

Fakultät Mathematik

Erstsemesterbroschüre 2025

Fakultät Mathematik

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Mission Statement				
2	Grußwort des Dekans				
3	Grußwort des μ FSR				
4	Die Fakultät Mathematik — groß, aber familiär!				
5	Mathematik – was ist das?				
6	Berufsperspektiven nach dem Mathematikstudium				
7	Wegweiser zum Studienbeginn 7.1 Vor Beginn des Studiums 7.1.1 Brückenkurs 7.1.2 Erstsemestereinführung 7.1.3 Immatrikulationsfeier 7.1.4 Doppelstundenraster 7.1.5 Semestertermine 7.1.6 Studienmaterial 7.1.7 Uni von A bis Z 7.2 Die ersten Wochen 7.2.1 Lehrformen und Bestandteile einer Lehrveranstaltung 7.2.2 Lehrveranstaltungskatalog 7.2.3 Wo finden die Veranstaltungen statt? 7.3 Das Studium managen 7.3.1 Das Studienbüro des Bereichs Mathematik und Naturwissenschaften 7.3.2 Das Studienbüro Lehramt 7.3.3 Das Studienbüro für Studierende im Master CMS 7.3.4 Selma 7.3.5 Anmeldung zu Prüfungen 7.3.6 Zugang zu IT-Ressourcen der TU Dresden 7.3.7 TU-Mailadresse 7.3.8 OPAL - Lernplattform 7.3.9 TU-Dresden Matrix Chatsystem 7.3.10 Videokonferenzsysteme 7.3.11 Video Campus Sachsen 7.3.12 Tools für das gemeinsame Arbeiten 7.3.13 Software	12 12 12 13 13 14 14 14 15 16 16 17 18 18 19 20 20 21 22 22 22 22			
8	Tipps zum erfolgreichen Studium 8.1 Helpdesk	25			

Inhaltsverzeichnis

	8.5	Beratu	ungs- und Anlaufstellen	26			
		8.5.1	Gesprächskreis - Kompakter Support	27			
		8.5.2	Studienfachberatung unserer Fakultät	27			
		8.5.3	Zentrale Studienberatung	27			
		8.5.4	Allgemeine Qualifikationen im Studium - AQUA				
		8.5.5	Beratungsstellen im Studentenwerk Dresden	28			
		8.5.6	Chancengleichheit	28			
		8.5.7	Studieren mit Kind				
		8.5.8	Probleme im Studium	29			
		8.5.9	Schreibzentrum	30			
9	Angebote neben dem Studium 3						
,			staltungen zum Kopf frei bekommen				
9.2 Vera			staltungsprogramm unserer Fakultät	31			
	9.3		us				
	9.4		nausbildung TU Dresden				
	9.5						
	9.6		ierungsplattform Forschung und Praxis				
	9.7		c.network				
10	Uns	ere Pro	ofessor innen	35			

1 Mission Statement

Uns Lehrende, Mitarbeitende und Studierende der Fakultät Mathematik an der TU Dresden eint die Freude am gemeinsamen Lernen, Lehren und Forschen. Wir verknüpfen dabei Theorie und Anwendung in einer Weise, die es Menschen, die ein Studium bei uns absolvieren, erlaubt, Wissen auf höchstem Niveau zu erwerben und zu transferieren. Grundlage unserer Arbeit ist das gemeinsame Streben nach Erkenntnis. Dabei setzen wir auf die Bedeutung des wissenschaftlichen Erkenntnisgewinns.

Wir sehen uns in einer besonderen Verantwortung. Mathematik durchdringt heute fast alle Bereiche unseres Lebens und findet überall Anwendung. Es ist unser Anspruch, in allen Varianten des Mathematikstudiums das logische und abstrakte Denkvermögen unserer Studierenden so zu trainieren und zu entwickeln, dass sie komplexe und komplizierte Strukturen in ganz unterschiedlichen Bereichen durchdringen, analysieren und optimieren können.

Es ist daher unsere Verpflichtung, an unserer Fakultät Mathematikerinnen und Mathematiker auszubilden, die für ihre Aufgaben bestmöglich gerüstet sind. Als künftige Führungskräfte, Innovationsträgerinnen und Innovationsträger sind sie in der Lage, Verantwortung für unsere Gesellschaft zu übernehmen und die Transformation ins digitale Zeitalter zu gestalten. Als Lehrerinnen und Lehrer sind sie in der Lage, Schülerinnen und Schüler so auszubilden und zu begleiten, dass diese mit Freude und Selbstvertrauen ihr Potential ausschöpfen können.

Eine hervorragende und hilfreiche Lehre, die die sozialen Bedürfnisse und fachlichen Fähigkeiten aller Studierenden erkennt und berücksichtigt, ist für uns dabei der Motor allen universitären Handelns. Prägend für unsere Arbeit sind eine starke internationale Vernetzung, eine lebendige regionale Verbundenheit und der enge Austausch mit anderen Fakultäten, Wissenschaftsbereichen und Partnerinnen und Partnern in Industrie und Handwerk. Als Teil der einzigen Exzellenzuniversität der Region verstehen wir uns als die Anlaufstelle für Mathematik in Dresden und Umgebung, sowie darüber hinaus in Sachsen und Mitteldeutschland.

2 Grußwort des Dekans

Liebe Erstsemester,

ich freue mich, dass ich Sie zu Beginn Ihres Studiums an der TU Dresden im Namen unserer gesamten Fakultät begrüßen darf. Unsere Fakultät bietet eine Vielzahl von mathematischen Studiengängen an, vom fachwissenschaftlichen Bachelorstudium bis hin zu diversen Möglichkeiten im Lehramtsbereich. Mit unseren englischsprachigen Masterstudiengängen können Sie Ihr Bachelorstudium in einem internationalen Umfeld fortsetzen und vertiefen.

Sie haben sich für das Studium der Mathematik entschieden, das Ihnen vielfältige berufliche Perspektiven eröffnen wird. Ihnen steht ein abwechslungsreiches, spannendes aber auch herausforderndes Studium bevor. Selbst wenn Ihnen "Mathe"

schon aus der Schule bekannt ist, wartet viel Neues und einiges Überraschendes auf Sie: eine neue Art zu lernen, an sich vertraute Tatsachen zu hinterfragen und auch ganz alltägliche Dinge etwas abstrakter zu sehen. Nehmen Sie diese neuen Herausforderungen an, lassen Sie sich auf abstrakte Denkweisen ein, arbeiten Sie mit anderen Studierenden zusammen und zögern Sie nie Fragen zu stellen.

In dieser Broschüre haben wir Ihnen erste Informationen zu häufig gestellten Fragen sowie einige Hinweise für ein erfolgreiches Studium zusammengestellt. Die Teams im Studienbüro des Bereiches Mathematik und Naturwissenschaften im Willersbau und im Zentrum für Lehrerbildung, Schul- und Berufsbildungsforschung, Ihre Studienfachberater und -beraterinnen, aber auch alle Professorinnen und Professoren sowie Mitarbeiterinnen und Mitarbeiter der Fakultät Mathematik helfen Ihnen gern weiter.

Mit freundlichen Grüßen

Prof. Dr. Axel Voigt Dekan der Fakultät Mathematik

3 Grußwort des μ FSR

Liebe Erstis,

wir, der Fachschaftsrat Mathematik (µFSR), heißen euch recht herzlich als unsere neuen Kommiliton:innen willkommen. Als Studierende an der Fakultät Mathematik seid ihr Teil der Fachschaft Mathematik. Wir, die Mitglieder des Fachschaftsrats Mathematik, sind Studierende genauso wie ihr, die durch die Fachschaft als Vertreter:innen gewählt sind. Der Großteil unserer Arbeit besteht darin, euch beim Studium zu unterstützen. Dafür organisieren wir für euch Veranstaltungen, stellen euch Skripte und Altklausuren zur Verfügung oder vermitteln zwischen euch und Dozent:innen. Außerdem vertreten wir euch in der Hochschulpolitik. Generell können wir euch bei vielen Fragen zum Studium beraten bzw. euch an passende Stellen weiterleiten.

Diese Broschüre klärt euch sehr umfangreich über viele für das Studium relevante Bereiche auf, lest sie euch gut durch ;)

Wir wollen besonders auf zwei Punkte hinweisen: Das Erste, was auf euch zukommt, ist die Erstsemestereinführung. Bei dieser Woche dreht sich alles nur um euch Erstis. Wir haben ein buntes Programm an Veranstaltungen für Informationen, Vernetzung und Spaß für euch geplant. Alle weiteren Details findet ihr in 7.1.2. Nachdem ihr diese Woche überstanden habt, startet ihr direkt in die ersten Vorlesungen. Um euch in dieser Zeit zu unterstützen, haben wir mit der Fakultät zusammen ein Mentor:innen-Programm geschaffen. Dabei seid ihr mit anderen Erstis zusammen in Gruppen, die von Dozierenden und Studierenden gemeinsam betreut werden. Dazu wird es verschiedene Veranstaltungen und Workshops zum Studienstart geben, bei denen ihr die Mentor:innen kennenlernen könnt. Falls ihr euch dafür interessiert, solltet ihr beachten, dass die Anmeldung nur bis zum Ende der ESE läuft, also schaut mal in 8.4 nach, wie ihr teilnehmen könnt.

Damit wollen wir unsere kurze Vorstellung beenden und freuen uns schon euch in der ESE kennenzulernen. Wenn ihr noch Fragen habt, dann findet ihr weitere Infos zu uns in 8.3.

Gruß und Kuss

Euer μFSR

4 Die Fakultät Mathematik — groß, aber familiär!

Die TU Dresden ist eine der größten und besten Universitäten in Deutschland. Im Rahmen der Exzellenzstrategie konnten wir in den vergangenen Jahren die Rahmenbedingungen für exzellente Forschung und Lehre weiter verbessern. Auch die Studentinnen und Studenten der Mathematik profitieren von diesem Erfolg: Mit derzeit 27 Professorinnen und Professoren sowie über 90 akademischen Mitarbeitenden sind wir eine der größten mathematischen Fachbereiche in Deutschland.

Unsere Fakultät zeichnet sich durch ein aktuelles Forschungsspektrum, breites Lehrangebot und ein sehr gutes Betreuungsverhältnis aus. Wir widmen uns in Forschung und Lehre sowohl Themen, welche die Grundlagen der Mathematik betreffen, als auch Fragestellungen der angewandten Mathematik und der Mathematik-Didaktik. Aktuelle Forschungsprojekte sind Beispielsweise die Forschungsgruppe *Vector- and Tensor-Valued Surface PDEs*, welche sich mit Mathematischer Modellierung und Simulation sowie biomechanische Anwendungen befasst. Wir sind am *Center for Scalable Data Analytics and Artificial Intelligence* beteiligt, das zur Künstlichen Intelligenz forscht. In der Didaktik forschen wir beispielsweise zur Schul- und Unterrichtsentwicklung und profitieren von zahlreichen Kooperationen, u.a. mit dem *Erlebnisland Mathematik* und der *Universitätsschule Dresden*.

Unsere Forschungaktivitäten geben uns wichtige Impulse für die Lehre: Aktuelle Forschungsthemen werden im Rahmen von vertiefenden Vorlesungen, Seminaren und Abschlussarbeiten thematisiert. Damit können wir unserer Studierenden attraktive **Studierpfade** anbieten, die bis hin zu einer **Promotion** führen und exzellent auf universitäre und industrielle Forschung, sowie Führungsaufgaben in der Wirtschaft vorbereiten.

Wir möchten, dass Sie bei uns in einer familiäre Atmosphäre studieren. Unser Wunsch ist es, Sie nicht nur als Mathematiker:in, sondern Sie in ihrer Gesamtheit als Mensch fördern. Aus diesem Grund bieten wir eine Vielzahl von Unterstützungsangeboten an, die Sie beispielsweise beim Übergang von Schule zur Unibegleiten. Unsere Studierenden können darüber hinaus zahlreiche Veranstaltungen wahrnehmen, die ihnen den Erwerb allgemeiner Qualifikationen ermöglichen, darunter zahlreiche Fremdsprachenkurse sowie interessante Seminare und Vorlesungen im studium generale. Unser Career Service bereitet Studentinnen und Studenten individuell auf die jeweils aktuellen Anforderungen der beruflichen Praxis vor und unterstützt sie auch bei der Berufsorientierung in allen Phasen des Studiums.

Unserer Unterstützungsangebote

5 Mathematik - was ist das?

Die Frage "Was ist Mathematik?" ist gar nicht so einfach zu beantworten. Wikipedia beschreibt Mathematik als eine Wissenschaft, "die durch logische Definitionen selbstgeschaffene abstrakte Strukturen mittels der Logik auf ihre Eigenschaften und Muster untersucht" — das klingt ziemlich langweilig und nach einer Tätigkeit, die vielleicht auch ein Computerprogramm übernehmen könnte. Mathematik ist natürlich viel mehr und ein Mathematiker kann sich vermutlich viel eher in der Beschreibung des britischen Mathematikers G. H. Hardy (1877-1947) wiederfinden, der hierzu schreibt:

A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas.

Die Wikipedia-Beschreibung betont den formalen Charakter der Mathematik: Mathematische Theorien basieren auf Axiomen und strikten Spielregeln, aus denen sich dann Aussagen und Eigenschaften zu abstrakten Strukturen ableiten lassen. In der Mathematik entscheidet keine Autorität, was richtig oder falsch ist. Nur die Gesetze der Logik zählen. Für unsere Studierenden bedeutet das, dass sie bereits vom ersten Studienjahr an die Behauptungen ihrer erfahrenen Professorin oder ihres engagierten Tutors auf die "logische" Probe stellen können. An diese strikte Form mathematischer Argumentation muss man sich natürlich erst gewöhnen. Gerade in den ersten Studienjahren verbringen Studentinnen und Studenten der Mathematik viel Zeit damit, mit abstrakten Strukturen umzugehen und logisches Argumentieren — also das Beweisen — zu üben.

Diese Kompetenzen im Umgang mit axiomatischen Strukturen sind jedoch nur der Einstieg in die Mathematik: Als Mathematiker geht es nicht nur darum, "Aussagen zu beweisen". Genauso wichtig und spannend ist es, "neue Aussagen", sogenannte Vermutungen zum Verhalten abstrakter Strukturen, aufzustellen. Hierfür ist es notwendig, die formale, axiomatische Ebene zu verlassen, und Gefühl und Intuition für die abstrakten Strukturen zu entwickeln. Auch das werden Sie im Studium erlernen und üben, z.B. durch das gegenseitige Erklären von Mathematik in Lerngruppen oder im Rahmen von Seminaren, in denen Sie Themengebiete eigenständig vorstellen werden. Haben Sie diese Hürde erst einmal genommen, so wird es richtig spannend: Ausgestattet mit Papier und Bleistift, mittels der Kraft Ihrer Gedanken können Sie neue Welten entdecken oder gar erschaffen.

G. H. Hardy vergleicht die Mathematik in seiner Beschreibung mit der Kunst. In der Tat beschreiben Mathematiker ihre "Ergebnisse immer wieder mit ästhetischen Kategorien, als Objekte von großer Schönheit." Wie in der Kunst, kann die Arbeit mit Mathematik eine sehr kreative Tätigkeit sein.

Mathematik wird häufig als Sprache der Wissenschaften bezeichnet. Tatsächlich werden mathematische Modelle in nahezu allen Wissenschaften verwendet und die

Zitat aus dem Online-Artikel "Mathematik ist…" von Günter M. Ziegler auf der Webseite der Deutschen Mathematiker-Vereinigung. Dort finden Sie auch viele weitere Aspekte zur Mathematik.

Möglichkeit, Prozesse mathematisch zu beschreiben, zu simulieren und zu optimieren, ist zentraler Baustein technologischen Fortschritts. Historisch betrachtet, wurde zwischen Mathematik und den benachbarten Wissenschaften lange Zeit gar nicht so genau unterschieden: Gottfried Wilhelm Leibniz galt als Philosoph und Mathematiker (und darüber hinaus auch als Jurist und Historiker), Leonhard Euler war Physiker und Mathematiker, und Johann Carl Friedrich Gauß galt als Mathematiker, Statistiker, Astronom, Geodät und Physiker. Angewandte Mathematik — Mathematik an der Schnittstelle zu anderen Disziplinen — hat eine lange Tradition. Viele Entwicklungen innerhalb der Mathematik werden durch Fragestellungen aus anderen Wissenschaften angestoßen; ebenso finden auch häufig mathematische Theorien, die aus einer rein intrinsischen Motivation entwickelt wurden, Anwendungen in benachbarten Wissenschaften (z. B. Zahlentheorie in der Kryptographie oder nichtkommutative Algebra in der Quantenphysik).

Text: Prof. Dr. Stefan Neukamm

Video: Was ist Mathematik? (Prof. Andreas Thom)

6 Berufsperspektiven nach dem Mathematikstudium

Ein einheitliches Berufsbild "Mathematik" gibt es nicht. Vielmehr erwerben Sie in Ihrem Studium universelle Denkstrukturen, wie sie in unserer Gesellschaft an vielen Stellen wesentlich gebraucht werden. So erlernen Sie beispielsweise mit abstrakten Strukturen umzugehen, strukturiert und selbstständig Lösungsansätze zu entwickeln und sich schnell in neue Sachverhalte einzuarbeiten. Hinzu kommt natürlich der sichere Umgang mit mathematischen Modellen, formalen Systemen und Programmiersprachen.

Durch diese Fähigkeiten qualifizieren Sie sich für viele spannende Berufsfelder. In der Tat sind die beruflichen Perspektiven mit einem Abschluss in Mathematik hervorragend. Die Bundesagentur für Arbeit ermittelt für 2024 für die Mathematik eine sehr geringe studienfachspezifische Arbeitslosenquote von 2.2 Prozent — das ist sehr wenig: Bereits ab einem Wert von drei Prozent ist offiziell von Vollbeschäftigung die Rede.

Nach Einschätzung der National Math and Science Initiative, wächst der Bedarf an MINT (Mathematik, Informatik, Naturwissenschaften und Technik) Absolventen um 70 Prozent schneller als der gesamte Arbeitsmarkt und insbesondere Absolventen in Mathematik sichern sich einige der bestbezahlten Arbeitsplätze. Zu den Einsatzgebieten für Mathematikerinnen und Mathematiker zählen heute, neben Universitäten und Schulen, Unternehmen der Informationstechnologie, sowie die Finanz- und Versicherungswirtschaft, Technologieabteilungen in Unternehmen der Fahrzeug- und Flugzeugbranche, Unternehmensberatungen sowie die Soft- wareentwicklung. Letztere umfasst nicht nur Kalkulationsprogramme und Simulationssoftware, sondern auch die Entwicklung von 3D-Visualisierungstools für Computerspiele und Filmanimationen, oder die Entwicklung effizienter Algorithmen in intelligenten Suchmaschinen im Internet. "Wer sich weigert, sich mit Arithmetik zu beschäftigen, ist dazu verdammt, Unsinn zu reden". Dieser Satz stammt von John McCarthy, Professor für Künstliche Intelligenz (KI) und einer ihrer Gründerväter. Während KI heute als Teilgebiet der Informatik wahrgenommen wird, ist vielen nicht bewusst, dass es sich um ein stark interdisziplinäres Gebiet handelt, das massiv von Ideen aus der Mathematik profitiert. Die Mathematik trägt dazu bei, die Sicherheit und Effizienz von KI-Systemen zu steigern.²

Video: Berufsperspektiven

Berufsprofile von Mathematikerinnen (BMBF)

Berufsportraits zur Mathematik (DMV)

2

Zitat aus der Stellungnahme der mathematischen Fachgesellschaften.

7 Wegweiser zum Studienbeginn

7.1 Vor Beginn des Studiums

7.1.1 Brückenkurs

An der Fakultät Mathematik haben Studienanfängerinnen und Studienanfänger jährlich zum Wintersemester die Möglichkeit im Rahmen eines sogenannten Brückenkurses sich unmittelbar auf den Studienbeginn vorzubereiten. Schwerpunkt ist die Wiederholung und Vertiefung der Teile des

Lehrplanes, deren Kenntnis bei Studierenden des ersten Studienjahres vorausgesetzt wird.

7.1.2 Erstsemestereinführung

Für alle neuen Studierenden an unserer Fakultät (in den Bachelor-Studiengängen Mathematik und Wirtschaftsmathematik, im Lehramtsstudium mit Fach Mathematik oder in einem mathematischen Masterstudiengang) finden Erstsemestereinführungen oder Begrüßungsveranstaltungen

der Fakultät und der Fachschaft Mathematik statt.

7.1.3 Immatrikulationsfeier

Im Namen des Rektorats und des Senats der Technischen Universität Dresden lädt Professorin Ursula M. Staudinger, Rektorin der TU Dresden, zur feierlichen Immatrikulation der Studierenden des neuen Studienjahrgangs sehr herzlich ein.

Donnerstag 9. Oktober 2025, 15 Uhr

Weitere Informationen zum Veranstaltungsformat erfahren Sie unter obigem Link.

7.1.4 Doppelstundenraster

Beginn und Ende aller Lehrveranstaltungen richten sich universitätsweit nach folgendem Zeitraster:

 $^{^{3}}_{\rm https://tu-dresden.de/mn/studium/studiengaenge-lehrangebote/brueckenkurse}$

 $^{^{4} {\}tt https://tu-dresden.de/mn/math/studium/Studienstart/ese}$

⁵ https://tu-dresden.de/studium/im-studium/studienstart/immatrikulationsfeier

7 Wegweiser zum Studienbeginn

Doppelstunde: 07:30 - 09:00 Uhr
 Doppelstunde: 09:20 - 10:50 Uhr
 Doppelstunde: 11:10 - 12:40 Uhr
 Doppelstunde: 13:00 - 14:30 Uhr
 Doppelstunde: 14:50 - 16:20 Uhr
 Doppelstunde: 16:40 - 18:10 Uhr
 Doppelstunde: 18:30 - 20:00 Uhr
 Doppelstunde: 20:20 - 21:50 Uhr

7.1.5 Semestertermine

Sie möchten gerne wissen, wann Sie den nächsten Urlaub einplanen können oder welche Feiertage vorlesungsfrei sind? Den Ablauf des Studienjahres und die Vorlesungszeiten der TU Dresden finden Sie unter dem nebenstehenden Link.

7.1.6 Studienmaterial

Sie brauchen für das Studium zunächst nur Papier und Stift, da Lehrveranstaltungen in der Mathematik meist an der Tafel gehalten werden. Durch die Digitalisierung der Lehre ist ein eigener Computer und eventuell ein Tablet sinnvoll. Insbesondere benötigen Sie weder Taschenrechner noch Formelsammlung. Eigene Bücher sind für den Studienbeginn nicht erforderlich, denn die Inhalte werden in den Lehrveranstaltungen in sich geschlossen entwickelt.

 $^{^{\}rm 6}_{\rm https://tu-dresden.de/studium/im-studium/studienorganisation/studienjahresablauf}$

Lehrbücher, deren vorlesungsbegleitende Lektüre sehr zu empfehlen ist, finden Sie in der Lehrbuchsammlung der

Sächsischen Landesbibliothek – Staats- und Universitätsbibliothek Dresden (SLUB). Darüber hinaus stellen viele Dozenten Handreichungen ihrer Vorlesungen elektronisch zur Verfügung und geben Literaturempfehlungen für ihre Vorlesungen.

7.1.7 Uni von A bis Z

Informationen zu Abkürzungen und Begriffen rund um das Studium an unserer Universität finden sie unter dem nebenstehenden Link.

7.2 Die ersten Wochen

7.2.1 Lehrformen und Bestandteile einer Lehrveranstaltung

Modul. Die Studiengänge der TU sind modular aufgebaut, d. h. im Verlauf des Studiums müssen Sie verschiedene Module (obligatorisch oder auch wählbar) absolvieren. In einem Modul sind Lehrveranstaltungen und Prüfungen zu einer thematischen Einheit zusammengefasst.

Lehrveranstaltung. Lehrveranstaltungen können in sehr unterschiedlicher Form gestaltet sein: Vorlesungen, Seminare, Übungen, Praktika.

Vorlesung. In Vorlesungen werden größere Themenbereiche innerhalb eines Semesters entwickelt. Sie finden in einem grös- seren Rahmen statt, werden zumeist von Professorinnen und Professoren gehalten und dauern in der Regel 90 Minuten. In den ersten Studienjahren werden Sie häufig Vorlesungen mit mehreren hundert Teilnehmern besuchen. Mitdenken und Mitschreiben stehen bei solchen Veranstaltungen im Vordergrund. Die Vorlesungen ab dem dritten Studienjahr und in den Masterstudiengängen sind typischerweise für einen kleineren Teilnehmerkreis (ca. 10-20 Studierende) konzipiert und erlauben eine intensivere Interaktion zwischen Lehrenden und Studierenden.

⁷

 $^{^{8} {\}tt https://tu-dresden.de/studium/vor-dem-studium/studienangebot/sins/glossar}$

Übung und Tutorium. In Übungen und Tutorien gilt es, die in den Vorlesungen erworbenen Kenntnisse anzuwenden und das aktive Wissen zu erweitern. In den mathematischen Studiengängen sind die Übungen vorlesungsbegleitend und unverzichtbarer Bestandteil einer Vorlesungsveranstaltung. Tutorien finden in Kleingruppen (10-20 Studierende) statt und werden von Studierenden höherer Semester oder auch von wissenschaftlichen Mitarbeiterinnen und Mitarbeitern geleitet. Anhand exemplarischer Beispiele und der Diskussion von Übungs- und Hausaufgaben werden Inhalte der Vorlesung vertieft. Eine aktive Beteiligung ist bei dieser Lehrveranstaltung ausdrücklich erwünscht und unsere Tutorinnen und Tutoren beantworten gerne Ihre Fragen zur Vorlesung. Globalübungen (oder auch Vorrechenübungen) richten sich an einen größeren Teilnehmerkreis und dienen ebenfalls der Vertiefung der Vorlesungsinhalte — typischerweise durch die Präsentation von Musterlösungen zu Übungsaufgaben.

Seminar. In Seminaren beschäftigen Sie sich in kleineren Gruppen mit einem speziellen Thema des jeweiligen Fachgebiets. In der Regel werden innerhalb eines Moduls mehrere Seminare zu unterschiedlichen Themen angeboten. So haben Sie die Möglichkeit interessenbasiert eine Auswahl zu treffen. Der Dozentin bzw. dem Dozenten kommt innerhalb eines Seminars die Aufgabe der Moderation zu. Sie und Ihre Mitstudierenden gestalten das Seminar durch Vorträge und Diskussionsbeiträge. Häufig wird von Ihnen im Rahmen eines Seminars eine schriftliche Ausarbeitung erwartet.

Modulbegleitende Aufgaben. Viele Module sehen als Prü- fungsvorleistung eine Sammlung modulbegleitender Aufgaben vor. Hierbei handelt es sich typischerweise um Hausaufgaben, die wöchentlich zu bearbeiten sind. Sie werden erst zur Modulprüfung zugelassen, wenn Sie die Prüfungsvorleistung erbracht haben (typischerweise wird hier gefordert, dass die Hälfte der Gesamtpunkte der Hausaufgaben erreicht wurde).

7.2.2 Lehrveranstaltungskatalog

Für Studierende unserer Bachelor- und Master-Studiengänge und der Lehramtsstudiengänge wird das Lehrveranstaltungsangebot im Portal selma im Vorlesungsverzeichnis im jeweils aktuellen Semester unter dem Bereich Mathematik und Naturwissenschaften - Fakultät Mathematik

veröffentlicht. Eine Ausnahme bildet der Masterstudiengang Computational Modeling and Simulation. Die Studierenden finden ihr Lehrveranstaltungsangebot unter dem Bereich Ingenieurwissenschaften - Fakultät Informatik.

⁹ https://selma.tu-dresden.de

7.2.3 Wo finden die Veranstaltungen statt?

Alle Räumlichkeiten der TU Dresden sind im Campus Navigator verzeichnet, siehe nebenstehender Link. Sie können diesen auch auf dem Smartphone als App nutzen. Räume im Willers-Bau und dem Bürogebäude Z21, der die Fakultät Mathematik beherbergt, beginnen mit dem Kürzel WIL oder

Z21. Außerdem finden manche Vorlesungen seit dem Sommersemester online statt, Informationen zu den von der Uni verwendeten Portale finden Sie in 7.3.10.

7.3 Das Studium managen

Im Verlauf Ihres Studiums müssen Sie einige organisatorische Vorgänge beachten, z.B. die Einschreibung in Module und Lehrveranstaltungen oder die Anmeldung zu Prüfungen. Die Mitarbeiter und Mitarbeiterinnen der Studienbüros beraten Sie hier gern zu allen Fragen in diesem Themenkreis. Sie helfen Ihnen beispielsweise bei der An- und Abmeldung zu Prüfungen, der Anrechnung oder der Erstellung von Notenübersichten bzw. Zeugnissen.

Formulare für verschiedene studienorganisatorischen Vorgänge (z.B. Leistungsbescheinigung für BAföG, Rücktritt von Prüfungen, usw.) finden Sie unter nebenstehendem Link.

Formulare für verschiedene studienorganisatorischen Vorgänge für das Lehramt finden Sie über das Studienbüro Lehramt, siehe Link.

Studien- und Prüfungsordnung, Modulbeschreibungen und Stundenablaufpläne. Inhalt und Aufbau eines Studiums werden in der Studienordnung geregelt. Sie enthält zudem die Modulbeschreibungen und Studienablaufpläne. Prüfungsrechtliche Bestimmungen werden hingegen in der Prüfungsordnung eines Studienganges beschrieben. Die Studien- und

Prüfungsordnungen finden Sie im Internet unter nebenstehenden Link.

 $¹⁰_{\rm https://navigator.tu\text{-}dresden.de/}$

 $^{11 \\ \}text{https://tu-dresden.de/mn/studium/formulare-studiendokumente}$

 $^{^{12} {\}tt https://tu-dresden.de/zlsb/lehramtsstudium/im-studium/sprechzeiten-und-formulare/formulare}$

 $^{^{13}{\}rm https://tu-dresden.de/mn/studium/studiendokumente-formulare}$

7.3.1 Das Studienbüro des Bereichs Mathematik und Naturwissenschaften

Für die Bachelor- und Masterstudiengänge (außer Computational Modeling and Simulation) ist das Studienbüro des Bereichs Mathematik und Naturwissenschaften zuständig. Es umfasst die Prüfungsämter sowie das Lehrveranstaltungsmanagement der fünf Fakultäten Biologie, Che-

mie/Lebensmittelchemie, Mathematik, Physik und Psychologie. Wie Sie das Studienbüro erreichen, erfahren Sie auf der nebenstehenden Webseite.

Viele Studienbüroangelegenheiten können direkt per E-Mail erledigt werden. Sollte ein eingeschränkter Präsenzbetrieb des Studienbüros notwendig werden, finden keine Sprechzeiten vor Ort statt und Sie müssen Ihre Anliegen per E-Mail an das Studienbüro übermitteln (studienbuero.mn@tu-dresden.de; ausschließlich unter Verwendung der TUD-E-Mail-Adresse; immer Studiengang und Matrikelnummer mit angeben).

Prüfungsamt Mathematik. Für alle Anliegen rund um die Themen An- und Abmeldung zu Prüfungen, Anrechnungen oder die Erstellung von Notenübersichten sind die Mitarbeiter:innen im Prüfungsamt der richtige Kontakt. Die Beschäftigten verwalten Ihre Noten und erstellen z. B. Nachweise für das BAföG-Amt oder ein Abschlusszeugnis.

Prüfungsamt Fakultät Mathematik Karola Schreiter Raum: WIL A 303

Tel.: +49 351 463-34182

studienbuero.mn@tu-dresden.de

Lehrveranstaltungsmanagement Mathematik. Das Lehrveranstaltungsmangement koordiniert die Lehrveranstaltungsplanung und stellt die Daten für selma bereit. Bei Fragen und Problemen zur An- und Abmeldung von Modulen und Lehrveranstaltungen via selma sind die Mitarbeiter:innen des Lehrveranstaltungsmanagements. Ihr Ansprechpartner.

Lehrveranstaltungsmanagement Fakultät Mathematik Claudia Hess

Raum: WIL Verbinder B-C, C12 Tel.: +49 351 463-34155

lvm.mathematik@tu-dresden.de

 $^{^{14} {\}rm https://tu-dresden.de/mn/studium/studienbuero}$

¹⁵ https://tu-dresden.de/mn/math/studium/pruefungsaemter

 $^{^{16} {\}rm https://tu-dresden.de/mn/studium/studienbuero}$

7.3.2 Das Studienbüro Lehramt

Für unsere lehramtsbezogenen Studiengänge ist das Studienbüro Lehramt zuständig:

Studienbüro Lehramt Seminargebäude II, Zellescher Weg 20 Etage 2, Raum 207

Tel.: +49 351 463-39429

7.3.3 Das Studienbüro für Studierende im Master CMS

Für Studierende im Masterstudienganges Computational Modeling and Simulation ist das Studienbüro Ingenieurwissenschaften zuständig.

Studienbüro Ingenieurwissenschaften Nürnberger Ei (über Welcome Center, neben Leonardo-Büro), Nürnberger Straße 31 A

7.3.4 Selma

Das Selbstmanagement-Portal der TU Dresden selma ist ein Dienst für Studienbewerber, Studierende und Lehrende. Für die Studierenden bietet selma eine Vielzahl von Funktionen. Insbesondere

- · Vorlesungsverzeichnis und persönlicher Stundenplan,
- An- und Abmeldung zu Modulen, Lehrveranstaltungen und Prüfungen; angemeldete Lehrveranstaltungen und Prüfungen werden im persönlichen selma-Stundenplan angezeigt
- · Ansicht von Studienergebnissen,
- · Ausdruck von Bescheinigungen (z. B. Notenübersichten),
- · Einsicht in persönliche Dokumente und Daten,

Bei manchen Lehrveranstaltungen wird selma zur Verteilung von Lehrmaterialien, Skripten, bei Terminänderungen und auch für die Kommunikation mit den Lehrenden benutzt. In der Regel wird hierfür jedoch OPAL (siehe Kapitel 7.3.8) benutzt. Selma verfügt über eine interne Nachrichtenfunktion. Stellen Sie auch hier sicher, dass Sie diese regelmäßig lesen. Dabei ist zu beachten, dass neue Nachrichten nur 14 Tage im Startbildschirm nach Anmeldung angezeigt werden.

 $^{^{17} {\}rm https://tu-dresden.de/zlsb/die-einrichtung/studienbuero-lehramt}$

 $^{^{18}{\}rm https://tu\text{-}dresden.de/ing/studium/studienbuero.ing}$

¹⁹ https://selma.tu-dresden.de

 $^{^{20}{\}rm https://tu-dresden.de/mn/studium/selma}$

Weitere Informationen zu selma sowie zu allen wichtigen Terminen und Plänen finden Sie auf den Seiten des Studienbüros Mathematik und Naturwissenschaften.

Das ServiceCenterStudium (SCS) der TU Dresden bietet Ihnen zusätzlich einen Ticketservice für alle Fragen rund um selma.

servicecenter.studium@tu-dresden.de

Im nebenstehendem Video wird Ihnen erklärt, was für weitere Funktionen das selma Portal für Sie bereit hält.

7.3.5 Anmeldung zu Prüfungen

Um Prüfungsvorleistungen und Prüfungen eines Moduls ablegen zu können, ist eine Anmeldung erforderlich. Auch bei einer Seminararbeit inklusive Referat handelt es sich um eine Prüfung, die einer Anmeldung bedarf. Die Anmeldung muss in einem sogenannten *Einschreibezeitraum* erfolgen. Hierbei ist zu beachten, dass es **zwei Einschreibezeiträume pro Semester** gibt: ein erster Zeitraum für semesterbegleitende Leistungen (hierzu zählen Prüfungsvorleistungen, Seminare, Prüfungen z.B. bei Seminaren und die Lehrform Wissenschaftliches Arbeiten), sowie ein zweiter Zeitraum für Prüfungen. Diese Zeiträume werden während des Semesters bekannt gegeben und auf der Seite des Prüfungsamtes Mathematik, siehe Abschnitt 7.3.1, veröffentlicht.

Manche Prüfungen setzen voraus, dass Prüfungsvorleistungen erbracht wurden. In der Regel bestehen diese aus vorlesungsbegleitenden Hausaufgaben oder Testaten.

Anmelde-1x1 in selma. Für Studierende in den mathematischen Bachelorund Master-Studiengängen erfolgen Modul-, Lehrveranstaltungs- und Prüfungsanmeldungen über das Portal selma. Damit die Anmeldung für Sie so einfach und erfolgreich wie möglich verläuft, beachten Sie, dass

zunächst die Anmeldung zum Modul erfolgen muss, bevor Lehrveranstaltungen bzw. Prüfungsleistungen angemeldet werden können. Abhängig vom Studiengang ist vorab die Wahl des Nebenfaches / der Schwerpunkte zu treffen. Weitere Informationen zu selma und ein Erklär-Video zur Anmeldung finden Sie unter nebenstehendem Link. Gerne stehen Ihnen für Fragen die Studienbüros zur Verfügung. Verbindliche Informationen rund um das Thema Prüfung finden Sie in der Prüfungsordnung Ihres Studiengangs.

HISQIS. Für alle Studierende in mathematischen Lehramtsstudiengängen erfolgt die Anmeldung über das Portal

HISQIS, https://qis.dez.tu-dresden.de

Gerne stehen Ihnen für Fragen das Studienbüro Lehramt zur Verfügung. Verbindliche Informationen rund um das Thema Prüfung finden Sie in der Prüfungsordnung Ihres Studiengangs.

 $^{^{21}{}}_{https://www.youtube.com/watch?v=EwLNrDXAhJA}\\$

²² https://tu-dresden.de/mn/studium/selma

7.3.6 Zugang zu IT-Ressourcen der TU Dresden

Das Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) der TU verwaltet für alle Mitarbeiter:innen und Studierende den zentralen Zugang zu den IT-Ressourcen (E-Mail, selma, OPAL, PC-Pools). Dazu bekommen Sie eine ZIH-Benutzerkennung (ZIH-Login) bei der Immatrikulation.

Bitte aktivieren Sie, wenn noch nicht geschehen, Ihre ZIH-Benutzerkennung/Login. Lösen Sie dazu Ihren Coupon ein, den Sie per E-Mail vom ZIH-ServiceDesk zugesandt bekommen haben.

Bei Problemen bei der Einlösung des Coupons wenden Sie sich bitte an den ZIH-ServiceDesk (servicedesk@tu-dresden.de).

So lösen Sie den Coupon ein:

- Gehen Sie auf https://idm-coupon.tu-dresden.de.
- · Geben Sie Ihre Coupon-ID ein und folgen Sie den Anweisungen.
- · Merken Sie sich Ihr ZIH-Login und das von Ihnen vergebene Passwort.
- Eine Stunde nach erfolgreicher Aktivierung Ihres Kontos können Sie die IT-Ressourcen der TU nutzen.

7.3.7 TU-Mailadresse

Die Universität, insbesondere auch die Studienbüros und Dozent:innen, werden mit Ihnen via E-Mail an ihre TU-Mailadresse kommunizieren. Auch die Kommunikation im Rahmen der Lernplattform OPAL oder des Studienmanagement-Portals selma erfolgt über Ihre TU-Mailadresse. Beim

Versand von E-Mails in Studienangelegenheiten ist immer die TU-Mailadresse zu verwenden.

Stellen Sie sicher, dass Sie Mails an diese Adresse regelmäßig (d.h. zweimal täglich) lesen. Informationen zur Einrichtung der TU-Mailadresse in einem Mailclient finden Sie in nebenstehendem Link.

7.3.8 OPAL - Lernplattform

OPAL — die Online-Plattform für Akademisches Lehren und Lernen — ist die Lernplattform der TU Dresden und weiterer sächsischer Hochschulen. Im Regelfall werden Lehrveranstaltung als Kurs in OPAL abgebildet

 $^{^{23}{\}rm https://www.youtube.com/watch?v=Gho0rXDJ22Q}$

²⁵ https://msx.tu-dresden.de

- um Informationen zu Lehrveranstaltungen und Links zu Webseiten der Vorlesenden oder des Kursassistenten zu veröffentlichen,
- um Kursmaterialien (Vorlesungsvideos, Skripte, Literatur) und Übungsaufgaben bereitszustellen,
- zur Kommunikation (z.B. OPAL-Mitteilungen, Forum)
- zur Durchführung von elektronischen Tests und Prüfungen.

Im nebenstehenden Video wird kurz erklärt, wie man die Lernplattform OPAL benutzt.

Zugang zu OPAL erhalten Sie über:

OPAL-Anmeldung:

Meine Hochschule = TU Dresden

Benutzername: ZIH-Login (z.B. vvnn123j)

Zu den Lehrmaterialien auf OPAL gelangt man über den Katalog der Fakultät. Wählen Sie dort das aktuelle Semester aus.

Folgen Sie einem Link (z.B. aus dem Lehrveranstaltungskatalog), dann wechseln Sie direkt zur Lehrveranstaltung im OPAL-System. Sofern Sie nicht bereits im OPAL eingeloggt sind, führt Sie der Link zuerst auf eine Seite mit dem OPAL-Login.

7.3.9 TU-Dresden Matrix Chatsystem

Matrix ist ein freies und offenes, sicheres, dezentralisiertes Protokoll für textbasierte Echtzeit-Kommunikation, d.h. ein Chatsystem. Es wird seit 2019 als Kommunikationstool im Rahmen digitaler Lehrveranstaltungen oder für die digitale Gruppenarbeit eingesetzt. Die Nutzung des Chatsys-

tems kann browserbasiert, über Desktop-Anwendungen oder Handy-Apps erfolgen. Studierende der TU Dresden können mittels ZIH-Login dem Chatsystem beitreten und unter Einhaltung der einschlägigen gesetzlichen und rechtlichen Bestimmungen zum Datenschutz und zur IT-Sicherheit mit Angehörigen der TU Dresden und anderer Universitäten sowie weiteren Matrix-Nutzenden (bspw. akademischen Partner:innen) per Chat sowie Audio-/Video-Telefonie kommunizieren. Die Anmeldung erfolgt über den nebenstehenden Link. Dort finden Sie auch Hinweise und Tutorials.

 $²⁶_{\tt https://www.youtube.com/watch?v=wak00C1UQLM}$

²⁷ https://bildungsportal.sachsen.de

 $²⁸_{\tt https://bildungsportal.sachsen.de/opal/auth/repository/catalog/622624771}$

²⁹ https://matrix.tu-dresden.de

7.3.10 Videokonferenzsysteme

Seit dem Sommersemester 2020 können Vorlesungen digital stattfinden, dabei können diese *asynchron* durch hochgeladene Vorlesungsvideos oder *synchron* als Videokonferenz realisiert werden. Hierfür stellt die Universität vier Systeme zur Verfügung: Jitsi, BigBlueButton (BBB) oder Zoom.

7.3.11 Video Campus Sachsen

Auf dem Video Campus Sachsen finden Sie zahlreiche Lernvideos – auch zu Mathe-Vorlesungen der vergangenen Semester. Die Anmeldung erfolgt mit dem ZIH-Login.

7.3.12 Tools für das gemeinsame Arbeiten

Für das Erstellen digitaler Schriften empfiehlt sich **LaTeX**, dafür bietet die TU unter nebenstehendem Link einen Online-Compiler für LaTeX an. Dort können Sie sich mit dem ZIH-Login anmelden und mit Ihren Kommilitonen Projekte teilen.

Für das **Teilen einfacher Texte** oder das Erstellen einer gemeinsamen Präsentation empfiehlt sich die Verwendung eines Pads. Ein weiterer Vorteil eines derartigen Pads ist die Nachvollziehbarkeit von Änderungen.

Für das Teilen von einfachen Zeichnungen oder Darstellungen können Sie **GeoGebra** mit nebenstehenden Link benutzen.

Das ZIH (Zentrum für Informationsdienste und Hochleistungsrechnen) bietet allen Studierenden an der TU einen 2GB **Cloud** Speicher an. Mit Ihrem ZIH-Login können Sie sich einloggen und schon loslegen.

7.3.13 Software

 $^{{\}rm 30_{https://tu-dresden.de/zih/dienste/videokonferenz}}$

³¹ https://videocampus.sachsen.de

³² https://tex.zih.tu-dresden.de

³³ https://cryptpad.fr/

³⁴ https://www.geogebra.org/

³⁵ https://cloudstore.zih.tu-dresden.de/index.php/login

 $^{^{36}}$ https://campussachsen.tu-dresden.de/

7 Wegweiser zum Studienbeginn

Software kostet häufig Geld, etwas was man als Student eher weniger hat. Aus diesem Grund hat die TU Dresden Verträge mit Softwareentwicklern geschlossen, sodass Studierende kostenlos deren Software nutzen können. Über den nebenstehenden Link kann man die Software beziehen.

8 Tipps zum erfolgreichen Studium

Allemr Anfang ist schwer wohnt ein Zauber inne. Gerade zum Beginn des Studiums werden Ihnen in den Lehrveranstaltungen täglich neue Vokabeln, mathematische Strukturen und Argumentationsansätze begegnen. Ihre Professorinnen und Professoren werden sich sehr bemühen die Inhalte in den Vorlesungen verständlich und anschaulich zu erklären. Dennoch wird es in einer Mathematik-Vorlesung nicht möglich sein, immer gleich alles während der Vorlesung zu verstehen. Daher ist es entscheidend die Vorlesungen und Übungen aufmerksam zu verfolgen, alles mitzuschreiben, und die Veranstaltungen dann zeitnah und regelmäßig nachzuarbeiten. Aus diesem Grund wird das Selbststudium auch in den Modulbeschreibungen der Vorlesungen aufgeführt und mit Leistungspunkten versehen.

Selbststudium bedeutet die Mitschrift zur Vorlesung und Übung nochmal gründlich zu lesen. Überprüfen Sie hierbei, dass Sie alle Definitionen, Aussagen, Beweise, Beispiele und Bemerkungen auch tatsächlich verstanden haben. Hierbei ist es außerordentlich hilfreich sich in einer Lerngruppe zu organisieren. In der Lerngruppe können Sie über die Unklarheiten diskutieren und sich gegenseitig "die Vorlesung erklären". Innerhalb einer Lerngruppe können Sie Ihre Mitstudierenden motivieren oder sich selber einmal motivieren lassen, falls Ihnen das Studium mal "über den Kopf wachsen sollte". Häufig findet sich eine Lerngruppe von ganz alleine. — Sprechen Sie einfach Ihre Mitstudierenden an oder besuchen Sie den *Helpdesk* (siehe unten). Gerne hilft Ihnen auch die Fachschaft sich mit Mitstudierenden zu vernetzen und für inhaltliche Fragen stehen Ihnen sowohl Tutorinnen und Tutoren als auch die Dozentinnen und Dozenten zur Verfügung.

Die Lektüre von Lehrbüchern ist ebenfalls ein wichtiger Bestandteil des Selbststudiums. Wenngleich sich zentrale Inhalte der Grundlagenvorlesungen zur Mathematik von Lehrbuch zu Lehrbuch kaum unterscheiden, so können diese jedoch auf sehr unterschiedliche Art und Weise eingeführt und motiviert werden. Vielleicht finden Sie ja in einem Lehrbuch eine Erklärung, die Ihnen weiterhilft? Die Lektüre von Lehrbüchern eröffnet Ihnen den Blick auf mathematische Strukturen aus verschiedenen Perspektiven und fördert damit auch ein übergeordnetes Verständnis der Mathematik. In vielen Vorlesungen werden Empfehlungen für Lehrbücher veröffentlicht.

Vielleicht wichtigster Bestandteil des Selbststudiums ist die regelmäßige Bearbeitung der Übungsaufgaben. Wie beim Erlernen einer Fremdsprache, reicht es nicht aus, nur Vokabeln und Grammatik zu kennen. Der aktive Gebrauch in geschriebener und gesprochener Form muss fleißig geübt werden — bis man eines Tages vielleicht sogar in der neuen Sprache träumt. In der Mathematik ist es ähnlich. Durch die Bearbeitung vieler Übungsaufgaben erlernen Sie nicht nur den sicheren Umgang mit den abstrakten Strukturen — nach einiger Zeit (vielleicht im zweiten Studienjahr) werden Sie eine eigene Intuition für die Strukturen entwickeln und mathematische Argumente in größeren Zusammenhängen erfassen.

8.1 Helpdesk

Der Helpdesk richtet sich an Studierende (insbesondere im ersten und zweiten Studienjahr) in den Bachelor-Studiengängen Mathematik und Wirtschaftsmathematik und den Staatsexamen-Lehramtsstudiengängen mit studiertem Fach Mathematik. Der Helpdesk bietet einen Ort zur Vor-

und Nachbereitung der Lehrveranstaltungen, zur Hausaufgabenbearbeitung (gerne in Lerngruppen), zum Vor- und Nachbereiten der Übungsaufgaben und zur Prüfungsvorbereitung. Gerne darf der Helpdesk auch zur Vernetzung in Lerngruppen genutzt werden. Zu bestimmten Terminen beantworten Tutor:innen Fragen zur Vorlesung, zu Übungs- und zu Hausaufgaben, insbesondere für die Veranstaltungen:

- · Analysis Grundlegende Konzepte & Weiterführende Konzepte,
- · Lineare Algebra Grundlegende Konzepte & Weiterführende Konzepte,
- · Elementargeometrie.

Die Termine und Räumlichkeiten werden im Rahmen der Lehrveranstaltungen bekannt gegeben.

8.2 Lernraum

Der Lernraum richtet sich an Studierende aller Fakultäten und Fachrichtungen mit mathematischer Grundlagenausbildung und dient zur Prüfungsvorbereitung, zur Bearbeitung von Hausaufgaben und zur Vorund Nachbereitung von Lehrveranstaltungen im Selbststudium und in

Lerngruppen. Mitarbeiter und Tutoren stehen für Fragen zur Verfügung. Weitere Informationen finden Sie unter nebenstehendem Link.

8.3 Fachschaftsrat Mathematik

Alle Studierenden an der Fakultät Mathematik der TU Dresden bilden die Fachschaft Mathematik. Sie werden vertreten und unterstützt durch den Fachschaftsrat Mathematik, kurz μ FSR. Sie können ihn per Mail unter kontakt@myfsr.de, via Internet unter nebenstehendem Link.

Noch ein paar Worte von uns persönlich:

Wir, der Fachschaftsrat, sind Studierende wie du, aber teilweise schon etwas länger hier. Daher können wir dir bei vielen Fragen zu Studienablauf, Prüfungsorganisation und -ordnung und Ansprechpartner:innen an der Uni weiterhelfen. Dazu kann auch gehören, dass wir bei Konflikten zwischen Studierenden und Dozent:innen vermitteln. Wir freuen uns darauf, dich zu unterstützen. Wir bieten auch verschiedenste **Veranstaltungen** an, wie beispielsweise

 $^{^{\}rm 37}{}_{\rm https://tu-dresden.de/mn/math/studium/lehrangebot/helpdesk-mathematik}$

 $^{^{38} {\}rm https://tu-dresden.de/mn/math/studium/lehrangebot/lernraum-mathematik}$

³⁹ https://www.myfsr.de

Spiele-, Skatabende

- Erstsemestereinführung
 Sportturniere, z.B. Volleyball, Fußball
 gemeinsames Grillen
- Berufsinfoveranstaltung

Falls du eigene Ideen für Veranstaltungen hast, können wir dich auch gerne finanziell und organisatorisch unterstützen. Klausuren vorheriger Jahre sind hilfreich bei der Prüfungsvorbereitung, deshalb sammeln wir alte Klausuren und stellen sie den nach-

folgenden Studierenden bereit. Schreibe einfach eine E-Mail an klausur@myfsr.de.

Der µFSR setzt sich bei Entscheidungen in der Uni, in erster Linie innerhalb der Fakultät Mathematik, für die Interessen der Studierenden ein. Dafür hat er Vertreter:innen in verschiedenen Gremien. Wenn man sich in diesem Bereich engagiert, bekommt man vieles von dem mit, was hinter den Kulissen des Unialltags passiert und kann einiges bewegen. Auch ohne politische oder Uni-Erfahrung kannst du dich einbringen und spannende Aufgaben übernehmen!

Wenn du ebenfalls Interesse hast, neben dem Studium deine Kommiliton:innen mit kulturellen Events zu bereichern oder einfach das Mathematikstudium noch besser machen willst, dann werde auch gern Mitglied und kontaktiere uns dazu über kontakt@myfsr.de.

8.4 Mentor:innen-Programm der Fakultät Mathematik

Im ersten Studienjahr profitieren Sie von unserem Mentor:innen-Programm: Sie können Teil einer Mentee-Gruppe (ca. 6 Studienanfänger:innen) werden, die von ein bis zwei erfahrenen Studierenden, den Mentor:innen, betreut wird.

In mehreren Treffen der Mentee-Gruppe und zentralen Workshops des Mentor:innen-Programms werden Fragen rund ums Studieren geklärt. In Ihrer Gruppe haben Sie die Möglichkeit sich mit Ihren Kommiliton:innen gemütlich über das Studium und seinen Herausforderungen auszutau-

schen. Weitere Informationen, insbesondere zur Anmeldung, finden Sie unter dem ersten nebenstehenden Link.

8.5 Beratungs- und Anlaufstellen

Die Zeit des Studiums ist eine Phase der Persönlichkeitsentwicklung und nicht selten mit Krisen verbunden. Es können Schwierigkeiten am Studienanfang, im Studienverlauf und in der Zeit der Studienabschlussarbeit auftreten. Beratung zu Fragestellungen rund um das Studium erhalten Sie durch unsere Studienfachberater, den Fachschaftsrat sowie durch das Studienbüro. Darüber hinaus möchten wir Sie auf Angebote bei

 $^{^{40}{\}rm https://tu-dresden.de/mn/math/studium/lehrangebot/mentor-innen-programm}$

 $^{41\\ \}texttt{https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/21497479179}$

psychologischem Beratungsbedarf hinweisen; z. B. bei Zweifel, das Studium fortzusetzen · Arbeitsschwierigkeiten · Prüfungsangst · Studienabschlussprobleme · mangelndes Selbstwertgefühl · Probleme im sozialen Umfeld · Probleme mit Alkohol, Drogen, Online-Sucht · depressive Verstimmungen. Bitte scheuen Sie sich nicht die Hilfestellungen unserer Beratungs- und Anlaufstellen anzunehmen.

8.5.1 Gesprächskreis - Kompakter Support

Während für fachliche Schwierigkeiten bereits einige Angebote existieren, die Hilfestellungen leisten (z.B. der Lernraum), wollen wir mit unserem "Kompakten Support" Studierenden an der Fakultät Mathematik eine erste Anlaufstelle und Plattform des Austausches bei Fragen, Sorgen, großen oder kleinen Problemen rund ums Studium bieten.

Hierzu hat sich ein wöchentlicher Gesprächskreis etabliert, in dem man in kleiner Runde mit anderen darüber reden kann.

Unser Team aus sensiblen Ansprechpersonen bietet zusätzlich auch gerne Einzelgespräche an, um Ihnen zuzuhören und sich mit Ihnen auszutauschen. Dabei ist es unser Ziel, Ihnen frühzeitig Beratung zu bieten oder Hilfestellungen zu bieten, um Ihnen mit Ihren Anliegen zu helfen.

8.5.2 Studienfachberatung unserer Fakultät

Studienfachberater:innen sind Ansprechpersonen, die zu inhaltlichen und studienorganisatorischen Fragen in allen Phasen des Studiums beraten. Sie sind somit eine der ersten Anlaufstellen bei Problemen im Studium.

Die Beratung der Studienfachberatung umfasst insbesondere folgende Themen: Anforderungen sowie spezifische Studienvoraussetzungen • inhaltliche Fragen beim Wechsel an die TU Dresden oder innerhalb der TU Dresden • Spezialisierungsmöglichkeiten • Modulinhalte • Auswahl von Lehrveranstaltungen • Studienabschlüsse • Stundenplangestaltung • Planung von Auslandsaufenthalten • Individuelle Studienablaufplanung.

Bei Beratungsbedarf empfiehlt sich die Anmeldung bzw. Terminvereinbarung. Es kann aber auch die Sprechzeit genutzt werden. Die Ansprechpartner:innen für Ihren Studiengang finden Sie unter dem angegebenen Link.

8.5.3 Zentrale Studienberatung

 $[\]overline{\rm 42}_{\rm https://tu-dresden.de/mn/math/studium/beratung/kompakter-support}$

 $^{^{43} {\}rm https://tu\text{-}dresden.de/mn/math/studium/beratung}$

⁴⁴ https://tu-dresden.de/studium/im-studium/beratung-und-service/zentrale-studienberatung

Bei Unklarheiten, Zweifeln und Problemen im Studium sowie bei der Prüfungsvorbereitung und in der Abschlussphase des Studiums können Sie sich an die Studienberatung wenden. Deren Berater:innen sind professionell ausgebildet und helfen Ihnen gerne weiter. Sie bieten Ihnen Chats, öffentliche Sprechzeiten oder private Termine an. Außerdem vermitteln sie Lerngrup-

pen und bieten Workshops zu unterschiedlichen Themen an.

8.5.4 Allgemeine Qualifikationen im Studium - AQUA

In den mathematischen Bachelorstudiengängen sind Allgemeine Qualifikationen, kurz AQUA, zu erbringen. Weitere Informationen und Kontakt zu Ansprechpersonen finden Sie unter nebenstehendem Link.

8.5.5 Beratungsstellen im Studentenwerk Dresden

Das Studentenwerk Dresden möchte mit seinen Beratungs- und Unterstützungsangeboten dazu beitragen, dass Sie Ihr Studium auch dann aufnehmen, weiterführen oder abschließen können, wenn Ihre Lebensumstände schwierig sind oder sich Probleme im und mit dem Studium

abzeichnen. Angeboten werden Orientierungs- und Entscheidungshilfen sowie kompetente psychologische und juristische Beratungen.

Des Weiteren verwaltet das Studentenwerk die Wohnheime und die Mensen. Auf Ihrer Immatrikulation finden Sie eine E-Meal-Bescheinigung. Mit dieser können Sie eine E-Meal-Karte in der Mensa beantragen. Außerdem ist das Studentenwerk auch für die Beantragung des BaföG zuständig. Zusätzlich gibt es generelle Beratungen zur Studienfinanzierung. Weitere Informationen finden Sie unter nebenstehendem Link in den Abschnitten Wohnen, Mensen, Finanzierung oder Beratung und Soziales.

8.5.6 Chancengleichheit

Die Gleichstellungsbeauftragten des Bereichs Mathematik und Naturwissenschaften und der Fakultäten stehen den Beschäftigten und Studierenden des Bereichs in allen Angelegenheiten zum Thema Chancengleichheit unterstützend und beratend zur Seite. Die Gleichstellungsbeauftrag-

ten versuchen, auf die Herstellung von Chancengleichheit und auf die Vermeidung von Nachteilen für Beschäftigte und Studierende hinzuwirken.

Bei Fragen, Beratungsbedarf, Interesse an Fördermöglichkeiten, aber auch mit Ideen, wie eine solidarische Hochschule mitgestaltet werden kann, wenden Sie sich bitte an den

 $[\]overline{\rm 45}_{\rm https://tu-dresden.de/mn/math/studium/studienangebot/mathematik-bachelor/aqua}$

 $^{^{\}rm 46}{}_{\rm https://www.studentenwerk-dresden.de/}$

 $⁴⁷_{\rm https://tu-dresden.de/mn/der-bereich/chancengleichheit}$

8 Tipps zum erfolgreichen Studium

Gleichstellungsbeauftragten der Fakultät Mathematik Prof. Dr. Dirk Pauly Tel.: +49 351 463-35581

gleichstellung.math@tu-dresden.de

oder den

Stellv. Gleichstellungsbeauftragten der Fakultät Mathematik Jan Hausmann

Tel.: +49 351 463-35074

gleichstellung.math@tu-dresden.de

8.5.7 Studieren mit Kind

Informationen und Beratung zum Studium mit Kind erhalten Sie durch die Zentrale Studienberatung. Informationen zum Mutterschutz finden Sie unter nebenstehendem Link.

8.5.8 Probleme im Studium

Wenn die Euphorie der ersten Wochen weg ist, wenn einen der Prüfungsstress überrollt, oder wenn man einfach so hineingerutscht ist, kann es passieren, dass man mit einem Berg an Problemen, Sorgen und Nöten da steht und weder vor noch zurück sieht. Doch gerade in diesen

Fällen lässt einen die TU nicht alleine dastehen. Eine Liste von Hilfsmöglichkeiten an der TU findet man unter nebenstehendem Link.

Auch der **Studierendenrat** der TU stellt Hilfsangebote auf seiner Webpräsenz vor.

Eine kleine Übersicht der Wichtigsten soll aber auch hier seinen Eingang finden:

- ServiceCenter Studium
 - Organisatorische Fragen
 - Servicepoint im Foyer der SLUB
 - servicecenter.studium@tu-dresden.de
 - 0351 463-42000
- passt?!
 - Schwierigkeiten im Studium
 - passt@tu-dresden.de
- Peer-Programm
 - Allgemeine Fragen und Probleme

 $^{^{48} {\}tt https://tu-dresden.de/intern/arbeits schutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz/mutterschutz-gesundheit-umwelt/arbeits-und-brandschutz-gesundheit-umwelt/arbeits-und-brandschutz-gesundheit-umwelt/arbeits-und-brandschutz-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-umwelt/arbeits-gesundheit-gesundheit-umwelt/arbeits-gesundheit-gesundh$

 $^{^{\}rm 49}{\rm https://tu-dresden.de/studium/rund-ums-studium/hilfe-und-beratung}$

 $^{^{50}}$ https://www.stura.tu-dresden.de/beratung

- Matrix-Raum: #ChatPeerProgramm:tu-dresden.de
- Sozialberatung
 - Lebensfragen
 - sozialberatung@studentenwerk-dresden.de
 - **-** 0351 4697-661 / -662
- Psychosoziale Beratungsstelle
 - Psychologische Beratung und Suchtfragen
 - Dr. Sabine Stiehler
 - psb@studentenwerk-dresden.de
- Rechtsberatungsstelle
 - Martin Groschek
 - ragroschek@aol.com
 - 0351 31 27 234
- · Nightline Dresden
 - Allgemeine Probleme (Alles!)
 - 0351 4277345
 - Di, Do, Sa, So 21:00-24:00 Uhr
- StuRa
 - Studienfinanzierung
 - https://www.stura.tu-dresden.de/webfm_send/2523
- Kassenärztliche Vereinigung Sachsen
 - Arzt- und Therapeutensuche
 - https://asu.kvs-sachsen.de/arztsuche/

Mehr Informationen finden sich unter den entsprechenden Begriffen im Netz.

8.5.9 Schreibzentrum

Im Studium muss man wissenschaftlich schreiben, insbesondere im Lehramtsstudium. Da dies nicht immer ganz so einfach ist, wie gedacht, gibt es das Schreibzentrum der TU Dresden. Sie helfen euch, dass wissenschaftliche Schreiben zu lernen und bieten auch Kurse zu Rhetorik o. Ä. an. Zu

finden sind sie unter nebenstehendem Link.

 $^{^{51}{\}rm https://tu-dresden.de/karriere/weiterbildung/zentrum-fuer-weiterbildung/schreibzentrum}$

9 Angebote neben dem Studium

9.1 Veranstaltungen zum Kopf frei bekommen

Neben dem Studium ist es auch wichtig eine Ablenkung für den Geist zu finden.

Uni-Sport Das dresdner Hochschulsportzentrum (DHSZ) bietet eine Vielzahl an Sportangeboten an, die während des Semesters und auch in den Semesterferien besucht werden können. Die Einschreibung findet standardmäßig am Dienstag in der ersten Vorlesungswoche statt. Bleibt dran,

denn die Plätze sind schnell vergeben.

Studentenclubs Dresden ist für seine Szene an Studentenclubs bekannt, denn keine Stadt in Deutschland hat mehr Clubs. Die Vereinigung Dresdner Studentenclubs (Vdsc) hält Sie auf dem Laufenden. Sonst können Sie sich auch gern über Ihren Lieblingsclub direkt über die jeweils eigene Webseite

informieren.

Club Hängemathe Zeunerstr. 1f

www.club-haengemathe.de

Club Countdown Güntzstr. 22

www.countdown-dresden.de

Club Traumtänzer Budapester Str. 24 www.club-traumtaenzer.de

Club Bärenzwinger Brühlscher Garten 1 www.baerenzwinger.de Gutzkowclub Gutzkowstr. 29 www.gutzkow-club.de

Kellerclub GAG 18

Fritz-Löffler-Str. 16 www.gag-18.com

Club 11 Hochschulstr. 48 www.clubelf.de

Club Aquarium St. Petersburger Str. 21 www.club-aquarium.de Club Novitatis Fritz-Löffler-Str. 12c www.novitatis.de

Club WU5

August-Bebel-Str. 12 www.wu5.de

www.wao.ac

Club Borsi 34 Borsbergstr. 34 www.borsi34.de

Club Mensa Reichenbachstr. 1 www.clubmensa.de

9.2 Veranstaltungsprogramm unserer Fakultät

Auch außerhalb des regulären Lehrveranstaltungsangebotes bieten wir Ihnen interessante Möglichkeiten an, sich mit Mathematik zu beschäftigen. Hier finden Sie einen kleinen Auszug an regelmäßigen Veranstaltungen:

Dresdner Mathematisches Seminar. Das Dresdner Mathematische Seminar ist das Kolloquium der Fakultät Mathematik der TU Dresden. Es richtet sich an ein breites Fachpublikum und findet regelmäßig während der Vorlesungszeit statt.

⁵² https://tu-dresden.de/dhsz

⁵³ https://vdsc.de

 $^{^{54} {\}rm https://tu-dresden.de/mn/math/die-fakultaet/veranstaltungen/dms}$

Graduate Lectures. Die Graduate Lectures der Fakultät Mathematik sind kurze Vorlesungsreihen (typischerweise drei Sitzungen), die sich an Studierende im Master sowie Promovierende richten.

Tagungen und Schulen. An unserer Fakultät finden regelmäßig Konferenzen, Workshops und Sommerschulen statt. Eine Übersicht zu solchen Veranstaltungen finden Sie unter nebenstehendem Link.

Veranstaltungskalender der Fakultät. Im Veranstaltungskalender der Fakultät sind alle Veranstaltungen der Fakultät Mathematik veröffentlicht.

Dresdner Science Calendar. Im Dresden Science Calendar finden Sie alle Veranstaltungen von Dresdner Wissenschaftseinrichtungen.

Erlebnisland Mathematik Dresden Das Erlebnisland Mathematik Dresden ist das Ergebnis einer Kooperation der Fakultät Mathematik mit den Technischen Sammlungen Dresden. Alt und Jung haben hier die Möglichkeit anhand liebevoll gestalteter Exponate über Mathematik zu staunen und nachzudenken. Das Erlebnisland Mathematik bildet auch die Bühne für unsere Vortrags- und Diskussionsreihe Mathematik im Gespräch, in der Professorinnen und Professoren über Aspekte der Mathematik und die Tätigkeit als Mathematiker:innen referieren und dem Publikum Rede und Antwort stehen.

Studium Generale Im Rahmen des studium generale werden sowohl Veranstaltungen angeboten, die speziell für das studium generale konzipiert worden sind und zusätzlich zu den regulären Lehrveranstaltungen angeboten werden, als auch solche, die Bestandteil des planmäßigen Lehr-

angebotes und nach Einschätzung der Fakultäten für das studium generale geeignet sind. Bei den Reihen, Vorlesungen, Seminaren etc. des studium generale stehen vor allem die interdisziplinären Bezüge sowie der einführende, grundlagen- oder methodenorientierte Charakter der Lehrveranstaltung im Vordergrund.

⁵⁵ https://tu-dresden.de/mn/math/forschung/tagungen

 $^{^{56}{\}rm https://www.math.tu-dresden.de/veranstaltungen/}$

 $^{^{57}{\}rm https://www.dresden-science-calendar.de/calendar/de}$

 $^{^{58} {\}rm http://www.erlebnisland-mathematik.de/}$

 $^{^{59} {\}rm https://tu-dresden.de/studium/im-studium/studienorganisation/lehrangebot/studium-generale}$

9.3 Erasmus

Mit Erasmus+ können Sie nach Abschluss des ersten Studienjahres bis einschließlich zur Promotion einen Studienaufenthalt oder ein Praktikum an einer ausländischen Hochschule oder in einem Unternehmen/einer Organisation zwischen 2 und 12 Monaten fördern lassen. Studiengebühren an

der Gasthochschule entfallen, Studierende erhalten ein Stipendium. In der Datenbank des Akademischen Auslandsamts gibt es alle verfügbaren Plätze für den Bereich der Mathematik und Naturwissenschaften.

Unter nebenstehendem Link können Sie sich regelmäßig über geplante Informationsveranstaltungen informieren.

Erasmus Beauftragte der Fakultät PD Dr. Anke Kalauch Tel.: +49 351 463-35061

anke.kalauch@tu-dresden.de

9.4 Sprachausbildung TU Dresden

Im Rahmen der Sprachausbildung TU Dresden haben Sie die Möglichkeit eine studienbegleitende und curriculare allgemein- und fachsprachliche Fremdsprachenausbildung (modularisiert) wahrzunehmen. Jeder Studierende kann 10 Semesterwochenstunden (= 150 Unterrichtsstunden)

Fremdsprachenausbildung kostenlos belegen.

Eine Einschreibung ist über OPAL möglich.

9.5 ECMI

Das "European Consortium for Mathematics in Industry" (ECMI) ist ein Zusammenschluss von akademischen Institutionen und Industrieunternehmen, deren Ziel es ist, den Einsatz mathematischer Modelle in sozialen und ökonomischen Bereichen zu fördern und zu unterstützen. Um die Nach-

frage nach europaweit agierenden Experten auf diesem Gebiet zu befriedigen, wird deshalb der Ausbildung von Techno- und Wirtschaftsmathematikern große Beachtung geschenkt. Ein Netzwerk europäischer Partneruniversitäten, dem die TU Dresden angehört, bietet die Techno- bzw. Wirtschaftsmathematik als Studienprogramme an, pflegt enge Industriekontakte und betreibt Studierendenaustausch.

 $⁶⁰_{https://tu-dresden.de/kooperation/internationales/Academic Exchange/erasmus-plus/erasmus.creditmobility} \\$

 $⁶¹_{\hbox{https://tu-dresden.de/studium/im-studium/auslandsaufenthalt/infoveranstaltungen}$

 $^{^{62} {\}tt https://tu-dresden.de/studium/im-studium/studienorganisation/lehrangebot/sprachausbildung}$

 $^{^{63} {\}tt https://tu-dresden.de/mn/math/studium/internationales/ecmi}$

An der Fakultät Mathematik der TU Dresden haben Studierende im Master Mathematik die Möglichkeit, unterstützt durch die Fakultät Mathematik, an einer einwöchigen, europäischen Modellierungswoche teilzunehmen und das ECMI-Zertifikat (eine zuerkannte Diplomergänzung) zu erwerben.

Vorsitzender ECMI-Gruppe Prof. Dr. Stefan Siegmund Tel.: +49 351 463-34633 stefan.siegmund@tu-dresden.de

9.6 Orientierungsplattform Forschung und Praxis

Durch die Orientierungsplattform Forschung und Praxis können Sie Einblicke in potenzielle Tätigkeitsfelder in Unternehmen und Forschungseinrichtungen erhalten. Das angebotene Spektrum reicht von Team Challenges und Workshops über Exkursionen und Praxisprojektwochen bis hin zu

großen Vortragsveranstaltungen.

9.7 Femtec.network

Das Careerbuilding-Programm für Studentinnen bereitet Sie gezielt auf die berufliche Praxis und künftige Führungsaufgaben vor.

 $^{64\\ \}text{https://tu-dresden.de/tu-dresden/profil/exzellenz/zukunftskonzept/tud-structures/zill/orientierungsplattform-forschung-praxis}$

 $⁶⁵_{\tt https://www.femtec.org}$

10 Unsere Professor:innen

Prof. Dr. Ulrike Baumann Projektgruppe Diskrete Strukturen

Raum: WIL B 109

Tel.: +49 351 463 - 32940 ulrike.baumann@tu-dresden.de

Arbeitsgebiet: Algebraische Graphentheorie, insbesondere Cayley-Graphen und Graphen-Automorphismen sowie Probleme aus der Theoretischen Informatik und Kryptologie

Die Algebraische Graphentheorie beschäftigt sich mit der Untersuchung von Problemen der Graphentheorie unter Anwendung von Methoden der Algebra. Insbesondere werden Zusammenhänge zwischen Graphen und Gruppen untersucht. Eine besondere Rolle in der Theorie symmetrischer Graphen spielen Cayley-Graphen, die über Gruppen konstruiert werden und deren Eigenschaften darstellen können. Es gibt sehr enge Verbindungen zwischen Problemen aus der Diskreten Mathematik und Fragen, die in der theoretischen Informatik untersucht werden.

Vorlesungsangebot: Mathematik für Informatiker, Algebra für Informationssystemtechniker, Vorlesungen und Seminare zu diskreten Strukturen

Website: https://tu-dresden.de/mn/math/algebra/baumann

Foto: Nils Eisfeld

Prof. Dr. Anita BehmeProfessur für Angewandte Stochastik

Raum: Z21 315

Tel.: +49 351 463 - 32426 anita.behme@tu-dresden.de

Arbeitsgebiet: Stochastische Modellierung, Sprungprozesse und deren Statistik

Viele (scheinbar) zufällige Prozesse in Physik, Versicherungs- und Finanzmathematik, Medizin und anderen Feldern lassen sich mittels stochastischer Prozesse modellieren. Derartige Prozesse und ihre Analyse sind Forschungsschwerpunkte dieser Professur. Speziell arbeiten wir zu Lévyprozessen und Lévy-getriebenen Differentialgleichungen sowie deren Anwendungen und den daraus resultierenden Fragestellungen, wie z. B. invariante Verteilungen, Fluktuationen und Schätztheorie.

Vorlesungsangebot: weiterführende Vorlesungen zu verschiedenen Themen der Stochastik wie z. B. Stochastische Prozesse, Statistik, Stochastische Analysis, Zeitreihenanalyse, sowie Vorlesungen zur Versicherungsmathematik

Website: https://tu-dresden.de/mn/math/stochastik/behme

Prof. Dr. Manuel Bodirsky Professur für Algebra und diskrete Strukturen

Tel.: +49 351 463 - 35355

manuel.bodirsky@tu-dresden.de

Arbeitsgebiet: Universelle Algebra, Klone auf unendlichen Grundmengen, unendliche Permutationsgruppen. Endliche Modelltheorie und deskriptive Komplexität. Klassische Modelltheorie, homogene Strukturen, strukturelle Ramseytheorie. Enumerative Kombinatorik

Eine aktuelles Forschungsthema meiner Arbeitsgruppe ist die Berechnungskomplexität von Constraint Satisfaction Problemen aus der theoretischen Informatik. Ziel ist ein systematisches Verständnis der Probleme, die mit polynomiellem Rechenaufwand gelöst werden können, und welche NP-schwer sind. Viele Fragen in diesem Gebiet führen zu zentralen Problemen in der universellen Algebra. Bei Constraint Satisfaction Problemen mit unendlichem Wertebereich sind ausserdem Kenntnisse aus der Modelltheorie wichtig, und es ergeben sich vielfältig Anknüpfungspunkte mit anderen aktiven Themen am Institut für Algebra (wie etwa Automorphismengruppen von Strukturen).

Vorlesungsangebot: Grundlagenvorlesungen der Algebra, einführende und fortgeschrittene Vorlesungen in Kombinatorik, universeller Algebra, und Logik (Modelltheorie).

Website: https://tu-dresden.de/mn/math/algebra/bodirsky

Prof. Dr. Ralph Chill Professur für Funktionalanalysis

Foto: Nile Eiefole

Raum: WIL B 318 A Tel.: +49 351 463 - 37574 ralph.chill@tu-dresden.de

Arbeitsgebiet: Funktionalanalysis, lineare und nichtlineare Evolutionsgleichungen

Funktionalanalysis ist die Analysis auf endlich- und unendlichdimensionalen Vektorräumen (Banachräumen, Hilberträumen, topologischen Vektorräumen) und die Analysis der linearen und nichtlinearen Operatoren zwischen diesen Räumen. Mein spezielles Forschungsinteresse gilt der Theorie der linearen und nichtlinearen Evolutionsgleichungen auf Banachräumen, den zugehörigen Operatorhalbgruppen und dem qualitativen Verhalten von Evolutionsgleichungen (Langzeitverhalten, Regularität, Approximation). Neben der Operatortheorie und der Theorie der Banachräume berührt dieses Forschungsgebiet auch die harmonische Analysis, die Funktionentheorie, und vor allem das Gebiet der partiellen Differentialgleichungen.

Vorlesungsangebot: Grundvorlesungen der Analysis, Funktionalanalysis (Einführung und Vertiefung), Funktionentheorie, Partielle Differentialgleichungen, Evolutionsgleichungen

Website: https://tu-dresden.de/mn/math/analysis/chill

Prof. Dr. Arno Fehm Professur für Algebra

Tel.: +49 351 463 - 35063 arno.fehm@tu-dresden.de

Arbeitsgebiet: Algebra und Zahlentheorie, insbesondere Arithmetik und Modelltheorie von Körpern

Die Zahlentheorie untersucht Eigenschaften von Zahlen, insbesondere ganzer und rationaler Zahlen, und ist eines der ältesten Gebiete der Mathematik. Die seit dem 19. Jahrhundert entwickelte algebraische Zahlentheorie führt diese Untersuchung mit Methoden der modernen Algebra fort, was mit der Entwicklung der grundlegenden Begriffe von Gruppen, Ringen und Körpern einhergegangen ist. Körper zum Beispiel sind Zahlbereiche, in denen die üblichen Rechenoperationen Addition, Subtraktion, Multiplikation und Division durchgeführt werden können, wie etwa im Körper der rationalen Zahlen. An der Professur für Algebra untersuchen wir insbesondere Eigenschaften von Körpern unter algebraischen, arithmetischen und logischen Gesichtspunkten. Hierbei kommen Methoden aus verschiedenen Gebieten der Mathematik zum Einsatz, vor allem aus algebraischer Zahlentheorie, kommutativer Algebra, Galoistheorie, arithmetischer Geometrie, analytischer Zahlentheorie, Gruppentheorie und Modelltheorie.

Vorlesungsangebot: Grundvorlesungen Algebra, einführende Vorlesungen zu algebraischer Zahlentheorie, algebraischer Geometrie und mathematischer Logik, vertiefende Vorlesungen zu Themen aus Algebra und Zahlentheorie sowie modelltheoretischer Algebra.

Website: https://tu-dresden.de/mn/math/algebra/fehm

Prof. Dr. Dietmar FergerProfessur für Mathematische
Statistik

Tel.: +49 351 463 - 36371 dietmar.ferger@tu-dresden.de

Arbeitsgebiet: Asymptotische und nichtparametrische Statistik, Change-Point Analysis, zufällige abgeschlossene Mengen und empirische Prozesse

Bei einer Vielzahl von nicht deterministischen Abläufen unserer Erfahrungswelt kommt es sehr häufig vor, dass der Zufallsmechanismus des zugrunde liegenden stochastischen Prozesses einen Strukturbruch an einer unbekannten "Sprungstelle" aufweist. Das Problem besteht in der Schätzung der "Sprungstelle" anhand von Beobachtungen des stochastischen Prozesses. Je nach Fragestellung liefert der Schätzwert beispielsweise die Zeitspanne einer Fehlproduktion oder die Dauer einer Epidemie, die Rekonstruktion eines verrauschten Bildes oder die Einteilung von Patienten in eine Risiko- und Nichtrisikogruppe. In den jeweiligen mathematischen Modellen werden Schätzverfahren konstruiert und unter Verwendung mathematischer Kriterien auf ihre Effizienz hin untersucht und optimiert. In der Regel geschieht dies durch die Herleitung von Grenzwertsätzen.

Vorlesungsangebot: Grundvorlesung Statistik (Bachelor), Mathematische Statistik, Lineare Modelle (Master), Spezialvorlesungen: Extremwert-Statistik, Asymptotische Entwicklungen, Zufällige abgeschlossene Mengen und Choquet-Kapazitäten, Service: Mathematik für Wirtschaftswissenschaftler

Website: https://tu-dresden.de/mn/math/stochastik/ferger/

Prof. Dr. Andreas FischerProfessur für Numerik der Optimierung

Raum: Z21 325.1

Tel.: +49 351 463 - 34148 andreas.fischer@tu-dresden.de

Arbeitsgebiet: Ziele meiner Arbeitsgruppe sind

- · Design und Analyse effizienter Algorithmen,
- · mathematische Modellierung von Optimierungsaufgaben,
- · Behandlung von Aufgabenstellungen aus der Praxis.

Dabei befassen wir uns mit verschiedenen Problemklassen, z.B.

- · Optimierungsaufgaben mit Nebenbedingungen,
- · Komplementaritäts- und Variationsprobleme,
- · nichtglatte Gleichungssysteme,
- · diskrete Optimierungsaufgaben, speziell Zuschnitt- und Packungsoptimierung,
- · Aufgaben aus dem Machine Learning.

Aufgrund dieses Spektrums haben wir Erfahrungen aus Forschungsprojekten und der Zusammenarbeit mit Partnern aus Universitäten, wissenschaftlichen Einrichtungen und Unternehmen.

Vorlesungsangebot: Grundlagenvorlesungen für Ingenieurswissenschaften, Bachelor-Vorlesungen zur Numerischen Mathematik und zur Optimierung, Master-Vorlesungen zur kontinuierlichen und Optimierung sowie spezielle Themen.

Website: https://tu-dresden.de/mn/math/numerik/fischer

Prof. PD Dr. Sebastian Franz Projektgruppe für Numerische Analysis

Tel.: +49 351 463 - 34259 sebastian.franz@tu-dresden.de

Arbeitsgebiet: Numerische Analysis partieller Differentialgleichung.

Modelle physikalischer Probleme sind fast immer partielle Differentialgleichungen, seien dies Wellengleichungen, Wärmeleitungsgleichungen, Maxwells Gleichungen des Elektromagnetismus, Navier-Stokes-Gleichungen der Strömungen usw. Ein Nachteil partieller Differentialgleichungen ist es, dass deren Lösungen (insofern diese lösbar sind) meist nicht exakt angebbar sind.

Hier kommen nun numerische Näherungsverfahren ins Spiel, die diese Gleichungen diskretisieren und meist mit Hilfe des Computers eine Näherungslösung erzeugen. Doch wie gut ist diese Näherung? Die Untersuchung der Methoden an sich und deren Approximationsmöglichkeiten ist Aufgabe der numerischen Analyis. Ich beschäftige mich hauptsächlich mit der Methode der finiten Elemente und wende diese auf Raum-Zeit Probleme an.

Vorlesungsangebot: Grundlagenvorlesungen Mathematik für Fakultät ET/IT, Spezialvorlesungen zur Numerik partieller Differentialgleichungen im Master, Vorlesungen für Numerik und Mathematik am Computer im Lehramt Mathematik

Website: https://tu-dresden.de/mn/math/wir/das-institut/beschaeftigte/sebastian-franz

Prof. Dr. Ellen HenkeProfessur für Algebra mit
Schwerpunkt Gruppentheorie

Tel.: +49 351 463 - 35253 ellen.henke@tu-dresden.de

Arbeitsgebiet: Gruppentheorie, insbesondere Fusionssysteme. Damit verbundene Fragen in homologischer Algebra und Homotopietheorie.

Die Theorie der Fusionssysteme verallgemeinert Fragestellungen aus der endlichen Gruppentheorie. Dadurch werden unter anderem neue Bezüge zur Homotopietheorie und zur modularen Darstellungstheorie hergestellt. In meiner Arbeit bin ich besonders daran interessiert, Sätze über Fusionssysteme zu beweisen, die zu einem vereinfachten Beweis der Klassifikation der endlichen einfachen Gruppen führen.

Vorlesungsangebot: Vorlesungen zu verschiedenen Themen der Algebra. Einführungsvorlesungen für Informatiker.

Website: https://tu-dresden.de/mn/math/algebra/henke

Prof. Dr. Andrea HoffkampProfessur für Didaktik der Mathematik

Tel.: +49 351 463 - 37552

andrea.hoffkamp@tu-dresden.de

Arbeitsgebiet: Didaktik der Mathematik, Schulentwicklungsforschung: Mathematikunterricht in heterogenen und inklusiven Klassen, Funktionales Denken und propädeutischer Analysisunterricht, Entwicklung und Untersuchung computerbasierter Lernumgebungen im Mathematikunterricht, Hochschulmathematikdidaktik

Die wissenschaftliche Hauptaufgabe der Professur für Didaktik der Mathematik besteht darin, das Lehren und Lernen von Mathematik im schulischen Kontext zu erforschen und zu verbessern, aufgrund der sich wandelnden Bedeutung der Mathematik für Kultur und Gesellschaft die Ziele des Mathematikunterrichts neu zu bestimmen und dementsprechend tragfähige Konzeptionen für das Lehren und Lernen weiter zu entwickeln.

Vorlesungsangebot: Vorlesung Grundkurs Mathematikdidaktik, Schulpraktische Übungen und Blockpraktikum, Didaktik spezieller Gebiete.

Website: https://tu-dresden.de/mn/math/analysis/didaktik

Prof. Dr. Martin Keller-ResselProfessur für Stochastische Analysis und Finanzmathematik

Tel.: +49 351 463 - 35234

martin.keller-ressel@tu-dresden.de

Arbeitsgebiet: Wahrscheinlichkeitstheorie und Zufallsprozesse, Finanzmathematik, ökonomische Netzwerke

Die stochastische Analysis ist Teilgebiet der Wahrscheinlichkeitstheorie und beschäftigt sich mit der mathematischen Modellierung von zufälligen Prozessen. Dafür werden Methoden der Analysis auf stochastische Prozesse verallgemeinert und beispielsweise die Begriffe des stochastischen Integrals und der stochastischen Differentialgleichung untersucht.

Neben Physik und Biologie ist vor allem die Finanzmathematik ein wichtiges Anwendungsfeld der stochastischen Analysis. Die mathematischen Methoden werden dabei zur Bewertung und Absicherung von wirtschaftlichen Risiken eingesetzt. Daneben spielen auch andere Teilgebiete der Wahrscheinlichkeitstheorie, der Optimierung und der Numerik eine wichtige Rolle in finanzmathematischen Fragestellungen.

In unserer Arbeitsgruppe beschäftigen wir uns mit stochastischen Prozessen mit Unstetigkeiten, mit "rauen" stochastischen Prozessen, mit der Weiterentwicklung von mathematischen Modellen für Finanzmärkte und mit ökonomischen Netzwerken.

Vorlesungsangebot: Einführende und fortgeschrittene Vorlesungen in Finanzmathematik, Wahrscheinlichkeitstheorie, Stochastik und stochastischer Analysis.

Website: https://tu-dresden.de/mn/math/stochastik/mkeller

Prof. Dr. Ulrich Krähmer Professur für Geometrische Methoden in der Mathematik

Tel.: +49 351 463 - 35442

ulrich.kraehmer@tu-dresden.de

Arbeitsgebiet: Nichtkommutative Geometrie, Quantengruppen, homologische Algebra

Ich interessiere mich vor allem für algebraische Strukturen aus Geometrie, Physik und Informatik. Hierbei finde ich weniger die technischen Probleme spannend, die man notgedrungen auch ab und an lösen muss, als das Aufzeigen und Verstehen allgemeiner Muster und Parallelen zwischen verschiedenen Bereichen der Mathematik und der angrenzenden Wissenschaften.

So studieren wir in meiner AG zum Beispiel sogenannte Quantengruppen, die das klassische Konzept von Symmetrien wie Spiegelungen oder Rotationen weit verallgemeinern, und sowohl die Existenz von Erhaltungsgrößen bestimmter Modelle der Vielteilchenquantenmechanik erklären als auch die von bestimmten Invarianten von Knoten oder Flächen im 3-dimensionalen Raum.

Vorlesungsangebot: Grundzyklus Algebra inkl. (Pro)seminare für Bachelor und Lehramt (1. und 2. Jahr), Vertiefung Geometrie (3. Jahr), Mastermodule "Kommutative Algebra" und "Nichtkommutative Geoemtrie" und WIA.

Website: https://tu-dresden.de/mn/math/geometrie/kraehmer

Jun.-Prof. Dr. Mario Kummer Juniorprofessur für Reelle Algebraische Geometrie

Tel.: +49 351 463 - 35719 mario.kummer@tu-dresden.de

Arbeitsgebiet: Algebra, algebraische Geometrie, semidefinite Optimierung

Die algebraische Geometrie lässt sich als das Studium der Lösungsmengen polynomieller Gleichungssysteme beschreiben. Dabei werden abstrakte algebraische Methoden verwendet, hauptsächlich aus der kommutativen Algebra, um geometrische Fragen diese Lösungsmengen betreffend zu studieren. Während in der klassischen algebraischen Geometrie meist über den komplexen Zahlen gearbeitet wird, konzentriert sich die reelle algebraische Geometrie auf Phänomene, welche speziell über den reellen Zahlen auftreten wie etwa Positivität. In den letzten Jahren haben sich hierfür viele Anwendungen aufgetan, unter anderem in der konvexen Optimierung, der algebraischen Statistik oder in der theoretischen Informatik.

Vorlesungsangebot: Grundlagenvorlesungen der Algebra, einführende und fortgeschrittene Vorlesungen in Themen der (reellen) algebraischen Geometrie

Website: https://tu-dresden.de/mn/math/geometrie/kummer

Foto: Kirsten Lassig

Prof. Dr. Daniel LordickArbeitsgruppe Geometrische
Modellierung und Visualisierung

Raum: Z21 249

Tel.: +49 351 463 - 34193 daniel.lordick@tu-dresden.de

Arbeitsgebiet: Geometrische Modellierung und Visualisierung, fraktale Geometrie, Liniengeometrie, diskrete Differentialgeometrie, parametrische Modellierung, materielle mathematische Modelle.

Technische und gestalterische Aufgaben aus dem Ingenieurbereich benötigen im Kern immer geometrische Lösungen. Dafür geeignete Konzepte präzise zu formulieren, zu evaluieren und in ressourceneffiziente Fertigungsstrategien zu übersetzen, erfordert eine ganzheitliche Herangehensweise, die Belange unterschiedlicher Disziplinen integriert und mathematische Inhalte über Fachgrenzen hinweg anschaulich kommuniziert.

In unserer interdisziplinären Arbeitsgruppe entwerfen wir auf der Grundlage geometrischer Modellbildungen, wie etwa der Liniengeometrie oder der fraktalen Geometrie, Lösungen für so unterschiedliche Bereiche wie die Schalung leichter Betonbauteile und die additive Fertigung keramischer Wärmeübertrager. Außerdem betreuen wir die Sammlung Mathematische Modelle, die wir inhaltlich, medial und didaktisch weiterentwickeln.

Vorlesungsangebot: Darstellende Geometrie und CAD für die Architektur; Konstruktive Geometrie für das Bauingenieurwesen; Parametrische Modellierung für Architektur, Bauingenieurwesen und Technisches Design; Staffelvorlesung Bionik.

Website: https://tu-dresden.de/mn/math/geometrie/lordick

thematik

Tel.: +49 351 463 - 35555

gunar.matthies@tu-dresden.de

Prof. Dr. Gunar Matthies

Professur für Numerische Ma-

Arbeitsgebiet: Numerik partieller Differentialgleichungen, Finite-Elemente-Methoden

Verschiedenste Prozesse in Naturwissenschaft und Technik lassen sich mit Hilfe von partiellen Differentialgleichungen beschreiben. Da sich für diese Gleichungen im Allgemeinen keine expliziten Lösungen angeben lassen, kommen Verfahren zur Bestimmung von Näherungslösungen zum Einsatz. Die Numerische Analysis entwickelt und untersucht solche Verfahren, insbesondere in Hinblick auf Stabilität, Genauigkeit und Aufwand.

Die Arbeitsgruppe befasst sich mit Finite-Elemente-Methoden zur Lösung von stationären und zeitabhängigen partieller Differentialgleichungen, wobei ein Schwerpunkt in der Betrachtung inkompressibler Strömungen liegt. Darüber hinaus werden Verfahren höherer Ordnung für die zeitabhängige Problemstellungen untersucht.

Vorlesungsangebot: Numerische Mathematik (Grundlegende Verfahren), Numerische Mathematik (Iterationsverfahren), Numerische Methoden für partielle Differentialgleichungen, Finite-Elemente-Methoden

Website: https://tu-dresden.de/mn/math/numerik/matthies

Prof. Dr. Stefan NeukammProfessur für Angewandte Analysis

Tel.: +49 351 463 - 33998

stefan.neukamm@tu-dresden.de

Arbeitsgebiet: Angewandte Analysis, nichtlineare partielle Differentialgleichungen, Variationsprobleme, Mehrskalenanalysis, Kontinuumsmechanik

Die Angewandte Analysis untersucht und entwickelt Modelle, die Phänomene aus den Natur-, Ingenieurs-, und Lebenswissenschaften beschreiben. Hierbei kommen vielfältige Methoden verschiedenster mathematischer Disziplinen zum Einsatz und es zeigt sich häufig, dass fundamentale Problemstellungen aus den benachbarten Wissenschaftsbereichen auch auf spannende mathematische Fragestellungen führen.

In unserer Arbeitsgruppe beschäftigen wir uns mit Mehrskalenproblemen, nichtlinearen Modellen der Kontinuumsmechanik (Elastizität, Plastizität) sowie theoretischen Fragestellungen zu partiellen Differentialgleichungen und Variationsproblemen mit zufälligen Koeffizienten; insbesondere, quantitative stochastische Homogenisierung, Dimensionsreduktion, Regularitätstheorie.

Vorlesungsangebot: Grundlagenvorlesungen der Analysis, einführende und fortgeschrittenen Vorlesungen in Funktionalanalysis, partiellen Differentialgleichungen, mathematischer Kontinuumsmechanik sowie mathematischer Modellbildung.

Website: https://tu-dresden.de/mn/math/wir/neukamm

Foto: Dirk Pauly

Prof. Dr. Dirk Pauly Außerplanmäßige Professur für Angewandte Funktionalanalysis

Raum: Willerbau, WIL B310 Tel.: +49 351 463 - 35581 dirk.pauly@tu-dresden.de

Arbeitsgebiet: Analysis (FA / PDEs in Bounded and Unbounded Domains): Maxwell's Equations, Hilbert Complexes, FA-ToolBox, Compact Embeddings, Poincare Type Estimates, Hodge-Helmholtz type decompositions Applied and Numerical Analysis: Poincare Type Constants, Functional A Posteriori Error Estimates

Vorlesungsangebot: Analysis, Funktionalanalysis, Partiellen Differentialgleichungen

Website: https://tu-dresden.de/Members/dirk.pauly

Prof. Dr. Marco Salvalaglio apl. Professor für Computational Materials Science

Tel.: +49 351 463 - 35657

marco.salvalaglio@tu-dresden.de

Arbeitsgebiet: Kontinuums- und Mesoskalenmodellierung von Materialien, Phasenfeldund Phasenfeldkristall-Modellierung, Wissenschaftliches Rechnen, Musterbildung, Defekte in Kristallen und Korngrenzen, korrelierte Unordnung, Oberflächendiffusion

Die Untersuchung neuartiger physikalischer Systeme, Materialien und ihrer emergenten Eigenschaften erfordert Beiträge geeigneter Theorien sowie fortgeschrittener Modellierungsund numerischer Rechenmethoden. Dies ist zu einem Standardkonzept in der modernen Materialwissenschaft und Festkörperphysik geworden. Mathematische Modellierung und Simulationen sind in der Tat entscheidend, um die grundlegenden physikalischen Mechanismen, die verschiedenen Phänomenen zugrunde liegen, aufzudecken, eine umfassende Erkundung des Parameterraums zu ermöglichen und das inverse Design zu erleichtern.

In unserer Arbeitsgruppe konzentrieren wir uns auf skalenübergreifende (mesoskopische) Ansätze, die es erlauben, große Längenskalen und lange Zeitskalen zu untersuchen, wobei relevante mikroskopische Details erhalten bleiben. Dies wird weitgehend durch den Einsatz klassischer und neu entwickelter Phasenfeldmodelle sowie atomistischer Methoden und kontinuumsmechanischer Verfahren erreicht. Gleichzeitig erforschen wir die Musterbildung in geordneten und ungeordneten Systemen über verschiedene Längenskalen hinweg, wobei Methoden aus der statistischen Mechanik und der algebraischen Topologie zum Einsatz kommen.

Vorlesungsangebot: Grundlegende und fortgeschrittene Konzepte des wissenschaftlichen Rechnens, mathematischen Modellierung und numerische Simulation.

Website: https://tu-dresden.de/Members/marco.salvalaglio

Raum: Z21 248.1

Tel.: +49 351 463 - 35049 oliver.sander@tu-dresden.de

Prof. Dr. Oliver Sander

Differentialgleichungen

Professur für Numerik Partieller

Foto: Anita Sander

Arbeitsgebiet: Numerische Mechanik, nichtlineare und geometrische Finite-Elemente-Methoden, Mehrgitterverfahren für nichtglatte Probleme, Entwurf und Entwicklung von numerischer Software

Partielle Differentialgleichungen beschreiben eine Vielzahl physikalischer Prozesse wie z.B. Strömungen von Flüssigkeiten und Gasen, Ladungsverteilungen in elektrischen Bauteilen, und der Deformation von Festkörpern. Die Numerik solcher Gleichungen beschäftigt sich mit der Frage wie solche Gleichungen effizient gelöst werden können. Da mit Papier und Bleistift keine Lösungen zu erhoffen sind, konzentriert man sich auf die Konstruktion von Näherungslösungen mit Hilfe von Computern.

Die Arbeitsgruppe beschäftigt sich hauptsächlich mit der Simulation von Prozessen aus der nichtlinearen Kontinuumsmechanik, wie z.B. plastischer Verformung und Faltenbildung.

Vorlesungsangebot: Grundlagen der Numerik, Numerik von gewöhnlichen und partiellen Differentialgleichungen, Finite Elemente Methoden, numerische Kontinuumsmechanik

Website: https://tu-dresden.de/mn/math/numerik/sander

Prof. Dr. René SchillingProfessur für
Wahrscheinlichkeitstheorie

Raum: Z21 326.2

Tel.: +49 351 463 - 32425 rene.schilling@tu-dresden.de

Foto: Robert Lohse

Arbeitsgebiet: Wahrscheinlichkeitstheorie, stochastische Analysis, zufällige Prozesse

Bei vielen Fragestellungen treten zufällige Effekte auf, die systemischer Natur sind (z.B. die Wartezeit zwischen dem Zerfall von zwei Atomkernen), die von der Komplexität der Fragestellung kommen (z.B. bei der Modellierung von Börsenkursen oder Wettervorhersagen) oder die einfach unser grundsätzliches Unwissen über gewisse Zusammenhänge widerspiegeln. Die Wahrscheinlichkeitstheorie beschäftigt sich damit, den Zufall zu beschreiben und mit ihm so umzugehen, daß er für Modelle oder Vorhersagen berechenbar(er) wird.

Ich interessiere mich insbesondere für Modelle, die nicht "normal"-verteilt sind und deren zeitliche Entwicklung nicht kontinuierlich sondern sprunghaft ("Schocks") verläuft. Um derartige Prozesse zu konstruieren und ihre Eigenschaften zu beschreiben, verwende ich sowohl stochastische als auch analytische Methoden, insbesondere stochastische Differentialgleichungen, pfadweise coupling-Methoden, nicht-lokale Pseudodifferentialoperatoren, Funktionenräume und Fellersche Halbgruppen.

Vorlesungsangebot: Stochastik-Zyklus (BSc: "Maß und Integral", "Stochastik", "diskrete Stochastische Prozesse", MSc: "Probability with Martingales", "Stochastic Calculus"/"Stochastic Processes"), sowie Spezialvorlesungen und Seminare z.B. zu "Lévy processes", "Markov processes and semigroups", "Dirichlet forms" oder "Malliavin calculus (stochastic calculus of variations)".

Website: https://tu-dresden.de/mn/math/stochastik/schilling/

Jun.-Prof. Dr. Markus Schmidtchen Juniorprofessur für Angewandte Mathematik

Raum: Z21 236.1

Tel.: +49 351 463 - 35493

markus.schmidtchen@tu-dresden.de

Arbeitsgebiet: Systeme interagierender Teilchen auf verschiedenen Skalen, Analysis von Systemen (nicht-lokaler) partieller Differentialgleichungen, Gradientenfluss-Evolutionsgleichungen

Vielteilchensysteme umgeben uns im alltäglichen Leben, oft ohne dass wir uns dessen bewusst sind. Der Begriff "Teilchen" kann sich beispielsweise auf kleine Moleküle oder Atome beziehen, aber genauso gut auch auf Planeten oder ganze Galaxien. Außerdem müssen "Teilchen" keineswegs leblos sein, und so können auch Gewebezellen, Pigmentzellen, Bakterien, aber auch Tiere und sogar Menschen als "Teilchen" aufgefasst werden.

In meiner Forschung interessiere ich mich vorwiegend für Vielteilchensysteme in biologischen Kontexten, in denen unterschiedliche Spezies miteinander interagieren. Dies führt oft zu sehr faszinierendem Verhalten wie beispielsweise Selbstorganisation zu größeren Strukturen (man denke an Vogel- oder Fischschwärme), sowie Musterbildung und Phasentrennung (zum Beispiel auf der Haut von Zebrafischen). Oft ist es sehr aufwendig, jede einzelne Zelle zu modellieren und simulieren, weshalb man stattdessen sogenannte makroskopische Limiten betrachtet. Für die resultierenden Systeme entwickle ich numerische Methoden zur Simulation und beweise, dass diese das System auch sinnvoll approximieren. Des Weiteren interessieren ich mich für analytische Eigenschaften von diesen nicht-lokalen Kreuzdiffusion-Systemen.

Vorlesungsangebot: Modellierung und Simulation I & II.

Website: https://www.markusschmidtchen.com/index.html

Prof. Dr. Friedemann SchurichtProfessur für Nichtlineare Analysis

Raum: WIL B 211

Tel.: +49 351 463 - 34236

friedemann.schuricht@tu-dresden.de

Arbeitsgebiet: Nichtlineare und nichtglatte Analysis für Variationsprobleme, partielle Differentialgleichungen und Theorie kritischer Punkte, Anwendungen in der Elastizitätstheorie, geometrische Maßtheorie, mathematische Grundlagen der Kontinuumsmechanik

Einen Schwerpunkt der Arbeit bilden stark singuläre nichtlineare partielle Differentialgleichungen mit zugehörigen nichtglatten Variationsproblemen. Das steht im Zusammenhang mit dem Studium von Minima und kritischen Punkten nichtdifferenzierbarer Funktionen. Insbesondere werden elliptische Randwertprobleme (z.B. mit dem 1-Laplaceoperator) studiert, aber auch freie Randwertprobleme im Zusammenhang mit nichtlinear elastischen Kontaktproblemen.

Damit partielle Differentialgleichungen auf viel allgemeineren Mengen als bisher möglich betrachtet werden können, wurde ein neuer Ansatz für die Beschreibung von Randwerten entwickelt. Hierbei spielt ein bisher kaum beachteter Zweig der Maß- und Integrationstheorie eine zentrale Rolle. In Anwendungen ist man immer öfter mit Konzentrationseffekten konfrontiert. Ein neuer mathematischer Zugang zu den Grundlagen der Kontinuumsmechanik schafft die Voraussetzung für deren präzise Beschreibung.

Vorlesungsangebot: Grundlagenvorlesungen Analysis, Funktionetheorie, Gewöhnliche und Partielle Differentialgleichungen, Funktionalanalsis und Spezialvorlesungen auf dem Gebiet der nichtlinearen Analysis

Website: https://tu-dresden.de/mn/math/geometrie/schuricht

Prof. Dr. Alexandra SchwartzProfessur für Mathematische
Optimierung

Tel.: +49 351 463 - 37584

alexandra.schwartz@tu-dresden.de

Arbeitsgebiet: Kontinuierliche Optimierung, Optimierung mit disjunktiven Restriktionen, Spieltheorie

Bei Optimierungsproblemen mit disjunktiven Restriktionen entsteht die zulässige Menge nicht nur durch den Schnitt, sondern auch durch die Vereinigung von zulässigen Bereichen. Derartige Restriktionen entstehen unter anderen durch hierarischen Optimierung, zum Beispiel, wenn Firmen vorausschauend ihre Kapazitäten so aufbauen müssen, dass sie in nachfolgenden Zeitperioden ihren Gewinn maximieren können, oder in der Optimierung von Stabwerken. Die nichtkonvexe Struktur der zulässigen Menge macht es schwer globale Lösungen oder sogar nur stationäre Punkte dieser Optimierungsprobleme zu bestimmen. Wir beschäftigen uns daher mit der Entwicklung von Optimalitätsbedingungen und Lösungsalgorithmen für einzelne Optimierungsprobleme mit disjunktiven Restriktionen und für nichtkooperative Spiele zwischen Agenten, die jeweils ein derartiges Optimierungsproblem lösen müssen.

Vorlesungsangebot: Grundlagenvorlesungen in der Optimierung, Kontinuierliche Optimierung, Diskrete Optimierung, Vorlesungen zu nichtkooperativer Spieltheorie und nichtglatter Optimierung

Website: https://tu-dresden.de/mn/math/numerik/schwartz

Prof. Dr. Stefan Siegmund Professur für Dynamik und Steuerung

Tel.: +49 351 463 - 34633

stefan.siegmund@tu-dresden.de

Arbeitsgebiet: Dynamische Systeme, Kontrolltheorie, interdisziplinäre Modellbildung and Analyse

Dynamische Systeme sind Gleichungen für Funktionen einer Veränderlichen, oft interpretiert als Zeit, die die Dynamik von Prozessen beschreiben. Untersucht werden meist qualitative Aspekte, oder auch die Kontrolle der Dynamik durch einen äußeren Einfluss. Stabiles Systemverhalten oder das Entstehen von Oszillationen bei Parameteränderung sind typische Fragen. Vereinfachte Modelle aus den Natur-, Ingenieur-, und Lebenswissenschaften führen oft auf dynamische Systeme.

In unserer Arbeitsgruppe beschäftigen wir uns insbesondere mit Grundlagenforschung zu dynamischen Systemen mit Gedächtnis, und der approximativen Modellierung und Steuerung komplexer nichtlinearer Prozesse durch dynamische Systeme.

Vorlesungsangebot: Grundlagenvorlesungen der Analysis, Funktionentheorie, Funktionalanalysis, einführende und fortgeschrittene Vorlesungen zu dynamischen Systemen und Kontrolltheorie

Website: https://tu-dresden.de/mn/math/analysis/siegmund

Prof. Dr. Andreas Thom Professur für Geometrie

Tel.: +49 351 463 - 43074 andreas.thom@tu-dresden.de

Arbeitsgebiet: Gruppentheorie, Funktionalanalysis, Ergodentheorie, Nichtkommutative Geometrie, Algebraische Topologie

Die Professur für Geometrie umfasst ein weites Spektrum von Themen der modernen theoretischen Mathematik, beginnend von klassischen Themen der Geometrie, wie der Differentialgeometrie, der Algebraischen Topologie und der Algebraischen Geometrie, bis zu Themen der nicht-kommutativen Geometrie und der geometrischen Gruppentheorie. Methodisch spielen auch die Funktionalanalysis und die Ergodentheorie eine große Rolle, so dass tatsächlich ein bunter Themenkreis zusammenkommt.

Vorlesungsangebot: Grundlagenvorlesungen Lineare Algebra und Algebra, Geometrie, Algebraische Topologie, Graphen und Geometrie

Website: https://tu-dresden.de/mn/math/geometrie/thom

Prof. Dr. Axel Voigt Professur für Wissenschaftliches Rechnen und Angewandte Mathematik

Tel.: +49 351 463 - 34187 axel.voigt@tu-dresden.de

Arbeitsgebiet: Computational Materials Science, Computational Biology, Kontinuumsmechanik, Numerik partieller Differentialgleichungen

Im Wissenschaftlichen Rechnen werden Problemstellungen anderer Wissenschaftsgebiete mit mathematischen Methoden gelöst. Dies erfordert häufig recht unterschiedliche mathematische Methoden, angefangen von der Modellierung, der analytischen Untersuchung der Gleichungen, der Entwicklung von numerischen Algorithmen, deren Implementierung und Simulation, welche häufig auf Hochleistungsrechnern erfolgt, und schließlich der Interpretation der Ergebnisse. Darüber hinaus bedarf es einer engen Kooperation mit den anderen Wissenschaftsgebieten.

In unserer Arbeitsgruppe beschäftigen wir uns vorwiegend mit Problemstellungen aus dem Bereich der Materialwissenschaft und der Biologie welche mittels partieller Differentialgleichungen beschrieben werden können. Aktuell insbesondere solche welche auf gekrümmten Oberflächen definiert sind. Hierbei interessiert uns der Einfluss von Geometrie und Topologie auf die Phänomene. Weitere Arbeitsgebiete finden sich an der Schnittstelle von Mathematik zu Kunst und Design.

Vorlesungsangebot: Grundlagenvorlesungen zu Modellierung und Simulation und Vorlesungen im Masterstudium zu Numerischen Methoden für Partielle Differentialgleichungen, Mathematischer Modellierung und Programmierung

Website: https://tu-dresden.de/mn/math/wir/das-institut

10 Unsere Professor:innen

Prof. Dr. Peter HornungProfessur für Partielle Differentialgleichungen

Raum: Z21 325.1

Tel.: +49 351 463 - 35491 peter.hornung@tu-dresden.de

Impressum

Herausgeber:

Technische Universität Dresden Fakultät Mathematik dekanat.math@tu-dresden.de

Text und Gestaltung:

Prof. Dr. Stefan Neukamm (AG Öffentlichkeitsarbeit)

Fachschaftsrat Mathematik

Redaktionsschluss:

5. Oktober 2024

Die Informationen in dieser Broschüre wurden mit der gebotenen Sorgfalt zusammengestellt. Es kann aber nicht ausgeschlossen werden, dass es kurzfristig zu Änderungen kommt. Bitte vergewissern Sie sich deshalb jeweils aktuell auf den Internetseiten der Fakultät Mathematik. Verbindliche Informationen zu Studien- und Prüfungsangelegenheiten finden Sie in den amtlichen Bekanntmachungen der TU Dresden.