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Abstract

In this paper we study the domain of stable processes, stable-like processes and more gen-

eral pseudo- and integro-differential operators which naturally arise both in analysis and as

infinitesimal generators of Lévy- and Lévy-type (Feller) operators. In particular we obtain

conditions on the symbol of the operator ensuring that certain (variable order) Hölder and

Hölder-Zygmund spaces are in the domain. We use tools from probability theory to invest-

igate the small-time asymptotics of the generalized moments of a Lévy or Lévy-type process

(Xt)t≥0,

lim
t→0

1

t
(E

xf(Xt) − f(x)) , x ∈ Rd,

for functions f which are not necessarily bounded or differentiable. The pointwise limit exists

for fixed x ∈ Rd if f satisfies a Hölder condition at x. Moreover, we give sufficient conditions

which ensure that the limit exists uniformly in the space of continuous functions vanishing

at infinity. As an application we prove that the domain of the generator of (Xt)t≥0 contains

certain Hölder spaces of variable order. Our results apply, in particular, to stable-like processes,

relativistic stable-like processes, solutions of Lévy-driven SDEs and Lévy processes.

Keywords: Lévy-type processes, Blumenthal–Getoor index, infinitesimal generator, fractional

Laplacian, small-time asymptotics, Hölder space of variable order.
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1 Introduction

Since the pioneering work of Caffarelli and Silvestre on fractional powers of the Laplacian, see

[30, 9], a lot of work has been devoted to fractional powers of the Laplacian from the analytical

point of view, we refer to [7, 8, 10, 16, 24] to mention but a few.

The fractional power of the Laplacian is also the generator of a stochastic process with

stationary and independent increments (a Lévy process), which allows us to use probabilistic

methods for its investigation. In fact, fractional powers of the Laplacian are just a special case

of generators of Lévy processes and – if one allows for generators with variable coefficients

– of the more general class of Feller processes, the classic result is [13], see [6] for a recent

survey. Over the past two and a half decades these operators have been studied from both the

analytical community but most of all the probability community, see [5, 11, 12, 17, 20, 26, 32].

Of particular importance is a good understanding of the domain of these operators which,

in general, have a representation as pseudo-differential as well as integro-differential operator.
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This is partly due to the fact that for elements in their domains we can construct interesting

martingales.

In this paper we study in great detail the domains of rather general generators of Feller

processes and, by using probabilistic techniques in combination with analytic techniques, we

succeed in finding precise conditions in terms of (variable-order) Hölder and Lipschitz func-

tion spaces to belong to these domains, see Theorem 4.1 (for Lévy processes and generators

with constant coefficients) and Theorem 4.5 (for Feller processes and generators with variable

coefficients). As far as we are aware, these results extend known results for fractional powers

of the Laplacian (including those of variable order of differentiability).

For a d-dimensional Lévy process (Lt)t≥0 with Lévy triplet (b,Q, ν) the family of measures

(pt)t>0 on (Rd ∖ {0},B(Rd ∖ {0}) defined by

pt(B) ∶=
1

t
P(Lt ∈ B), t > 0, B ∈ B(R

d
∖ {0})

converges vaguely to the Lévy measure ν, i. e.

lim
t→0

1

t
Ef(Lt) = ∫

Rd∖{0}
f(y) ν(dy) (1)

holds for any continuous function f with compact support in Rd ∖ {0}, cf. [6, Lemma 2.16]

or [3, Proposition 18.2]. By the portmanteau theorem, this implies the following small-time

asymptotics

lim
t→0

1

t
P(Lt ∈ B) = ν(B) (2)

for any Borel set B ∈ B(Rd ∖{0}) such that 0 ∉ B̄ and the topological boundary ∂B is a ν-null

set. Jacod [18] proved that the small-time asymptotics (1) extends to continuous bounded

functions f ∶ Rd → R with f(0) = 0 which satisfy a Hölder condition at x = 0,

∣f(x) − f(0)∣ ≤ ∣x∣α for all ∣x∣ ≤ 1

where α ∈ (0,2) is a suitable constant depending on the Lévy triplet (b,Q, ν), see [18] or

[15, p. 2] for details. More recently, Figueroa–López [15] showed that the assumption on the

boundedness of f can be replaced by a much weaker integrability condition which basically

ensures that the expectation Ef(Lt) is exists for any t > 0.

In the first part of this paper, Section 3, we establish similar results for the class of Lévy-

type processes which includes, in particular, Lévy processes, affine processes, solutions of

Lévy-driven stochastic differential equations, and stable-like processes. We will show that any

Lévy-type process (Xt)t≥0 with rich domain and characteristics (b(x),Q(x), ν(x, dy)) satisfies

lim
t→0

1

t
P
x
(Xt − x ∈ B) = ν(x,B) for all x ∈ Rd (3)

which is the analogue of (2), cf. Corollary 3.3; again B ∈ B(Rd ∖ {0}) is a Borel set such that

0 ∉ B̄ and ν(x, ∂B) = 0. Because of the small-time asymptotics (3), we have for fixed x ∈ Rd

lim
t→0

1

t
(E

xf(Xt) − f(x)) = ∫
Rd∖{0}

(f(x + y) − f(x)) ν(x, dy)

for any continuous function f with compact support in Rd ∖ {x}. Using a localized version of

a maximal inequality, cf. Lemma 3.1, we will show that for a rich Lévy-type process (Xt)t≥0
and fixed x ∈ Rd the pointwise limit

lim
t→0

1

t
(E

xf(Xt) − f(x)) (4)

exists for a much larger class of functions. More precisely, we will establish the small-time

asymptotics (4) for functions f ∶ Rd → R which satisfy a Hölder condition at x, cf. Theorem 3.4

and 3.5, and need not be bounded, see Theorem 3.7.

2



In the second part, Section 4, we turn to the question under which assumptions on f ∈

C∞(Rd) the limit

lim
t→0

1

t
(E

xf(Xt) − f(x)) (5)

exists uniformly (in x) for a rich Lévy-type process (Xt)t≥0 with bounded coefficients. This

is equivalent to asking for sufficient conditions which ensure that a function f ∈ C∞(Rd) is

contained in the domain D(A) of the generator A of (Xt)t≥0. The main results in Section 4

are Corollary 4.7 and Corollary 4.8 which state that D(A) contains certain Hölder spaces

of variable order. Our results apply, in particular, to Lévy processes, cf. Theorem 4.1; for

instance, if (Lt)t≥0 is an isotropic α-stable Lévy process, α ∈ (0,1), then the Hölder space

C
β
∞ ∶= {f ∈ C∞(R

d
); sup
x,y∈Rd

∣f(x) − f(y)∣

∣x − y∣β
< ∞}

is contained in the domain of the generator A of (Lt)t≥0 for any β ∈ (α,1] and we have

Af(x) = ∫
Rd∖{0}

(f(x + y) − f(x)) ν(dy), f ∈ Cβ∞, x ∈ R
d.

At the end of Section 4 we discuss several examples, including stable-like dominated pro-

cesses (Example 4.10), solutions of Lévy-driven SDEs (Example 4.12), stable-like processes

and relativistic stable-like processes (Example 4.11).

2 Basic definitions and notation

We consider the Euclidean space Rd with the canonical scalar product x ⋅ y ∶= ∑
d
j=1 xjyj and

the Borel σ-algebra B(Rd) which is generated by the open balls B(x, r) ∶= {y ∈ Rd; ∣y −x∣ < r}

and closed balls B[x, r] ∶= {y ∈ Rd; ∣y−x∣ ≤ r}. The smooth functions with compact support are

denoted by C∞
c (Rd), and C∞(Rd) is the space of continuous functions f ∶ Rd → R vanishing

at infinity. Superscripts k ∈N are used to denote the order of differentiability, e. g. f ∈ Ck∞(Rd)

means that f and its derivatives up to order k are C∞(Rd)-functions. We write supp f for

the support of a function f ∶ Rn → Rd and {f ∈ B} = f−1(B) denotes the preimage of a set

B ⊆ Rd under f . For a set B ⊆ Rd we use ∂B to denote the topological boundary of B. We

use ∫× and ∫× B as a shorthand for ∫Rd∖{0} and ∫B∖{0}, respectively.

Throughout, (Ω,A,P) denotes a probability space. A stochastic process (Lt)t≥0 is called

a Lévy process if it has stationary and independent increments, L0 = 0 almost surely and the

sample paths t ↦ Lt(ω) are càdlàg (right-continuous with finite left-hand limits) for almost

all ω ∈ Ω. By the Lévy-Khintchine formula, every Lévy process can be uniquely characterized

by its characteristic exponent ψ(ξ) ∶= − logEeiξ⋅X1 ,

ψ(ξ) = −ib ⋅ ξ +
1

2
ξ ⋅Qξ + ∫× (1 − eiy⋅ξ + iy ⋅ ξ1(0,1)(∣y∣)) ν(dy), ξ ∈ Rd, (6)

where (b,Q, ν) is the Lévy triplet consisting of the drift b ∈ Rd, the symmetric positive semidef-

inite diffusion matrix Q ∈ Rd×d and the Lévy measure ν on (Rd ∖ {0},B(Rd ∖ {0})) satisfying

∫× min{∣y∣2,1} ν(dy) < ∞. A function ψ ∶ Rd → C with ψ(0) = 0 is called continuous negative

definite if it admits a Lévy–Khintchine representation of the form (6).

A Lévy-type process is a Markov process whose transition semigroup is a Feller semigroup;

for further details see e. g. [6]. Without loss of generality, we may assume that the sample paths

of a Lévy-type process are càdlàg. If C∞
c (Rd) is contained in the domain D(A) of the generator

A of a Lévy-type process (Xt)t≥0, then we call (Xt)t≥0 a rich Lévy-type process. Lévy-type

processes are also known as Feller processes, and we will use both terms synonymously. Our

main reference for Feller processes is the monograph [6]. If (Xt)t≥0 is a rich Lévy-type process

with generator A, then A∣C∞c (Rd) is a pseudo-differential operator,

Af(x) = −q(x,D)f(x) ∶= −∫
Rd
ei x⋅ξq(x, ξ)f̂(ξ)dξ, f ∈ C∞

c (R
d
), x ∈ Rd
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where f̂(ξ) ∶= (2π)−d ∫Rd e
−ix⋅ξf(x)dx denotes the Fourier transform of f and

q(x, ξ) = q(x,0) − ib(x) ⋅ ξ +
1

2
ξ ⋅Q(x)ξ + ∫× (1 − eiy⋅ξ + iy ⋅ ξ1(0,1)(∣y∣)) ν(x, dy) (7)

is the negative definite symbol, cf. [6, Theorem 2.21]. For simplicity, we assume that q(x,0) = 0.

For each fixed x ∈ Rd the tuple (b(x),Q(x), ν(x, dy)) is a Lévy triplet. We call the family

(b(x),Q(x), ν(x, dy))x∈Rd the characteristics of q and use (b,Q, ν) as a shorthand. It is not

difficult to see that

Af(x) = b(x)⋅∇f(x)+
1

2
tr (Q(x) ⋅ ∇2f(x))+∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy)

for any f ∈ C∞
c (Rd), see e. g. [6, Theorem 2.21], where ∇2f denotes the Hessian and trA the

trace of a matrix A. By [6, Theorem 2.30], q(x,0) = 0 implies that the mapping x ↦ q(x, ξ)

is continuous for all ξ ∈ Rd. We say that a rich Lévy-type process (Xt)t≥0 has bounded

coefficients if its symbol q has bounded coefficients, i. e. there exists a constant c > 0 such

that ∣q(x, ξ)∣ ≤ c(1 + ∣ξ∣2) for all x, ξ ∈ Rd. We will frequently use the following result from [6,

Proposition 2.27(d), Theorem 2.31].

2.1 Theorem Let q be given by (7) such that q(x,0) = 0. For any compact set K ⊆ Rd:

(i). CK ∶= supx∈K sup∣ξ∣≤1 ∣q(x, ξ)∣ < ∞,

(ii). supx∈K ∣q(x, ξ)∣ ≤ 2CK(1 + ∣ξ∣2) for all ξ ∈ Rd,

(iii). supx∈K(∣b(x)∣ + ∣Q(x)∣ + ∫× (∣y∣
2
∧ 1) ν(x, dy)) < ∞.

If q has bounded coefficients, then the statements also hold for K = Rd.

The following result can be found in [6, Theorem 2.44].

2.2 Theorem Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,Q, ν). Then (Xt)t≥0 is a semimartingale and its semimartingale characteristics (B,C,µ)

relative to the truncation function y1(0,1)(∣y∣) are given by

Bt = ∫
t

0
b(Xs)ds, Ct = ∫

t

0
Q(Xs)ds, µ(⋅, ds, dy) = ν(Xs, dy)ds. (8)

3 Pointwise limits

In this section we investigate the small-time asymptotics of generalized moments, i. e. we study

limits of the form

lim
t→0

1

t
(E

xf(Xt) − f(x)) (9)

for a rich Feller process (Xt)t≥0 and any fixed x ∈ Rd. Recall that a function f is contained in

the domain D(A) ⊆ C∞(Rd) of the generator A, if the limit exists uniformly in C∞(Rd), i. e.

D(A) ∶= {f ∈ C∞(R
d
);∃g ∈ C∞(R

d
) ∶ lim

t→0
sup
x∈Rd

∣
1

t
(E

xf(Xt) − f(x)) − g(x)∣ = 0} ,

Af(x) ∶= lim
t→0

1

t
(E

xf(Xt) − f(x)) .

It is, in general, a non-trivial task to check whether a function f ∈ C∞(Rd) is in the domain

of the generator; typically, this requires assumptions on the smoothness, e. g. f ∈ C2
∞(Rd) if

(Xt)t≥0 has bounded coefficients, cf. [6, Theorem 2.37(h)].

We are interested in proving the existence of the limit (9) (and also determining it) for

functions f which are not necessarily bounded or differentiable. Intuitively, there are two

issues which we have to consider:
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(i). We have to ensure that the expectation Exf(Xt) exists; therefore, we need an assumption

on the growth of f at infinity.

(ii). For the existence of the limit (9) for a fixed x ∈ Rd the behaviour of f close to x ∈ Rd is

crucial. For instance, if Xt ∶= t is a deterministic drift process, then the limit (9) exists

if, and only if, f is differentiable at x. This means that we have to make an assumption

on the local regularity of f at x, typically Hölder continuity or differentiability.

In a first step we consider the particular case that f vanishes at infinity and satisfies f ∣B(x,δ) = 0

for some δ > 0; for such functions f we show in Theorem 3.2

lim
t→0

1

t
(E

xf(Xt) − f(x)) = ∫× (f(x + y) − f(x)) ν(x, dy).

This implies, in particular, that t−1Px(Xt − x ∈ ⋅) converges vaguely to ν(x, ⋅) as t → 0, cf.

Corollary 3.3, and so,

lim
t→0

1

t
P
x
(Xt − x ∈ A) = ν(x,A)

for any A ∈ B(Rd ∖ {0}) such that 0 ∉ Ā and ν(x, ∂A) = 0. In Theorem 3.4 and Theorem 3.5

we show that the assumption f ∣B(x,δ) = 0 on the regularity of f at x can be replaced by a

local Hölder or differentiability condition. The required regularity can be expressed in terms

of fractional moments of ν(x, ⋅) or in terms of the generalized Blumenthal–Getoor index at

infinity,

βx∞ ∶= inf {γ > 0; lim
r→∞

1

rγ
sup
∣ξ∣≤r

∣q(x, ξ)∣ < ∞} .

Finally, in Theorem 3.7, we extend Theorem 3.4 to functions f which are not necessarily

bounded.

The following upper bound for the small-time asymptotics of P(∣Xt −x∣ ≥ r) will be one of

our main tools.

3.1 Lemma Let (Xt)t≥0 be a rich Lévy-type process with symbol q. For any x ∈ Rd there

exists a constant c = c(x) > 0 such that

lim sup
t→0

1

t
P
x
(∣Xt − x∣ ≥ r) ≤ lim sup

t→0

1

t
P
x
( sup
s≤t

∣Xs − x∣ ≥ r) ≤ c(x) sup
∣ξ∣≤r−1

∣q(x, ξ)∣

for all r > 0. Moreover, c(K) ∶= supx∈K c(x) < ∞ for any compact set K ⊆ Rd.

Lemma 3.1 is a localized variant of a known maximal inequality, cf. [6, Corollary 5.2]; for

the readers’ convenience we include a full proof.

Proof of Lemma 3.1. For fixed x ∈ Rd and r > 0 denote by τxr ∶= inf{t ≥ 0;Xt ∉ B(x, r)} the

exit time from the ball B(x, r). As

{∣Xt − x∣ ≥ r} ⊆ { sup
s≤t

∣Xs − x∣ ≥ r} ⊆ {τxr ≤ t},

it suffices to show that

lim sup
t→0

1

t
P
x
(τxr ≤ t) ≤ c sup

∣ξ∣≤r−1
∣q(x, ξ)∣ (⋆)

for some constant c > 0. To this end, fix x ∈ Rd, r > 0 and pick u ∈ C∞
c (Rd) such that u(0) = 1,

suppu ⊆ B(0,1) and 0 ≤ u ≤ 1. If we set uxr(y) ∶= u((y −x)/r), then uxr ∈ C
∞
c (Rd) ⊆ D(A), and

an application of Dynkin’s formula gives

E
xuxr(Xt∧τxr ) − 1 = Ex (∫[0,t∧τxr )

Auxr(Xs)ds)
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where A denotes the generator of (Xt)t≥0. Thus,

P
x
(τxr ≤ t) ≤ Ex (1 − uxr(Xt∧τxr )) = −E

x
(∫[0,t∧τxr )

Auxr(Xs)ds)

= −E
x
(∫[0,t∧τxr )

1{∣Xs−x∣<r}Au
x
r(Xs)ds) .

Since

−Auxr(y) = ∫
Rd
eiy⋅ξq(y, ξ)ûxr(ξ)dξ = e

−ix⋅ξrd ∫
Rd
eiy⋅ξq(y, ξ)û(rξ)dξ

= e−ix⋅ξ ∫
Rd
eiy⋅ξq(y, r−1ξ)û(ξ)dξ

for all y ∈ Rd, we get

P
x
(τxr ≤ t) ≤ tEx (∫

Rd
sup
s<t∧τxr

∣q(Xs, r
−1ξ)∣ ∣û(ξ)∣dξ) .

As Xs ∈ B(x, r) for all s < t∧ τxr , there exists by Theorem 2.1 a constant C = C(r, x) such that

sup
s<t∧τxr

∣q(Xs, r
−1ξ)∣ ∣û(ξ)∣ ≤ C(1 + ∣ξ∣2)∣û(ξ)∣ ∈ L1

(dξ)

for all t ≥ 0. On the other hand, q(x,0) = 0 implies that x↦ q(x, ξ) is continuous for all ξ ∈ Rd,

see [6, Theorem 2.30]), and therefore

sup
s<t∧τxr

∣q(Xs, r
−1ξ)∣ ∣û(ξ)∣

t→0
ÐÐ→ ∣q(x, r−1ξ)∣ ∣û(ξ)∣ for almost all ξ ∈ Rd.

Applying the dominated convergence theorem yields

lim sup
t→0

1

t
P
x
(τxr ≤ t) ≤ ∫

Rd
∣q(x, r−1ξ)∣ ∣û(ξ)∣dξ.

Now (⋆) follows using the estimate from Theorem 2.1

∣q(x, r−1ξ)∣ ≤ 2 sup
∣η∣≤r−1

∣q(x, η)∣(1 + ∣ξ∣2) for all ξ ∈ Rd, r > 0.

The next result is well known for Lévy processes, see [3, Proposition 18.2] or [6, Lemma

2.16].

3.2 Theorem Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,Q, ν). Let f ∈ C∞(Rd) and suppose that f ∣B(x0,δ) = 0 for some x0 ∈ R
d and δ > 0. Then

1

t
E
xf(Xt)

t→0
ÐÐ→ ∫× f(x + y) ν(x, dy)

uniformly in a neighbourhood of x0. In particular, x ↦ ∫ f(x + y) ν(x, dy) is continuous at

x = x0.

Proof. For fixed ε > 0 choose χ ∈ C∞
c (Rd) such that ∥f − χ∥∞ ≤ ε. Without loss of generality,

we may assume that χ∣B(x0,δ) = 0. Obviously,

∣
1

t
E
xf(Xt) − ∫× f(x + y) ν(x, dy)∣ ≤ ∣

1

t
E
x
(f − χ)(Xt)∣ + ∫× ∣f(x + y) − χ(x + y)∣ ν(x, dy)

+ ∣
1

t
E
xχ(Xt) − ∫× χ(x + y) ν(x, dy)∣

=∶ I1 + I2 + I3.

We estimate the terms separately. Using that χ(x) = 0, ∇χ(x) = 0 and ∇
2χ(x) = 0 for all

x ∈ B(x0, δ/4), we find for all x ∈ B(x0, δ/4)

I3 = ∣
1

t
(E

xχ(Xt) − χ(x)) −Aχ(x)∣ ≤ sup
x∈Rd

∣
1

t
(E

xχ(Xt) − χ(x)) −Aχ(x)∣
t→0
ÐÐ→ 0
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as χ ∈ C∞
c (Rd) ⊆ D(A). For I2 we note that for any x ∈ B(x0, δ/4)

I2 ≤ ∫∣y∣≥δ/4
∣f(x + y) − χ(x + y)∣ ν(x, dy) ≤ ε sup

x∈B(x0,δ/4)
ν(x,Rd ∖B(0, δ/4)).

Note that the constant on the right-hand side is finite, see e. g. [6, Theorem 2.30(d)], and δ > 0

is a fixed constant which does not depend on ε. Since

I1 ≤
ε

t
P
x
(∣Xt − x0∣ ≥

δ

2
) ≤

ε

t
P
x
(∣Xt − x∣ ≥

δ

4
)

for all x ∈ B(x0, δ/4), it follows from Lemma 3.1 that there exists a constant C > 0 such that

lim sup
t→0

1

t
I1 ≤ Cε sup

x∈B(x0,δ/4)
sup

∣ξ∣≤4δ−1
∣q(x, ξ)∣.

The above estimates show

lim sup
t→0

∣
1

t
E
xf(Xt) − ∫× f(x + y) ν(x, dy)∣

≤ ε( sup
x∈B(x0,δ/4)

ν(x,Rd ∖B(0, δ/4)) +C sup
x∈B(x0,δ/4)

sup
∣ξ∣≤2δ−1

∣q(x, ξ)∣)
ε→0
ÐÐ→ 0.

The assertion on the continuity follows directly from the local uniform convergence and the

fact that x↦ Exf(Xt) is continuous as (Xt)t≥0 is a Feller process.

If we use Theorem 3.2 for the shifted function f(⋅ − x0) for a fixed x0 ∈ R
d, we get:

3.3 Corollary Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,Q, ν). If f ∈ C∞(Rd) and f ∣B(0,δ) = 0 for some δ > 0, then

lim
t→0

1

t
E
xf(Xt − x) = ∫× f(y) ν(x, dy) for all x ∈ Rd.

Corollary 3.3 shows that the family of measures pt(dy) ∶= t
−1Px(Xt − x ∈ dy), t > 0, on

(Rd∖{0},B(Rd∖{0})) converges vaguely to ν(x, dy) for each fixed x ∈ Rd. By the portmanteau

theorem, Corollary 3.3 implies

lim
t→0

1

t
P
x
(Xt − x ∈ A) = ν(x,A) (10)

for any Borel set A ∈ B(Rd ∖ {0}) such that 0 ∉ Ā and ν(x, ∂A) = 0.

The next step is to relax the assumption “f ∣B(x0,δ) = 0” in Theorem 3.2. To this end we

define, following [27], for fixed x0 ∈ R
d the generalized Blumenthal–Getoor index at ∞

βx0∞ ∶= inf {γ > 0; lim
r→∞

1

rγ
sup
∣ξ∣≤r

∣q(x0, ξ)∣ < ∞} .

Since any continuous negative definite function grows at most quadratically at infinity, we

have βx0∞ ∈ [0,2] for any x0 ∈ R
d; moreover,

∫×

∣y∣≤1
∣y∣β ν(x0, dy) < ∞ for all β > β∞x0 . (11)

If q(x0, ⋅) has no diffusion part, i. e. Q(x0) = 0, and satisfies the sector condition, i. e. if there

exists a constant C > 0 such that ∣ Im q(x0, ξ)∣ ≤ CRe q(x0, ξ) for all ξ ∈ Rd, then

∫×

∣y∣≤1
∣y∣β ν(x0, dy) < ∞ Ô⇒ β∞x0 ≤ β. (12)

In this case, the Blumenthal–Getoor index can be equivalently characterized in terms of frac-

tional moments of the Lévy measure

βx0∞ = inf

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γ > 0; ∫×

∣y∣≤1
∣y∣γ ν(x0, dy) < ∞

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

;

this is a special case of [27, Proposition 5.4], see also [4].
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3.4 Theorem (Regularity at x0) Let (Xt)t≥0 be a rich Lévy-type process with symbol q and

characteristics (b,Q, ν). Suppose that f ∈ C∞(Rd) satisfies one of the following conditions for

some fixed x0 ∈ R
d.

(A1) There exist constants α > βx0∞ and C > 0 such that

∣f(x) − f(x0)∣ ≤ C ∣x − x0∣
α for all x ∈ B(x0,1).

(A2) f is differentiable at x = x0 and there exist α > βx0∞ and C > 0 such that

∣f(x) − f(x0) − ∇f(x0) ⋅ (x − x0)∣ ≤ C ∣x − x0∣
α for all x ∈ B(x0,1).

(A3) f is twice continuously differentiable in a neighbourhood of x0.

Then the limit

lim
t→0

1

t
(E

x0f(Xt) − f(x0))

exists and takes the value

(A1) Lf(x0) ∶= ∫× (f(x0 + y) − f(x0)) ν(x0, dy),

(A2) Lf(x0) ∶= b(x0) ⋅ ∇f(x0) + ∫× (f(x0 + y) − f(x0) − ∇f(x0) ⋅ y1(0,1)(∣y∣)) ν(x0, dy),

(A3) Lf(x0) ∶= b(x0) ⋅ ∇f(x0) +
1
2

tr (Q(x0) ⋅ ∇
2f(x0))

+ ∫× (f(x0 + y) − f(x0) − ∇f(x0) ⋅ y1(0,1)(∣y∣)) ν(x0, dy),

depending on which of the conditions (A1)-(A3) is satisfied.

Proof. Pick a cut-off function χ ∈ C∞
c (Rd), 0 ≤ χ ≤ 1, such that χ∣B(x0,1) = 1, χ∣Bc(x0,2) = 0

and set χδ(x) ∶= χ(δ
−1x) for δ > 0.

(A1) Without loss of generality, we may assume f(x0) = 0, otherwise we consider the shifted

function x↦ f(x) − f(x0). As α > βx0∞ , we have

∫× ∣f(x0 + y)∣ ν(x0, dy) ≤ C ∫×

∣y∣≤1
∣y∣α ν(x0, dy) + ∥f∥∞ν(x0,R

d
∖B(0,1)) < ∞,

and therefore it follows from Theorem 3.2 and the dominated convergence theorem that

1

t
E
x0([f(1 − χδ)](Xt))

t→0
ÐÐ→ ∫× f(x0 + y)(1 − χδ(x0 + y)) ν(x0, dy)

δ→0
ÐÐ→ ∫× f(x0 + y) ν(x0, dy).

On the other hand, if we set Cδ ∶= sup∣y−x0 ∣≤2δ ∣f(y)∣, then Cδ → 0 as δ → 0 and

∣E
x0([fχδ](Xt))∣ ≤ ∫

Cδ

0
P
x0(∣f(Xt)∣ ≥ r, ∣Xt − x0∣ ≤ 2δ)dr

≤ ∫

Cδ

0
P
x0(∣Xt − x0∣

α
≥ r/C)dr

for any δ ∈ (0,1/2). By Lemma 3.1

lim sup
t→0

1

t
P
x0(∣Xt − x0∣

α
≥ r/C) = lim sup

t→0

1

t
P
x0(∣Xt − x0∣ ≥ C

−1/αr1/α)

≤ c sup
∣ξ∣≤r−1/αC1/α

∣q(x0, ξ)∣ ≤ C
′r−β/α

(13)

for any β ∈ (βx∞, α) and suitable constants c,C ′
> 0; thus, by Fatou’s lemma,

lim sup
t→0

∣
1

t
E
x0([fχδ](Xt))∣ ≤ C

′
∫

Cδ

0
r−β/α dr

δ→0
ÐÐ→ 0.

Writing
1

t
E
x0f(Xt) =

1

t
E
x0([fχδ](Xt)) +

1

t
E
x0([f(1 − χδ)](Xt))
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and letting first t→ 0 and then δ → 0, proves the claim.

(A2) For fixed R > 0 let τx0R denote the exit time from the ball B(x0,R). The function

x↦ g(x) ∶= f(x) − f(x0) − ∇f(x0) ⋅ (x − x0)χ(x)

satisfies (A1) and, therefore, by the first part of this proof,

lim
t→0

1

t
E
x0g(Xt) = ∫× (g(x0 + y) − g(x0)) ν(x0, dy)

= ∫× (f(x0 + y) − f(x0) − χ(y + x0)∇f(x0) ⋅ y) ν(x0, dy).

As (● − x0)χ(●) ∈ C
∞
c (Rd) ⊆ D(A) an application of Dynkin’s formula shows

1

t
E
x0 ((Xt∧τx0

R
− x0)χ(Xt∧τx0

R
))

t→0
ÐÐ→ b(x0) + ∫× y (χ(y + x0) − 1(0,1)(∣y∣)) ν(x0, dy)

for any R > 0. Using the fact that suppχ ⊆ B[x0,2] and applying Lemma 3.1, we find for

some constant c = c(x0)

∣
1

t
E
x0 ((Xt∧τx0

R
− x0)χ(Xt∧τx0

R
)) −

1

t
E
x0 ((Xt − x0)χ(Xt))∣

≤
4

t
P
x0 (τx0R ≤ t) ≤ 4c sup

∣ξ∣≤R−1
∣q(x0, ξ)∣

R→∞
ÐÐÐ→ 0,

and therefore we conclude

1

t
E
x0 ((Xt − x0)χ(Xt))

t→0
ÐÐ→ b(x0) + ∫× y (χ(y + x0) − 1(0,1)(∣y∣)) ν(x0, dy).

Consequently,

1

t
(E

x0f(Xt) − f(x0)) =
1

t
E
x0g(Xt) +

1

t
∇f(x0) ⋅E

x0 ((Xt − x0)χ(Xt))

t→0
ÐÐ→ b(x0) ⋅ ∇f(x0) + ∫× (f(x0 + y) − f(x0) − ∇f(x0) ⋅ y1(0,1)(∣y∣)) ν(x0, dy),

finishing the second part.

(A3) We begin with the particular case that f(x0) = 0 and ∇f(x0) = 0. Since, by Theorem 3.2

and the dominated convergence theorem,

1

t
E
x0([f(1 − χδ)](Xt))

t→0
ÐÐ→ ∫× [f(1 − χδ)](x0 + y) ν(x0, dy)

δ→0
ÐÐ→ ∫× f(x0 + y) ν(x0, dy),

it is enough to show

1

t
E
x0 ([fχδ](Xt))

t,δ→0
ÐÐÐ→

d

∑
i,j=1

Qij(x0)∂i∂jf(x0). (14)

In order to keep notation simple, we set fδ(x) ∶= f(x)χδ(x). Note that by Lemma 3.1

∣
1

t
E
x0fδ(Xt) −

1

t
E
x0fδ(Xt∧τx0

R
)∣ ≤ 2∥f∥∞

1

t
P
x0 (τx0R ≤ t)

≤ 2c∥f∥∞ sup
∣ξ∣≤R−1

∣q(x0, ξ)∣
R→∞
ÐÐÐ→ 0,

and therefore (14) follows if we can show that

1

t
E
x0(fδ(Xt∧τx

R
))

t,δ→0
ÐÐÐ→

d

∑
i,j=1

Qij(x0)∂i∂jf(x0) (15)

for every fixed R > 0. By Taylor’s formula, there exists a continuous mapping ϕ ∶ R→ R such

that limr→0 ϕ(r) = 0 and

f(y) =
1

2

d

∑
i,j=1

(yi − xi0)(y
j
− xj0)∂i∂jf(x0) + ∣y − x0∣

2ϕ(∣x0 − y∣)
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for all y = (y1, . . . , yd) ∈ B(x0, δ). Thus,

1

t
E
x0(fδ(Xt∧τx

R
)) = I1 + I2

where

I1 ∶=
1

2t

d

∑
i,j=1

∂i∂jf(x0)E
x0[(Xi

t∧τx
R
− xi0)(X

j
t∧τx

R
− xj0)χδ(Xt∧τxR)]

I2 ∶=
1

t
E
x0 [∣Xt∧τx

R
− x0∣

2ϕ(∣Xt∧τx
R
− x0∣)χδ(Xt∧τx

R
)] .

We estimate the terms separately. By the definition of χδ, we have

I2 ≤ t
−1 sup
r≤2δ

∣ϕ(r)∣Ex0(∣Xt∧τx
R
− x0∣

2χ(Xt∧τx
R
)),

and so an application of Dynkin’s formula yields

I2 ≤ sup
r≤2δ

∣ϕ(r)∣ sup
∣y−x0 ∣≤R

∣A(∣ ● −x0∣
2
⋅ χ(●))(y)∣

δ→0
ÐÐ→ 0.

Using that ∇χδ(x0) = 0 and ∇
2χδ(x0) = 0, it is not difficult to see from Dynkin’s formula and

the fundamental theorem of calculus that

I1
t→0
ÐÐ→

1

2

d

∑
i,j=1

∂i∂jf(x0) (Qij(x0) + ∫× yiyjχδ(x0 + y) ν(x0, dy))

δ→0
ÐÐ→

1

2

d

∑
i,j=1

∂i∂jf(x0)Qij(x0).

Combining both convergence results proves (15) if f(x0) = 0 and ∇f(x0) = 0. For the general

case define

g(x) ∶= f(x) − f(x0) − χ(x)∇f(x0) ⋅ (x − x0), x ∈ Rd,

and use exactly the same reasoning as in the proof of (A2).

In Theorem 3.4 we have to assume that α is strictly larger than the Blumenthal–Getoor

index βx0∞ . It turns out that Theorem 3.4 also holds for α = βx0∞ if q(x0, ⋅) satisfies the sector

condition, has no diffusion part, and the fractional moment ∫× ∣y∣≤1 ∣y∣
β
x0∞ ν(x0, dy) is finite. This

is a direct consequence of the following theorem.

3.5 Theorem Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,0, ν). Suppose that f ∈ C∞(Rd) satisfies one of the following conditions for some fixed

x0 ∈ R
d.

(B1) There exist α ∈ (0,1] and C > 0 such that ∫× ∣y∣≤1 ∣y∣
α ν(x0, dy) < ∞ and

∣f(x) − f(x0)∣ ≤ C ∣x − x0∣
α for all x ∈ B(x0,1).

(B2) f is differentiable at x = x0 and there exist constants α ∈ (1,2) and C > 0 such that

∫× ∣y∣≤1 ∣y∣
α ν(x0, dy) < ∞ and

∣f(x) − f(x0) − ∇f(x0) ⋅ (x − x0)∣ ≤ C ∣x − x0∣
α for all x ∈ B(x0,1).

If q(x0, ⋅) satisfies the sector condition, i. e. ∣ Im q(x0, ξ)∣ ≤ C
′ Re q(x0, ξ) for some constant

C′
> 0, then the limit

lim
t→0

1

t
(E

x0f(Xt) − f(x0))

exists and takes the value

(B1) Lf(x0) ∶= ∫× (f(x0 + y) − f(x0)) ν(x0, dy);

(B2) Lf(x0) ∶= b(x0) ⋅ ∇f(x0) + ∫× (f(x0 + y) − f(x0) − ∇f(x0) ⋅ y1(0,1)(∣y∣)) ν(x0, dy).
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Proof. The proof is very similar to that of Theorem 3.4; the only modification is needed in

(13) where we use the fact that ∫∣y∣≤1 ∣y∣
α ν(x0, dy) < ∞ implies

∫

1

0
sup

∣ξ∣≤r−1/α
∣q(x0, ξ)∣dr = α∫

∞

1

1

s1+α
sup
∣ξ∣≤s

∣q(x0, ξ)∣ds < ∞

(cf. Lemma A.1 for details) to obtain an integrable majorant.

In the remaining part of this section we extend Theorem 3.4 and Theorem 3.5 to functions

f which are not necessarily bounded. In [21] it was shown that the implication

sup
x∈K

∫×

∣y∣≥1
g(y) ν(x, dy) < ∞ Ô⇒ ∀t > 0 ∶ sup

x∈K
sup
s≤t
E
xg(Xs∧τK − x) < ∞

holds for any twice differentiable submultiplicative function g ≥ 0, any compact set K ⊆ Rd,

and any rich Lévy-type process; if (Xt)t≥0 has bounded coefficients, then K = Rd is admissible.

Here τK denotes as usual the first exit time from K. It is therefore a natural idea to replace

1

t
(E

xf(Xt) − f(x)) by
1

t
(E

xf(Xt∧τK ) − f(x)) ,

and to consider functions f ∶ Rd → R which can be dominated by a submultiplicative function

g ≥ 0 with supx∈K ∫∣y∣≥1 g(y) ν(x, dy) < ∞.

3.6 Definition Let (b(x),Q(x), ν(x, dy)) be an x-dependent Lévy triplet and K ⊆ Rd. We

write Σ(K) for the family of twice differentiable submultiplicative functions g ∶ Rd → (0,∞)

satisfying the following two integrability conditions.

(i). M(K) ∶= supx∈K ∫∣y∣≥1 g(y) ν(x, dy) < ∞ (integrability).

(ii). MR(K) ∶= supx∈K ∫∣y∣≥R g(y) ν(x, dy)
R→∞
ÐÐÐ→ 0 (tightness).

3.7 Theorem (Behaviour at ∞) Let (Xt)t≥0 be a rich Lévy-type process with symbol q and

characteristics (b,Q, ν). Moreover, let f ∶ Rd → R be a continuous mapping satisfying the

following growth condition (G).

(G) There exist a compact set K ⊆ Rd and a function g ∈ Σ(K) such that

lim
∣x∣→∞

∣
f(x)

g(x)
∣ < ∞.

If one of the conditions (A1)-(A3) holds for some x0 ∈K, then the limit

lim
t→0

1

t
(E

x0f(Xt∧τK ) − f(x0))

exists and equals Lf(x0) defined in Theorem 3.4; here τK ∶= inf{t ≥ 0;Xt ∉K} denotes the exit

time from the set K. If (Xt)t≥0 has bounded coefficients, then K = Rd is admissible.

Proof. We only consider the case that (Xt)t≥0 has bounded coefficients and g ∈ Σ(Rd); the

proof of the other assertion works analogously and just requires an additional stopping argu-

ment. For simplicity of notation we assume that b(x) = 0 and Q(x) = 0 for all x ∈ Rd, see the

remark at the end of the proof.

Let χ be a continuous function such that 1 − χ ∈ C∞
c (Rd), 0 ≤ χ ≤ 1, χ∣B(0,1) = 0 and

χ∣Bc(0,2) = 1, and set χR(x) ∶= χ(R
−1x). Then f(●) ⋅ (1−χR(● −x0)) satisfies the assumptions

of Theorem 3.4 for each R > 0 and therefore

1

t
(E

x0(f(Xt)(1 − χR)(Xt − x0)) − f(x0))
t→0
ÐÐ→ L(f(1 − χR)(● − x0))(x0).
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Since ∇χR(x0) = 0, ∇2χR(x0) = 0 for each R > 0 and ∫∣y∣≥1 ∣f(y)∣ ν(x0, dy) < ∞, it follows easily

from the definition of L(f(1 − χR)(● − x0)) and the dominated convergence theorem that

1

t
(E

x0(f(Xt)(1 − χR)(Xt − x0)) − f(x0))
t→0
ÐÐÐ→ L(f(1 − χR)(● − x0))(x0)

R→∞
ÐÐÐ→ Lf(x0).

Consequently, it remains to show that

lim sup
R→∞

lim sup
t→0

∣
1

t
E
x0 (f(Xt)χR(Xt − x0))∣ = 0.

Because of the growth condition (G) and the submultiplicativity of g, it suffices to prove

lim sup
R→∞

lim sup
t→0

1

t
E
x0 (g(Xt − x0)χR(Xt − x0)) = 0. (16)

By Theorem 2.2, (Xt)t≥0 is a semimartingale with semimartingale characteristics (0,0, µ) given

by (8). Consequently, (Xt)t≥0 has a canonical representation Xt = x0 +X
(1)
t +X

(2)
t ,

X
(1)
t ∶= ∫

t

0
∫

0<∣y∣<1
y (N(dy, ds) − µ(dy, ds))

X
(2)
t ∶= ∫

t

0
∫∣y∣≥1

yN(dy, ds)

where N denotes the jump measure of (Xt)t≥0, cf. [19, Theorem II.2.34]. By the submultiplic-

ativity of g, there exists a constant c > 0 such that

g(Xt − x0) = g(X
(1)
t +X

(2)
t ) ≤ cg(X

(1)
t )g(X

(2)
t ), t ≥ 0.

Since any submultiplicative function grows at most exponentially, we can find constants a, b > 0

such that

g(Xt − x0) ≤ a exp(b
√

∣X
(1)
t ∣2 + 1 − 1) g(X

(1)
t ), t ≥ 0. (17)

In order to keep our notation simple, we assume that a = b = c = 1. Moreover, we set

%(x) ∶= exp (
√

∣x∣2 + 1 − 1)

and use the subscript to denote truncated functions, e. g.

%R(x) ∶= χR(x)%(x) and gR(x) ∶= χR(x)g(x).

From the definition of χR and the triangle inequality, it is not difficult to see that

χR(x + y) ≤ χR/4(x) + χR/4(y) for all x, y ∈ Rd, (18)

and therefore we obtain

g(Xt − x0)χR(Xt − x0) ≤ exp(

√

∣X
(1)
t ∣2 + 1 − 1) g(X

(2)
t )χR/4(X

(1)
t )

+ exp(

√

∣X
(1)
t ∣2 + 1 − 1) g(X

(2)
t )χR/4(X

(2)
t )

= %R/4(X
(1)
t )g(X

(2)
t ) + %(X

(1)
t )gR/4(X

(2)
t ).

Consequently, (16) follows if we can show

lim
R→∞

lim
t→0

1

t
E
x0 (%R/4(X

(1)
t )g(X

(2)
t )) = 0 (19)

lim
R→∞

lim
t→0

1

t
E
x0 (%(X

(1)
t )gR/4(X

(2)
t )) = 0. (20)

First we prove (19). Define a stopping time by

τ ∶= τr ∶= inf {t > 0; ∣X
(1)
t ∣ + ∣X

(2)
t ∣ ≥ r}
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for fixed r > 0. Applying Itô’s formula for semimartingales gives

E
x0(%R/4(X

(1)
t∧τ)g(X

(2)
t∧τ))

= E
x0 (∫

t∧τ

0
∫∣y∣≥1

%R/4(X
(1)
s )(g(X(2)

s + y) − g(X(2)
s )) ν(Xs, dy)ds) (21)

+E
x0

⎛
⎜
⎝
∫

t∧τ

0
∫×

∣y∣<1
g(X(2)

s ) (%R/4(X
(1)
s + y) − %R/4(X

(1)
s ) − ∇%R/4(X

(1)
s ) ⋅ y) ν(Xs, dy)ds

⎞
⎟
⎠
.

Since g ≥ 0 is submultiplicative, the first term on the right-hand side of (21) is bounded above

by

E
x0 (∫

t

0
∫× %R/4(X

(1)
s )g(X(2)

s )g(y) ν(Xs, dy)ds)

≤ ( sup
x∈Rd

∫∣y∣≥1
∣g(y)∣ ν(x, dy))Ex0 (∫

t

0
%R/4(X

(1)
s )g(X(2)

s )ds) .

For the second term in (21) we apply Taylor’s formula and use the fact that ∇2χR/4(z) = 0 for

all z ∈ B(0,R/4) ∪Bc(0,R/2) to conclude that there exists a function ψ ∈ C2
b (R

d
) such that

ψ(z) = 0 for all z ∈ B(0,1/16) and

∣%R/4(x + y) − %R/4(x) − ∇%R/4(x) ⋅ y∣ ≤ ∣y∣2%(x)ψ(x) for all x ∈ Rd, ∣y∣ ≤ 1

for R ≥ 1. Using this estimate for x ∶= X
(1)
s , we find that the second term on the right-hand

side of (21) is bounded above by

⎛
⎜
⎝

sup
x∈Rd

∫×

∣y∣≤1
∣y∣2 ν(x, dy)

⎞
⎟
⎠
E
x0 (∫

t

0
%(X(1)

s )ψ(X(1)
s )g(X(2)

s )ds) .

Now it follows from Fatou’s lemma, Definition 3.6 and Lemma 3.8 below that there exists an

absolute constant C > 0 such that

1

t
E
x0 (%R/4(X

(1)
t )g(X

(2)
t )) ≤ lim inf

r→∞
1

t
E
x0 (%R/4(X

(1)
t∧τ)g(X

(2)
t∧τ)) ≤

C

t ∫
t

0
s ds

(recall the definition of %, %R/4 and note that K = Rd), and this implies (19).

It remains to prove (20). Again an application of Itô’s formula shows

E
x0(%(X

(1)
t∧τ)gR/4(X

(2)
t∧τ))

= E
x0 (∫

t∧τ

0
∫∣y∣≥1

%(X(1)
s ) (gR/4(X

(2)
s + y) − gR/4(X

(2)
s )) ν(Xs−, dy)ds) (22)

+E
x0

⎛
⎜
⎝
∫

t∧τ

0
∫×

∣y∣<1
gR/4(X

(2)
s ) (%(X(1)

s + y) − %(X(1)
s ) − ∇%(X(1)

s ) ⋅ y) ν(Xs−, dy)ds
⎞
⎟
⎠
.

Using the submultiplicativity of g ≥ 0 and (18), we find that the first term on the right-hand

side is bounded above by

E
x0 (∫

t

0
∫∣y∣≥1

%(X(1)
s )[gR/16(X

(2)
s )g(y) + g(X(2)

s )gR/16(y)] ν(Xs−, dy)ds)

≤MR/16(R
d
)∫

t

0
E
x0(%(X(1)

s )g(X(2)
s ))ds +M(R

d
)∫

t

0
E
x0(%(X(1)

s )gR/16(X
(2)
s )ds

with M(Rd) and MR/16(R
d
) from Definition 3.6. On the other hand, a similar calculation as

in the proof of (19) shows that the second term on the right-hand side of (22) is less or equal

than

CEx0 (∫

t

0
gR/4(X

(2)
s )%(X(1)

s )ψ(X(1)
s )ds)

where C is a suitable constant and ψ ∈ C2
b (R

d
) such that suppψ ∩ B(0,1/16) = ∅. If we

combine both estimates, apply Lemma 3.8 and use that limR→∞MR/16(R
d
) = 0, we get (20).
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In the general case, i. e. if b(x) ≠ 0 or Q(x) ≠ 0, we replace X
(1)
t by

X
(1)
t ∶= ∫

t

0
b(Xs)ds +X

C
t + ∫

t

0
∫

0<∣y∣<1
y (N(dy, ds) − µ(dy, ds))

where (XC
t )t≥0 denotes the continuous martingale part, cf. [19, Theorem II.2.34]; this gives

additional terms when applying Itô’s formula, but the reasoning works exactly as in the pure-

jump case.

3.8 Lemma Let (Xt)t≥0, K, g and x0 ∈ Rd be as in Theorem 3.7. For any T > 0 and all

functions g, θ ∈ C2
b (R

d
) such that supp θ ∩B(0, ε) = 0 for some sufficiently small ε > 0, there

exists a constant C > 0 such that

E
x0 (exp [

√

∣X
(1)
t∧τK ∣2 + 1 − 1] g(X

(2)
t∧τK )) ≤ C

E
x0 (exp [

√

∣X
(1)
t∧τK ∣2 + 1 − 1] g(X

(2)
t∧τK )θ(X

(1)
t )) ≤ Ct

E
x0 (exp [

√

∣X
(1)
t∧τK ∣2 + 1 − 1] g(X

(2)
t∧τK )θ(X

(2)
t )) ≤ Ct

for all t ≤ T ; here τK denotes the exit time from the set K and Xt − x0 = X
(1)
t + X

(2)
t the

decomposition from the proof of Theorem 3.7.

Proof. We know from the proof of [21, Theorem 4.1] that under the assumptions of The-

orem 3.7

sup
t≤T

E
x0 (exp [

√

∣X
(1)
t∧τK ∣2 + 1 − 1] g(X

(2)
t∧τk)) < ∞,

and this proves the first assertion. The other two estimates now follow from a straightforward

application of Itô’s formula; mind that the initial term

exp [

√

∣X
(1)
t∧τK ∣2 + 1 − 1] g(X

(2)
t∧τK )θ(X

(i)
t )∣

t=0
= 0

vanishes for i ∈ {1,2} since θ(X
(i)
0 ) = 0.

Remark (i). The proof of Theorem 3.7 simplifies substantially if the submultiplicative func-

tion g ∈ C2
(Rd) satisfies the inequality

∣∇
2g(x)∣ ≤ C ∣g(x)∣, x ∈ Rd, (23)

for some absolute constant C > 0. In this case, we can apply Itô’s formula directly to the

mapping x ↦ g(x − x0)χR(x − x0) to prove (16); there is no need to use the decomposition

Xt = x+X
(1)
t +X

(2)
t and estimate (17). Although there are many examples of submultiplicative

functions satisfying (23), it does not hold true for all (twice differentiable) submultiplicative

functions.

(ii). In Theorem 3.7 submultiplicativity of the dominating function g is required. This assump-

tion can be weakened; it suffices to assume that there exist a subadditive function a ∶ Rd → R

and a submultiplicative function m ∶ Rd → (0,∞) such that g(x) =m(x) ⋅ a(x) for all x ∈ Rd,

a,m ∈ C2
(Rd) and

lim
R→∞

inf
∣x∣≥R

∣a(x)∣ > 0.

The proof of Theorem 3.7 under this relaxed assumption is similar, but more technical.

Using exactly the same reasoning as in the proof of Theorem 3.7, we obtain a similar

extension of Theorem 3.5 to unbounded functions.
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3.9 Theorem Let (Xt)t≥0 be a rich Lévy-type process with characteristics (b,0, ν) and symbol

q, and let f ∶ Rd → R be a continuous function satisfying the growth condition (G). Suppose

that either (B1) or (B2) holds for some x0 ∈K and that q(x0, ⋅) satisfies the sector condition.

Then the limit

lim
t→0

1

t
(E

x0f(Xt∧τK ) − f(x0))

exists and equals Lf(x0) as defined in Theorem 3.5. If (Xt)t≥0 has bounded coefficients, then

K = Rd is admissible.

We close this section with an application of Corollary 3.3, which has been announced

(without proof) in the recent publication [21, remark following Theorem 5.2] on moments of

Lévy-type processes.

3.10 Proposition Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,Q, ν). If there exist x ∈ Rd, R ≥ 0 and α > 0 such that

lim inf
t→0

1

t
E
x
(∣Xt − x∣

α
1{∣Xt−x∣>R}) < ∞,

then

∫∣y∣>R
∣y∣α ν(x, dy) ≤ Rαν(x,{y ∈ Rd; ∣y∣ > R})1R>0 + lim inf

t→0

1

t
E
x
(∣Xt − x∣

α
1{∣Xt−x∣>R});

in particular ∫∣y∣>R ∣y∣α ν(x, dy) < ∞.

For R = 0 Proposition 3.10 shows

C ∶= lim inf
t→0

1

t
E
x
(∣Xt − x∣

α
) < ∞ Ô⇒ ∫× ∣y∣α ν(x, dy) ≤ C < ∞.

Proof of Proposition 3.10. Since the identity

∫ ∣y∣α µ(dy) = α∫(0,∞)
µ(∣y∣ ≥ r)rα−1 dr (⋆)

holds for any α > 0 and any σ-finite measure µ, we have

∫∣y∣>R
∣y∣α ν(x, dy) = α∫(0,∞)

ν(x,{y ∈ Rd; ∣y∣ > R, ∣y∣ ≥ r}) rα−1 dr.

If R = 0 then it follows from (10) and Fatou’s lemma that

∫∣y∣>0
∣y∣α ν(x, dy) ≤ α lim inf

t→0

1

t ∫(0,∞)
P
x
(∣Xt − x∣ ≥ r) r

α−1 dr
(⋆)
= lim inf

t→0

1

t
E
x
(∣Xt − x∣

α
).

Here we use that the σ-finiteness of ν(x, dy) implies ν(x, ∂B(0, r)) = 0 for Lebesgue-almost all

r > 0. If R > 0, then we split the integral

∫∣y∣>R
∣y∣α ν(x, dy) ≤ Rαν(x,{y ∈ Rd; ∣y∣ > R}) + α∫(R,∞)

ν(x,{y ∈ Rd; ∣y∣ ≥ r}) rα−1 dr,

and use again (10) and Fatou’s lemma to estimate the second term.

4 Uniform limits

In the previous section we have seen that the pointwise limit limt→0 t
−1

(Ex0f(Xt) − f(x0))

exists for some fixed x0 ∈ R
d if f ∈ C∞(Rd) satisfies a Hölder condition at x0. Now we turn

to the question under which assumptions on the regularity of f the limit

lim
t→0

1

t
(E

●f(Xt) − f(●)) (24)
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exists uniformly in C∞(Rd), i. e. under which assumptions f is contained in the domain D(A)

of the generator of (Xt)t≥0. It is well known that the limit exists (uniformly) for any func-

tion f ∈ C2
∞(Rd) and any Lévy-type process (Xt)t≥0 with bounded coefficients, cf. [6, The-

orem 2.37]. However, the results from the previous section suggest that the uniform limit may

also exist for functions whose regularity varies from point to point, e. g. functions which satisfy

∣f(x + y) − f(x)∣ ≤ C ∣y∣α(x) for all x, y ∈ Rd, ∣y∣ ≤ 1

for some absolute constant C > 0 and a suitable mapping α ∶ Rd → [0,1]. In this section,

we will show that this is indeed true; more precisely we will establish that certain Hölder

spaces of variable order are contained in the domain of the generator, cf. Corollary 4.7 and

Corollary 4.8. The idea is to use the fact that for a Lévy-type process (Xt)t≥0 the limit (24)

exists uniformly if, and only if, the pointwise limit exists for each x ∈ Rd and the limit defines

a function in C∞(Rd), cf. [28, Theorem 7.22]. At the end of this section we will present some

examples, including stable-like and relativistic stable-like processes.

Let us begin with Lévy processes before we discuss the more general case of Lévy-type

processes.

4.1 Theorem Let (Lt)t≥0 be a Lévy process with Lévy triplet (b,Q, ν). Denote by (A,D(A))

its generator and fix α ∈ [0,2] such that ∫∣y∣≤1 ∣y∣
α ν(dy) < ∞.

(i). C2
∞(Rd) ⊆ D(A) and Af = b ⋅ ∇f + 1

2
tr(Q∇2f) + ∫× (f(● + y) − f −∇f ⋅ y1(0,1)(∣y∣)) ν(dy)

for f ∈ C2
∞(Rd).

(ii). If Q = 0, α ∈ [0,1] and b = ∫∣y∣<1 y ν(dy), then the Hölder space

C
α
∞ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

f ∈ C∞(R
d
); ∥f∥α ∶= sup

x,y∈Rd
∣f(x) − f(y)∣

∣x − y∣α
< ∞

⎫⎪⎪
⎬
⎪⎪⎭

is contained in D(A) and Af(x) = ∫× (f(x + y) − f(x)) ν(dy) for any f ∈ Cα∞.

(iii). If Q = 0 and α ∈ [1,2], then

C
1,α−1
∞ ∶= {f ∈ C1

∞(R
d
); ∇f ∈ Cα−1∞ } ⊆ D(A)

and Af(x) = b ⋅ ∇f(x) + ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(dy) for f ∈ C1,α−1
∞ .

Part (ii) of Theorem 4.1 was recently proved by Cygan & Grzywny [14] for the particular

case α = 1.

4.2 Remark There are various concepts of Hölder (or Lipschitz) spaces in the literature. On

the one hand, there are the “classical” Hölder spaces Cα equipped with the norm

⌊α⌋
∑
j=0

∑

β∈Nd0
∣β∣=j

∥∂βf∥∞ + max
β∈Nd0
∣β∣=⌊α⌋

sup
x≠y

∣∂βf(x) − ∂βf(y)∣

∣x − y∣α−⌊α⌋
(⋆)

where ⌊α⌋ denotes the biggest natural number less or equal than α. On the other hand, there

are the Zygmund–Hölder spaces Cα consisting of all functions f ∈ Ck such that the norm

k

∑
j=0

∑

β∈Nd0
∣β∣=j

∥∂βf∥∞ +max
β∈Nd0
∣β∣=k

sup
x,h∈Rd
h≠0

∣∂βf(x + h) + ∂βf(x − h) − 2∂βf(x)∣

∣h∣s

is finite where s ∈ (0,1] and k ∈ N are chosen such that α = k + s, see Triebel [34, pp. 34]. If

α ∈ (0,∞)∖N then Cα = Cα, cf. [33, Theorem 1(b), p. 201]; however for α ∈N we have a strict

inclusion: Cα ⊋ Cα. For α = 1 it is possible to show that C1 is strictly larger than the space of

Lipschitz continuous functions Lip (cf. [31, p. 148]) which is, in turn, strictly larger than C1.
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Our spaces C1,α−1, α ∈ [1,2), coincide with Cα with norm (⋆). There are the following relations

between the Hölder spaces introduced in Theorem 4.1 and the just mentioned function spaces:

C
α
∞ = Cα ∩C∞(R

d
) = Cα ∩C∞(R

d
), α ∈ (0,1),

C
1,α−1
∞ = Cα ∩C1

∞(R
d
) = Cα ∩C1

∞(R
d
), α ∈ (1,2)

and

C
1
∞ = Lip∩C∞(R

d
), C

1,0
∞ = C1

∩C∞(R
d
).

Proof of Theorem 4.1. (i) is well known, see e. g. [26, Theorem 31.5] or [6, Theorem 2.37].

The proofs of (ii) and (iii) are very similar, and therefore we only prove (ii). Pick a cut-

off function χ ∈ C∞
c (Rd) such that χ ≥ 0, suppχ ⊆ B(0,1) and ∫Rd χ(x)dx = 1. If we set

χε(x) ∶= ε
−1χ(ε−1x), then the convolution fn ∶= χ1/n ∗ f is in C2

∞(Rd), hence in D(A), and

limn→∞ ∥fn − f∥∞ = 0. As

∣(fn − f)(x + y) − (fn − f)(x)∣ ≤ ∣∫ χ(z)(f(x + y + n−1z) − f(x + n−1z))dz∣ + ∣f(x + y) − f(x)∣

≤ 2∥f∥α∣y∣
α

for all ∣y∣ ≤ 1 and

∣(fn − f)(x + y) − (fn − f)(x)∣ ≤ 2 sup
∣r−s∣≤n−1

∣f(r) − f(s)∣
n→∞
ÐÐÐ→ 0,

we find

sup
x∈Rd

sup
0<∣y∣≤1

∣(fn − f)(x + y) − (fn − f)(x)∣

∣y∣α
n→∞
ÐÐÐ→ 0

which implies that

Afn(x) = ∫× (fn(x + y) − fn(x)) ν(dy)
n→∞
ÐÐÐ→ ∫× (f(x + y) − f(x)) ν(dy)

uniformly in x ∈ Rd. Since the generator (A,D(A)) is a closed operator, this finishes the

proof.

4.3 Example (Isotropic α-stable Lévy processes) Let (Lt)t≥0 be an isotropic α-stable process

for some α ∈ (0,2), i. e. a Lévy process with characteristic exponent ψ(ξ) = ∣ξ∣α, ξ ∈ Rd, and

set cα ∶= α2α−1π−d/2Γ (α+d
2

) /Γ (1 − α
2
). Then, by Theorem 4.1:

� If α ∈ (0,1), then Theorem 4.1 shows that the Hölder space Cβ∞ is contained in the domain

of the generator A for any β ∈ (α,1] and

Af(x) = cα ∫× (f(x + y) − f(x))
dy

∣y∣d+α
, f ∈ Cβ∞, x ∈ R

d.

� If α ∈ [1,2), then C1,β−1
∞ ⊆ D(A) for all β ∈ (α,2] and

Af(x) = cα ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣))
dy

∣y∣d+α
, f ∈ C1,β−1

∞ , x ∈ Rd.

Let us mention that the domain D(A) of the generator of (Lt)t≥0 is contained in the Zygmund–

Hölder space Cα∞ ∶= Cα ∩C∞, see Remark 4.2 for the definition. In dimension d = 1 this follows

by combining two results from interpolation theory [33, Theorem 1(a), p. 201; Theorem (d),

p. 101] with the fact that the domain of the generator of one-dimensional Brownian motion

equals C2
∞(R) [28, Example 7.15]. For d ≥ 1 it is possible to show that the resolvent Rλ, λ > 0,

satisfies Rλ(C∞(Rd)) ⊆ Cα∞ using well-known heat kernel estimates for the transition density

of (Lt)t≥0; since D(A) = Rλ(C∞(Rd)) this gives the assertion.

In summary,

Cα+∞ ∶= ⋃
ε>0

Cα∞ ⊆ D(A) ⊆ Cα∞. (25)
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4.4 Example (Compound Poisson processes) Let (Lt)t≥0 be a Lévy process with Lévy triplet

(b,0, ν). Suppose that ν is a finite measure and b = ∫× ∣y∣<1 y ν(dy) (e. g. b = 0 and ν∣B(0,1)
symmetric). Then the domain D(A) of the generator of (Lt)t≥0 equals C∞(Rd) and

Af(x) = ∫× (f(x + y) − f(x)) ν(dy), f ∈ C∞(R
d
), x ∈ Rd.

Next we extend Theorem 4.1 to Lévy-type processes.

4.5 Theorem Let (Xt)t≥0 be a rich Lévy-type process with symbol q and characteristics

(b,Q, ν). Assume that (Xt)t≥0 has bounded coefficients and that x ↦ Q(x) is continuous.

For fixed x ∈ Rd denote by

β∞(x) ∶= inf {γ > 0; lim
r→∞

1

rγ
sup
∣ξ∣≤r

∣q(x, ξ)∣ < ∞} ∈ [0,2]

the generalized Blumenthal–Getoor index at ∞. Let α ∶ Rd → (0,2] be a uniformly continuous

mapping such that α(x) ≥ min{β∞(x) + ε,2} and

sup
x∈Rd

∫×

∣y∣≤1
∣y∣α(x)−ε ν(x, dy) < ∞

for some absolute constant ε > 0. Suppose that f ∈ C∞(Rd) satisfies the following conditions.

(C1) For any x ∈ {0 < α ≤ 1} it holds that

sup
0<∣y∣≤1

∣f(x + y) − f(x)∣

∣y∣α(x)
< ∞.

(C2) f is differentiable at every point x ∈ {1 < α < 2} and gj(x) ∶= ∂xjf(x), x ∈ {1 < α < 2},

has a C∞-extension to Rd for each j ∈ {1, . . . , d}. Moreover,

sup
0<∣y∣≤1

∣f(x + y) − f(x) − ∇f(x) ⋅ y∣

∣y∣α(x)
< ∞ for all x ∈ {1 < α < 2}.

(C3) For any x ∈ {α = 2}, f is twice differentiable in a neighbourhood of x and the function

hij(x) ∶= ∂xi∂xjf(x), x ∈ {α = 2}, has a C∞-extension to Rd for all i, j ∈ {1, . . . , d}.

Then f is in the domain D(A) of the generator A of (Xt)t≥0 and

Af(x) = b(x) ⋅ g(x) +
1

2
tr (Q(x)h(x)) + ∫× (f(x + y) − f(x) − g(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy)

for all x ∈ Rd where g ∶= (g1, . . . , gd)
⊺ and h ∶= (hij)i,j=1,...,d.

Before we prove Theorem 4.5, let us make some remarks and state two immediate corollaries

of Theorem 4.5.

4.6 Remark (i). Depending on the local Hölder index α(x), the generator Af(x), f ∈ D(A),

has the following equivalent representations:

� Af(x) = ∫× (f(x + y) − f(x)) ν(x, dy) for any x ∈ {0 < α ≤ 1}

� Af(x) = b(x) ⋅ ∇f(x) + ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy) for any

x ∈ {1 < α < 2}

� Af(x) = b(x) ⋅ ∇f(x) + 1
2

tr (Q(x) ⋅ ∇2f(x))

+ ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy)
for any x ∈ {α = 2}.

(ii). Since the regularity of the function f may vary from point to point and the triplet is

x-dependent, Theorem 4.5 requires stronger assumptions than in the Lévy case.
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(iii). Let q be a negative definite symbol with characteristics (b,0, ν) and suppose that q

satisfies the sector condition, i. e. there exists a constant C > 0 such that

∣ Im q(x, ξ)∣ ≤ CRe q(x, ξ) for all x, ξ ∈ Rd. (26)

Then ∫× ∣y∣≤1 ∣y∣
α(x)−ε ν(x, dy) < ∞ entails β∞(x) ≤ α(x) − ε, cf. (12). Consequently, it

suffices in this case to check the integrability condition

sup
x∈Rd

∫×

∣y∣≤1
∣y∣α(x)−ε ν(x, dy) < ∞.

On the other hand, if there exist constants C > 0 and δ > 0 such that

∣Re q(x, ξ)∣ ≤ C ∣ξ∣β
x
∞+δ for all x, ξ ∈ Rd, ∣ξ∣ ≥ 1, (27)

then any uniformly continuous function α ∶ Rd → (0,2) with infx∈Rd(α(x) − β
x
∞ − δ) > 0

satisfies the assumptions of Theorem 4.5; this follows from the identity

∫∣y∣≤1
∣y∣κ ν(dy) ≤ cκ ∫

Reψ(ξ)

∣ξ∣d+κ
dξ, κ ∈ (0,2)

which holds for any continuous negative definite function ψ ∶ Rd → C with triplet (b,0, ν),

see (29) in the proof of Lemma A.1.

The sector condition (26) is, in particular, satisfied if q(x, ⋅) is real-valued. This is

equivalent to saying that q(x, ⋅) symmetric for all x ∈ Rd (i. e. q(x, ξ) = q(x,−ξ) for all

x, ξ ∈ Rd) or b(x) = 0 and ν(x, dy) = ν(x,−dy) for all x ∈ Rd.

(iv). It is well known, cf. [6, Theorem 2.30], that the mapping x↦ q(x, ξ) is continuous for all

ξ ∈ Rd for any symbol q with q(x,0) = 0. However, continuity of q(⋅, ξ) does, in general,

not imply continuity of x↦ Q(x); consider, for instance,

q(x, ξ) ∶=
1

2
ξ21{0}(x) +

1 − cos(xξ)

x2
1Rd∖{0}(x), x, ξ ∈ R,

see [13, p. 11].

4.7 Corollary Let (Xt)t≥0 be a rich Lévy-type process with symbol q, q(x,0) = 0 and charac-

teristics (b,0, ν). Suppose that (Xt)t≥0 has bounded coefficients and b(x) = ∫× ∣y∣<1 y ν(x, dy) for

all x ∈ Rd. Let ε > 0 and α ∶ Rd → [ε,1] be uniformly continuous such that

sup
x∈Rd

∫×

∣y∣≤1
∣y∣α(x)−ε ν(x, dy) < ∞.

If either the sector condition (26) holds or βx∞ ≤ α(x) − ε for all x ∈ Rd, then the Hölder space

of variable order

C
α(⋅)
∞ ∶= {f ∈ C∞(R

d
); sup

x∈Rd
sup

0<∣y∣≤1

∣f(x + y) − f(x)∣

∣y∣α(x)
< ∞}

is contained in the domain of the generator A and

Af(x) = ∫× (f(x + y) − f(x)) ν(x, dy) for all x ∈ Rd, f ∈ Cα(⋅)∞ .

Proof. Under the assumptions of Corollary 4.7, we know from the remark following The-

orem 4.5 that β∞(x) ≤ α(x) − ε for all x ∈ Rd. Moreover, α(x) ∈ [0,1] for all x ∈ Rd and,

by assumption, condition (C1) is satisfied for all x ∈ Rd. Consequently, the assumptions of

Theorem 4.5 are satisfied, and so Theorem 4.5 proves the assertion.

Let us mention that among the first to consider Hölder spaces of variable order were

Ross & Samko [25] who study fractional integrals of variable order. In [1] Hölder spaces of

variable order are shown to be particular cases of Besov spaces with variable smoothness and

integrability; see Andersson [2] for further characterizations.
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4.8 Corollary Let (Xt)t≥0 be a rich Lévy-type process with bounded coefficients and with

symbol q and characteristics (b,0, ν). Let ε > 0 be a constant and α ∶ Rd → (ε,2] be a uniformly

continuous mapping. Suppose that either the sector condition (26) is satisfied or α(x)−ε ≥ βx∞
for all x ∈ Rd. If

sup
x∈Rd

∫×

∣y∣≤1
∣y∣α(x)−ε ν(x, dy) < ∞,

then the space

C
1,α(⋅)−1
∞ ∶= {f ∈ C1

∞(R
d
);∀j = 1, . . . , d ∶ ∂jf ∈ C

α(⋅)−1
∞ }

is contained in the domain of the generator A, and for all x ∈ Rd and f ∈ C
1,α(⋅)−1
∞

Af(x) = b(x) ⋅ ∇f(x) + ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy).

Proof. Since C
1,α(⋅)−1
∞ ⊆ C1

∞(Rd), we may assume without loss of generality that α(x) ≥ 1 for

all x ∈ Rd; otherwise we could replace α by max{α,1}. As in the proof of Corollary 4.7, we find

β∞(x)+ ε ≤ α(x) for all x ∈ Rd. It remains to check that f ∈ C
1,α(⋅)−1
∞ satisfies the assumptions

of Theorem 4.5. If x ∈ Rd is such that α(x) = 1 it is obvious from the mean value theorem that

(C1) is satisfied. Now let x ∈ {1 < α < 2}. Applying the mean value theorem to the auxiliary

function h(y) ∶= f(x + y) − f(x) − ∇f(x) ⋅ y shows

∣f(x + y) − f(x) − ∇f(x) ⋅ y∣ ≤ ∣y∣ sup
ζ∈B(0,∣y∣)

∣∇f(x + ζ) − ∇f(x)∣ ≤ C ∣y∣ ⋅ ∣y∣α(x)−1 = C ∣y∣α(x)

for all x, y ∈ Rd, ∣y∣ ≤ 1 and some absolute constant C > 0; here we use that ∂jf ∈ C
α(⋅)−1
∞ for

all j ∈ {1, . . . , d}. This shows that condition (C2) holds true.

Proof of Theorem 4.5. It follows from Theorem 3.4 that the pointwise limit

Lf(x) = lim
t→0

1

t
(E

xf(Xt) − f(x))

exists for all x ∈ Rd and is given by

� Lf(x) = ∫× (f(x + y) − f(x)) ν(x, dy) for any x ∈ {0 < α ≤ 1};

� Lf(x) = b(x) ⋅ ∇f(x) + ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy) for any

x ∈ {1 < α < 2};

� Lf(x) = b(x)⋅∇f(x)+ 1
2

tr (Q(x)∇2f(x))+∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy)

for any x ∈ {α = 2}.

As Q(x) = 0 for all x ∈ {0 < α < 2} and ∫× ∣y∣<1 y ν(x, dy) = b(x) for all x ∈ {0 < α ≤ 1} (see

Lemma A.2 in the appendix), we can write Lf in a closed form as

Lf(x) = b(x) ⋅ g(x) +
1

2
tr (Q(x)h(x)) + ∫× (f(x + y) − f(x) − g(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy).

In order to prove that f is contained in the domain of the generator A and Af = Lf , it suffices

to show that Lf ∈ C∞(Rd), see e. g. [28, Theorem 7.22]. The triangle inequality, Taylor’s

formula and conditions (C1)-(C3) imply that there exists a constant C > 0 such that

∣f(x + y) − f(x) − g(x) ⋅ y∣ ≤ C ∣y∣α(x) for all x, y ∈ Rd, ∣y∣ ≤ 1. (28)

Fix a cut-off function χ ∈ C∞
c (Rd) such that χ ≥ 0, suppχ ⊆ B(0,1) and ∫Rd χ(x)dx = 1. If we

set χε(x) ∶= ε
−1χ(ε−1x), then the convolutions fn ∶= χ1/n ∗ f , gn ∶= χ1/n ∗ g and hn ∶= χ1/n ∗ h

are C2
∞(Rd)-functions and

∥fn − f∥∞ + ∥gn − g∥∞ + ∥hn − h∥∞
n→∞
ÐÐÐ→ 0.

We are going to show that

∆n(x, y) ∶= (fn − f)(x + y) − (fn − f)(x) − (gn − g)(x) ⋅ y
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satisfies an estimate similar to (28). By the very definition of the convolution, we have

∆n(x, y) = ∫ (f(x + y + z) − f(x + y))χ1/n(z)dz − ∫ (f(x + z) − f(x))χ1/n(z)dz

− ∫ (g(x + z) − g(x)) ⋅ yχ1/n(z)dz.

Since suppχ1/n ⊆ B[0,1/n] and 0 ≤ χ ≤ 1,

∣∆n(x, y)∣ ≤ 2 sup
∣r−s∣≤n−1

∣f(r) − f(s)∣ + sup
∣r−s∣≤n−1

∣g(r) − g(s)∣.

On the other hand, we have by (28)

∣∆n(x, y)∣ ≤ 2C sup
∣x−z∣≤n−1

∣y∣α(z) ∫
B(0,1)

χ(z)dz = 2C ∣y∣α(x) sup
∣x−z∣≤n−1

∣y∣α(z)−α(x).

As α is uniformly continuous, we can choose N ∈N sufficiently large such that

∣α(x) − α(z)∣ ≤ ε/2 for all x ∈ R, z ∈ B(x,N−1
).

Combining both estimates, we find

∣∆n(x, y)∣

∣y∣α(x)−ε

≤ min

⎧⎪⎪
⎨
⎪⎪⎩

2 sup∣r−s∣≤n−1 ∣f(r) − f(s)∣ + sup∣r−s∣≤n−1 ∣g(r) − g(s)∣

∣y∣α(x)−ε
, 2C sup

∣x−z∣≤n−1
∣y∣ε+(α(z)−α(x))

⎫⎪⎪
⎬
⎪⎪⎭

≤ min{
2 sup∣r−s∣≤n−1 ∣f(r) − f(s)∣ + sup∣r−s∣≤n−1 ∣g(r) − g(s)∣

∣y∣2
, 2C ∣y∣ε/2}

for all x ∈ Rd, 0 < ∣y∣ ≤ 1 and n ≥ N . As f ∈ C∞(Rd) and g ∈ C∞(Rd) are uniformly continuous,

this proves

lim
n→∞

sup
x∈Rd

sup
0<∣y∣≤1

∣∆n(x, y)∣

∣y∣α(x)−ε
= 0.

In particular, there exist constants Cn > 0 such that Cn → 0 as n→∞ and

∣(fn − f)(x + y) − (fn − f)(x) − (gn − g)(x) ⋅ y∣ ≤ Cn∣y∣
α(x)−ε

for all x, y ∈ Rd, ∣y∣ ≤ 1. If we set

Lfn(x) ∶= b(x)gn(x)+
1

2
tr (Q(x)hn(x))+∫× (fn(x + y) − fn(x) − gn(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy),

then

∣Lfn(x) −Lf(x)∣ ≤ ∥b∥∞∥gn − g∥∞ + ∥Q∥∞∥hn − h∥∞ +Cn ∫×

∣y∣≤1
∣y∣α(x)−ε ν(x, dy)

+ 2∥fn − f∥∞ sup
x∈Rd

∫∣y∣>1
ν(x, dy).

This expression converges to zero uniformly in x since (Xt)t≥0 has bounded coefficients. As

Lfn ∈ C∞(Rd) for large n ∈N, see Lemma 4.9 below, we conclude that Lf ∈ C∞(Rd).

For the proof of Theorem 4.5 we need the following auxiliary statement.

4.9 Lemma Lfn defined in the proof of Theorem 4.5 is a C∞(Rd)-function for sufficiently

large n ∈N.

Proof. The mapping x↦ Q(x) is, by assumption, continuous and bounded. As hn ∈ C
2
∞(Rd),

this implies that tr(Q(●)
⊺hn(●)) ∈ C∞(Rd). Consequently, it is enough to show that

L̃fn(x) ∶= b(x) ⋅ gn(x) + ∫× (fn(x + y) − fn(x) − gn(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy) ∈ C∞(R
d
).
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Since C∞
c (Rd) ⊆ D(A) and (Xt)t≥0 has bounded coefficients, we have C2

∞(Rd) ⊆ D(A), and

therefore

Afn(x) = b(x) ⋅ ∇fn(x) +
1

2
tr (Q(x)∇2fn(x))

+ ∫× (fn(x + y) − fn(x) − ∇fn(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy)

is in C∞(Rd). Using again the fact that Q ∈ Cb(R
d
) and ∇

2fn ∈ C∞(Rd), we get

Ãfn(x) ∶= b(x) ⋅ ∇fn(x) + ∫× (fn(x + y) − fn(x) − ∇fn(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy) ∈ C∞(R
d
).

Let x ∈ Rd. We distinguish between two cases.

0 < α(x) ≤ 1 + ε/2: Using our assumption β∞(x) + ε ≤ α(x), we find β∞(x) < 1 which implies,

by Lemma A.2, b(x) − ∫∣y∣<1 y ν(x, dy) = 0. Thus, Ãfn(x) = L̃fn(x).

1 + ε/2 < α(x): Since α is uniformly continuous, we can choose n ∈ N (not depending on x)

so large that ∣α(x) − α(z)∣ ≤ ε/4 for all z ∈ B[x,n−1]. Then α(z) > 1 + ε/4 for all

z ∈ B(x,n−1) and, therefore, f ∣B(x,n−1) is differentiable. Since suppχ1/n ⊆ B[0,1/n], this

implies ∇fn(x) = gn(x). Hence, L̃fn(x) = Ãfn(x).

Consequently, we have L̃fn = Ãfn ∈ C∞(Rd) for n ∈N sufficiently large.

We close this section with some examples. Recall the definition of the Hölder spaces of

variable order C
α(⋅)
∞ and C

1,α(⋅)−1
∞ introduced in Corollary 4.7 and Corollary 4.8, respectively.

4.10 Example (Stable-like dominated process) Let (Xt)t≥0 be a rich Lévy-type process with

symbol q and characteristics (b,0, ν). Denote by (A,D(A)) the generator of (Xt)t≥0. Suppose

that (Xt)t≥0 has bounded coefficients and that there exist a constant c > 0 and a mapping

γ ∶ Rd → (0,2) such that infx∈Rd γ(x) > 0 and

ν(x,A ∩B(0,1)) ≤ c∫
A∩B(0,1)

dy

∣y∣d+γ(x)
for all A ∈ B(R

d
∖ {0}), x ∈ Rd.

Let α ∶ Rd → (0,2) be a uniformly continuous mapping such that infx∈Rd(α(x) − γ(x)) > 0,

and suppose that either the sector condition (26) is satisfied or infx∈Rd(α(x) − β
x
∞) > 0.

(i). If α(Rd) ⊆ [0,1] and b(x) = ∫× ∣y∣<1 y ν(x, dy) for all x ∈ Rd, then C
α(⋅)
∞ ⊆ D(A) and

Af(x) = ∫× (f(x + y) − f(x)) ν(x, dy), x ∈ Rd, f ∈ Cα(⋅)∞ .

(ii). C
1,α(⋅)−1
∞ ⊆ D(A) and

Af(x) = b(x) ⋅ ∇f(x) + ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy), x ∈ R
d

for all f ∈ C
1,α(⋅)−1
∞ .

4.11 Example Let (Xt)t≥0 be a rich Lévy-type process with one of the following symbols.

� stable-like: q(x, ξ) = ∣ξ∣γ(x) where γ ∶ Rd → (0,2) is a Hölder continuous mapping such

that infx∈Rd γ(x) > 0.

� relativistic stable-like: q(x, ξ) = (∣ξ∣2 +m(x)2)γ(x)/2 −m(x)γ(x) for Hölder continuous

mappings γ ∶ Rd → (0,2) and m ∶ Rd → (0,∞) such that

inf
x∈Rd

γ(x) > 0 and 0 < inf
x∈Rd

m(x) ≤ sup
x∈Rd

m(x) < ∞.

� TLP-like:1 q(x, ξ) = (∣ξ∣2+m(x)2)γ(x)/2 cos [γ(x)arctan ∣ξ∣
m(x) ]−m(x)γ(x) for Hölder con-

tinuous mappings γ ∶ Rd → (0,1) and m ∶ Rd → (0,∞) such that

0 < inf
x∈Rd

γ(x) ≤ sup
x∈Rd

γ(x) < 1 and 0 < inf
x∈Rd

m(x) ≤ sup
x∈Rd

m(x) < ∞.

1TLP is short for “truncated Lévy process”.
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� Lamperti stable-like: q(x, ξ) = (∣ξ∣2 +m(x))γ(x) − (m(x))γ(x) – (z)γ ∶= Γ(z + γ)/Γ(z)

denotes the Pochhammer symbol – for Hölder continuous mappings γ ∶ Rd → (0,1) and

m ∶ Rd → (0,∞) such that

0 < inf
x∈Rd

γ(x) ≤ sup
x∈Rd

γ(x) < 1 and 0 < inf
x∈Rd

m(x) ≤ sup
x∈Rd

m(x) < ∞.

Let α ∶ Rd → [0,2] be a uniformly continuous map such that infx∈Rd(α(x) − γ(x)) > 0. Then:

(i). C
1,α(⋅)−1
∞ ⊆ D(A) and Af(x) = ∫× (f(x + y) − f(x) − ∇f(x) ⋅ y1(0,1)(∣y∣)) ν(x, dy) for any

f ∈ C
1,α(⋅)−1
∞ where (0,0, ν) denotes the characteristics of the symbol q.

(ii). If α(Rd) ⊆ [0,1], then C
α(⋅)
∞ ⊆ D(A) and Af(x) = ∫× (f(x + y) − f(x)) ν(x, dy) for any

f ∈ C
α(⋅)
∞ .

Example 4.11 is a direct consequence of Theorem 4.5 and Remark 4.6(ii) since all symbols

satisfy the sector condition (26) and growth condition (27) with δ = 0. Note that the existence

of (rich) Lévy-type processes with the symbols mentioned in Example 4.11 has been established

in [22] recently. Obviously, Example 4.11 applies, in particular, in the Lévy case, i. e. if the

maps γ(●) and m(●) are constants.

We close this section with the following example.

4.12 Example (Lévy-driven SDE) Let (Lt)t≥0 be a k-dimensional Lévy process with Lévy

triplet (0,0, ν) and characteristic exponent ψ. Suppose that the Lévy measure ν is symmetric

and that there exists an α ∈ (0,2) such that ∫× ∣y∣≤1 ∣y∣
α ν(dy) < ∞. For any bounded (globally)

Lipschitz continuous function σ ∶ Rd → Rd×k the solution to the SDE

dXt = σ(Xt−)dLt, X0 = x,

is a rich Lévy-type process with symbol q(x, ξ) = ψ(σ(x)⊺ξ), x, ξ ∈ Rd. Moreover:,

(i). If α ∈ (0,1), then the Hölder space Cβ∞ is contained in the domain of the generator A of

(Xt)t≥0 for any β ∈ (α,1] and

Af(x) = ∫× (f(x + σ(x)y) − f(x)) ν(dy), f ∈ Cβ∞, x ∈ R
d.

(ii). If α ∈ [1,2), then the Hölder space C1,β−1
∞ is contained in the domain of the generator A

of (Xt)t≥0 for any β ∈ (α,2] and

Af(x) = ∫× (f(x + σ(x)y) − f(x) − ∇f(x) ⋅ σ(x)y1(0,1)(∣y∣)) ν(dy), f ∈ C1,β−1
∞ , x ∈ Rd.

Proof. It is well known that the solution (Xt)t≥0 to the SDE is a rich Lévy-type process with

symbol q(x, ξ) = ψ(σ(x)⊺ξ), cf. Schilling & Schnurr [29, Corollary 3.7] or Kühn [23, Example

4.1]. Since the Lévy measure ν is symmetric, both ψ and q are real-valued; in particular, q

satisfies the sector condition. Moreover, the characteristics of q are given by (0,0, ν(x, dy))

where

ν(x,B) ∶= ∫ 1B(σ(x)y) ν(dy), x ∈ Rd, B ∈ B(R
d
∖ {0});

therefore, the boundedness of σ gives

sup
x∈Rd

∫×

∣y∣≤1
∣y∣α ν(x, dy) ≤ ∥σ∥α∞ ∫∣y∣≤1

∣y∣α ν(dy) < ∞.

Now the assertion follows from Corollary 4.7 and Corollary 4.8.
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A Appendix

Recall that a function ψ ∶ Rd → C with ψ(0) = 0 is continuous negative definite, if it admits

a Lévy–Khintchine representation of the form (6). A continuous negative definite function ψ

satisfies the sector condition if there exists a constant C > 0 such that

∣ Imψ(ξ)∣ ≤ CReψ(ξ) for all ξ ∈ Rd.

The following lemma is used in the proof of Theorem 3.5.

A.1 Lemma Let ψ be a continuous negative definite function with triplet (b,0, ν), and let

α ∈ (0,2). The following statements are equivalent:

(i). ∫× ∣y∣≤1 ∣y∣
α ν(dy) < ∞;

(ii). ∫
∞
1 sup∣ξ∣≤r Reψ(ξ) dr

r1+α < ∞;

(iii). ∫∣ξ∣≥1 Reψ(ξ) dξ

∣ξ∣d+α < ∞.

If ψ satisfies the sector condition, then we may replace Reψ by ∣ψ∣.

Proof. Obviously, it suffices to prove the first assertion. We prove (i)⇒ (ii)⇒ (iii)⇒ (i).

(i)⇒ (ii): Since 1 − cos(y ⋅ ξ) ≤ 1
2
∣yξ∣2 for all y, ξ ∈ Rd, we have

ψ∗(r) ∶= sup
∣ξ∣≤r

Reψ(ξ) ≤ 2∫× min{1, ∣y∣2r2} ν(dy)

implying

∫

∞

1
ψ∗(r)

dr

r1+α
≤ 2∫

∞

1
r2 ∫×

∣y∣<r−1
∣y∣2 ν(dy)

dr

r1+α
+ 2∫

∞

1
∫∣y∣≥r−1

ν(dy)
dr

r1+α
=∶ 2I1 + 2I2.

An application of Tonelli’s theorem shows

I1 = ∫
∞

1
∫×

∣y∣<r−1
r1−α∣y∣2 ν(dy)dr = ∫×

∣y∣≤1
(∫

1≤r<∣y∣−1
r1−α dr) ∣y∣2 ν(dy)

=
1

2 − α ∫
×

∣y∣≤1
∣y∣2 (∣y∣α−2 − 1) ν(dy) < ∞

and

I2 = ∫
∞

1
ν({y; ∣y∣ ≥ r−1})

dr

r1+α
= ∫

1

0
ν({y; ∣y∣ ≥ u})

du

u1−α

=
1

α ∫
×

∣y∣≤1
∣y∣α ν(dy) < ∞.

In the last step we use the identity

∫ f(x)dµ(x) = ∫
∞

0
µ({x; ∣f(x)∣ ≥ r})dr

which holds for any σ-finite measure µ on (Rd ∖ {0},B(Rd ∖ {0})) and any non-negative

measurable function f . This proves (ii).

The implication (ii) ⇒ (iii) follows easily by introducing spherical coordinates and using

the obvious estimate

Reψ(rη) ≤ ψ∗(r) for all r ≥ 0, η ∈ Rd, ∣η∣ = 1.

It remains to prove that (iii) implies (i). To this end, we note that

∣y∣α = c∫ (1 − cos(y ⋅ ξ))
1

∣ξ∣d+α
dξ
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for the constant c = α2α−1π−d/2Γ (α+d
2

) /Γ (1 − α
2
), and therefore

∫×

∣y∣≤1
∣y∣α ν(dy) = c∫

⎛
⎜
⎝
∫×

∣y∣≤1
(1 − cos(y ⋅ ξ)) ν(dy)

⎞
⎟
⎠

dξ

∣ξ∣d+α

≤ c∫ Reψ(ξ)
dξ

∣ξ∣d+α
dξ < ∞,

(29)

which completes the proof.

For a continuous negative definite function ψ the Blumenthal–Getoor index at ∞ can be

defined by

β∞ ∶= inf {γ > 0; lim
r→∞

1

rγ
sup
∣ξ∣≤r

∣ψ(ξ)∣ < ∞} ,

cf. Schilling [27] or Blumenthal & Getoor [4]. The following auxiliary statement is needed in

the proof of Theorem 4.5.

A.2 Lemma Let ψ be a continuous negative definite function,

ψ(ξ) = ib ⋅ ξ +
1

2
ξ ⋅Qξ + ∫× (1 − eiξ⋅y + iξ ⋅ y1(0,1)(∣y∣)) ν(dy), ξ ∈ Rd,

and denote by β∞ ∈ [0,2] the Blumenthal–Getoor index at ∞.

(i). If β∞ < 2, then Q = 0.

(ii). If β∞ < 1, then b = ∫∣y∣<1 y ν(dy).

Proof. (i) Since ∣ξ∣−2∣1− cos(y ⋅ ξ)∣ ≤ min{2, ∣y∣2} for all ∣ξ∣ ≥ 1, an application of the dominated

convergence theorem shows

lim
∣ξ∣→∞

1

∣ξ∣2 ∫
× (1 − cos(y ⋅ ξ)) ν(dy) = 0.

Thus,

lim
∣ξ∣→∞

∣ξ ⋅Qξ∣

2∣ξ∣2
≤ lim

∣ξ∣→∞
Reψ(ξ)

∣ξ∣2
+ lim

∣ξ∣→∞
1

∣ξ∣2 ∫
× (1 − cos(y ⋅ ξ)) ν(dy) = 0

which implies Q = 0.

(ii) We know from (i) that Q = 0. Since ∣∫∣y∣≥1 (1 − eiy⋅ξ) ν(dy)∣ ≤ 2ν(Rd ∖B(0,1)), we may

assume, without loss of generality, that suppν ⊆ B[0,1]. For any γ ∈ (0,1) there exists some

cγ > 0 such that

∫ ∣y∣γ ν(dy) = cγ∬ (1 − cos(y ⋅ z))
dz

∣z∣1+γ
ν(dy) = cγ ∫ Reψ(z)

dz

∣z∣1+γ
.

As supp ν ⊆ B[0,1], it follows easily from Taylor’s formula that ∣Reψ(z)∣ ≤ C′
∣z∣2 for some

absolute constant C′
> 0. On the other hand, by assumption, ∣Reψ(z)∣ ≤ C ∣z∣β for some

β ∈ (β∞,1). Consequently, we find ∫× ∣y∣γ ν(dy) < ∞ for all γ > β. This implies, in particular,

that

ψ0(ξ) ∶= ∫× (1 − eiy⋅ξ) ν(dy), ξ ∈ Rd,

is well-defined. Using Markov’s inequality and the elementary estimate ∣ sinx∣ ≤ ∣x∣, we find

for all γ ∈ (β,1)

∣ Imψ0(ξ)∣ ≤ ∫×

∣yξ∣<1
∣ sin(y ⋅ ξ)∣ ν(dy) + ∫∣y⋅ξ∣≥1

1 ν(dy)

≤ ∫∣y⋅ξ∣<1
∣y ⋅ ξ∣ ν(dy) + ∫∣y⋅ξ∣≥1

∣y ⋅ ξ∣γ ν(dy) ≤ ∣ξ∣γ ∫× ∣y∣γ ν(dy).

Thus,

2∣ξ∣γ ∫× ∣y∣γ ν(dy) ≥ ∣ Imψ0(ξ)∣ ≥

RRRRRRRRRRRRRR

b + ∫×

∣y∣≤1
y ν(dy)

RRRRRRRRRRRRRR

∣ξ∣ − ∣ Imψ(ξ)∣.

Dividing both sides by ∣ξ∣γ and letting ∣ξ∣ → ∞ proves the assertion.
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