On the domain of fractional Laplacians and related

generators of Feller processes

Franziska Kiihn* René L. Schilling**

Abstract

In this paper we study the domain of stable processes, stable-like processes and more gen-
eral pseudo- and integro-differential operators which naturally arise both in analysis and as
infinitesimal generators of Lévy- and Lévy-type (Feller) operators. In particular we obtain
conditions on the symbol of the operator ensuring that certain (variable order) Holder and
Hoélder-Zygmund spaces are in the domain. We use tools from probability theory to invest-
igate the small-time asymptotics of the generalized moments of a Lévy or Lévy-type process
(Xt)tzo0,
lim < (7 (X)) - f(2)), zeR’,

for functions f which are not necessarily bounded or differentiable. The pointwise limit exists
for fixed x € R? if f satisfies a Holder condition at z. Moreover, we give sufficient conditions
which ensure that the limit exists uniformly in the space of continuous functions vanishing
at infinity. As an application we prove that the domain of the generator of (X¢)s>0 contains
certain Holder spaces of variable order. Our results apply, in particular, to stable-like processes,

relativistic stable-like processes, solutions of Lévy-driven SDEs and Lévy processes.
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1 Introduction

Since the pioneering work of Caffarelli and Silvestre on fractional powers of the Laplacian, see
[30, 9], a lot of work has been devoted to fractional powers of the Laplacian from the analytical
point of view, we refer to [7, 8, 10, 16, 24] to mention but a few.

The fractional power of the Laplacian is also the generator of a stochastic process with
stationary and independent increments (a Lévy process), which allows us to use probabilistic
methods for its investigation. In fact, fractional powers of the Laplacian are just a special case
of generators of Lévy processes and — if one allows for generators with variable coefficients
— of the more general class of Feller processes, the classic result is [13], see [6] for a recent
survey. Over the past two and a half decades these operators have been studied from both the
analytical community but most of all the probability community, see [5, 11, 12, 17, 20, 26, 32].

Of particular importance is a good understanding of the domain of these operators which,

in general, have a representation as pseudo-differential as well as integro-differential operator.
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This is partly due to the fact that for elements in their domains we can construct interesting
martingales.

In this paper we study in great detail the domains of rather general generators of Feller
processes and, by using probabilistic techniques in combination with analytic techniques, we
succeed in finding precise conditions in terms of (variable-order) Holder and Lipschitz func-
tion spaces to belong to these domains, see Theorem 4.1 (for Lévy processes and generators
with constant coefficients) and Theorem 4.5 (for Feller processes and generators with variable
coefficients). As far as we are aware, these results extend known results for fractional powers
of the Laplacian (including those of variable order of differentiability).

For a d-dimensional Lévy process (Lt )0 with Lévy triplet (b, Q,v) the family of measures
(pt)e=0 on (R~ {0}, B(R* \ {0}) defined by

pi(B) = %IP(Lt ¢B), t>0, BeB(R'~ {0})

converges vaguely to the Lévy measure v, i.e.

.1
tim TS (L) = [, I) () m
holds for any continuous function f with compact support in R \ {0}, cf. [6, Lemma 2.16]
or [3, Proposition 18.2]. By the portmanteau theorem, this implies the following small-time
asymptotics
1
Pr% ;P(Lt e B) =v(B) (2)

for any Borel set B € B(R%~ {0}) such that 0 ¢ B and the topological boundary 9B is a v-null
set. Jacod [18] proved that the small-time asymptotics (1) extends to continuous bounded
functions f:R? - R with f(0) = 0 which satisfy a Holder condition at z =0,

If(x) = FO)[ < [a|®  forall |a|<1

where « € (0,2) is a suitable constant depending on the Lévy triplet (b,Q,v), see [18] or
[15, p. 2] for details. More recently, Figueroa—Lépez [15] showed that the assumption on the
boundedness of f can be replaced by a much weaker integrability condition which basically
ensures that the expectation Ef(L;) is exists for any ¢ > 0.

In the first part of this paper, Section 3, we establish similar results for the class of Lévy-
type processes which includes, in particular, Lévy processes, affine processes, solutions of
Lévy-driven stochastic differential equations, and stable-like processes. We will show that any

Lévy-type process (Xt )t»0 with rich domain and characteristics (b(z), Q(x),v(x,dy)) satisfies
1
lim —P* (X, —we B) =v(z,B)  forall we R’ (3)

which is the analogue of (2), cf. Corollary 3.3; again B € B(R? \ {0}) is a Borel set such that
0¢ B and v(z,dB) = 0. Because of the small-time asymptotics (3), we have for fixed = ¢ R*

lim 1 (B°(X0) - f(@) = [ (f+y)- @) vl dy)

d\{0}

for any continuous function f with compact support in R \ {z}. Using a localized version of
a maximal inequality, cf. Lemma 3.1, we will show that for a rich Lévy-type process (Xt):0
and fixed z € R? the pointwise limit

lim 7 (E“/(X0) - £(2) ()

exists for a much larger class of functions. More precisely, we will establish the small-time
asymptotics (4) for functions f : R? — R which satisfy a Holder condition at z, cf. Theorem 3.4
and 3.5, and need not be bounded, see Theorem 3.7.



In the second part, Section 4, we turn to the question under which assumptions on f €
Co (R?) the limit
S G
tim (7 £(X) - /() (5)
exists uniformly (in z) for a rich Lévy-type process (X¢)s0 with bounded coefficients. This
is equivalent to asking for sufficient conditions which ensure that a function f € Co(R?) is
contained in the domain D(A) of the generator A of (X;)>0. The main results in Section 4
are Corollary 4.7 and Corollary 4.8 which state that D(A) contains certain Holder spaces
of variable order. Our results apply, in particular, to Lévy processes, cf. Theorem 4.1; for

instance, if (Lt )+»0 is an isotropic a-stable Lévy process, « € (0,1), then the Holder space

e { FeCo Yy sup @I m}

z,yeRd |ZL‘— y|'8

is contained in the domain of the generator A of (L¢)s0 for any 3 € («, 1] and we have
Af@)= [, U@ -f@)vidy),  feel aeR

At the end of Section 4 we discuss several examples, including stable-like dominated pro-
cesses (Example 4.10), solutions of Lévy-driven SDEs (Example 4.12), stable-like processes

and relativistic stable-like processes (Example 4.11).

2 Basic definitions and notation

We consider the Euclidean space R? with the canonical scalar product -y := Z?:l z;jy; and
the Borel g-algebra B(R%) which is generated by the open balls B(z,7) = {y ¢ R |y —x| <r}
and closed balls B[z, 7] := {y € R% |y—z| < r}. The smooth functions with compact support are
denoted by C°(R?), and Cw(R?) is the space of continuous functions f: R? - R, vanishing
at infinity. Superscripts k € IN are used to denote the order of differentiability, e. g. f € Cfo(]Rd)
means that f and its derivatives up to order k are Cw(]Rd)-functions. We write supp f for
the support of a function f:R™ - R? and {f € B} = f}(B) denotes the preimage of a set
B c R? under f. For a set B < R we use B to denote the topological boundary of B. We
use § and f 5 as a shorthand for f]Rd\{o} and .[B\{O}’ respectively.

Throughout, (£2,A,P) denotes a probability space. A stochastic process (L¢)o0 is called
a Lévy process if it has stationary and independent increments, Lo = 0 almost surely and the
sample paths ¢ — L;(w) are cadlag (right-continuous with finite left-hand limits) for almost
all w € 2. By the Lévy-Khintchine formula, every Lévy process can be uniquely characterized

by its characteristic exponent (€) = —log Ee's*1,

(&) =-ib-£+ 36-Qe+ f (1= wiy-elion(s)) v(dy), <R, (6)

where (b, Q, V) is the Lévy triplet consisting of the drift b € R¢, the symmetric positive semidef-
inite diffusion matrix @ e R*? and the Lévy measure v on (R~ {0}, B(R*\ {0})) satisfying
Fmin{|y]*>, 1} v(dy) < co. A function 1 : R* - C with ¥(0) = 0 is called continuous negative
definite if it admits a Lévy—Khintchine representation of the form (6).

A Lévy-type process is a Markov process whose transition semigroup is a Feller semigroup;
for further details see e. g. [6]. Without loss of generality, we may assume that the sample paths
of a Lévy-type process are cadlag. If C2° (R?) is contained in the domain D(A) of the generator
A of a Lévy-type process (X¢)so0, then we call (X¢)wo a rich Lévy-type process. Lévy-type
processes are also known as Feller processes, and we will use both terms synonymously. Our
main reference for Feller processes is the monograph [6]. If (X;):s0 is a rich Lévy-type process
with generator A, then A|Cgo(]Rd> is a pseudo-differential operator,

Af(@) = ~a(@.D)f (@)=~ [ ¢ "Sa(@.OF(©)de,  feCT(RY), xR

d



where f(€) = (2m)™¢ Jra e f(z) de denotes the Fourier transform of f and

a(2,€) = a(w,0) ~ib(z) £+ 36- Qe+ f (1= wiy-eLion (o) w(wdy) — (7)

is the negative definite symbol, cf. [6, Theorem 2.21]. For simplicity, we assume that ¢(z,0) = 0.
For each fixed z € R? the tuple (b(z), Q(z),v(z,dy)) is a Lévy triplet. We call the family
(b(z),Q(z),v(z,dy)) era the characteristics of ¢ and use (b, Q,v) as a shorthand. It is not
difficult to see that

Af(w) =b() f@)+ 4 tr (Q) - V21 @)+ £ (F(x +9) = F(2) - 91 () 1o () (o, dy)

for any f e C°(R?), see e.g. [6, Theorem 2.21], where V*f denotes the Hessian and tr A the
trace of a matrix A. By [6, Theorem 2.30], ¢(x,0) = 0 implies that the mapping z — ¢(z, &)
is continuous for all £ € RY. We say that a rich Lévy-type process (Xt)t20 has bounded
coefficients if its symbol ¢ has bounded coefficients, i.e. there exists a constant ¢ > 0 such
that |q(z, )| < c(1 +[¢]?) for all z,¢ e R%. We will frequently use the following result from [6,
Proposition 2.27(d), Theorem 2.31].

2.1 Theorem Let q be given by (7) such that g(z,0) = 0. For any compact set K ¢ R*:
(i) Ck = sup,x supjeiy lq(x, §)] < o0,

(if)- sup,exc lg(w, €)] < 20k (1 +[€*) for all € ¢ RY,

(iii). sup,cre (b(2)] +1Q ()| + £ (ly* A1) v(,dy)) < oo.

If q has bounded coefficients, then the statements also hold for K = R®.

The following result can be found in [6, Theorem 2.44].

2.2 Theorem Let (X¢)wo0 be a rich Lévy-type process with symbol q and characteristics
(b,Q,v). Then (X¢)is0 is a semimartingale and its semimartingale characteristics (B, C, p)

relative to the truncation function y1o1)(|y|) are given by

Bt:/‘tb(Xs)ds, Ct:/‘tQ(Xs)ds, (- ds, dy) = v(Xs, dy) ds. (8)
0 0

3 Pointwise limits

In this section we investigate the small-time asymptotics of generalized moments, i. e. we study
limits of the form

N P

lim < (7 f(X,) - f(2)) ©)
for a rich Feller process (X¢):»0 and any fixed x € RY. Recall that a function f is contained in
the domain D(A) € Coo (R?) of the generator A, if the limit exists uniformly in Cos (R?), i. e.

D(A) = {f € Cee (B); 3g € Coo(R?) : lim sup 3 (B () - (@) - 9() - 0},
Af(z) = 1135% (E*f(X:) - f(x)).

It is, in general, a non-trivial task to check whether a function f € Ceo(R?) is in the domain
of the generator; typically, this requires assumptions on the smoothness, e.g. f € C2 (Rd) if
(X+t)es0 has bounded coefficients, cf. [6, Theorem 2.37(h)].

We are interested in proving the existence of the limit (9) (and also determining it) for
functions f which are not necessarily bounded or differentiable. Intuitively, there are two

issues which we have to consider:



(i). We have to ensure that the expectation E” f(X;) exists; therefore, we need an assumption

on the growth of f at infinity.

(ii). For the existence of the limit (9) for a fixed 2 € R? the behaviour of f close to z € R is
crucial. For instance, if X; := ¢ is a deterministic drift process, then the limit (9) exists
if, and only if, f is differentiable at x. This means that we have to make an assumption

on the local regularity of f at x, typically Holder continuity or differentiability.

In a first step we consider the particular case that f vanishes at infinity and satisfies f|g(s,5) = 0

for some § > 0; for such functions f we show in Theorem 3.2
N
lim 5 (B°F(X0) = () = f (F(z+1) - £(2)) v(o,dy).

This implies, in particular, that t 'IP*(X; — & € -) converges vaguely to v(z,-) as t - 0, cf.
Corollary 3.3, and so,
1
111101 E]Pz(Xt —zeA)=v(z,A)

for any A € B(R®\ {0}) such that 0 ¢ A and v(z,dA) = 0. In Theorem 3.4 and Theorem 3.5
we show that the assumption f|g(;,s5) = 0 on the regularity of f at x can be replaced by a
local Hélder or differentiability condition. The required regularity can be expressed in terms
of fractional moments of v(z,-) or in terms of the generalized Blumenthal-Getoor index at

infinity,
T . ] 1,
Be = inf {~ > 0; lim sup |q(z,£)| < oo t.
oo 1Y ejer

Finally, in Theorem 3.7, we extend Theorem 3.4 to functions f which are not necessarily
bounded.

The following upper bound for the small-time asymptotics of P(|X; - z| > r) will be one of

our main tools.

3.1 Lemma Let (Xt)e0 be a rich Lévy-type process with symbol q. For any x € R? there

exists a constant ¢ = c(x) >0 such that

1 . 1 e
limsup =P (| Xy — 2| > r) <limsup =P (sup | X — | > 7“) <c(z) sup |gq(z, )]
t-0 t—0 sst lel<r1

for all r > 0. Moreover, ¢(K) :=sup, s c(x) < oo for any compact set K ¢ R?.

Lemma 3.1 is a localized variant of a known maximal inequality, cf. [6, Corollary 5.2]; for

the readers’ convenience we include a full proof.

Proof of Lemma 8.1. For fixed & ¢ R? and 7 > 0 denote by 77 := inf{t > 0; X; ¢ B(z,r)} the
exit time from the ball B(z,r). As

{|IX¢—z|>r}c {sup|XS—x| 27’} c{r’ <t}
s<t

it suffices to show that

1 x x
lim sup ;]P (rn <t)<ec

sup |q(z, &) (%)
t—0 <r-1

€l
for some constant ¢ > 0. To this end, fix z € R, r > 0 and pick u € C°(R?) such that w(0) =1,
suppu € B(0,1) and 0 < u < 1. If we set uZ(y) := u((y—x)/r), then uf € C=(R%) ¢ D(A), and
an application of Dynkin’s formula gives

B (o) <18 ( [ as)
0

JATE)



where A denotes the generator of (X¢)¢0. Thus,

]Pz(TfSt)S]EI(l—uf(XMT,%’)):_Ez(f[ )Auf(Xs>ds)
0

JAEATE

:—]Ezf 1. afery AU (Xa) ds |
( [0ty L{Xamelery AU (X5) 8)
Since
i) = [ e al QW€ ds = [ gy )are) de
- [ eV Eq(y, T em() de
R
for all y e RY, we get
P <0 <o ([, s GOl
R s<tar®
As X € B(z,r) for all s <tAT7, there exists by Theorem 2.1 a constant C = C(r, z) such that
sup_[q(Xe,r€)[[a(€)] < C(L+ [ [a(e)] e L' (d€)
S<tATE

for all ¢ > 0. On the other hand, g(z,0) = 0 implies that = — ¢(x, ) is continuous for all £ € R¢,
see [6, Theorem 2.30]), and therefore

sup |g(Xs, v~ O)[@(€)] > lg(z,r€)|[a(€)| for almost all £ € R,

S<IATT

Applying the dominated convergence theorem yields
. 1 x x - —
limsup - P* (7 < 1) < [ la(a,r)I[a(6)] de.
t—0 R
Now (*) follows using the estimate from Theorem 2.1

lg(z, 7€) <2 sup |g(z,n)|(1+[¢]*) for all £€eR%, r>0. O

[n|<r=

The next result is well known for Lévy processes, see [3, Proposition 18.2] or [6, Lemma
2.16].

3.2 Theorem Let (X¢)wo be a rich Lévy-type process with symbol q and characteristics
(b,Q,v). Let f e Co(R?) and suppose that flB(zo,5) =0 for some xo € R and 6 >0. Then

FE ) 0 f fGe sy u(e dy)

uniformly in a neighbourhood of zo. In particular, z — [ f(z +y)v(z,dy) is continuous at

X =Xx0.

Proof. For fixed € > 0 choose x € C°(R?) such that || f - x| < &. Without loss of generality,

we may assume that X|B(10,5) =0. Obviously,

[FE7 1) - f s ) vedy)| <] B0 00

+ I @+ y) =@+ )l vz dy)

%wa(xi)—fx(:r+y)v(wydy)|

::Il+12+13.

+

We estimate the terms separately. Using that x(z) = 0, Vx(z) = 0 and VZx(z) = 0 for all
x € B(zo,0/4), we find for all z € B(xo,d/4)

t—0
=20

I = [ F(EX(X0) - x(2)) - Ax(@)

< sup \%(sz(xo ~x(@)) - Ax(x)
zeRd



as x € CZ(R%) ¢ D(A). For I» we note that for any z € B(zo,5/4)

Ls [ f@ry)-x@plv@dy) se s (e RN B(0,6/4)).
ly|>6/4

weB(x0,5/4)
Note that the constant on the right-hand side is finite, see e. g. [6, Theorem 2.30(d)], and 6 > 0

is a fixed constant which does not depend on e. Since

€ ) € 1)
L<=-P|Xi—x0|> =)< =P || X, — x| > =
'Y (' ’ x°|*2)*t (' ' @,4)

for all © € B(xo,d/4), it follows from Lemma 3.1 that there exists a constant C' > 0 such that

1
limsup-I <Ce  sup sup |g(z,&)|.
t—0 ¢ weB(z0,5/4) |¢|<45-1

The above estimates show

%Ezf(Xt) - ][ flz+y) y(:v,dy)‘

lim sup
t—0
d e—0
< 5( sup  v(z,R“\ B(0,6/4))+C  sup sup |q(z, £)|) — 0.
zeB(xz0,56/4) zeB(z(,6/4) |¢]<26-1
The assertion on the continuity follows directly from the local uniform convergence and the

fact that = » E” f(X;) is continuous as (Xt )0 is a Feller process. O

If we use Theorem 3.2 for the shifted function f(-— o) for a fixed zo € R?, we get:

3.3 Corollary Let (X¢)w0 be a rich Lévy-type process with symbol q and characteristics
(b,Q,v). If f € Cw(R?) and f|p(o,5) =0 for some § >0, then

hn% %Emf(Xt -x)= ][ F@)v(z,dy) for all zeR™

Corollary 3.3 shows that the family of measures p;(dy) = t 'P*(X, -z € dy), t > 0, on
(R*\{0}, B(R¥\{0})) converges vaguely to v(z, dy) for each fixed z € R%. By the portmanteau

theorem, Corollary 3.3 implies

Pn&%]PI(Xt —zeA)=u(z, A) (10)

for any Borel set A € B(R® \ {0}) such that 0 ¢ A and v(z,0A) = 0.
The next step is to relax the assumption “f|g(s,,s) = 0”7 in Theorem 3.2. To this end we

define, following [27], for fixed zo € R? the generalized Blumenthal-Getoor index at oo

2o . .1
= :=inf {7y >0; im — sup|q(zo,&)| < oo |.
r—oo 1Y le|<r

Since any continuous negative definite function grows at most quadratically at infinity, we
have 820 € [0,2] for any xo € R?; moreover,
]( Wl v(zo,dy) <00 forall B> 4. (11)
lyl<1

If g(xo,-) has no diffusion part, i.e. Q(xo) = 0, and satisfies the sector condition, i.e. if there
exists a constant C' > 0 such that |Im g(zo,¢)| < C Req(zo, &) for all € € R, then

y|° v(wo,dy) < 0o = B30 < B. (12)
lyl<1

In this case, the Blumenthal-Getoor index can be equivalently characterized in terms of frac-

tional moments of the Lévy measure

Bed =inf {v > 0; ][ ly|" v(zo,dy) < oo t;
lyl<1

this is a special case of [27, Proposition 5.4], see also [4].



3.4 Theorem (Regularity at o) Let (X¢)wo0 be a rich Lévy-type process with symbol q¢ and
characteristics (b,Q,v). Suppose that f € Coo(R?) satisfies one of the following conditions for

some fixed xo € R4,

(A1) There exist constants o> B3° and C >0 such that
|f(z) = f(zo)] < Cla - zo|* for all x € B(xo,1).
(A2) f is differentiable at x = xo and there exist a > B30 and C >0 such that
|f(z) = f(mo) = Vf(z0) - (x—x0)| < Clx — 0|* for all z e B(xo,1).

(A3) f is twice continuously differentiable in a neighbourhood of xo.
Then the limit L

lim — (B f(X¢) - f(20))
exists and takes the value
(A1) Lf(zo) := § (f(zo +y) = f(20)) v(w0,dy),
(A2) Lf(zo):=b(wo) - Vf(xo) + f (f(zo+y) ~ f(z0) = Vf(z0) - yLo,y(ly])) v(zo,dy),
(A3) Lf(xo) :=b(wo)  Vf(wo)+ 2 tr(Q(z0) - V?f(w0))

+f (f(@o+y) = f(x0) = Vf(w0) - yLo,y (ly])) v(wo, dy),

depending on which of the conditions (A1)-(A3) is satisfied.

Proof. Pick a cut-off function y € C°(R%), 0 < x < 1, such that X|Bzo,1) = 1, X|Be(wg,2) = 0
and set xs(x) := x (6 'z) for § > 0.

(A1) Without loss of generality, we may assume f(zo) = 0, otherwise we consider the shifted
function = — f(z) - f(xz0). As a> 850, we have
F 17 sy)vi@ody) <C Iyl vlwo,dy) + | Fler (oo, R BO,1)) <o,
lyl<1
and therefore it follows from Theorem 3.2 and the dominated convergence theorem that

t—0

T (L) ](X0) % flwo+5) (1 a0 + ) v, dy)
§—-0

—_— J[ f(zo +y) v(zo,dy).

On the other hand, if we set Cs := supj,_, <25 |f(¥)l, then Cs - 0 as § - 0 and

Cs
B ([xsl (Xl < [ PO(S(X)| 2 7, X0~ o] < 20) dr
Cs
s[ P (| X, = xo|* > 7/C) dr
0
for any 6 € (0,1/2). By Lemma 3.1

1 1 _
lim sup ;IPIO(|X,5 - xo|* 2 7/C) =limsup ;]PIO(\Xt —zo|2C 1/ar1/a)
-0 t—0

(13)
<c  sup q(wo, )| <Cr
‘gls,n—l/acl/a

for any f3 € (8%, a) and suitable constants ¢,C’ > 0; thus, by Fatou’s lemma,

1 e
lim sup EEZO([fx(s](Xt)) <C f Pl g 229,
t—=0 0

Writing
1

FEF(X0) = FE (U xs)(X0) + 77 ([ = x0)](X0)



and letting first ¢ - 0 and then § — 0, proves the claim.

(A2) For fixed R>0 let 7" denote the exit time from the ball B(xo, R). The function
x> g(x) = f(2) = f(x0) = Vf(20) - (x - o) x(x)

satisfies (A1) and, therefore, by the first part of this proof,
1 e
lim L Eg(Xe) = f (9(w0+y) - 9(@0)) vlao, dy)
~ f (o +9) = F@0) = Xy + 70) 9 (0) - ) V(0 dy).

As (e —z0)x(®) € CZ(R?) € D(A) an application of Dynkin’s formula shows

2170 (X, 20~ 20)X(Xyrz0)) S5 o) + f 3 (i +20) = Ty (41)) (o, dy)

for any R > 0. Using the fact that supp x € B[zo,2] and applying Lemma 3.1, we find for
some constant ¢ = ¢(zo)

1 xQ 1 o

TE (Xm0 = 20)x(X, 20 ) = 7B (X0~ 20)X(X0))

4. z oo
< TP (75 < 1) <de sup [q(wo,€)| =0,
<R-1

and therefore we conclude

FE (X = 20)x(X0) =2 bwo) + f y(x(y+20) = Loy (91) v, ).

Consequently,
S0 F(X0) - f(w0)) = B g(X0) + 19 (o) T (X1 - 0)x(X0)
2 b(wo) - Vf(20) + ][ (f(zo+y) = f(z0) = Vf(wo) - yh(o,1)([y])) v(z0,dy),
finishing the second part.
(A3) We begin with the particular case that f(z0) = 0 and ¥ f(z0) = 0. Since, by Theorem 3.2

and the dominated convergence theorem,

T - x))(X0) = f 1701 - x6) )@ + ) (o, dy)

6—0

S5 f f o+ y) vlao, dy),
it is enough to show

Lpeo (Ufs)(Xe)) 225 Y Qij(w0)d:0; f (o). (14)

t irj=1
In order to keep notation simple, we set f5(z) := f(z)xs(x). Note that by Lemma 3.1

1
t

E™ f5(Xe) = 7E fs(Xyprpo)| < 2] fleo 7P (757 < 1)

R—oo
<2¢|fle sup |g(zo,&)] —— 0,
<R-1

and therefore (14) follows if we can show that

1 z0 t,6—0 d
TEY (fs(Xenrg)) — _Z;l Qij (20)0i0; f (wo) (15)

for every fixed R > 0. By Taylor’s formula, there exists a continuous mapping ¢ : R - R such
that lim,_o ¢(r) =0 and

TW)=5 3 (' -a)(’ - )20, (wo) + Iy~ w0l (Jo ~ )

i,j=1



for all y = (y*,...,y%) € B(x0,6). Thus,

1a
—E*(fs(Xinrz)) =i + I2
t R
where
1 g x i i j j
I = % Z 9:0; f(z0)E 0[(Xt/w-}g —950)(th”;; ‘%)X&(thg)]
ij=1 ‘

1
Iz = gE 0 [‘Xt/\rﬁ - 1’0|2<P(|XtAr§ - xODXé(Xt/\rE)] .

We estimate the terms separately. By the definition of xs, we have
L < 7 sup [p(1) | B (|Xunrg, - ol x(Xinrg ),
r<26
and so an application of Dynkin’s formula yields

5
I < suplp(r)] sup [A(] s ~aof* - x(8)) ()] 7 0.
r<

ly—zol<R

Using that Vxs(zo) = 0 and Vxs(zo0) = 0, it is not difficult to see from Dynkin’s formula and
the fundamental theorem of calculus that

d

1, =0 %iﬂzlaiajf(mo)(Qij(xo)+][yiij6(l'0+y)l/($Oydy))
>0 1 &
—= = Y 0:0; f(w0)Quj (o).

2%

Combining both convergence results proves (15) if f(xzo) =0 and V f(zo) = 0. For the general

case define
g9(z) = f(2) - f(z0) - x(x)Vf(20) - (x-20), xeRY,

and use exactly the same reasoning as in the proof of (A2). ]

In Theorem 3.4 we have to assume that « is strictly larger than the Blumenthal-Getoor
index B2°. It turns out that Theorem 3.4 also holds for a = 520 if q(xo,-) satisfies the sector
condition, has no diffusion part, and the fractional moment flylsl |y|B°’°0 v(xo,dy) is finite. This

is a direct consequence of the following theorem.

3.5 Theorem Let (X:¢)wo be a rich Lévy-type process with symbol q and characteristics
(b,0,v). Suppose that f € Coo(R?) satisfies one of the following conditions for some fized
T € Rd.

(B1) There exist ac€ (0,1] and C >0 such that f‘y‘gl [y|* v(zo,dy) < oo and
|f(z) - f(m0)] < Clz - z0|* for all x € B(xo,1).

(B2) f is differentiable at © = xo and there exist constants a € (1,2) and C > 0 such that
F iy Wl% v(@o, dy) < o0 and

|f(z) = f(zo) = Vf(zo) - (z - z0)| < Clz - z0|” for all x € B(xo,1).

If q(zo,-) satisfies the sector condition, i.e. |Imq(zo,£&)| < C'Req(zo,&) for some constant
C' >0, then the limit

lim < (7 £(X,) - £ (20))
exists and takes the value
(B1) Lf(20) = f (F(wo+y) - F(20)) v(zo,dy);
(B2) Lf(wo):=b(zo)-Vf(wo)+f (f(zo+y) = f(w0) = V() yleo)(lyl)) v(zo,dy).

10



Proof. The proof is very similar to that of Theorem 3.4; the only modification is needed in

(13) where we use the fact that jl ly|* v(z0,dy) < oo implies

yl<1

1 oo 1
Sy s aten©)ldr = o [T suplaGeo, ) ds < oo

leler=1/a !
(cf. Lemma A.1 for details) to obtain an integrable majorant. O

In the remaining part of this section we extend Theorem 3.4 and Theorem 3.5 to functions

f which are not necessarily bounded. In [21] it was shown that the implication

sup ][ g(y)v(z,dy) <o = VYt >0 : supsup E"g(Xsnry — ) < 00
xeK 21 xeK s<t

holds for any twice differentiable submultiplicative function g > 0, any compact set K ¢ R?,
and any rich Lévy-type process; if (X¢ )0 has bounded coefficients, then K = R? is admissible.
Here 7k denotes as usual the first exit time from K. It is therefore a natural idea to replace

LX) - f@) by (B f(Xunn) - f@)).

and to consider functions f : R? - R which can be dominated by a submultiplicative function

g2 0 with SUpP,cg f|y|21 g(y) V(:E7 dy) < oo.

3.6 Definition Let (b(z),Q(z),v(z,dy)) be an z-dependent Lévy triplet and K ¢ R, We
write X(K) for the family of twice differentiable submultiplicative functions g : R - (0, 00)

satisfying the following two integrability conditions.
(i). M(K) :=sup,x flylzl g(y)v(z,dy) < oo (integrability).
(if). Mr(K) :=sup,.x f|y|zRg(y) v(z,dy) =0 (tightness).
3.7 Theorem (Behaviour at oo0) Let (X¢)w0 be a rich Lévy-type process with symbol g and

characteristics (b,Q,v). Moreover, let f : R? > R be a continuous mapping satisfying the

following growth condition (G).
(G) There exist a compact set K ¢ R? and a function g € X(K) such that

o | L@
lzl>e0 | g()

< 00.

If one of the conditions (A1)-(A3) holds for some xo € K, then the limit
|
ttm - (879 £(Xune) ~ f(20))

exists and equals Lf(xzo) defined in Theorem 3.4; here Tx = inf{t > 0; Xy ¢ K} denotes the exit
time from the set K. If (Xt)t>0 has bounded coefficients, then K = R? is admissible.

Proof. We only consider the case that (X;)s;s0 has bounded coefficients and g € S(R%); the
proof of the other assertion works analogously and just requires an additional stopping argu-
ment. For simplicity of notation we assume that b(z) = 0 and Q(z) = 0 for all z € R?, see the
remark at the end of the proof.

Let x be a continuous function such that 1 —x € C°(R%), 0 < x < 1, X|B(0,1) = 0 and
X|Be(0,2) = 1, and set xr(x) = x(R 'z). Then f(e)-(1-xr(e-z0)) satisfies the assumptions
of Theorem 3.4 for each R >0 and therefore

t—0

% (B (f(Xe) (1= xr)(Xe = 20)) = f(20)) — L(f (1 = xr)(® = z0))(z0).

11



Since Vxr(wo) = 0, V2xr(z0) = 0 for each R > 0 and f‘y‘zl |f(y)|v(zo,dy) < oo, it follows easily
from the definition of L(f(1 - xr)(® —x0)) and the dominated convergence theorem that

(B (f (X)) (1= xr)(Xi = 20)) = f(x0)) —— L(f(1 = xr)(* - x0))(z0)

Lo, Lf (o).

1 t—0
t

Consequently, it remains to show that

lim sup lim sup 1IE)I" (f(Xe)xr(Xt —z0))| =0.

R—oo  t—0 |t

Because of the growth condition (G) and the submultiplicativity of g, it suffices to prove

1 .
lim sup lim sup ;Elo (9(Xt —z0)xr(Xt —x0)) =0. (16)
R—oco 120

By Theorem 2.2, (X )0 is a semimartingale with semimartingale characteristics (0,0, u) given

by (8). Consequently, (X;)¢>0 has a canonical representation X; = xo + Xt(l) + Xt(Q)7
O
Xy = y (N(dy,ds) - p(dy,ds))
0 Jo<|y|<1

t
X [ yN(dy,ds)
0 Jlylz1

where N denotes the jump measure of (X )0, cf. [19, Theorem I1.2.34]. By the submultiplic-

ativity of g, there exists a constant ¢ > 0 such that
1 2 1 2
9(Xe—w0) = g(X(V + X)) < cg(X;N)g(X[?), 20,
Since any submultiplicative function grows at most exponentially, we can find constants a,b > 0

such that
9(Xi - w0) < aexp(b\/|Xt(1)|2 i1 1)g(X§1)), £>0. (17)

In order to keep our notation simple, we assume that a = b =c = 1. Moreover, we set
o(x) =exp (\/|gc|2 +1- 1)
and use the subscript to denote truncated functions, e. g.
or(z) =xr(z)o(z) and gr(z):=xr(2)g(z).
From the definition of xyr and the triangle inequality, it is not difficult to see that
Xr(z+Y) < Xrpa(2) + Xrpa(y)  forall z,yeR’, (18)

and therefore we obtain
9(Xt = w0)xr(Xt — T0) < exp (\/ X VR +1- 1) 9(XP)xrpa(X)

vexp (VIXPP +1-1) g (X (X2)
= ora(XE)g(X(?) + 0(X () grpa(X(?).

Consequently, (16) follows if we can show

T

Jim lim B (93/4(X§1))9(X§2))) =0 (19)
R

Jim lim 570 (Q(Xfl))93/4(Xt(2))) =0. (20)

First we prove (19). Define a stopping time by

Ti=Tp = inf{t>0;|Xt(1)‘+|Xt(2)‘ ZT}

12



for fixed r > 0. Applying It6’s formula for semimartingales gives
x 1 2
E O(QR/4(Xt(A-)r)9(Xt(A-)r))

B ([ emn(XE) (0¥ ) - (X)) (X dy) ds ) (21)

tAT
+ BT ( L7 92 (X + ) = ompa(XP) = Vorpu(XD) -y) v(X. dy) ds) :

lyl<1

Since g > 0 is submultiplicative, the first term on the right-hand side of (21) is bounded above
by

([ f onpn(XE)g(XP)g(0) (X dy) ds)
(s [ sl JE= (" om (X6 ).

zeRd

For the second term in (21) we apply Taylor’s formula and use the fact that V>x z4(z) = 0 for
all z € B(0, R/4) u B¢(0, R/2) to conclude that there exists a function ¥ € CZ(R?) such that
(z) =0 for all z € B(0,1/16) and

|orsa(x +y) — 0rja(x) = Vorsa(x) -yl < |y|29(1’)¢($) for all zeR’, ly| <1

for R > 1. Using this estimate for x := Xs(l), we find that the second term on the right-hand
side of (21) is bounded above by

(:33'][ yIQV(%dy))lEz” (fotQ(Xil))w(Xs“))g(Xiz))dS)-

yl<1

Now it follows from Fatou’s lemma, Definition 3.6 and Lemma 3.8 below that there exists an
absolute constant C' > 0 such that

1w R QU C rt
FE (ora(X)g(X)) <timinf B (0ra(XI)9(XE)) <7 [ sds

(recall the definition of o, og/s and note that K = R%), and this implies (19).

It remains to prove (20). Again an application of It6’s formula shows
T 1 2
E™ (X)) 9r/a(X(0))

tAT
“E ([ o) (o (X 41) = aays(XE)) (X dy) ) (22)
y|>
tAT
- (fo F aru(XP) (XD +1) = o(X) = Vo(XED) - y) v(Xem dy) ds) '
lyl<1

Using the submultiplicativity of g > 0 and (18), we find that the first term on the right-hand
side is bounded above by

B () o) amne (X)) + 9 (X )anna ()] (X ) ds)
< Mo (RY) ["E™ (o(X)g(XP)) ds+ MORY [ E™ (o(XD)grpno(XE) ds

with M(R?) and Mgj16(R?) from Definition 3.6. On the other hand, a similar calculation as
in the proof of (19) shows that the second term on the right-hand side of (22) is less or equal
than

t
CE™ ([ gnya(X)o(X)u(x () ds)

where C is a suitable constant and ¢ € CZ(R?) such that suppey n B(0,1/16) = @. If we
combine both estimates, apply Lemma 3.8 and use that limg_,eo MR/lﬁ(IRd) =0, we get (20).

13



In the general case, i.e. if b(z) # 0 or Q(z) # 0, we replace Xt(l) by
. [ c, [
X, = b(Xs)ds+ Xy + " y (N (dy,ds) - p(dy,ds))
0 0 JO<|y|<1

where (X )0 denotes the continuous martingale part, cf. [19, Theorem II.2.34]; this gives
additional terms when applying It6’s formula, but the reasoning works exactly as in the pure-

jump case. O

3.8 Lemma Let (X¢)w0, K, g and xo € RY be as in Theorem 3.7. For any T >0 and all
functions g,0 € CZ(R?) such that suppf n B(0,e) = 0 for some sufficiently small € > 0, there

exists a constant C >0 such that
B (exp [ VIX D, 2 1-1]9(x2,))
B (exp | V/IXED, 2+ 1- 1] 9(x D D0(x () ) <
B (exp | V/IXED, 2+ 1- 1] 9(x D )0(X ) ) <

for all t < T; here Tk denotes the exit time from the set K and X; — xo = Xt(l) + Xt(Q) the
decomposition from the proof of Theorem 3.7.

C

INA

Proof. We know from the proof of [21, Theorem 4.1] that under the assumptions of The-

sup [E*° (exp [\/ |Xt(A12K|2 +1- 1] Q(Xt(flk)) < 00,

t<T

orem 3.7

and this proves the first assertion. The other two estimates now follow from a straightforward

application of It6’s formula; mind that the initial term

exp [V/IXE, 2+ 1= 1] (X2, 00X =0
vanishes for ¢ € {1,2} since H(Xéi)) =0. O

Remark (i). The proof of Theorem 3.7 simplifies substantially if the submultiplicative func-
tion g e C2(R?) satisfies the inequality

V2g(z)| < Clg(z)l,  zeR?, (23)

for some absolute constant C' > 0. In this case, we can apply It6’s formula directly to the
mapping x — g(x — zo)xr(z — 2o) to prove (16); there is no need to use the decomposition
X = a:+Xt(1) +Xt(2) and estimate (17). Although there are many examples of submultiplicative
functions satisfying (23), it does not hold true for all (twice differentiable) submultiplicative

functions.

(ii). In Theorem 3.7 submultiplicativity of the dominating function g is required. This assump-
tion can be weakened; it suffices to assume that there exist a subadditive function a: R¢ - R
and a submultiplicative function m : R - (0, 00) such that g(x) = m(z)-a(x) for all z € R?,
a,m e C*(R%) and

lim inf 0.
i inf a(2)] >

The proof of Theorem 3.7 under this relaxed assumption is similar, but more technical.

Using exactly the same reasoning as in the proof of Theorem 3.7, we obtain a similar

extension of Theorem 3.5 to unbounded functions.
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3.9 Theorem Let (X;)s0 be a rich Lévy-type process with characteristics (b,0,v) and symbol
g, and let f:R? > R be a continuous function satisfying the growth condition (G). Suppose
that either (B1) or (B2) holds for some xo € K and that q(xo,-) satisfies the sector condition.
Then the limit

N R

lim © (B f(Xinri) - f(20))
exists and equals Lf(xo) as defined in Theorem 8.5. If (X¢)w0 has bounded coefficients, then
K =R? is admissible.

We close this section with an application of Corollary 3.3, which has been announced
(without proof) in the recent publication [21, remark following Theorem 5.2] on moments of

Lévy-type processes.

3.10 Proposition Let (X¢)w0 be a rich Lévy-type process with symbol q¢ and characteristics
(b,Q,v). If there exist x € R*, R>0 and o >0 such that

lim inf %Ex (1X: = 2" L{x,—appry ) < 00,
then
ol v ) < B v (y € Byl > R o + imint 257 (X =01,
in particular _[‘be ly|* v(zx,dy) < oo.
For R =0 Proposition 3.10 shows
C n%nf%]E“(\Xt ~af) <o = f Iyl vw,dy) <O < oo,
Proof of Proposition 3.10. Since the identity

S utay <o

holds for any a > 0 and any o-finite measure u, we have

o= )
[ vy =a [ e gy eRY > R, lyl> ) dr.
ly>R (0,00)
If R =0 then it follows from (10) and Fatou’s lemma that
1 R 1. .
f ly|“ v(z,dy) < aliminf = f P*(| X —a|2r)r* " dr © liminf - (| X - z|™).
ly[>0 t=0 ¢ J(0,00) -0 ¢

Here we use that the o-finiteness of v(z,dy) implies v(z,0B(0,r)) = 0 for Lebesgue-almost all
r>0. If R>0, then we split the integral

f||>R ly|* v(z,dy) < R°v(z,{y e R%;|y| > R}) + f(R ) v(z,{y e R%[y|>r})r* " dr,
) .

and use again (10) and Fatou’s lemma to estimate the second term. O

4 Uniform limits
In the previous section we have seen that the pointwise limit lim;_ot ™ (IE™ f(X:) - f(x0))

exists for some fixed zo € R? if fe Coo(]Rd) satisfies a Holder condition at zo. Now we turn

to the question under which assumptions on the regularity of f the limit

tiy 7 (B*(X0) - (+)) (24)
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exists uniformly in Co (R%), i. e. under which assumptions f is contained in the domain D(A)
of the generator of (X¢)s0. It is well known that the limit exists (uniformly) for any func-
tion f € CZ(R%) and any Lévy-type process (X;)ss0 with bounded coefficients, cf. [6, The-
orem 2.37]. However, the results from the previous section suggest that the uniform limit may

also exist for functions whose regularity varies from point to point, e. g. functions which satisfy
f(x+y) = @) <Ol forall z,yeR”, Jy<1

for some absolute constant C' > 0 and a suitable mapping « : R? — [0,1]. In this section,
we will show that this is indeed true; more precisely we will establish that certain Holder
spaces of variable order are contained in the domain of the generator, cf. Corollary 4.7 and
Corollary 4.8. The idea is to use the fact that for a Lévy-type process (X;): >0 the limit (24)
exists uniformly if, and only if, the pointwise limit exists for each & € R? and the limit defines
a function in Ce (R?), cf. [28, Theorem 7.22]. At the end of this section we will present some

examples, including stable-like and relativistic stable-like processes.
Let us begin with Lévy processes before we discuss the more general case of Lévy-type

processes.

4.1 Theorem Let (Lt)s0 be a Lévy process with Lévy triplet (b,Q,v). Denote by (A, D(A))
its generator and fix « € [0,2] such that flylél ly|® v(dy) < oo.

(i) CX(RY) €D(A) and Af =b-Vf+5te(QVf)+ f (f(e+y) = F =V -yl (y]) v(dy)
for f e CL(RY).

(ii). IfQ@=0, a€[0,1] and b= f\ul<1 yv(dy), then the Holder space

€% = {f € Coo(RY); | f]la == sup @) = F@)l < oo}

z,yeRd ‘.’E - y|a

is contained in D(A) and Af(z) = f (f(z+y) - f(z))v(dy) for any f € C%.
(iii). If @ =0 and a € [1,2], then

el = {f e CLRY): vfeeX} e D(4)
and Af() =b-Vf (@) + f (F(z+y) = f(2) = V(@) yLon () v(dy) for f e

Part (ii) of Theorem 4.1 was recently proved by Cygan & Grzywny [14] for the particular
case a = 1.

4.2 Remark There are various concepts of Holder (or Lipschitz) spaces in the literature. On

the one hand, there are the “classical” Holder spaces C* equipped with the norm

% S 8 f]loe + max qup 1221 @) ~0°F W) "
7=0 geN ¢ BeNd zxy |x_y|a—[aJ
181=3 1Bl-Lo)

where || denotes the biggest natural number less or equal than a. On the other hand, there

are the Zygmund—Holder spaces €% consisting of all functions f € C* such that the norm

|0° f(z + h) +0° f(z - h) - 20° f(z)|
|hls

k
> H@ﬁfHoo+ma)§ sup

j=0 d BelNg o, d
B 181k " ns0.
is finite where s € (0,1] and k € IN are chosen such that « = k + s, see Triebel [34, pp. 34]. If
a € (0,00)\IN then €% = C“, cf. [33, Theorem 1(b), p. 201]; however for o € IN we have a strict
inclusion: €* 2 C*. For « = 1 it is possible to show that ¢! is strictly larger than the space of

Lipschitz continuous functions Lip (cf. [31, p. 148]) which is, in turn, strictly larger than cl.
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Our spaces €' o € [1,2), coincide with C® with norm (#). There are the following relations

between the Holder spaces introduced in Theorem 4.1 and the just mentioned function spaces:

€2 =C*NCwu(RY) =€*nCu(R?Y),  ac(0,1),
L= nCL(RY) =¢* nCL(RY),  «ae(l,2)

and
€L =LipnCu(R?),  €L°=C'nCe(RY).

Proof of Theorem 4.1. (i) is well known, see e.g. [26, Theorem 31.5] or [6, Theorem 2.37].
The proofs of (ii) and (iii) are very similar, and therefore we only prove (ii). Pick a cut-
off function x € C°(R?) such that x > 0, suppx € B(0,1) and Jrax(z)dz = 1. If we set
xe(z) = e x(e7 ), then the convolution f, = x1/,, * f is in CZ(R?), hence in D(A), and
limp—oo || fn = o =0. As

[(frn = (@ +y) = (fn - F)(@)] <

[ x@ U@y rn2) - f@en2)de| +[f (@ + ) - £(@)

<2[flalyl®
for all |y| <1 and
(= D)= (= DI S2 s U6) = ) 0
we find
sup sup |(fn =)@ +y) = (frn = F)(@)] nooo 0
zeR4A 0<|y|<1 |y|a

which implies that
Afa(@) = f Galr )~ @) ldy) = f (F@+y) - =) v(dy)
uniformly in z € R%. Since the generator (A,D(A)) is a closed operator, this finishes the

proof. O

4.3 Example (Isotropic a-stable Lévy processes) Let (L¢):»0 be an isotropic a-stable process
for some « € (0,2), i.e. a Lévy process with characteristic exponent ¥(£) = |€|*, &€ € R?, and
set cq 1= 2% 2T (O‘T”l) /F (1 - %) Then, by Theorem 4.1:

e If e (0,1), then Theorem 4.1 shows that the Holder space €2 is contained in the domain
of the generator A for any 3 € (a, 1] and

Af@) o f (e~ f@) il o€l meR”

o If a€[1,2), then €L c D(A) for all S € (o, 2] and

AF@) = f (F@+9) = F@) - 91@) ylon(u)) i et meR”

Let us mention that the domain D(A) of the generator of (L )¢so is contained in the Zygmund-—
Holder space €2, := €% N C, see Remark 4.2 for the definition. In dimension d = 1 this follows
by combining two results from interpolation theory [33, Theorem 1(a), p. 201; Theorem (d),
p. 101] with the fact that the domain of the generator of one-dimensional Brownian motion
equals CZ (R) [28, Example 7.15]. For d > 1 it is possible to show that the resolvent Ry, A > 0,
satisfies Rx(Co(R?)) € €% using well-known heat kernel estimates for the transition density
of (L¢)is0; since D(A) = Ry (Coo(R?)) this gives the assertion.
In summary,
e = Jes cD(A) c e, (25)

e>0
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4.4 Example (Compound Poisson processes) Let (L¢):»0 be a Lévy process with Lévy triplet
(b,0,v). Suppose that v is a finite measure and b = f‘yklyu(dy) (e.g. b =0 and v|p(o,1)
symmetric). Then the domain D(A) of the generator of (L;)ss0 equals Coo (R?) and

Af@) = f (F@ry)-f@) v(dy),  eCulRY), zcR
Next we extend Theorem 4.1 to Lévy-type processes.

4.5 Theorem Let (X¢)i>0 be a rich Lévy-type process with symbol q and characteristics
(b,Q,v). Assume that (Xi)i=0 has bounded coefficients and that © — Q(x) is continuous.
For fized x € R? denote by

Boo(x) := inf {'y > 0; lim % sup |q(z, &)| < oo} € [0,2]
e T s

the generalized Blumenthal-Getoor index at oo. Let a: R% — (0,2] be a uniformly continuous

mapping such that a(x) > min{fBw.(z) +¢,2} and

a(z)-¢

sup ][ ly] v(z,dy) < oo

zeRd
lyl<1

for some absolute constant € > 0. Suppose that f € Cw(Rd) satisfies the following conditions.

(C1) For any x € {0<a <1} it holds that

wp M@ - F@I

0<ly|<1 [y|(®)

(C2) f is differentiable at every point x € {1 < a <2} and g;(x) = 0z, f(x), x € {1 <a <2},

has a Ceo-extension to R® for each j € {1,...,d}. Moreover,
sup f(@ry) = f(z) = Vf(z) -y < oo forall xe{l<a<2}.
0<|yl<1 |y‘a(w)

(C3) For any z € {a = 2}, [ 1is twice differentiable in a neighbourhood of x and the function
hij(x) = 02,04, f(x), x € {a =2}, has a Ceo-eatension to R? for all i,5€{1,...,d}.

Then f is in the domain D(A) of the generator A of (Xt)t=0 and
Af(@) = () -9(2) + 51 (Q)h(@) + £ (a+9)~ () - 9(2) - vy (o) vl dy)
for all x € R? where g=0(g1,---,94)" and h:= (hi;)ij-1,...d-

Before we prove Theorem 4.5, let us make some remarks and state two immediate corollaries
of Theorem 4.5.

4.6 Remark (i). Depending on the local Holder index a(z), the generator Af(x), f € D(A),
has the following equivalent representations:
o Af(2) = f (f(z+y) - F(2)) v(a,dy) for any s {0<a<1)
o Af(z)=b(z) - Vf(x)+f (f(z+y)-f(z) - VI(x) ylo(ly)) v(z,dy) for any
ze{l<a<2}
o Af(z)=b(z) Vf(z)+5tr(Q(z) V*f(x))

+f (f@+y) - f(2) - V(@) -yl (yD) v(z,dy)
for any z € {a = 2}.

(ii). Since the regularity of the function f may vary from point to point and the triplet is

z-dependent, Theorem 4.5 requires stronger assumptions than in the Lévy case.
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(iii). Let ¢ be a negative definite symbol with characteristics (b,0,v) and suppose that ¢

satisfies the sector condition, i.e. there exists a constant C' > 0 such that
|Img(z,€)| < CReq(x,§) for all z,&eR%. (26)

Then J(\y\g ly|“®) =% v(x,dy) < oo entails feo(z) < a(z) —¢, cf. (12). Consequently, it

suffices in this case to check the integrability condition

sup ][ 1“7 v(z, dy) < oo.

zeRd
lyl<1

On the other hand, if there exist constants C' > 0 and ¢ > 0 such that
|Req(z,€)| < Clg/*="  forall z,£eR’, [¢]>1, (27)

then any uniformly continuous function o : R* - (0,2) with inf,.z4(a(z) - B - 6) > 0

satisfies the assumptions of Theorem 4.5; this follows from the identity

" Rey(€)
‘/\1;1|£1|y| V(dy)SCn/‘é_‘Tdf, K€(0’2)

which holds for any continuous negative definite function ) : R¢ - C with triplet (b,0,v),
see (29) in the proof of Lemma A.1.

The sector condition (26) is, in particular, satisfied if ¢(x,-) is real-valued. This is
equivalent to saying that ¢(z,-) symmetric for all z € R? (i.e. ¢(x,&) = q(z,-€) for all
z,& e RY) or b(z) = 0 and v(z,dy) = v(z,—dy) for all z ¢ R,

(iv). It is well known, cf. [6, Theorem 2.30], that the mapping x ~ ¢(x,&) is continuous for all
€ e R? for any symbol ¢ with g(z,0) = 0. However, continuity of ¢(-,&) does, in general,

not imply continuity of x — Q(x); consider, for instance,

g(x,€) = %fQﬂ{o}(w) ¥ 1*%Z'(”@IL]Rd\{O}(a:), z,€ € R,

see [13, p. 11].

4.7 Corollary Let (X¢)tz0 be a rich Lévy-type process with symbol q, q(x,0) =0 and charac-
teristics (b,0,v). Suppose that (X:)>0 has bounded coefficients and b(z) = J(Iy\<1 yv(z,dy) for
all z e RY. Let e >0 and o : R* - [g,1] be uniformly continuous such that

sup j[ |y|a(m)_5 v(z,dy) < oo.
zeRd
lyl<1

If either the sector condition (26) holds or BZ, < a(xz) —¢ for all x € RY, then the Hélder space

of variable order
a0 o {f € Coo(RY); sup sup f(z+y) - f(@)] < oo}
’ zeRd 0<|y|<1 |y‘a(z)

is contained in the domain of the generator A and
Af(z) = ][ (f(z+y) - f(@) v(z,dy)  forall zeR%, feeel).

Proof. Under the assumptions of Corollary 4.7, we know from the remark following The-
orem 4.5 that Be(z) < a(z) - ¢ for all € R%. Moreover, a(x) € [0,1] for all z € R* and,
by assumption, condition (C1) is satisfied for all = € R¢. Consequently, the assumptions of

Theorem 4.5 are satisfied, and so Theorem 4.5 proves the assertion. O

Let us mention that among the first to consider Holder spaces of variable order were
Ross & Samko [25] who study fractional integrals of variable order. In [1] Hélder spaces of
variable order are shown to be particular cases of Besov spaces with variable smoothness and

integrability; see Andersson [2] for further characterizations.
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4.8 Corollary Let (Xt)t>0 be a rich Lévy-type process with bounded coefficients and with
symbol g and characteristics (b,0,v). Let e >0 be a constant and o : R? - (g,2] be a uniformly
continuous mapping. Suppose that either the sector condition (26) is satisfied or a(x)—€ > B,
for all z e R, If

sup f 1yl"C 7 v(a.dy) < oo,
2eR? et
then the space
O = {feCL®Y); v =1,...,d: 9;f e}

is contained in the domain of the generator A, and for all z € R? and f ¢ et

Af(w):b(x)~vf(fff)+][(f(w+y)—f(l‘)—Vf(ft)~y]l<o,1)(|y|)) v(z,dy).

Proof. Since eLatt ¢ CL(R?Y), we may assume without loss of generality that a(z) > 1 for

all € R%; otherwise we could replace o by max{c,1}. As in the proof of Corollary 4.7, we find

Boo () +€ < () for all z € R®. Tt remains to check that f e eL*O7! satisfies the assumptions

of Theorem 4.5. If 2 € R” is such that a(x) = 1 it is obvious from the mean value theorem that
(C1) is satisfied. Now let x € {1 < a < 2}. Applying the mean value theorem to the auxiliary
function h(y) = f(z +y) - f(x) - Vf(z) -y shows

[f(z+y) - f(z) - Vf(x) yl <yl S IVf(z+¢) - Vi) <Clyl- [y)* @7 = Cly*™

for all z,y € R?, ly] <1 and some absolute constant C > 0; here we use that 9 f € a0 for
all j€{1,...,d}. This shows that condition (C2) holds true. O

Proof of Theorem 4.5. It follows from Theorem 3.4 that the pointwise limit
N
Lf(@) =lim 5 (B°1(X0) - ()
exists for all 2 € R? and is given by

o Lf(z)=f (f(z+y)- f(z)) v(z,dy) for any z € {0 <a < 1};

o Lf(z)=b(x) Vf(z)+ f (fz+y) - f(z) - VI(@) yLou(yD) v(z,dy) for any
rze{l<a<2};

o Lf(z)=b(z)Vf(z)+5tr(Q(z)V*f())+f (f(z+y) - f(x) - Vf(2) yLon(yl)) v(z, dy)
for any z € {a = 2}.

As Q(z) =0 for all z € {0 < a < 2} and flyklyu(amdy) =b(z) for all z € {0 < a <1} (see
Lemma A.2 in the appendix), we can write Lf in a closed form as

L) =b(@) - 9(@) + 5 0 Q) + f (F(+9) = F(@) = 9(@) -yl o, (1)) w(,dy).

In order to prove that f is contained in the domain of the generator A and Af = Lf, it suffices
to show that Lf € Cwo(R?), see e.g. [28, Theorem 7.22]. The triangle inequality, Taylor’s
formula and conditions (C1)-(C3) imply that there exists a constant C' > 0 such that

[f(z+y) - f(z) - g(z) y| <Cly/*™  forall z,yeR’ |yl<1. (28)

Fix a cut-off function x € C:°(R?) such that x > 0, supp x € B(0,1) and Jga x(z)dx = 1. If we
set xe(x) := Eilx(aflx), then the convolutions fn = X1/n * f, gn = X1/n * g and hn := X1/ * h
are C2 (R%)-functions and

[ fn = Flloo +1gn = glloe + [tn = hllec =—=>0.
We are going to show that

An(z,y) = (fn = )@ +y) = (fa = (@) = (g0 - 9)(2) -y
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satisfies an estimate similar to (28). By the very definition of the convolution, we have
M@y = [ F@ry+2) = f@+ham(=)dz= [(Fa+2)= F@)xan(z) dz
- [ (9@+2) = g(@)) - yxayn(2) 2.

Since supp X1/, € B[0,1/n] and 0 < x <1,

An(ra)l<2 s 1) =S+ o) = g(o)]

|r—sl<n~ r—sl<n~

On the other hand, we have by (28)

|An(z,y)| <2C sup |y|**? )x(z)dzzzcw\a(” sup [y*F 7,

|z—z]<n~1 B(0,1 |x—z|gn~1

As « is uniformly continuous, we can choose N € IN sufficiently large such that
la(z) — a(z)| <e/2 forall zeR,zeB(z,N").

Combining both estimates, we find

[An(2,y)|
‘y|a(x)—5

Jy|e(=)=e

|z—z|gn~1

2SUP|,_ < 7) — f(8)| +supp,_s<n- r)—g(s N
Smin{ Plr—s|< 1‘f() f( )| Plr-s|< 1|g() 9( )|,20 sup |y‘5+(o¢(z) a(z))}

< min { 28up|'r75\£n’1 ‘f(?") - f(8|)| |‘; Sup\rfs|£n’1 |g(’f’) - g(S)l’ 20|y|g/2}
Y

forallze R, 0<|y|<1andn>N. As f € Coo (R?) and g € Coo (R?) are uniformly continuous,
this proves

An(a,y)|

ple- =

lim sup sup
N7 zeRd 0<|y|<1

In particular, there exist constants Cy, > 0 such that C,, —» 0 as n - oo and
|(fu = H) (@ +y) = (fn = 1)) = (90 = 9)(&) - y] < Cnly| "
for all z,y e R?, |y| < 1. If we set

Lfu(@) = b(@)gn () + 5 00 (@) (@) + f (fule+9) = fa(@) = g0 (@) -yl 0. () v dy),

then

|Lfn(2) = Lf (@) < [blloo|lgn = glloo + [ @l o [in = hlloo + Crn ][ [y|” 7% v, dy)

lyl<1

#2f = flwsup [ w(o,dy).
zeRd Yyl>1

This expression converges to zero uniformly in = since (X:):0 has bounded coefficients. As
Lfn € Coo(R?) for large n € IN, see Lemma 4.9 below, we conclude that Lf € Coo (R?). O

For the proof of Theorem 4.5 we need the following auxiliary statement.

4.9 Lemma Lf, defined in the proof of Theorem 4.5 is a C’oo(]Rd)—function for sufficiently
large n € IN.

Proof. The mapping = — Q(z) is, by assumption, continuous and bounded. As h, € CZ (R%),
this implies that tr(Q(e) h,(e)) € Coo (R?). Consequently, it is enough to show that

Lfa(x) = b(x) - gn(2) + ][ (falw+y) = ful@) = ga(@) -yl (9) v(z,dy) € Coo(R7).
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Since C°(R%) ¢ D(A) and (X;)ss0 has bounded coefficients, we have CZ (R%) ¢ D(A), and
therefore

Afa(@) = b(@) - fal@) + 5 00 Q) T fu ()
+ f (o) = u(@) = V(@) -yl () v(, dy)
is in Coo (R?). Using again the fact that Q € C,(R?) and V2f, € Co(R?), we get
Afn(x) = b(x) - Vfalz) + ][ (fa(z+y) = fa(@) = Vful2) -yl (y]) v(z,dy) € Cu(R?).

Let « ¢ R?. We distinguish between two cases.

0 < a(x) <1+¢/2: Using our assumption Be(z) + € < a(x), we find Boo(z) < 1 which implies,
by Lemma A.2, b(z) — f\ykl yv(z,dy) =0. Thus, Af,(z) = Lfa(x).

1+¢/2<a(z): Since « is uniformly continuous, we can choose n € N (not depending on x)
so large that |a(z) — a(z)| < /4 for all z € B[z,n']. Then a(z) > 1 +¢/4 for all
z € B(z,n™') and, therefore, flB(z,n-1) is differentiable. Since supp x1/» € B[0,1/n], this
implies V f, () = gn(x). Hence, Lf,(z) = Afn(z).

Consequently, we have Lf, = Af, ¢ Co(R?) for n € IN sufficiently large. O

We close this section with some examples. Recall the definition of the Holder spaces of

variable order 2 and €5*O! introduced in Corollary 4.7 and Corollary 4.8, respectively.

4.10 Example (Stable-like dominated process) Let (X¢):0 be a rich Lévy-type process with
symbol ¢ and characteristics (b,0,v). Denote by (A, D(A)) the generator of (X;)»0. Suppose
that (X¢)t=0 has bounded coefficients and that there exist a constant ¢ > 0 and a mapping
v:R* = (0,2) such that inf_.za y(z) >0 and

u(x,AmB(O,l))Sc/ dy

d d
ANB(0.1) W for all Ae B(R AN {O}), reR".

Let a: R% - (0,2) be a uniformly continuous mapping such that inf, gz4(a(z) - y(z)) > 0,
and suppose that either the sector condition (26) is satisfied or inf_  ga(a(z) - 5%) > 0.

(i). If a(R*) € [0,1] and b(z) = § ., yv(z,dy) for all z € R*, then € c D(A) and
Af@) = f (f@+y) = @) vlody),  aeR, feeid.
(ii). Cx*O™' cD(A) and
Af(x) =b(z) - Vf(z)+ f (fa+y) = f(2) =V (@) -yl (y) v(z,dy), v e R

for all f e eLat)-1,

4.11 Example Let (X;)t»0 be a rich Lévy-type process with one of the following symbols.

e stable-like: g(z,¢) = [€]"™) where v : R? - (0,2) is a Holder continuous mapping such
that inf_ gay(x) > 0.

e relativistic stable-like: q(z,€) = ([¢€]> + m(z)*)" @2 —m(z)"® for Holder continuous
mappings v : R - (0,2) and m : R? - (0, c0) such that

inf y(z) >0 and O0< inf m(z) < sup m(z) < co.
zeRd zeRd zeRd

o TLP-like:* ¢(z,€) = (|€)* +m(z)?)" @2 cos ['y(ac) arctan L)] —m(z)"® for Holder con-

m(z

tinuous mappings v : R* - (0,1) and m : R% - (0, o) such that

0< inf y(xz) < supy(xz) <1 and O0< inf m(z) < sup m(z) < co.
zeRd reRd zeRd zeRd

LTLP is short for “truncated Lévy process”.
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e Lamperti stable-like: ¢(z,£) = (|¢] + m(2)) @) — (M(2))y@) — (2)y = D(2 +7)/T(2)
denotes the Pochhammer symbol — for Holder continuous mappings = : R? - (0,1) and
m:R? - (0, 00) such that

0< inf y(z) < supy(z) <1 and O0< inf m(z) < sup m(z) < oo.
zeRd zeRd zeR4 zeRd

Let a: R? - [0,2] be a uniformly continuous map such that inf,ga(a(x) —~(z)) > 0. Then:

(i). €O e D(A) and Af(z) = f (f(z+y) - f(z) - V() -ylo(y]) v(z,dy) for any
fe L0 where (0,0,v) denotes the characteristics of the symbol q.

(ii). If a(R%) < [0,1], then e ¢ D(A) and Af(z) = § (f(z+y) - f(z)) v(z,dy) for any
feeal),

Example 4.11 is a direct consequence of Theorem 4.5 and Remark 4.6(ii) since all symbols
satisfy the sector condition (26) and growth condition (27) with § = 0. Note that the existence
of (rich) Lévy-type processes with the symbols mentioned in Example 4.11 has been established
in [22] recently. Obviously, Example 4.11 applies, in particular, in the Lévy case, i.e. if the

maps y(e) and m(e) are constants.

We close this section with the following example.

4.12 Example (Lévy-driven SDE) Let (L:)w0 be a k-dimensional Lévy process with Lévy
triplet (0,0,r) and characteristic exponent 1. Suppose that the Lévy measure v is symmetric
and that there exists an « € (0,2) such that J(Iylsl ly|® v(dy) < co. For any bounded (globally)
Lipschitz continuous function ¢ : R -» R¥** the solution to the SDE

dXt :O'(Xt_)st7 X() =x,

is a rich Lévy-type process with symbol g(z, &) = (o (2)7€), x, £ € R%. Moreover:,

(i). If @€ (0,1), then the Holder space @2 is contained in the domain of the generator A of
(X+t)e0 for any S € (o, 1] and

Af@) = f (f@+a(@y) - (@) vldy), el weR”

(ii). If a €[1,2), then the Holder space €17 is contained in the domain of the generator A
of (X¢)es0 for any S € (o, 2] and

Af@) = f (F@+ (@) - (@) - V@) - o@ylon () vdy),  feek™ zeR"

Proof. Tt is well known that the solution (X¢):»0 to the SDE is a rich Lévy-type process with
symbol q(z,&) = (o (z)7E), cf. Schilling & Schnurr [29, Corollary 3.7] or Kiihn [23, Example
4.1]. Since the Lévy measure v is symmetric, both ¢ and ¢ are real-valued; in particular, g
satisfies the sector condition. Moreover, the characteristics of g are given by (0,0, v(z,dy))
where

v(x,B) := / 1s(o(x)y)v(dy), zeR?Y, BeB(R~ {0});

therefore, the boundedness of o gives

sup f Iyl* via,dy) < lol% [ Jyl v(dy) < oo.
zeRd lol<1 lyl<1

Now the assertion follows from Corollary 4.7 and Corollary 4.8. O
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A Appendix

Recall that a function ¢ : RY - € with ¢(0) = 0 is continuous negative definite, if it admits
a Lévy-Khintchine representation of the form (6). A continuous negative definite function

satisfies the sector condition if there exists a constant C' > 0 such that
[Tm(€)] < CRep(€)  for all €eR™.

The following lemma is used in the proof of Theorem 3.5.

A.1 Lemma Let ¢ be a continuous negative definite function with triplet (b,0,v), and let

a€(0,2). The following statements are equivalent:
(1), fyjer IyI” v(dy) < o0;
(ii). [, supjge, Re)(§) < oo
(iii). /ey Reo(€) Kﬁ% < oo
If v satisfies the sector condition, then we may replace Re by |¢|.

Proof. Obviously, it suffices to prove the first assertion. We prove (i) = (ii) = (iii) = (i).
(i) = (ii): Since 1 —cos(y-§) < %|y§|2 for all y, £ € R, we have

U7 (r) = supRew(€) <2 f min {L,Jyl*r?} v(dy)
€l

implying

o dr o, 2 dr o0 dr
f1 ) ngl r ][ Iyl V(dy)m+2ﬁ flyw v(dy) i =521 + 2.

[yl<r=t

An application of Tonelli’s theorem shows

I = f ][ 'y v(dy) dr = ][ ([ rie dr) ly)* v(dy)
1 1<r<lyl~t

Jy|<r—1 ly|<1
1 o
5 F WP (" - 1) v(dy) <o
lyl<1
and

oo - dr 1 du

L= [Tululblz ) s = [ el 2 u)) 5
1 T 0 u

1 a
== ][ lyl* v(dy) < oo.
(0%

lyl<1

In the last step we use the identity
[ r@an@) = [ e 5@ =) dr

which holds for any o-finite measure g on (R \ {0}, B(R® \ {0})) and any non-negative
measurable function f. This proves (ii).
The implication (ii) = (iii) follows easily by introducing spherical coordinates and using

the obvious estimate
Rey(rn) <¢*(r)  forall r>0, neR?, |n=1.

It remains to prove that (iii) implies (i). To this end, we note that
1

|£|d+a d§

i = [ (1=cos(y-€))
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for the constant ¢ = a2 17~ ¥21" (%d) /F (1 - %), and therefore

f vy =c [ ( F -costy-©)) u(dw) i
lyl<1 lyl<1 (29)
dg
< cf Rew(€) g 06 < o,
which completes the proof. O

For a continuous negative definite function v the Blumenthal-Getoor index at oo can be
defined by

1
B = inf {1y > 0; lim = sup [p(€)] < oo,
r—oo 77 €|<r
cf. Schilling [27] or Blumenthal & Getoor [4]. The following auxiliary statement is needed in

the proof of Theorem 4.5.

A.2 Lemma Let v be a continuous negative definite function,

YO =ib-g+ 56 Qe+ f (1= vie ylon (b)) v(dy),  €eRY,
and denote by fe € [0,2] the Blumenthal-Getoor indezx at co.
(). If Boo <2, then Q = 0.
(i). If Boo <1, then b= f|y|<1 yv(dy).

Proof. (i) Since |€]72|1 - cos(y-£)| < min{2, |y|*} for all |¢| > 1, an application of the dominated
convergence theorem shows

.1
'51‘1‘[2" e[ ]( (1-cos(y-£)) v(dy) =0.

Thus,

. 16-Q€ . Rey(d) . 1 _ . =
dm See < g T m g f (1o eosty-©) v =0

which implies @ = 0.

(ii) We know from (i) that @ = 0. Since |f‘y‘21 (1- eiy'g) u(dy)| <20(R*\ B(0,1)), we may
assume, without loss of generality, that suppv € B[0,1]. For any « € (0,1) there exists some
¢y > 0 such that

~y dz dz
J 1o vt =y [ (1=costy ) s wldy) = e [ Rew(e)
As suppv € B[0,1], it follows easily from Taylor’s formula that |Re(z)| < C’|2]* for some
absolute constant C’ > 0. On the other hand, by assumption, |Rev(z)| < C|z|® for some
B € (Bs,1). Consequently, we find f |y|” v(dy) < oo for all v > 8. This implies, in particular,
that
Go(€) = f (1-e¥) v(dy),  €eR",

is well-defined. Using Markov’s inequality and the elementary estimate |sinz| < |z|, we find
for all v € (8,1)

(@)l s f [sin@y - Olvtdy) + [ 1w(dy)

|y-€>1
lygl<1

< [ et s [ e vy <l f ol vidy).

Thus,
206" 1yl v(dy) > Tmea(©)] > b+ £ yu(dy)| 16~ mu ().
lyl<1
Dividing both sides by |£|” and letting |£| — oo proves the assertion. O
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