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Abstract

We establish a moderate deviation principle for processes with independent increments under

certain growth conditions for the characteristics of the process. Using this moderate deviation

principle, we give a new proof for Strassen’s functional law of the iterated logarithm. In

particular, we show that any square-integrable Lévy process satisfies Strassen’s law.
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1 Introduction

Let (Xt)t≥0 be a Lévy process such that EXt = 0, and assume that the weak Cramér condition

holds, i. e. Eeλ∣X1 ∣ < ∞ for some λ > 0. It is known (see e. g. Mogulskii [14] or Feng–Kurtz [5])

that the family of scaled Lévy process (X(t ⋅ )/S(t))t>0 obeys a moderate deviation principle

in the space of càdlàg functions (D[0,1], ∥ ⋅ ∥∞) with good rate function

I(f) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

2 VarX1
∫

1

0
f ′(s)2 ds, f ∶ [0,1] → R absolutely continuous, f(0) = 0,

∞, otherwise,

and speed S(t)2/t if the scaling function S satisfies

S(t)
√
t

t→∞
ÐÐ→∞ and

S(t)

t

t→∞
ÐÐ→ 0.

The assumptions on the moments of X1 have been substantially weakened by Gao [8]. In this

paper, we consider the corresponding moderate deviation principle for additive processes, see

Section 2. Large deviation results for additive processes have been obtained by Puhalskii [15]

and Liptser–Puhalskii [12] for the scaling S(t) = t under rather abstract conditions on the char-

acteristics and the stochastic exponential, respectively. We state sufficient conditions in terms

of the growth of the characteristics and give a direct proof of the moderate deviation principle

using the well-known Gärtner–Ellis theorem. In particular, we obtain two representations for

the good rate function I.

As an application, we study Strassen’s law for additive processes. Strassen [18] proved that

for a (one-dimensional) Brownian motion (Bt)t≥0 the set

⎧⎪⎪
⎨
⎪⎪⎩

f ∈ C[0,1]; ∃t > 0 ∶ f(s) =
B(ts)

√
2t log log(t ∨ ee)

for all s ∈ [0,1]

⎫⎪⎪
⎬
⎪⎪⎭

is almost surely relatively compact in (C[0,1], ∥ ⋅ ∥∞) and its limit points are given by

{f ∶ [0,1] → R; f(0) = 0, f absolutely continuous,∫
1

0
f ′(s)2 ds ≤ 1} ;
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this result is called Strassen’s law (or functional law of the iterated logarithm). There have

been several generalizations since then; Wichura [20] and Wang [19] studied Strassen’s law for

additive processes and Maller [13] obtained a small-time version of Strassen’s law for Lévy pro-

cesses. More recently, Gao [9] proved a Strassen law for a subclass of locally square-integrable

martingales. Strassen’s law has a variety of applications, e. g. functional limit theorems such

as the law of the iterated logarithm; see e. g. Strassen [18], Wichura [20] and Buchmann et al.

[2].

We show that, whenever a certain moderate deviation principle holds for an additive pro-

cesses, the process satisfies a functional law of the iterated logarithm. Combining this result

with the moderate deviation principle proved in the first part of this paper, this covers the

corresponding results in Wang [19], cf. Corollary 3.3, and Wichura [20]. As a special case, we

find that any square-integrable Lévy process satisfies Strassen’s law. Let us emphasize that we

do not intend to formulate the results in the most general form but to present an alternative

proof for Strassen’s law. The results discussed here are generalizations of these obtained by

Kühn [11].

The paper is organized as follows. In Section 2, we introduce basic definitions and notation.

The main results are stated in Section 3 and proved in Section 4. Finally, in Section 5, we

sketch some generalizations.

2 Basic definitions and notation

Let (Xt)t≥0 be a (real-valued) stochastic process on a complete probability space (Ω,A,P).

We call (Xt)t≥0 an additive process if (Xt)t≥0 has càdlàg sample paths, independent increments

and X0 = 0. If, additionally, (Xt)t≥0 has stationary increments, i. e. Xt −Xs ∼Xt−s −X0, s ≤ t,

then (Xt)t≥0 is a Lévy process. Any mean-zero square-integrable additive process (Xt)t≥0

admits a Lévy–Itô decomposition of the form

X(t) =Xc
(t) + ∫

t

0
∫ z (N(dz, dr) − ν(dz, dr)), t ≥ 0,

where Xc denotes the continuous martingale part, N the jump measure of (Xt)t≥0 and ν its

compensator. Moreover, there exist increasing deterministic functions A,C and a family of

σ-finite measures Kr on (R,B(R)) such that Ct ≥ 0, ∫ (z
2
∧ 1)Kr(dz) ≤ 1, and

⟨Xc
⟩t = Ct, ν(dz, dr) =Kr(dz)dAr. (1)

If (Xt)t≥0 is a Lévy process, then A and C are linear, and Kr does not depend on r. We

denote by

[ν]s,t ∶= inf {% > 0; ν(B(0, %)c × [s, t]) = 0} , (inf ∅ ∶= ∞)

the maximal jump height during the time interval [s, t]. The process (Xt)t≥0 has no fixed jump

discontinuities if ν(R× {t}) = 0 for any t > 0. Our standard reference for additive processes is

the monograph by Jacod–Shiryaev [10], we use Sato [16] for Lévy processes.

For simplicity, we assume that the mapping (Ω,A) ∋ ω ↦ X( ⋅ , ω) ∈ (D[0,1], ∥ ⋅ ∥∞) is

measurable. Here D[0,1] denotes the space of càdlàg (i. e. right-continuous with left-hand

limits) functions f ∶ [0,1] → R endowed with the uniform norm ∥ ⋅ ∥∞. By AC[0,1] we denote

the set of absolutely continuous functions f ∶ [0,1] → R.

Recall that a family (Xt
)t>0 of stochastic processes with values in a metric space (M,d)

satisfies a large deviation principle in (M,d) with good rate function I ∶M → [0,∞] and speed

(at)t>0 ⊆ (0,∞) if I has compact sublevel sets Φ(r) ∶= {f ∈ M ; I(f) ≤ r}, at → ∞ as t → ∞,

and

− inf
f∈U

I(f) ≤ lim inf
t→∞

1

at
logP(Xt

∈ U), lim sup
t→∞

1

at
logP(Xt

∈ F ) ≤ − inf
f∈F

I(f)
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holds for any open set U ⊆ M and closed set F ⊆ M , respectively. Let (Xt)t≥0 be a square-

integrable stochastic process with càdlàg sample paths and S ∶ (0,∞) → (0,∞) such that

S(t)/VarXt → 0 as t → ∞. We say that (X(t ⋅ )/S(t))t>0 satisfies a moderate deviation

principle with good rate function I and speed (at)t>0 if the family satisfies a large deviation

principle in (D[0,1], ∥ ⋅ ∥∞) with good rate function I and speed (at)t>0. For a detailed

discussion of large deviation theory, we refer the reader to the monographs by Dembo–Zeitouni

[4] and Feng–Kurtz [5].

3 Main results

We are now in the position to state the main results.

3.1 Theorem Let (Xt)t≥0 be an additive process without fixed jump discontinuities such that

EXt = 0 and

lim
t→∞

VarXt
tγ

=∶ σ2
> 0 (2)

exists for some γ > 0. Let S ∶ (0,∞) → (0,∞) be such that

S(t)

tγ/2
t→∞
ÐÐ→∞,

S(t)

tγ
t→∞
ÐÐ→ 0, (3)

and
S(t)

S(⌊t⌋)

t→∞
ÐÐ→ 1. (4)

Suppose that one of the following conditions holds.

(C1) There exists a measure G on (R,B(R)) such that ∫∣z∣>1 e
2λ0 ∣z∣G(dz) < ∞ for some λ0 > 0

and

Kt(B(0, r)c) ≤ G(B(0, r)c) for all t ≥ 0, r ≥ 1.

Furthermore,

lim
t→∞

∣At∣
S(t)

t2γ
= 0. (5)

(C2)
lim
t→∞

[ν]0,t
S(t)

tγ
= 0 (6)

(In this case, we implicitly set λ0 ∶= ∞.)

Then (X(t ⋅ )/S(t))t>0 satisfies a moderate deviation principle in (D[0,1], ∥ ⋅ ∥∞) with speed

S(t)2/tγ and good rate function

I(f) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1

2σ2γ ∫
1

0

f ′(s)2

sγ−1
ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise.

(7)

In particular, if (Xt)t≥0 is a mean-zero Lévy process such that Eeλ∣X1 ∣ < ∞ for some λ > 0,

then condition (C1) holds with G = ν where ν is the Lévy measure of (Xt)t≥0, cf. [16, Theorem

25.17].

3.2 Theorem (Strassen’s law) Let (Xt)t≥0 be an additive process and S(t) =
√

2tγ log log(t ∨ ee)

for some γ > 0. If (X(t ⋅ )/S(t))t≥0 satisfies a moderate deviation principle in (D[0,1], ∥ ⋅ ∥∞)

with speed S(t)2/tγ and good rate function

I(f) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1

2σ2γ ∫
1

0

f ′(s)2

sγ−1
ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise,

(8)

for some σ > 0, then
⎧⎪⎪
⎨
⎪⎪⎩

X(t ⋅ )
√

2tγ log log(t ∨ ee)
; t > 0

⎫⎪⎪
⎬
⎪⎪⎭
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is a. s. relatively compact in (D[0,1], ∥ ⋅ ∥∞) as t → ∞, and the set of limit points L(ω) (as

t → ∞) is for almost all ω ∈ Ω given by the sublevel set Φ( 1
2
) = {f ∈ D[0,1]; I(f) ≤ 1

2
} of the

good rate function I.

By a standard argument we can replace tγ by a regulary varying function h(t) of index

γ > 0, cf. Section 5 at the end of the paper.

Note that the law of the iterated logarithm is a simple consequence of Strassen’s law:

lim sup
t→∞

Xt
√

2tγ log log t
= σ a. s.

Moreover, if (Xt)t≥0 is an additive process such that VarXt/t
γ t→∞
ÐÐ→ σ2

> 0 and one of the

growth conditions (C2) or (C1) holds, Theorem 3.1 shows that Theorem 3.2 is applicable.

3.3 Corollary Let (Xt)t≥0 be an additive process such that VarXt/t
t→∞
ÐÐ→ σ2

> 0. Suppose

that there exists a finite measure G on (R,B(R)) such that

Kt(B(0, r)c) ≤ G(B(0, r)c) for all r ≥ 1, t ≥ 0 and ∫
R
z2G(dz) < ∞.

Then (Xt)t≥0 satisfies Strassen’s law (with γ = 1). In particular, Strassen’s law holds for any

square-integrable Lévy process (Xt)t≥0.

We close this section with two examples which we state for the more general case of regulary

varying functions, see Section 5 and the remark before Corollary 3.3.

3.4 Example Let (Lt)t≥0 be a pure-jump Lévy process,

Lt = ∫
t

0
∫ z (N(dz, ds) − νL(dz)ds),

such that VarL1 = σ
2
< ∞. For a non-decreasing function α ∶ [0,∞) → [0,∞), α(t)

t→∞
ÐÐ→ ∞,

we define a truncated Lévy process (Xt)t≥0 by

Xt ∶= ∫
t

0
∫ z1{∣z∣≤α(s)} (N(dz, ds) − νL(dz)ds).

From

0 ≤ VarLt −VarXt = ∫
t

0
∫ z21{∣z∣>α(s)} νL(dz)ds

it follows easily that

lim
t→∞

VarXt
t

= lim
t→∞

VarLt
t

= σ2.

By Corollary 3.3, (Xt)t≥0 satisfies Strassen’s law (with γ = 1). Let us remark that truncated

processes of this form are used in [19] to prove Corollary 3.3.

3.5 Example Let (Lt)t≥0 be a Lévy process with bounded jumps such that EL2
1 = σ2

L < ∞

and EL1 = 0. Denote by ψ its characteristic exponent and νL its Lévy measure. For a regulary

varying function α ∶ [0,∞) → [0,∞) of index γ > 0, the additive process Xt ∶= ∫
t

0 α(s)dLs

satisfies a moderate deviation principle with speed S(t)2/(tα(t)2) and good rate function

I(f) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2γ + 1

2γσ2
L
∫

1

0

f ′(s)2

s2α(s)2
ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise,

for any scaling function S ∶ (0,∞) → (0,∞) such that (4) as well as the growth conditions

S(t)/
√
tα(t)

t→∞
ÐÐ→∞ and S(t)/(tα(t))

t→∞
ÐÐ→ 0 hold. Moreover, the set

⎧⎪⎪
⎨
⎪⎪⎩

X(t ⋅ )
√

2tα(t)2 log log(t ∨ ee)
; t > 0

⎫⎪⎪
⎬
⎪⎪⎭
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is a. s. relatively compact in (D[0,1], ∥ ⋅ ∥∞) as t→∞, and the set of limit points (as t→∞) is

for almost all ω ∈ Ω given by the sublevel set Φ( 1
2
). Indeed: Using that (Lt)t≥0 is a martingale

with independent increments, it is not difficult to see that

VarXt = σ
2
L ∫

t

0
α(s)2 ds Ô⇒

VarXt
tα(t)2

t→∞
ÐÐ→

σ2
L

2γ + 1
.

The approximation

Xt = ∫
t

0
α(s)dLs ≈

n

∑
j=1

α(sj)(Lsj −Lsj−1)

shows that the characteristic function of Xt equals exp (−∫
t

0 ψ(α(s)ξ)ds). In particular,

ν(dz, ds)
(1)
= Ks(dz)dAs = νL (

1

α(s)
dz) ds.

Note that due to the boundedness of the jumps of (Lt)t≥0, condition (C2) is satisfied. There-

fore, the claim follows from Theorem 3.1 and Theorem 3.2.

4 Proofs

We start with the proof of the moderate deviation principle, Theorem 3.1, and split the proof

into several steps:

(i). The sequence of discretizations (Zn/S(n))n∈N defined by

Zn(s,ω)

S(n)
∶=

1

S(n)
X(⌊ns⌋ , ω) =

1

S(n)

⎛

⎝

n−1

∑
j=0

X(j, ω)1[j/n,(j+1)/n)(s) +X(n,ω)1{1}(s)
⎞

⎠

is exponentially tight in (D[0,1], ∥ ⋅ ∥∞), cf. Lemma 4.2.

(ii). (Zn/S(n))n∈N satisfies a moderate deviation principle in (D[0,1], ∥ ⋅ ∥∞) with good rate

function J ,

J(f) ∶= sup
α∈BV[0,1] ∩D[0,1]

(∫

1

0
f dα −

γσ2

2 ∫

1

0
sγ−1(α(1) − α(s))2 ds) , (9)

and speed an = S(n)
2
/nγ , cf. Theorem 4.3; as usual, BV[0,1] denotes the set of functions

α ∶ [0,1] → R of bounded variation.

(iii). (Z⌊t⌋/S(⌊t⌋))t>0 and (X(t ⋅ )/S(t))t>0 are exponentially equivalent, cf. Lemma 4.4.

(iv). The good rate function J equals I defined in (7), cf. Theorem 4.5.

We essentially follow the lines of de Acosta [3]. For the readers’ convenience, we include

the proofs of (i)-(iv). The next lemma provides an estimate for the exponential moments of

Xt −Xs.

4.1 Lemma Let (Xt)t≥0 be as in Theorem 3.1. Then

Eeλ(Xt−Xs) ≤ exp(
1

2
λ2 Var(Xt −Xs) + ∣λ∣3Es,t) (10)

for any ∣λ∣ ≤ λ0 and s ≤ t where

Es,t ∶= Es,t(λ) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
6
[ν]s,tVar(Xt −Xs)e

∣λ∣[ν]s,t , if (C2) holds,

1
6
∣At −As∣ ⋅ (e

λ0 + ∫∣z∣>1 e
λ0 ∣z∣∣z∣3G(dz)) , if (C1) holds.

In particular,

lim
t→∞

S(t)

t2γ
E0,t (r

S(t)

tγ
) = 0 for all r ≥ 0. (11)
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Proof. It follows from the conditions (C2) or (C1), respectively, that Eeλ(Xt−Xs) < ∞ for any

s ≤ t, ∣λ∣ ≤ λ0, and that

Eeλ(Xt−Xs) = exp(
1

2
(Ct −Cs)λ

2
+ ∫

t

s
∫ (eλz − 1 − λz) ν(dz, dr)) ,

cf. Fujiwara [7]. Since

Var(Xt −Xs) = (Ct −Cs) + ∫
t

s
∫ z2 ν(dz, dr)

Taylor’s formula yields

Eeλ(Xt−Xs) ≤ exp(
λ2

2
Var(Xt −Xs) +

∣λ∣3

6 ∫

t

s
∫ ∣z∣3eλξ ν(dz, dr))

for some intermediate value ξ = ξ(z) ∈ (0, z). From the definition of [ν]s,t we get

∫

t

s
∫ ∣z∣3eλξ ν(dz, dr) ≤ [ν]s,t ⋅ e

∣λ∣[ν]s,t
∫

t

s
∫ z2 ν(dz, dr) ≤ [ν]s,tVar(Xt −Xs)e

∣λ∣[ν]s,t .

This proves (10) if (C2) holds. If (C1) is satisfied, the claim follows from the estimate

∫

t

s
∫ ∣z∣3eλξ ν(dz, dr) ≤ ∫

t

s
∫ ∣z∣3e∣λ∣∣z∣Kr(dz)dAr

≤ (eλ0 + ∫
∣z∣>1

∣z∣3eλ0 ∣z∣G(dz)) ∣At −As∣.

(11) is a direct consequence of the definition of E0,t and the assumptions in (C2) and (C1),

respectively.

In order to show that the approximations (Zn)n∈N satisfy a moderate deviation principle,

we need the following lemma.

4.2 Lemma For each n ∈N, Zn/S(n) is tight in (D[0,1], ∥ ⋅ ∥∞). Morover, (Zn/S(n))n∈N is

exponentially tight, i. e. for any R ≥ 0 there exists a compact set K ⊆D[0,1] such that

lim sup
n→∞

nγ

S(n)2
logP(

Zn
S(n)

∉K) ≤ −R.

Proof. Since the mapping

(R
n, ∥ ⋅ ∥) ∋ x↦ (Tnx)(t) ∶=

n−1

∑
j=1

xj1[j/n,(j+1)/n)(t) + xn1{1}(t) ∈ (D[0,1], ∥ ⋅ ∥∞)

is continuous, it follows that Tn(K) is compact for any compact set K ⊆ Rn. For K ⊆ R

compact and Kn
=K × . . . ×K ⊆ Rn, we have

P(
Zn
S(n)

∉ Tn(K
n
)) ≤

n

∑
j=1

P(
Xj
S(n)

∉K) .

Since Xj/S(n) is tight for j = 1, . . . , n, we conclude that Zn/S(n) is tight in (D[0,1], ∥ ⋅ ∥∞).

It remains to prove exponential tightness. To this end, we show that the assumptions of [5,

Lemma 3.3] are satisfied. Fix r > 0 and ε > 0. For K ⊆ R and n ≥m, we have

P(d(
Zn
S(n)

, Tm(Km
)) > ε)

≤ P(
Zn
S(n)

∉ Tn(K
n
)) +P(

Zn
S(n)

∈ Tn(K
n
), d(

Zn
S(n)

, Tm(Km
)) > ε) =∶ I1 + I2 (12)

with d(f,A) ∶= infg∈A ∥f − g∥∞, A ⊆ D[0,1]. We choose K ∶= [−r, r] and estimate the terms

separately. Applying Etemadi’s inequality, Markov’s inequality and Lemma 4.1 yields

I1 = P(max
1≤j≤n

∣
Xj
S(n)

∣ > r) ≤ 3 max
1≤j≤n

P(∣Xj ∣ >
S(n)r

3
)

≤ 3 exp(−
S(n)λr

3
) max

1≤j≤n
(EeλXj +Ee−λXj)

≤ 6 exp(−
S(n)λr

3
) exp(

λ2

2
VarXn + λ

3E0,n(λ))

6



for any 0 ≤ λ ≤ λ0. For λ ∶= S(n)/nγ , we have λ ≤ λ0 for n sufficiently large, and we obtain

I1 ≤ 6 exp(−
S(n)2

nγ
⋅
r − 3σ2

3
)

since

lim
n→∞

(
1

2

VarXn
nγ

+
S(n)

n2γ
E0,n (

S(n)

nγ
)) =

σ2

2
,

cf. (2) and (11). In order to estimate I2 we observe that for fm ∶= f(⌊m ⋅ ⌋ /m) it holds that

d(f, Tm(Km
)) ≤ ∥f − fm∥∞ for all f ∈ Tn(K

n
). (13)

In abuse of notation, we write x + y ∧ z ∶= (x + y) ∧ z. Then,

∥f − fm∥∞ = max
0≤i≤m−1

sup
t∈[i/m,(i+1)/m)

∣f (
⌊nt⌋

n
) − f (

⌊mt⌋

m
)∣

≤ max
0≤i≤m−1

max
1≤j≤⌊n/m⌋+1

RRRRRRRRRRR

f
⎛

⎝

⌊n i
m
⌋

n
+
j

n
∧ 1

⎞

⎠
− f

⎛

⎝

⌊n i
m
⌋

n

⎞

⎠

RRRRRRRRRRR

. (14)

For the last line we used that

f
⎛

⎝

⌊n i
m
⌋

n

⎞

⎠
= f (

i

m
) = f (

⌊mt⌋

m
) for all t ∈ [

i

m
,
i + 1

m
)

as f ∈ Tn(K
n
). Combining (13) and (14), we get

I2 ≤ P

⎧⎪⎪
⎨
⎪⎪⎩

max
0≤i≤m−1

max
1≤j≤⌊n/m⌋+1

RRRRRRRRRRR

Zn
⎛

⎝

⌊n i
m
⌋

n
+
j

n
∧ 1

⎞

⎠
−Zn

⎛

⎝

⌊n i
m
⌋

n

⎞

⎠

RRRRRRRRRRR

> εS(n)

⎫⎪⎪
⎬
⎪⎪⎭

≤ 3
m−1

∑
i=0

max
1≤j≤⌊n/m⌋+1

P{∣X (⌊n
i

m
⌋ + j ∧ n) −X (⌊n

i

m
⌋)∣ >

εS(n)

3
} .

By Lemma 4.1,

I2 ≤ 6 exp(−
S(n)λε

3
)
m−1

∑
i=0

exp(
λ2

2
[VarX (⌊

ni

m
⌋ + ⌊

n

m
⌋ + 1) −VarX (⌊

ni

m
⌋)] + λ3E0,n(λ))

for any 0 ≤ λ ≤ λ0. Writing

VarXs −VarXr = s
γ
([

VarXs
sγ

− σ2
] − [

VarXr
rγ

− σ2
]) +

VarXr
rγ

(sγ − rγ)

it is not difficult to see that

1

nγ
[VarX (⌊

ni

m
⌋ + ⌊

n

m
⌋ + 1) −VarX (⌊

ni

m
⌋)] ≤ c sup

k≥⌊ n
m

⌋

∣
VarXk
kγ

− σ2
∣ + c(

1

m
+

1

n
) =∶ δ(n)

for some constant c = c(γ). Note that the first term on the right-hand side converges to 0 as

n→∞. For λ ∶= rS(n)/nγ , r ≥ 1, we find

I2 ≤ 6m exp [
S(n)2

nγ
(−
rε

3
+
r2

2
δ(n) + r3

S(n)

n2γ
E0,n (r

S(n)

nγ
))] . (15)

Consequently, by (11), (12) and (15),

lim sup
n→∞

nγ

S(n)2
logP(d(

Zn
S(n)

, Tm(Km
)) > ε) ≤ max{σ2

−
r

3
,−
rε

3
+
cr2

2m
}

r,m→∞
ÐÐÐÐ→ −∞.

By [5, Lemma 3.3], (Zn/S(n))n∈N is exponentially tight in (D[0,1], ∥ ⋅ ∥∞).

Now we are ready to prove that (Zn/S(n))n∈N satisfies a moderate deviation principle.

4.3 Theorem (Zn/S(n))n∈N satisfies a moderate deviation principle in (D[0,1], ∥ ⋅ ∥∞) with

speed S(n)2/nγ and good rate function J defined in (9).

7



Proof. For α ∈ BV[0,1]∩D[0,1] we set

Λn(α) ∶=
nγ

S(n)2
logE exp(

S(n)

nγ ∫

1

0
Zn(s)dα(s)) .

By definition,

Zn(s) =
n−1

∑
j=0

Xj1[j/n,(j+1)/n)(s) +Xn1{1}(s) =
n

∑
j=1

(Xj −Xj−1)1[j/n,1](s).

It follows from the independence of the increments that

Λn(α) =
nγ

S(n)2
logE exp

⎛

⎝

S(n)

nγ

n

∑
j=1

(α(1) − α(j/n)) (Xj −Xj−1)
⎞

⎠

=
nγ

S(n)2

n

∑
j=1

logE exp(
S(n)

nγ
(α(1) − α(j/n)) (Xj −Xj−1))

=
1

2nγ

n

∑
j=1

(Cj −Cj−1)(α(1) − α(j/n))
2

+
nγ

S(n)2

n

∑
j=1
∫

j

j−1
∫ [ exp(

S(n)

nγ
(α(1) − α(j/n))z) − 1 −

S(n)

nγ
(α(1) − α(j/n))z] ν(dz, dr).

Applying Taylor’s formula and using that VarXj = Cj + ∫
j

0 ∫ z
2 ν(dz, dr), we get

Λn(α) =
1

2nγ

n

∑
j=1

(VarXj −VarXj−1)(α(1) − α(j/n))
2

+
1

6

S(n)

n2γ

n

∑
j=1

(α(1) − α(j/n))3 ∫
j

j−1
∫ exp(

S(n)

nγ
(α(1) − α(j/n))ξj) z

3 ν(dz, dr)

=∶ I1(n) + I2(n)

for some intermediate value ξj between 0 and z. It follows from Abel’s summation formula

and (2) that

I1(n) =
1

2nγ

n

∑
j=1

VarXj ((α(1) − α(j/n))
2
− (α(1) − α(j + 1/n))2)

= −
1

2

n

∑
j=1

VarXj
jγ

(
j

n
)
γ

((α(1) − α((j + 1)/n))2 − (α(1) − α(j/n))2)

n→∞
ÐÐÐ→ −

σ2

2 ∫

1

0
sγd ((α(1) − α(s))2) .

Note that this integral is well-defined as α ∈ BV[0,1] (hence α2
∈ BV[0,1]). Applying inte-

gration by parts, we obtain

lim
n→∞

I1(n) =
γσ2

2 ∫

1

0
sγ−1(α(1) − α(s))2 ds.

On the other hand, it is not difficult to see that I2(n)
n→∞
ÐÐÐ→ 0. Consequently,

Λ(α) ∶= lim
n→∞

Λn(α) =
γσ2

2 ∫

1

0
sγ−1(α(1) − α(s))2 ds, α ∈ BV[0,1]∩D[0,1].

Obviously, Λ is Gâteaux differentiable (with Gâteaux derivative in C[0,1]). Therefore, the

claim follows from the Gärtner–Ellis theorem, see e. g. [3, Theorem 2.1,Theorem 2.4].

In order to carry over the moderate deviation principle from (Zn/S(n))n∈N to (X(t ⋅ )/S(t))t>0,

we need the following auxiliary result.

4.4 Lemma (Z⌊t⌋/S(⌊t⌋))t>0 and (X(t ⋅ )/S(t))t>0 are exponentially equivalent, i. e.

lim sup
t→∞

tγ

S(t)2
logP(∥

Z⌊t⌋( ⋅ )
S(⌊t⌋)

−
X(t ⋅ )
S(t)

∥

∞

> ε) = −∞ for all ε > 0.
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Proof. Let ε > 0 and α > 0. Obviously,

∥
Z⌊t⌋

S(⌊t⌋)
−
X(t ⋅ )
S(t)

∥

∞

≤ ∣
S(t)

S(⌊t⌋)
− 1∣ ⋅

∥Z⌊t⌋∥∞

S(t)
+ ∥

Z⌊t⌋

S(t)
−
X(t ⋅ )
S(t)

∥

∞

=∶ At +Bt. (16)

We estimate P(At > ε) and P(Bt > ε) separately. As in the proof of Lemma 4.2 we find

P(At > ε) ≤ P( max
0≤k≤⌊t⌋

∣Xk ∣

S(t)
>

ε

δ(t)
) ≤ 6 exp [−

S(t)2

tγ
(

ε

3δ(t)
− σ2

)]

for t sufficiently large where δ(t) ∶= ∣
S(t)

S(⌊t⌋)
− 1∣ → 0 as t → ∞, cf. (4). In order to estimate Bt

we note that

sup
s∈[0,1]

∣Z⌊t⌋(s) −X(ts)∣ ≤ sup
u,v≤t
∣u−v∣≤2

∣Xu −Xv ∣ ≤ 3 max
j≤⌊α−1⌋+1

sup
0≤u≤αt
jαt+u≤t

∣Xjαt+u −Xjαt∣

for t ≥ t0(α) sufficiently large. Applying again Etemadi’s inequality yields

P(Bt > ε) ≤ 3

⌊α−1⌋+1

∑
j=0

sup
0≤u≤αt
jαt+u≤t

P(∣Xjαt+u −Xjαt∣ >
S(t)ε

9
) .

By Markov’s inequality and Lemma 4.1,

P(Bt > ε) ≤ 6 exp(−
S(t)λε

9
)

⌊α−1⌋+1

∑
j=0

exp(
λ2

2
(VarX(j+1)αt −VarXjαt) + λ

3E0,t(λ)) . (17)

A similar calculation as in the second part of the proof of Lemma 4.2 shows

1

tγ
(VarX(j+1)αt −VarXjαt) ≤ 2αc + c sup

k≥1
∣
VarXkαt
(kαt)γ

− σ2
∣ =∶ δ(α, t)

for some constant c = c(γ). In particular, δ(α, t)
t→∞
ÐÐ→ 2αc. Setting λ ∶= rS(t)/tγ , r ≥ 1, we get

lim sup
t→∞

tγ

S(t)2
logP(Bt > ε) ≤ −

rε

9
+ lim
t→∞

(
r2

2
δ(α, t) + r3

S(t)

t2γ
E0,t (r

S(t)

tγ
)) = −

rε

9
+ cαr2.

Finally, we conclude

lim sup
t→∞

tγ

S(t)2
logP(∥

Z⌊t⌋

S(⌊t⌋)
−
X(t ⋅ )
S(t)

∥

∞

> 2ε) ≤ −
rε

9
+ cαr2

α→0,r→∞
ÐÐÐÐÐ→ −∞.

Combining Lemma 4.3 and Lemma 4.4, we find that (X(t ⋅ )/S(t))t>0 satisfies a moderate

deviation principle with good rate function J and speed S(t)2/tγ , cf. [4, Theorem 4.2.13]. It

remains to identify the good rate function.

4.5 Theorem The good rate function J ,

J(f) = sup
α∈BV[0,1] ∩D[0,1]

(∫ f dα −
γσ2

2 ∫

1

0
sγ−1(α(1) − α(s))2 ds) ,

equals

I(f) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1

2γσ2 ∫

1

0

f ′(s)2

sγ−1
ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise.

In particular, Dom I = DomJ ⊆ AC[0,1].

Proof. We only consider γ ≥ 1; the case 0 < γ < 1 is proved similarly. First, we show that

J(f) < ∞ implies f ∈ AC[0,1] and f(0) = 0. If so, then

f(t) = ∫
t

0
f ′(s)ds, t ∈ [0,1]. (18)

9



To this end, let 0 < s1 < t1 < . . . < sn < tn ≤ 1 and define

α(t) ∶=
n

∑
j=1

cj1[sj ,tj)(t), t ∈ [0,1]

for c = (c1, . . . , cn) ∈ R
n. Obviously, α ∈ BV[0,1]∩D[0,1] and

∫

1

0
f dα =

n

∑
j=1

cj(f(sj) − f(tj)). (19)

By definition of J we have

n

∑
j=1

cj(f(sj) − f(tj)) = ∫
1

0
f dα ≤ J(f) +

γσ2

2 ∫

1

0
sγ−1α(s)2 ds ≤ J(f) +

γσ2

2

n

∑
j=1

c2j ∣tj − sj ∣.

If we choose cj ∶= r sgn(f(sj) − f(tj)), r ≥ 1, we get

n

∑
j=1

∣f(sj) − f(tj)∣ ≤
J(f)

r
+
rγσ2

2

n

∑
j=1

∣tj − sj ∣.

This proves that f is absolutely continuous. A similar calculation shows

∣f(t)∣ ≤
J(f)

r
+ tγ

rσ2

2
.

Letting t→ 0 and r →∞ we obtain f(0) = 0. This proves (18). Now let f be given by (18). If

we set ϕ(x) ∶= x2/2, then we see from the integration by parts formula that

∫

1

0
f dα −

γσ2

2 ∫

1

0
sγ−1(α(1) − α(s))2 ds

= ∫

1

0
[f ′(s)(α(1) − α(s)) −

γσ2

2
sγ−1(α(1) − α(s))2] ds

= ∫

1

0
[f ′(s)(α(1) − α(s)) − ϕ (

√
γσ2sγ−1(α(1) − α(s)))] ds

≤ ∫

1

0
ϕ∗

⎛

⎝

f ′(s)
√
γσ2sγ−1

⎞

⎠
ds

=
1

2γσ2 ∫

1

0

f ′(s)2

sγ−1
ds = I(f)

where

ϕ∗(β) ∶= sup
x∈R

(βx − ϕ(x)) =
1

2
β2, β ∈ R,

denotes the Legendre transform of ϕ. Hence, J(f) ≤ I(f). On the other hand, for f ∈ AC[0,1],

n−1

∑
j=0

f (
j+1
n

) − f (
j
n
)

1
n

(
n

j + 1
)
(γ−1)/2

1
[ j
n
,
j+1
n

)
(s)

n→∞
ÐÐÐ→

f ′(s)

s(γ−1)/2
for almost all s ∈ [0,1].

Therefore, Fatou’s lemma and (19) imply

I(f) ≤
1

2σ2γ
lim inf
n→∞

⎛

⎝
n
n−1

∑
j=0

[f (
j + 1

n
) − f (

j

n
)]

2

(
n

j + 1
)
γ−1⎞

⎠

= lim inf
n→∞

(∫

1

0
f dα[n]

−
σ2γ

2

n−1

∑
j=0
∫

(j+1)/n

j/n
(α

[n]
j )

2
(
j + 1

n
)
γ−1

ds)

for

α
[n]
j ∶= −

n

σ2γ
(

n

j + 1
)
γ−1

[f (
j + 1

n
) − f (

j

n
)]

α[n]
(t) ∶=

n−1

∑
j=0

α
[n]
j 1[j/n,(j+1)/n)(t).

Using that (
j+1
n

)
γ−1

≥ sγ−1 for any s ∈ [j/n, (j + 1)/n], we get

I(f) ≤ lim inf
n→∞

(∫

1

0
f dα[n]

−
σ2γ

2 ∫

1

0
α[n]

(s)2sγ−1 ds) ≤ J(f).
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Next, we prove Strassen’s law, Theorem 3.2. The proof is inspired by [17, Chapter 13] where

the result is shown for Brownian motion. Without loss of generality, we assume throughout

the proof of Theorem 3.2 that σ2
= 1. We need the following lemma.

4.6 Lemma Let I be the good rate function defined in (8). For c > 0 set

A ∶= {f ∈D[0,1]; sup
q−1≤t≤1

sup
0≤s≤1

∣f(st) − f(s)∣ ≥ c} , B ∶= {f ∈D[0,1]; sup
s∈[0,1]

∣f(s)∣ ≥ c} .

Then A and B are closed in (D[0,1], ∥ ⋅ ∥∞) and

inf
f∈A

I(f) ≥
c2

2

qγ

qγ − 1
, inf

f∈B
I(f) ≥

c2

2
.

Proof. By the Cauchy–Schwarz inequality,

c2 ≤ sup
q−1≤t≤1

sup
0≤s≤1

∣f(st) − f(s)∣2 = sup
q−1≤t≤1

sup
0≤s≤1

∣∫

s

st
f ′(r)dr∣

2

≤ sup
q−1≤t≤1

sup
0≤s≤1

[(∫

1

0

f ′(r)2

rγ−1
dr)(∫

s

st
rγ−1 dr)]

= 2(1 − q−γ)I(f)

for any f ∈ A ∩Dom I ⊆ AC[0,1]. Similarly, we find from the Cauchy–Schwarz inequality

c2 ≤ sup
0≤s≤1

∣∫

s

0
f ′(r)dr∣

2

≤ 2γI(f)∫
1

0
rγ−1 dr = 2I(f) for all f ∈ B.

4.7 Lemma The set of limit points L(ω) satisfies L(ω) ⊆ Φ( 1
2
) for almost all ω ∈ Ω.

Proof. Since Φ( 1
2
) = ⋂r>0 Φ( 1

2
+ r), it suffices to show L(ω) ⊆ Φ( 1

2
+ r) for any r > 0. Set

Zt ∶= X(t ⋅ )/S(t), and fix q > 1, δ > 0. Applying the large deviation upper bound (cf. [6,

Theorem 3.3.3]) gives

P (d(Zqn ,Φ( 1
2
+ r)) > δ) ≤ exp(−2(

1

2
+
r

2
) log log qn)

for n sufficiently large. Thus, by the Borel–Cantelli lemma,

d(Zqn( ⋅ , ω),Φ( 1
2
+ r)) ≤ δ

for n ≥ n0(q, ω). It remains to fill the gaps in the sequence (qn)n∈N. Note that

sup
qn−1≤t≤qn

∥Zt −Zqn∥∞ = sup
qn−1≤t≤qn

sup
0≤s≤1

∣
X(st)

S(t)
−
X(sqn)

S(qn)
∣

≤ sup
qn−1≤t≤qn

sup
0≤s≤1

∣X(st) −X(sqn)∣

S(qn)
+ sup
qn−1≤t≤qn

sup
0≤s≤1

∣X(st)∣

S(qn)
∣
S(qn)

S(t)
− 1∣

=∶ An +Bn.

As

P(Bn ≥
δ

2
) = P( sup

0≤t≤1
∣
X(tqn)

S(qn)
∣ ⋅ ∣

S(qn)

S(qn−1)
− 1∣ ≥

δ

2
) ,

it follows easily from S(qn)/S(qn−1)
n→∞
ÐÐÐ→ qγ/2 and the large deviation upper bound that

∑n∈N P(Bn ≥ δ/2) < ∞ if we choose q > 1 close to 1. Hence, by the Borel–Cantelli lemma,

Bn ≤
δ
2

for n ≥ n1(q, ω) sufficiently large. In order to estimate An we note that

P(An ≥
δ

2
) = P( sup

q−1≤t≤1
sup
0≤s≤1

∣X(sqnt) −X(sqn)∣

S(qn)
≥
δ

2
) ≤ P(

X(qn ⋅ )
S(qn)

∈ A)

for

A ∶= {f ∈D[0,1]; sup
q−1≤t≤1

sup
0≤s≤1

∣f(st) − f(s)∣ ≥
δ

2
} .

11



Therefore, by the large deviation upper bound and Lemma 4.6,

P(An ≥
δ

2
) ≤ exp(−

δ2

8

qγ

qγ − 1
log log qn)

for n ≥ n2(q) sufficiently large. If q > 1 is close to 1, this implies ∑n∈NP(An ≥ δ/2) < ∞. By

the Borel–Cantelli lemma, we conclude

sup
qn−1≤t≤qn

∥Zt −Zqn∥∞ ≤ δ

for n ≥ n3(q, ω) sufficiently large. Finally,

d(Zs( ⋅ , ω),Φ( 1
2
+ r)) ≤ ∥Zs( ⋅ , ω) −Zqn( ⋅ , ω)∥∞ + d(Zqn( ⋅ , ω),Φ( 1

2
+ r)) ≤ 2δ

for s sufficiently large. Since Φ( 1
2
+ r) is closed, this proves the claim.

4.8 Lemma L(ω) ⊇ Φ( 1
2
) for almost all ω ∈ Ω.

Proof. Since the sublevel sets are compact, we have ⋃r<1/2 Φ(r) ⊆ Φ( 1
2
). On the other hand,

any f ∈ Φ( 1
2
) can be approximated by (1 − ε)f ∈ Φ(

(1−ε)2

2
). Therefore, ⋃r<1/2 Φ(r) = Φ( 1

2
).

Consequently, it suffices to show that for any r < 1
2
, ε > 0, f ∈ Φ(r) there is a. s. a sequence

sn = sn(ω) → ∞ such that

lim sup
n→∞

∥Zsn(ω) − f∥∞ ≤ ε.

Pick q > 1. Obviously,

∥Zqn − f∥∞ ≤ sup
q−1≤t≤1

∣
X(tqn) −X(qn−1)

S(qn)
− f(t)∣ + ∣

X(qn−1)

S(qn)
∣ + sup

t≤q−1
∣f(t)∣ + sup

t≤q−1
∣
X(tqn)

S(qn)
∣ .

We estimate the terms separately. Setting

A ∶= {g ∈D[0,1]; sup
q−1≤t≤1

∣g(t) − g(q−1) − f(t)∣ <
ε

4
}

we have

P(An) ∶= P( sup
q−1≤t≤1

∣
X(tqn) −X(qn−1)

S(qn)
− f(t)∣ <

ε

4
) = P(

X(qn ⋅ )
S(qn)

∈ A) .

If we choose q > 1 sufficiently large such that ∣f(q−1)∣ < ε
4
, then f ∈ A. By assumption, I(f) < 1

2

and therefore we conclude from the large deviation lower bound that ∑n∈NP(An) = ∞. Taking

a subsequence, if necessary, we obtain by applying the Borel–Cantelli lemma

lim sup
n→∞

sup
q−1≤t≤1

∣
X(tqn) −X(qn−1)

S(qn)
− f(t)∣ ≤

ε

4
.

By Hölder’s inequality,

sup
t≤q−1

∣f(t)∣2 = sup
t≤q−1

∣∫

t

0
f ′(s)ds∣

2

≤ (∫

1

0

f ′(s)2

sγ−1
ds)(∫

q−1

0
sγ−1 ds) ≤

1

qγ
.

Moreover,

P(∣
X(qn−1)

S(qn)
∣ ≥

ε

4
) +P( sup

0≤t≤q−1
∣
X(tqn)

S(qn)
∣ ≥

ε

4
) ≤ 2P( sup

0≤t≤1
∣
X(qn−1t)

S(qn−1)
∣
S(qn−1)

S(qn)
≥
ε

4
) .

By Lemma 4.6, it is not difficult to see that we may apply again the Borel–Cantelli lemma if

we choose q > 1 sufficiently large. Hence,

lim sup
n→∞

(∣
X(qn−1)

S(qn)
∣ + sup

t≤q−1
∣f(t)∣ + sup

t≤q−1
∣
X(tqn)

S(qn)
∣) ≤

3

4
ε.

This finishes the proof.
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Combining Lemma 4.7 and Lemma 4.8 yields Theorem 3.2. Finally, it remains to prove

Corollary 3.3.

Proof of Corollary 3.3. It follows from the assumptions that there exists an additive process

(Yt)t≥0 satisfying the assumptions of Theorem 3.1 such that ((X(t ⋅ ) − Y (t ⋅ ))/S(t))t>0 con-

verges uniformly in D[0,1] to 0 as t→∞. Therefore, the claim follows from Theorem 3.2. For

more details, we refer the reader to [19, Proposition 3.1,3.2].

5 Concluding remarks

(i). Theorem 3.1 still holds if (Xt)t≥0 has also fixed jump discontinuities. Taking a close

look at the proof reveals that we simply have to modify the estimate of the moment

generating function in Lemma 4.1 appropriately. The corresponding estimate follows

from the explicit formula for the exponential moments, cf. [7], and well-known elementary

inequalities.

(ii). Let (Xt)t≥0 be an additive process such that EXt = 0 and

lim
t→∞

VarXt
h(t)

= σ2
> 0

for a regulary varying function h ∶ (0,∞) → (0,∞) of index γ > 0 (see e. g. [1] for the

definition). If we replace tγ in Theorem 3.1 and Theorem 3.2 by h(t), then both theorems

remain valid.
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