ t)(Hi(x)+ t)− (t−i )2,
only one of the relaxation parameters t+i or t−i is driven to zero while the other one is bounded
away from zero.

In the following performance profiles, we set the values corresponding to unsolved problems
to +∞. These four performance profiles compare the value of the objective function in the final
iterate, the time needed for the calculation of this iterate and the number of necessary objective
function and gradient evaluations. A few words on the performance profile comparing the opti-
mal function value: As the optimal function value is negative for some test problems, we have to
normalize the corresponding data slightly different than Dolan and Moré. Let f k

R be the optimal
function value for test problem k found by the relaxation method R, R ∈ {S , LF,KDB, S U,KS }.
We then define the normalized data for the method by Scholtes as

f̄ k
S :=

f k
S −min{ fR | R ∈ {S , LF,KDB, S U,KS }}
|min{ fR | R ∈ {S , LF,KDB, S U,KS }}|

and analogously for all other methods, i.e., we consider the difference to the best value found by
any of the five methods normalized by the absolute value of this best value.
Note that the highest possible value for a relaxation method in Figure 9.2 is the percentage of
solved problems, e.g. 88.1% for the method by Scholtes. Figure 9.2b indicates that the relaxation
methods by Scholtes and Steffensen and Ulbrich need the least time, closely followed by the new
one. The relaxation method by Kadrani et al. is slower than these three but still significantly
faster than the one by Lin and Fukushima. It had to be expected that the order here is about the
same as the one in Figure 9.1 as we terminate the relaxation algorithm early if a solution feasible
for the MPCC (1.1) is found. The only exception to this rule is the relaxation by Kadrani et al.,
see the discussion corresponding to Algorithm 9.2. Figure 9.2c and Figure 9.2d are very similar
to Figure 9.2b and therefore will not be discussed separately. If we take a look at Figure 9.2a,
we see that the relaxation by Steffensen and Ulbrich also finds the best function values, but is
closely followed by Scholtes, the new relaxation, and Kadrani et al.

All in all, we have seen that the relaxation method by Steffensen and Ulbrich works extremely
well without special tuning of the solver as it was proposed in the original work [109] although
the feasible area of the relaxed problems does not have a strictly feasible interior and most con-
straint qualifications are violated. However, a certain instability can be observed since the final
iterates either have an extremely small maximum constraint violation or they are barely feasible
at all. The great success of this method may also be caused by the solver we used for the relaxed
problems since snopt seems to be able to handle linearly dependent gradients very well. Hence,
a relaxation of the kink in the origin might be all that was necessary to enable this solver to cope
with MPCCs, which is exactly what the relaxation by Steffensen and Ulbrich does.

The oldest and simplest relaxation, namely the one by Scholtes, is still one of the most suc-
cessful and stable numerical methods although most of the other methods have better theoretical
properties. The relaxation method proposed by Lin and Fukushima is theoretically equivalent
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(a) Comparison of function value
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(b) Comparison of elapsed time
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(c) Comparison of objective function evaluations
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(d) Comparison of gradient evaluations

Figure 9.2.: Comparison of function value and performance

to the one by Scholtes and has the advantage of needing less constraints. However, it has seri-
ous numerical problems if one uses only one relaxation parameter. Thus, we would propose to
combine this method with an active set strategy like to the one used by Demiguel et al. in [29].

The relaxation method by Kadrani et al. and the new one have the same theoretical properties
but behave slightly different when it comes to numerical results. The new relaxation method is
faster, the final iterates have a smaller constraint violation, and it sometimes finds slightly smaller
objective function values. However, the method by Kadrani et al. still works surprisingly well
considering that the feasible set of the relaxed problems is almost disconnected and our algorithm
does not incorporate any features to handle this difficulty. A longer running time compared to
the other algorithms had to be expected due to the different termination criterion.

However, one should also take into account that the situation might be different when these

160



9.2. Numerical Comparison Based on the MacMPEC Collection

solvers are applied to highly difficult MPCCs where C-stationary points attract those methods
which, in general, converge to C-stationary points only. A corresponding (and sufficiently large)
test suite of such problems is currently not available and, therefore, special tests on these kind of
problems are not included.
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10. Numerical Solution of the Effort

Maximization Problem

Recall the effort maximization problem from the first part of this thesis. Here, we were able to
give an analytic solution of the corresponding MPEC in the case of constant returns to scale. For
another class of production technologies, we stated an existence result for the lower level contest
game and we provided a reformulation as MPCC for both cases. Now, we want to apply the new
relaxation method from Chapter 8 to these reformulated problems in order to solve them numer-
ically. We begin with the case of constant returns to scale, where we already know the solution
and thus are able to check whether the numerical method is successful or not. Afterwards, we try
to solve the effort maximization problem with more complicated production technologies where
no closed form of the solution is known.

Before we start with the numerical results, a few words on the implementation. As it was done
throughout the first part of the thesis, we assume again that all contestants ν ∈ N have a valuation
Vν = 1 of the prize. We use the MPCC reformulation derived in Section 3.2 and apply the new
relaxation method from Chapter 8 using the algorithm and parameters described in Section 9.2.
To avoid problems caused by the fact that the utility functions of the contestants are homogeneous
in the designer’s variable α, i.e., for every solution α∗ of the effort maximization problem cα∗
with c > 0 is a solution as well, we add the additional equality constraint

n�

µ=1

αν = 1

to the reformulated problem. As initial point we use the vectors α0 =
1
n (1, . . . , 1) and x0 =

(1, . . . , 1).

10.1. Verifying the Results for Constant Returns to Scale

In this section we will verify some results numerically that have already been derived analytically
in Section 2.4. Let us begin with the 2-player case. Here, we know

α∗ =
1

β1 + β2

�
β1, β2

�
and x∗ =

1
4

� 1
β1
,

1
β2

�
.

We ran our algorithm for some combinations of cost parameters and obtained the results from
Table 10.1.
As one can see, the numerical results coincide exactly with the theoretical ones.
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β α∗ x∗

(1, 1) (0.500, 0.500) (0.250, 0.250)
(1, 2) (0.333, 0.667) (0.250, 0.125)
(1, 3) (0.250, 0.750) (0.250, 0.083)

(1, 10) (0.091, 0.909) (0.250, 0.025)

Table 10.1.: Numerical results for the 2-player case

Next, we consider the homogeneous n-player case with different numbers of contestants n.
For simplicity, we choose βν = 1 for all contestants. This yields the results from Table 10.2. For
comparison, the theoretically derived optimum values in this case are

α∗ν =
1
n

and x∗ν =
n − 1

n2

for all ν = 1, . . . , n.

n α∗ν, ν ∈ N x∗ν, ν ∈ N
3 0.333 0.222
4 0.250 0.1875
5 0.200 0.160

10 0.100 0.090

Table 10.2.: Numerical results for the homogeneous case

Here, again, the numerical results are exactly the ones we have already derived theoretically.
These results encourage us to try and solve the effort maximization problem with more compli-
cated production technologies numerically. This is done in the next section.

10.2. Solving the Problems from the Outlook

From the case of linear returns to scale where the production technology is given by c(x) = x
we now move on to more general production technologies. In Section 3.1, we imposed the
assumptions c(0) = 0, c�(x) > 0 and c��(x) < 0 for all x > 0. One such function is c(x) =

√
x. We

ran some numerical tests using this production technology and obtained the following results.
Let us begin again with the 2-player case and the results given in Table 10.3.
Here, we see some resemblances to the case of constant returns to scale. A player with a higher
cost parameter βν also gets a higher weight αν, but the difference is not completely removed as
in the previous case. Analogously to the previous case, however, the optimal effort of the first
player stays fixed with his costs whereas the optimal effort of the second player decreases with
rising costs.
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β α∗ x∗

(1, 1) (0.500, 0.500) (0.125, 0.125)
(1, 2) (0.414, 0.586) (0.125, 0.0625)
(1, 3) (0.367, 0.634) (0.125, 0.042)

(1, 10) (0.240, 0.760) (0.125, 0.0125)

Table 10.3.: Numerical results for the 2-player case

n α∗ν, ν ∈ N x∗ν, ν ∈ N
3 0.333 0.111
4 0.250 0.094
5 0.200 0.0800

10 0.100 0.045

Table 10.4.: Numerical results for the homogeneous case

Next, we considered again the homogeneous n-player case as above for different numbers of
players and βν = 1 for all of them. This led to the results from Table 10.4.
If we compare this table with the results for the homogeneous case with constant returns to scale,
we see a striking resemblance. The optimal weights coincide, which could be expected since we
consider homogeneous contestants and normalized the sum of the weights to 1, but the optimal
effort in the case of constant returns to scale is exactly twice the optimal effort we obtain for
the production technology c(x) =

√
x. This relation can also be observed in our results for the

2-player case. Since we know already that the homogeneous and the 2-player case are somewhat
special, we also considered two inhomogeneous 4-player situations that were already discussed
in Section 2.4. Using the production technology c(x) =

√
x, we obtained the results displayed in

Table 10.5.

β α∗ x∗

(1,2,2,4) (0.214, 0.393, 0.393, 0.000) (0.097, 0.058, 0.058, 0.000)
(1,2,2,6) (0.221, 0.389, 0.389, 0.000) (0.100, 0.058, 0.058, 0.000)

Table 10.5.: Numerical results for some inhomogeneous cases

If we compare these results with the ones obtained for the case on constant returns to scale,
the optimal effort is not exactly half as big but in that scale. The difference may be due to
numerical inaccuracy or due to the fact that the relation between the optimal efforts is not that
simple. Nonetheless, the results of this section give hope. First of all, it seems to be possible
to solve the effort maximization problem numerically if there is no analytical solution known.
And secondly, the results exhibit a certain pattern that might be useful if one tries to obtain an
analytical solution.
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10.3. Concluding Remarks

In this part of the thesis, we gave a theoretical and numerical comparison of five different re-
laxation schemes for the solution of mathematical programs with complementarity constraints.
First, we improved a number of existing convergence results, and also added some completely
new results regarding the satisfaction of standard constraint qualifications for the relaxed prob-
lems for four existing methods. Then we introduced a new relaxation approach which can be
seen as an enhancement of the method by Kadrani et al. and analyzed its theoretical properties.
The new method was shown to converge at least to M-stationary points which is a much stronger
property than what is known for the majority of other regularization methods. Moreover, con-
vergence to these M-stationary points (and also to S-stationary points under an additional con-
dition) is shown under significantly weaker assumptions than those used previously in related
approaches. Additionally, we gave a condition under which the relaxed problems have local
minima in the neighborhood of a solution of the MPCC.

The numerical comparison was surprisingly won by the method from Steffensen and Ulbrich
although their relaxed subproblems have rather bad properties and we did not apply any of the
techniques they suggested to handle this problem. However, we are not sure whether this success
is partly due to the nonlinear program solver we used since their method is the one which changes
the original problem the least. To answer this question fully, an extended comparison using dif-
ferent NLP solvers is necessary. On the other hand, when we focus on the found function values
and the calculation time, this method is closely followed by the oldest and simplest relaxation
we considered, namely the one from Scholtes, and by the new relaxation we introduced in this
thesis, which are also both less dependent on the chosen parameters. Furthermore, we believe
that the method by Kadrani et al. and, especially, the new method from this thesis will eventually
outperform the other methods when applied to difficult MPCCs which have C-stationary points
attracting the other methods which, in general, converge to C-stationary points only. Unfortu-
nately, we are not aware of a sufficiently large collection of such problems and thus have to leave
this topic for future research.

Finally, we used the new relaxation method introduced in this part to solve the effort maximiza-
tion problem from Part I where we already provided a reformulation of this problem as MPCC.
First, we successfully verified the theoretical results which we derived for the case of constant
returns to scale in the first part of this thesis and then we attempted to solve more complicated
effort maximization problems for which no solutions are known. The results are promising and
can be used as a basis for future theoretical and numerical analysis of this problem class.
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To round this thesis off, we would like to collect the new results presented here and at the same
time talk about open questions.

In the first part we considered an economic application of MPECs, the effort maximization
problem in asymmetric n-person contest games. In the case of constant returns to scale, we were
able to prove existence of a solution and give a closed form thereof. So far, this had only been
done for two players or n homogeneous players. Afterwards, we defined a subclass of general
production technologies, for which the existence of a solution of the underlying contest game is
known, and provided a reformulation of these MPECs as MPCCs. This reformulation was then
used to solve these effort maximization problems numerically using a new relaxation method
introduced in this thesis. After recovering the known results for constant returns to scale, we also
tested a more general production technology and the numerical results exhibited a certain pattern.
This gives hope that a further theoretical analysis of these more general effort maximization
problems might be successful. However, when we consider a more complicated production
technology than in the constant returns to scale case, we cannot expect to obtain a closed form of
the solution of the contest game anymore. For this reason, the implicit programming approach
we used to solve the MPEC does not work anymore. Hence, one would have to use a different
approach to prove the existence of a solution or even obtain a formula for it in this case.

In the second part of this thesis, we focused on MPCCs and derived enhanced Fritz-John con-
ditions for this problem class. These conditions differ from the previously known ones by some
additional conditions for the case in which the multiplier corresponding to the gradient of the
objective function vanishes. These additional conditions gave rise to two new and compara-
tively weak constraint qualifications for MPCCs. One of them could be used for a very simple
proof of the fact that most of the commonly used constraint qualifications for MPCCs imply M-
stationarity of local minima. This result is not new, but all other proofs known to us are much
more involved. The other constraint qualification could be used to prove exactness of a penalty
function under weaker assumptions than the common ones. Additionally, we illustrated how the
new constraint qualifications fit into the existing system of MPCC constraint qualifications. For
future research, it might be interesting to analyze how the exactness of the penalty function can
be used in numerical methods for the solution of MPCCs. From standard optimization we know
that penalty functions can sometimes be used in combination with other algorithms as merit
functions for example to determine steplengths.

In the final part, we turned to one of the numerous numerical approaches for the solution of
MPCCs, the relaxation methods. We improved the convergence results of four existing methods
and introduced a new relaxation method with very strong convergence properties where, at the
same time, the relaxed problems maintain a nice feasible set. Additionally, we analyzed for all
five methods what kind of constraint qualification the relaxed problems inherit from the MPCC
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which is important for the existence of Lagrange multipliers in solutions of the relaxed problems.
For the new method, we also provided a conditions for the existence of local minima of the
relaxed problems. Afterwards, we gave both a theoretical and numerical comparison of the five
methods. The numerical comparison based on the MacMPEC testsuite was surprisingly won by
the relaxation method with medium convergence properties where the feasible set is only locally
relaxed around the kink in the origin and therefore still many constraint qualifications are violated
in significant parts of the feasible set. The new relaxation method introduced in this thesis and the
oldest one considered here, with weak convergence properties but very regular relaxed feasible
sets, were also quite successful. To verify that the results of this comparison are actually due to
the properties of the respective methods and not caused by the underlying NLP solver, it would
be interesting to repeat the experiment with different solvers for the relaxed subproblems. Since
the five methods considered here differ in the kind of stationarity that can be guaranteed in the
limit points, it would also be interesting to compare their behavior when they are applied to
complicated MPCCs which have many C-stationary points which are not local minima but could
attract some of the methods. Unfortunately, we are not aware of any large enough collection of
such problems.
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Results of the MacMPEC Collection

A.1. Numerical Results for the Relaxation by Scholtes

Problem fopt constVio(xopt) time func. eval. grad. eval.
bar-truss-3 1.01666e+04 1.18216e-07 2.51238e-01 55 51
bard1 1.70000e+01 2.08232e-10 4.16520e-02 43 37
bard2 -6.59800e+03 1.42109e-14 1.26670e-02 10 8
bard3 -1.26787e+01 0.00000e+00 8.32100e-03 6 4
bard1m 1.70000e+01 1.68467e-07 1.89730e-02 17 11
bard2m -6.59800e+03 1.42109e-14 1.14250e-02 10 8
bard3m -1.26787e+01 7.13923e-10 2.08820e-02 19 13
bilevel1 5.00000e+00 7.05880e-07 3.81810e-02 40 36
bilevel2 -6.60000e+03 7.10543e-15 1.65390e-02 15 13
bilevel3 -1.26787e+01 7.13924e-10 2.37000e-02 22 16
bilevel2m -6.60000e+03 7.10543e-15 1.67590e-02 15 13
bilin -1.84000e+01 1.27548e-09 4.04860e-02 40 34
dempe 2.82501e+01 6.01502e-07 3.64673e-01 428 426
design-cent-1 -1.86065e+00 1.25774e-07 2.12840e-02 17 11
design-cent-2 -3.48382e+00 2.65475e-09 2.96950e-02 26 20
design-cent-21 -3.48382e+00 2.53828e-09 7.70970e-02 77 71
design-cent-3 -3.72337e+00 2.34118e-09 3.57070e-02 32 26
design-cent-31 -3.72337e+00 2.24635e-09 1.04793e-01 99 93
design-cent-4 -3.07920e+00 4.30808e-09 6.99680e-02 61 55
desilva -1.00000e+00 6.59830e-08 1.06690e-02 7 5
df1 1.23260e-32 0.00000e+00 6.76000e-03 4 2
ex9.1.1 -1.30000e+01 7.10543e-15 1.25030e-02 11 9
ex9.1.2 -6.25000e+00 6.25000e-10 2.09950e-02 18 12
ex9.1.3 -2.92000e+01 1.56250e-09 6.09680e-02 56 50
ex9.1.4 -3.70000e+01 0.00000e+00 1.22710e-02 11 9
ex9.1.5 -1.00000e+00 6.25004e-10 6.08020e-02 22 16
ex9.1.6 -4.90000e+01 2.08414e-06 4.40747e-01 362 332
ex9.1.7 -2.30000e+01 1.24999e-09 3.84850e-02 38 32
ex9.1.8 -3.25000e+00 0.00000e+00 1.12080e-02 10 8
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Problem fopt constVio(xopt) time func. eval. grad. eval.
ex9.1.9 3.11111e+00 6.21742e-10 4.28360e-02 45 39
ex9.1.10 -3.25000e+00 0.00000e+00 1.12410e-02 10 8
ex9.2.1 1.70000e+01 2.08333e-10 4.51990e-02 48 42
ex9.2.2 9.99996e+01 4.08656e-05 1.83310e-01 204 174
ex9.2.3 5.00000e+00 0.00000e+00 1.22390e-02 11 9
ex9.2.4 5.00000e-01 6.24996e-10 2.79090e-02 28 22
ex9.2.5 9.00000e+00 6.24999e-10 3.15560e-02 32 26
ex9.2.6 -1.00000e+00 6.25000e-10 2.31750e-02 21 15
ex9.2.7 1.70000e+01 2.08333e-10 4.49990e-02 48 42
ex9.2.8 1.50000e+00 6.25000e-10 1.56380e-02 13 7
ex9.2.9 2.00000e+00 0.00000e+00 2.15700e-02 24 22
flp2 3.15879e-12 1.03807e-09 3.82120e-02 41 35
flp4-1 3.86094e-27 0.00000e+00 3.40950e-02 7 5
flp4-2 4.32422e-26 0.00000e+00 1.47258e-01 8 6
flp4-3 9.79091e-09 0.00000e+00 4.03728e-01 8 6
flp4-4 1.78075e-33 0.00000e+00 4.27507e-01 10 8
gauvin 2.00000e+01 1.56250e-10 2.36810e-02 20 14
gnash10 -2.30823e+02 9.12184e-08 2.55700e-02 24 20
gnash11 -1.29912e+02 8.08677e-08 2.24750e-02 20 16
gnash12 -3.69331e+01 6.88653e-08 2.18030e-02 19 15
gnash13 -7.06178e+00 6.21593e-08 2.79530e-02 26 22
gnash14 -1.79046e-01 5.78862e-08 3.48920e-02 34 30
gnash15 -3.54699e+02 1.42931e-09 2.83850e-02 26 20
gnash16 -2.41442e+02 4.07567e-10 2.62540e-02 23 17
gnash17 -9.07491e+01 5.80915e-10 3.04770e-02 28 22
gnash18 -2.56982e+01 8.57804e-09 5.29030e-02 53 47
gnash19 -6.11671e+00 1.25058e-09 3.63060e-02 34 28
hs044-i 1.56178e+01 1.30381e-04 8.75850e-02 74 44
incid-set1-8 2.42861e-17 4.68668e-08 5.02540e-02 9 7
incid-set1c-8 3.81639e-17 2.01993e-11 5.64760e-02 11 9
incid-set2-8 5.04269e-03 2.22963e-09 1.50505e-01 40 38
incid-set2c-8 5.63006e-03 5.12314e-07 1.35631e-01 35 33
jr1 5.00000e-01 0.00000e+00 9.90700e-03 7 5
jr2 5.00000e-01 1.25000e-09 3.75480e-02 41 35
kth1 0.00000e+00 0.00000e+00 6.14300e-03 4 2
kth2 0.00000e+00 0.00000e+00 9.31700e-03 8 6
kth3 5.00000e-01 6.25000e-10 2.69100e-02 27 21
liswet1-050 1.39943e-02 1.21014e-14 4.49090e-02 9 7

180



A.1. Numerical Results for the Relaxation by Scholtes

Problem fopt constVio(xopt) time func. eval. grad. eval.
monteiro -3.75300e+01 6.24497e-07 3.31502e-01 54 50
monteiroB -8.27859e+02 4.69086e-10 6.67696e+00 2619 2613
nash1a 7.24562e-12 6.25003e-10 3.56360e-02 36 30
nash1b 6.17695e-12 6.25001e-10 3.20540e-02 33 27
nash1c 5.16568e-12 6.24998e-10 3.27480e-02 34 28
nash1d 6.56640e-12 6.24997e-10 3.51470e-02 37 31
nash1e 1.28871e-25 6.24996e-10 3.35820e-02 35 29
outrata31 3.20770e+00 4.20708e-10 2.46670e-02 24 18
outrata32 3.44940e+00 4.46441e-10 3.08820e-02 31 25
outrata33 4.60425e+00 5.28384e-10 3.12960e-02 32 26
outrata34 6.59268e+00 7.02093e-10 3.67460e-02 39 33
pack-comp1-8 6.00000e-01 9.93868e-09 1.38479e-01 28 18
pack-comp1c-8 6.00000e-01 1.26819e-12 1.50343e-01 28 18
pack-comp1p-8 6.00000e-01 5.37764e-17 1.12996e-01 25 17
pack-comp2-8 6.73117e-01 3.09118e-09 5.91920e-02 13 11
pack-comp2c-8 6.73458e-01 4.18032e-10 5.85980e-02 15 13
pack-comp2p-8 6.71475e-01 3.16368e-07 1.57937e-01 54 52
pack-rig1-8 7.87932e-01 3.29597e-17 1.09356e-01 36 32
pack-rig1c-8 7.88300e-01 1.11022e-16 5.69110e-02 19 15
pack-rig1p-8 7.87932e-01 1.47775e-05 6.63921e-01 102 72
pack-rig2-8 7.80404e-01 6.60809e-10 4.59340e-02 18 16
pack-rig2c-8 7.99306e-01 2.46743e-09 3.87920e-02 14 12
pack-rig2p-8 7.80404e-01 1.86846e-08 1.08243e-01 38 36
pack-rig3-8 7.35202e-01 1.04888e-13 1.86321e-01 32 28
pack-rig3c-8 7.53473e-01 2.48979e-06 7.23833e-01 198 170
portfl-i-1 1.50222e-05 3.83266e-07 9.22110e-02 55 49
portfl-i-2 1.45721e-05 3.79341e-07 8.06690e-02 51 45
portfl-i-3 6.26452e-06 1.59704e-07 7.24570e-02 40 34
portfl-i-4 2.16138e-06 9.96178e-05 2.56323e-01 143 113
portfl-i-6 2.34136e-06 1.20720e-04 2.48847e-01 148 118
qpec-100-1 9.90027e-02 1.15686e-08 6.60459e-01 66 60
qpec-100-2 -6.59073e+00 5.99660e-09 1.35432e+00 106 100
qpec-100-3 -5.47715e+00 3.37762e-05 1.52415e+00 90 60
qpec-100-4 -3.98212e+00 1.69352e-08 1.13249e+00 56 50
qpec-200-1 -1.93483e+00 1.93369e-07 5.96113e+00 67 61
qpec-200-2 -2.41037e+01 4.35327e-08 6.46649e+00 84 78
qpec-200-3 -1.93270e+00 2.63689e-07 1.77367e+01 113 107
qpec-200-4 -6.19870e+00 6.44300e-08 6.96887e+00 76 70
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
qpec1 8.00000e+01 0.00000e+00 4.32770e-02 8 6
qpec2 4.49624e+01 9.39909e-04 1.96946e-01 146 116
ralph1 -8.59881e-04 8.59881e-04 1.60232e-01 175 145
ralph2 -1.38716e-07 2.60777e-04 8.16220e-02 75 45
ralphmod -5.12212e+02 6.79876e-06 1.31814e+01 1296 1288
scale1 1.00000e+00 6.25000e-10 1.12603e-01 37 31
scale2 1.00000e+00 6.25000e-10 8.09600e-02 26 20
scale3 1.00000e+00 6.25000e-10 2.87190e-02 28 22
scale4 1.00000e+00 1.74052e-10 4.33250e-02 47 41
scale5 1.00000e+02 6.25000e-10 5.84070e-02 66 60
scholtes1 2.00000e+00 0.00000e+00 1.58300e-02 15 13
scholtes2 1.50000e+01 0.00000e+00 1.23840e-02 11 9
scholtes3 5.00000e-01 6.25000e-10 1.08048e-01 130 124
scholtes4 -5.01113e-04 2.50556e-04 1.54063e-01 171 141
scholtes5 1.00000e+00 0.00000e+00 8.44700e-03 6 4
sl1 1.00000e-04 2.22045e-16 9.28200e-03 7 5
stackelberg1 -3.26667e+03 0.00000e+00 1.15780e-02 10 8
tap-09 1.09131e+02 5.08183e-06 1.75708e+00 879 849
tap-15 1.85141e+02 2.77441e-07 3.27859e+01 2700 2686
water-fl 3.33608e+03 6.19455e-07 5.13455e+00 724 718
water-net 9.27245e+02 9.04602e-04 5.85594e+01 55197 55167
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A.2. Numerical Results for the Relaxation by Lin & Fukushima

A.2. Numerical Results for the Relaxation by Lin &

Fukushima

Problem fopt constVio(xopt) time func. eval. grad. eval.
bar-truss-3 1.01666e+04 5.96047e-07 4.03349e-01 195 145
bard1 2.50000e+01 5.96047e-07 2.09125e-01 215 165
bard2 -6.87800e+03 1.99691e+00 1.16404e+00 1391 1353
bard3 -1.26787e+01 5.96038e-07 1.42833e-01 128 78
bard1m 2.50000e+01 5.96047e-07 2.60148e-01 271 221
bard2m -6.60000e+03 2.09491e+00 8.45236e-01 494 386
bard3m -1.03600e+01 2.98025e-07 2.44483e-01 252 200
bilevel1 -1.06581e-13 5.96046e-07 1.91393e-01 187 137
bilevel2 -6.60000e+03 5.96047e-07 2.88137e-01 268 218
bilevel3 -1.03600e+01 2.98025e-07 1.93627e-01 185 133
bilevel2m -6.60000e+03 5.96047e-07 2.86602e-01 268 218
bilin -1.84000e+01 5.96057e-07 2.83771e-01 293 241
dempe 2.82517e+01 6.76109e-03 3.26023e+00 3962 3942
design-cent-1 -1.06765e+09 2.07351e-01 5.04317e+00 6101 6089
design-cent-2 -3.48382e+00 3.72335e-07 1.90869e-01 185 153
design-cent-21 -3.48382e+00 4.70463e-07 4.11091e-01 420 370
design-cent-3 -1.37402e+20 1.00682e+00 4.44433e-01 403 307
design-cent-31 -3.72337e+00 1.32214e-06 1.07950e+00 1119 1011
design-cent-4 -3.07920e+00 5.96047e-07 2.23787e-01 200 150
desilva -1.50000e+00 1.00000e+00 1.00277e+00 1121 1013
df1 1.58718e-13 9.09498e-04 2.14897e-01 184 76
ex9.1.1 -1.30000e+01 2.98023e-07 2.82996e-01 283 231
ex9.1.2 -6.25000e+00 1.49013e-07 1.53422e-01 144 90
ex9.1.3 -2.92000e+01 1.40501e-05 2.72721e-01 227 123
ex9.1.4 -3.70000e+01 1.49012e-07 4.17892e-01 461 407
ex9.1.5 -1.00000e+00 5.96046e-07 2.18627e-01 213 163
ex9.1.6 -4.90000e+01 5.96047e-07 3.25755e-01 332 282
ex9.1.7 -2.60000e+01 2.98023e-07 4.89989e-01 515 463
ex9.1.8 -3.25000e+00 6.19243e-04 5.99201e-01 222 116
ex9.1.9 3.11111e+00 5.96046e-07 3.42201e-01 350 300
ex9.1.10 -3.25000e+00 6.19243e-04 2.52119e-01 222 116
ex9.2.1 2.50000e+01 5.96047e-07 2.21175e-01 211 161
ex9.2.2 9.99996e+01 3.71776e-05 5.19870e-01 523 415
ex9.2.3 -9.50001e+00 1.45000e+01 3.87427e-01 396 348
ex9.2.4 4.99999e-01 5.96046e-07 1.64536e-01 156 110
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
ex9.2.5 9.00000e+00 5.96046e-07 1.72437e-01 161 113
ex9.2.6 -1.50000e+00 1.00000e+00 3.69147e-01 331 223
ex9.2.7 2.50000e+01 5.96047e-07 2.22352e-01 211 161
ex9.2.8 1.50000e+00 2.32831e-08 6.69350e-02 56 28
ex9.2.9 2.00000e+00 1.49012e-07 1.68212e-01 156 102
flp2 1.98047e-12 2.98031e-07 2.96483e-01 301 249
flp4-1 -2.54020e+02 3.30265e+01 3.78494e+01 12073 11965
flp4-2 9.58084e+00 6.76348e-01 6.21233e+01 7191 7145
flp4-3 8.92240e+01 2.51648e+00 1.05447e+02 7224 7174
flp4-4 -3.98669e+02 7.12790e+00 2.30310e+02 4463 4411
gauvin 2.00000e+01 5.96046e-07 3.43414e-01 381 331
gnash10 -2.30823e+02 5.96046e-07 2.35009e-01 226 176
gnash11 -1.29912e+02 7.45057e-08 3.74871e-01 384 328
gnash12 -3.69331e+01 2.98023e-07 2.75715e-01 269 217
gnash13 -7.06179e+00 5.96046e-07 2.04610e-01 187 137
gnash14 -1.79047e-01 5.96046e-07 2.07360e-01 190 140
gnash15 -3.54699e+02 5.96046e-07 2.53182e-01 249 199
gnash16 -2.41442e+02 2.98023e-07 2.97546e-01 299 247
gnash17 -9.07491e+01 5.96046e-07 2.35129e-01 224 174
gnash18 -2.56982e+01 5.96046e-07 2.30584e-01 218 168
gnash19 -6.11671e+00 5.96046e-07 2.12378e-01 196 146
hs044-i 1.56178e+01 8.03642e-07 4.10909e-01 396 346
incid-set1-8 -3.85615e-04 9.58035e-06 9.68037e+00 2702 2594
incid-set1c-8 -3.94056e-04 9.98570e-06 5.06357e+00 1527 1419
incid-set2-8 Inf Inf Inf Inf Inf
incid-set2c-8 Inf Inf Inf Inf Inf
jr1 4.99999e-01 1.16992e-06 3.39003e-01 325 217
jr2 4.99997e-01 2.98024e-06 2.69912e-01 251 149
kth1 -2.19353e-08 2.05129e-08 1.09260e-02 9 7
kth2 -5.96046e-07 5.96046e-07 2.18116e-01 221 171
kth3 4.99999e-01 1.49012e-06 2.29263e-01 205 103
liswet1-050 1.39522e-02 5.96046e-07 3.68281e+00 702 668
monteiro -3.75300e+01 1.27160e-05 9.26217e+00 3434 3326
monteiroB -8.27860e+02 5.96047e-07 1.24456e+01 4828 4778
nash1a 1.95769e-12 2.98021e-07 2.96004e-01 275 225
nash1b 1.95769e-12 2.98021e-07 2.80430e-01 277 229
nash1c 1.95769e-12 2.98021e-07 2.61828e-01 265 219
nash1d 1.76853e-12 1.72675e-06 2.82036e-01 258 154
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A.2. Numerical Results for the Relaxation by Lin & Fukushima

Problem fopt constVio(xopt) time func. eval. grad. eval.
nash1e 2.39999e-12 2.98022e-07 2.56915e-01 257 209
outrata31 2.39121e+00 1.00601e+00 6.27278e-01 695 651
outrata32 3.44940e+00 5.96046e-07 2.23457e-01 212 162
outrata33 4.60425e+00 5.96047e-07 2.13537e-01 201 151
outrata34 6.59268e+00 5.96047e-07 2.15474e-01 198 148
pack-comp1-8 6.00000e-01 4.06231e-04 8.98300e-01 215 107
pack-comp1c-8 6.00000e-01 6.25060e-04 9.26873e-01 213 105
pack-comp1p-8 -8.32071e+02 2.83987e-02 4.32776e+01 18557 18449
pack-comp2-8 6.00000e-01 3.80123e-03 2.12724e+01 7358 7250
pack-comp2c-8 6.00000e-01 3.80469e-03 1.00404e+01 3399 3291
pack-comp2p-8 9.15823e-01 3.51348e-04 5.21385e+00 1791 1683
pack-rig1-8 7.87932e-01 5.78500e-13 1.80403e+01 10277 10185
pack-rig1c-8 7.88300e-01 5.68435e-13 7.89672e+00 4429 4337
pack-rig1p-8 6.00000e-01 3.28295e-02 2.40226e+01 11839 11731
pack-rig2-8 7.80405e-01 1.94519e-10 1.14807e+01 6620 6546
pack-rig2c-8 6.31943e-01 4.35760e-02 1.06680e+01 5456 5348
pack-rig2p-8 6.00000e-01 3.60353e-02 3.11635e+01 14877 14769
pack-rig3-8 7.34735e-01 2.17978e-05 8.11656e+00 4725 4617
pack-rig3c-8 7.53474e-01 7.52985e-05 1.82274e+00 838 730
portfl-i-1 1.50027e-05 5.96024e-07 4.25499e-01 227 187
portfl-i-2 1.45713e-05 3.52773e-05 1.12925e+00 460 362
portfl-i-3 6.25371e-06 5.96046e-07 4.48247e-01 234 194
portfl-i-4 2.16330e-06 1.08690e-04 9.03897e-01 473 377
portfl-i-6 2.35816e-06 3.41753e-05 8.26832e-01 446 350
qpec-100-1 2.52407e-01 1.61225e-02 5.03175e+00 446 338
qpec-100-2 -1.05204e+01 3.68689e+00 4.04193e+01 5165 5057
qpec-100-3 -5.48350e+00 1.00121e-02 6.60893e+00 452 344
qpec-100-4 -4.30216e+00 7.60920e-01 3.59191e+01 3666 3558
qpec-200-1 -1.88026e+00 7.25141e-03 1.15121e+02 2105 1997
qpec-200-2 -2.38497e+01 1.48627e-01 5.47664e+01 972 864
qpec-200-3 -1.95790e+00 6.88594e-03 1.49785e+02 959 851
qpec-200-4 -7.04238e+00 6.52085e-01 2.79958e+02 4658 4550
qpec1 7.99932e+01 3.39344e-04 2.11456e+00 1911 1803
qpec2 4.49756e+01 6.10368e-04 5.28532e-01 458 354
ralph1 -6.10392e-04 6.10392e-04 5.51721e-01 588 480
ralph2 -7.45510e-07 6.10513e-04 2.94721e-01 278 170
ralphmod -6.83033e+02 7.45063e-08 5.21258e+01 6103 6047
scale1 9.99702e-01 1.49034e-06 2.63118e-01 248 152
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
scale2 9.99997e-01 1.49012e-06 2.30379e-01 207 105
scale3 9.99702e-01 1.49012e-06 2.21683e-01 201 105
scale4 9.92550e-01 3.73914e-05 2.17059e-01 199 109
scale5 9.99997e+01 1.49012e-06 3.00681e-01 290 188
scholtes1 2.00000e+00 1.89666e-06 4.33266e-01 440 332
scholtes2 1.17078e+01 1.33315e+00 4.57799e-01 466 358
scholtes3 4.99999e-01 1.49012e-06 2.62304e-01 245 143
scholtes4 -1.22111e-03 6.10557e-04 4.37020e-01 447 339
scholtes5 9.99998e-01 7.89520e-07 2.64167e-01 276 224
sl1 9.99047e-05 4.76769e-06 3.46571e-01 333 225
stackelberg1 -3.26667e+03 7.15228e-14 1.31566e+00 1552 1458
tap-09 1.09131e+02 6.03046e-07 1.76439e+00 884 834
tap-15 1.84295e+02 3.92242e-04 2.93098e+01 4593 4485
water-fl 3.35308e+03 6.44534e-07 5.32122e+00 1398 1376
water-net 9.30655e+02 1.93320e-03 2.86921e+02 263401 263313
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A.3. Numerical Results for the Relaxation by Kadrani et al.

A.3. Numerical Results for the Relaxation by Kadrani et al.

Problem fopt constVio(xopt) time func. eval. grad. eval.
bar-truss-3 1.01666e+04 2.03499e-11 5.02446e-01 223 207
bard1 1.70000e+01 7.15428e-13 1.63081e-01 204 188
bard2 -6.59800e+03 1.00002e-08 5.16130e-02 46 30
bard3 -1.26787e+01 2.00000e-08 5.70170e-02 54 38
bard1m 1.70000e+01 9.97149e-11 8.26940e-02 92 76
bard2m -6.59800e+03 1.00002e-08 5.07630e-02 46 30
bard3m -1.26787e+01 3.00024e-08 4.49680e-02 40 24
bilevel1 5.00000e+00 4.00000e-08 4.77830e-02 43 27
bilevel2 -6.60000e+03 1.00000e-08 6.99150e-02 67 51
bilevel3 -1.26787e+01 9.48537e-10 5.87190e-02 55 39
bilevel2m -6.60000e+03 1.00000e-08 7.04050e-02 67 51
bilin -1.30000e+01 1.00000e-08 5.03960e-02 46 30
dempe 2.82501e+01 1.00000e-06 1.56570e-01 185 169
design-cent-1 -1.86065e+00 1.00414e-06 1.49536e-01 166 150
design-cent-2 -9.89239e+30 1.00000e+00 1.54463e-01 168 152
design-cent-21 -3.48382e+00 3.65610e-07 1.10932e-01 115 99
design-cent-3 -2.97484e+20 1.16020e+00 1.06672e-01 101 85
design-cent-31 -3.72337e+00 2.64948e-07 3.94197e-01 218 202
design-cent-4 -1.58523e-09 1.00091e-10 2.91712e-01 86 70
desilva -1.00000e+00 1.00000e-06 1.49584e-01 44 28
df1 2.61961e-25 1.01364e-12 9.47270e-02 63 47
ex9.1.1 -1.30000e+01 5.50000e-08 5.59700e-02 52 36
ex9.1.2 -6.25000e+00 1.00000e-10 9.40500e-02 107 91
ex9.1.3 -2.92000e+01 4.85000e-07 7.35650e-02 68 52
ex9.1.4 -3.70000e+01 9.95892e-07 1.09194e-01 127 111
ex9.1.5 -1.00000e+00 2.00002e-08 5.84510e-02 54 38
ex9.1.6 -1.50000e+01 9.99743e-09 5.99940e-02 56 40
ex9.1.7 -2.60000e+01 2.00000e-08 5.99210e-02 54 38
ex9.1.8 -3.25000e+00 1.00000e-08 4.63910e-02 41 25
ex9.1.9 2.00000e+00 1.00000e+00 6.57770e-02 64 48
ex9.1.10 -3.25000e+00 1.00000e-08 4.58260e-02 41 25
ex9.2.1 1.70000e+01 9.99972e-09 5.09060e-02 47 31
ex9.2.2 9.99996e+01 3.63707e-05 1.59628e-01 182 166
ex9.2.3 5.00000e+00 3.00000e-08 4.72330e-02 42 26
ex9.2.4 4.99998e-01 1.00000e-06 5.71750e-02 56 40
ex9.2.5 9.00000e+00 4.99998e-08 5.78590e-02 55 39
ex9.2.6 -1.00000e+00 1.98387e-04 8.01560e-02 77 61
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
ex9.2.7 1.70000e+01 9.99972e-09 5.13720e-02 47 31
ex9.2.8 1.50000e+00 2.00000e-08 4.42010e-02 40 24
ex9.2.9 2.00000e+00 2.00000e-08 5.55890e-02 54 38
flp2 9.70693e-12 1.00027e-08 7.15770e-02 74 58
flp4-1 -3.00000e-13 1.00000e-14 1.57344e-01 42 26
flp4-2 -6.00000e-13 1.00000e-14 6.06144e-01 45 29
flp4-3 1.57836e-11 1.00000e-14 1.03926e+00 49 33
flp4-4 -1.00000e-12 1.00000e-14 2.59781e+00 48 32
gauvin 2.00000e+01 2.00004e-10 6.23850e-02 62 46
gnash10 -2.30823e+02 2.00001e-08 5.52450e-02 48 32
gnash11 -1.29912e+02 2.00001e-08 5.61210e-02 49 33
gnash12 -3.69331e+01 2.00001e-08 5.34890e-02 47 31
gnash13 -7.06178e+00 2.00002e-08 5.35120e-02 47 31
gnash14 -1.79046e-01 2.00002e-08 7.31970e-02 69 53
gnash15 -3.54699e+02 2.00000e-08 6.14690e-02 55 39
gnash16 -2.41442e+02 2.00000e-08 7.27290e-02 69 53
gnash17 -9.07491e+01 2.00000e-08 1.56364e-01 73 57
gnash18 -2.56982e+01 2.00001e-08 1.27311e-01 88 72
gnash19 -6.11671e+00 2.00001e-08 8.26170e-02 80 64
hs044-i 1.70901e+01 7.99958e-08 8.26090e-02 75 59
incid-set1-8 -7.73441e-08 2.62745e-08 1.02265e+00 235 219
incid-set1c-8 -7.73441e-08 1.01673e-08 9.51389e-01 194 178
incid-set2-8 4.51779e-03 1.07397e-08 1.51740e+00 373 357
incid-set2c-8 5.47117e-03 1.01837e-08 1.11261e+00 234 218
jr1 4.99999e-01 1.00000e-06 4.93920e-02 47 31
jr2 4.99999e-01 1.00000e-06 6.34700e-02 64 48
kth1 -1.00000e-06 1.00000e-06 3.34550e-02 28 12
kth2 -1.00000e-14 1.00000e-14 3.52540e-02 30 14
kth3 5.00000e-01 1.00000e-14 4.93730e-02 48 32
liswet1-050 1.39936e-02 1.00000e-08 3.85709e+00 363 347
monteiro -3.75300e+01 3.80142e-08 8.82733e+00 2037 2021
monteiroB -8.23398e+02 1.86340e-12 9.48233e-01 192 176
nash1a 2.14130e-12 7.43165e-07 6.23510e-02 61 45
nash1b 8.91444e-12 9.99999e-09 7.29530e-02 75 59
nash1c 3.92324e-12 9.99999e-09 7.04740e-02 70 54
nash1d 2.32366e-13 6.67998e-07 8.21450e-02 86 70
nash1e 8.91491e-12 9.99999e-09 6.89140e-02 69 53
outrata31 3.20770e+00 5.81895e-07 2.88354e-01 353 337
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A.3. Numerical Results for the Relaxation by Kadrani et al.

Problem fopt constVio(xopt) time func. eval. grad. eval.
outrata32 3.44940e+00 1.00009e-08 9.99970e-02 99 83
outrata33 4.60425e+00 2.00016e-08 8.58000e-02 84 68
outrata34 6.59268e+00 9.50862e-07 8.89030e-02 84 68
pack-comp1-8 6.00000e-01 3.88919e-12 1.07482e+01 2233 2217
pack-comp1c-8 6.00000e-01 3.95367e-12 3.87859e+00 793 777
pack-comp1p-8 6.00000e-01 3.07969e-13 2.06913e+01 6658 6642
pack-comp2-8 6.73084e-01 8.37383e-07 8.61376e+00 2482 2466
pack-comp2c-8 6.73458e-01 1.00700e-08 7.04186e+00 2462 2446
pack-comp2p-8 6.70711e-01 2.44114e-08 2.95997e+00 1206 1190
pack-rig1-8 7.87932e-01 3.00000e-10 3.95374e-01 161 145
pack-rig1c-8 7.88300e-01 3.00000e-08 6.50915e+00 3899 3883
pack-rig1p-8 7.87932e-01 2.21509e-05 9.70800e-01 299 283
pack-rig2-8 7.80404e-01 3.00000e-10 4.41904e-01 200 184
pack-rig2c-8 7.99305e-01 3.00001e-08 3.56426e-01 154 138
pack-rig2p-8 7.80404e-01 1.70352e-05 2.79509e+00 1293 1277
pack-rig3-8 7.35202e-01 9.58816e-14 4.96512e-01 215 199
pack-rig3c-8 7.53472e-01 2.98037e-08 4.38923e-01 189 173
portfl-i-1 1.50242e-05 7.79413e-14 2.03787e-01 118 102
portfl-i-2 1.45728e-05 1.24123e-13 1.94817e-01 118 102
portfl-i-3 6.26499e-06 1.05249e-13 2.09141e-01 118 102
portfl-i-4 2.16138e-06 9.95999e-05 2.13220e-01 123 107
portfl-i-6 2.34136e-06 1.20713e-04 1.85264e-01 105 89
qpec-100-1 1.32964e-01 1.41975e-08 1.58140e+00 173 157
qpec-100-2 -6.59074e+00 1.58143e-08 2.10409e+00 242 226
qpec-100-3 -5.46914e+00 1.39908e-08 2.77310e+00 179 163
qpec-100-4 -3.91201e+00 1.13905e-10 1.92382e+00 145 129
qpec-200-1 -1.85113e+00 2.83332e-11 1.41649e+01 166 150
qpec-200-2 -2.40386e+01 1.32060e-08 1.70272e+01 225 209
qpec-200-3 -1.79444e+00 2.01666e-14 4.44811e+01 362 346
qpec-200-4 -5.72570e+00 1.27753e-12 3.09359e+01 487 471
qpec1 8.00000e+01 1.00000e-14 2.42456e-01 243 227
qpec2 4.49675e+01 8.11609e-04 3.26495e-01 329 313
ralph1 -1.00034e-03 1.00034e-03 2.57465e-01 319 303
ralph2 -3.00021e-08 1.00004e-04 1.83707e-01 221 205
ralphmod -6.83033e+02 1.03231e-04 2.10464e+01 3272 3256
scale1 1.00000e+00 1.00000e-14 5.88710e-02 58 42
scale2 9.99998e-01 1.00000e-06 6.07600e-02 62 46
scale3 1.00000e+00 1.00000e-14 4.86170e-02 47 31
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
scale4 1.00000e+00 1.00000e-14 1.15322e-01 133 117
scale5 9.99998e+01 1.00000e-06 8.22970e-02 90 74
scholtes1 2.00000e+00 1.00000e-14 1.58200e-01 192 176
scholtes2 1.50000e+01 2.00000e-08 4.04630e-02 36 20
scholtes3 4.99999e-01 1.00000e-06 1.20994e-01 142 126
scholtes4 -7.04708e-04 3.52354e-04 2.47191e-01 302 286
scholtes5 9.99998e-01 1.00000e-06 4.46250e-02 42 26
sl1 9.99998e-05 9.99999e-08 9.53270e-02 104 88
stackelberg1 -3.26667e+03 9.98047e-07 1.00433e-01 116 100
tap-09 1.02582e+02 4.00000e+01 5.70136e+00 3382 3366
tap-15 1.74399e+02 2.40000e+01 1.70916e+01 2747 2731
water-fl 3.46145e+03 4.00000e-08 7.89264e+00 2522 2506
water-net 9.27264e+02 4.00000e-08 7.30097e-01 591 575
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A.4. Numerical Results for the Relaxation by Steffensen & Ulbrich

A.4. Numerical Results for the Relaxation by Steffensen &

Ulbrich

Problem fopt constVio(xopt) time func. eval. grad. eval.
bar-truss-3 1.01666e+04 2.27374e-13 1.90175e-01 34 32
bard1 1.70000e+01 0.00000e+00 3.93950e-02 23 21
bard2 -6.59407e+03 7.10543e-15 2.34730e-02 20 18
bard3 -1.26787e+01 8.88178e-16 1.16660e-02 7 5
bard1m 1.70000e+01 0.00000e+00 2.18090e-02 20 18
bard2m -6.59407e+03 7.10543e-15 2.25730e-02 20 18
bard3m -1.26787e+01 0.00000e+00 3.74150e-02 35 31
bilevel1 5.00000e+00 0.00000e+00 1.56970e-02 13 11
bilevel2 -6.60000e+03 3.55271e-15 3.14590e-02 27 23
bilevel3 -1.26787e+01 8.88178e-16 4.67050e-02 44 40
bilevel2m -6.60000e+03 3.55271e-15 3.19000e-02 27 23
bilin -1.60000e+01 2.22045e-16 1.85410e-02 16 14
dempe 2.82501e+01 8.83020e-11 8.61110e-02 92 90
design-cent-1 -1.86065e+00 9.82307e-08 1.71990e-02 13 9
design-cent-2 -3.48382e+00 2.98572e-11 5.30140e-02 49 45
design-cent-21 -1.19203e-03 1.67176e-04 6.06762e+00 6558 6552
design-cent-3 -2.95037e+14 1.00000e+00 1.15612e-01 99 83
design-cent-31 -1.89280e-04 3.54194e-09 1.18848e-01 113 111
design-cent-4 -3.07920e+00 1.11022e-16 2.74930e-02 21 17
desilva -1.00000e+00 0.00000e+00 1.11700e-02 8 6
df1 1.23260e-32 0.00000e+00 7.13100e-03 4 2
ex9.1.1 -7.21788e+00 3.55271e-15 3.06240e-02 28 26
ex9.1.2 -6.25000e+00 2.77556e-17 1.70750e-02 13 9
ex9.1.3 -2.30000e+01 1.11022e-16 4.77380e-02 43 39
ex9.1.4 -3.70000e+01 2.84217e-14 2.32280e-02 21 19
ex9.1.5 -1.00000e+00 5.00000e-01 1.27840e-02 8 4
ex9.1.6 -2.67587e+01 7.10543e-15 1.48308e-01 62 60
ex9.1.7 -2.30000e+01 4.87329e-01 1.25829e-01 36 32
ex9.1.8 -3.25000e+00 4.44089e-16 6.70480e-02 18 14
ex9.1.9 2.00000e+00 1.00000e+00 7.00830e-02 57 53
ex9.1.10 -3.25000e+00 4.44089e-16 2.19970e-02 18 14
ex9.2.1 4.21323e+01 8.88178e-16 4.66430e-02 44 40
ex9.2.2 1.00000e+02 4.96114e-15 3.51050e-02 29 21
ex9.2.3 5.00000e+00 7.10543e-15 2.31570e-02 20 18
ex9.2.4 5.00000e-01 2.77556e-17 2.27840e-02 19 15
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
ex9.2.5 9.00000e+00 1.77636e-15 4.03070e-02 38 34
ex9.2.6 -1.00000e+00 2.77556e-16 1.78210e-02 13 9
ex9.2.7 4.21323e+01 8.88178e-16 4.70650e-02 44 40
ex9.2.8 1.50000e+00 1.73472e-18 1.43440e-02 10 6
ex9.2.9 2.00000e+00 2.22045e-16 2.05670e-02 18 16
flp2 2.62201e-14 0.00000e+00 2.52290e-02 22 18
flp4-1 1.21260e-20 0.00000e+00 4.04070e-02 8 6
flp4-2 3.20776e-33 0.00000e+00 8.66780e-02 9 7
flp4-3 8.92592e-07 0.00000e+00 2.16681e-01 14 12
flp4-4 6.44442e-07 0.00000e+00 6.29260e-01 18 16
gauvin 2.00000e+01 1.42109e-14 1.32350e-02 8 6
gnash10 -2.30823e+02 2.69296e-10 2.83710e-02 24 22
gnash11 -1.29912e+02 2.35949e-09 2.56390e-02 21 19
gnash12 -3.69331e+01 2.98758e-10 3.14240e-02 27 25
gnash13 -7.06178e+00 3.42837e-13 3.60880e-02 32 30
gnash14 -1.79046e-01 5.94969e-10 6.24130e-02 58 56
gnash15 -3.54699e+02 1.97176e-13 2.75200e-02 22 18
gnash16 -2.41442e+02 2.15934e-06 4.83680e-02 44 40
gnash17 -9.07491e+01 2.73559e-13 3.55430e-02 30 26
gnash18 -2.56982e+01 2.10056e-09 6.34670e-02 58 54
gnash19 -6.11671e+00 2.27818e-12 4.27160e-02 37 33
hs044-i 1.70901e+01 2.22045e-16 7.32070e-02 67 61
incid-set1-8 4.68375e-16 4.68668e-08 5.97500e-02 9 7
incid-set1c-8 3.81639e-17 1.50605e-12 6.25300e-02 10 8
incid-set2-8 5.04269e-03 2.22963e-09 1.89086e-01 40 38
incid-set2c-8 5.63006e-03 5.12314e-07 1.70813e-01 35 33
jr1 5.00000e-01 0.00000e+00 1.05770e-02 7 5
jr2 5.00000e-01 0.00000e+00 2.01070e-02 17 13
kth1 0.00000e+00 0.00000e+00 6.92400e-03 4 2
kth2 0.00000e+00 0.00000e+00 9.63500e-03 7 5
kth3 5.00000e-01 0.00000e+00 2.45760e-02 22 18
liswet1-050 1.47719e-02 4.21885e-15 7.64828e-01 190 188
monteiro 1.48022e+02 5.68434e-14 3.38792e-01 78 76
monteiroB -8.23398e+02 2.19380e-13 6.27277e-01 142 138
nash1a 2.04357e-16 4.99275e-17 2.34290e-02 19 15
nash1b 8.86294e-14 7.10543e-15 2.72160e-02 24 20
nash1c 4.83475e-15 3.55271e-15 2.63480e-02 23 19
nash1d 0.00000e+00 0.00000e+00 3.00300e-02 27 23
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A.4. Numerical Results for the Relaxation by Steffensen & Ulbrich

Problem fopt constVio(xopt) time func. eval. grad. eval.
nash1e 2.85523e-12 0.00000e+00 2.72310e-02 24 20
outrata31 3.20770e+00 7.24445e-09 8.18990e-02 84 80
outrata32 3.44940e+00 4.34208e-12 5.75640e-02 57 53
outrata33 4.60425e+00 1.08017e-08 4.76870e-02 46 42
outrata34 6.59268e+00 3.40386e-12 4.03750e-02 38 34
pack-comp1-8 6.00000e-01 3.25662e-07 1.74647e-01 41 33
pack-comp1c-8 6.00000e-01 3.25662e-07 1.83758e-01 41 33
pack-comp1p-8 6.00000e-01 3.25662e-07 1.91399e-01 47 39
pack-comp2-8 6.73117e-01 3.09118e-09 6.52590e-02 13 11
pack-comp2c-8 6.73458e-01 4.18032e-10 6.79510e-02 15 13
pack-comp2p-8 6.73902e-01 3.90104e-08 2.07451e-01 64 62
pack-rig1-8 7.87932e-01 1.56125e-17 9.49980e-02 36 32
pack-rig1c-8 7.88300e-01 1.11022e-16 6.01780e-02 19 15
pack-rig1p-8 7.87931e-01 3.36072e-07 8.60569e-01 298 294
pack-rig2-8 7.80404e-01 6.60809e-10 4.89980e-02 18 16
pack-rig2c-8 7.99306e-01 2.46743e-09 4.28010e-02 14 12
pack-rig2p-8 7.80404e-01 1.86846e-08 1.21753e-01 38 36
pack-rig3-8 7.35202e-01 4.16334e-17 8.28120e-02 32 28
pack-rig3c-8 7.53473e-01 2.39098e-12 7.89980e-02 30 26
portfl-i-1 1.50242e-05 2.22045e-16 2.31584e-01 167 161
portfl-i-2 1.45728e-05 2.37005e-13 6.28130e-02 32 26
portfl-i-3 6.26498e-06 1.11022e-16 6.69350e-02 32 26
portfl-i-4 2.17734e-06 2.22045e-16 7.44060e-02 40 34
portfl-i-6 2.36133e-06 2.22045e-16 6.58420e-02 33 27
qpec-100-1 4.66581e-01 2.21228e-09 7.49299e-01 74 70
qpec-100-2 -6.23680e+00 1.88738e-15 7.33854e-01 85 79
qpec-100-3 -5.33808e+00 1.55431e-15 9.03232e-01 63 57
qpec-100-4 -3.04666e+00 8.88178e-16 1.00641e+00 96 90
qpec-200-1 -1.02302e+00 1.19127e-13 8.74641e+00 194 188
qpec-200-2 -2.23792e+01 3.55271e-15 1.91722e+01 490 484
qpec-200-3 -1.90909e+00 4.21885e-15 2.22152e+01 180 174
qpec-200-4 -3.91717e+00 3.99680e-15 7.06768e+00 75 69
qpec1 8.00000e+01 0.00000e+00 4.17340e-02 8 6
qpec2 2.69396e+01 5.00000e-01 2.40070e-01 154 138
ralph1 -5.00000e-01 5.00000e-01 1.05954e-01 109 93
ralph2 -5.00000e-01 5.00000e-01 1.06693e-01 109 93
ralphmod -4.87591e+02 1.03574e-06 2.61306e+01 4710 4694
scale1 1.00000e+00 2.08167e-17 3.10340e-02 28 24
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
scale2 1.00000e+00 5.55112e-17 2.33170e-02 20 16
scale3 1.00000e+00 1.73472e-17 2.45270e-02 21 17
scale4 1.00000e+00 0.00000e+00 8.45620e-02 83 69
scale5 5.00000e+01 5.00000e-01 1.08422e-01 109 93
scholtes1 2.00000e+00 0.00000e+00 1.09310e-02 8 6
scholtes2 1.50000e+01 0.00000e+00 8.91900e-03 6 4
scholtes3 5.00000e-01 0.00000e+00 6.15030e-02 59 49
scholtes4 -1.00000e+00 5.00000e-01 1.14372e-01 113 97
scholtes5 1.00000e+00 0.00000e+00 1.44260e-02 11 9
sl1 1.00000e-04 9.79993e-14 9.77900e-03 6 4
stackelberg1 2.13369e+02 0.00000e+00 3.26010e-02 31 29
tap-09 1.00000e+02 4.00000e+01 3.44370e-02 17 15
tap-15 1.74000e+02 2.39880e+01 1.10056e-01 18 16
water-fl 3.37091e+03 1.13864e-11 5.42586e+00 1111 1105
water-net 9.53230e+02 5.34504e-10 8.15950e+00 6840 6834
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A.5. Numerical Results for the New Relaxation

A.5. Numerical Results for the New Relaxation

Problem fopt constVio(xopt) time func. eval. grad. eval.
bar-truss-3 1.01666e+04 2.00000e-08 3.03214e+00 107 97
bard1 1.70000e+01 2.00011e-08 5.02410e-02 37 27
bard2 -6.59800e+03 7.10543e-15 2.29020e-02 17 15
bard3 -1.26787e+01 8.88178e-16 1.48520e-02 6 4
bard1m 1.70000e+01 2.00000e-08 4.47150e-02 37 27
bard2m -6.59800e+03 7.10543e-15 2.30970e-02 17 15
bard3m -1.26787e+01 2.00029e-08 9.95510e-02 92 82
bilevel1 5.00000e+00 2.00000e-08 8.52180e-02 73 63
bilevel2 -6.60000e+03 2.00000e-08 8.75550e-02 72 62
bilevel3 -1.26787e+01 2.00029e-08 6.05000e-02 47 37
bilevel2m -6.60000e+03 2.00000e-08 8.75550e-02 72 62
bilin -4.40000e+00 2.00000e-08 5.85370e-02 47 37
dempe 2.82501e+01 2.00000e-08 1.07732e-01 105 95
design-cent-1 -1.05132e+08 2.63201e+01 2.65438e+01 30548 30538
design-cent-2 -1.65583e+28 1.00000e+00 2.53472e-01 253 237
design-cent-21 -3.48382e+00 8.22285e-07 1.27990e-01 121 111
design-cent-3 -8.51113e+27 1.00000e+00 2.97723e-01 301 285
design-cent-31 -3.72337e+00 2.00018e-08 2.39756e-01 237 227
design-cent-4 -3.07920e+00 2.00356e-08 7.33440e-02 61 51
desilva -1.00000e+00 6.59830e-08 1.09020e-02 7 5
df1 1.23260e-32 0.00000e+00 8.76500e-03 4 2
ex9.1.1 -1.30000e+01 6.92779e-14 4.43570e-02 35 25
ex9.1.2 -6.25000e+00 0.00000e+00 4.48920e-02 24 14
ex9.1.3 -6.00000e+00 2.00000e-08 5.21070e-02 36 26
ex9.1.4 -3.70000e+01 2.84217e-14 2.72900e-02 22 20
ex9.1.5 4.00000e+00 2.00000e-08 4.48500e-02 34 24
ex9.1.6 -5.20000e+01 2.99880e+00 1.52981e-01 156 150
ex9.1.7 -6.00000e+00 2.00000e-08 9.73550e-02 31 21
ex9.1.8 -3.25000e+00 0.00000e+00 3.95900e-02 10 8
ex9.1.9 3.11111e+00 2.00000e-08 2.00782e-01 68 58
ex9.1.10 -3.25000e+00 0.00000e+00 1.27720e-02 10 8
ex9.2.1 1.70000e+01 1.99994e-08 5.12970e-02 46 36
ex9.2.2 9.99980e+01 2.00230e-04 1.47327e-01 154 138
ex9.2.3 5.00000e+00 1.42109e-14 3.01870e-02 28 26
ex9.2.4 5.00000e-01 2.00000e-08 6.14300e-02 57 47
ex9.2.5 9.00000e+00 2.00000e-08 1.42335e-01 154 144
ex9.2.6 -1.00000e+00 2.00000e-08 3.25100e-02 25 15
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
ex9.2.7 1.70000e+01 1.99994e-08 5.23780e-02 46 36
ex9.2.8 1.50000e+00 2.00000e-08 3.02310e-02 24 14
ex9.2.9 2.00000e+00 1.01252e-13 2.00130e-02 18 16
flp2 5.61158e-13 0.00000e+00 2.34544e-01 266 256
flp4-1 2.08447e-14 0.00000e+00 5.65160e-02 12 10
flp4-2 3.68576e-15 0.00000e+00 1.17332e-01 11 9
flp4-3 9.87033e-09 2.02741e-13 2.19124e-01 10 8
flp4-4 1.96277e-12 0.00000e+00 8.00033e-01 12 10
gauvin 2.00000e+01 2.00000e-08 2.00056e-01 62 52
gnash10 -2.30823e+02 2.00000e-08 2.10252e-01 68 58
gnash11 -1.29912e+02 2.00000e-08 9.38760e-02 88 78
gnash12 -3.69331e+01 2.00000e-08 1.20921e-01 120 110
gnash13 -7.06178e+00 2.00000e-08 9.16420e-02 86 76
gnash14 -1.79046e-01 2.00000e-08 1.07201e-01 104 94
gnash15 -3.54699e+02 2.00130e-08 1.78844e-01 184 174
gnash16 -2.41442e+02 2.00040e-08 1.11947e-01 109 99
gnash17 -9.07491e+01 2.00056e-08 1.00207e-01 94 84
gnash18 -2.56982e+01 2.00288e-08 8.90450e-02 81 71
gnash19 -6.11671e+00 2.00025e-08 1.09830e-01 103 93
hs044-i 1.70901e+01 2.00001e-08 1.35173e-01 127 117
incid-set1-8 4.68375e-16 4.68668e-08 5.95340e-02 9 7
incid-set1c-8 3.81639e-17 1.50577e-12 6.18460e-02 10 8
incid-set2-8 5.04269e-03 2.22963e-09 1.87413e-01 40 38
incid-set2c-8 5.63006e-03 5.12314e-07 1.69162e-01 35 33
jr1 5.00000e-01 0.00000e+00 1.05690e-02 7 5
jr2 4.99998e-01 2.00000e-06 7.47580e-02 66 50
kth1 0.00000e+00 0.00000e+00 7.41800e-03 4 2
kth2 0.00000e+00 0.00000e+00 9.69300e-03 7 5
kth3 5.00000e-01 0.00000e+00 4.34220e-02 39 29
liswet1-050 1.39943e-02 1.23457e-13 7.29290e-02 15 13
monteiro -3.75300e+01 1.00000e-07 5.03145e-01 93 83
monteiroB -7.68377e+02 6.04498e-08 9.78420e-01 210 200
nash1a 6.13352e-12 1.99999e-08 6.19960e-02 55 45
nash1b 1.22513e-11 2.00000e-08 6.24950e-02 58 48
nash1c 1.22512e-11 2.00000e-08 6.67300e-02 62 52
nash1d 3.42048e-12 2.00008e-08 6.93660e-02 65 55
nash1e 6.05709e-12 1.99999e-08 5.99730e-02 55 45
outrata31 3.20770e+00 2.00001e-08 4.90720e-02 43 33
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A.5. Numerical Results for the New Relaxation

Problem fopt constVio(xopt) time func. eval. grad. eval.
outrata32 3.44940e+00 2.00000e-08 5.30270e-02 47 37
outrata33 4.60425e+00 2.00006e-08 6.40150e-02 60 50
outrata34 6.59268e+00 5.92702e-07 9.23500e-02 93 83
pack-comp1-8 6.00000e-01 1.83867e-09 1.47027e-01 30 18
pack-comp1c-8 6.00000e-01 1.11022e-16 1.40056e-01 27 17
pack-comp1p-8 6.00000e-01 4.11476e-15 1.79623e-01 41 25
pack-comp2-8 6.73117e-01 3.09118e-09 6.04580e-02 13 11
pack-comp2c-8 6.73458e-01 4.18032e-10 6.22740e-02 15 13
pack-comp2p-8 6.73902e-01 3.90057e-08 1.90144e-01 64 62
pack-rig1-8 7.87932e-01 3.98986e-17 9.24970e-02 36 32
pack-rig1c-8 7.88300e-01 2.94903e-17 5.71910e-02 19 15
pack-rig1p-8 7.87932e-01 2.03297e-05 3.49906e-01 70 56
pack-rig2-8 7.80404e-01 6.60809e-10 4.80240e-02 18 16
pack-rig2c-8 7.99306e-01 2.46743e-09 4.20550e-02 14 12
pack-rig2p-8 7.80404e-01 1.86846e-08 1.34997e-01 38 36
pack-rig3-8 7.35202e-01 1.04895e-13 7.71550e-02 32 28
pack-rig3c-8 7.53473e-01 8.24003e-06 2.28247e-01 86 74
portfl-i-1 1.50234e-05 2.00225e-08 1.03550e-01 49 41
portfl-i-2 1.45722e-05 2.01951e-08 1.68218e-01 43 35
portfl-i-3 6.26452e-06 2.97235e-08 2.18719e-01 42 34
portfl-i-4 2.16138e-06 9.96137e-05 1.46868e-01 68 54
portfl-i-6 2.34136e-06 1.20710e-04 1.69489e-01 94 80
qpec-100-1 3.09244e-01 2.00379e-08 2.56698e+00 232 222
qpec-100-2 -6.44521e+00 2.00542e-08 2.48895e+00 211 201
qpec-100-3 -5.47715e+00 2.12809e-08 2.06555e+00 144 134
qpec-100-4 -3.95017e+00 2.06910e-08 1.99337e+00 132 122
qpec-200-1 -1.85113e+00 2.26130e-08 8.39342e+00 131 121
qpec-200-2 -2.26580e+01 2.01831e-08 3.58690e+01 225 215
qpec-200-3 -1.95246e+00 2.13271e-10 5.64425e+01 289 277
qpec-200-4 -6.21133e+00 2.02058e-08 1.28960e+01 124 114
qpec1 8.00000e+01 0.00000e+00 1.38620e-02 6 4
qpec2 4.49675e+01 8.11593e-04 2.98753e-01 267 251
ralph1 -9.98361e-04 9.98361e-04 2.05589e-01 221 205
ralph2 -1.20000e-07 2.00000e-04 2.17528e-01 230 214
ralphmod -6.78010e+02 3.98433e-05 2.56321e+01 2663 2647
scale1 1.00000e+00 0.00000e+00 5.61690e-02 45 37
scale2 1.00000e+00 2.00000e-08 5.44900e-02 50 40
scale3 1.00000e+00 0.00000e+00 4.02400e-02 35 27
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Results of the MacMPEC Collection

Problem fopt constVio(xopt) time func. eval. grad. eval.
scale4 1.00000e+00 0.00000e+00 6.18280e-02 61 53
scale5 9.99997e+01 1.34008e-06 9.18960e-02 90 74
scholtes1 2.00000e+00 0.00000e+00 1.24350e-02 9 7
scholtes2 1.50000e+01 0.00000e+00 1.31530e-02 10 8
scholtes3 5.00000e-01 2.00000e-08 8.21510e-02 82 72
scholtes4 -8.96813e-04 4.48406e-04 1.96599e-01 214 198
scholtes5 1.00000e+00 0.00000e+00 1.08870e-02 7 5
sl1 1.00000e-04 1.77636e-15 1.46470e-02 11 9
stackelberg1 -3.26667e+03 0.00000e+00 1.42090e-02 11 9
tap-09 1.13325e+02 6.00000e-08 2.36251e+00 1033 1023
tap-15 1.89267e+02 1.00002e-07 9.56517e+00 799 789
water-fl 3.32286e+03 2.00002e-08 8.71570e+00 1440 1430
water-net 9.27259e+02 1.73890e-04 2.45446e+01 21039 21025
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Source Code

The MATLAB source code of the algorithms implemented in this thesis as well as the test prob-
lems from the MacMPEC collection [73] and the auxiliary mex function amplfunc [114] are
available at the Institutional Repository (OPUS) of the University of Würzburg [1].
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