Ergebnisse zu ausgewählten Aufgaben der 4. Übung am 27. September 2024 Thema: Reelle Funktionen

Aufgabe 1

(b) Bei den Zuordnungen (b2) und (b3) handelt es sich um Funktionen.

Aufgabe 2

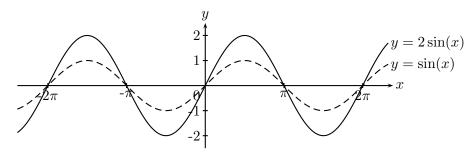
- (a) ca. 45°
- (b) nach ca. 18 Minuten
- (c) 20°
- (d) exponentielle Abhängigkeit

Aufgabe 3

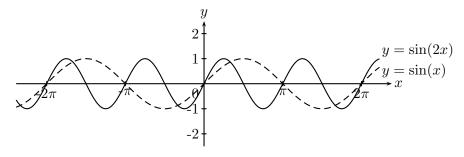
- (a) ca. 1,4 bis 1,5 Kilometer
- (c) Rennstrecke B

Aufgabe 4

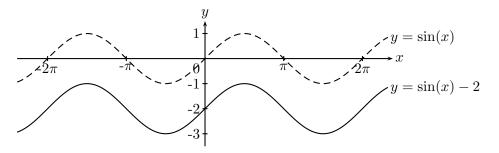
(a) (a1) Graph der durch $y = 2\sin(x)$ gegebenen Funktion:



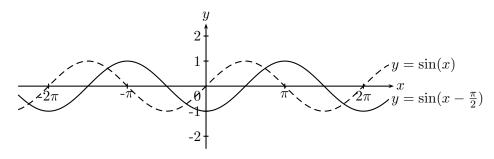
(a2) Graph der durch $y = \sin(2x)$ gegebenen Funktion:



(a3) Graph der durch $y = \sin(x) - 2$ gegebenen Funktion:



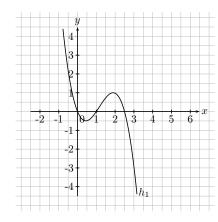
(a4) Graph der durch $y = \sin(x - \frac{\pi}{2})$ gegebenen Funktion:

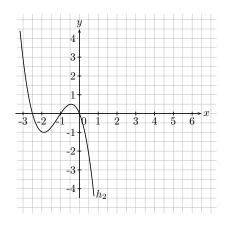


- (c) y = -f(x): Spiegelung des ursprünglichen Graphen an der x-Achse
 - $\bullet \ y=f(-x)$: Spiegelung des ursprünglichen Graphen an der y-Achse

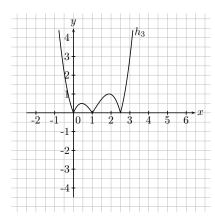
Aufgabe 5

- (a) In Abbildung 1 ist g_1 dargestellt.
 - In Abbildung 2 ist g_8 dargestellt.
 - In Abbildung 3 ist g_7 dargestellt.
 - In Abbildung 4 ist g_3 dargestellt.
- (c) Die folgenden Abbildungen zeigen die Graphen von h_1 und h_2 .



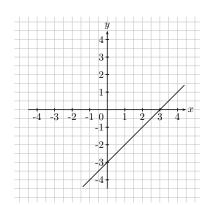


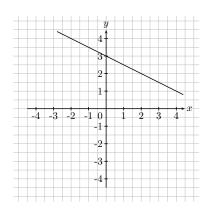
(d) In der folgenden Abbildung ist der Graph von h_3 dargestellt.



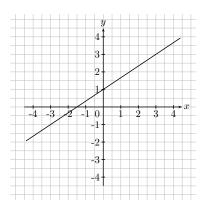
Aufgabe 6

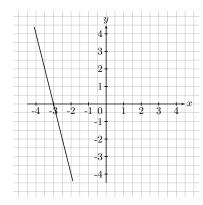
- (a) m: Anstieg der Gerade; gibt die Änderung des y-Wertes an, wenn man x ausgehend von einem beliebigen Punkt der Gerade um 1 erhöht; im Falle m>0 ist die Gerade (streng) monoton wachsend, im Falle m<0 ist die Gerade (streng) monoton fallend, im Falle m=0 verläuft die Gerade waagerecht
 - ullet n: y-Koordinate des Schnittpunktes der Gerade mit der y-Achse
- (b) Abbildung 1: f(x) = 2x 1
 - Abbildung 2: $f(x) = \frac{1}{2}x$
 - Abbildung 3: f(x) = -x + 2
 - Abbildung 4: $f(x) = -\frac{1}{3}x 2$
 - Abbildung 5: f(x) = 3x 6
 - Abbildung 6: f(x) = 2 (konstante Funktion)
- (c) In den folgenden Abbildungen sind die Graphen von f_1 und f_2 dargestellt.





In den folgenden Abbildungen sind die Graphen von f_3 und f_4 dargestellt.





(d) (d1)
$$f(x) = -x + 3$$

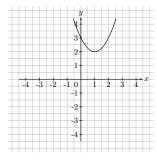
(d2)
$$f(x) = \frac{1}{3}x + \frac{5}{3}$$

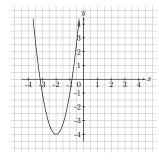
$$(d3) f(x) = \frac{3}{2}x$$

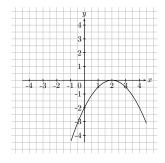
$$(d4) f(x) = x + 1$$

Aufgabe 7

- (a) a: gibt die Änderung des y-Wertes an, wenn man x ausgehend vom Scheitelpunkt um 1 erhöht; im Falle a>0 ist die Parabel nach oben geöffnet, im Falle a<0 ist die Parabel nach unten geöffnet
 - \bullet b: x-Koordinate des Scheitelpunktes der Parabel; der Graph ist achsensymmetrisch bzgl. der senkrechten Gerade mit der Gleichung x=b
 - c: y-Koordinate des Scheitelpunktes der Parabel
- (b) Abbildung 1: $f(x) = x^2 2$
 - Abbildung 2: $f(x) = (x-2)^2 = x^2 4x + 4$
 - Abbildung 3: $f(x) = (x+1)^2 3 = x^2 + 2x 2$
 - Abbildung 4: $f(x) = \frac{1}{2}(x-1)^2 + \frac{3}{2} = \frac{1}{2}x^2 x + 2$
 - Abbildung 5: $f(x) = -(x+2)^2 + 1 = -x^2 4x 3$
 - Abbildung 6: $f(x) = 2(x-3)^2 \frac{1}{2} = 2x^2 12x + 17.5$
- (c) $a = \alpha$, $b = -\frac{\beta}{2\alpha}$, $c = \gamma \frac{\beta^2}{4\alpha}$
- (d) In den folgenden Abbildungen sind von links nach rechts die Graphen von f_1, f_2, f_3 dargestellt.







Aufgabe 8

- (a) (a1) größtmöglicher Definitionsbereich: $D_f = \mathbb{R} \setminus \{0\}$, Bildbereich: $B_f = \mathbb{R} \setminus \{0\}$
 - (a2) größtmöglicher Definitionsbereich: $D_f = \mathbb{R} \setminus \{0\}$, Bildbereich: $B_f = (0, \infty)$
 - (a3) größtmöglicher Definitionsbereich: $D_f = \mathbb{R} \setminus \{1\}$, Bildbereich: $B_f = \mathbb{R} \setminus \{0\}$
 - (a4) größtmöglicher Definitionsbereich: $D_f = \mathbb{R} \setminus \{\frac{3}{2}\}$, Bildbereich: $B_f = \mathbb{R} \setminus \{1\}$
- (b) (b1) größtmöglicher Definitionsbereich: $D_f = [0, \infty)$, Bildbereich: $B_f = [0, \infty)$
 - (b2) größtmöglicher Definitionsbereich: $D_f = [\frac{1}{2}, \infty)$, Bildbereich: $B_f = [-3, \infty)$
 - (b3) größtmöglicher Definitionsbereich: $D_f = [1, \infty)$, Bildbereich: $B_f = (-\infty, 1]$
 - (b4) größtmöglicher Definitionsbereich: $D_f = \mathbb{R}$, Bildbereich: $B_f = [0, \infty)$
- (c) (c1) größtmöglicher Definitionsbereich: $D_f = (0, \infty)$, Bildbereich: $B_f = \mathbb{R}$
 - (c2) größtmöglicher Definitionsbereich: $D_f = (-1, \infty)$, Bildbereich: $B_f = \mathbb{R}$
 - (c3) größtmöglicher Definitionsbereich: $D_f = (\frac{3}{2}, \infty)$, Bildbereich: $B_f = \mathbb{R}$
 - (c4) größtmöglicher Definitionsbereich: $D_f = \mathbb{R} \setminus \{-1\}$, Bildbereich: $B_f = \mathbb{R}$

Aufgabe 10

Die Aussagen (b), (d), (h) und (j) sind wahr, die restlichen Aussagen sind falsch.

Aufgabe 11

- (c) Vorschrift von g: $g(x) = \frac{1}{3}x \frac{2}{3}$
- (d) g ist die Umkehrfunktion zu f (und umgekehrt genauso).

Aufgabe 12

- (a) Grenzwert $\lim_{x \to 1} f(x)$ existiert nicht, f ist nicht stetig an der Stelle x = 1
- (b) Grenzwert $\lim_{x\to 1} f(x)$ existiert und es gilt $\lim_{x\to 1} f(x) = 2$, f ist stetig an der Stelle x=1
- (c) Grenzwert $\lim_{x\to 1} f(x)$ existiert nicht, f ist nicht stetig an der Stelle x=1
- (d) Grenzwert $\lim_{x\to 1} f(x)$ existiert und es gilt $\lim_{x\to 1} f(x) = 0$, f ist nicht stetig an der Stelle x=1