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Index of Notation

Probability/measure theory

∼,
d
= distributed as

PX distribution of X w.r.t. P
B(Rd

) Borel σ-algebra on Rd

δx Dirac measure centered at x ∈ R

Spaces of functions

Bb(Rd
) space of bounded Borel measurable

functions f ∶ Rd
→ R

Cb(Rd
) space of bounded continuous

functions f ∶ Rd
→ R

C∞(Rd
) space of continuous functions

f ∶ Rd
→ R vanishing at infinity

lim∣x∣→∞ ∣f(x)∣ = 0

C∞c (Rd
) space of smooth functions f ∶ Rd

→ R
with compact support

D[0,∞) Skorohod space = space of càdlàg
functions f ∶ [0,∞)→ Rd

Analysis

∧ minimum

∥ ⋅ ∥∞ uniform norm

D(A) domain of operator A

càdlàg finite left limits and right-continuous

tr(A) trace of A

∇
2f Hessian of f
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1
Introduction

Central question: How to characterize stochastic processes in terms of martingale properties? Start
with two simple examples: Brownian motion and Poisson process.

1.1 Definition A stochastic process (Bt)t≥0 is a Brownian motion if

• B0 = 0 almost surely,

• Bt1−Bt0 , . . . ,Btn−Btn−1 are independent for all 0 = t0 < t1 < . . . < tn (independent increments),

• Bt −Bs ∼ N(0, (t − s) id) for all s ≤ t,

• t↦ Bt(ω) is continuous for all ω (continuous sample paths)

1.2 Theorem (Lévy) Let (Xt)t≥0 be a 1-dim. stochastic process with continuous sample paths and
X0 = 0. (Xt)t≥0 is a Brownian motion if, and only, if (Xt)t≥0 and (X2

t −t)t≥0 are (local) martingales.

Beautiful result! Only 2 martingales needed to describe all the information about Brownian motion.

Remark Assumption on continuity of sample paths is needed (consider Xt = Nt − t for Poisson
process with intensity 1).

1.3 Definition A stochastic process (Nt)t≥0 is a Poisson process with intensity λ > 0 if

• N0 = 0 almost surely,

• (Nt)t≥0 has independent increments,

• Nt −Ns ∼ Poi(λ(t − s)) for all s ≤ t,

• t↦ Nt(ω) is càdlàg (=right-continuous with finite left-hand limits).

1.4 Theorem (Watanabe) Let (Nt)t≥0 be a counting process, i.e. a process with N0 = 0 which is
constant except for jumps of height +1. Then (Nt)t≥0 is a Poisson process with intensity λ if and
only if (Nt − λt)t≥0 is a martingale.

Outline of this lecture series:

• Set up general framework to describe processes via martingales (→ martingale problems, ▸
§2)

• study connection between martingale problems and Markov processes

• application: study solutions to stochastic differential equations ▸ §3)
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2
Martingale Problems

2.1 Definition Let (Ω,F ,P) be a probability space.

(i). A filtration (Ft)t≥0 is a family of sub-σ-algebras of F such that Fs ⊆ Ft for s ≤ t.

(ii). A stochastic process (Mt)t≥0 is a martingale (with respect to (Ft)t≥0 and P) if

• (Mt,Ft)t≥0 is an adapted process, i.e. Xt is Ft-measurable for all t ≥ 0,

• Mt ∈ L1(P) for all t ≥ 0,

• E(Mt ∣ Fs) =Ms for all s ≤ t.

Standing assumption: processes have càdlàg sample paths t↦Xt(ω) ∈ Rd. Skorohod space:

D[0,∞) ∶= {f ∶ [0,∞)→ Rd; f càdlàg }.

Fix a linear operator L ∶ D → Bb(Rd) with domain D ⊆ Bb(Rd). Notation: (L,D).

2.2 Definition Let µ be a probability measure on Rd. A (càdlàg ) stochastic process (Xt)t≥0 on a
probability space (Ω,F ,Pµ) is a solution to the (L,D)-martingale problem with initial distribution
µ if Pµ(X0 ∈ ⋅) = µ(⋅) and

Mf
t ∶= f(Xt) − f(X0) − ∫

t

0
Lf(Xs)ds

is for any f ∈ D a martingale w.r.t to the canonical filtration Ft ∶= σ(Xs; s ≤ t) and Pµ.

2.3 Remark (i). For µ = δx we write Px instead of Pδx . Moreover, Ex ∶= ∫ dPx.

(ii). Sometimes it is convenient to fix the measurable space. On chooses Ω = D[0,∞) Skorohod
space and X(t, ω) = ω(t) canonical process (possible WLOG, cf. Lemma 2.9 below).

Next: existence and uniqueness of solutions. Rule of thumb: Existence is much easier to prove
than uniqueness.

2.1 Existence of solutions

2.4 Definition A linear operator (L,D) satisfies the positive maximum principle if

f ∈ D, f(x0) = sup
x∈Rd

f(x) ≥ 0 Ô⇒ Lf(x0) ≤ 0.

2.5 Lemma Let (L,D) be a linear operator on Cb(Rd) (i.e. D ⊆ Cb(Rd) and L(D) ⊆ Cb(Rd)). If
there exists for any x ∈ Rd a solution to the (L,D)-martingale problem with initial distribution
µ = δx, then (L,D) satisfies the positive maximum principle.

Proof. Fix f ∈ D and x0 ∈ Rd with f(x0) = supx∈Rd f(x) ≥ 0. Let (Xt)t≥0 be a solution with
X0 = x0. Then

0 ≥ Ex0(f(Xt)) − f(x0) = Ex0 (∫
t

0
Lf(Xs)ds) ,
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and therefore it follows from the right-continuity of s↦ Ex0Lf(Xs) that

Lf(x0) = lim
t→0

1

t
∫

t

0
Ex0(Lf(Xs))ds ≤ 0.

Denote by C∞(Rd) the space of continuous functions vanishing at infinity, lim∣x∣→∞ f(x) = 0.

2.6 Theorem ([4]) Suppose that

(i). D ⊆ C∞(Rd) is dense in C∞(Rd) and L ∶ D → C∞(Rd),

(ii). L satisfies the positive maximum principle on D,

(iii). there exists a sequence (fn)n∈N ⊆ D such that

lim
n→∞ fn(x) = 1 and lim

n→∞Lfn(x) = 0

for all x ∈ Rd and
sup
n≥1

(∥fn∥∞ + ∥Lfn∥∞) <∞.

Then there exists for every probability measure µ a solution to the (L,D)-martingale problem with
initial distribution µ.

2.7 Remark If (iii) fails to hold then there exists a solution which might explode in finite time.

DIY Define an operator L on the smooth functions with compact support C∞
c (Rd) by

Lf(x) ∶= b(x)∇f(x) + 1

2
tr(Q(x)∇2f(x))

+ ∫
y≠0

(f(x + y) − f(x) − y ⋅ ∇f(x)1(0,1)(∣y∣))ν(x, dy)

where for each x ∈ Rd, b(x) ∈ Rd, Q(x) ∈ Rd×d is positive semidefinite and ν(x, dy) is a measure sat-
isfying ∫ min{1, ∣y∣2}ν(x, dy) <∞. Show that L satisfies the positive maximum principle. (Extra:
Find sufficient conditions on b, Q, ν such that Theorem 2.6 is applicable.)

2.2 Uniqueness

Next: introduce notion of uniqueness. What is the proper notion in this context?

2.8 Definition Let (Xt)t≥0 be a stochastic process on a probability space (Ω,F ,P). If (X̃t)t≥0 is
another stochastic process (possibly on a different probability space (Ω̃, F̃ , P̃)), then (Xt)t≥0 equals
in distribution (X̃t)t≥0 if both processes have the same finite dimensional distributions, i.e.

P(Xt1 ∈ B1, . . . ,Xtn ∈ Bn) = P̃(X̃t1 ∈ B1, . . . , X̃tn ∈ Bn)

for any measurable sets Bi and any times ti. Notation: (Xt)t≥0 d= (X̃t)t≥0.

Mind: In general, Xt
d= X̃t for all t ≥ 0 does not imply (Xt)t≥0 d= (X̃t)t≥0. Consider for instance a

Brownian motion (Xt)t≥0 and X̃t ∶=
√
tX1.

2.9 Lemma Let (Xt)t≥0 be a solution to the (L,D)-martingale problem with initial distribution µ.

If (Yt)t≥0 is another càdlàg process such that (Xt)t≥0 d= (Yt)t≥0, then (Yt)t≥0 is a solution to the
(L,D)-martingale problem with initial distribution µ.

Idea of proof. A càdlàg process (Zt)t≥0 (with initial distribution µ) solves the (L,D)-martingale
problem (with initial distribution µ) iff

Pµ
⎛
⎝
[f(Zt) − f(Zs) − ∫

t

s
Lf(Zr)dr]

k

∏
j=1

hj(Zti)
⎞
⎠
= 0

for any t1 < . . . < tk ≤ s ≤ t and hj ∈ Bb(Rd). This is an assertion on the fdd’s! (Put Z = X and
then replace X by Y .)
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Lemma 2.9 motivates the following definition.

2.10 Definition (i). Uniqueness holds for the (L,D)-martingale problem with initial distribution
µ if any two solutions have the same finite-dimensional distributions.

(ii). The (L,D)-martingale problem is well posed if for any initial distribution µ there exists a
unique solution to the (L,D)-martingale problem with initial distribution µ.

Next result: uniqueness of the finite-dimensional distributions follows from the uniqueness of the
one-dimensional distributions. Reminds us of Markov processes.

2.11 Proposition ([4, Theorem 4.4.2]) Assume that for any initial distribution µ and any two solutions
(Xt)t≥0 and (Yt)t≥0 to the (L,D)-martingale problem with initial distribution µ it holds that

Xt
d= Yt for all t ≥ 0.

Then uniqueness holds for any initial distribution µ, i.e. (Xt)t≥0 d= (Yt)t≥0 for any two solutions
(Xt)t≥0 and (Yt)t≥0 of the martingale problem with initial distribution µ.

2.3 Markov property

2.12 Theorem ([4, Theorem 4.4.2]) Assume that the (L,D)-martingale problem is well posed. If
(Xt)t≥0 is a solution to the (L,D)-martingale problem with initial distribution µ, then (Xt)t≥0
satisfies the simple Markov property

Eµ(f(Xs+t) ∣ Ft) = Eµ(f(Xs+t) ∣Xt), s, t ≥ 0, f ∈ Bb(Rd). (2.1)

2.13 Remark A bit more is true. Consider the canonical framework, i.e. Ω =D[0,∞) and Xt(ω) =
ω(t). Assume additionally to 2.12 that x↦ Px(B) is measurable for all B. Then

Eµ(f(Xs+t) ∣ Fs) = (Psf)(Xt) Pµ-a.s. (2.2)

where
Psf(x) ∶= Exf(Xs).

Interpretation: (Xt)t≥0 is a Markov process with semigroup (Pt)t≥0 (chapter 4). Note: (2.2) implies
(2.1). If D ⊂ Cb(Rd) we even get a strong Markov process (i.e. t↝ finite stopping time τ).

2.14 Remark What if there is no uniqueness? Markovian selection! Consider again canonical
framework,

Πµ ∶= {Pµ; (Xt,Pµ) is solution to (L,D)-martingale problem with initial distribution µ}

set of solutions. Under quite weak assumptions, it is possible to choose Pµ ∈ Πµ such that (Xt,Pµ)
is Markovian in the sense of (2.2), see e.g. [4, Section 4.5]. Has useful applications in analysis (e.g.
for Harnack inequalities), cf. [8].

Conclusion: martingale problems are a useful tool to construct Markov processes.

7



3
Connection between SDEs and martingale

problems

Aim: characterize weak solutions to SDEs of the form

dXt = b(Xt)dt + σ(Xt)dBt, X0 ∼ µ (3.1)

where (Bt)t≥0 is a Brownian motion and µ a probability measure. Here for simplicity only dimen-
sion 1. Everything generalizes to higher dimensions! Standing assumption:

• b ∶ R→ R and σ ∶ R→ R are locally bounded,

3.1 Definition A weak solution to (3.1) is a triple (X,B), (Ω,F ,P), (Ft)t≥0 consisting of

• a probability space (Ω,F ,P),

• a complete filtration (Ft)t≥0 of sub-σ-algebras of F ,

• a Brownian motion (Bt,Ft)t≥0,

• a continuous adapted process (Xt,Ft)t≥0
such that P(X0 ∈ ⋅) = µ(⋅) and

Xt −X0 = ∫
t

0
b(Xs)ds + ∫

t

0
σ(Xs)dBs P-a.s.

Important: We are free to choose the probability space and the Brownian motion.

Example The SDE
dXt = sgn(Xt)dBt, X0 = 0,

has a weak solution but not a strong solution.

Idea. Existence of weak solution: Let (Wt)t≥0 be a Brownian motion (on some probability space)
and set

Bt ∶= ∫
t

0
sgn(Ws)dWs Xt ∶=Wt Ft ∶= FWt

By Lévy’s characterization, (Bt,Ft)t≥0 is a Brownian motion. Moreover,

dBt = sgn(Xt)dXt Ô⇒ dXt = (sgn(Xt))2 dXt = sgn(Xt)dBt.

If there were a strong solution (Xt)t≥0, then (Xt)t≥0 would be a Brownian motion and FXt ⊆ F ∣X ∣t .
This is impossible, see e.g. [11, Example 19.16].

Good source for further (counter)examples: [2].

Let (Xt)t≥0 be a solution to (3.1). For f ∈ C2
b (R) it follows from Itô’s formula that

f(Xt) − f(X0) = ∫
t

0
f ′(Xs)dXs +

1

2
∫

t

0
f ′′(Xs)d⟨X⟩s

= ∫
t

0
f ′(Xs)σ(Xs)dBs + ∫

t

0
Lf(Xs)ds

8



S
kr
ip
t:

“C
on

n
ec
ti
on

b
et
w
ee
n
M
ar
ti
n
ga
le

P
ro
b
le
m
s
an
d
M
ar
ko
v
P
ro
ce
ss
es
”
by

F
ra
n
zi
sk
a
K
ü
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where

Lf(x) ∶= b(x)f ′(x) + 1

2
a(x)f ′′(x)( = b(x)∇f(x) + 1

2
tr(a(x)∇2f(x))) (3.2)

with a(x) ∶= σ(x)2(= σ(x)σ(x)T ). Consequently,

f(Xt) − f(X0) − ∫
t

0
Lf(Xs)ds = ∫

t

0
f ′(Xs)σ(Xs)dBs.

Right-hand side is martingale e.g. if f has compact support or σ is bounded. Hence:

3.2 Lemma If (Xt)t≥0 is a weak solution to (3.1), then (Xt)t≥0 solves the (L,C2
c (R))-martingale

problem with initial distribution µ (with L defined in (3.2)).

Converse is also (almost) true!

3.3 Lemma If (Xt)t≥0 is a continuous process which is a solution to the (L,C2
c (R))-martingale

problem with initial distribution µ, then there exists a weak solution (X̃t)t≥0 to (3.1) with (X̃t)t≥0 d=
(Xt)t≥0.

Proof for σ(⋅)2 bounded away from 0. (i). Since Mu
t ∶= u(Xt) − u(X0) − ∫

t
0 Lu(Xs)ds is a mar-

tingale for u ∈ C2
c (R) it follows that (Mu

t )t≥0 is a local martingale for any u ∈ C2(R). Idea:
Define

τk ∶= inf{t > 0; ∣Xt∣ ≥ k}

and pick f ∈ C2
c (R) such that f(x) = u(x) for ∣x∣ ≤ k; then Mu

t∧τk =M
f
t∧τk is a martingale.

(ii). By Step 1,

Ut ∶=Xt −X0 − ∫
t

0
b(Xs)ds and Vt ∶=X2

t −X2
0 − ∫

t

0
(2Xsb(Xs) + σ2(Xs))ds

are local martingales. Aim: Show ⟨U⟩t = ∫
t
0 σ

2(Xs)ds, i.e. that U2
t − ∫

t
0 σ(Xs)2 ds is local

martingale. Write U2
t − ∫

t
0 σ

2(Xs)ds = Nt −Rt where

Nt ∶= Vt − 2X0Ut local martingale!

and

Rt ∶= 2∫
t

0
(Xt −Xs)b(Xs)ds − (∫

t

0
b(Xs)ds)

2

= 2∫
t

0
(Xt −Xs)b(Xs)ds − 2∫

t

0
∫

t

s
b(Xs)b(Xr)dr ds

= 2∫
t

0
(Ut −Us)b(Xs)ds

parts= 2∫
t

0
∫

s

0
b(Xu)dudUs

is a local martingale which is of bounded variation. Hence R = 0, and so U2
t − ∫

t
0 σ

2(Xs)ds =
Nt is local martingale.

(iii). Define Wt ∶= ∫
t
0 1/σ(Xs)dUs then, by (ii),

⟨W ⟩t = ∫
t

0

1

σ2(Xs)
d⟨U⟩s = t.

It follows from Lévy’s characterization that (Wt)t≥0 is a Brownian motion. Moreover,

∫
t

0
b(Xs)ds + ∫

t

0
σ(Xs)dWs

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ut

Def. U= Xt −X0.
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Remark Used σ2 > 0 only in (iii). For general σ apply martingale representation theorem to find

Brownian motion (Wt)t≥0 with Ut = ∫
t
0 σ(Xs)dWs, see e.g. [4] or [6].

3.4 Corollary Let µ be a probability measure. TFAE:

(i). There exists a weak solution to the SDE (3.1).

(ii). There exists a continuous solution to the (L,C2
c (R))-martingale problem with initial distri-

bution µ.

Proof. Immediate from Lemma 3.2 and 3.3.

3.5 Corollary TFAE:

(i). For any initial distribution µ there exists a unique weak solution to the SDE (3.1).

(ii). The ’continuous’ (L,C2
c (R))-martingale problem is well-posed.

Proof. Fix some probability measure µ.
(i) Ô⇒ (ii): Let (Xt)t≥0 and (Yt)t≥0 be continuous solutions to the martingale problem. By

Lemma 3.3, there exist (X̃t) and (Ỹt) solving the SDE (3.1) such that (Xt)t≥0 d= (X̃t)t≥0 and

(Yt)t≥0 d= (Ỹt)t≥0. Hence, by (i),

(Xt)t≥0 d= (X̃t)t≥0
(i)= (Ỹt)t≥0 d= (Yt)t≥0.

(ii) Ô⇒ (i): similar reasoning, use Lemma 3.2 (simpler than first part).

Note that Corollary 3.4 and Corollary 3.5 do not require any regularity assumptions on b and σ.

3.6 Corollary Assume that the coefficients b ∶ R→ R and σ ∶ R→ R of the SDE (3.1) are continuous
and bounded. Then there exists for any initial distribution µ a (non-explosive) weak solution to
(3.1).

Proof. By Corollary 3.4 it suffices to show that there exists a solution to the (L,C2
c (R))-martingale

problem with initial distribution µ. To this end, we apply Theorem 2.6. Check assumptions:

• C2
c (R) is dense in C∞(R) and Lf ∈ C∞(R) for any f ∈ C2

c (R),

• L satisfies the positive maximum principle, cf. Section 2.1

• Choose (fn)n∈N ⊆ C2
c (R) such that 0 ≤ fn ≤ 1, supn ∥fn∥C2 <∞ and

fn(x) =
⎧⎪⎪⎨⎪⎪⎩

1, ∣x∣ ≤ n,
0, ∣x∣ ≥ n + 1

Then limn→∞ fn = 1,

lim
n→∞ f

′
n(x) = 0, lim

n→∞ f
′′
n (x) = 0 Ô⇒ lim

n→∞Lfn = 0

and
sup
n≥1

(∥fn∥∞ + ∥Lfn∥∞) ≤ 1 + (∥b∥∞ + ∥σ∥∞) sup
n

∥fn∥C2
b
<∞

3.7 Remark The above results can be extended to SDEs of the form

dXt = b(Xt−)dt + σ(Xt−)dBt + g(Xt−)dJt (3.3)

where (Jt)t≥0 is a jump Lévy process. Need to replace L by

Lf(x) = b(x)∇f(x) + 1

2
tr(a(x)∇2f(x))

= +∫
y≠0

(f(x + g(x)y) − f(x) −∇f(x) ⋅ (g(x)y)1(0,1)(∣y∣))ν(dy)

where ν is the Lévy measure of (Jt)t≥0. See [10] for details. Corollary 3.4,3.5 remain valid (without
’continuous’), cf. [10], and similar to Corollary 3.6 we get a general existence result for weak
solutions to (3.3), see e.g. [7, Theorem 3.4(i)].
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4
Markov processes

4.1 Semigroups

Throughout, (Ω,F) is a measurable space.

4.1 Definition A Markov process is a tuple (Xt,Ft,Px) consisting of

• a filtration (Ft)t≥0,

• an adapted Rd-valued càdlàg process (Xt,Ft)t≥0,

• a family of probability measures Px, x ∈ Rd

such that the Markov property

Ex(u(Xt) ∣ Fs) = EXsu(Xt−s) Px-a.s. (4.1)

holds for any s ≤ t, x ∈ Rd and u ∈ Bb(Rd). (Implicitly: everything is measurable.) We call

Ptu(x) ∶= Exu(Xt), t ≥ 0, x ∈ Rd, u ∈ Bb(Rd)

the semigroup associated with (Xt)t≥0.

4.2 Proposition Let (Pt)t≥0 be the semigroup associated with a Markov process (Xt)t≥0.

(i). Pt+s = PtPs for all s ≤ t (semigroup property)

(ii). 0 ≤ Ptu ≤ 1 for any 0 ≤ u ≤ 1 (sub Markov property)

(iii). Pt1 = 1 (conservative)

Proof. (i). Fix u ∈ Bb(Rd). By the Markov property (4.1) and the tower property of conditional
expectation, we have

Pt+su(x) = Exu(Xt+s) = Ex[Ex(u(Xt+s) ∣ Ft)] = Ex[EXtu(Xs)]

= PtPsu(x).

(ii). Clear from Ptu(x) = Exu(Xt)

(iii). Pt1(x) = Ex1Xt = 1 (since we assume Xt ∈ Rd for all t ≥ 0).

4.3 Definition A Markov process (Xt)t≥0 is called a Feller process if the associated semigroup
(Pt)t≥0 is a Feller semigroup, i.e.

(i). Ptf ∈ C∞(Rd) for any t ≥ 0, f ∈ C∞(Rd) (Feller property)

(ii). ∥Ptf − f∥∞ → 0 as t→ 0 for any f ∈ C∞(Rd) (strong continuity at t = 0).

4.4 Example Any Lévy process, i.e. any process with stationary and independent increments, is a
Feller process. Examples: Brownian motion, compound Poisson process, . . .

11
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4.5 Example Let (Bt)t≥0 be a Brownian motion and let b, σ be bounded continuous mappings. If
the SDE

Xt = b(Xt)dt + σ(Xt)dBt, X0 = x
has a unique weak solution for any x ∈ Rd, then the solution (Xt)t≥0 is a Feller process.

Remark (i). The assumption on boundedness of b, σ can be relaxed, see e.g. [1, Theorem 3.6].

(ii). Example 4.5 remains valid if we replace B by a Lévy process, see [7] for a detailed discussion.

4.2 Infinitesimal generator

Aim: Characterize semigroup (Pt)t≥0 by one operator. Idea:

Pt+s = PtPs

is “operator version” of Cauchy–Abel equation

φ(t + s) = φ(t)φ(s), s, t ≥ 0, φ cts (4.2)

Any solution to (4.2) is of the form φ(t) = φ(0)eat for some constant a > 0. Hence, we expect

Pt = etA A = d

dt
Pt∣

t=0
(4.3)

for some (unbounded) operator A. How to make sense of (4.3)?

4.6 Definition Let (Xt)t≥0 be a Feller process with semigroup (Pt)t≥0. Then the operator defined
by

D(A) ∶= {u ∈ C∞(Rd);∃g ∈ C∞(Rd) ∶ lim
t→0

∥Ptu − u
t

− g∥
∞
= 0}

Au ∶= lim
t→0

Ptu − u
t

, u ∈ D(A)

is called infinitesimal generator of (Xt)t≥0 (and (Pt)t≥0).

Remark (i). In general, it is difficult to determine D(A). Typically one tries to find “nice”
function spaces contained in D(A), e.g. C∞

c (Rd) ⊆ D(A).

(ii). D(A) is not “too small” since D(A) is dense in C∞(Rd), i.e. for any u ∈ C∞(Rd) there exists
(fn)n∈N ⊆ D(A) such that ∥fn − u∥∞ → 0.

4.7 Proposition Let (Xt)t≥0 be a Feller process with semigroup (Pt)t≥0 and infinitesimal generator
(A,D(A)). Then

(i). If u ∈ D(A) then Ptu ∈ D(A) for all t > 0 and

d

dt
Ptu = APtu = PtAu, t > 0.

12
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(ii). For any u ∈ D(A) it holds that

Ptu − u = ∫
t

0
PsAuds = ∫

t

0
APsuds. (4.4)

Sketch of proof. (i). Fix u ∈ D(A) and t > 0. For s > 0

∥PsPtu − Ptu
s

− PtAu∥
∞
≤ ∥Psu − u

s
−Au∥

∞
s→0ÐÐ→ 0.

This shows Ptu ∈ D(A), APtu = PtAu and limh↓0 Pt+hu−Ptu
h

= PtAu. Similar calculation for

s < 0 gives limh↓0 Pt−hu−Ptu
−h = PtAu. Hence, d/dtPtu = APtu.

(ii). By (i) and the fundamental theorem of calculus,

Ptu − u = ∫
t

0

d

ds
Psuds = ∫

t

0
PsAuds. (4.5)

Write (4.5) in probabilistic way:

Exu(Xt) − u(x) = ∫
t

0
ExAu(Xs)ds, u ∈ D(A), x ∈ Rd, t ≥ 0. (4.6)

First glimpse of martingale problem!

Mu
t ∶= u(Xt) − u(X0) − ∫

t

0
Au(Xs)ds

has constant expectation w.r.t. to Px.

4.3 From Markov processes to martingale problems

4.8 Proposition Let (Xt,Px) be a Feller process with generator (A,D(A)), and let x ∈ Rd. Then
(Xt)t≥0 is (w.r.t. to Px) a solution to the (A,D(A))-martingale problem with initial distribution
δx.

Proof. Fix u ∈ D(A). Need to show that (Mu
t )t≥0 is martingale. By definition,

Ex(Mu
t ∣ Fs) = Ex (u(Xt) − ∫

t

s
Au(Xr)dr ∣ Fs) − u(x) − ∫

s

0
Au(Xr)dr !=Mu

s

for s ≤ t, i.e. need to show

Ex (u(Xt) − ∫
t

s
Au(Xr)dr ∣ Fs) = u(Xs).

Use Markov property:

Ex (u(Xt) − ∫
t

s
Au(Xr)dr ∣ Fs) = Ex (u(Xt) ∣ Fs) −Ex (∫

t−s

0
Au(Xs+h)dh ∣ Fs)

= EXs(u(Xt−s)) − ∫
t−s

0
EXs(Au(Xh))dh

(4.6),x=Xs= u(Xs).

4.9 Corollary (Dynkin’s formula) Let (Xt,Px) be a Feller process with generator (A,D(A)). Then

Exf(Xτ) − f(x) = Ex (∫(0,τ)Af(Xs)ds)

for any stopping time τ with Exτ <∞.

Proof. Use Proposition 4.8 and optional stopping.

13
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See [1] for many interesting applications of this formula, e.g. a maximal inequality for Feller pro-
cesses.

More difficult: uniqueness of solution to martingale problem.

4.10 Theorem Let (Xt)t≥0 be a Feller process with generator (A,D(A)). Let D ⊆ D(A) be a core of
(A,D(A)), i.e. for any f ∈ D(A) there is (fn)n∈N such that ∥fn − f∥∞ → 0 and ∥Afn −Af∥∞ → 0.
Then the (A,D)-martingale problem is well-posed.

4.11 Remark D ∶= D(A) is a core for (A,D(A)), and therefore Theorem 4.10 shows, in particular,
that the (A,D(A))-martingale problem is well-posed.

Which operators appear as generators of Feller processes? How do generators of Feller processes
look like?

4.12 Theorem ([1, Theorem 2.21]) Let (Xt)t≥0 be a Feller process with generator (A,D(A)). If
C∞
c (Rd) ⊆ D(A) then A∣C∞

c (Rd) has a representation of the form

Af(x) = b(x)∇f(x) + 1

2
tr(Q(x)∇2f(x)) + ∫

y≠0
(f(x + y) − f(x) − y ⋅ ∇f(x)1(0,1)(∣y∣))ν(x, dy)

where (b(x),Q(x), ν(x, dy)), x ∈ Rd, is the so-called characteristics consisting of

• b(x) ∈ Rd

• Q(x) ∈ Rd×d positive semidefinite

• ν(x, dy) measure satisfying ∫ min{1, ∣y∣2}ν(x, dy) <∞.

Interpretation of Theorem 4.12:

Xt ≈ ∫
t

0
b(Xs−)ds + ∫

t

0

√
Q(Xs−)dBs + jump part (4.7)

The jump part comes from the family (ν(x, dy)):

4.13 Proposition ([9]) Let (Xt)t≥0 be a Feller process with characteristics (b(x),Q(x), ν(x, dy)).
Then

lim
t→0

Px(Xt ∈ x +A)
t

= ν(x,A), A ∈ B(Rd/{0}).

Interpretation:

lim
t→0

Px(Xt ∈ x +A)
t

= (scaled) probability to move very quickly from X0 = x into the set x +A

Observation: diffusion part doesn’t play a role, i.e. diffusion is moving too slowly. Only possibility:
jumps.

ν(x,A) = likelihood that process jumps from X0 = x to x +A
More generally

ν(Xs−,A) = likelihood that process jumps current position Xs− to Xs− +A

For rigorous statement of (4.7) see [1, Proposition 3.10] or [3].

4.14 Remark Many open questions on existence of Feller processes and associated martingale
problems, e.g.

• Under which assumptions on (b(x),Q(x), ν(x, dy)) does there exist a Feller process with
characteristics (b(x),Q(x), ν(x, dy))?

• Under which assumptions is C∞
c (Rd) a core for the generator? (important for well-posedness,

cf. Theorem 4.12)
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[1] Böttcher, B., Schilling, R. L., Wang, J.: Lévy-Type Processes: Construction, Approximation
and Sample Path Properties. Springer, 2014.

[2] Cherny, A.S., Engelbert, H.J.: Singular Stochastic Differential Equations. Springer, 2005

[3] Cinlar, E., Jacod, J.: Representation of semimartingale Markov processes in terms of Wiener
processes and Poisson random masures. In: Seminar on Stochastic Processes, Birkäuser, 1981,
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[9] Kühn, F., Schilling, R. L.: On the domain of fractional Laplacians and related generators of
Feller processes. J. Funct. Anal. 276 (2019), 2397–2439.

[10] Kurtz, T. G.: Equivalence of Stochastic Equations and Martingale Problems In D. Crisan,
Stochastic Analysis 2010. Springer 2011, pp. 113–130.

[11] Schilling, R. L., Partzsch, L.: Brownian Motion: An Introduction to Stochastic Processes. De
Gruyter, 2014 (2nd edition).

15


	Index of Notation
	Introduction
	Martingale Problems
	Existence of solutions
	Uniqueness
	Markov property

	Connection between SDEs and martingale problems
	Markov processes
	Semigroups
	Infinitesimal generator
	From Markov processes to martingale problems

	Bibliography

