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Abstract. We study the small-time asymptotics of sample paths of Lévy processes and Lévy-

type processes. Namely, we investigate under which conditions the limit

lim sup
t→0

1

f(t)
∣Xt −X0∣

is finite resp. infinite with probability 1. We establish integral criteria in terms of the infinitesimal
characteristics and the symbol of the process. Our results apply to a wide class of processes,

including solutions to Lévy-driven SDEs and stable-like processes. For the particular case of

Lévy processes, we recover and extend earlier results from the literature. Moreover, we present
a new maximal inequality for Lévy-type processes, which is of independent interest.

1. Introduction

A mapping f ∶ [0,1] → [0,∞) is called an upper function for a stochastic process (Xt)t≥0 if

lim sup
t→0

1

f(t) ∣Xt −X0∣ ≤ 1 almost surely,

i.e. a typical sample path t ↦ Xt(ω) grows asymptotically at most as fast as f(t). In this article,
we are interested in upper functions for Lévy and Lévy-type processes. Our aim is to establish
integral criteria in terms of the characteristics and the symbol of the process – see Section 3 for
definitions – which characterize whether f is an upper function.
For Lévy processes, the study of upper functions was initiated by Khintchine [20]. He showed that
any one-dimensional Lévy process satisfies the following law of iterated logarithm (LIL):

− lim inf
t→0

Xt√
2t log log 1

t

= lim sup
t→0

Xt√
2t log log 1

t

= σ a.s.,

where σ ≥ 0 is the diffusion coefficient. In consequence, the small-time asymptotics of a Lévy
process is governed by the Gaussian part if σ ≠ 0. For this reason our focus is on processes with
vanishing diffusion part. Khintchine [20] also showed – under some mild assumptions – that f is
an upper function for a Lévy process (Xt)t≥0 if

∫
1

0

1

t
P(∣Xt∣ ≥ cf(t))dt < ∞

for a suitable constant c > 0. In practice, it is often difficult to check whether the latter integral is
finite. There is a more tractable criterion in terms of the Lévy measure ν. Namely, it holds for a
wide class of functions f that

lim sup
t→0

1

f(t) ∣Xt∣ = {
0

∞} a.s. ⇐⇒ ∫
1

0
ν({y ∈ Rd; ∣y∣ ≥ f(t)})dt {

< ∞
= ∞} ; (1)

this characterization is classical for stable Lévy processes, see e.g. [12], and has been extended
to general one-dimensional Lévy processes by Wee & Kim [41]. For some processes, (1) breaks
down, and it may happen that lim supt→0

1
f(t)

∣Xt∣ ∈ (0,∞) almost surely, see [4, 36, 41] for details.

A number of further characterizations for upper functions are collected in Theorem 2.1. We
require only mild assumptions on the Lévy process (Xt)t≥0 and the mapping f ; thus generalizing
earlier results in the literature. For power functions f(t) = tκ, there is a close connection to the
Blumenthal–Getoor index, cf. Corollary 2.4.
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The second part of our results is about the small-time asymptotics of Lévy-type processes. In-
tuitively, a Lévy-type process behaves locally like a Lévy process but the Lévy triplet depends
on the current position of the process, see Section 3 below for the precise definition. Important
examples include solutions to Lévy-driven stochastic differential equations (SDEs), processes of
variable order and random time changes of Lévy processes, just to mention a few. Studying the
sample path behaviour of Lévy-type processes is much more delicate than in the Lévy case because
the processes are no longer homogeneous in space, see [8, Chapter 5] for a survey on results for the
closely related class of Feller processes. Schilling [37] introduced generalized Blumenthal–Getoor
index and obtained a criterion for a power function f(t) = tκ to be an upper function of a Lévy-type
process, see also [8, Theorem 5.16]. A recent paper by Reker [34] studies the small-time asymp-
totics of solutions to SDEs driven by jump processes. Moreover, there are LIL-type results for
Lévy-type processes and other classes of jump processes available in the literature, see [10, 22, 25]
and the references therein. Our contribution in this paper is two-fold. Firstly, we establish suffi-
cient conditions in terms of the characteristics and the symbol, which ensure that a given mapping
f is an upper function for a Lévy-type process, cf. Theorem 2.6. On the way, we obtain new results
on upper functions for Markov processes, cf. Section 5. Secondly, we prove a criterion for a given
function f not to be an upper function, cf. Theorem 2.10. The key ingredients for the proofs are
a new maximal inequality for Lévy-type processes, cf. Section 4, and a conditional Borel–Cantelli
lemma for backward filtrations.

2. Main results

This section is divided into two parts: First, we present our results for Lévy processes and then, in
the second part, we state the results which apply for the wider class of Lévy-type processes. See
Section 3 below for definitions and notation. The following is our first main result.

2.1. Theorem. Let (Xt)t≥0 be a Lévy process with Lévy triplet (b,0, ν) and characteristic exponent
ψ satisfying the sector condition, i.e. ∣ Imψ(ξ)∣ ≤ CReψ(ξ), ξ ∈ Rd, for some constant C > 0. Let
f ∶ [0,1] → (0,∞) be non-decreasing, and assume that one of the following conditions holds.

(A1) The Lévy measure ν satisfies

lim sup
r→0

∫∣y∣≤r ∣y∣2 ν(dy)
r2ν({∣y∣ > r}) < ∞.

(A2) There is a constant M > 0 such that

∫
r<f(t)

1

f(t)2
dt ≤M f−1(r)

r2
, r ∈ (0,1).

The following statements are equivalent.

(L1) ∫
1

0 ν({∣y∣ ≥ cf(t)})dt < ∞ for some c > 0,

(L2) ∫
1

0 sup
∣ξ∣≤1/(εf(t)) ∣ψ(ξ)∣dt < ∞ for some (all) ε > 0,

(L3) ∫
1

0 P (sups≤t ∣Xs∣ ≥ εf(t)) 1
t
dt < ∞ for all ε > 0,

(L4) ∫
1

0 P(∣Xt∣ ≥ εf(t)) 1
t
dt < ∞ for all ε > 0,

(L5) lim supt→0
1

f(t)
sups≤t ∣Xs∣ = 0 almost surely,

(L6) lim supt→0
1

f(t)
∣Xt∣ = 0 almost surely,

(L7) lim supt→0
1

f(t)
∣Xt∣ < ∞ almost surely.

In particular,

lim sup
t→0

1

f(t) ∣Xt∣ ∈ {0,∞} a.s.

In (L5)-(L7) we may replace ’almost surely’ by ’with positive probability’.

Theorem 2.1 generalizes [12, Corollary 11.3] for stable processes and the results from [3, Section
III.4] for subordinators. Savov [36] proved the equivalence of (L1) and (L6) under (a bit stronger
condition than) (A2) and the assumption that (Xt)t≥0 has paths of unbounded variation. The
equivalence of (L4) and (L6) goes back to Khintchine [20], see also [39, Appendix, Theorem 2].
The proof of Theorem 2.1 will be presented in Section 6.
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2.2. Remark. (i) The proof of Theorem 2.1 shows that the implications

(L2) Ô⇒ (L3) Ô⇒ (L4) Ô⇒ (L5) Ô⇒ (L6) Ô⇒ (L7) Ô⇒ (L1)

hold without the sector condition. The sector condition is only needed to relate the integrals in
(L1) and (L2) to each other. In fact, the key for the proof of (L1) Ô⇒ (L2) is the implication

∃c > 0 ∶ ∫
1

0
ν({∣y∣ ≥ cf(t)})dt < ∞ Ô⇒ ∀ε > 0 ∶ ∫

1

0
sup

∣ξ∣≤1/(εf(t))

Reψ(ξ)dt < ∞, (2)

which does not require the sector condition, see Lemma 6.1 below; the sector condition is then
used to replace Reψ by ∣ψ∣ in the integral on the right-hand side.
(ii) For the equivalences to hold, it is crucial that one of the assumptions (A1), (A2) is satisfied;
if both assumptions are violated, then the equivalences break down in general and it may happen
that

0 < lim sup
t→0

1

f(t) ∣Xt∣ < ∞ a.s.,

see [4, 36, 41] and Example 2.5 below.

(iii) Condition (A2) holds for any continuous function f ∶ [0,1] → [0,∞) satisfying f(t)
t
↑ ∞ as

t ↓ 0 and f(t)
tα
↓ 0 as t ↓ 0 for some α > 1

2
, cf. [36, Proof of Corollary 2.1]. While this criterion is

useful in many cases, it is too restrictive in some situations. For instance, if (Xt)t≥0 is an isotropic

α-stable Lévy process, then f(t) = t1/(α−ε) is an upper function, cf. Example 2.3 below, but clearly
f(t)
t
↑ ∞ as t→ 0 fails to hold if α < 1. On the other hand, a straightforward calculation shows that

the Lévy measure of the isotropic α-stable Lévy process satisfies (A1), and therefore Theorem 2.1
applies in this case without any additional growth assumptions on f . For further comments on
(A1) and equivalent formulations, we refer to Remark 6.2.

Let us illustrate Theorem 2.1 with an example.

2.3. Example. Let (Xt)t≥0 be an α-stable pure-jump Lévy process, α ∈ (0,2), that is, a Lévy
process with Lévy triplet (0,0, ν) where the Lévy measure ν is of the form

ν(A) = ∫
∞

0
∫
Sd−1

1A(rθ)
1

r1+α
µ(dθ)dr

for a measure µ on the sphere Sd−1 satisfying µ(Sd−1) > 0, see [35] for a thorough discussion of
stable processes. Theorem 2.1 shows that

lim sup
t→0

1

f(t) ∣Xt∣ = {
0

∞} a.s. ⇐⇒ ∫
1

0
∣f(t)∣−α dt {

< ∞
= ∞} (3)

for any non-decreasing function f ∶ [0,1] → [0,∞), and so we recover the classical characterization
for upper functions of sample paths of stable Lévy processes, see e.g. [12, Corollary 11.3].

For power functions f(t) = tκ, the finiteness of lim supt→0
1

f(t)
∣Xt∣ can be characterized in terms of

the Blumenthal–Getoor index

β ∶= inf {α > 0;∫
∣y∣<1

∣y∣α ν(dy) < ∞} ∈ [0,2],

which was introduced in [7]. The following result is immediate from Theorem 2.1.

2.4. Corollary. Let (Xt)t≥0 be a Lévy process with Lévy triplet (b,0, ν) and assume that the
characteristic exponent satisfies the sector condition. Then

lim sup
t→0

1

tκ
∣Xt∣ = {

0

∞} a.s. ⇐⇒ ∫
∣y∣<1

∣y∣1/κ ν(dy) {
< ∞
= ∞} (4)

for every κ ∈ ( 1
2
,∞), and

lim sup
t→0

1

tκ
∣Xt∣ = {

0

∞} a.s. according as {
κ < 1/β
κ > 1/β} (5)

for all κ > 0. If (A1) from Theorem 2.1 is satisfied, then

lim sup
t→0

1√
t
∣Xt∣ = 0 a.s.
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The characterization (5) goes back to Pruitt [33] and Blumenthal & Getoor [7], see also [35,
Proposition 47.24]. Note that the critical case κ = 1/β is excluded in (5); one has to check by hand
whether the integral ∫∣y∣<1 ∣y∣β ν(dy) is finite. In (4) the critical case is κ = 1

2
; this is due to the

fact that ∫∣y∣<1 ∣y∣2 ν(dy) < ∞ is always satisfied but at the same time there are pure-jump Lévy

processes with

0 < lim sup
t→0

1√
t
∣Xt∣ < ∞ a.s.

cf. [4, 41]. Consequently, (4) fails, in general, for κ = 1
2
. Let us give an example of such a process

and explain why this is not a contradiction to Theorem 2.1.

2.5. Example. Let (Xt)t≥0 be a one-dimensional Lévy process with Lévy triplet (0,0, ν) and Lévy
measure

ν(dy) = 1

2

1

∣y∣2ϕ
′(∣y∣)1(0,1/ee)(∣y∣)dy

for ϕ(r) = 1/ log log 1
r
. Note that ν is indeed a Lévy measure, i.e. ∫ min{∣y∣2,1}ν(dy) < ∞. As

∫
∣y∣≤r

∣y∣2 ν(dy) = ϕ(r), (6)

it follows from [4, Theorem 2.2] that

lim sup
t→0

1√
t
∣Xt∣ =

√
2 a.s.

In particular, (4) breaks down for κ = 1
2

and the equivalences in Theorem 2.1 fail to hold for

f(t) =
√
t. This is not, however, a contradiction to Theorem 2.1 because the assumptions (A1) and

(A2) in Theorem 2.1 are both violated. It is straightforward to check that (A2) fails for f(t) =
√
t;

to see that (A1) fails we note that, by the Karamata’s Tauberian theorem, see e.g. [6],

ν({∣y∣ > r}) = ∫
1/ee

r

1

y2
ϕ′(y)dy ≈ 1

2
r−2 1

log 1
r
(log log 1

r
)2

as r → 0,

and thus, by (6) and the definition of ϕ,

lim
r→0

∫∣y∣≤r ∣y∣2 ν(dy)
r2ν({∣y∣ > r}) = ∞.

Next we present our results for the wider class of Lévy-type processes, see Section 3 below for the
definition. The following theorem gives sufficient conditions for an increasing function f ∶ [0,1] →
[0,∞) to be an upper function of a Lévy-type process.

2.6. Theorem. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),0, ν(x, dy)) and sym-
bol q satisfying the sector condition. Let x ∈ Rd and R > 0 such that

M ∶= lim sup
r→0

sup
∣z−x∣≤R

∫∣y∣≤r ∣y∣2 ν(z, dy)
r2ν(z,{∣y∣ > r}) < ∞. (A1’)

Then the implications

(LTP1) Ô⇒ (LTP2) Ô⇒ (LTP3) Ô⇒ (LTP4)

hold for any non-decreasing function f ∶ [0,1] → (0,∞), where

(LTP1) ∫
1

0 sup
∣z−x∣≤f(t) ν(z,{∣y∣ ≥ cf(t)})dt < ∞ for some c > 0,

(LTP2) ∫
1

0 sup
∣z−x∣≤f(t) sup

∣ξ∣≤1/(εf(t)) ∣q(z, ξ)∣dt < ∞ for some (all) ε > 0,

(LTP3) ∫
1

0 sup
∣z−x∣≤f(t)P

z (sups≤t ∣Xs − z∣ ≥ εf(t)) 1
t
dt < ∞ for all ε > 0,

(LTP4) lim supt→0
1

f(t)
sups≤t ∣Xs − x∣ = 0 Px-almost surely.

2.7. Remark. (i) The implications (LTP2) Ô⇒ (LTP3) Ô⇒ (LTP4) hold for any Lévy-type
process, i.e. all the additional assumptions are only needed for the proof of the implication
(LTP1) Ô⇒ (LTP2).
(ii) The implication (LTP3) Ô⇒ (LTP4) holds for any strong Markov process, see Theorem 5.1.
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(iii) In Theorem 2.6 we assume that the symbol q satisfies the sector condition, cf. (19). A close
look at the proof shows that we actually only need a local sector condition, in the sense that, for
fixed x ∈ Rd there are constants r > 0 and C > 0 such that

∣ Im q(z, ξ)∣ ≤ CRe q(z, ξ) for all ξ ∈ Rd, ∣z − x∣ ≤ r.
The same is true for the Proposition 2.9 and Theorem 2.10 below.
(iv) As already mentioned, assumption (A1’) is crucial for the proof of the implication (LTP1) Ô⇒
(LTP2). One might ask whether this implication also holds under assumption (A2) from The-

orem 2.1. We did not manage to prove this, but there is the following slightly weaker result.
Consider

∫
1

0
sup
∣z−x∣≤R

ν(z,{∣y∣ ≥ cf(t)})dt < ∞ for some c > 0, R > 0. (LTP1’)

Note that (LTP1’) is a bit stronger than (LTP1). If (A2) holds and

∀r ∈ (0,R)∃x0 ∈ B(x, r) ∀ξ ∈ Rd, ∣ξ∣ ≥ 1 ∶ sup
∣z−x∣≤r

∣q(z, ξ)∣ ≤ ∣q(x0, ξ)∣, (7)

then (LTP1’) Ô⇒ (LTP2). Because of the majorization condition (7), the proof of this assertion
is analogous to the case of Lévy processes, see the proof of Theorem 2.1 and Lemma 6.1.

For the particular case that (Xt)t≥0 is a Lévy process, Theorem 2.6 yields the implications (L1) Ô⇒
(L2) Ô⇒ (L3) Ô⇒ (L5) from Theorem 2.1. In this sense, Theorem 2.6 is a natural extension of
Theorem 2.1. Unlike in the Lévy case, it is not to be expected that the conditions (LTP1)-(LTP4)
in Theorem 2.6 are equivalent for a general Lévy-type process. However, there is the following
partial converse.

2.8. Proposition. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),0, ν(x, dy)), and
let f ∶ [0,1] → [0,∞) be non-decreasing.

(i) If x ∈ Rd is such that

∫
1

0
sup

∣z−x∣≤f(t)

Pz (sup
s≤t

∣Xs − z∣ ≥ f(t))
1

t
dt < ∞,

then

∫
1

0
inf

∣z−x∣≤10f(t)
ν(z;{∣y∣ > 10f(t)})dt < ∞.

(ii) Assume that (A1’) from Theorem 2.6 holds for some R > 0 and x ∈ Rd. If

∫
1

0
inf

∣z−x∣≤Cf(t)
ν(z;{∣y∣ > Cf(t)})dt < ∞

for a constant C > 0, then

∫
1

0
inf

∣z−x∣≤Cf(t)
sup

∣ξ∣≤c/f(t)

Re q(z, ξ)dt < ∞

for all c > 0.

The next result gives a lower bound for the growth of the sample paths of a Lévy-type process.

2.9. Proposition. Let (Xt)t≥0 be a Lévy-type process with symbol q satisfying the sector condition.
Let x ∈ Rd. If f ∶ [0,1] → (0,∞) is a function such that

lim sup
t→0

t ⋅ inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) = ∞, (8)

for every R ≥ 1 and some constant C = C(R) > 0, then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ = ∞ Px-a.s. (9)

Moreover:

(i) If additionally f is non-decreasing, then

lim sup
t→0

1

f(t) ∣Xt − x∣ = ∞ Px-a.s.
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(ii) If f is regularly varying at zero, then (9) holds under the milder assumption that (8) is
satisfied for R = 1.

In [37, Theorem 4.3], this result was shown for power functions f(t) = tκ but in fact the proof
goes through for arbitrary functions f , see Section 7. The following statement is an immediate
consequence of Proposition 2.9: If f is a non-negative function and q the symbol of a Lévy-type
process (Xt)t≥0 such that

lim sup
t→0

t−β/αf(t) < ∞ and inf
∣z−x∣≤r

Re q(z, ξ) ≥ c∣ξ∣α for all ∣ξ∣ ≫ 1

for some x ∈ Rd, r > 0, α > 0, c > 0 and β > 1, then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ = ∞ Px-a.s.

Our final main result gives an integral criterion for a function f not to be an upper function of a
Lévy-type process.

2.10. Theorem. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),0, ν(x, dy)) and
symbol q, and let f ∶ [0,1] → (0,∞) be non-decreasing. Let x ∈ Rd be such that one of the following
conditions holds.

(C1) q satisfies the sector condition and there is κ ∈ [0,1) such that

sup
∣z−x∣≤f(t)

sup
∣ξ∣≤1/f(t)

∣q(z, ξ)∣ ≤ ct−κ inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/f(t)

∣q(z, ξ)∣, t ∈ (0,1), (10)

for every R ≥ 1 and some constant c = c(R) > 0.
(C2) There are constants α ∈ (0,2], r > 0 and c > 0 such that

sup
∣z−x∣≤r

∣q(z, ξ)∣ ≤ c(1 + ∣ξ∣α), ∣ξ∣ ≫ 1, (11)

and lim inft→0 t
−2/αf(t) = ∞.

Then:

(i) If

∫
1

0
inf

∣z−x∣≤Cf(t)
ν(z,{∣y∣ ≥ Cf(t)})dt = ∞ (12)

for some constant C > 0, then

lim sup
t→0

1

f(t) ∣Xt − x∣ ≥
C

5
Px-a.s.

(ii) Assume that (A1’) from Theorem 2.6 is satisfied for some R > 0. If

∫
1

0
inf

∣z−x∣≤Cf(t)
sup

∣ξ∣≤1/f(t)

∣q(z, ξ)∣dt = ∞ (13)

for some constant C > 0, then

lim sup
t→0

1

f(t) ∣Xt − x∣ ≥
C

5
Px-a.s.

2.11. Remark. (i) If the constant C in (12) resp. (13) can be chosen arbitrarily large, then

lim sup
t→0

1

f(t) ∣Xt − x∣ = ∞ Px-a.s.

(ii) The growth condition (11) on the symbol holds automatically for α = 2, cf. (18).
(iii) If f is regularly varying, then it suffices to check (10) in (C1) for R = 1. Moreover, we note
that (10) is trivially satisfied if the symbol q does not depend on z, i.e. if (Xt)t≥0 is a Lévy process.
(iv) For the particular case of Lévy processes, Theorem 2.10 is known – see Theorem 2.1 and the
references below it – but Theorem 2.10 seems to be the first result in this direction which applies
for the much wider class of Lévy-type processes. Let us comment on the differences in the proofs.
For Lévy processes, the standard approach to prove an assertion of the form

lim sup
t→0

1

f(t) ∣Xt∣ ≥ C a.s.
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is to construct a suitable sequence (An)n∈N of sets which involves only the increments of (Xt)t≥0

and which satisfies

lim sup
n→∞

An ⊆ {lim sup
t→0

1

f(t) ∣Xt∣ ≥ C} ,

and to use (the difficult direction of) the Borel–Cantelli lemma to deduce from ∑n∈NP(An) = ∞
that P(lim supnAn) = 1. This approach relies heavily on the independence of the increments –
ensuring the sets (An)n∈N are independent – and so it fails to work in the more general framework
of Lévy-type processes. We fix this issue by using a conditional Borel-Cantelli lemma for backward
filtrations, cf. Proposition A.1. Moreover, our proof uses a new maximal inequality for Lévy-type
processes which is of independent interest, cf. Section 4.

We close this section with some illustrating examples.

2.12. Example (Process of variable order). Let (Xt)t≥0 be a Lévy-type process with symbol

q(x, ξ) = ∣ξ∣α(x) for α ∶ Rd → (0,2) continuous; a sufficient condition for the existence of such
a process is that α is Hölder continuous and bounded away from zero, see e.g. [1, 23, 26] for
details. Let us mention that Negoro [32] was one of the first to study the small-time asymptotics
of processes of variable order. If we set α∗(x, r) ∶= sup

∣z−x∣≤r α(z) and α∗(x, r) ∶= inf ∣z−x∣≤r α(z),
then our results show that

∫
1

0
∣f(t)∣−α

∗
(x,r) dt < ∞ for some r > 0 Ô⇒ lim sup

t→0

1

f(t) sup
s≤t

∣Xs − x∣ = 0 Px-a.s. (14)

and

∫
1

0
∣f(t)∣−α∗(x,r) dt = ∞ for some r > 0 Ô⇒ lim sup

t→0

1

f(t) ∣Xt − x∣ = ∞ Px-a.s. (15)

for any f ∶ [0,1] → [0,∞) non-decreasing. By the continuity of α, this entails that

∫
1

0
∣f(t)∣−β dt < ∞ for some β > α(x) Ô⇒ lim sup

t→0

1

f(t) sup
s≤t

∣Xs − x∣ = 0 Px-a.s.

and

∫
1

0
∣f(t)∣−β dt = ∞ for some β < α(x) Ô⇒ lim sup

t→0

1

f(t) ∣Xt − x∣ = ∞ Px-a.s.

In particular, this generalizes [32, Theorem 2.1], which is about the particular case that f is a
power function. If α has a local maximum at x, then (14) yields

∫
1

0
∣f(t)∣−α(x) dt < ∞ Ô⇒ lim sup

t→0

1

f(t) sup
s≤t

∣Xs − x∣ = 0 Px-a.s.

This holds, in particular, if α(x) = α is constant, i.e. if (Xt)t≥0 is an isotropic α-stable Lévy process.
An analogous consideration works for (15) if α has a local minimum at x. In particular, we recover
the classical criterion for isotropic α-stable Lévy processes, cf. Example 2.3.

2.13. Example (Stable-type process). Consider a Lévy-type process (Xt)t≥0 with characteristics
(0,0, ν(x, dy)), where

ν(x, dy) = κ(x, y) 1

∣y∣d+α dy

for some α ∈ (0,2) and a mapping κ ∶ Rd ×R → (0,∞) which is symmetric in the y-variable and
satisfies 0 < infx,y κ(x, y) ≤ supx,y κ(x, y) < ∞, see e.g. [2, 26] for the existence of such processes.
Since

1

M
r−α ≤ ν(x,{∣y∣ ≥ r}) ≤Mr−α, r > 0,

for a constant M > 0 not depending on x ∈ Rd, it follows from Theorem 2.6 and Theorem 2.10 that

lim sup
t→0

1

f(t) ∣Xt − x∣ = {
0

∞} Px-a.s. according as ∫
1

0
∣f(t)∣−α dt {

< ∞
= ∞}

for any non-decreasing function f ∶ [0,1] → [0,∞).
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2.14. Example (Lévy-driven SDE). Let (Lt)t≥0 be a pure-jump Lévy process with characteristic
exponent ψ satisfying the sector condition, and assume that the Lévy measure νL satisfies (A1)
from Theorem 2.1. Let (Xt)t≥0 be the unique weak solution to an SDE

dXt = σ(Xt−)dLt, X0 = x,

for a bounded continuous function σ ∶ R → R. Then (Xt)t≥0 is a Lévy-type process with sym-
bol q(x, ξ) ∶= ψ(σ(x)ξ), cf. [31, 27, 38]. Fix x ∈ R such that σ(x) ≠ 0. By Theorem 2.6 and
Theorem 2.10, the following statements hold for any non-decreasing function f ∶ [0,1] → [0,∞).

(i) If there exists a constant c > 0 such that

∫
1

0
νL({∣y∣ ≥ cf(t)})dt < ∞,

then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ = 0 and lim sup
t→0

1

f(t) sup
s≤t

∣Ls∣ = 0.

(ii) Assume that ψ∗(r) ∶= sup
∣ξ∣≤r ∣ψ(ξ)∣ satisfies the following weak scaling condition (at zero):

There are constants α > 0 and C > 0 such that

ψ∗(λr) ≥ Cλαψ∗(r) for all r > 0, λ ∈ (0,1).

If

∫
1

0
νL({∣y∣ ≥ cf(t)})dt = ∞

for some constant c > 0, then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ > 0 and lim sup
t→0

1

f(t) sup
s≤t

∣Ls∣ > 0.

The remainder of the article is organized as follows. After introducing basic definitions and notation
in Section 3, we establish a new maximal inequality for Lévy-type processes in Section 4 and study
some of its consequences. In Section 5 we obtain integral criteria for upper functions of Markov
processes. They are the key for the proofs of Theorem 2.1 and Theorem 2.6, which are presented
in Section 6. Finally, in Section 7, we give the proofs of Proposition 2.8, Proposition 2.9 and
Theorem 2.10.

3. Basic definitions and notation

We consider the Euclidean space Rd with the canonical scalar product x ⋅ y ∶= ∑dj=1 xjyj and the

Borel σ-algebra B(Rd) generated by the open balls B(x, r) ∶= {y ∈ Rd; ∣y−x∣ < r}. For a real-valued
function f , we denote by ∇f the gradient and by ∇2f the Hessian of f . If ν is a measure, say on
Rd, we use the short-hand ν({∣y∣ > r}) for ν({y ∈ Rd; ∣y∣ > r}).
An operator A defined on the space C∞

c (Rd) of compactly supported smooth functions is a Lévy-
type operator if it has a representation of the form

Af(x) = b(x) ⋅ ∇f(x) + 1

2
tr(Q(x) ⋅ ∇2f(x))

+ ∫
y≠0

(f(x + y) − f(x) − y ⋅ ∇f(x)1(0,1)(∣y∣)) ν(x, dy), f ∈ C∞

c (Rd),
(16)

where b(x) ∈ Rd is a vector, Q(x) ∈ Rd×d is a positive semi-definite matrix and ν(x, dy) is
a measure on Rd ∖ {0} satisfying ∫y≠0 min{1, ∣y∣2}ν(x, dy) < ∞ for each x ∈ Rd. The family

(b(x),Q(x), ν(x, dy)), x ∈ Rd, is the (infinitesimal) characteristics of A. Equivalently, A can be
written as a pseudo-differential operator

Af(x) = −∫
Rd
q(x, ξ)eix⋅ξ f̂(ξ)dξ, f ∈ C∞

c (Rd), x ∈ Rd,

with symbol

q(x, ξ) ∶= −ib(x) ⋅ ξ + 1

2
ξ ⋅Q(x)ξ + ∫

y≠0
(1 − eiy⋅ξ + iy ⋅ ξ1(0,1)(∣y∣)) ν(x, dy), x, ξ ∈ Rd.
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For each fixed x ∈ Rd, the mapping ξ ↦ q(x, ξ) is continuous and negative definite (in the sense of

Schoenberg). In consequence, ξ ↦
√

∣q(x, ξ)∣ is subadditive, i.e.
√

∣q(x, ξ + η)∣ ≤
√

∣q(x, ξ)∣ +
√

∣q(x, η)∣, x, ξ, η ∈ Rd, (17)

which implies

∣q(x, ξ)∣ ≤ 2 sup
∣η∣≤1

∣q(x, η)∣(1 + ∣ξ∣2), x, ξ ∈ Rd,

see e.g. [21, Theorem 6.2]. In particular, (x, ξ) ↦ q(x, ξ) is locally bounded if, and only if, there is
for every compact set K ⊆ Rd some constant C > 0 such that

∣q(x, ξ)∣ ≤ C(1 + ∣ξ∣2), ξ ∈ Rd, x ∈K. (18)

The local boundedness of q can also be characterized in terms of the characteristics; namely, q is
locally bounded if, and only if,

∀K ⊆ Rd compact ∶ sup
x∈K

(∣b(x)∣ + ∣Q(x)∣ + ∫
y≠0

min{1, ∣y∣2}ν(x, dy)) < ∞.

Applying Taylor’s formula in (16) shows that the local boundedness of the symbol q of the Lévy-
type operator A implies ∥Af∥∞ < ∞ for every f ∈ C∞

c (Rd). We say that q satisfies the sector
condition if there is a constant C > 0 such that

∣ Im q(x, ξ)∣ ≤ CRe q(x, ξ) for all x, ξ ∈ Rd. (19)

Next we introduce the probabilistic objects. Let A be a Lévy-type operator and (Ω,A,P) a
probability space. A stochastic process Xt ∶ Ω → Rd, t ≥ 0, with càdlàg sample paths is a solution
to the (A,C∞

c (Rd))-martingale problem with initial distribution µ if P(X0 ∈ ⋅) = µ(⋅) and

Mf
t ∶= f(Xt) − f(X0) − ∫

t

0
Af(Xs)ds, t ≥ 0,

is a martingale with respect to the canonical filtration Ft ∶= σ(Xs; s ≤ t) for every f ∈ C∞

c (Rd).
A tuple (Xt, t ≥ 0;Px, x ∈ Rd) consisting of a family of probability measures Px, x ∈ Rd, on a
measurable space (Ω,A) and a stochastic process Xt ∶ Ω → Rd with càdlàg sample paths is called
a Lévy-type process with symbol q if

(i) (Xt, t ≥ 0;Px, x ∈ Rd) is a strong Markov process;
(ii) (Xt)t≥0 solves the (A,C∞

c (Rd))-martingale problem for the Lévy-type operator A with
symbol q. More precisely, for each x ∈ Rd, the stochastic process (Xt)t≥0 considered on the
probability space (Ω,A,Px) is a solution to the (A,C∞

c (Rd))-martingale problem with
initial distribution µ = δx;

(iii) q is locally bounded.

Note that (iii) entails that Af is bounded for every f ∈ C∞

c (Rd), and so the integral ∫
t

0 Af(Xs)ds
appearing in the definition of the martingale problem is well-defined. If the (A,C∞

c (Rd))-martingale
problem is well-posed, i.e. there exists a unique solution to the martingale problem for any initial
distribution µ, then the strong Markov property (i) is automatically satisfied, cf. [11, Theorem
4.4.2]. Well-posedness is, however, not necessary for the existence of strongly Markovian solutions
to martingale problems; one can use so-called Markovian selections to construct such solutions, see
[11, Section 4.5] and [29]. For a thorough discussion of martingale problems associated with Lévy-
type operators, we refer to [8, 16, 18]. The following classes of stochastic processes are examples
of Lévy-type processes:

● Lévy processes: A Lévy process is a stochastic process (Xt)t≥0 with stationary and inde-
pendent increments and càdlàg sample paths. It is uniquely determined (in distribution)
by its Lévy triplet (b,Q, ν) and its characteristic exponent ψ, cf. [35, 21]. Any Lévy
process is a Lévy-type process in the sense of the above definition; the corresponding op-
erator A is the pseudo-differential operator with symbol q(x, ξ) ∶= ψ(ξ) and characteristics
(b,Q, ν).

● Feller processes: If (Xt)t≥0 is a Feller process whose infinitesimal generator (A,D(A))
satisfies C∞

c (Rd) ⊆D(A), then (Xt)t≥0 is a Lévy-type operator; this follows from a result
by Courrège & von Waldenfels, see [8, 18, 28] for further information.
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● solutions to Lévy-driven SDEs: Let (Lt)t≥0 be a Lévy process with characteristic exponent
ψ. If σ is a bounded continuous function and the stochastic differential equation (SDE)

dXt = σ(Xt−)dLt, X0 = x,
has a unique weak solution (Xt)t≥0, then (Xt)t≥0 is a Lévy-type process with symbol
q(x, ξ) = ψ(σ(x)T ξ), cf. [11, 38]. The assumptions on σ can be relaxed, cf. [27, 29].

4. A maximal inequality for Lévy-type processes

In this section, we establish a new maximal inequality for Lévy-type processes and present some
consequences of this inequality. Before we start, we recall the following maximal inequality, which
will be used frequently in this paper.

4.1. Proposition. Let (Xt)t≥0 be a Lévy-type process with symbol q. There is an absolute constant
c > 0 such that

Px (sup
s≤t

∣Xs − x∣ ≥ r) ≤ ct sup
∣z−x∣≤r

sup
∣ξ∣≤1/r

∣q(z, ξ)∣, x ∈ Rd, t > 0, r > 0. (20)

This maximal inequality goes back to Schilling [37], see also [8, Theorem 5.1] and [29, Proposition
2.8]. Let us mention two variants of this inequality: a version for random times, cf. [26, Lemma
1.29], and a localized version, cf. [30, Lemma 4.1]. If we denote by τxr = inf{t ≥ 0; ∣Xt − x∣ ≥ r} the
first exit time of (Xt)t≥0 from the open ball B(x, r), then (20) can be equivalently formulated as
follows:

Px(τxr ≤ t) ≤ ct sup
∣z−x∣≤r

sup
∣ξ∣≤1/r

∣q(z, ξ)∣, x ∈ Rd, t > 0, r > 0.

For the proofs of our main results, we need an upper bound for the probability

Px (sup
s≤t

∣Xs − x∣ < r) .

The following maximal inequality allows us to derive suitable bounds and is of independent interest.

4.2. Proposition. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),Q(x), ν(x, dy)),
x ∈ Rd, and denote by τxr the first exit time from B(x, r). Then

Px(τxr ≥ t) ≤ 1

1 + tG(x,2r) with G(x, r) ∶= inf
∣z−x∣≤r

ν(z,{∣y∣ > r})

for all x ∈ Rd and r > 0.

Note that Proposition 4.2 implies that

Px (sup
s≤t

∣Xs − x∣ < r) ≤ 1

1 + tG(x,2r) , x ∈ Rd, r > 0.

Intuitively, G(x, r) = inf ∣z−x∣≤r ν(z,{∣y∣ > r}) quantifies the likelihood of a jump of modulus > r
while the process is close to its starting point x. The idea behind our estimate is that the process
leaves immediately the ball B(x, r) if a jump of modulus > 2r occurs. Other means of leaving the
ball, e.g. due to a drift or diffusion part, are not taken into account. In consequence, Proposition 4.2
does well for pure-jump processes but less so e.g. for processes with a non-vanishing diffusion part.
There is a related estimate in [8, Theorem 5.5], see also [37, Lemma 6.3], giving an upper bound
for Px(τxr ≥ t) in terms of the symbol1; for the particular that q satisfies the sector condition (19),
it reads

Px(τxr ≥ t) ≤ c 1

1 + th(x, r) with h(x, r) ∶= sup
∣ξ∣≤1/(2r)

inf
∣z−x∣≤r

Re q(z, ξ) (21)

for some constant c > 0. In some situations, (21) gives better estimates than Proposition 4.2 – e.g.
if there is a diffusion part – but our result has its advantages e.g. if the sector condition is not

satisfied. For instance, for q(x, ξ) = iξ +
√

∣ξ∣, we get Px(τxr ≥ t) ≤ 1/(1 + ctr−1/2) ≤ c′r1/2t−1 while

[8, Theorem 5.5] gives only Px(τxr ≥ t) ≤ c′′r1/3t−1; note that the estimates are of interest only if
the right-hand sides are less or equal than 1, i.e. for r > 0 small.

1Beware that there is a typo in the definition of k(x, r) in [8, Theorem 5.5]; the two suprema should be infima.
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Proof of Proposition 4.2. For fixed x ∈ Rd, ε > 0 and r > 0, pick χ ∈ C∞

c (Rd) such that 1B(x,r) ≤
χ ≤ 1B(x,r+ε). As χ(Xt) = 1 on {t < τxr }, it follows from Dynkin’s formula that

Px(τxr > t) = Ex(χ(Xt)1{τxr >t}) ≤ E
x(χ(Xt∧τxr )) = 1 +Ex (∫

(0,t∧τxr )
Aχ(Xs)ds) , (22)

where A is the Lévy-type operator associated with the family of triplets (b(x),Q(x), ν(x, dy)), see
(16). For z ∈ B(x, r), we have χ(z) = 1, ∇χ(z) = 0 and ∇2χ(z) = 0, and so

Aχ(z) = ∫
y≠0

(χ(z + y) − 1) ν(z, dy).

Using that 0 ≤ χ ≤ 1 on Rd and χ = 0 outside B(x, r + ε), we find that

Aχ(z) ≤ ∫
∣(z+y)−x∣≥r+ε

(χ(z + y) − 1)ν(z, dy) ≤ −∫
∣y∣≥2r+ε

ν(z, dy)

for all z ∈ B(x, r). Since Xs ∈ B(x, r) for s < τxr , it follows from (22) that

Px(τxr > t) ≤ 1 −Ex (∫
(0,t∧τxr )

ν(Xs,{∣y∣ ≥ 2r + ε})ds)

for all ε > 0. Letting ε ↓ 0 using the dominated convergence theorem, we arrive at

Px(τxr > t) ≤ 1 −Ex (∫
(0,t∧τxr )

ν(Xs,{∣y∣ > 2r})ds)

≤ 1 −Ex(τxr ∧ t) inf
∣z−x∣≤r

∫
∣y∣>2r

ν(z, dy). (23)

The elementary estimate Ex(τxr ∧ t) ≥ tPx(τxr > t) now gives

Px(τxr > t) ≤ 1 − tPx(τxr > t) inf
∣z−x∣≤r

∫
∣y∣>2r

ν(z, dy),

i.e.

Px(τxr > t) ≤ 1

1 + t inf ∣z−x∣≤r ν(z,{∣y∣ > 2r}) .

Thus,

Px(τxr ≥ t) = lim
ε→0

Px(τxr > t − ε) ≤ 1

1 + t inf ∣z−x∣≤r ν(z,{∣y∣ > 2r}) . �

4.3. Corollary. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),Q(x), ν(x, dy)), and
denote by τxr the exit time from the ball B(x, r). Then

Exτxr ≤ 1

G(x,2r) (24)

and

Px(τxr ≥ t) ≤ C0 exp(−C1tG(x,2r)) (25)

for all x ∈ Rd, t > 0 and r > 0, where C0,C1 < ∞ are uniform constants and G(x, r) is the mapping
defined in Proposition 4.2.

Proof. By (23),

Ex(τxr ∧ t) ≤
1 −Px(τxr > t)
G(x,2r) ≤ 1

G(x,2r) .

Letting t → ∞ using Fatou’s lemma, proves the first assertion. The second inequality is obtained
from Proposition 4.2 by an iteration argument using the Markov property; it is the same reasoning
as in [8, Proof of Theorem 5.9]. �

4.4. Remark. (i) For the particular case that (Xt)t≥0 is a Lévy process, we know that Nt ∶= ♯{s ≤
t; ∣∆Xs∣ > 2r} is a Poisson process with intensity λ = ν({∣y∣ > 2r}), where ν is the Lévy measure,
and so

Px(τxr ≥ t) = lim
ε→0

Px(τxr > t + ε) ≤ lim
ε→0

Px(Nt+ε = 0) = e−λt = e−tν({∣y∣>2r}),

which is (25) with C0 = C1 = 1. If (Xt)t≥0 is a general Lévy-type process (Xt)t≥0, then (Nt)t≥0

is no longer a Poisson process but our result shows that we can still get an analogous estimate
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in terms of the jump intensity G(x,2r). This fits well to the intuition that a Lévy-type process
behaves locally like a Lévy process.
(ii) The estimate (25) is optimal for a wide family of jump processes. However, our approach
incorporates only the tails of the Lévy measures and therefore some information may be lost,
leading to non-optimal estimates for certain processes. This is best seen for the particular case
of stable Lévy processes, for which Taylor [40] derived upper and lower bounds for P(τr ≥ t) (i.e.
x = 0). He shows for r > 0 small that

P(τr ≥ t) ≍ e−ctr
−α

for stable processes of type A

P(τr ≥ t) ≍ e−ctr
−α/(1−α)

for stable processes of type B, α ∈ (0,1),
where the constants c in the lower and upper bound may differ. Here, ’type B’ means essentially
that the process has a projection which is a subordinator – formally, the Lévy measure is concen-
trated on a hemisphere {y ∈ Rd; yj ≥ 0} for some j ∈ {1, . . . , d} – and all other stable processes are
of type A. While our estimate (25) yields the correct upper bound for stable processes of type A,

we only get the (sub-optimal) upper bound e−ctr
−α

for processes of type B.

As a direct consequence of Proposition 4.2, we also obtain the following corollary.

4.5. Corollary. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),Q(x), ν(x, dy)), and
let c ∈ [0,1]. If x ∈ Rd, t > 0 and r > 0 are such that

Px (sup
s≤t

∣Xs − x∣ > r) ≤ c,

then

Px (sup
s≤t

∣Xs − x∣ > r) ≥ (1 − c)tG(x,2r)

for G(x, r) defined in Proposition 4.2.

As an immediate consequence, we see that

lim sup
t→0

Px (sup
s≤t

∣Xs − x∣ > r(t)) < 1

implies

Px (sup
s≤t

∣Xs − x∣ > r(t)) ≥ CtG(x,2r(t))

for small t > 0 and some constant C > 0, which will be useful lateron.

Proof of Corollary 4.5. By Proposition 4.2,

Px (sup
s≤t

∣Xs − x∣ ≤ r) ≤ 1

1 + tG(x,2r) ,

which is equivalent to

Px (sup
s≤t

∣Xs − x∣ ≤ r) ≤ 1 − tG(x,2r)Px (sup
s≤t

∣Xs − x∣ ≤ r) .

Hence,

Px (sup
s≤t

∣Xs − x∣ > r) ≥ tG(x,2r)Px (sup
s≤t

∣Xs − x∣ ≤ r)

= tG(x,2r) [1 −Px (sup
s≤t

∣Xs − x∣ > r)] ,

which proves the assertion. �

Let us illustrate the results from this section with an example.

4.6. Example. Let (Xt)t≥0 be a process of variable order, i.e. a Lévy-type process with symbol

q(x, ξ) = ∣ξ∣α(x) for a continuous mapping α ∶ Rd → (0,2]. Denote by τxr the first exit time of
(Xt)t≥0 from the ball B(x, r) and set α∗(x, r) ∶= inf ∣z−x∣≤r α(z). The following estimates hold for
uniform constants c0, . . . , c4 ∈ (0,∞):
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(i) Px(τxr ≥ t) ≤ 1/(1 + c0tr−α∗(x,r)) and Px(τxr ≥ t) ≤ c1 exp(−c2tr−α∗(x,r)),
(ii) Ex(τxr ) ≤ c3rα∗(x,r),
(iii) Px (sups≤t ∣Xs − x∣ ≥ r) ≥ c4tr−α∗(x,r) for t = t(r) > 0 small.

5. Integral criteria for upper functions

Let (Xt)t≥0 be a Markov process and f ∶ [0,1] → [0,∞) a non-decreasing function. The aim of this
section is to derive sufficient conditions for

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ ≤ c Px-a.s. (26)

in terms of certain integrals. Our first main result is the following theorem.

5.1. Theorem. Let (Xt)t≥0 be a Markov process with càdlàg sample paths and f ∶ [0,1] → [0,∞)
a non-decreasing function. If

∫
1

0

1

t
sup

∣z−x∣≤f(t)

Pz (sup
s≤t

∣Xs − z∣ ≥ f(t)) dt < ∞ (27)

for some x ∈ Rd, then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ ≤ 4 Px-a.s.

Proof. 1o Claim:

Px (sup
s≤2t

∣Xs − x∣ ≥ 2r) ≤ 3 sup
∣z−x∣≤r

Pz (sup
s≤t

∣Xs − z∣ ≥ r) , x ∈ Rd, r > 0, t > 0. (28)

To prove this, we note that

Px (sup
s≤2t

∣Xs − x∣ ≥ 2r) ≤ Px (sup
s≤t

∣Xs − x∣ ≥ 2r) +Px (sup
s≤t

∣Xs+t − x∣ ≥ 2r) ,

and, by the Markov property,

Px (sup
s≤t

∣Xs+t − x∣ ≥ 2r) = Ex
⎛
⎝
Pz [sup

s≤t
∣Xs − x∣ ≥ 2r] ∣

z=Xt

⎞
⎠

≤ Px(∣Xt − x∣ ≥ r) + sup
∣z−x∣≤r

Pz (sup
s≤t

∣Xs − z∣ ≥ r) .

2o This part of the proof uses an idea from Khintchine [20]. Fix x ∈ Rd such that (27) holds.
Since f is monotone, we have

pn ∶= Px ( sup
2−(n+1)≤s≤2−n

1

f(s) sup
r≤s

∣Xr − x∣ ≥ 4) ≤ Px ( sup
s≤2−n

∣Xs − x∣ ≥ 4f(2−(n+1)))

for every n ∈ N. Take any θn ∈ [2−n,2−(n−1)], then θn/2 ≤ 2−n and using 1o and the monotonicity
of f , we get

pn ≤ Px (sup
s≤θn

∣Xs − x∣ ≥ 4f(θn/4)) ≤ 9 sup
∣z−x∣≤3f(θn/4)

Pz
⎛
⎝

sup
s≤θn/4

∣Xr − z∣ ≥ f(θn/4)
⎞
⎠
.

Writing θn = 2−u for u ∈ [n − 1, n] and integrating with respect to u ∈ [n − 1, n], it follows that

pn ≤ 9∫
n

n−1
sup

∣z−x∣≤3f(2−u−2)
Pz ( sup

s≤2−u−2
∣Xr − z∣ ≥ f(2−u−2)) du.

By a change of variables (t = 2−u−2),

pn ≤
9

∣ log 2∣ ∫
2−(n+1)

2−(n+2)

1

t
sup

∣z−x∣≤3f(t)

Pz (sup
r≤t

∣Xr − z∣ ≥ f(t)) dt,

and so (27) yields ∑n∈N pn < ∞. Applying the Borel–Cantelli lemma, we conclude that

lim sup
n→∞

sup
2−(n+1)≤s≤2−n

1

f(s) sup
r≤s

∣Xr − x∣ ≤ 4 Px-a.s. �
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It is natural to ask whether the two suprema in (27) are needed, i.e. if upper functions can also be

characterized in terms of the integral ∫
1

0
1
t
Px(∣Xt −x∣ ≥ Cf(t))dt. Our next result shows that this

is possible under some additional assumptions.

5.2. Proposition. Let (Xt)t≥0 be a strong Markov process with càdlàg sample paths. Let f ∶
[0,1] → [0,∞) be a non-decreasing function such that2

C ∶= essinf {lim sup
n→∞

f(sn)
f(sn+1) ; s ∈ (0,1)} < ∞. (29)

Assume that the following conditions are satisfied for some constants %, κ > 0 and a function
R ∶ [0,1] → (0,∞]:

lim sup
t→0

sup
∣z−x∣≤R(t)

Pz(∣Xt − z∣ ≥ %f(t)) < 1 (30)

∑
n≥1

Px ( sup
u≤sn

∣Xu − x∣ > R(sn)) < ∞ for a.e. s ∈ (0,1) (31)

∫
1

0

1

t
Px(∣Xt − x∣ > κf(t))dt < ∞. (32)

Then

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ ≤ C(% + κ) Px-a.s.

5.3. Remark. (i) Since f is non-decreasing, the constant C in (29) is greater or equal than 1. If f
is regularly varying at zero, i.e. if the limit

L(a) ∶= lim
t→0

f(at)
f(t)

exists for all a > 0, then C = 1; this follows from the fact that, by Karamata’s characterization
theorem, see e.g. [6], the limit L is of the form L(a) = a% for some % ≥ 0.
(ii) There is a trade-off between (30) and (31) regarding the choice of R; e.g. for R ≡ ∞, condition
(31) is trivially satisfied but a uniform bound for z ∈ Rd is needed in (30).
(iii) If (Xt)t≥0 is a Lévy-type process, then the maximal inequality (20) shows that (31) is auto-
matically satisfied for R(t) ≡ R constant.
(iv) It is not hard to check that

∫
(0,1)

1

t
Px (sup

s≤t
∣Xs − x∣ > κf(t)) dt < ∞ (33)

implies that (31) and (32) hold with R(t) = κf(t).

For the proof of Proposition 5.2 we use the following Ottaviani-type inequality; for R = ∞ this is
the classical Ottaviani inequality for Markov processes, see e.g. [13, p. 420] or [17, p. 125].

5.4. Lemma. Let (Xt)t≥0 be a strong Markov process with càdlàg sample paths. Then

Px (sup
s≤t

∣Xs − x∣ > u + v) ≤ 1

1 − αR,x(t, u)
[Px(∣Xt − x∣ > v) +Px (sup

s≤t
∣Xs − x∣ > R)]

for all x ∈ Rd, u, v > 0 and R ∈ (0,∞], where

αR,x(t, u) ∶= sup
s≤t

sup
∣z−x∣≤R

Pz(∣Xs − z∣ ≥ u).

Proof. Denote by τxr the first exit time of (Xt)t≥0 from the closed ball B(x, r) and set σ ∶= τxu+v
for fixed u, v > 0. We have

Px (sup
s≤t

∣Xs − x∣ > u + v) = Px(σ ≤ t)

≤ Px(∣Xt − x∣ > v) +Px (∣Xt − x∣ ≤ v, σ ≤ t, τxR > t) +Px(τxR ≤ t).

2Here, essinf denotes the essential infimum with respect to Lebesgue measure.
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By the strong Markov property,

Px (∣Xt − x∣ ≤ v, σ ≤ t, τxR > t) ≤ Px (∣Xt −Xσ ∣ ≥ u,σ ≤ t, ∣Xσ − x∣ ≤ R)

= Ex [1{σ≤t}1{∣Xσ−x∣≤R}Pz(∣Xt−s − z∣ ≥ u)∣z=Xσ,s=σ]
≤ αR,x(t, u)Px(σ ≤ t),

and so

Px (sup
s≤t

∣Xs − x∣ > u + v)(1 − αR,x(t, u)) ≤ Px(∣Xt − x∣ > v) +Px(τxR ≤ t)

= Px(∣Xt − x∣ > v) +Px (sup
s≤t

∣Xs − x∣ > R) . �

Proof of Proposition 5.2. 1o Claim:

∑
n∈N
∫

1

0
Px(∣Xsn − x∣ > κf(sn)) log

1

s
ds < ∞. (34)

By a change of variables, t = sn, dt = nt(n−1)/n ds, we find that

∫
1

0
P(∣Xsn − x∣ > κf(sn)) log

1

s
ds = ∫

1

0

1

n2
t1/n log

1

t
Px(∣Xt − x∣ > κf(t))

1

t
dt.

As

∑
n∈N

1

n2
t1/n log

1

t
≤ 2, t ∈ (0,1),

cf. Lemma A.2, the monotone convergence theorem yields

∑
n∈N
∫

1

0
P(∣Xsn − x∣ > κf(sn)) log

1

s
ds ≤ 2∫

1

0
Px(∣Xt − x∣ > κf(t))

1

t
dt,

and the latter integral is finite by (32). This proves (34). In particular, there is a Lebesgue null
set N ⊆ (0,1) such that

∑
n∈N

Px(∣Xsn − x∣ > κf(sn)) < ∞ for all s ∈ (0,1) ∖N. (35)

2o Fix ε > 0, and take s ∈ (0,1)∖N such that lim supn→∞ f(sn)/f(sn+1) ≤ (C +ε) for the constant
C defined in (29). By Lemma 5.4, we have

Px (sup
r≤sn

∣Xr − x∣ > (κ + %)f(sn))

≤ 1

1 − αR,x(sn, %f(sn))
[Px(∣Xsn − x∣ > κf(sn)) +Px ( sup

u≤sn
∣Xu − x∣ > R(sn))] ,

where αR,x(t, r) ∶= supu≤t sup
∣z−x∣≤R(t)P

z(∣Xu − z∣ ≥ r). From (30) and the monotonicity of f , we

see that there exists some δ ∈ (0,1) such that

αR,x(sn, %f(sn)) ≤ sup
r≤sn

sup
∣z−x∣≤R(sn)

Pz(∣Xr − z∣ ≥ %f(r)) ≤ 1 − δ (36)

for n≫ 1. Thus,

Px (sup
r≤sn

∣Xr − x∣ > (κ + %)f(sn)) ≤ 1

δ
[Px(∣Xsn − x∣ > κf(sn)) +Px ( sup

u≤sn
∣Xu − x∣ > R(sn))] ,

which implies, by (35) and (31),

∑
n∈N

Px (sup
r≤sn

∣Xr − x∣ > (κ + %)f(sn)) < ∞.

Applying the Borel-Cantelli lemma gives

lim sup
n→∞

1

f(sn) sup
r≤sn

∣Xr − x∣ ≤ % + κ Px-a.s.
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If t ∈ [sn+1, sn) for some n≫ 1, then

1

f(t) sup
r≤t

∣Xr − x∣ ≤
1

f(sn+1) sup
r≤sn

∣Xr − x∣ =
f(sn)
f(sn+1)

1

f(sn) sup
r≤sn

∣Xr − x∣,

and so

lim sup
t→0

1

f(t) sup
r≤t

∣Xr − x∣ ≤ lim sup
n→∞

( f(sn)
f(sn+1)

1

f(sn) sup
r≤sn

∣Xr − x∣) ≤ (C + ε)(κ + %)

Px-almost surely. Since ε > 0 is arbitrary, this finishes the proof. �

Combining Theorem 5.1 with the maximal inequality (20), we get the following criterion; see [25,
Proposition 9] for a closely related result.

5.5. Corollary. Let (Xt)t≥0 be a Lévy-type process with symbol q. If f ∶ [0,1] → [0,∞) is a
non-decreasing function such that

∫
1

0
sup

∣z−x∣≤f(t)

sup
∣ξ∣≤1/(Cf(t))

∣q(z, ξ)∣dt < ∞ (37)

for some constant C > 0, then

lim
t→0

1

f(t) sup
s≤t

∣Xs − x∣ = 0 Px-a.s.

Proof. If the integral in (37) is finite some C > 0, then it is finite for arbitrary small C > 0. Indeed:

Since ξ ↦
√

∣q(z, ξ)∣ is subadditive, we have

∣q(z,2ξ)∣ = ∣q(z, ξ + ξ)∣ ≤ (
√

∣q(z, ξ)∣ +
√

∣q(z, ξ)∣)
2
= 4∣q(z, ξ)∣,

which implies that

∫
1

0
sup

∣z−x∣≤f(t)

sup
∣ξ∣≤1/(2−nCf(t))

∣q(z, ξ)∣dt ≤ 4n ∫
1

0
sup

∣z−x∣≤f(t)

sup
∣ξ∣≤1/(Cf(t))

∣q(z, ξ)∣dt < ∞

for every n ∈N. Applying the maximal inequality (20) and Theorem 5.1 yields

lim sup
t→0

1

f(t) sup
s≤t

∣Xs − x∣ ≤ 4C2−n Px-a.s.

Letting n→∞ proves the assertion. �

We conclude this section with the following result on the growth of sample paths of Lévy-type
processes.

5.6. Proposition. Let (Xt)t≥0 be a Lévy-type process with symbol q. Then:

(i) lim supt→0 t
−κ sups≤t ∣Xs − x∣ = 0 P-a.s. for any κ < 1

2
.

(ii) If x ∈ Rd is such that

sup
∣z−x∣≤R

sup
∣ξ∣≤r

∣q(z, ξ)∣ ≤ c r2

∣ log r∣1+ε , r ≫ 1, (38)

for some constants R > 0, c > 0 and ε > 0, then

lim sup
t→0

1√
t log ∣ log t∣

sup
s≤t

∣Xs − x∣ = 0 Px-a.s.

Khintchine [20] (see also [39, Appendix, Theorem 4]) showed that any Lévy process without Gauss-
ian component satisfies

lim sup
t→0

∣Xt∣√
t log ∣ log t∣

= 0 a.s.

One might expect that an analogous result holds for Lévy-type processes but this does not seem
to follow from our results; note that (38) is stronger than assuming that (Xt)t≥0 has no Gaussian
component, cf. [30, Lemma A.3].
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Proof of Proposition 5.6. 1o Because of the subadditivity of ξ ↦
√

∣q(x, ξ∣, it holds that

∣q(x, ξ)∣ ≤ sup
∣η∣≤1

∣q(x, η)∣(1 + ∣ξ∣2),

cf. [21, Theorem 6.2], and so

sup
∣z−x∣≤1

sup
∣ξ∣≤r

∣q(z, ξ)∣ ≤ c′(1 + r2)

for some constant c′ > 0. Hence,

∫
1

0
sup
∣z−x∣≤1

sup
∣ξ∣≤1/(Ctκ)

∣q(z, ξ)∣dt < ∞

for any κ ∈ (0, 1
2
) and C > 0. By Corollary 5.5, this proves (i).

2o Set f(t) ∶=
√
t log log 1

t
, then, by (38),

∫
1/ee

0
sup
∣z−x∣≤R

sup
∣ξ∣≤1/(Cf(t))

∣q(z, ξ)∣dt ≤ c

C2 ∫
1/ee

0

1

t log log 1
t

1

∣ log
√
C2t log log 1

t
∣1+ε

dt

for every C > 0, and the latter integral is finite. Corollary 5.5 gives the assertion. �

In the remainder of the article, we prove the results announced in Section 2.

6. Proofs of Theorem 2.1 and Theorem 2.6

For the proof of Theorem 2.1 and Theorem 2.6, we need the following result which links two of our
integral conditions.

6.1. Lemma. Let ψ ∶ Rd → C be a continuous negative definite function with Lévy triplet (b,0, ν),
and set

ψ∗(r) ∶= sup
∣ξ∣≤r

Reψ(ξ), r > 0.

If f ∶ [0,1] → [0,∞) is a non-decreasing function, then the implication

∫
1

0
ν({∣y∣ ≥ f(t)})dt < ∞ Ô⇒ ∫

1

0
ψ∗ ( 1

f(t)) dt < ∞

holds in each of the following two cases.

(A1) The Lévy measure ν satisfies

lim sup
r→0

∫∣y∣≤r ∣y∣2 ν(dy)
r2ν({∣y∣ > r}) < ∞.

(A2) There is a constant c > 0 such that

∫
r<f(t)

1

f(t)2
dt ≤ cf

−1(r)
r2

, r ∈ (0,1).

6.2. Remark. (i) There are several equivalent formulations of condition (A1) in terms of so-called
concentration functions. If we define, following [33],

G(r) ∶= ν({∣y∣ > r}) and K(r) ∶= 1

r2 ∫
∣y∣≤r

∣y∣2 ν(dy),

then (A1) can be stated equivalently in the following way:

lim sup
r→0

K(r)
G(r) < ∞.

Set

h(r) ∶= ∫
y≠0

min{1,
∣y∣2
r2

} ν(dy) =K(r) +G(r),

then we see that

(A1) ⇐⇒ lim inf
r→0

G(r)
h(r) > 0. (39)
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Since
1

c
h(r) ≤ ψ∗ (1

r
) ≤ ch(r), r > 0,

for some constant c > 0, depending only on the dimension d, see e.g. [37, Lemma 5.1 and p. 595]
or [14, Lemma 4], it follows that

(A1) ⇐⇒ lim inf
r→0

G(r)
ψ∗(1/r) = lim inf

r→0

ν({∣y∣ > r})
ψ∗(1/r) > 0. (40)

Moreover, there is a sufficient condition for (A1) in terms of the function

I(r) ∶= ∫
y≠0

min{r2, ∣y∣2}ν(dy) = r2h(r);

namely, if

lim inf
r→0

I(2r)
I(r) > 1, (41)

then (A1) holds. Indeed: By Tonelli’s theorem,

I(r) = ∫
y≠0
∫

min{r2,∣y∣2}

0
dz ν(dy) = ∫

R
∫
y≠0
1{∣z∣<r2}1{∣z∣<∣y∣2} ν(dy)dz

= ∫
r2

0
ν({∣y∣ >

√
z})dz.

Thus,

I(2r) = I(r) + ∫
4r2

r2
ν({∣y∣ >

√
z})dz ≤ I(r) + 3r2ν({∣y∣ > r}).

Consequently, (41) implies that

1 < lim inf
r→0

I(2r)
I(r) ≤ 1 + lim inf

r→0

3r2ν({∣y∣ > r})
I(r) .

As I(r) = r2h(r), this is equivalent to (39) and hence to (A1). Let us mention that a condition
similar to (41) appears in the monograph [3] by Bertoin in the study of upper functions for sample
paths of subordinators.
(ii) If ν is the Lévy measure of a one-dimensional Lévy process and ν({∣y∣ ≥ r}) grows faster than
log r as r → 0, then (A1) implies that (the law of) Xt has a smooth density pt ∈ C∞

b (R) for every
t > 0, see [19, Section 5] and also [24, p. 127].

Proof of Lemma 6.1. 1o Suppose that (A1) holds. Then there is some constant c > 0 such that

ψ∗ (1

r
) = sup

∣ξ∣≤1/r

Reψ(ξ) ≤ cν({∣y∣ > r})

for r > 0 small, cf. (40). Since we may assume without loss of generality that f(t) → 0 as t ↓ 0, we
find that

∫
δ

0
ψ∗ ( 1

f(t)) dt ≤ c∫
δ

0
ν({∣y∣ > f(t)})dt

for some δ > 0. As ψ is bounded on compact sets, this proves the assertion.

2o Suppose that (A2) holds. From

ψ∗(r) = sup
∣ξ∣≤r

Reψ(ξ) ≤ 2∫
y≠0

min{1, ∣y∣2r2}ν(dy),

we get

∫
1

0
ψ∗ ( 1

f(t)) dt ≤ 2∫
1

0

1

f(t)2 ∫
∣y∣≤f(t)

y2 ν(dy)dt + 2∫
1

0
ν({∣y∣ > f(t)})dt. (42)

The second integral on the right-hand side of (42) is finite by assumption, and so it suffices to
show that the first integral

J ∶= ∫
1

0

1

f(t)2 ∫
∣y∣≤f(t)

y2 ν(dy)dt



UPPER FUNCTIONS FOR LÉVY(-TYPE) PROCESSES 19

is finite. By Tonelli’s theorem and (A2), we have

J = ∫
y≠0

∣y∣2 ∫
f(t)≥∣y∣

1

f(t)2
dt ν(dy) ≤ c∫

y≠0
f−1(∣y∣)ν(dy).

Since f is non-decreasing, we find by another application of Tonelli’s theorem that

J ≤ c∫
y≠0
∫
t≤f−1(∣y∣)

dt ν(dy) ≤ c∫
y≠0
∫
f(t)≤∣y∣

dt ν(dy) = c∫
1

0
ν({∣y∣ ≥ f(t)})dt < ∞. �

Proof of Theorem 2.1. (L1) Ô⇒ (L2): If ∫
1

0 ν({∣y∣ ≥ cf(t)})dt < ∞, then it follows from
Lemma 6.1 and the sector condition that

∫
1

0
sup

∣ξ∣≤1/(cf(t))

∣ψ(ξ)∣dt < ∞.

By the subadditivity of ξ ↦
√

∣ψ(ξ)∣, this implies that

∫
1

0
sup

∣ξ∣≤1/(2−ncf(t))
∣ψ(ξ)∣dt < ∞.

for all n ∈N, see the proof of Corollary 5.5. Since the integral expression is monotone w.r.t. c, we
conclude that

∫
1

0
sup

∣ξ∣≤1/(cf(t))

∣ψ(ξ)∣dt < ∞ for all c > 0.

(L2) Ô⇒ (L3): This is clear from the maximal inequality, cf. Proposition 4.1.
(L3)⇐⇒ (L4): The implication (L3) Ô⇒ (L4) is obvious. The other direction is immediate from
Etemadi’s inequality, see e.g. [5, Theorem 22.5] or [15, Theorem 7.6], which shows that

P(sup
s≤t

∣Xs∣ ≥ 3r) ≤ 3P(∣Xt∣ ≥ r), r > 0, t > 0.

(L3) Ô⇒ (L5): This is immediate from Theorem 5.1; note that the supremum in (27) breaks
down because Lévy processes are homogenous in space.
(L5)Ô⇒ (L6)Ô⇒ (L7): Obvious.
(L7)Ô⇒ (L1): In dimension d = 1, this follows from [4, Proposition 4.2]. The following reasoning
works in any dimension d ≥ 1. By Blumenthal’s 0-1 law, there exists a constant C > 0 such that

lim sup
t→0

1

f(t) ∣Xt∣ ≤
C

2
almost surely. (43)

Suppose that ∫
1

0 ν({∣y∣ ≥ 2Cf(t)})dt is infinite. As f is non-decreasing, the series test yields

∞

∑
n=2

ν({∣y∣ ≥ 2Cf(1/n)}) ( 1

n − 1
− 1

n
) = ∞. (44)

The random variables

N
(r)
s,t ∶= ♯{u ∈ (s, t]; ∣∆Xu∣ ≥ r}, 0 ≤ s < t, r > 0,

are Poisson distributed with parameter (t − s)ν({∣y∣ ≥ r}), and so Yn ∶= N2Cf(1/n)

1/(n+1),1/n
are Poisson

distributed with parameter λn ∶= ν({∣y∣ ≥ 2Cf(1/n)}) ( 1
n
− 1
n+1

). Using the elementary estimate
1 − e−x ≥ x/(1 + x), we get

∑
n∈N

P(Yn ≥ 1) = ∑
n∈N

(1 − e−λn) ≥ ∑
n∈N

λn
1 + λn

≥ ∑
n∈N

min{λn,
1

2
} = ∞;

here we use that (44) implies ∑n∈N λn = ∞ because 1
n−1

− 1
n
≈ 1

n2 ≈ 1
n+1

− 1
n

for n ≫ 1. Since
the random variables Yn, n ∈ N, are independent, the Borel–Cantelli lemma shows that the event
{Yn ≥ 1 infinitely often} has probability 1. Thus, with probability 1 there are infinitely many
n ∈ N such that ∣∆Xu∣ ≥ 2Cf(1/n) for some u ∈ [ 1

n+1
, 1
n
]. Since either ∣Xu∣ ≥ Cf(1/n) ≥ Cf(u) or

∣Xu−∣ ≥ Cf(1/n) ≥ Cf(u−) for any such u ∈ [ 1
n+1

, 1
n
], we conclude that

lim sup
t→0

1

f(t) ∣Xt∣ ≥ C almost surely,
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which contradicts (43). Hence, ∫
1

0 ν({∣y∣ ≥ 2Cf(t)})dt < ∞. See (the proof of) Theorem 2.10 for
an alternative reasoning.
The random variables lim supt→0

1
f(t)

∣Xt∣ and lim supt→0
1

f(t)
sups≤t ∣Xs∣ are F0+-measurable, and

therefore Blumenthal’s 0-1-law shows that the events in (L5)-(L7) have probability 0 or 1. Conse-
quently, ’almost surely’ may be replaced by ’with positive probability’ in each of the statements. �

Proof of Theorem 2.6. (LTP1) Ô⇒ (LTP2): Without loss of generality, f(t) → 0 = f(0) as t ↓ 0;
otherwise the assertion is immediate from the local boundedness of the symbol, cf. (18). It follows
from (A1’) that

lim inf
r→0

inf
∣z−x∣≤R

ν(z,{∣y∣ > r})
sup

∣ξ∣≤1/r Re q(z, ξ) > 0,

see Remark 6.2(i). Since the sector condition holds (with a constant not depending on z ∈ B(x,R)),
we find that

lim inf
r→0

inf
∣z−x∣≤R

ν(z,{∣y∣ > r})
sup

∣ξ∣≤1/r ∣q(z, ξ)∣
> 0,

i.e. there are constants K > 0 and δ > 0 such that

sup
∣ξ∣≤1/r

∣q(z, ξ)∣ ≤Kν(z,{∣y∣ > r}), z ∈ B(x,R),

for r ≤ δ. As f(t) → 0 as t ↓ 0, this implies

sup
∣z−x∣≤f(t)

sup
∣ξ∣≤1/(cf(t))

∣q(z, ξ)∣ ≤K sup
∣z−x∣≤f(t)

ν(z,{∣y∣ > cf(t)})

for t > 0 small. Integrating with respect to t and using the local boundedness of q, we conclude
that

∫
1

0
sup

∣z−x∣≤f(t)

sup
∣ξ∣≤1/(cf(t))

∣q(z, ξ)∣dt < ∞.

(LTP2)Ô⇒ (LTP3): If the integral in (LTP2) is finite for some ε > 0, then it is finite for all ε > 0;

this follows from the subadditivity of ξ ↦
√

∣q(z, ξ)∣, see the proof of Corollary 5.5. The implication
(LTP2)Ô⇒ (LTP3) is now immediate from the maximal inequality (20).
(LTP3)Ô⇒ (LTP4): cf. Theorem 5.1. �

7. Proof of the converse and the lower growth bounds

In this section, we present the proofs of Proposition 2.8, Proposition 2.9 and Theorem 2.10.

Proof of Proposition 2.8. 1o If

∫
1

0
sup

∣z−x∣≤f(t)

Pz (sup
s≤t

∣Xs − z∣ ≥ f(t))
1

t
dt < ∞,

then Theorem 5.1 shows that lim supt→0
1

f(t)
sups≤t ∣Xs − x∣ ≤ 4 Px-almost surely. Consequently,

Px(Ak) → 1 for Ak ∶= {∀t ≤ 1/k ∶ 1
f(t)

sups≤t ∣Xs − x∣ < 5}. Hence,

sup
t≤1/k

Px (sup
s≤t

∣Xs − x∣ ≥ 5f(t)) ≤ Px(Ack) ÐÐÐ→
k→∞

0.

By Corollary 4.5, this implies

Px (sup
s≤t

∣Xs − x∣ ≥ 5f(t)) ≥ 1

2
tG(x,10f(t)), t ≤ 1

k
,

for k ≫ 1 sufficiently large, where G(x, r) ∶= inf ∣z−x∣≤r ν(z,{∣y∣ > r}). Dividing both sides by t and

integrating over t ∈ (0,1) yields ∫
1

0 G(x,10f(t))dt < ∞, which proves (i).

2o Suppose that

∫
1

0
G(x,Cf(t))dt < ∞



UPPER FUNCTIONS FOR LÉVY(-TYPE) PROCESSES 21

for some C > 0 and G(x, r) as in 1o, and assume that (A1’) holds for some R > 0. It follows from
Remark 6.2 that there is some constant γ > 0 such that

lim inf
r→0

inf
∣z−x∣≤R

ν(z,{∣y∣ > r})
sup

∣ξ∣≤1/r Re q(z, ξ) ≥ γ.

Thus,

inf
∣z−x∣≤Cf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) ≤ 1

γ
G(x,Cf(t))

for t > 0 small. Since the symbol q is bounded on compact sets, integration with respect to t gives

∫
1

0
inf

∣z−x∣≤Cf(t)
sup

∣ξ∣≤1/(Cf(t))

Re q(z, ξ)dt < ∞.

Because of the subadditivity of the mapping ξ ↦
√

Re q(z, ξ), we may replace 1/(Cf(t)) by c/f(t)
for any c > 0, compare the proof of Corollary 5.5. �

Proof of Proposition 2.9. Let f ∶ [0,1] → [0,∞) be such that

lim sup
t→0

t inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) = ∞, (45)

for all R ≥ 1 and some constant C = C(R) > 0.

1o Claim: the convergence in (45) holds for any C > 0. Indeed : Clearly, it suffices to show that

(45) holds with C replaced by C2n, n ∈ N. Because of the subadditivity of ξ ↦
√

Re q(z, ξ), we

have Re q(z,2ξ) ≤ 4 Re q(z, ξ) for all ξ, z ∈ Rd implying

sup
∣ξ∣≤r

Re q(z, ξ) ≥ 1

4
sup
∣ξ∣≤2r

Re q(z, ξ) ≥ . . . ≥ 1

4n
sup
∣ξ∣≤2nr

Re q(z, ξ)

for all r > 0. Using this estimate for r = 1/(2nCf(t)), we see that (45) holds with C replaced by
C2n.

2o The idea for this part of the proof is from [37]. For fixed R ≥ 1, pick (tk)k∈N ⊆ (0,1) with tk ↓ 0
and

lim
k→∞

tk inf
∣z−x∣≤Rf(tk)

sup
∣ξ∣≤1/(Rf(tk))

Re q(z, ξ) = ∞.

Then the maximal inequality (21) shows that

Px (sup
s≤tk

∣Xs − x∣ < Rf(tk))
k→∞ÐÐÐ→ 0,

and so, by Fatou’s lemma,

Px (lim sup
k→∞

{sup
s≤tk

∣Xs − x∣ ≥ Rf(tk)}) ≥ lim sup
k→∞

Px (sup
s≤tk

∣Xs − x∣ ≥ Rf(tk))

= 1 − lim inf
k→∞

Px (sup
s≤tk

∣Xs − x∣ < Rf(tk))

= 1.

Consequently, there is a measurable set Ω0 with Px(Ω0) = 1 such that sups≤tk ∣Xtk(ω)−x∣ ≥ Rf(tk)
infinitely often for every ω ∈ Ω0. In particular,

lim sup
k→∞

1

f(tk)
sup
s≤tk

∣Xs(ω) − x∣ ≥ R, ω ∈ Ω0.

3o Now assume additionally that f is non-decreasing. For ω ∈ Ω0, let sk = sk(ω) ∈ [0, tk] be such
that

∣Xsk(ω) − x∣ ≥
1

2
sup
s≤tk

∣Xs(ω) − x∣.

By the monotonicity, we have f(sk) ≤ f(tk), and so

lim sup
t→0

1

f(t) ∣Xt(ω) − x∣ ≥ lim sup
k→∞

1

f(sk)
∣Xsk(ω) − x∣ ≥

1

2
lim sup
k→∞

1

f(tk)
sup
s≤tk

∣Xs(ω) − x∣ ≥
R

2
.

As R ≥ 1 is arbitrary, this proves (i).
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4o It remains to prove (ii). To this end, we show that if f is regularly varying at zero, i.e.

∃β > 0 ∀λ > 0 ∶ lim
t→0

f(λt)
f(t) = λβ ,

then (45) for R = 1 implies (45) for all R ≥ 1. The desired lower bound for the growth of the sample
paths then follows from the first part of this proof. Let C > 0 be such that (45) holds with R = 1.
As we have seen in 1o, it follows that (45) holds with R = 1 for any C > 0. Since f is regularly
varying at zero, there is λ > 0 such that f(λt)/f(t) ≥ R for t > 0 small. Thus,

lim sup
t→0

t inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) ≥ lim sup
t→0

t inf
∣z−x∣≤f(λt)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ)

= 1

λ
lim sup
t→0

t inf
∣z−x∣≤f(t)

sup
∣ξ∣≤1/(Cf(t/λ))

Re q(z, ξ).

Using once more that f is regularly varying, we find that f(t/λ) ≥ 1
2

1
λβ
f(t) =∶ γf(t) for t > 0 small.

Hence,

lim sup
t→0

t inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) ≥ 1

λ
lim sup
t→0

t inf
∣z−x∣≤f(t)

sup
∣ξ∣≤1/(γCf(t))

Re q(z, ξ) = ∞. �

The key for the proof of our final main result, Theorem 2.10, is the following proposition.

7.1. Proposition. Let (Xt)t≥0 be a Lévy-type process with characteristics (b(x),0, ν(x, dy)) and
symbol q. Let f ∶ [0,1] → [0,∞) be a non-decreasing function. If

lim sup
n→∞

1

n2
sup

∣z−x∣≤3f(1/n)

sup
∣ξ∣≤c/f(1/n)

∣q(z, ξ)∣ < 1 (46)

and

∫
1

0
inf

∣z−x∣≤5f(t)
ν(z,{∣y∣ > 5f(t)})dt = ∞, (47)

for some c > 0 and x ∈ Rd, then

lim sup
t→0

1

f(t) ∣Xt − x∣ ≥ 1 Px-a.s.

7.2. Remark. (i) Replacing f by C ⋅ f for C > 0, we obtain immediately a sufficient condition for

lim sup
t→0

1

f(t) ∣Xt − x∣ ≥ C Px-a.s.

(ii) By the local boundedness of q, there is a finite constant c = c(R,x) such that ∣q(z, ξ)∣ ≤ c(1+∣ξ∣2)
for all ξ ∈ Rd and ∣z − x∣ ≤ R, cf. (18). Thus, lim inft↓0 f(t)/t = ∞ is a sufficient condition for (46);
let us mention that this growth condition on f also appears in the study of upper functions for
sample paths of Lévy processes, cf. [36]. More generally, if sup

∣z−x∣≤R ∣q(z, ξ)∣ ≤ c(1+ ∣ξ∣α) for some

α ∈ (0,2], then (46) holds for any function f satisfying lim inft↓0 f(t)/t2/α = ∞.

Proof of Proposition 7.1. Let x ∈ Rd and c > 0 be such that (46) and (47) hold, and set

G(x, r) ∶= inf
∣z−x∣≤r

ν(z,{∣y∣ > r}).

Using the subadditivity of ξ ↦
√

∣q(z, ξ)∣, we see that (46) actually holds for any c > 0.

1o By the monotonicity of f and r ↦ G(x, r), it follows from (47) that
∞

∑
n=2

( 1

n − 1
− 1

n
)G(x,5f(1/n)) ≥ ∫

1

0
G(x,5f(t))dt = ∞,

and so

∑
n∈N

1

n2
G(x,5f(1/n)) = ∞. (48)

Moreover, we note that (47) implies that f(t) → 0 as t ↓ 0.

2o Denote by (Ft)t≥0 the canonical filtration of (Xt)t≥0. We claim that

∑
n∈N

Ex(1An ∣ F1/(n+1)) = ∞ Px-a.s. (49)
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for

An ∶= { 1

f(1/n) sup
1
n+1≤r<

1
n

∣Xr − x∣ ≥ 1}.

To prove (49) we fix n ∈N and note that, by the Markov property,

Ex(1An ∣ F1/(n+1)) = u(X1/(n+1))
where

u(z) ∶= Pz( sup
r≤ 1

n(n+1)

∣Xr − x∣ ≥ f(1/n)), z ∈ Rd.

We need a lower bound for the mapping u. If z ∉ B(x, f(1/n), then ∣X0−x∣ ≥ f(1/n) Pz-a.s. which
gives u(z) = 1. Next we consider the case z ∈ B(x, f(1/n)). By the triangle inequality,

u(z) ≥ Pz( sup
r≤ 1

n(n+1)

∣Xr − z∣ ≥ 2f(1/n)) =∶ U(z).

The maximal inequality (20) shows that

U(z) ≤ c′ 1

n(n + 1) sup
∣z−y∣≤2f(1/n)

sup
∣ξ∣≤1/(2f(1/n))

∣q(y, ξ)∣

for some absolute constant c′ > 0. Since ∣z − x∣ ≤ f(1/n) and
√

∣q(y, ⋅)∣ is subadditive, we get

U(z) ≤ 4c′
1

n(n + 1) sup
∣y−x∣≤3f(1/n)

sup
∣ξ∣≤1/f(1/n)

∣q(y, ξ)∣,

see the proof of Corollary 5.5. Thus, by (46), U(z) ≤ 1− ε for n≫ 1 and some ε ∈ (0,1). Applying
Corollary 4.5 and using ∣z − x∣ ≤ f(1/n), we find that

u(z) ≥ U(z) ≥ ε 1

n(n + 1)G(z,4f(1/n)) ≥ ε 1

n(n + 1)G(x,5f(1/n)), z ∈ B(x, f(1/n)),

for n≫ 1. In summary,

Ex(1An ∣ F1/(n+1)) ≥ min{ε 1

n(n + 1)G(x,5f(1/n)),1}

for n≫ 1. Thus, by (48), ∑n∈NEx(1An ∣ F1/(n+1)) = ∞ Px-a.s.

3o The almost sure divergence of the series implies by the conditional Borel-Cantelli lemma for
backward filtrations, cf. Proposition A.1, that

Px (lim sup
n→∞

An) = 1,

and so there is a measurable set Ω̃ with Px(Ω̃) = 1 such that

∀ω ∈ Ω̃∀n≫ 1∃tn = tn(ω) ∈ [ 1

n + 1
,

1

n
) ∶ 1

f(1/n) ∣Xtn(ω) − x∣ ≥ 1.

Using the monotonicity of f , we conclude that

lim sup
t→0

1

f(t) ∣Xt(ω) − x∣ ≥ lim sup
n→∞

1

f(tn)
∣Xtn(ω) − x∣ ≥ 1, ω ∈ Ω̃. �

Proof of Theorem 2.10. First we prove (i). Let f ≥ 0 be non-decreasing and c > 0 such that

∫
1

0 inf ∣z−x∣≤cf(t) ν(z;{∣y∣ > cf(t)})dt = ∞. We consider separately the cases that (C1) resp. (C2)
holds.

1o Assume that (C1) holds. If for every R ≥ 1 the limit

lim sup
t→0

t inf
∣z−x∣≤Rf(t)

sup
∣ξ∣≤1/(Cf(t))

Re q(z, ξ) (50)

is infinite for some constant C = C(R), then Proposition 2.9 yields

lim sup
t→0

1

f(t) ∣Xt − x∣ = ∞ Px-a.s.



UPPER FUNCTIONS FOR LÉVY(-TYPE) PROCESSES 24

On the other hand, if (50) is finite for some R ≥ 1 and all C > 0, then

lim sup
t→0

t2 sup
∣z−x∣≤Cf(t)

sup
∣ξ∣≤1/f(t)

Re q(z, ξ) ≤ c′ lim sup
t→0

t
sup

∣z−x∣≤Cf(t) sup
∣ξ∣≤1/f(t) ∣q(z, ξ)∣

inf ∣z−x∣≤Rf(t) sup
∣ξ∣≤1/f(t) ∣q(z, ξ)∣

for some constant c′ > 0, and the latter limit is zero by (C1). Hence, (46) holds. Applying
Proposition 7.1 proves the assertion.

2o If (C2) holds, then the assertion is immediate from Proposition 7.1 and Remark 7.2(ii).
It remains to show (ii). To this end, assume additionally that (A1’) holds for some R > 0 and

let f be non-decreasing with ∫
1

0 inf ∣z−x∣≤cf(t) sup
∣ξ∣≤1/f(t) ∣q(z, ξ)∣dt = ∞ for some c > 0. Then

Proposition 2.8(ii) yields ∫
1

0 inf ∣z−x∣≤cf(t) ν(z,{∣y∣ > cf(t)})dt = ∞, and applying (i) finishes the
proof. �

Appendix A.

In the proof of Proposition 7.1 we used the following conditional Borel-Cantelli lemma for backward
filtrations.

A.1. Proposition. Let (Fn)n∈N be a sequence of decreasing σ-algebras. Let (Xn)n∈N be a sequence
of non-negative random variables such that Xn is Fn-measurable for each n ∈N. If Y ∶= supn∈NXn

is integrable, then there is a P-null set N such that

{∑
n∈N

E(Xn ∣ Fn+1) = ∞} ⊆ {∑
n∈N

Xn = ∞} ∪N.

The idea for our proof is from Chen [9].

Proof. Set Mn ∶= E(Xn ∣ Fn+1) and Rn ∶= ∑∞i=nXi. Since Rn+1 is Fn+1-measurable, we find using
the tower property

E( 1

(1 +R1)2

k

∑
n=1

Mn) = E(1{R1<∞}

1

(1 +R1)2

k

∑
n=1

Mn) ≤ E(
k

∑
n=1

Mn

(1 +Rn+1)2
1{Rn+1<∞})

= E(
k

∑
n=1

Xn

(1 +Rn+1)2
1{Rn+1<∞})

for all k ∈N. Since

Xn

(1 +Rn+1)2
= (1 +Rn) − (1 +Rn+1)

(1 +Rn)(1 +Rn+1)
1 +Rn

1 +Rn+1
≤ ( 1

1 +Rn+1
− 1

1 +Rn
) (1 + Y )

on {Rn+1 < ∞}, we have

k

∑
n=1

Xn

(1 +Rn+1)2
≤ (1 + Y ) ( 1

1 +Rk
− 1

1 +R1
) ≤ 1 + Y,

and so

E( 1

(1 +R1)2

k

∑
n=1

Mn) ≤ E(1 + Y ) < ∞.

Letting k →∞ using monotone convergence, we see that 1
(1+R1)

2 ∑n∈NMn < ∞ almost surely, which

proves the assertion. �

The following estimate was needed in the proof of Proposition 5.2.

A.2. Lemma.

∑
n∈N

1

n2
t1/n log

1

t
≤ 2 for all t ∈ (0,1).

Proof. Fix t ∈ (0,1). By the fundamental theorem of calculus, we have for every n ∈N

0 ≤ t1/(n+1) − t1/n = −∫
1/n

1/(n+1)
tr log t dr ≥ log(t−1)t1/n ( 1

n
− 1

n + 1
) = log(t−1)t1/n 1

n(n + 1) .

Thus,

∑
n∈N

1

n(n + 1) t
1/n log(t−1) ≤ ∑

n∈N

(t1/(n+1) − t1/n) = lim
N→∞

t1/N − t = 1 − t.
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As (n + 1)/n ≤ 2 for all n ∈N, this proves the assertion. �

Acknowledgment : I’m very grateful to René Schilling for helpful discussions and comments.

References

[1] Bass, R. F.: Uniqueness in law for pure jump Markov processes. Probab. Theory Rel. Fields 79 (1988), 271–287.

[2] Bass, R.F., Tang, H.: The martingale problem for a class of stable-like processes. Stoch. Proc. Appl. 119 (2009),

1144–1167.
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dants. (Russian, French summary) Izvestia Akad. Nauk SSSR Ser. Math. 3 (1939), 487–508.
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