Boundary value problems for the Willmore and the Helfrich functional for surfaces of revolution

Hans-Christoph Grunau, Otto-von-Guericke-Universität Magdeburg

Dresden, June 23, 2023

This talk gives an overview of joint works with A. Dall'Acqua, K. Deckelnick, M. Doemeland, S. Eichmann, and S. Okabe.

A special form of the Helfrich energy for a sufficiently smooth (two dimensional) surface $S \subset \mathbb{R}^3$ (with or without boundary) is defined by

$$\mathscr{H}_{\varepsilon}(S) := \int_{S} H^{2} \, dS + \varepsilon \int_{S} \, dS,$$

where $H = (\kappa_1 + \kappa_2)/2$ denotes the mean curvature of S. The first integral may be considered as a bending energy and the second as surface (stretching) energy. $\mathscr{W}(S) := \mathscr{H}_0(S)$ is called the Willmore functional. We consider surfaces of revolution S

 $(x,\varphi) \mapsto (x,u(x)\cos\varphi,u(x)\sin\varphi), \quad x \in [-1,1], \ \varphi \in [0,2\pi],$

with smooth strictly positive profile curve u subject to Dirichlet boundary conditions

$$u(-1) = \alpha, \quad u(1) = \beta, \quad u'(\pm 1) = 0$$

and aim at minimising $\mathscr{H}_{\varepsilon}$. Thanks to these boundary conditions the Gauss curvature integral $\int_{S} K \, dS$ becomes a constant and needs not to be considered.

In the first part of the lecture I shall consider the Willmore case, i.e. $\varepsilon = 0$. After discussing minimisation in the symmetric case $\alpha = \beta$ I shall indicate how much more complicated the problem becomes for $\alpha \neq \beta$. Only when α and β do not differ too much, the profile curve will remain a graph while in general it will become a nonprojectable curve.

In the second part, $\mathscr{H}_{\varepsilon}$ is considered for $\varepsilon \in [0, \infty)$, but again in the symmetric setting $\alpha = \beta$. We study "relatively large" boundary data $\alpha \geq \alpha_m = c_m \cosh(\frac{1}{c_m}) \approx 1.895$ with $c_m \approx 1.564$ the unique solution of the equation $\frac{2}{c} = 1 + e^{-2/c}$, when one has a catenoid v_{α} which globally minimises the surface energy. In this case we find minimisers u_{ε} for any $\varepsilon \geq 0$ and show uniform and locally smooth convergence $u_{\varepsilon} \to v_{\alpha}$ under the singular limit $\varepsilon \to \infty$.

At the end I shall present some recent work on obstacle problems.