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Abstract. We study perturbations of Feller generators under ‘lower order

terms’ with measurable coefficients. We investigate which properties of the
original semigroup – such as positivity, conservativeness and the Feller property

– are passed to the perturbed semigroup. We give several examples and discuss

applications in the theory of martingale problems and stochastic differential
equations with measurable coefficients.

1. Introduction

Given two operators A and B, it is a classical question to ask how the sum A+B
is defined and which properties of A are preserved under the perturbation B, see e.g.
[23, 3]. In this article, we consider this problem in the context of Feller semigroups
and generators. We are interested in constructing Feller generators with measurable
lower order terms, and this means that the perturbation does not take values in the
space of continuous functions. In consequence, classical perturbation results from
semigroup theory do not apply.

Let (T (t))t≥0 be a Feller semigroup, that is, a sub Markovian, strongly continuous
semigroup T (t) : C∞(Rd)→ C∞(Rd) on the space C∞(Rd) of continuous functions
vanishing at infinity. If the domain of the (infinitesimal) generator A contains the
test functions C∞c (Rd), then the Courrège–van Waldenfels theorem, see e.g. [6, Thm.
2.21], shows that A := A|C∞c (Rd) is a Lévy-type operator, i.e. an integro-differential
operator of the form

Af(x) = b(x)∇f(x) +
1

2
tr(Q(x)∇2f(x))

+

∫
Rd\{0}

(f(x+ y)− f(x)−∇f(x) · 1(0,1)(|y|)) ν(x, dy).
(1.1)

Here (b(x), Q(x), ν(x, ·))x∈Rd are the (infinitesimal) characteristics consisting of
the drift coefficients b = (bj) : Rd → Rd, the diffusion coefficients Q = (qij) :
Rd → Rd×d and the jumping kernels ν : Rd → M+(Rd). We are interested in
the following questions: If a Lévy-type operator B is a lower order perturbation
of A, then under which conditions is (a realization of) A + B the generator of a
semigroup and which properties does the perturbed semigroup inherit from the
original semigroup (T (t))t≥0? Is the martingale problem for A + B well-posed?
Classical perturbations results can be used to tackle these questions if B maps D(A)
into C∞(Rd), which in particular implies that the infinitesimal characteristics of B
need to depend continuously on x. In this article, we investigate perturbations B
whose characteristics depend merely measurably on x. Allowing for discontinuous
characteristics of B creates a number of issues and subtleties. To give an example: If
B maps D(A) into C∞(Rd), then the sub Markovianity of the perturbed semigroup
can be verified using the positive maximum principle; this does not work any longer
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2 F. KÜHN AND M. KUNZE

if B has discontinuous coefficients, i.e. if we work on the space Bb(R
d) of bounded

measurable functions rather than C∞(Rd). In fact, establishing the sub Markov
property of the perturbed semigroup turns out to be rather delicate point. At the
same time, being sub Markovian is crucial for the applications in the theory of
stochastic processes, which we are interested in. To establish sub Markovianity, we
will use an approximation argument which is of independent interest, e.g. it can be
used to prove continuous dependence of solutions of certain martingale problems
on the coefficients (see Theorem 7.3). Let us mention that our questions can be
formulated equivalently in the context of pseudo-differential operators. Namely, the
Lévy-type operator A can be seen alternatively as a pseudo-differential operator

(1.2) Af(x) = −
∫
Rd
q(x, ξ)eix·ξ f̂(ξ) dξ, f ∈ C∞c (Rd), x ∈ Rd,

where f̂ is the Fourier transform and

(1.3) q(x, ξ) := −ib(x) · ξ+
1

2
ξ ·Q(x)ξ+

∫
Rd\{0}

(1− eiy·ξ + iy · ξ1(0,1)(|y|)) ν(x, dy)

is the so-called symbol of A. We study under which conditions the pseudo-differential
operator with symbol q(x, ξ) + p(x, ξ) gives rise to a Feller semigroup if the symbol
p(x, ξ) of the perturbation B depends merely measurably on x.

If the symbol – or equivalently, the characteristics – of a Lévy-type operator
satisfies suitable smoothness conditions, then general results from symbolic calculus
show that the closure of (A,C∞c (Rd)) is the generator of a Feller semigroup, see e.g.
[16, 20]. Under the milder assumption that the coefficients are Hölder continuous,
the situation is already much more complicated and there is an immense literature
on the question whether the Lévy-type operator A gives rise to a Feller semigroup,
see e.g. [6, 16, 19, 20, 30] for a survey. None of these results applies in our framework
since we are dealing with discontinuous coefficients. For the particular case that the
diffusion coefficient Q is strictly elliptic, there are general results in the literature
which allow discontinuous coefficients, see e.g. [19, Theorem 2.1.43] and also [54, 55]
for processes on bounded domains. Moreover, the well-posedness of the (A,C∞c (Rd))-
martingale problem is well studied in this case, cf. [53]. No such general results
are available if the operator has a vanishing diffusion component Q ≡ 0. There
are some perturbation results for martingale problems which allow discontinuous
coefficients, including bounded perturbations [13, Section 4.10] and perturbations of
Lévy generators e.g. in [8, 28, 42, 43]. Note that already the existence of a solution to
the martingale-problem can be highly non-trivial if the coefficients are discontinuous:
While there are general existence results for Lévy-type operators with continuous
coefficients, cf. [16, Theorem 3.15], there are no such results for the discontinuous
framework; see [32] and the references therein. Let us point out that the existence of
(unique) solutions to martingale problems associated with Lévy-type operators can
be used to deduce the existence of (unique) weak solutions to Lévy-driven stochastic
differential equations (SDEs)

dXt = b(Xt−) dt+ σ(Xt−) dLt,

see Subsection 8.4 for details. In particular, drift(-type) perturbations of Lévy
processes (i.e. σ ≡ 1) have been studied quite intensively, [44, 56, 8, 24, 25] to
mention just a few classical and recent works.

The following general result on Feller semigroups with measurable lower order
terms is obtained by combining our main results Theorem 6.4 and Theorem 7.2.

Theorem 1.1. Let (T (t))t≥0 be a Feller semigroup with generator A such that
C∞c (Rd) is a core for A. Assume that there are ρ ∈ (0, 2) and ϕ ∈ L1(0, 1) such that

‖T (t)f‖Cρb ≤ ϕ(t)‖f‖∞, t ∈ (0, 1), f ∈ Bb(R
d),
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Let B̂ be a Lévy-type operator

(1.4) B̂f(x) = b(x)∇f(x)+

∫
Rd\{0}

(f(x+y)−f(x)−∇f(x) ·y1(0,1)(|y|))µ(x, dy),

where the drift b and the jumping kernels µ(x, dy) depend measurably on x ∈ Rd.
Assume that

sup
x∈Rd

(
|b(x)|+

∫
Rd

min{1, |y|β}µ(x, dy)

)
<∞

for some β ∈ [0, ρ) and that the compensated drift is zero in case that ρ ≤ 1. Then

(a) The bp-closure of A + B̂ is the full generator of a Markovian Cb-Feller
semigroup S, i.e. S leaves Cb(R

d) invariant and its restriction to that space
is pointwise continuous. Moreover, S enjoys the strong Feller property;

(b) The (A+ B̂,C∞c (Rd))-martingale problem is well-posed;
(c) If additionally the tightness condition

lim
R→∞

sup
x∈Rd

µ(x, {y ∈ Rd; |y| ≥ R}) = 0

holds, then S is a C∞-semigroup, i.e. S leaves C∞(Rd) invariant and its
restriction to that space is strongly continuous. Thus S is a Feller semigroup
in this case.

Theorem 1.1 applies to a wide class of Feller generators A including strictly elliptic
differential operators (see Section 8.1), generators of certain Lévy processes (see
Section 8.2) and operators of variable order (see Section 8.3). Moreover, the well-
posedness of the martingale problem in (b) yields uniqueness results for Lévy-driven
SDEs, see Section 8.4.

This article is organized as follows. In Section 2, we recall some notions concerning
kernel operators, in Section 3 those concerning semigroups and their generators.
Here we also establish the connection between cores of of Feller generators and
bp-cores of the corresponding full generators; this is important for our applications
to martingale problems. In Section 4 we recall a perturbation result from [39] and
prove our first main result (Theorem 4.4). Section 5 concerns convergence results for
perturbed semigroups, which is crucial for establishing sub Markovianity in Theorem
1.1. Sections 2 – 5 concern abstract state spaces E rather than Rd and thus do not
take the special structure of the operators A in (1.1) into account.

The remaining sections 6 – 8 apply the abstract results to Lévy-type operators
as in (1.1). Section 6 concerns the actual perturbation result and Section 7 the
corresponding martingale problem. The concluding Section 8 contains examples and
discusses applications in the theory of stochastic differential equations.

Moreover, there are two appendices which contain results that are used in the
proof of Theorem 6.4 and which we believe to be of independent interest.

2. Kernel operators

Throughout, E is a locally compact Polish space. We endow E with its Borel σ-
algebra B(E). The spaces of bounded and measurable resp. bounded and continuous
functions on E are denoted by Bb(E) and Cb(E) respectively whereas C∞(E) refers
to the space of continuous functions vanishing at∞, i.e. of those continuous functions
f : E → R such that for every ε > 0 we find a compact set K ⊂ E with |f(x)| ≤ ε
for all x ∈ E \K.

A kernel on E is a map k : E ×B(E)→ R such that

(i) the map x 7→ k(x,A) is measurable for every A ∈ B(E);
(ii) k(x, ·) is a (signed) measure for every x ∈ E;

(iii) supx∈E |k|(x,E) <∞, where |k|(x, ·) denotes the total variation of k(x, ·).
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If k(x, ·) is a positive measure for every x ∈ E, then k is called a positive kernel ; if
every k(x, ·) is a (sub) probability measure, k is a (sub) Markovian kernel.

To every kernel k on E, we can associate a bounded linear operator T on Bb(E)
by setting

(2.1) (Tf)(x) :=

∫
E

f(y) k(x, dy), f ∈ Bb(E), x ∈ E.

We call an operator T of this form a kernel operator on Bb(E). It turns out that
a bounded, linear operator on Bb(E) is a kernel operator if, and only if, T is
continuous with respect to the weak topology σ := σ(Bb(E),Mb(E)) induced by
the space Mb(E) of bounded signed measures on E (see e.g. [38, Prop. 3.5]). For
sequences, σ-convergence is nothing else than bp-convergence (bp is short for bounded
and pointwise), i.e. fn → f with respect to σ if, and only if, supn∈N ‖fn‖∞ < ∞
and fn → f pointwise. Indeed, by dominated convergence, bp-convergence implies
σ-convergence; the converse follows from the uniform boundedness principle. We
will write L(Bb(E), σ) for the space of σ-continuous linear operators on E, i.e. kernel
operators. Note that any such operator is automatically bounded. In what follows,
we write ⇀ to indicate convergence with respect to σ while we reserve → to indicate
convergence with respect to the supremum norm. If T is a bounded operator defined
via (2.1) on Cb(E) or C∞(E), then T is also called a kernel operator (on Cb(E) resp.
C∞(E)); it can be extended in a unique way to a kernel operator on Bb(E). As is
well known, every bounded operator on C∞(E) is a kernel operator and can thus be
extended to a kernel operator on Bb(E), see e.g. [50, Cor. 21.12].

In applications, it is often of interest if a kernel operator on Bb(E) leaves one
of the spaces Cb(E) or C∞(E) invariant. Of particular interest is the case where a
kernel operator T maps Bb(E) into Cb(E). Such an operator is called strong Feller
operator. For our perturbation results, it will be important to know under which
conditions a kernel operator leaves the space

B∞(E) :=
{
f ∈ Bb(E) : ∀ε > 0 ∃K b E : |f(x)| ≤ ε∀x ∈ E \K

}
.

invariant. We present two results on this topic.

Lemma 2.1. Let T be a kernel operator with associated kernel k. Then TB∞(E) ⊂
B∞(E) if and only if k(·,K) ∈ B∞(E) for every relatively compact sets K.

Proof. As T1K = k(·,K) and 1K ∈ B∞(E) for a relatively compact set K, the
stated condition is certainly necessary. To prove its sufficiency, consider a function
f ∈ B∞(E) with compact support S. We find a sequence of simple functions f̃n
that converges uniformly to f . If we set fn := f̃n1S , then also the sequence fn
converges uniformly to f and, moreover, for c 6= 0 and every n ∈ N the set {fn = c}
is relatively compact. Thus, Tfn ∈ B∞(E). As Tfn → Tf uniformly and since
B∞(E) is closed with respect to the supremum norm, Tf ∈ B∞(E). The case of a
general function f ∈ B∞(E) follows from this by approximating f uniformly with a
sequence of measurable functions with compact support. �

If the operator T is positive, then invariance of C∞(E) implies invariance of
B∞(E).

Lemma 2.2. Let T be a positive kernel operator with TC∞(E) ⊂ C∞(E). Then
we have TB∞(E) ⊂ B∞(E). If, in addition, T has the strong Feller property, then
TB∞(E) ⊂ C∞(E).

Proof. Let 0 ≤ f ∈ B∞(E). Given ε > 0, pick a compact set K such that
|f(x)| ≤ ε/‖T‖ for x ∈ E \K. Then

0 ≤ f ≤ ‖f‖∞1K +
ε

‖T‖
1E\K
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and, consequently,

0 ≤ Tf ≤ ‖f‖∞k(·,K) + ε.

Since TC∞(E) ⊂ TC∞(E), [20, Lem. 3.2.15] yields k(·,K) ∈ B∞(E) and thus
Tf ∈ B∞(E) follows as ε > 0 was arbitrary. The addendum follows from the
identity C∞(E) = B∞(E) ∩ Cb(E). �

3. Semigroups, (pseudo)resolvents and generators

We now turn our attention to semigroups of kernel operators. A family T =
(T (t))t>0 ⊂ L(Bb(E), σ) is called semigroup of kernel operators if

(i) T (t+ s) = T (t)T (s) for all s, t > 0.
(ii) T is exponentially bounded, i.e. there are constants ω ∈ R, M > 0 such that
‖T (t)‖ ≤Meωt. We say that T is of type (M,ω) to stress these constants.

(iii) The map (t, x) 7→ (T (t)f)(x) is measurable.

It is not difficult to see that if T is a semigroup of kernel operators of type (M,ω)
then for every λ ∈ C with Reλ > 0 there is an operator R(λ) ∈ L(Bb(E), σ) such
that

(3.1) 〈R(λ)f, µ〉 =

∫ ∞
0

e−λt〈T (t)f, µ〉 dt

for all f ∈ Bb(E) and µ ∈Mb(E).
In the terms of [38, Def. 5.1], a semigroup of kernel operators is an integrable

semigroup on the norming dual pair (Bb(E),Mb(E)). It turns out that the family
(R(λ))Reλ>ω is a pseudo-resolvent, i.e. it satisfies the resolvent identity R(λ)−R(µ) =
(µ− λ)R(λ)R(µ), cf. [38, Prop. 5.2]. For more details on pseudoresolvents we refer
to [12, Sect. III.4.a].

In general, the family (R(λ))Reλ>ω does not consist of injective operators, and so
it is not the resolvent of a (single-valued) operator. However, there is a multivalued

operator Â such that R(λ) = (λ− Â)−1 for Reλ > ω (see [15, Appendix A] for more

information concerning multivalued operators). We call Â the full generator of the
semigroup T . The full generator can be characterized equivalently as follows:

(f, g) ∈ Â ⇐⇒ ∀t > 0 : T (t)f − f =

∫ t

0

Tsg ds,

cf. [38, Prop. 5.7]. In particular, our terminology is consistent with that used by
Ethier–Kurtz [13, Sect. 1.5].

We now introduce additional properties that a semigroup of kernel operators
might have. If T is of type (1, 0), then T is called a contraction semigroup of kernel
operators. If T is a contraction semigroup of kernel operators and every operator
T (t) is positive, we say that T is sub Markovian. If additionally T (t)1 = 1 for all
t > 0, then T is called Markovian.

We will call T a C∞-semigroup if T (t)C∞(E) ⊂ C∞(E) and the restriction of T
to C∞(E) is strongly continuous, i.e. for every f ∈ C∞(E) we have T (t)f → f with
respect to ‖ · ‖∞ as t→ 0. A C∞-semigroup that is also sub Markovian is called a
Feller semigroup.

We will call T a Cb-semigroup if T (t)Cb(E) ⊂ Cb(E) and the restriction of T
to Cb(E) is stochastically continuous, i.e. T (t)f ⇀ f as t → 0 for f ∈ Cb(E). We
note that, given sub Markovianity, this continuity condition can be equivalently
characterized in terms of the associated kernels pt by asking that pt(x,B(x, ε))→ 1
as t→ 0 for every x ∈ E and ε > 0, see [20, Lem. 3.2.17]. A Cb-semigroup that is
also sub Markovian is called Cb-Feller semigroup.

Let us point out that the above-defined objects are compatible with the classical
notions. To wit: If T is a C∞-semigroup, then the operator R(λ) leaves the space
C∞(E) invariant for Reλ > ω and its restriction to that space is injective. Thus, the
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restriction of (R(λ))Reλ>ω is the resolvent of a (single valued) operator A. Moreover,

A is the part of Â in C∞(E), i.e.

D(A) = {u ∈ C∞(E) : ∃f ∈ C∞(E) s.t. (u, f) ∈ Â}, Au = f.

Identifying A with its graph, we have A = Â ∩ (C∞(E) × C∞(E)). By general
semigroup theory, A coincides with the generator of the semigroup T |C∞(E), defined
as (norm-)derivative in 0.

Conversely, if we start with a strongly continuous semigroup on C∞(E), we may
extend it to Bb(E) as any bounded linear operator on C∞(E) is a kernel operator. In
fact, the extended semigroup is a semigroup of kernel operators in the sense defined
above (this follows from [38, Lem. 6.1]). If the semigroup is sub Markovian, then
the extension is also stochastically continuous, see [18, Lem. 4.8.7].

We next discuss how to recover the full generator Â from the operator A. To
that end, we make use of operator cores. We recall that a subset D ⊂ D(A) is called
a core for A if for every u ∈ D(A) we find a sequence (un) ⊂ D with un → u and
Aun → Au. To use cores in the context of multivalued operators, we employ the
notion of bp-convergence defined in Section 2. A set M ⊂ Bb(E) is called bp-closed if
with every bp-convergent sequence, it also contains its limit. The bp-closure of a set
M is the smallest bp-closed subset of Bb(E) that contains M . We use these notions,

mutatis mutandis, also in Bb(E)×Bb(E). We call a subset M ⊂ Â a bp-core if the

bp-closure of M equals Â.

Lemma 3.1. Let T be C∞-semigroup with full generator Â and let A be the part of
Â in C∞(E). Let D be a core for A. Then {(u,Au) : u ∈ D} is a bp-core for Â.

Proof. Let T be of type (M,ω) and fix λ > ω. As D is a core for A, the set (λ−A)D
is ‖ · ‖-dense in C∞(E). It follows that the bp-closure of (λ−A)D contains C∞(E)
and thus equals all of Bb(E) (see Proposition A.1).

Put S := {(u, λu − Au) : u ∈ D}. We note that Â, and hence also λ − Â,

is σ-closed and thus, in particular, bp-closed. As S ⊂ λ − Â it follows that the
bp-closure S̄ is a subset of λ− Â. Now define C := {f ∈ Bb(E) : ∃u s.t. (u, f) ∈ S̄}.
Then C is bp-closed.

Indeed, Let (fn) ⊂ C be bp-convergent to f . Pick un such that (un, fn) ∈ S̄. As

R(λ) = (λ − Â)−1, we see that (R(λ)fn, fn) ∈ B̂. It follows that un − R(λ)fn ∈
ker(λ − Â) = {0}, i.e. un = R(λ)fn. By the σ-continuity of R(λ), we have that
un ⇀ u := R(λ)f . This implies that (u, f) ∈ S̄ whence f ∈ C, proving that C is
bp-closed as claimed.

As C contains (λ − A)D, it follows that C = Bb(E). But this entails that

S̄ = λ− Â. We have proved that λ− Â is the bp-closure of S which is equivalent to
the claim. �

4. Perturbation of (strong) Feller semigroups

We begin by recalling a result from [39] concerning the perturbation of semigroups
of kernel operators consisting of strong Feller operators. We will use the following
set of assumptions.

Hypothesis 4.1. Let T be a Cb-semigroup of type (M,ω) that consists of strong

Feller operators. We denote by Â the full generator of the semigroup and write
(R(λ))Reλ>ω for the Laplace transform of T . Moreover, let B̂ : D(B̂) → Bb(E)

be a single-valued linear operator with D(Â) ⊂ D(B̂) which satisfies the following
assumptions:

(i) For t > 0 the operator B̂T (t), initially defined on D(Â), has an extension
to an operator in L(Bb(E), σ) (which, by slight abuse of notation, we still

denote by B̂T (t));
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(ii) B̂R(λ) ∈ L(Bb(E), σ) for one/all λ > ω;

(iii) the function (t, x) 7→ B̂T (t)f(x) is measurable for f ∈ Bb(E);
(iv) there is a function ϕ which is integrable in a neighborhood of 0 such that

‖B̂T (t)‖ ≤ ϕ(t) for t > 0.

Theorem 4.2. ([39, Thm. 3.3]) Assuming Hypothesis 4.1 the operator Â+B̂ (defined

on D(Â) ⊂ D(B̂)) is the full generator of a Cb-semigroup S that consists of strong
Feller operators. This semigroup satisfies for t > 0 the Duhamel formula

(4.1) S(t)f = T (t)f +

∫ t

0

S(t− s)B̂T (s)f ds.

Moreover, we can develop S in its Dyson–Phillips series:
(4.2)

S(t) =

∞∑
n=0

Sn(t) where S0(t) = T (t) and Sn+1(t)f =

∫ t

0

Sn(t− s)B̂T (s) ds.

Here, all integrals have to be understood in the weak Mb(E)-sense as in (3.1).

It is a rather obvious question whether the new semigroup S is a C∞-semigroup
if this is the case for T . Unfortunately, without further assumptions on B̂ this is
not the case.

Example 4.3. For E = R, consider the heat semigroup T , given by

(T (t)f)(x) :=
1√
2πt

∫
R

exp

(
− (x− y)2

4t

)
f(y) dy (x ∈ R)

for f ∈ Bb(R). It is well known that T is a C∞-semigroup which also consists

of strong Feller operators. Now consider the operator B̂ : f 7→ f(0) · 1R. Then

B̂ ∈ L(Bb(R), σ) (whence it satisfies Hypothesis 4.1, see [39, Ex. 3.4]). It follows that

B̂T (s)f = c · 1R, for some constant c = c(s, f). Consequently, T (t− s)B̂T (s)f = c
for all t ≥ s. If 0 < f ∈ C∞(R) then ct(f) := inf{c(s, f) : 0 ≤ s ≤ t} > 0 for all
t > 0 and we can infer from the Dyson–Phillips expansion (4.2) that the perturbed
semigroup S does not leave C∞(R) invariant. Indeed, fixing t > 0, we see that
S(t)f ≥ S1(t)f ≥ ct(f)1R and the latter does not vanish at infinity.

Theorem 4.4. Assume in addition to Hypothesis 4.1 that T is a positive C∞-
semigroup.

(a) If D̂ is a bp-core for Â, then {(u, f + B̂u) : (u, f) ∈ D̂} is a bp-core for

Â+ B̂.
(b) If B̂T (t)B∞(E) ⊂ B∞(E) for every t > 0, then S is a C∞-semigroup.

Proof. (a) Let D̂ be a bp-core for Â and denote by S̄ the bp-closure of {(u, f +

B̂u), (u, f) ∈ D̂}. As Â+ B̂ is a full generator, it is σ-closed and thus, in particular,

bp-closed and it follows that S̄ ⊂ Â+ B̂. Note that this entails that for (u, g) ∈ S̄
we have u ∈ D(Â). We now define W := {(u, g − B̂u) : (u, g) ∈ S̄}. Clearly,

D̂ ⊂W ⊂ Â. We prove that W is bp-closed. To that end, let (un, gn − B̂un) be a

sequence in W (thus (un, gn) ∈ S̄) such that un bp-converges to u and fn := gn−B̂un
bp-converges to f . Then (un, fn) ⊂ Ā bp-converges to (u, f). By the bp-closedness

of Â, we have (u, f) ∈ Â. Picking λ > ω, this is equivalent to u = R(λ)(λu − f)

and the same equality holds with u/f replaced by un/fn. Using that B̂R(λ) is
σ-continuous by (ii) in Hypothesis 4.1, we infer

B̂un = B̂R(λ)(λun − fn) ⇀ B̂R(λ)(λu− f) = B̂u.

Setting g := f + B̂u, the sequence (un, gn) ⊂ S̄ bp-converges to (u, g). As S̄

is bp-closed, (u, g) ∈ S̄ and thus (u, f) ∈ W . Since D̂ is a bp-core for Â, it
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follows that W = Â. But this is equivalent to S̄ = Â + B̂ which means that
{(u, f + B̂u), (u, f) ∈ D̂} is indeed a bp-core for Â+ B̂.

(b) We first prove by induction that the operators Sn(t) appearing in the Dyson–
Phillips series (4.2) map B∞(E) to C∞(E). In particular, they leave the space
B∞(E) invariant.

For n = 0 this follows from Lemma 2.2 and our assumption that T is a positive
C∞-semigroup that enjoys the strong Feller property.

Let us assume that, for some n ∈ N, we have already proved that Sn(t) maps
B∞(E) to C∞(E) for every t > 0. Fix f ∈ B∞(E) and t > 0. By our assumption,

we have B̂T (s)f ∈ B∞(E) for every s ∈ (0, t). By induction hypothesis, Sn(t− s)
maps B∞(E) to C∞(E), whence Sn(t − s)B̂T (s)f ∈ C∞(E) for s ∈ (0, t). Since
C∞(E) is separable with dual space Mb(E), the Pettis measurability theorem implies

that the function s 7→ Sn(t− s)B̂T (s)f is Bochner integrable which, in turn, implies

that Sn+1(t)f =
∫ t
0
Sn(t− s)B̂T (s)f ds ∈ C∞(E).

Note that the series in (4.2) converges for small t even in the operator norm.
From this it follows that for small t we have S(t)f ∈ C∞(E). As f was arbitrary,
S(t)C∞(E) ⊂ C∞(E) for small t and hence, by the semigroup law, for all t > 0.
The strong continuity of the restriction of S to C∞(E) follows from that of T , the
identity (4.1) and the observation that the integral in that formula converges to 0 in
operator norm as t 7→ 0. �

5. Resolvent convergence of the perturbed operators

In this section, we will consider a sequence B̂n of perturbations that converges, in
a certain sense, to the operator B̂. We want to know under which assumptions and
in which sense the pseudoresolvents (λ− (Â+ B̂n))−1 converge to (λ− (Â+ B̂))−1

as n→∞. Besides being interesting in its own right, such a convergence result will
also allow us to establish dissipativity and/or resolvent positivity for large classes of
operators with measurable coefficients.

The key to prove our convergence result is the following Lemma, which is taken
from [39, Lem. 3.8].

Lemma 5.1. Assuming Hypothesis 4.1, we have ‖B̂R(λ)‖ → 0 as λ→∞. Moreover,

if λ is so large that ‖B̂R(λ)‖ < 1, then

(λ− (Â+ B̂))−1 = R(λ)

∞∑
k=0

(B̂R(λ))k,

where the latter series converges in operator norm.

Proposition 5.2. Assume Hypothesis 4.1 and let (B̂n, D(B̂n)) be an operator such

that Hypothesis 4.1 is also fulfilled with B̂ replaced by B̂n (but the same semigroup
T ). Moreover assume that

(i) supn∈N ‖B̂nR(λ)‖ → 0 as λ→∞,

(ii) for every h ∈ Bb(E) and large enough λ we have B̂nR(λ)h ⇀ B̂R(λ)h,
and

(iii) whenever (hn) ⊂ Bb(E) satisfies hn ⇀ 0, we have B̂nR(λ)hn ⇀ 0 for large
enough λ.

In this case, for large enough λ we have

(5.1) (λ− (Â+ B̂n))−1f ⇀ (λ− (Â+ B̂))−1f

for all f ∈ Bb(E).
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Proof. By assumption (i), we can pick λ0 so large that for λ ≥ λ0 we have

‖B̂nR(λ)‖ ≤ 1/2 for every n ∈ N and λ ≥ λ0. By Lemma 5.1, we have

(5.2) (λ− (Â+ B̂n))−1 = R(λ)

∞∑
k=0

(B̂nR(λ))k.

Now let f ∈ Bb(E) and ε > 0. We fix N ∈ N such that
∑∞
k=N+1 ‖(B̂nR(λ))kf‖ ≤ ε

for all n ∈ N.
We prove that, for every k ∈ N, we have (B̂nR(λ))kf ⇀ (B̂R(λ))kf as n→∞.
For k = 0, there is nothing to prove and for k = 1 this is exactly our assumption

(ii). Assume that we know this convergence to be true for some k ∈ N. We set

gn := (B̂nR(λ))kf and g := (B̂R(λ))kf . Then

(B̂nR(λ))k+1f − (B̂R(λ))k+1f = B̂nR(λ)(gn − g) + (B̂nR(λ)g − B̂R(λ)g) ⇀ 0.

Indeed, by induction hypothesis gn − g ⇀ 0 so that the first term converges weakly
to 0 by our assumption (iii) and that the second term converges weakly to 0 follows
from the case k = 1.

Alltogether, we find that
∑∞
k=0(B̂nR(λ))kf ⇀

∑∞
k=0(B̂R(λ))kf . Given that

the operator R(λ) is σ-continuous, the representation (5.2) and Lemma 5.1 yield
(5.1) �

If the operator R(λ) is positive (which is always the case in our main application)
we obtain stronger convergence results.

Corollary 5.3. In the situation of Proposition 5.2, assume additionally that R(λ) ≥
0 for large enough λ. Then the convergence in (5.1) is not only with respect to σ,
but even uniform on compact subsets of E.

Proof. Fix f ∈ Bb(E) and put gn :=
∑∞
k=0(B̂nR(λ))kf and g :=

∑∞
k=0(B̂R(λ))kf .

Fixing m ∈ N, we put hm := supn≥m |gn − g|. We have seen in the proof of
Proposition 5.2 that gn ⇀ g and, consequently, hm ↓ 0 pointwise.

As R(λ) is positive, we find for n ≥ m∣∣(λ− (Â+ B̂n))−1f − (λ− (Â+ B̂))−1f
∣∣ = |R(λ)gn −R(λ)g|
≤ R(λ)|gn − g|
≤ R(λ)hm.

The latter converges to 0 as m, hence n, tends to ∞. However, as R(λ) is positive
this is even a monotone convergence and thus the convergence is uniform on compact
subsets of E by Dini’s theorem. �

It is natural to ask whether the perturbed semigroups also converge. In general,
weak convergence of the resolvents does not imply weak convergence of the cor-
responding semigroups, see [11] for a concrete example. In Section 7, we will use
the theory of martingale problems to establish a convergence result for semigroups
associated with Lévy-type operators.

We can also prove that certain features of the pseudoresolvents are stable under
the convergence described in Proposition 5.2.

Corollary 5.4. In the situation of Proposition 5.2, the following holds true.

(i) Let λ ∈ C with Reλ > 0 be in the resolvent set of Â+ B̂n and assume that

‖(λ− (Â+ B̂n))−1‖ ≤ (Reλ)−1 for all n ∈ N. Then λ is in the resolvent

set of Â+B̂ and ‖(λ−(Â+B̂))−1‖ ≤ (Reλ)−1. In this case, the semigroup

S, generated by Â+ B̂, is contractive.
(ii) Suppose that for λ ≥ λ0 we have (λ + (Â + B̂n))−1 ≥ 0 for all n ∈ N.

Then also (λ+ (Â+ B̂))−1 ≥ 0 for λ ≥ λ0. In this case, the semigroup S

generated by Â+ B̂ is positive.
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Proof. We put Fn(λ) := (λ− (Â+ B̂n))−1 and F (λ) := (λ− (Â+ B̂))−1 whenever
these are defined.

(i) The sequence Fn is an (operator-valued) holomorphic function that is, by
assumption, locally bounded on {Reλ > 0}. Fixing f ∈ Bb(E) and µ ∈Mb(E), the
same is true for the scalar function ϕn : λ 7→ ϕn(λ) := 〈Fn(λ)f, µ〉. By Proposition
5.2, for real λ that are large enough, ϕn(λ) converges to ϕ(λ) := 〈F (λ)f, µ〉. It
follows from Vitali’s theorem (see [2, Thm. 2.1]) that ϕ has a holomorphic extension
to the set {Reλ > 0} and ϕn converges locally uniformly to ϕ. As f and µ are
arbitrary, it follows from a vector-valued analytic extension theorem [2, Thm. 3.5]
that F has an analytic continuation to {Reλ > 0} which proves {Reλ > 0} is

contained in the resolvent set of Â+ B̂. Moreover

|〈F (λ)f, µ〉| = lim
n→∞

|〈Fn(λ)f, µ〉| ≤ lim sup
n→∞

(Reλ)−1‖f‖‖µ‖

for every Reλ > 0. This implies the estimate for the Laplace transform. As for the
contractivity of the semigroup, we note that for f ∈ Cb(E) and Mb(E) the orbit
t 7→ 〈S(t)f, µ〉 is continuous whence the (scalar) Post–Widder inversion formula (see
[1, Thm. 1.7.7]) yields

〈S(t)f, µ〉 = lim
n→∞

〈(n
t

)n(n
t
− Â− B̂

)−n
f, µ

〉
.

By the resolvent estimate, the absolute value of the right-hand side is at most
‖f‖‖µ‖ and it follows that S is contractive on Cb(E). But then it is also contractive
on Bb(E).

(ii) For 0 ≤ f ∈ Bb(E), 0 ≤ µ ∈M(E) and λ ≥ 0, we have

〈F (λ)f, µ〉 = lim
n→∞

〈Fn(λ)f, µ〉 ≥ 0

as for λ ≥ λ0 we have Fn(λ) ≥ 0 for all n ∈ N . As f and µ were arbitrary, this
proves F (λ) ≥ 0 for λ ≥ λ0. As above, we can infer positivity of the semigroup S
from this by means of the Post–Widder inversion formula. �

6. Perturbation of strong Feller semigroups by Lévy-type operators

In this section, we work in the Euclidean setting, E = Rd, and consider perturba-
tions of strong Feller semigroups by a class of integro-differential operators. To that
end, we will make more concrete assumptions on our initial semigroup T which are
tailor-made for this situation.

Hypothesis 6.1. Assume that T = (T (t))t≥0 is a Cb-semigroup of type (M,ω) with
state space E = Rd that consists of strong Feller operators. Moreover, the following
conditions hold for some ρ > 0:

(i) T (t)f ∈ C
ρ
b(R

d) for all t > 0 and f ∈ Bb(R
d);

(ii) There is a function ϕ ∈ L1(0, 1) such that

‖T (t)f‖Cρb ≤ ϕ(t)‖f‖∞

for all t ∈ (0, 1) and f ∈ Bb(R
d);

As before, we will denote the Laplace transform of our semigroup T by (R(λ))Reλ>ω

and the full generator of T by Â. For future reference, we note the following conse-
quence of Hypothesis 6.1.

Lemma 6.2. Assume Hypothesis 6.1. Then, for every λ ∈ C with Reλ > ω, we
have R(λ)f ∈ C

ρ
b(R

d) for all f ∈ Bb(R
d) and

‖R(λ)f‖Cρb ≤ C(λ)‖f‖∞, f ∈ Bb(R
d),

for a constant C(λ) with C(λ)→ 0 as Reλ→∞. In particular, D(Â) ⊂ C
ρ
b(R

d).
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Proof. For r > 0 it follows from the exponential boundedness of the semigroup and
Hypothesis 6.1(ii) that

‖T (1 + r)f‖Cρb ≤ ‖T (1)‖L(Cρb ,Bb)
‖T (r)‖ ‖f‖∞ ≤Mϕ(1)eωr‖f‖∞.

Setting ψ(t) = ϕ(t) for t ∈ (0, 1) and ψ(t) = Mϕ(1)eω(t−1) for t ≥ 1, we get

(6.1) ‖T (t)f‖Cρb ≤ ψ(t)‖f‖∞, t > 0, f ∈ Bb(R
d).

Now fix f ∈ Bb(R
d) and x ∈ Rd. Since ‖T (t)‖ ≤Meωt and t 7→ T (t)f(x) is Borel

measurable, the integral R(λ)f(x) =
∫
(0,∞)

e−λtT (t)f(x) dt exists as a Lebesgue

integral for any λ with Reλ > ω. If ρ ∈ (0, 1), then it is immediate from (6.1) and
the estimate

|R(λ)f(x)−R(λ)f(z)| ≤
∫ ∞
0

e−λt|T (t)f(x)− T (t)f(z)| dt

that ‖R(λ)f‖Cρb ≤ C(λ)‖f‖∞, where C(λ) :=
∫∞
0
ψ(t)e−λt dt. If ρ ≥ 1, then the

differentiation lemma for parameter-depend integrals, see e.g. [50, Thm. 12.5] or [34,
Prop. A.1], implies that x 7→ R(λ)f(x) is differentiable and

∂

∂xi
R(λ)f(x) =

∫ ∞
0

e−λt
∂

∂xi
T (t)f(x) dt

for all Reλ > ω. Thus, by (6.1), ‖R(λ)f‖Cρb ≤ C(λ)‖f‖∞ with C(λ) as before. By

dominated convergence, C(λ)→ 0 as Reλ→∞. �

We now introduce the integro-differential operator B̂ that we will consider as a
perturbation. We fix a function χ such that 1B(0,1) ≤ χ ≤ 1B(0,2) and put

(6.2) B̂f(x) = b(x) · ∇f(x) +

∫
Rd\{0}

(f(x+ y)− f(x)− y · ∇f(x)χ(y))µ(x, dy).

We make the following standing assumption.

Hypothesis 6.3. The function b : Rd → Rd and the kernel µ : Rd ×B(Rd \ {0})→
[0,∞] satisfy

(i) b is Borel measurable and bounded;
(ii) x 7→

∫
Rd\{0} f(y)µ(x, dy) is Borel measurable for every f ∈ Cc(R

d \ {0}).
(iii) There is a constant β ∈ (0, 2) such that

(6.3) ‖µ‖β := sup
x∈Rd

(∫
Rd\{0}

min{|y|β , 1}µ(x, dy)

)
<∞.

Moreover, β is strictly smaller than the constant ρ from Hypothesis 6.1.
(iv) If ρ ≤ 1, then the compensated drift b(·)−

∫
Rd\{0} yχ(y)µ(·, dy) is identically

zero.

Occasionally we will additionally assume the following tightness assumption

(Ti) sup
x∈Rd

µ(x, {|y| > R})→ 0 as R→∞.

Let us comment briefly on these assumptions. Assumption (iii) implies that the

above operator B̂ is well-defined on C
ρ
b(R

d). To see this, let us first assume that

ρ > 1. Then clearly the local part b(·)∇f(·) of B̂ is well-defined on this space. As
for the integral part, the elementary estimate

|f(x+ y)− f(x)− y · ∇f(x)χ(|y|)| ≤ 2‖f‖Cρb (Rd) min{1, |y|ρ}

implies that ‖B̂f‖∞ ≤ 2‖µ‖β‖f‖Cρb . In the case ρ ≤ 1, the additional assumption

(iv) entails that the operator B̂ simplifies to

B̂f(x) =

∫
Rd\{0}

(f(x+ y)− f(x))µ(x, dy)
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and we can argue similarly, making use of the Hölder continuity of f . The assumption
β < ρ is important to ensure compatibility (in the sense of Hypothesis 4.1) of the

perturbation B̂ with the semigroup T satisfying Hypothesis 6.1. The tightness
condition (Ti) plays an important role in proving that the perturbed semigroup
leaves the space C∞(Rd) invariant. We note that (Ti) holds if the real part of the
symbol

p(x, ξ) := −ib(x) · ξ +

∫
Rd\{0}

(1− eiy·ξ + iy · ξχ(|y|))µ(x, dy)

of the operator B̂ is equicontinuous at ξ = 0, i.e.

(6.4) lim
|ξ|→0

sup
x∈Rd

|Re p(x, ξ)| = 0,

see [48, (proof of) Thm. 4.4].
We can now formulate the main result of this section.

Theorem 6.4. Assume Hypotheses 6.1 and 6.3. Then the following hold true.

(a) The operator Â+ B̂ is the full generator of a Cb-semigroup S = (S(t))t≥0
that consists of strong Feller operators.

(b) If T consists of sub Markovian operators then so does S.
(c) Assume additionally the tightness assumption (Ti), that T is a positive C∞-

semigroup and that the test functions C∞c (Rd) form a core for the generator
A on C∞(Rd). Then S is a C∞-semigroup.

Remark 6.5. In the situation of Theorem 6.4(b), the perturbed semigroup S is
Markovian if and only if the unperturbed semigroup T is Markovian. Indeed, we
only need to check if the semigroup is conservative, i.e. if the semigroup leaves the
function 1 invariant. By [38, Prop. 5.9] this is the case if and only if 1 belongs to

the kernel of the full generator. As B̂1 = 0, we see that (Â+ B̂)1 = 0 is equivalent

to Â1 = 0.

Example 6.6. Without the tightness assumption (Ti), it is not true in general that
the perturbed semigroup S is a C∞-semigroup even if this is the case for T . This
can be seen for example by considering in dimension d = 1 the kernel µ(x, ·) := δ−x,
which obviously does not satisfy (Ti). Choose b = 0 and let T be the heat semigroup.

Then B̂f = f(0)1R − f and the perturbed semigroup S is (up to a rescaling by the
factor e−t) the semigroup from Example 4.3, which is not a C∞-semigroup.

Corollary 6.7. Assume Hypotheses 6.1 and 6.3 and that T is a positive C∞-
semigroup. If C∞c (Rd) is a core for the generator A of T |C∞(Rd), then {(f,Af+B̂f) :

f ∈ C∞c (Rd)} is a bp-core for the full generator Â+ B̂ of S.

Proof. If C∞c (Rd) is a core for the generator on C∞(Rd), then, by Lemma 3.1,

{(f,Af); f ∈ C∞c (Rd)} is a bp-core for Â. Thus, by Theorem 4.4(a), {(f,Af +

B̂f); f ∈ C∞c (Rd)} is a bp-core for the full generator Â+ B̂. �

We now turn to the proof of Theorem 6.4.

Proof of parts (a) and (c) of Theorem 6.4. (a) Let us first prove prove that B̂f ∈
Bb(R

d) for f ∈ C
ρ
b(R

d). This is obvious for the local part of B̂f so we focus on
the integral part. From Hypothesis 6.3(ii), it follows that for any Borel subset
S of Rd \ {0} the map x 7→

∫
Rd\{0} 1S(y)µ(x, dy) is measurable. But then so is

x 7→
∫
Rd\{0} 1R×S(x, y)µ(x, dy) for Borel sets R ⊂ Rd and S ⊂ Rd \ {0}. An

application of the monotone class theorem yields that x 7→
∫
Rd\{0} 1A(x, y)µ(x, dy)

is Borel measurable for any A ∈ B(Rd) ⊗ B(Rd \ {0}) and thus, by the sombrero
lemma and dominated convergence, x 7→

∫
Rd\{0} g(x, y)µ(x, dy) is Borel measurable
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for any function g which is B(Rd)⊗B(Rd \ {0})-measurable and satisfies |g(x, y)| ≤
K min{1, |y|ρ} for some constant K > 0. This readily gives that B̂f is Borel

measurable. Note that the discussion before Theorem 6.4 shows that, in fact, B̂ is a
bounded linear operator from C

ρ
b(R

d) to Bb(R
d).

We now verify Hypothesis 4.1, then part (a) immediately follows from Theorem

4.2. As for condition (i), the boundedness of B̂T (t) follows from Hypothesis 6.1(i)

and the boundedness of B̂ proved above. As for the σ-continuity, let a bounded
sequence (fn)n∈N ⊂ Bb(R

d) be given such that fn → f pointwise. By Hypothesis
6.1(i), T (t)fn is bounded in C

ρ
b(R

d). By the Arzelà–Ascoli theoren, passing to a
subsequence, we may and shall assume that T (t)fn converges locally uniformly
to some continuous function. By the σ-continuity of T (t) the sequence T (t)fn
converges pointwise to T (t)f , whence the only possible limit is T (t)f and it follows
that T (t)fn → T (t)f locally uniformly. Note that in the case where ρ > 1 we also
obtain that ∇T (t)fn → ∇T (t)f locally uniformly. From this it is immediate that

the local part of B̂fn converges pointwise to that of B̂f . As for the integral part
this convergence follows from dominated convergence, noting that as a consequence
of the uniform boundedness in C

ρ
b(R

d) we find an integrable majorant of the form
C min{1, |y|ρ}.

The proof of Condition 4.1(ii) is similar, taking Lemma 6.2 into account. As
for Condition 4.1(iii), we note that (t, x) 7→ T (t)f(x) is Borel measurable for every
f ∈ Bb(R

d) and using a reasoning similar to that in the first part of this proof, it

follows that (t, x) 7→ B̂T (t)f(x) is Borel measurable.
Condition 4.1(iv) is an immediate consequence of Hypothesis 6.1(ii) and the

boundedness of B̂.

(c) To prove this part, we use Theorem 4.4. We thus have to prove that

B̂T (t)B∞(Rd) ⊂ B∞(Rd). We will only consider the case ρ > 1; for ρ ≤ 1
the reasoning is a bit simpler because all terms involving the gradient vanish by
Hypothesis 6.3(iv). Take f ∈ C

ρ
b(R

d) ∩ Cc(R
d) and choose R > 0 such that the

support of f is contained in the ball B(0, R). Taking into account that in this part
we assume the tightness condition (Ti), we find that if |x| > R+ r for some r > 0,
then

|B̂f(x)| =
∣∣∣∣∫ f(x+ y)µ(x, dy)

∣∣∣∣ ≤ ‖f‖∞ ∫
{|y|≥r}

µ(x, dy)→ 0

as r →∞. Thus, B̂f ∈ B∞(Rd).
Now let g ∈ C∞(Rd) be given. We denote the generator of T |C∞(Rd) by A. As

C∞c (Rd) is a core, we find a sequence (fn) ⊂ C∞c (Rd) such that gn := λfn−Afn → g,
see [12, Ex. II.1.15]. It then follows that fn → f = R(λ)g ∈ D(A). By the

above, B̂R(λ)gn = B̂fn ∈ B∞(Rd). As B̂R(λ) is ‖ · ‖∞-continuous, it follows

that B̂f = B̂R(λ)g = limn→∞ B̂R(λ)gn = limn→∞ B̂fn also belongs to B∞(Rd).

Consequently, B̂f ∈ B∞(Rd) whenever f ∈ D(A).

As T (t)D(A) ⊂ D(A) for every t > 0, it follows that B̂T (t)f ∈ B∞(Rd) for

f ∈ D(A). But as D(A) is dense in C∞(Rd) and B̂T (t) is ‖ · ‖-continuous, this is
also true for f ∈ C∞(Rd). �

Remark 6.8. Theorem 6.4(c) remains valid also without the assumption that C∞c (Rd)
is a core for T |C∞(Rd), provided we assume that b ∈ B∞(Rd;Rd).

To see this, pick a sequence φn ∈ C∞c (Rd) with 1B(0,n) ≤ φn ≤ 1B(0,2n) such

that supn ‖φn‖C2
b(R

d) <∞. Given f ∈ C
ρ
b(R

d) ∩ C∞(Rd), we put fn := fφn. Then

fn ∈ C
ρ
b(R

d) ∩ Cc(R
d) and fn is a bounded sequence that converges to f uniformly

on Rd; moreover, ∇fn is bounded and converges to ∇f locally uniformly.
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As b ∈ B∞(Rd;Rd) and the sequence ∇fn is uniformly bounded, it is easy to see
that b∇fn → b∇f with respect to ‖ · ‖∞. Making use of the boundedness of (fn) in
C
ρ
b(R

d) and the tightness assumption (Ti) we can prove that also the nonlocal part

converges with respect to ‖ · ‖∞. . In conclusion, B̂fn → B̂f with respect to ‖ · ‖∞.

As the proof of Theorem 6.4(b) shows that B̂fn ∈ B∞(Rd), the same is true for

its uniform limit B̂f . This proves that B̂f ∈ B∞(Rd) for all f ∈ C
ρ
b(R

d) ∩ C∞(Rd)

which is enough to ensure that B̂T (t) maps C∞(Rd) to B∞(Rd).

To prove part (b) of Theorem 6.4, we will employ the convergence result of
Proposition 5.2. As this form of resolvent convergence is of independent interest, we
formulate a separate lemma.

Lemma 6.9. Assume Hypothesis 6.1 and let sequences (bn) and (µn) be given that
satisfy the assumptions in Hypothesis 6.3 for a common constant β ∈ (0,min{2, ρ}).
Denote the associated operators (see (6.2)) by B̂n. Moreover, we are given functions
b and ν such that

(i) bn(x)→ b(x) and µn(x, ·)→ µ(x, ·) vaguely for every x ∈ Rd,
(ii) supn∈N (‖bn‖∞ + ‖µn‖β) <∞ with ‖ · ‖β defined in (6.3).

(iii) supx∈K supn∈N µn(x, {|y| > R})→ 0 as R→∞ for K b Rd.

Then, denoting the operator associated to b and µ by B̂, we find

(λ− (Â+ B̂n))−1f ⇀ (λ− (Â+ B̂))−1f, f ∈ Bb(R
d),

for large enough λ.

Proof. We give the proof only for ρ > 1. If ρ ≤ 1, then by Hypothesis 6.3(iv) all
terms involving the gradient vanish in the below computations; apart from that the
reasoning is analogous.

Without loss of generality, we may assume β ≥ 1 (otherwise consider β̃ :=
max{1, β}). We first note that also the functions b and ν satisfy Hypothesis 6.3 (see

Lemma A.4), whence Theorem 6.4(a) yields that Â+ B̂ and, for every n ∈ N, the

operator Â+ B̂n is the full generator of a Cb-semigroup. The discussion following
Hypothesis 6.3 shows that the operator B̂n defines a bounded linear operator from

C
β
b (Rd) to Bb(R

d). Using our assumption (ii) above, we actually see that there is a
constant K > 0 such that

(6.5) ‖B̂f‖∞ + sup
n∈N
‖B̂nf‖∞ ≤ K‖f‖Cβb (Rd), f ∈ C

β
b (Rd).

We now check the assumptions of Proposition 5.2.

Assumption (i): By Lemma 6.2, we have

‖B̂nR(λ)‖ ≤ ‖B̂n‖L(Cβb ,Bb)
‖R(λ)‖

L(Bb,C
β
b )
≤ KC(λ)→ 0

as λ→∞.

Assumption (ii): In view of Lemma 6.2, it suffices to prove that B̂nf ⇀ B̂f for
every f ∈ C

ρ
b(R

d), so fix f ∈ C
ρ
b(R

d). Because of (6.5), it actually suffices to show
pointwise convergence. Since bn converges pointwise to b, it is clear that the local
part of B̂nf converges to the local part of B̂f ; therefore we assume in the following
that the local part is zero. Write

B̂nf = I(r)n f + J (r,R)
n f +K(R)

n f,
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where

I(r)n f(x) :=

∫
{|y|≤r}

(f(x+ y)− f(x)−∇f(x) · y)µn(x, dy)

J (r,R)
n f(x) :=

∫
{r<|y|<R}

(f(x+ y)− f(x)−∇f(x) · yχ(y))µn(x, dy)

K(R)
n f(x) :=

∫
{|y|≥R}

(f(x+ y)− f(x))µn(x, dy)

for r ∈ (0, 1) and R ∈ (1,∞). We decompose the operator B̂ in the same way, and
we study the convergence for each of the terms separately. By another application
of Taylor’s formula,

sup
n∈N
|I(r)n f(x)| ≤ ‖f‖Cρb (Rd) sup

n∈N

∫
{|y|≤r}

|y|ρ µn(x, dy)

As ρ > β, it follows from (ii) that the right-hand side is finite and converges to 0
(uniformly in x) as r → 0. As ‖µ‖β < ∞, an analogous estimate holds for I(r)f .
Using

|K(R)
n f(x)| ≤ 2‖f‖∞

∫
{|y|≥R}

µn(x, dy)

and the corresponding estimate for K(R)f , assumption (iii) implies that |K(R)
n f(x)|+

|K(R)f(x)| → 0 uniformly in n ∈ N and x in compact subsets of Rd as R → ∞.
As f and ∇f are continuous, the vague convergence µn(x) → µ(x) entails that
Jr,Rn f(x) → Jr,Rf(x) for any r,R > 0 with µ(x, {|y| = r}) = 0 and ν(x, {|y| =
R}) = 0. Since there are for each fixed x at most countably many radii with
µ(x, {|y| = r}) > 0, we can let r → 0 and R→∞ along suitable sequences to deduce

that B̂nf(x)→ B̂f(x).

Assumption (iii): Making use of Lemma 6.2 again, we see that it suffices to prove

that B̂nun ⇀ 0 for any sequence (un)n∈N with un ⇀ 0 and supn∈N ‖un‖Cρb <∞.

Fix such a sequence. Then supn∈N ‖B̂nun‖∞ <∞ is immediate from (6.5) and it
only remains to prove pointwise convergence. Pick ρ′ ∈ (β, ρ). By Taylor’s formula,

|B̂nun(x)| ≤ ‖bn‖∞|∇un(x)|+ ‖un‖Cρ′b (B[x,R])

∫
{|y|≤R}

|y|ρ
′
µn(x, dy)

+ 2‖un‖∞
∫
{|y|>R}

µn(x, dy)

for any R > 1; here B[x, r] is the closed ball around x with radius R. Using (ii), the
fact that ρ > 1 and that (bn)n∈N is bounded, we find that given ε > 0 there is some
R� 1 such that

|B̂nun(x)| ≤ C‖un‖Cρ′b (B[x,R])
+ ε

for a finite constant C = C(R). In order to deduce that the left-hand side converges
to 0, we use the subsequence principle. As (un) is bounded in C

ρ
b , by compact

embedding, there is a subsequence (un′′)n′′∈N which converges on the closed ball

B[x, r] with respect to the Cρ
′
-norm. Since we know that un → 0 pointwise, the

Cρ-limit is also zero and so

lim sup
n′′→∞

|B̂n′′un′′(x)| ≤ ε.

Hence, lim supn→∞ |B̂nun(x)| ≤ ε. As ε > 0 is arbitrary, we conclude that

B̂nun(x)→ 0 for all x ∈ Rd.
Now Proposition 5.2 yields the claim. �

We can now finish the proof of Theorem 6.4
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Proof of Theorem 6.4(b). Let us first only consider kernels µ satisfying

(6.6) sup
x∈K

µ(x, {|y| > R})→ 0 as R→∞ for all K b Rd.

Given b and µ as in Hypothesis 6.3, we write B̂b,µ for the operator defined via
(6.2) with these particular coefficients and Sb,µ = (Sb,µ(t))t≥0 for the semigroup

generated by the operator Â+ B̂b,µ, which exists by part (a) of Theorem 6.4. Denote
by F the family of pairs (b, µ) for which the assertion holds, i.e.

F = {(b, µ) satisfying (6.6) and Hypothesis 6.3 : Sb,µ is sub Markovian}.

It follows from Lemma 6.9 and Corollary 5.4 that F is bp-closed. Therefore, it suffices
to show that (b, µ) ∈ F for any b ∈ Cc(R

d;Rd) and any µ ∈ Cc
(
Rd,M+(Rd \ {0})

)
with ‖µ‖β <∞ and (6.6). This is a consequence of the known fact that Cc(R

d;Rd)
is bp-dense in Bb(R

d;Rd) and an analogous result for measures which we establish
in Appendix A; see in particular Corollary A.6 (with g(y) := min{|y|β , 1}).

So fix b ∈ Cc(R
d;Rd) and µ ∈ Cc

(
Rd,M+(Rd \ {0})

)
with (6.6). Then, in

particular, Theorem 6.4(b) and Remark 6.8 show that Sb,µ is a C∞-semigroup; let
us denote the generator of the restriction of Sb,µ to C∞(Rd) by Lb,µ.

It was seen in the proof of Theorem 6.4(b) that for f ∈ C
ρ
b(R

d)∩C∞(Rd) we have

B̂b,νf ∈ B∞(Rd). Moreover, ‖µ‖β <∞ and (6.6) give

(6.7) lim sup
R→∞

sup
x∈K

∫
{|y|>R}

µ(x, dy) = 0 lim
r→0

sup
x∈K

∫
{|y|≤r}

|y|2 µ(x, dy) = 0,

for all K b Rd. This entails continuity of B̂b,νf , see Theorem B.1 (note that we
can assume without loss of generality that χ is smooth by modifying the drift term
accordingly). Hence, B̂b,µf ∈ C∞(Rd).

Denoting by A the generator of the restriction of T to C∞(Rd), we may consider

L := A+ B̂b,µ, defined on D(A), as an operator on the space C∞(Rd). We note that

B̂b,µR(λ)C∞(Rd) ⊂ C∞(Rd). and from this and Lemma 5.1 it follows that, for large
enough λ, the operator λ− L is surjective.

As is well known (see e.g. [13, Thm. 4.2.2]) a strongly continuous semigroup on
C∞(Rd) is sub Markovian if and only if its generator satisfies the positive maximum
principle. By assumption, this is certainly true for A. However, if f ∈ D(A) satisfies
f(x0) = max{f(x) : x ∈ Rd} ≥ 0, then f(x0 + y) − f(y) ≥ 0 for all y ∈ Rd; if
ρ > 1, we also see that ∇f(x0) = 0. It follows from D(A) ⊆ C

ρ
b(R

d), cf. Lemma 6.2,

and the definition of the operator B̂b,µ and that B̂b,µf(x0) ≥ 0. This shows that

L = A+ B̂b,µ satisfies the positive maximum principle.
By [13, Thm. 4.2.2], L generates a sub Markovian semigroup on C∞(Rd). However,

Lb,ν is obviously an extension of L, so we must have L = Lb,ν and thus the restriction
of S to C∞(Rd) is sub Markovian and so is then also S itself. This shows that
(b, ν) ∈ F and finishes the proof in this case.

To remove the tightness assumption (6.6), we consider the ‘small’ and the ‘large’
jumps created by µ separately. To that end, we put

(6.8) µs(x, dy) := 1{|y|≤1}µ(x, dy) and µl(x, dy) := 1{|y|>1}µ(x, dy).

We then split the operator B̂ = B̂1 + B̂2 where, in the notation above, B̂1 = Bb,µs
and B̂2 = B̂0,µl . As µs(x, {|y| > 1}) ≡ 0, we can apply the above to infer that

Â + B̂1 is the full generator of a sub Markovian semigroup. Noting that B̂2 is a
bounded operator and taking the special structure of this operator into account,
the results of [13, Sect. 4.10] (see in particular Exercise 3 on p. 261) yield that also

Â+ B̂ = Â+ B̂1 + B̂2 is the full generator of a sub Markovian semigroup. �
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7. Application: Martingale problems

We apply the results from the previous section to study perturbations of martingale
problems associated with Lévy-type operators. We do not strive for full generality;
we rather would like to illustrate how our results can be applied in this setting.
We will make the following assumptions which ensure that T and the perturbed
semigroup S are Feller semigroups, provided the tightness assumption (Ti) is satisfied.
Note, however, that (Ti) is not assumed in this section.

Hypothesis 7.1. Assume that T = (T (t))t≥0 is a semigroup of kernel operators such
that

(i) (T (t))t≥0 satisfies Hypothesis 6.1 for some constant ρ > 0,
(ii) (T (t))t≥0 is a Markovian C∞-semigroup,

(iii) the test functions C∞c (Rd) are a core for the generator A of T |C∞(Rd).

It follows from general theory (see, e.g., [46, Sect. 3.2]) that we can associate
Markov process (actually a Feller process) with càdlàg paths with the semigroup T ,
i.e. there is a Markov process whose transition semigroup equals T .

There is another connection between stochastic processes and (Feller) semigroups
via martingale problems. Let us briefly recall the relevant notions. By D([0,∞);Rd)
we denote the Skorohod space, i.e. the space of càdlàg functions ω : [0,∞)→ Rd; see
[5] for more information. Given a (possibly multi-valued) operator L with domain
D(L) , a set D ⊂ D(L) and a measure µ on Rd, a measure P on D([0,∞);Rd) is
called a solution to the (L,D;µ)-martingale problem if (i) P(ω0 ∈ A) = µ(A) for all
Borel sets A ⊂ Rd and (ii) the process

M
(f,g)
t (ω) := f(ωt)− f(ω0)−

∫ t

0

g(ωs) ds, w ∈ D[0,∞),

is a martingale under P with respect to the canonical filtration (σ(ωs : s ≤ t))t≥0 for
any (f, g) ∈ L with f ∈ D. In case that L is single valued on D, we have g = Lf .

We say that uniqueness in law holds for the (L,D)-martingale problem if any
two solutions P1, P2 with identical initial distribution satisfy P1 = P2. The (L,D)-
martingale problem is well-posed if for every x ∈ Rd there exists a unique solution
Px to the (L,D, δx)-martingale problem.

If (Xt) is a Markov Process associated with the semigroup T , then its distribution

solves the (Â,D(Â))-martingale problem for the full generator Â of T , see [13, Prop.
4.1.7]. Conversely, if the (L,D)-martingale problem is well-posed, then under each
measure Px, the canonical process (ωt)t≥0 is a Markov process [13, Thm. 4.4.2]; if
(L,D) is, in a sense, ‘rich enough’ to determine a semigroup uniquely, this semigroup
is the transition semigroup of the process, see [13, Thm. 4.4.2].

Theorem 7.2. Let (T (t))t≥0 be a semigroup satisfying Hypothesis 7.1 with full

generator Â and denote by A the generator of T |C∞(Rd). If B̂ is a Lévy-type operator

B̂f(x) = b(x)∇f(x) +

∫
Rd\{0}

(f(x+ y)− f(x)−∇f(x) · yχ(y))µ(x, dy)

with b(x) and ν(x, dy) satisfying Hypothesis 6.3, then the (A+B̂,C∞c (Rd))-martingale
problem is well-posed.

Proof. By Theorem 6.4, there is a Markovian Cb-semigroup S = (S(t))t≥0 with full

generator Â+ B̂. By Corollary 6.7, {(f,Af + B̂f) : f ∈ C∞c (Rd)} is a bp-core for

Â+B̂. By [13, Prop. 4.3.1], a measure P on D([0,∞);Rd) solves the (A+B̂,C∞c (Rd))-

martingale problem if and only if it solves the Â+ B̂-martingale problem. It follows

from [13, Thm. 4.4.1], applied with L = D(Â), which certainly includes C∞(Rd) and

is thus separating, that uniqueness holds for the Â+ B̂-martingale problem (and

thus for the (A+ B̂,C∞c (Rd))-martingale problem).
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It thus remains to establish existence of solutions. To that end, we first additionally
assume that the tightness assumption (Ti) is satisfied. In this case, Theorem 6.4
yields that S is actually a Feller semigroup and as is well known, see, e.g. [27, Theorem
4.10.3], this implies well-posedness for the martingale problem for the generator of

S|C∞ . In particular, there is a solution to the (A+ B̂,C∞c (Rd))-martingale problem.
To remove the tightness condition, we proceed as in the proof of Theorem 6.4(b),

i.e. we write B̂ = B̂1 + B̂2 for a bounded operator B̂2 and a Lévy-type operator
B̂1, whose jumping kernels are supported in the unit ball, cf. (6.8). The existence

of a solution to the (A + B̂1,C
∞
c (Rd))-martingale problem is clear from the first

part. Since B̂2 is a bounded perturbation, existence of a solution to the martingale
problem for Â+ B̂ = Â+ B̂1 + B̂2 follows from [13, Prop. 4.10.2]. �

We can now also prove continuous dependence of the solutions of our martingale
problem on the ‘coefficients’ b and µ. To that end, we make the same assumptions
as in Lemma 6.9. As a direct consequence, we obtain a convergence result for
semigroups, which fits well to our earlier result on the resolvent convergence, cf.
Proposition 5.2 and Corollary 5.3.

Theorem 7.3. Let (T (t))t≥0 be a semigroup satisfying Hypothesis 7.1 for some con-

stant ρ > 0 and denote by Â its full generator. Let (bn)n∈N∪{∞} and (µn)n∈N∪{∞}
satisfy Hypothesis 6.3 for a common constant β ∈ (0,min{2, ρ}). Denote the associ-

ated Lévy-type operators by B̂n for n ∈ N ∪ {∞}. Assume that

(i) bn(x)→ b∞(x) and µn(x, ·)→ µ∞(x, ·) vaguely for every x ∈ Rd,
(ii) supn∈N (‖bn‖∞ + ‖µn‖β) <∞ with ‖ · ‖β defined in (6.3).

(iii) supx∈K supn∈N µn(x, {|y| > R})→ 0 as R→∞ for K b Rd.

Then, if Pn solves the (A+ B̂n,C
∞
c (Rd), δxn)-martingale problem and P∞ solves the

(A+ B̂∞,C
∞
c (Rd), δx)-martingale problem for some sequence xn → x, we have weak

convergence Pn ⇀ P∞.
In particular, if Sn(t) and S∞(t) denote the perturbed semigroups with generator

Â + B̂n and Â + B̂∞, respectively, then Sn(t)f → S∞(t)f pointwise for every
f ∈ Cb(R

d).

Proof. It was seen in the proof of Lemma 6.9 that under the assumptions above
B̂nu ⇀ B̂∞u for all u ∈ D(Â). Thus, if (u, f) ∈ Â, we have (u, f + B̂nu) ∈ Â+ B̂n
and this bp-converges to (u, f + B̂∞u). In particular, the sequence gn := f + B̂nu is
uniformly bounded. By assumption,

M
(u,gn)
t (ω) := u(ωt)− u(ω0) +

∫ t

0

gn(ωs) ds

is a Pn-martingale. Combining [13, Thm. 4.9.4] and [13, Cor. 3.9.3], it follows that
the sequence (Pn) is tight. For an alternative argument yielding the tightness, see
[32, Corollary 3.9].

We will invoke the subsequence principle, see e.g. [5, Thm. 2.6], to prove that
Pn → P weakly, where P is the distribution of X.

To that end, observe that as a further consequence of Lemma 6.9, we have

Rn(λ)f := (λ− (Â+ B̂n))−1f ⇀ R∞(λ)f := (λ− (Â+ B̂))−1f, f ∈ Bb(R
d),

for large enough λ. In fact, Corollary 5.3 implies that the convergence is actually
uniform on compact sets.

Now, take any subsequence of (Pn)n∈N, then, by tightness, there is a further
subsequence converging to some measure, say, Q. For simplicity of notation, we
denote the convergent subsequence also by Pn. For fixed f ∈ Bb(R

d), s ≤ t,
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0 ≤ r1 < . . . < rk ≤ s and hj ∈ Cb(R
d), define

Φn(ω) :=

[
Rn(λ)f(ωt)−Rn(λ)f(ωs)−

∫ t

s

(λRn(λ)f − f)(ωr) dr

] k∏
j=1

hj(ωrj ),

where n ∈ N∪{∞}. SinceRn(λ)f ∈ D(Â+B̂n) and Pn solves the martingale problem

for Â + B̂n, we find that EPn(Φn) :=
∫

Φn dPn = 0 for all n ∈ N. We claim that
EQ(Φ∞) = 0. Because of the weak convergence, it holds that EPn(Φ∞)→ EQ(Φ∞).
If we can show that

(7.1) lim
n→∞

|EPn(Φn − Φ∞)| = 0,

then it follows that EQ(Φ∞) = limnEPn(Φn) = 0. To prove (7.1), we note that, by
the uniform boundedness of the resolvents, M := supn∈N ‖Φn‖∞ + ‖Φ∞‖∞ < ∞.
By tightness, given ε > 0 we find K b D([0,∞);Rd) such that Pn(Kc) ≤ ε for
all n ∈ N. Note that R := supy∈K sups≤t |ωs| < ∞. So, by the locally uniform
convergence of the resolvents, we find N ∈ N such that

|Rn(λ)f(ωr)−R∞(λ)f(ωr)| ≤ ε

for all n ≥ N , r ∈ [0, t] and y ∈ K. Thus, For some constant C > 0, we have

|EPn(Φn − Φ∞)| ≤ Cε+Mε

for all n ≥ N . Hence,

lim sup
n→∞

|EPn(Φn − Φ∞)| ≤ (M + C)ε.

As ε > 0 was arbitrary, this finishes the proof of (7.1) and shows that EQ(Φ∞) = 0.
This implies that

M
(f)
t (ω) := R∞(λ)f(ωt)−

∫ t

0

(λR∞(λ)f − f)(ωr) dr, ω ∈ D([0,∞);Rd),

is a martingale with respect to Q for any f ∈ Bb(R
d). Noting that

{(R∞(λ)f, λR∞(λ)f − f); f ∈ Bb(R
d)} = Â+ B̂,

and Q(ω0 ∈ A) = δx(A) this means that Q is a solution to the (Â+ B̂,D(Â), δx)-
martingale problem and thus, by well-posedness, Q = P∞. Hence, by the subsequence
principle, Pn → P∞ weakly. �

8. Examples

Our perturbation results for Feller semigroups and martingale problems require
two sets of assumptions: one on the original semigroup T (cf. Hypothesis 6.1 resp.

7.1) and one on the perturbation B̂ (cf. Hypothesis 6.3). The latter ensures that

B̂ is indeed a (lower order) perturbation of the generator of (T (t))t≥0 and involves
the parameter ρ ∈ (0, 2) from Hypothesis 6.1, which characterizes the regularizing

properties of T . Given this parameter ρ, the conditions on B̂ are typically easy to
check, and so the main work is to verify the assumptions on T ; in particular, the
regularity estimate

‖T (t)f‖Cρb ≤ ϕ(t)‖f‖∞, t ∈ (0, 1), f ∈ Bb(R
d),

for some function ϕ ∈ L1(0, 1). For a brief summary of some of our main results we
refer to Theorem 1.1. In this section, we present examples of semigroups satisfying our
assumptions and give some applications, e.g. in the theory of stochastic differential
equations.
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8.1. Differential operators. Let A be a second order differential operators on Rd

of the form

(8.1) Af(x) := tr(Q(x)∇2f(x))

for Q(x) = (qij(x)) ∈ Rd×d. Our next result gives conditions which ensure that the
associated semigroup satisfies the assumptions of our main results.

Proposition 8.1. Assume that the coefficients qij are bounded, Hölder continuous,
symmetric (i.e. qij = qji) and strictly elliptic in the sense that there exists a constant
η > 0 such that

d∑
i,j=1

qij(x)ξiξj ≥ η|ξ|2, x, ξ ∈ Rd.

Then the semigroup T associated with (8.1) satisfies Hypothesis 6.1 and 7.1 with
arbitrary ρ ∈ (0, 2), and so Theorem 1.1 is applicable (with any ρ ∈ (0, 2)).

Proof. First of all, we note that there is a Markovian Feller semigroup T associated
with (8.1); this follows from [9, Theorem 5.11], see also [13, Theorem 8.1.6]. Moreover,
the second step of the proof of [9, Theorem 5.11], with (0.40) replaced by (0.41) and
(0.42) from [10], actually shows that

(8.2) ‖T (t)f‖C2
b(R

d) ≤ ct−1‖f‖∞, f ∈ Bb(R
d).

Since we also have ‖T (t)f‖∞ ≤ ‖f‖∞ and the Hölder space C
γ
b (Rd), γ ∈ (0, 2) \ {1},

is a real interpolation space between Cb(R
d) and C2

b(R
d), see [57, Thm. 2.7.2.1],

an application of a classical interpolation theorem [57, Sec. 1.3.3] yields that
‖T (t)f‖Cγb (Rd) ≤Mt−ρ/2‖f‖∞ for some constant M = M(ρ) > 0 and any f ∈ L∞,

ρ ∈ [0, 2]\{1}. Consequently, Hypothesis 6.1 is satisfied for any ρ ∈ (0, 2). Moreover,
C∞c (Rd) is a core for the generator of T |C∞(Rd), cf. [13, Theorem 8.1.6], and so
Hypothesis 7.1 holds. �

Remark 8.2. Under the milder regularity assumption that the diffusion coefficients qij
are uniformly continuous, one can show with some more effort that the Hypothesis 6.1
is satisfied (for any ρ ∈ (0, 2)), e.g. using results from [41]. It is, however, not
clear whether C∞c (Rd) is still a core. In dimension d = 1, one can use that cores
are preserved under random time changes, cf. [29, Theorem 4.1], to deduce that
C∞c (R) is indeed a core if the diffusion coefficient is (uniformly) continuous. Thus,
Proposition 8.1 and Corollary 8.3 below, hold in dimension d = 1 also for uniformly
continuous diffusion coefficients.

Combining Proposition 8.1 with Theorem 1.1, we get the following corollary.

Corollary 8.3. Let L be a Lévy-type operator of the form

Lf(x) = b(x) · ∇f(x) + tr(Q(x)∇2f(x))

+

∫
Rd\{0}

(f(x+ y)− f(x)− y · ∇f(x)1(0,1)(|y|))µ(x, dy).
(8.3)

If the drift b is bounded and measurable, the diffusion coefficients are bounded, Hölder
continuous, symmetric and strictly elliptic, the jumping kernels depend measurably
on x and there is some β ∈ (0, 2) such that

sup
x∈Rd

(∫
Rd\{0}

min{|y|β , 1}µ(x, dy)

)
<∞,

then there is a Markovian Cb-Feller semigroup T whose full generator L̂ is the bp-
closure of {(f,Lf); f ∈ C∞c (Rd)}. Moreover, the (L,C∞c (Rd))-martingale problem
is well-posed. If additionally the family (µ(x, dy))x∈Rd is tight, then T is a Feller
semigroup.
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As already mentioned in the introduction, the fact that second order (or even
higher order) differential operators with lower order coefficients that are merely
measurable generate strongly continuous semigroups on C∞(Rd) is known for a
long time (see [52]). Here, we also allow lower order integral terms that are merely
measurable, providing an extension of Taira’s results on domains. Also for the
well-posedness of the martingale problem we require less regularity than e.g. in the
classical results by Stroock [53], where continuous dependence of µ(x, ·) on x is
assumed.

8.2. Lévy generators. Next we consider perturbations of operators A which are the
generators of Lévy processes, that is, stochastic processes with càdlàg sample paths
and independent and stationary increments. Recall that, by the Lévy–Khintchine
formula, any Lévy process can be uniquely characterized (in distribution) by its
characteristic exponent ψ or by its Lévy triplet (b,Q, ν), cf. [47] for more information.
An important example is the fractional Laplacian −(−∆)α/2, which is the generator
of the isotropic α-stable Lévy process. Its characteristic exponent is ψ(ξ) = |ξ|α and
the corresponding Lévy triplet is (0, 0, ν) with

(8.4) ν(U) = cd,α

∫
U

1

|y|d+α
dy

for a normalizing constant cd,α.

In the following, we will assume that the Hartman–Wintner condition is satisfied:

(8.5) lim
|ξ|→∞

Reψ(ξ)

log |ξ|
=∞.

This is a mild growth condition on Reψ which ensures the existence of a smooth
transition density pt for each t > 0 for the associated process, cf. [26] for a thorough
discussion.

Proposition 8.4. Let (Xt)t≥0 be a Lévy process with transition semigroup (T (t))t≥0
and characteristic exponent ψ satisfying the Hartman–Wintner condition (8.5). If
there is a constant κ > 0 such that the transition density pt of Xt satisfies

(8.6)

∫ 1

0

(∫
Rd
|∇pt(x)| dx

)κ
dt <∞.

then Hypothesis 6.1 and 7.1 hold for any ρ ≤ κ, and so Theorem 1.1 is applicable
(with ρ ≤ κ).

Proof. It is well known that T (t)f(x) =
∫
f(x+ y)pt(y) dy is a C∞-semigroup and

because of the existence of the density, each T (t) is a strong Feller operator, see
e.g. [18, pp. 438–39]. Moreover, C∞c (Rd) is a core for the generator of T (t)|C∞ by

[6, Cor. 2.10]. Denote by Â the corresponding full generator. The differentiation
lemma for parameter-dependent integrals entails that T (t)f is differentiable for any
t > 0, f ∈ L∞(Rd), and

‖∇T (t)f‖∞ ≤ ϕ(t)‖f‖∞ with ϕ(t) := max

{
1,

∫
Rd
|∇pt(x)| dx

}
.

As p2t is the convolution of pt with itself, ‖∇2T (t)f‖∞ ≤ d2ϕ(t/2)2‖f‖∞, cf. [34,
Lem. 4.1]. Using that C

γ
b (Rd), γ ∈ (0, 2) \ {1}, is a real interpolation space between

Cb(R
d) and C2

b(R
d), see [57, Thm. 2.7.2.1], and applying an interpolation theorem

[57, Sec. 1.3.3], we find that ‖T (t)f‖Cγb (Rd) ≤ Mϕ(t/2)γ‖f‖∞ for some constant

M = M(γ) > 0 and any f ∈ L∞, γ ∈ [0, 2]. �

Gradient estimates of the form (8.6) for Lévy processes have been studied in-
tensively in the last decade, e.g. [14, 21, 30, 36, 51] to mention but a few, and
so Proposition 8.4 applies to a wide class of Lévy generators. Using the gradient
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estimates from [51, Ex. 1.5], we find that the assumptions of Proposition 8.4 are
satisfied for Lévy measures which are dominated from below by a stable measure.

Example 8.5. Let (T (t))t≥0 be the semigroup of a pure-jump Lévy process with
Lévy measure ν satisfying

ν(U) ≥
∫ r0

0

∫
S
1U (rθ)r−1−α dr %(dθ), U ∈ B(Rd \ {0}),

for some constants α ∈ (0, 2), r0 > 0 and a measure % on the unit sphere S whose
support is not contained in any proper linear subspace of Rd. Then the assumptions
of Proposition 8.4 are satisfied (with κ < α).

Example 8.5 covers, in particular, stable operators, i.e. operators (1.1) with
b = 0, Q = 0 and Lévy measures ν of the form ν(U) =

∫∞
0

∫
S 1U (rθ)r−1−α dr %(dθ).

Let us mention that Komatsu [28] was one of the first to study perturbations of
stable operators under Lévy-type operators; however, his result requires quite strong
assumptions on the regularity the density of ν. Moreover, we would like to mention
a closely related result by Peng [43] who considers perturbation of the fractional
Laplacian by time-dependent kernels µ(t, x, dy). Our approach has the advantage
that it is not restricted to stable operators but works in a much more general setting,
as demonstrated by Proposition 8.4

8.3. Operators of variable order. Our next application concerns perturbations
of the fractional Laplacian of variable order −(−∆)α(·)/2, which is defined on C∞c (Rd)
by

−(−∆)α(·)/2f(x) = cd,α(x)

∫
{y 6=0}

(f(x+y)−f(x)−y ·∇f(x)1(0,1)(|y|))
1

|y|d+α(x)
dy

for a certain normalizing constant cd,α(x). This operator appears as generator of
so-called processes of variable order, see e.g. [4, 27, 30] for the construction of such
processes and more information about the probabilistic background. Denote by
(T (t))t≥0 the associated C∞-Feller semigroup.

Proposition 8.6. If α : Rd → (0, 2] is Hölder continuous with αL := infx α(x) > 0,
then (T (t))t≥0 satisfies Hypothesis 6.1 and 7.1 with ρ = αL, and so Theorem 1.1 is
applicable (with ρ = αL).

Proof. Let (T (t))t≥0 be the Markovian Feller semigroup associated with the operator

−(−∆)α(·)/2, see e.g. [4] or [30, Thm. 5.2] for the existence, and denote by Â its
full generator and by A its part in C∞(Rd). It is known from the construction of
the semigroup that C∞c (Rd) is a core and that T (t)f(x) =

∫
f(y)pt(x, y) dy for a

bounded transition function pt, cf. [30]. In consequence, by [6, Thm. 1.9, Thm. 1.14],
each T (t) is a strong Feller operator. Moreover, by [33, Prop. 6.1],

‖T (t)f‖
C
β
b (R

d) ≤ cβt
−β/αL‖f‖∞, f ∈ Bb(R

d), t ∈ (0, 1),

for any β < αL. In conclusion, Hypothesis 7.1 is satisfied. �

Example 8.7. Consider

Lu = −(−∆)α(·)/2u− (−∆)β(·)/2

where α : Rd → (0, 2] is Hölder continuous with αL := infx α(x) > 0 and β : Rd →
(0, 2) is a measurable function with supx β(x) < αL. Then, by Proposition 8.6
and Theorem 1.1, the bp-closure of {(f,Lf); f ∈ C∞c (Rd)} is the generator of a
Markovian Cb-Feller semigroup S and the (L,C∞c (Rd))-martingale problem is well-
posed. If additionally infx β(x) > 0, then the tightness condition (Ti) is satisfied
and S is a C∞-Feller semigroup.

Let us mention that Theorem 7.3 also yields continuous dependence of these
solutions on the ‘coefficient’ β. More precisely, if βn, n ∈ N are measurable functions
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such that βn(x)→ β(x) for all x ∈ Rd and 0 < infn infx β(x) ≤ supn supx βn(x) <
αL, then P(βn,x) → P(β,x) weakly for every x ∈ Rd. In particular, the associated
semigroups satisfy S(βn)(t)f(x)→ S(β)(t)f(x) for any t > 0, x ∈ Rd and f ∈ Cb(R

d).

Proposition 8.6 can be extended to a wider class of non-local operators, that
is, we can replace the fractional Laplacian of variable order −(−∆)α(·)/2 by other
operators of variable order, see [30, Section 5.1] for some interesting choices.

8.4. Non-local operators and Lévy-driven SDEs. In this subsection, we show
how our perturbation results can be applied in the theory of stochastic differential
equations (SDEs). The key is a result by Kurtz [40] which states that the existence
of solutions to Lévy-driven SDEs can be equivalently characterized by the existence
of solutions to martingale problems associated with certain Lévy-type operators
(1.1). For a comprehensive study of Lévy-driven SDEs, e.g. classical existence and
uniqueness results, we refer to Ikeda–Watanabe [17] and Protter [45]. Our first result
concerns SDEs with additive Lévy noise.

Proposition 8.8. Let (Lt)t≥0 be a Lévy process with characteristic exponent ψ
satisfying the Hartman–Wintner condition (8.5). If the transition density pt satisfies∫ 1

0

∫
Rd
|∇pt(x)| dx dt <∞, then the SDE

(8.7) dXt = b(Xt) dt+ dLt, X0 = x,

has a unique weak solution. Moreover, the unique solution does not explode in finite
time and gives rise to a Markovian Feller semigroup with symbol

q(x, ξ) = −ib(x) · ξ + ψ(ξ), x, ξ ∈ Rd.
Proof. This is immediate from Proposition 8.4 (with κ = 1) and the results of
[40]. �

Proposition 8.8 applies, in particular, to any Lévy process with characteristic
exponent ψ satisfying Reψ(ξ) ≥ c|ξ|α, |ξ| � 1, for some α > 1; indeed, (8.5) is then
trivial and the integrability condition on ∇pt follows from [51, Thm. 3.2]. Let us
mention that Tanaka et. al [56, pp. 82,83] obtained the existence of a unique solution
under the milder assumption that 1

Reψ(ξ) = o
(
|ξ|−1

)
as |ξ| → ∞. Furthermore,

there is ongoing research about the optimal assumptions on the drift b to ensure
the existence of a unique weak solution to (8.7) for a given Lévy process; e.g. [8]
considers isotropic α-stable drivers, α > 1, and (generally unbounded) drifts b from
some Kato class.

Proposition 8.9. Let (Lt)t≥0 be a one-dimensional isotropic α-stable Lévy process
for α ∈ (1, 2), i.e. (Lt)t≥0 is a Lévy process with characteristic exponent ψ(ξ) = |ξ|α.
Let σ : R→ R be a Hölder continuous function with 0 < infx σ(x) ≤ supx σ(x) <∞.
For every b ∈ Bb(R), there is a unique weak solution to the SDE

(8.8) dXt = b(Xt−) dt+ σ(Xt−) dLt, X0 = x.

The unique solution does not explode in finite time and gives rise to a Markovian
C∞-Feller semigroup with symbol

q(x, ξ) = −ib(x) · ξ + |σ(x)|α|ξ|α.
Proof. Since σ is Hölder continuous, the SDE dYt = σ(Yt−) dLt has a unique weak
solution which gives rise to a Feller process, see e.g. [37, Thm. 2.1] or [30, Thm.

5.23]. Denote by (T (t))t≥0 the associated semigroup and by Â the full generator.
It is known that C∞c (R) is a core for the generator of T |C∞(R), cf. [37, 30]. The
strong Feller property of T (t) follows from [6, Thm. 1.14] and the fact that Yt has a
bounded transition density pt, see e.g. [30]. Moreover, [33, (Proof of) Proposition
4.5] yields the regularity estimate

(8.9) ‖T (t)f‖
C
β
b (R) ≤ cβt

−β/α‖f‖∞, f ∈ Bb(R), t > 0,
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for β < α. Choosing β ∈ (1, α) and setting B̂f(x) = b(x)∇f(x), we see that the
assumptions of Theorem 6.4 are satisfied, and so there is a Markovian C∞-semigroup
with full generator Â+B̂. Using the well-posedness of the (A+B̂,C∞c (R))-martingale
problem, which holds by Theorem 7.2, it follows from [40] that the SDE (8.8) has a
unique weak solution. �

Remark 8.10. Proposition 8.9 can be extended in several ways:

(i) We can consider a wider class of driving Lévy processes (Lt)t≥0. There
are two key ingredients which we need. Firstly, the existence of a unique
weak solution to the SDE dYt = σ(Yt−) dLt; there is extensive literature on
this topic, see e.g. [7, 35, 30, 37, 58] and the references therein. Secondly,
a regularity estimate ‖T (t)f‖

C
β
b (R

d) ≤ ϕ(t)‖f‖∞ for the corresponding

semigroup, where ϕ ∈ L1(0, 1) and β > 1. Though there are quite some
works on regularizing properties of semigroups associated with SDEs, many
of them study only β-Hölder regularity for β ≤ 1, and this is not enough
for our purposes.

(ii) Using localization techniques for martingale problems, one can relax the
growth assumptions on b and σ; see [31, Thm. 4.2] and [16, Thm. 5.3] for
useful results in this direction.

Proposition 8.11. Let (Lt)t≥0 be a one-dimensional isotropic α-stable Lévy process
for α ∈ (0, 2). Let (Mt)t≥0 be a one-dimensional Lévy process independent of (Lt)t≥0
with Lévy triplet (b, 0, ν) such that

∫
{|y|≤1} |y|

β ν(dy) < ∞ for some β ∈ [0, α).

If α ≤ 1 also assume that the compensated drift b −
∫
{|y|<1} y ν(dy) is zero. Let

σ : R→ (0,∞) be a Hölder continuous mapping with 0 < infx σ(x) ≤ supx σ(x) <∞.
For every κ ∈ Bb(R), the SDE

dXt− = κ(Xt−) dMt + σ(Xt−) dLt, X0 = x

has a unique weak solution. It does not explode in finite time and it gives rise to a
Markovian Feller semigroup with symbol

q(x, ξ) = ψ(κ(x)ξ) + |σ(x)|α|ξ|α,

where ψ denotes the characteristic exponent of (Mt)t≥0.

Proposition 8.11 can be extended to other driving Lévy processes (Lt)t≥0, cf.
Remark 8.10.

Proof of Proposition 8.11. Because of the integrability condition on the Lévy mea-
sure ν, an application of Taylor’s formula shows that the operator

B̂f(x) := b · ∇f(x)1{α>1}

+

∫
{y 6=0}

(f(x+ κ(x)y)− f(x)− f ′(x)κ(x)y1(0,1)(|y|)1{α>1}) ν(dy)

satisfies ‖B̂f‖∞ ≤ C‖f‖Cβb (R) for some constant C > 0. Moreover, Hypothesis 6.3

holds. Note that the kernels µ(x, dy) associated with B̂ satisfy the tightness condition
(Ti) because

µ(x, {|y| ≥ R}) = ν({y ∈ R \ {0}; |κ(x)y| ≥ R})

≤ ν({y ∈ R \ {0}; |y| ≥ R/‖κ‖∞})
R→∞−−−−→ 0.

Now we can proceed exactly as in the proof of Proposition 8.9; the only difference is
that we consider the just-defined operator B̂ rather than the drift operator. �

Example 8.12. Let α ∈ (0, 2] and β ∈ (0, α). Let (Lt)t≥0 be an isotropic α-stable
Lévy process and (Mt)t≥0 an isotropic β-stable Lévy process, which is independent of
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(Lt)t≥0. Let σ be a Hölder continuous function with 0 < infx σ(x) ≤ supx σ(x) <∞.
Then, by Proposition 8.11 and Theorem 7.3:

(i) For every κ ∈ Bb(R
d), the SDE

(8.10) dXt = κ(Xt−) dMt + σ(Xt−) dLt, X0 = x,

has a unique weak solution. It gives rise to a Markovian Feller semigroup.
(ii) If κn ∈ Bb(R), n ∈ N, is a sequence of measurable functions such that

κn
bp→ κ, then the solutions X(κn) to (8.10) (with κ replaced by κn) converge

weakly to X = X(κ) in the Skorohod space D[0,∞).

Appendix A. bp-convergence of measure-valued functions

The concept of bp-convergence, see Section 2, is a very useful tool in probability
theory and allows for a version of Dynkin’s π-λ theorem for bounded measurable
functions. We recall that if E is a metric space, then a set M ⊂ Bb(E) is called

bp-closed if whenever (fn) ⊂M is a sequence with fn
bp→ f , then also f ∈M . The

bp-closure of M ⊂ Bb(E) is the smallest bp-closed subset of Bb(E) that contains M .
If the bp-closure of M is Bb(E) we say that M is bp-dense in Bb(E).

We recall the following general result from [13, Prop. 3.4.2].

Proposition A.1. In a metric space E, the set Cb(E) is bp-dense in Bb(E). If E
is additionally locally compact, then also Cc(E) is bp-dense in Bb(E).

In this appendix, we aim to extend this result to functions that take values in the
cone M+(E) of positive, locally finite measures on E, where E is a locally compact,
separable metric space. To that end, we endow M+(E) with the vague topology,
induced by the space Cc(E) of continuous functions with compact support. As is
well known, see [22, Thm. A.2.3(i)], M+(E) is a Polish space in the vague topology,
i.e. the topology is induced by a complete, separable metric.

As a matter of fact, we will not be interested in the case of arbitrary E, but only
in the case E = Rd \ {0}. Fix a continuous function g : Rd \ {0} → [0,∞). Given a
measure ν ∈M+(Rd \ {0}), we put

|ν|g :=

∫
Rd\{0}

g(y) dν(y).

We denote by Kg(Rd,M+(Rd \ {0})) the set of measurable mappings µ : Rd →
M+(Rd \ {0}) such that

‖µ‖g := sup
x∈Rd

|µ(x)|g <∞ and lim
R→∞

sup
x∈K

µ(x, {|y| > R}) = 0
}

for all K b Rd.

We note that, as a consequence of [22, Thm. A.2.3(iv)] the map µ : Rd →M+(Rd \
{0}) is measurable if and only if x 7→

∫
Rd
f(y)µ(x, dy) is measurable for every

f ∈ Cc(R
d \ {0}) if and only if x 7→ µ(x,A) is measurable for every relatively

compact set A.

Definition A.2. We say that a sequence (µn) ⊂ Kg(Rd,M+(Rd \ {0})) converges
boundedly and pointwise to µ : Rd →M+(Rd \ {0}), if

(i) supn ‖µn‖g <∞,
(ii) µn(x)→ ν(x) vaguely for every x ∈ Rd and
(iii) for every K b Rd we have limR→∞ supn∈N supx∈K µn(x, {|y| > R}) = 0.

We write µn
bp→ ν to indicate bounded and pointwise convergence.

Remark A.3. We note that if g(x) = ϕ(|x|) for some function ϕ : (0,∞)→ (0,∞)
with ϕ(t) ↑ ∞ as t → ∞, then condition (iii) in Definition A.2 is automatically
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fulfilled and follows from assumption (i). Indeed, for R > 0, x ∈ Rd and n ∈ N we
have

µn(x, {|y| > R}) ≤ 1

ϕ(R)

∫
{|y|>R}

ϕ(|y|)µn(x, dy) ≤ 1

ϕ(R)
sup
n∈N
‖µn‖g → 0.

We note that we did not assume in the above definition that the limit µ belongs
to Kg(Rd,M+(Rd \ {0})). As it turns out, this holds true automatically.

Lemma A.4. Let (µn) ⊂ Kg(Rd,M+(Rd \ {0})). If µn
bp→ µ, then also µ belongs

to Kg(Rd,M+(Rd \ {0})).

Proof. We first note that µ is measurable as pointwise limit of measurable functions.
We now pick C > 0 such that ‖µn‖g ≤ C for all n ∈ N and fix a sequence
(fk) ∈ Cc(R

d \ {0}) such that 0 ≤ fk(y) ↑ g(y). As µn(x)→ µ(x) vaguely, we obtain
for fixed k ∈ N and arbitrary x ∈ Rd that∫

Rd
fk(y)µ(x, dy) = lim

n→∞

∫
Rd
fk(y)µn(x, dy) ≤ lim sup

n→∞

∫
Rd
g(y)µn(x, dy) ≤ C.

Taking the limit k →∞, monotone convergence implies∫
Rd
g(y)µ(x, dy) ≤ C

for every x ∈ Rd, proving that ‖µ‖g ≤ C <∞. To prove that for a compact set K,
we have limR→∞ supx∈K µ(x, {|y| > R}) = 0, we pick, given ε > 0, a radius R > 0
such that µn(x, {|y| > R}) ≤ ε for all x ∈ K and n ∈ N. Approximating 1{|y|>R}
by an increasing sequence of functions in Cc(R

d), we can repeat the above argument
to prove that µ(x, {|y| > R}) ≤ ε for all x ∈ K. �

In what follows, we use the notions of bp-closedness, bp-closure and bp-density
with the obvious meaning also for subsets of Kg(Rd,M+(Rd \ {0})). We can now
prove the main result of this appendix, a version of Proposition A.1 for measure-
valued functions.

Theorem A.5. The set Cc(R
d,M+(Rd \ {0}))∩Kg(Rd,M+(Rd \ {0})) is bp-dense

in Kg(Rd,M+(Rd \ {0})).

Proof. We write Kg
C for the set which is claimed to be bp-dense and denote by F

its bp-closure. We proceed in several steps.

Step 1 : We prove that if µ(x,A) = ϕ(x) · ν(A) for some ϕ ∈ Bb(R
d) and

ν ∈M+(Rd \ {0}) with |ν|g <∞, then µ ∈ F.
Indeed, if ϕ ∈ Cc(R

d), then a function µ of the above form belongs to Kg
C and

hence to F. However, if ϕn
bp→ ϕ it is easy to see that ϕn(·)ν bp→ ϕ(·)ν and hence the

latter belongs F if this is true for the approximating sequence. Invoking Proposition
A.1, it follows that indeed for every ϕ ∈ Bb(R

d) the above function µ belongs to F.

Step 2 : We prove that F is a cone.
To see this, fix µ ∈ F and put

Fµ :=
{
µ̃ ∈ F : sµ+ tµ̃ ∈ F for all s, t ∈ (0,∞)}.

A moments thought shows that Fµ is bp-closed. If µ ∈ Kg
C , then clearly every

element of Kg
C belongs to Fµ as Kg

C is itself a cone. Thus F ⊂ Fµ and hence F = Fµ.
Now let µ ∈ F be arbitrary. Then we have Kg

C ⊂ Fµ by what was just proved. Using
that Kg

C is bp-dense in F once again, we find Fµ = F for every µ ∈ F which proves
that F is indeed a cone.

Step 3 : It follows from Step 1 and Step 2 that every function of the form

µ(x, ·) =

n∑
k=1

1Ak(x)νk(·),
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where A1, . . . , An ∈ B(Rd) and ν1, . . . , νn ∈ M+(Rd \ {0}) with |νk|g < ∞ for all
k = 1, . . . , n, belongs to F. Given any sequence (Ak) ⊂ B(Rd) of pairwise disjoint
sets and a tight sequence νk ∈M+(Rd \ {0}) with supn |νn|g <∞ also the function

µ(x, ·) :=

∞∑
k=1

1Ak(x)νk(·)

belongs to F; indeed, the partial sums are all in F and so their bp-limit µ belongs
to F by the closedness of F.

Step 4 Fix µ ∈ Kg(Rd,M+(Rd \ {0})) with limR→∞ supx∈Rd µ(x, {|y| > R}) = 0.
We put

Sµ := {ν ∈M+(Rd \ {0}) : |ν|g ≤ ‖µ‖g and

ν({|y| > R}) ≤ sup
x∈Rd

µ(x, {|y| > R}) for all R > 0}.

Arguing similar as in the proof of Lemma A.4, we see that Sµ is a closed subset
of M+(Rd \ {0}). Consequently, Sµ is separable, whence we find a dense sequence
(νn) ⊂ Sµ that is dense in Sµ.

Let us fix a metric ρ that generates the topology on Sµ. We write B(ν, ε) for the
open ball in Sµ of radius ε and with center ν ∈ Sµ. We can now inductively define

sets B
(n)
k by B

(n)
1 = B(ν1, n

−1) and

B
(n)
k+1 := B(νk+1, n

−1) \ (B
(n)
1 ∪ · · · ∪B(n)

k ).

Then for every n ∈ N the sets (B
(n)
k )k∈N are pairwise disjoint and their union equals

Sµ. Let us set

µn(x, ·) :=

∞∑
k=1

1
µ−1(B

(n)
j )

(x)νj(·).

By Step 3, the function µn belongs to F. However, we have ‖µn‖g ≤ ‖µ‖g for every
n ∈ N as every νj belongs to Sµ and for x ∈ Rd we have ρ(µn(x), µ(x)) ≤ n−1 so
that µn(x)→ µ(x). By the definition of the set Sµ also condition (iii) in Definition

A.2 is satisfied so that µn
bp→ µ. It follows that µ ∈ F.

Step 5 We finish the proof.
Given µ ∈ Kg(Rd,M+(Rd \ {0})), we set µn := 1B(0,n)µ. By Step 4, we have

µn ∈ F, as supx∈Rd µn(x, {|y| > R})→ 0 as R →∞. On the other hand, we have

µn
bp→ µ and it follows that µ ∈ F. �

We now combine Proposition A.1 and Theorem A.5 into a single result which will
be useful in the main part of this article.

Corollary A.6. Assume that F is a subset of Bb(R
d;Rd)×Kg(Rd,M+(Rd \ {0}))

such that

(i) Cc(R
d;Rd)×

[
Cc
(
Rd,M+(Rd \ {0})

)
∩Kg

(
Rd,M+(Rd \ {0})

)]
⊂ F

(ii) whenever ((fn, µn))n∈N ⊂ F and fn
bp→ f and µn

bp→ µ, then also (f, µ) ∈ F .

Then F = Bb(R
d)×Kg(Rd,M+(Rd \ {0})).

Proof. Fixing f ∈ Cc(R
d;Rd) and considering sequences of the form (f, µn)n∈N bp-

converging to (f, µ), Theorem A.5 shows Cc(R
d)×Kg(Rd,M+(Rd \ {0})) ⊂ F . Let

us now fix µ ∈ Kg(Rd,M+(Rd \ {0})) and consider sequences (fn, µ) bp-converging
to (f, µ). Then Proposition A.1 yields the claim. �
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Appendix B. Continuity of Lévy-type operators in terms of the
symbol and the characteristics

In the proof of one of our perturbation results, Theorem 6.4, we used that the
integro-differential operator

(B.1) B̂f(x) = b(x) · ∇f(x) +

∫
Rd\{0}

(f(x+ y)− f(x)− y · ∇f(x)χ(y)) ν(x, dy)

maps (sufficiently) smooth functions to continuous functions. On C∞c (Rd), the
operator can be considered as a pseudo-differential operator with symbol q(x, ξ),
cf. (1.2), and so one can equivalently asked for conditions on the symbol ensuring

that B̂f ∈ C(Rd) for f ∈ C∞c (Rd). The following result answers this question; it is
somewhat more refined than what we need for our proof but we believe the result to
be of independent interest.

Theorem B.1. Let B̂ be as in (B.1) and denote by

(B.2) q(x, ξ) = −ib(x) · ξ +

∫
Rd\{0}

(1− eiy·ξ + iy · ξχ(y)) ν(x, dy)

the associated symbol; here χ ∈ C∞c (Rd) is a smooth cut-off function with 1B(0,1) ≤
χ ≤ 1B(0,2). If q is locally bounded, then the following statements are equivalent.

(i) B̂f is continuous for every f ∈ C∞c (Rd).
(ii) x 7→ q(x, ξ) is continuous for all ξ ∈ Rd.

(iii) Each of the following conditions is satisfied.
(a) x 7→ b(x) is continuous.
(b) x 7→ ν(x, ·) is vaguely continuous on (Rd\{0},B(Rd\{0})).
(c) The family (ν(x, ·))x∈K , is tight for any compact set K b Rd, i.e.

limR→∞ supx∈K ν(x, {|y| ≥ R}) = 0.
(d) limr→0 supx∈K

∫
{|y|≤r} |y|

2 ν(x, dy) = 0 for any compact set K b Rd.

If one (hence, all) of the conditions is satisfied and B̂ : C
β
b (Rd) → Bb(R

d) is a

bounded operator for some β > 0, then B̂f is continuous for all f ∈ C
β
b (Rd)∩C∞(Rd).

Remark B.2. (a) The implications (ii) ⇐⇒ (i) =⇒ (iii) remain valid for any
Borel measurable cut-off function χ such that 1B(0,1) ≤ χ ≤ 1B(0,2).

(b) A symbol q of the form (B.2) is locally bounded if, and only if, for any
compact set K ⊆ Rd there exists a constant c > 0 such that |q(x, ξ)| ≤
c(1 + |ξ|2) for all x ∈ K, ξ ∈ Rd. By [49, Lem. 2.1, Rem. 2.2], this is
equivalent to

(B.3) ∀K b Rd : sup
x∈K
|b(x)|+ sup

x∈K

∫
Rd\{0}

min{|y|2, 1} ν(x, dy) <∞.

Proof of Theorem B.1. To keep notation simple, we prove the result only in dimen-
sion d = 1. The implication (i) =⇒ (ii) follows from [48, Thm. 4.4]. Moreover,
if x 7→ q(x, ξ) is continuous, then we find from the local boundedness of q and the
dominated convergence theorem that

x 7→ B̂f(x) = −
∫
R

q(x, ξ)f̂(ξ)eixξ dξ

is continuous for all f ∈ C∞c (R), and this proves (ii) =⇒ (i). In the remainder of
the proof we show that (ii) ⇐⇒ (iii).

(iii) =⇒ (ii): By (iii)(a), it suffices to show that

x 7→ p(x, ξ) :=

∫
R\{0}

(1− eiyξ + iyξχ(y)) ν(x, dy)
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is continuous for all ξ ∈ R. Clearly,

|p(x, ξ)− p(z, ξ)| ≤ I1 + I2 + I3,

where

I1 :=
|ξ|2

2

(∫
{|y|≤r}

|y|2 ν(x, dy) +

∫
{|y|≤r}

|y|2 ν(z, dy)

)

I2 :=

∣∣∣∣∣
∫
{r<|y|<R}

(1− eiyξ + iyξχ(y))
[
ν(x, dy)− ν(z, dy)

]∣∣∣∣∣
I3 := 2ν(x, {|y| ≥ R}) + 2ν(z, {|y| ≥ R}).

The vague continuity in (iii)(b) implies that I2 → 0 as z → x for fixed r,R > 0 with
ν(x, {|y| = r}) = 0 and ν(x, {|y| = R}) = 0. Letting first z → x and then r → 0 and
R→∞, it follows from (iii)(c) and (iii)(d) that p(·, ξ) is continuous.

(ii) =⇒ (iii): By [48, Thm. 4.4], (ii) implies that

∀K b Rd : lim
|ξ|→0

sup
x∈K
|q(x, ξ)| = 0.

Moreover, exactly the same reasoning as in [48, proof of Thm. 4.4] shows that ν(x, ·),
x ∈ K, is tight for any compact set K. For ϕ ∈ C∞c (R) and x ∈ R define

Sx(ϕ) := B̂(| · −x|2ϕ(· − x))(x) =

∫
R\{0}

y2ϕ(y) ν(x, dy).

If we denote by Ff := f̂ the Fourier transform of a function f , then

F(| · −x|2ϕ(· − x))(ξ) = e−ixξF(| · |2ϕ(·))(ξ), ξ ∈ R.
Since q is locally bounded and x 7→ q(x, ξ) is continuous for all ξ ∈ R, an application
of the dominated convergence theorem shows that

x 7→ Sx(ϕ) = −
∫
R

q(x, ξ)F(| · −x|2ϕ(· − x))(ξ)eixξ dξ

is continuous. Choose ϕk ∈ C∞c (R) such that 1B(0,1/k) ≤ ϕk ≤ 1B(0,2/k) and
ϕk+1 ≤ ϕk. Then Sx(ϕk) ≥ Sx(ϕk+1) and

Sx(ϕk) ≤
∫
|y|≤2/k

|y|2 ν(x, dy)
k→∞−−−−→ 0 for all x ∈ R.

Applying Dini’s theorem, we find that

sup
x∈K

∫
|y|≤1/k

|y|2 ν(x, dy) ≤ sup
x∈K

∫
y2ϕk(y) ν(x, dy) = sup

x∈K
|Sx(ϕk)| k→∞−−−−→ 0

for any compact set K, and this proves (d). If we set µ(x, dy) := |y−x|2 ν(x, dy+x),
then

(B.4) Tx(ϕ) := B̂(| · −x|2ϕ(·))(x) =

∫
R\{0}

|y|2ϕ(x+ y) ν(x, dy) =

∫
ϕ(y)µ(x, dy)

for all ϕ ∈ C∞c (R). As

F(| · −x|2ϕ(·))(ξ)

=
1

2π

(∫
R

y2ϕ(y) e−iyξ dy − 2x

∫
R

yϕ(y)e−iyξ dy + x2
∫
R

ϕ(y)e−iyξ dy

)
,

there exists for any compact set K an integrable function g such that supx∈K |F(| ·
−x|2ϕ)(ξ)| ≤ g(ξ) for all ξ ∈ R. Since x 7→ q(x, ξ) is continuous and locally bounded,
the dominated convergence theorem shows that the mapping

x 7→ Tx(ϕ) = −
∫
R

q(x, ξ)F(| · −x|2ϕ(·))(ξ)eixξ dξ
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is continuous for all ϕ ∈ C∞c (R). By (B.4) this means that∫
R

ϕ(y)µ(z, dy)
z→x−−−→

∫
R

ϕ(y)µ(x, dy) for all f ∈ C∞c (R), x ∈ R.

Combining this with the fact that the local boundedness of q implies

(B.5) sup
z∈K

∫
|y|≤R

µ(z, dy) <∞ for all R > 0,K ⊆ R cpt.

cf. (B.3), we conclude that µ(·, dy) is vaguely continuous on (R,B(R)). Using that∣∣∣∣∫
R

ϕ(y − x)µ(x, dy)−
∫
R

ϕ(y − z)µ(z, dy)

∣∣∣∣
≤
∫
R

|ϕ(y − x)− ϕ(y − z)|µ(z, dy) +

∣∣∣∣∫
R

ϕ(y − x)
[
µ(z, dy)− µ(x, dy)

]∣∣∣∣
for all ϕ ∈ Cc(R), it follows from (B.5) and the vague continuity of µ(x, ·) that∫

R

ϕ(y − z)µ(z, dy)
z→x−−−→

∫
R

ϕ(y − x)µ(x, dy)

for all ϕ ∈ Cc(R). Since ν(x, dy) = 1
|y|2µ(x, dy− x), it is not difficult to see that this

implies that ν(z, ·) converges vaguely on (R\{0},B(R\{0})) to ν(x, ·) as z → x. To
prove continuity of the drift b, we note that

b(x) = B̂((· − x)χ(· − x))(x) = −
∫
R

q(x, ξ)eixξF(((· − x)χ(· − x))(ξ) dξ

= −
∫
R

q(x, ξ)F(id(·)χ(·))(ξ) dξ;

here id(y) := y. Applying the dominated convergence theorem another time, we find
that x 7→ b(x) is continuous. This finishes the proof of the equivalences. Finally,

if one (hence, all) conditions of the theorem are satisfied and ‖B̂f‖∞ ≤ K‖f‖
C
β
b
,

f ∈ C∞c (Rd), for some constants K > 0 and β > 0, then a standard approximation

argument yields that B̂f is continuous for every f ∈ C
β
b (Rd) ∩ C∞(Rd). �

Corollary B.3. Let B̂ be as in (B.1) for a smooth cut-off function χ with 1B(0,1) ≤
χ ≤ 1B(0,2), and denote by q(x, ξ) the symbol of B̂, cf. (B.2). If there is for every

compact set K ⊆ Rd some constant α ∈ (0, 2) such that

(B.6) sup
x∈K
|b(x)|+ sup

x∈K

(∫
{|y|≤1}

|y|α ν(x, dy)

)
<∞,

and (ν(x, ·))x∈K is tight, then the following statements are equivalent:

(i) B̂f is continuous for every f ∈ C∞c (Rd),
(ii) x 7→ q(x, ξ) is continuous for all ξ ∈ Rd,

(iii) x 7→ b(x) is continuous and x 7→ ν(x, ·) is vaguely continuous.

Proof. Because of (B.6), the symbol q is locally bounded, cf. Remark B.2, and
moreover (iii)(c),(d) are clearly satisfied. Thus, the assertion is immediate from
Theorem B.1. �
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Lévy processes, To appear: Transactions of the American Mathematical Society.

[8] Z.-Q. Chen and L. Wang, Uniqueness of stable processes with drift, Proceedings of the
American Mathematical Society, 144 (2016), pp. 2661–2675.

[9] E. B. Dynkin, Markov Processes Vol. 1, Springer, 1965.

[10] , Markov Processes Vol. 2, Springer, 1965.
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[16] W. Hoh, Pseudo differential operators generating Markov processes. Universität Bielefeld,
1998. Habilitationsschrift.

[17] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,
North-Holland, 1992.

[18] N. Jacob, Pseudo differential operators and Markov processes. Vol. I: Fourier analysis and

semigroups, Imperial College Press, London, 2001.
[19] N. Jacob, Pseudo Differential Operators and Markov Processes II: Generators and their

potential theory, Imperial College Press, 2002.

[20] N. Jacob, Pseudo differential operators and Markov processes. Vol. III: Markov processes
and applications, Imperial College Press, London, 2005.

[21] K. Kaleta and P. Sztonyk, Estimates of transition densities and their derivatives for jump
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for a class of Lévy-driven SDEs, Stochastic Processes and their Applications, 129 (2019),
pp. 2654–2680.

[35] T. Kulczycki, A. Kulik, and M. Ryznar, On weak solution of SDE driven by inhomogeneous
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