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Abstract

We present an existence result for Lévy-type processes which requires only weak regularity

assumptions on the symbol q(x, ξ) with respect to the space variable x. Applications range

from existence and uniqueness results for Lévy-driven SDEs with Hölder continuous coefficients

to existence results for stable-like processes and Lévy-type processes with symbols of variable

order. Moreover, we obtain heat kernel estimates for a class of Lévy and Lévy-type processes.

The paper includes an extensive list of Lévy(-type) processes satisfying the assumptions of our

results.
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1 Introduction

The Lévy–Khintchine formula gives a one-to-one correspondence between Lévy processes and

continuous negative definite functions (i. e. characteristic exponents). For any continuous

negative definite function ψ ∶ Rd → C with ψ(0) = 0, i. e. any function of the form

ψ(ξ) = ψ(0) − ib ⋅ ξ + 1

2
ξ ⋅Qξ + ∫

y≠0
(1 − eiξ⋅y + iξ ⋅ y1(0,1)(∣y∣)) ν(dy), ξ ∈ Rd

for some b ∈ Rd, a positive semidefinite symmetric matrix Q ∈ Rd×d and a measure ν on Rd/{0}
such that ∫Rd/{0} ∣y∣

2 ∧ 1 ν(dy) < ∞, there exists a Lévy process with characteristic exponent

ψ. Over the past years, there has been an increasing interest in so-called Lévy-type processes.

This is a class of Markov processes which behave locally like a Lévy process, but the (analogue

of the) Lévy triplet depends on the current position of the process in the state space. If the

smooth functions with compact support C∞
c (Rd) are contained in the domain of the generator

of a Lévy-type process (Xt)t≥0, then the process can be characterized via its symbol q,

q(x, ξ) = q(x,0)− ib(x) ⋅ξ+ 1

2
ξ ⋅Q(x)ξ+∫

y≠0
(1−eiξ⋅ξ + iξ ⋅y1(0,1)(∣y∣)) ν(x, dy), x, ξ ∈ Rd, (1)

which is a continuous negative definite function for each fixed x ∈ Rd. Typical examples are

processes with variable index of stability (this corresponds to q(x, ξ) = ∣ξ∣α(x)) and solutions

of Lévy-driven SDEs, see Table 3 on page 15 for further examples.

It is natural to ask whether for a given function q of the form (1), i. e. family (q(x, ξ))x∈Rd
of continuous negative definite functions, there exists a Lévy-type process with symbol q. The

answer is, in general, no (see e. g. [7, Example 2.26] for counterexamples), and therefore it is im-

portant to find sufficient conditions on the symbol q or the characteristics (b(x),Q(x), ν(x, dy))x∈Rd
which ensure the existence of a Lévy-type process with a given symbol q. Many existence re-

sults in the literature (see [7] for an overview) are rather restrictive in the sense that they either
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assume that q is of a particular form (typically “stable-like” or “lower-order perturbation”) or

they require strong assumptions on the regularity of the symbol q with respect to the space

variable x (typically smoothness).

In this paper, we present a new existence result for Lévy-type processes which requires

only mild regularity assumptions on the symbol q with respect to x. Applications range from

variable order subordination and Lévy-type processes with symbols of variable order to ex-

istence and uniqueness results for solutions to Lévy-driven stochastic differential equations

(SDEs) with globally Hölder continuous coefficients. The proof of the main result, Theo-

rem 4.1, relies on a parametrix construction; this is an analytical method which has become

an increasingly popular tool in probability theory to prove the existence of certain stochas-

tic processes and to establish heat kernel estimates, e. g. processes with variable order of

differentiation (Kolokoltsov [14, 15] and Chen & Zhang [9]), gradient perturbations of Lévy

generators (Bogdan & Jakubowski [6] and Jakubowski & Szczypkowski [12]) and solutions of

SDEs with Hölder continuous coefficients (Knopova & Kulik [16, 22] and Huang [11]). Using

the parametrix construction, we can not only prove the existence of Lévy-type processes with

symbols from certain classes, but also get additional information on the process such as heat

kernel estimates, well-posedness of the associated martingale problem or the richness of the

domain of the generator, cf. Theorem 4.2.

As a by-product of the parametrix construction, we obtain heat kernel estimates for a class

of Lévy processes; the estimates are crucial to prove the convergence of the parametrix expan-

sion. Estimates for the transition density of Lévy processes have attracted a lot of attention,

for example heat kernel estimates for unimodal [5], rotationally invariant [8], tempered stable

[27] Lévy processes or Lévy processes with exponential moments [17, 28], to mention but a

few. In contrast to many of these results, we state our assumptions on the Lévy process in

terms of the characteristic exponent ψ and not in terms of the Lévy triplet (b,Q, ν). Since

there are few Lévy processes for which both the characteristic exponent and the Lévy triplet

can be calculated explicitly, both approaches (i. e. via Lévy triplet or via characteristic ex-

ponent) have their own justification. In fact, for most of the examples which we present in

Section 3 the Lévy triplet is unknown, and therefore it is very hard to verify conditions on the

Lévy triplet. Our result applies, for instance, to relativistic stable, Lamperti stable, normal

tempered stable, truncated Lévy processes, cf. Example 3.4, and a class of subordinators; see

Table 1 and Table 2 in Section 3 for further examples.

This paper is organized as follows. In Section 2 we introduce the basic definitions and

some notation. Section 3 is devoted to heat kernel estimates for Lévy processes. In Sec-

tion 4 we present our main result, the existence result for Lévy-type processes, and discuss

several applications, including a new existence and uniqueness result for Lévy-driven SDEs

with Hölder continuous coefficients (Corollary 4.7), an existence result for stable-like processes

(Example 4.6) and Feller processes with symbols of variable order (Corollary 4.8).

The results presented in this paper are essentially taken from my PhD thesis [19]. The

aim of this paper is to give a brief summary of the most important results and make them

accessible to a larger audience; in particular, we do not include proofs since they are very

technical and lengthy, and we refer to [19, 20] for full proofs.

2 Preliminaries

We consider the Euclidean spaceRd endowed with the canonical scalar product x⋅y = ∑dj=1 xjyj
and the Borel-σ-algebra B(Rd). The continuous bounded functions are denoted by Cb(Rd),
and C∞(Rd) is the space of continuous functions f ∶ Rd → R vanishing at infinity. Superscripts

k ∈ N are used to denote the order of differentiability, e. g. f ∈ Ck∞(Rd) means that f and its

derivatives up to order k are C∞(Rd)-functions. A function ` ∶ (0,∞) → (0,∞) is slowly

varying (at infinity) if

lim
x→∞

`(λx)
`(x) = 1 for all λ > 0.

We say that a function f ∶ Rd → Rk is (globally) Hölder continuous if there exist constants

% ∈ (0,1], C > 0 such that ∣f(x) − f(y)∣ ≤ C ∣x − y∣% for all x, y ∈ Rd.
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A d-dimensional Markov process (Ω,A,Px, x ∈ Rd,Xt, t ≥ 0) with càdlàg (right-continuous

with left-hand limits) sample paths is called a Lévy-type process if the associated semigroup

(Pt)t≥0 defined by

Ptf(x) ∶= Exf(Xt), x ∈ Rd, f ∈ Bb(Rd) ∶= {f ∶ Rd → R; f bounded, Borel measurable}

has the Feller property and (Pt)t≥0 is strongly continuous at t = 0, i. e. Ptf ∈ C∞(Rd) for all

C∞(Rd) and ∥Ptf − f∥∞
t→0ÐÐ→ 0 for any f ∈ C∞(Rd). Lévy-type processes are also known as

Feller processes; we use both terms synonymously. A semigroup (Pt)t≥0 has the strong Feller

property if Ptf ∈ Cb(Rd) for any f ∈ Bb(Rd), t ≥ 0. If the smooth functions with compact

support C∞
c (Rd) are contained in the domain of the generator (L,D(L)), then we speak of a

rich Lévy-type process. A result due to von Waldenfels and Courrège, cf. [7, Theorem 2.21],

states that the generator L of a rich Lévy-type process is, when restricted to C∞
c (Rd), a

pseudo-differential operator with negative definite symbol:

Lf(x) = −∫
Rd
ei x⋅ξq(x, ξ)f̂(ξ)dξ, f ∈ C∞

c (Rd), x ∈ Rd,

where f̂(ξ) ∶= (2π)−d ∫Rd e
−ixξf(x)dx denotes the Fourier transform of f and

q(x, ξ) = q(x,0) − ib(x) ⋅ ξ + 1

2
ξ ⋅Q(x)ξ + ∫

Rd/{0}
(1 − eiy⋅ξ + iy ⋅ ξ1(0,1)(∣y∣)) ν(x, dy). (2)

We call q the symbol of the rich Lévy-type process (Xt)t≥0 and −q the symbol of the pseudo-

differential operator. For each fixed x ∈ Rd, (b(x),Q(x), ν(x, dy)) is a Lévy triplet, i. e.

b(x) ∈ Rd, Q(x) ∈ Rd×d is a symmetric positive semidefinite matrix and ν(x, dy) a σ-finite

measure on (Rd/{0},B(Rd/{0})) satisfying ∫y≠0 min{∣y∣2,1} ν(x, dy) < ∞. A set D ⊆ C∞(Rd)
is a core for the generator (L,D(L)) if (L,D)∥⋅∥∞ = (L,D(L)). Our standard reference for

Lévy-type processes is the monograph [7].

A Lévy process (Lt)t≥0 is a rich Feller process whose symbol q does not depend on x. This

is equivalent to saying that (Lt)t≥0 has stationary and independent increments and càdlàg

sample paths, cf. [7, Theorem 2.6]. The symbol q = q(ξ) (also called characteristic exponent)

and the Lévy process (Lt)t≥0 are related through the Lévy–Khintchine formula:

E
xeiξ⋅(Lt−x) = e−tq(ξ) for all t ≥ 0, x, ξ ∈ Rd.

A Lévy process with non-decreasing sample paths is a subordinator and can be characterized

by its Laplace exponent, cf. [25]. We refer to Sato [23] for a detailed discussion of Lévy

processes and to Schilling [13] for an introduction to Lévy and Lévy-type processes.

3 Heat kernel estimates for Lévy processes

In this section, we present transition density estimates for a class of Lévy processes. The main

results are Theorem 3.1 (heat kernel estimates for rotationally invariant Lévy processes in

dimension d ≥ 1), Theorem 3.2 (heat kernel estimates for one-dimensional Lévy processes which

are not necessarily symmetric) and Corollary 3.5 (heat kernel estimates for subordinators). In

contrast to many results in the literature, we state our assumptions on the Lévy process (Lt)t≥0
in terms of the characteristic exponent and not in terms of the Lévy triplet.

3.1 Theorem Let (Lt)t≥0 be a d-dimensional Lévy process and suppose that its characteristic

exponent ψ ∶ Rd → C satisfies (L1)-(L3).

(L1) ψ is rotationally invariant, i. e. there exists Ψ ∶ R → R such that ψ(ξ) = Ψ(∣ξ∣), ξ ∈ Rd.

If m > 0: Ψ is even, i. e. Ψ(r) = Ψ(−r) for all r ≥ 0.

(L2) There exists θ ∈ (0, π
2
) and m ≥ 0 such that Ψ has a holomorphic extension to

Ω ∶= Ω(m,θ) ∶= {z ∈ C; ∣ Im z∣ <m} ∪ {z ∈ C/{0}; arg z ∈ (−θ, θ) ∪ (π − θ, π + θ)}. (3)
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Figure 1: The domain Ω = Ω(m,ϑ) for m > 0 (left) and m = 0 (right).

(L3) There exist constants c1, c2 > 0 and γ0, γ∞ ∈ (0,2] and a slowly varying (at infinity)

increasing function ` ∶ (0,∞) → (0,∞) such that

Re Ψ(z) ≥ c1
`(∣z∣) ∣z∣

γ∞ for all z ∈ Ω, ∣z∣ ≥ 1 (4)

and

∣Ψ(z)∣ ≤ c2`(∣z∣) (∣z∣γ01{∣z∣≤1} + ∣z∣γ∞1{∣z∣>1}) for all z ∈ Ω. (5)

Then the transition density

pt(x) ∶=
1

(2π)d ∫Rd e
−ix⋅ξe−tψ(ξ) dξ

exists, is infinitely often differentiable and satisfies the estimates

∣pt(x)∣ ≤ CS(x, t)

∣ ∂
∂t
pt(x)∣ ≤ Ct−1S(x, t)

for any x ∈ Rd, t ∈ (0, T ] where C = C(T ) > 0 is an absolute constant and

S(x, t) ∶= Sm(x, t) ∶= exp(−m
4
∣x∣) (1 + `(ct−1/γ∞))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t−d/γ∞ , ∣x∣ ≤ t1/γ∞ ∧ 1,

t/∣x∣d+γ∞ , t1/γ∞ < ∣x∣ ≤ 1,

t/∣x∣d+γ∞∧γ0 , ∣x∣ > 1

for some absolute constant c = c(T ) > 0. Moreover, for any multi-index β = (β1, . . . , βd) ∈ Nd
0

and any T > 0 there exists a constant c > 0 such that

∣ ∂
β

∂xβ
pt(x)∣ ≤ ct−(∣β1 ∣+...+∣βd ∣)/γ∞S(x, t) for all x ∈ Rd, t ∈ (0, T ].

In dimension d = 1 we do not need any symmetry assumption like rotational invariance in

(L1).

3.2 Theorem Let (Lt)t≥0 be a one-dimensional Lévy process with characteristic exponent ψ.

If Ψ(ξ) ∶= ψ(ξ) satisfies (L2) and (L3), then the results of Theorem 3.1 remain valid.

To prove Theorem 3.1 and Theorem 3.2 we apply Cauchy’s theorem to shift the contour

of integration; for details see [20, Section 4.1] or [19, Section 4.1]. Using this idea, we can also

obtain heat kernel estimates for subordinators, cf. Corollary 3.5. Let us give some remarks on

both Theorem 3.1 and Theorem 3.2.
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3.3 Remarks (i). Condition (L3) implies that ψ satisfies the sector condition, i. e. there

exists a constant C1 > 0 such that

∣ Imψ(ξ)∣ ≤ C1∣Reψ(ξ)∣ for all ξ ∈ Rd.

Moreover, it follows from (L3) that there exists a constant C2 > 0 such that

Re Ψ(z) ≥ −C2 > −∞ for all z ∈ Ω.

Note that the existence of such a constant is not trivial; although any continuous negative

definite function ψ ∶ Rd → C satisfies Reψ(ξ) ≥ 0 for all ξ ∈ Rd, the inequality does, in

general, not need to be true for complex z.

(ii). The constant m/4 in the definition of the function S introduced in Theorem 3.1 can be

replaced by m(1 − δ) for any δ ∈ (0,1). Since it is well-known, cf. [29, Theorem 5.26],

that the characteristic function of Lt

EeiξLt = e−tψ(ξ), t > 0, ξ ∈ Rd,

is analytic on the strip {z ∈ C; ∣ Im z∣ < m} if, and only if, Eem(1−δ)∣Lt ∣ < ∞ for any

δ ∈ (0,1), the exponential decay exp(−∣x∣m(1− δ)) is, in general, the best we can expect.

(iii). Let ψ be a continuous negative definite function with Lévy triplet (b,0, ν). If ψ satisfies

the sector condition, then it is possible to give sufficient conditions in terms of fractional

moments of ν∣B(0,1) and ν∣B(0,1)c which ensure that ψ satisfies the growth condition (5)

for real z, cf. Blumenthal & Getoor [4] and Schilling [24]. This is, however, no longer

possible for the holomorphic extension. For instance if we consider ψ(ξ) ∶= 1−cos ξ, then

the associated Lévy measure ν = 1
2
δ1 + 1

2
δ−1 has arbitrary moments, but the (unique)

holomorphic extension Ψ(z) = 1 − cos z does not satisfy (5).

If the characteristic exponent ψ is given in closed form, it is usually easy to check whether

the assumptions of Theorem 3.1 are satisfied.

3.4 Example Let (Lt)t≥0 be a d-dimensional Lévy process with one of the following charac-

teristic exponents.

(i). (isotropic stable) ψ(ξ) = ∣ξ∣α, ξ ∈ Rd, α ∈ (0,2],
(ii). (relativistic stable) ψ(ξ) = (∣ξ∣2 + %2)α/2 − %α, ξ ∈ Rd, % > 0, α ∈ (0,2),
(iii). (Lamperti stable) ψ(ξ) = (∣ξ∣2 + %)α − (%)α, ξ ∈ Rd, % > 0, α ∈ (0,1), where (r)α ∶=

Γ(r + α)/Γ(r) denotes the Pochhammer symbol,

(iv). (TLP: truncated Lévy process) ψ(ξ) = (∣ξ∣2 + %2)α/2 cos(αarctan(%−1∣ξ∣)) − %α, ξ ∈ Rd,
α ∈ (0,2), % > 0,

(v). ψ(ξ) = (∣ξ∣β − 1)/(∣ξ∣α − 1), ξ ∈ Rd, 0 < α < β ≤ 1,

(vi). (NTS: normal tempered stable, d = 1) ψ(ξ) = (κ2 + (ξ − ib)2)α/2 − (κ2 − b2)α/2, ξ ∈ R,

α ∈ (0,2), b > 0, κ > b.
The characteristic exponents (i)-(v) and (vi) satisfy the assumptions of Theorem 3.1 and

Theorem 3.2, respectively, with

(i). γ0 = γ∞ = α, m = 0, ` = 1,

(ii). γ0 = 2, γ∞ = α, m = %, ` = 1,

(iii). γ0 = 2, γ∞ = 2α, m = √
%, ` = 1,

(iv). γ0 = 2, γ∞ = α, m = %, ` = 1,

(v). γ0 = α, γ∞ = β − α, m = 0, ` = 1,

(vi). γ0 = 2, γ∞ = α, m = κ − b, ` = 1.

Consequently, Theorem 3.1, respectively, Theorem 3.2, provide heat kernel estimates for the

transition density p, its time derivative and derivatives with respect to the space variable

x. For the particular case of isotropic stable Lévy processes, we recover well-known (sharp)

estimates for the heat kernel, cf. [2, 3].

The following list of examples satisfying the assumptions of Theorem 3.1 and Theorem 3.2,

respectively, is taken from [20, Table 5.2].
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Name char. Exponent Parameter Dim. Heat Kernel Estimate (Thm. 3.1)

1 isotropic α-stable ∣ξ∣α α ∈ (0,2] d ≥ 1 γ0 = γ∞ = α, m = 0, ` = 1

2 relativistic stable (∣ξ∣2 + %2)α/2 − %α α ∈ (0,2), % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = α, m ∈ (0, %), ` = 1

3 normal tempered stable

(NTS)

(κ2 + (ξ − ib)2)α/2 − (κ2 − b2)α/2 α ∈ (0,2), κ ∈ (0,∞),

b < κ

d = 1 γ0 = 2, γ∞ = α, m ∈ (0, κ − b), ` = 1

4
∣ξ∣2

√

∣ξ∣2 + %
% ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 1, m ∈ (0,

√

%), ` = 1

5
∣ξ∣2

(∣ξ∣2 + %)α
α ∈ (0,2), % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 2 − α, m ∈ (0,

√
%), ` = 1

6
∣ξ∣β − 1

∣ξ∣α − 1
− 1 (extended by continuity at ξ = 1) 0 < α < β < 1 d ≥ 1 γ0 = α, γ∞ = β − α, m = 0, ` = 1

7 −

∣ξ∣α − 1

∣ξ∣α−2 − 1
(extended by continuity at ξ = 1) α ∈ (0,2) d ≥ 1 γ0 = 2 − α, γ∞ = 2, m = 0, ` = 1

8
∣ξ∣α − 1

∣ξ∣α−2 − 1
− 1 (extended by continuity at ξ = 1) α ∈ (2,4] d ≥ 1 γ0 = α − 2, γ∞ = 2, m = 0, ` = 1

9 ∣ξ∣2
∣ξ∣α − %α

∣ξ∣2 − %2
(extended by continuity at ξ = %) α ∈ (0,2), % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = α, m = 0, ` = 1

10 (∣ξ∣−α + ∣ξ∣−β)−1 (extended by continuity at ξ = 0) α,β ∈ (0,2] d ≥ 1 γ0 = α ∨ β, γ∞ = α ∧ β, m = 0, ` = 1

11 ∣ξ∣(1 − e−2%∣ξ∣) % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 1, m = 0, ` = 1

12 ∣ξ∣(1 + e−2%∣ξ∣) % ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 1, m = 0, ` = 1

13 %∣ξ∣2(∣ξ∣2 + 1) log(1 + ∣ξ∣−2) % ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 2, m = 0, `(r) = log(r ∨ e)

Table 1: Examples of Lévy processes satisfying the assumptions of Theorem 3.1 and Theorem 3.2, respectively

.
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Name char. Exponent Parameter Dim. Heat Kernel Estimate (Thm. 3.1)

14 %
∣ξ∣2(∣ξ∣2 + 1)

(∣ξ∣2 + 2) log(∣ξ∣2 + 2)
% ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 2, m ∈ (0,

√

2), `(r) = log(r ∨ e)

15 ∣ξ∣arctan(%∣ξ∣) % ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 1, m = 0, ` = 1

16 truncated Lévy process

(TLP)

(∣ξ∣2 + %2)α/2 cos (α arctan ∣ξ∣
%
) − %α α ∈ (0,2), % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = α, m ∈ (0, %), ` = 1

17 %∣ξ∣
cosh2

(

√

2∣ξ∣)

sinh(2
√

2∣ξ∣)
% ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 1, m = 0, ` = 1

18 %∣ξ∣
sinh2

(

√

2∣ξ∣)

sinh(2
√

2∣ξ∣)
% ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 1, m = 0, ` = 1

19 %∣ξ∣ coth((2∣ξ∣)−1) − %∣ξ∣2 % ∈ (0,∞) d ≥ 1 γ0 = 1, γ∞ = 2, m = 0, ` = 1

20 % log(sinh(
√

2∣ξ∣)) − % log(
√

2∣ξ∣) % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 1, m = 0, ` = 1

21 isotropic Meixner % log(cosh(
√

2∣ξ∣)) % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 1, m = 0, ` = 1

22 ∣ξ∣ log(1 + % tanh(b∣ξ∣)) b ∈ (0,∞), % ∈ (0,∞) d ≥ 1 γ0 = γ∞ = 1, m = 0, ` = 1

23
Γ(%∣ξ∣2 + 1/2)

Γ(%∣ξ∣2)
% ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 1, m ∈ (0,1/

√

2%), ` = 1

24 ∣ξ∣2
Γ(α∣ξ∣2 + 1 − α)

Γ(α∣ξ∣2 + 1)
α ∈ (0,1) d ≥ 1 γ0 = 2, γ∞ = 2 − α, ` = 1, m ∈ (0,

√

α−1 − 1)

25
Γ(α∣ξ∣2 + 1)

Γ(α∣ξ∣2 + 1 − α)
−

1

Γ(1 − α)
α ∈ (0,1) d ≥ 1 γ0 = 2, γ∞ = α, m ∈ (0,

√

α−1) , ` = 1

26 Lamperti stable
Γ(∣ξ∣2 + α + %)

Γ(∣ξ∣2 + %)
−

Γ(α + %)

Γ(%)
α ∈ (0,1), % ∈ (0,∞) d ≥ 1 γ0 = 2, γ∞ = 2α, m ∈ (0,

√
% + α), ` = 1

Table 1: (cont.)
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If (Lt)t≥0 is a subordinator, i. e. a Lévy process with non-decreasing sample paths, then

we can relax the assumptions of Theorem 3.2; the reason is that we know that the support of

Lt is contained in [0,∞) and therefore we have to establish upper bounds for pt(x) only for

x ≥ 0. Note that the characteristic exponent ψ of a subordinator with Laplace exponent f is

given by ψ(ξ) = f(−iξ), ξ ∈ R.

3.5 Corollary Let (St)t≥0 be a subordinator with Laplace exponent f satisfying (S1), (S2).

(S1) There exist θ ∈ (0, π
2
) and m ≥ 0 such that f has a holomorphic extension F to

Υ ∶= Υ(m,θ) ∶= {z ∈ C;−m < Re z < 0} ∪ {z ∈ C/{0}; arg z ∈ (π/2, π − θ) ∪ (−π + θ,−π/2)}.

(S2) There exist constants c1, c2 > 0 and γ0, γ∞ ∈ (0,2] and a slowly varying (at infinity)

increasing function ` ∶ (0,∞) → (0,∞) such that

ReF (z) ≥ c1
`(∣z∣) ∣z∣

γ∞ for all z ∈ Υ, ∣z∣ ≥ 1

and

∣F (z)∣ ≤ c2`(∣z∣) (∣z∣γ01{∣z∣≤1} + ∣z∣γ∞1{∣z∣>1}) for all z ∈ Υ.

Then St has a density pt with respect to Lebesgue measure,

pt(x) ∶=
1

2π ∫R e
−ix⋅ξe−tf(−iξ) dξ.

The density is infinitely often differentiable and satisfies the estimates

∣pt(x)∣ ≤ C1[0,∞)(x)S(x, t)

∣ ∂
∂t
pt(x)∣ ≤ C1[0,∞)(x)t−1S(x, t)

for any x ∈ R, t ∈ (0, T ] where C = C(T ) > 0 is an absolute constant and

S(x, t) ∶= Sm(x, t) ∶= exp(−m
4
∣x∣) (1 + `(ct−1/γ∞))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t−1/γ∞ , ∣x∣ ≤ t1/γ∞ ∧ 1,

t/∣x∣1+γ∞ , t1/γ∞ < ∣x∣ ≤ 1,

t/∣x∣1+γ∞∧γ0 , ∣x∣ > 1

for some absolute constant c = c(T ) > 0. Moreover, for any k ∈ N and T > 0 there exists a

constant c > 0 such that

∣ ∂
k

∂xk
pt(x)∣ ≤ c1[0,∞)(x)t−k/γ∞S(x, t) for all x ∈ R, t ∈ (0, T ].

Corollary 3.5 follows from the proof of Theorem 3.2, see [19, pp. 131] or [20, Section 4.9].

In Table 2 we have collected examples of Laplace exponents satisfying the assumptions of

Corollary 3.5.
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Laplace Exponent Parameter Heat Kernel Estimate (Cor. 3.5)

1 λα α ∈ (0,1] γ0 = γ∞ = α, m = 0, ` = 1

2 (λ + %)α − %α α ∈ (0,1), % ∈ (0,∞) γ0 = 2, γ∞ = α, m ∈ (0, %), ` = 1

3
λ

√

λ + %
% ∈ (0,∞) γ0 = 1, γ∞ = 1/2, m ∈ (0, %), ` = 1

4
λ

(λ + %)α
α ∈ (0,1), % ∈ (0,∞) γ0 = 1, γ∞ = 1 − α, m ∈ (0,

√
%), ` = 1

5
λβ − 1

λα − 1
− 1 (extended by continuity at λ = 1) 0 < α < β < 1 γ0 = α, γ∞ = β − α, m = 0, ` = 1

6 −

λα − 1

λα−1 − 1
(extended by continuity at λ = 1) α ∈ (0,1) γ0 = 1 − α, γ∞ = 1, m = 0, ` = 1

7
λα − 1

λα−1 − 1
− 1 (extended by continuity at λ = 1) α ∈ (1,2] γ0 = α − 1, γ∞ = 1, m = 0, ` = 1

8 λ
λα − %α

λ − %
(extended by continuity at λ = %) α ∈ (0,1), % ∈ (0,∞) γ0 = 1, γ∞ = α, m = 0, ` = 1

9 (λ−α + λ−β)−1 (extended by continuity at λ = 0) α,β ∈ (0,1] γ0 = α ∨ β, γ∞ = α ∧ β, m = 0, ` = 1

10
√

λ(1 − e−2%
√

λ
) % ∈ (0,∞) γ0 = 1, γ∞ = 1/2, m = 0, ` = 1

11
√

λ(1 + e−2%
√

λ
) % ∈ (0,∞) γ0 = γ∞ = 1/2, m = 0, ` = 1

12 %λ(λ + 1) log(1 + 1/λ) % ∈ (0,∞) γ0 = γ∞ = 1, m = 0, `(r) = log(r ∨ e)

Table 2: Examples of Laplace exponents satisfying the assumptions of Corollary 3.5

.
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Laplace Exponent Parameter Heat Kernel Estimate (Cor. 3.5)

13 %
λ(λ + 1)

(λ + 2) log(λ + 2)
% ∈ (0,∞) γ0 = γ∞ = 1, m ∈ (0,2), `(r) = log(r ∨ e)

14
√

λarctan(%
√

λ) % ∈ (0,∞) γ0 = γ∞ = 1/2, m = 0, ` = 1

15 (λ + %)α cos (α arctan
√

λ
%
) − %α α ∈ (0,1), % ∈ (0,∞) γ0 = 1, γ∞ = α, m ∈ (0, %), ` = 1

16 %
√

λ
cosh2

(

√

2λ)

sinh(2
√

2λ)
% ∈ (0,∞) γ0 = γ∞ = 1/2, m = 0, ` = 1

17 %
√

λ
sinh2

(

√

2λ)

sinh(2
√

2λ)
% ∈ (0,∞) γ0 = γ∞ = 1/2, m = 0, ` = 1

18 %
√

λ coth((2
√

λ)−1) − %λ % ∈ (0,∞) γ0 = 1/2, γ∞ = 1, m = 0, ` = 1

19 % log(sinh(
√

2λ)) − % log(
√

2λ) % ∈ (0,∞) γ0 = 1, γ∞ = 1/2, m = 0, ` = 1

20 % log(cosh(
√

2λ)) % ∈ (0,∞) γ0 = 1, γ∞ = 1/2, m = 0, ` = 1

21
√

λ log(1 + % tanh(b
√

λ)) b ∈ (0,∞), % ∈ (0,∞) γ0 = γ∞ = 1/2, m = 0, ` = 1

22
Γ(%λ + 1/2)

Γ(%λ)
% ∈ (0,∞) γ0 = 1, γ∞ = 1/2, m ∈ (0,1/(2%)), ` = 1

23 λ
Γ(αλ + 1 − α)

Γ(αλ + 1)
α ∈ (0,1) γ0 = 1, γ∞ = 1 − α, ` = 1, m ∈ (0, α−1 − 1)

24
Γ(αλ + 1)

Γ(αλ + 1 − α)
−

1

Γ(1 − α)
α ∈ (0,1) γ0 = 1, γ∞ = α, m ∈ (0, α−1) , ` = 1

25
Γ(λ + α + %)

Γ(λ + %)
−

Γ(α + %)

Γ(%)
α ∈ (0,1), % ∈ (0,∞) γ0 = 1, γ∞ = α, m ∈ (0, % + α), ` = 1

Table 2: (cont.)
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4 Existence result for Lévy-type processes

Let q ∶ Rd ×Rd → C be defined by

q(x, ξ) = ψα(x)(ξ), x, ξ ∈ Rd

for a family (ψβ)β∈I of continuous negative definite functions, a Hölder continuous mapping

α ∶ Rd → I and a set of parameters I ⊆ Rn. Our main result, Theorem 4.1, gives a sufficient

condition on (ψβ)β∈I for the existence of a rich Lévy-type process with symbol q.

4.1 Theorem Let I ⊆ Rn be open and convex and m ≥ 0. Let (ψβ)β∈I be a family of continuous

negative definite functions ψβ ∶ Rd → C with ψβ(0) = 0 for all β ∈ I. Suppose that there exist

θ ∈ (0, π/2) and constants c1, c2, c3 > 0 such that each ψβ, β ∈ I, satisfies (4.1)–(4.1).

(LTP1) ψβ is rotationally invariant for each β ∈ I, i. e. there exists Ψβ ∶ R → R such that

ψβ(ξ) = Ψβ(∣ξ∣), ξ ∈ Rd. If m > 0: Ψβ(r) = Ψβ(−r) for all r ≥ 0.

(LTP2) ψβ has a holomorphic extension to the domain Ω = Ω(m,θ) defined in (3).

(LTP3) There exist a measurable mapping γ0 ∶ I → (0,2], a Hölder continuous mapping γ∞ ∶
I → (0,2] and a slowly varying (at infinity) increasing function ` ∶ (0,∞) → (0,∞) such

that

Re Ψβ(z) ≥
c1

`(∣z∣) ∣Re z∣γ∞(β) for all z ∈ Ω, ∣z∣ ≥ 1, β ∈ I

and

∣Ψβ(z)∣ ≤ c2`(∣z∣) (∣z∣γ0(β)1{∣z∣≤1} + ∣z∣γ∞(β)
1{∣z∣>1}) for all z ∈ Ω, β ∈ I.

Moreover, γL∞ ∶= infβ∈I γ∞(β) > 0, γL0 ∶= infβ∈I γ0(β) > 0.

(LTP4) The partial derivative ∂
∂βj

Ψβ(r) exists for all r ∈ R and extends holomorphically to Ω

for all j ∈ {1, . . . , n} and β ∈ I. Moreover,

∣ ∂

∂βj
Ψβ(z)∣ ≤ c3(1 + `(∣z∣)) (∣z∣γ0(β)1{∣z∣≤1} + ∣z∣γ∞(β)

1{∣z∣>1}) for all z ∈ Ω, β ∈ I.

Then for any Hölder continuous mapping α ∶ Rd → I there exists a rich Lévy-type process

(Xt)t≥0 with symbol

q(x, ξ) ∶= ψα(x)(ξ), x, ξ ∈ Rd.

To prove Theorem 4.1 we use the parametrix method, cf. [19, Chapter 4] and [20, Chapter

4]. The idea is to construct the transition density as the fundamental solution of the Cauchy

problem for the operator (∂t − L) where L equals, when restricted to C∞
c (Rd), the pseudo-

differential operator

Lf(x) = −∫
Rd
q(x, ξ)eix⋅ξf̂(ξ)dξ, x ∈ Rd.

The parametrix method gives a candidate for the fundamental solution, and the main part

of the proof is to verify that this candidate is indeed a fundamental solution to the Cauchy

problem and the transition density of a Feller process.

As a by-product of the parametrix construction, we get the following additional information

on (Xt)t≥0 and its transition semigroup (Pt)t≥0.

4.2 Theorem Under the assumptions of Theorem 4.1, the Lévy-type process (Xt)t≥0 with

symbol q(x, ξ) = ψα(x)(ξ) has the following additional properties:

(i). The associated semigroup (Pt)t≥0 has the strong Feller property, i. e. Ptf ∈ Cb(Rd) for

any f ∈ Bb(Rd).

(ii). C∞
c (Rd) is a core for the generator L and C2

∞(Rd) ⊆ D(L),

Lf(x) = b(x)⋅∇f(x)+1

2
tr(Q(x)⋅∇2f(x))+∫

y≠0
(f(x+y)−f(x)−∇f(x)⋅y1B(0,1)(y)) ν(x, dy)
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for any f ∈ C2
∞(Rd); here (b(x),Q(x), ν(x, dy)) denotes the Lévy triplet associated with

q(x, ⋅). There exists a constant C > 0 such that

∥Lf∥∞ ≤ C ∑
0≤∣α∣≤2

∥∂αf∥∞ = C∥f∥(2) for all f ∈ C2
∞(Rd).

Moreover, Ptf ∈ D(L) for all t > 0 and f ∈ C∞(Rd).

(iii). The distribution Px(Xt ∈ ⋅) has a density p(t, x, ⋅) with respect to Lebesgue measure for

all t > 0 and x ∈ Rd. The mapping p ∶ (0,∞) × Rd × Rd → [0,∞) is continuous and

differentiable with respect to t.

(iv). The transition density p is a fundamental solution to the Cauchy problem for the op-

erator (∂t − L), i. e. p(t, ⋅, y) converges weakly to δx as t → 0, (0,∞) ∋ t ↦ p(t, x, y) is

differentiable, p(t, ⋅, y) ∈ D(L) for all t > 0, y ∈ Rd and

(∂t −Lx)p(t, x, y) = 0 for all t > 0, x, y ∈ Rd.

(v). The (L,C∞
c (Rd))-martingale problem is well-posed; its unique (in the sense of finite-

dimensional distributions) solution is (Xt)t≥0.

(vi). Denote by % ∈ (0,1] the Hölder exponent of α and choose γ ∈ (0,1/γU∞] such that κ ∶=
γmin{%, (−d + γU∞) + 1} > 0. Define

S(x, β, t) ∶= exp(−m
4
∣x∣)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t−d/γ∞(β), ∣x∣ ≤ t1/γ∞(β) ∧ 1,

t/∣x∣d+γ∞(β), t1/γ∞(β) ≤ ∣x∣ ≤ 1,

t/∣x∣d+γ0(β)∧γ∞(β), ∣x∣ > 1.

For any T > 0 there exists a constant C = C(T ) > 0 such that

∣p(t, x, y)∣ ≤ CS(x − y,α(y), t) +Ctκ 1

1 + ∣x − y∣γL0 ∧γL∞
exp(−m

4
∣x − y∣)

∣∂tp(t, x, y)∣ ≤ Ct−1S(x − y,α(y), t) +Ct−1+κ
1

1 + ∣x − y∣γL0 ∧γL∞
exp(−m

4
∣x − y∣)

for all x, y ∈ Rd and t ∈ (0, T ].

4.3 Remarks (i). In dimension d = 1 we can drop the assumption (4.1) of rotational invari-

ance, see Theorem 4.4 below.

(ii). The constant m/4 in the definition of S, cf. Theorem 4.2(vi), may be replaced by m(1−δ)
for any δ ∈ (0,1); see also Remark 3.3.

(iii). In Theorem 4.1 we make separate assumptions on the regularity of I ∋ β ↦ ψβ(ξ)
(differentiability) and Rd ∋ x ↦ α(x) ∈ I (Hölder continuity). Note that this is much

weaker than assuming differentiability of x↦ q(x, ξ) = ψα(x)(ξ). For instance, if ψβ(ξ) ∶=
∣ξ∣β , then the assumptions of Theorem 4.1 are satisfied for any Hölder continuous function

α; in contrast, differentiability of x↦ q(x, ξ) = ∣ξ∣α(x) requires differentiability of α.

(iv). The first order approximation of the transition probability p is given by

p0(t, x, y) ∶=
1

(2π)d ∫Rd e
−i(x−y)⋅ξe−tψα(y)(ξ) dξ;

it is possible to derive upper bounds for ∣p(t, x, y) − p0(t, x, y)∣, cf. [20, Theorem 3.8] for

details.

4.4 Theorem (Case d = 1) Let I ⊆ Rn be an open convex set and m ≥ 0. Suppose that

(ψβ)β∈I is a family of continuous negative definite functions ψβ ∶ R → C, ψβ(0) = 0, such

that Ψβ(ξ) ∶= ψβ(ξ), β ∈ I, satisfies (4.1)-(4.1). Then the statements of Theorem 4.1 and

Theorem 4.2 remain valid; in particular, there exists a rich Lévy-type process (Xt)t≥0 with

symbol q(x, ξ) = ψα(x)(ξ), x, ξ ∈ R, for any Hölder continuous mapping α ∶ R→ I.
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The next theorem shows that in dimension d = 1 the transition probability p(t, x, y) is

differentiable with respect to x provided that the mappings I ∋ β ↦ ψβ(ξ) and α ∶ Rd → I are

sufficiently smooth.

4.5 Theorem Let (ψβ)β∈I be as in Theorem 4.4 and assume additionally that there exists a

constant c4 > 0 such that (4.5) holds.

(LTP5) ∂2

∂β2
j

ψβ(ξ) exists for all ξ ∈ R, j ∈ {1, . . . , n} and has a holomorphic extension to Ω

satisfying

∣ ∂
2

∂β2
j

ψβ(z)∣ ≤ c4(1 + `(∣z∣))(∣z∣γ0(β)1{∣z∣≤1} + ∣z∣γ∞(β)
1{∣z∣>1}), z ∈ Ω, β ∈ I

where ` denotes the slowly varying function from (4.1).

Let α ∶ R → I be such that α ∈ C2
b (R). Denote by (Xt)t≥0 the Lévy-type process from Theo-

rem 4.4 with symbol q(x, ξ) = ψα(x)(ξ) and transition density p. Then:

(i). The transition probability p(t, x, y) is continuously differentiable with respect to x for any

t > 0 and y ∈ R. For any T > 0 there exists a constant C = C(T ) > 0 such that

∣ ∂
∂x
p(t, x, y)∣ ≤ Ct−1/γ

L
∞ [S(x − y,α(y), t) + tκ 1

1 + ∣x − y∣d+γL0 ∧γL∞
exp(−m

4
∣x − y∣)]

for all t ∈ (0, T ] and x, y ∈ R; see Theorem 4.2 (vi) for the definition of κ and S.

(ii). The semigroup (Pt)t≥0 asssociated with the Lévy-type process (Xt)t≥0 satisfies the gradi-

ent estimate

sup
x∈R

∣ ∂
∂x
Ptf(x)∣ ≤ Ct−1/γ

L
∞∥f∥∞ for all t ∈ (0, T ], f ∈ Bb(R)

for some absolute constant C = C(T ) > 0.

(iii). Suppose additionally that each ψβ ∶ R→ R, β ∈ I, is even. Then for any T > 0 there exist

constants C1,C2,C3 > 0 such that

p(t, x, y) ≥ C1t
−1/γ∞(α(y))(1 −C2t

−1/γ∞(α(y))∣x − y∣ −C3t
κ)+

for all x, y ∈ R, t ∈ (0, T ].
(iv). If ψβ ∶ R→ R is an even function for all β ∈ I, then (Xt)t≥0 is λ-irreducible, i. e.

∫
(0,∞)

P
x(Xt ∈ B)dt > 0

for all x ∈ R and B ∈ B(R) with λ(B) > 0.

The remaining part of this article is devoted to applications of the above results. First, we

state an existence result for “stable-like” processes. The most popular examples are isotropic

stable-like processes (processes with variable index of stability); this corresponds to symbols

of the form q(x, ξ) = ∣ξ∣α(x). Bass [1] proved the well-posedness of the associated martingale

problem in dimension d = 1 for Dini continuous functions α, and, more recently, Kolokoltsov

[15] established the existence of Feller processes with symbol q(x, ξ) = ∣ξ∣α(x) in dimension d ≥ 1

for Hölder continuous mappings α. Using the results from the first part of this Section, we can

derive existence results for many stable-like processes, for instance relativistic stable-like and

Lamperti stable-like processes. With the exception of the well-studied isotropic stable case,

such existence results were so far only known under much stronger regularity assumptions;

e. g. a general existence result by Hoh [10] requires α ∈ C5d+3(Rd).

4.6 Example Let q(x, ξ) be one of the following functions.

(i). (isotropic stable-like) q(x, ξ) = ∣ξ∣α(x) where α ∶ Rd → (0,2] is a Hölder continuous

mapping such that infx∈Rd α(x) > 0.
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(ii). (relativistic stable-like) q(x, ξ) = (∣ξ∣2 + %(x)2)α(x)/2 − %(x)α(x) for Hölder continuous

mappings α ∶ Rd → (0,2) and % ∶ Rd → (0,∞) such that

inf
x∈Rd

α(x) > 0 and 0 < %L ∶= inf
x∈Rd

%(x) ≤ sup
x∈Rd

%(x) < ∞.

(iii). (Lamperti stable-like) q(x, ξ) = (∣ξ∣2 + %(x))α(x) − (%(x))α(x) for Hölder continuous map-

pings α ∶ Rd → (0,1) and % ∶ Rd → (0,∞) such that

0 < inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 1 and 0 < %L ∶= inf
x∈Rd

%(x) ≤ sup
x∈Rd

%(x) < ∞;

here (r)α ∶= Γ(r + α)/Γ(r) denotes the Pochhammer symbol.

(iv). (TLP-like) q(x, ξ) = (∣ξ∣2 + %(x)2)α(x)/2 cos [α(x)arctan ∣ξ∣

%(x)
] − %(x)α(x) for Hölder con-

tinuous mappings α ∶ Rd → (0,1) and % ∶ Rd → (0,∞) such that

0 < inf
x∈Rd

α(x) ≤ sup
x∈Rd

α(x) < 1 and 0 < %L ∶= inf
x∈Rd

%(x) ≤ sup
x∈Rd

%(x) < ∞.

By Theorem 4.1, there exists a rich Lévy-type process (Xt)t≥0 with symbol q. The process

(Xt)t≥0 has the properties listed in Theorem 4.2; the heat kernel estimate 4.2.(vi) holds with

(i). m = 0, γ∞(α(x)) = γ0(α(x)) = α(x)
(ii). m = %L, γ∞(α(x), %(x)) = α(x), γ0(α(x), %(x)) = 2,

(iii). m =
√
%L, γ∞(α(x), %(x)) = 2α(x), γ0(α(x), %(x)) = 2,

(iv). m = %L, γ∞(α(x), %(x)) = α(x), γ0(α(x), %(x)) = 2.

Let us remark that is possible to obtain further information on the richness of the domain of

the infinitesimal generator of (Xt)t≥0, cf. [21, Example 4.11].

Applying Theorem 4.4 we obtain in a similar fashion an existence result for one-dimensional

rich Lévy-type processes with symbol

q(x, ξ) = (κ(x)2 + (ξ − ib(x))2)α(x)/2 − (κ(x)2 − b(x)2)α(x)/2, x, ξ ∈ R

for Hölder continuous bounded mappings b ∶ R→ R, α ∶ R→ (0,2), κ ∶ R→ (0,∞) such that

αL ∶= inf
x∈R

α(x) > 0, κL ∶= inf
x∈R

κ(x) > 0, κL − ∥b∥∞ > 0;

we call such a Lévy-type process an NTS-like process; NTS is short for normal tempered

stable. More generally, it is possible to consider symbols of the form

q(x, ξ) = fα(x)(∣ξ∣2)

for a family of Bernstein functions (fβ)β∈I , this leads to, so-called, variable order subordina-

tion; see [20, Section 5.1] for a general existence result.

Further examples of families of continuous negative definite functions satisfying (4.1)-(4.1)

are listed in Table 3; in Table 3 we use C>0(I) to denote the space of bounded Hölder continuous

functions f ∶ Rd → I satisfying

fL(x) ∶= inf
x∈Rd

f(x) ∈ I and fU(x) ∶= sup
x∈Rd

f(x) ∈ I.
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Name Symbol Assumptions Dim. Parameters (Thm. 4.1)

isotropic α-stable-like ∣ξ∣α(x) α ∈ C>0((0,2]) d ≥ 1 γ∞(α(x)) = γ0(α(x)) = α(x), m = 0

relativistic stable-like (∣ξ∣2 + %2(x))α(x)/2 − %(x)α(x) α ∈ C>0((0,2])

% ∈ C>0((0,∞))

d ≥ 1 γ0(α(x), %(x)) = 2, m ∈ (0, %L)

γ∞(α(x), %(x)) = α(x)

NTS-like (κ(x)2 + (ξ − ib(x))2)α(x)/2 − (κ(x)2 − b(x)2)α(x)/2 α ∈ C>0((0,2])

κ ∈ C>0((0,∞))

b ∈ C>0(R)

κL − ∥b∥∞ > 0

d = 1 γ0(α(x), b(x), κ(x)) = 2

γ∞(α(x), b(x), κ(x)) = α(x)

m ∈ (0, κL − ∥b∥∞)

∣ξ∣2
√

∣ξ∣2 + %(x)
% ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 2, γ∞(%(x)) = 1

m ∈ (0,
√

%L)

∣ξ∣2

(∣ξ∣2 + %(x))α(x)
α ∈ C>0((0,2))

% ∈ C>0((0,∞))

d ≥ 1 γ0(α(x), %(x)) = 2, m ∈ (0,
√

%L)

γ∞(α(x), %(x)) = 2 − α(x)

∣ξ∣β(x) − 1

∣ξ∣α(x) − 1
− 1 (extended by continuity at ξ = 1) α,β ∈ C>0((0,1))

(β − α)L > 0

d ≥ 1 γ0(α(x), β(x)) = α(x), m = 0

γ∞(%(x)) = β(x) − α(x)

−

∣ξ∣α(x) − 1

∣ξ∣α(x)−2 − 1
(extended by continuity at ξ = 1) α ∈ C>0((0,2)) d ≥ 1 γ0(α(x)) = 2 − α(x), γ∞(α(x)) = 2

m = 0

∣ξ∣α(x) − 1

∣ξ∣α(x)−2 − 1
− 1 (extended by continuity at ξ = 1) α ∈ C>0((2,4]) d ≥ 1 γ0(α(x)) = α(x) − 2, γ∞(α(x)) = 2

m = 0

∣ξ∣2
∣ξ∣α(x) − %(x)α(x)

∣ξ∣2 − %(x)2
(extended by continuity at ξ = %(x)) α ∈ C>0((0,2))

% ∈ C>0((0,∞))

d ≥ 1 γ0(α(x), %(x)) = 2, m = 0

γ∞(α(x), %(x)) = α(x)

(∣ξ∣−α(x) + ∣ξ∣−β(x))−1 (extended by continuity at ξ = 0) α,β ∈ C>0((0,2]) d ≥ 1 γ0(α(x), β(x)) = α(x) ∨ β(x), m = 0

γ∞(α(x), β(x)) = α(x) ∧ β(x)

∣ξ∣(1 − e−2%(x)∣ξ∣) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 2, γ∞(%(x)) = 1, m = 0

∣ξ∣(1 + e−2%(x)∣ξ∣) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 1, m = 0

%(x)∣ξ∣2(∣ξ∣2 + 1) log(1 + ∣ξ∣−2) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 2, m = 0

Table 3: Examples of admissible symbols
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Name Symbol Assumptions Dim. Parameters (Thm. 4.1)

%(x)
∣ξ∣2(∣ξ∣2 + 1)

(∣ξ∣2 + 2) log(∣ξ∣2 + 2)
% ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 2

m ∈ (0,
√

2)

∣ξ∣arctan(%(x)∣ξ∣) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 1, m = 0

TLP-like (∣ξ∣2 + %(x)2)α(x)/2 cos (α(x)arctan ∣ξ∣
%(x)

) − %(x)α(x) α ∈ C>0((0,2))

% ∈ C>0((0,∞))

d ≥ 1 γ0(α(x), %(x)) = 2, m ∈ (0, %L)

γ∞(α(x), %(x)) = α(x)

%(x)∣ξ∣
cosh2

(

√

2∣ξ∣)

sinh(2
√

2∣ξ∣)
% ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 1

m = 0

%(x)∣ξ∣
sinh2

(

√

2∣ξ∣)

sinh(2
√

2∣ξ∣)
% ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = γ∞(%(x)) = 1

m = 0

%(x)∣ξ∣ coth((2∣ξ∣)−1) − %(x)∣ξ∣2 % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 1, γ∞(%(x)) = 2, m = 0

%(x) log(sinh(
√

2∣ξ∣)) − %(x) log(
√

2∣ξ∣) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 2, γ∞(%(x)) = 1, m = 0

isotropic Meixner-like %(x) log(cosh(
√

2∣ξ∣)) % ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 2, γ∞(%(x)) = 1, m = 0

∣ξ∣ log(1 + %(x) tanh(b(x)∣ξ∣)) b ∈ C>0((0,∞))

% ∈ C>0((0,∞))

d ≥ 1 γ0(b(x), %(x)) = γ∞(b(x), %(x)) = 1

m = 0

Γ(%(x)∣ξ∣2 + 1/2)

Γ(%(x)∣ξ∣2)
% ∈ C>0((0,∞)) d ≥ 1 γ0(%(x)) = 2, γ∞(%(x)) = 1

m ∈ (0,1/
√

2%U)

∣ξ∣2
Γ(α(x)∣ξ∣2 + 1 − α(x))

Γ(α(x)∣ξ∣2 + 1)
α ∈ C>0((0,1)) d ≥ 1 γ0(α(x)) = 2, γ∞(α(x)) = 2 − α(x)

m ∈ (0,
√

1/αU − 1)

Γ(α(x)∣ξ∣2 + 1)

Γ(α(x)∣ξ∣2 + 1 − α(x))
−

1

Γ(1 − α(x))
α ∈ C>0((0,1)) d ≥ 1 γ0(α(x)) = 2, γ∞(α(x)) = α(x)

m ∈ (0,
√

1/αU)

Lamperti stable-like
Γ(∣ξ∣2 + α(x) + %(x))

Γ(∣ξ∣2 + %(x))
−

Γ(α(x) + %(x))

Γ(%(x))
α ∈ C>0((0,1))

% ∈ C>0((0,∞))

d ≥ 1 γ0(α(x), %(x)) = 2,m ∈ (0,
√

%L + αL)

γ∞(α(x), %(x)) = 2α(x)

Table 3: (cont.)
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Theorem 4.4 allows us to deduce an uniqueness and existence result for solutions of Lévy-

driven stochastic differential equations, i. .e. SDEs of the form

dXt = b(Xt−)dt + σ(Xt−)dLt, X0 = x ∈ Rd

where (Lt)t≥0 is a n-dimensional Lévy process. If the SDE has a unique weak solution, then

it is possible to give conditions in terms of σ and the Lévy measure ν of (Lt)t≥0 which ensure

that the solution is a rich Feller process, cf. Kühn [18]. It is, however, in general a non-trivial

problem to prove the uniqueness of the solution, see [26] for the particular case that (Lt)t≥0
has a non-vanishing diffusion part and e. g. [22, 30] for the case that (Lt)t≥0 is an isotropic

stable process.

Using the parametrix construction, we can give sufficient conditions in terms of the char-

acteristic exponent ψ such that the SDE has a unique weak solution which is a rich Feller

process.

4.7 Corollary Let (Lt)t≥0 be a one-dimensional Lévy process with characteristic exponent ψ.

Suppose that ψ has a holomorphic extension Ψ to Ω = Ω(mL, θ) for some mL ≥ 0, θ ∈ (0, π/2)
which satisfies the following two growth conditions:

(i). There exist α ∈ (0,2], β ∈ (1,2) and constants c1, c2 > 0 such that

Re Ψ(z) ≥ c1∣Re z∣β for all ∣z∣ ≫ 1, z ∈ Ω

and

∣Ψ(z)∣ ≤ c2(∣z∣α1{∣z∣≤1} + ∣z∣β1{∣z∣>1}), z ∈ Ω.

(ii). There exists a constant c3 > 0 such that ∣Ψ′(z)∣ ≤ c3∣z∣β−1 for all z ∈ Ω, ∣z∣ ≫ 1.

Let b ∶ R→ R and σ ∶ R→ R be Hölder continuous bounded functions such that

0 < σL ∶= inf
x∈R

∣σ(x)∣ ≤ sup
x∈R

∣σ(x)∣ =∶ σU < ∞.

Then there exists a unique weak solution to the SDE

dXt = b(Xt−)dt + σ(Xt−)dLt, X0 = x, (6)

and the solution is a rich Lévy-type process with symbol q(x, ξ) = −ib(x)ξ + ψ(σ(x)ξ). The

solution has the following additional properties:

(i). The transition probability p ∶ (0,∞) ×R ×R → [0,∞) is continuous, differentiable with

respect to t and satisfies the heat kernel estimates from Theorem 4.1 with γ0(b(x), σ(x)) =
min{α,1}, γ∞(b(x), σ(x)) = β and any m ∈ (0,mL/σU).

(ii). C∞
c (R) is a core for the generator (L,D(L)) of (Xt)t≥0 and C2

∞(R) ⊆ D(L). Moreover,

p is a fundamental solution to the Cauchy problem for the operator ∂t −L.

(iii). (Xt)t≥0 is the unique solution to the (L,C∞
c (Rd))-martingale problem.

(iv). The associated semigroup has the strong Feller property.

Corollary 4.7 applies, in particular, to Lévy processes (Lt)t≥0 with the following charac-

teristic exponents:

(i). (isotropic stable) ψ(ξ) = ∣ξ∣α, ξ ∈ R, α ∈ (1,2],
(ii). (relativistic stable) ψ(ξ) = (∣ξ∣2 + %2)α/2 − %α, ξ ∈ R, % > 0, α ∈ (1,2),

(iii). (Lamperti stable) ψ(ξ) = (∣ξ∣2 + %)α − (%)α, ξ ∈ R, % > 0, α ∈ (1/2,1), where (r)α ∶=
Γ(r + α)/Γ(r) denotes the Pochhammer symbol,

(iv). (truncated Lévy process) ψ(ξ) = (∣ξ∣2 +%2)α/2 cos(αarctan(%−1∣ξ∣))−%α, ξ ∈ R, α ∈ (1,2),
% > 0,

(v). (normal tempered stable) ψ(ξ) = (κ2 + (ξ − ib)2)α/2 − (κ2 − b2)α/2, ξ ∈ R, α ∈ (1,2), b > 0,

∣κ∣ > ∣b∣.
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Up to know, this result was only known for the particular case that (Lt)t≥0 is an isotropic

stable process, see Knopova & Kulik [16, 22] and the references therein.

We close this section with an existence result for Lévy-type processes with symbols of

variable order.

4.8 Theorem Let I ⊆ Rn an open convex set and ψβ ∶ Rd → C, β ∈ I, be a family of continuous

negative definite functions satisfying (4.1)-(4.1) on

Ω(ϑ) ∶= {z ∈ C/{0}; arg z ∈ (−ϑ,ϑ) ∪ (π − ϑ,π + ϑ)}

for some ϑ ∈ (0, π/2). Assume, in addition, that

(LTP4’) The partial derivative ∂
∂βj

Ψβ(r) exists for all r ∈ R and extends holomorphically to

Ω(ϑ) for all j ∈ {1, . . . , n} and α ∈ I. There exist an increasing slowly varying (at ∞)

function ` ∶ (0,∞) → (0,∞) and a constant c4 > 0 such that

∣
∂βjΨβ(z)

Ψβ(z)
∣ ≤ c4(1 + `(∣z∣)) for all z ∈ Ω(ϑ), j = 1, . . . , n,

and

(S) (ψβ)β∈I satisfies the sector condition, i. e. there exists a constant c > 0 such that

∣ Im Ψβ(z)∣ ≤ c∣Re Ψβ(z)∣ for all z ∈ Ω(ϑ), β ∈ I.

Then for any two Hölder continuous mappings α ∶ Rd → (0,1] and β ∶ Rd → I such that

αL ∶= infx∈Rd α(x) > 0, there exists a rich Lévy-type process (Xt)t≥0 with symbol

q(x, ξ) ∶= (ψβ(x)(ξ))α(x), x, ξ ∈ Rd.

The process (Xt)t≥0 has the following properties:

(i). The transition probability p ∶ (0,∞)×Rd ×Rd → [0,∞) is continuous, differentiable with

respect to t and satisfies the heat kernel estimates from Theorem 4.2 with γ̃0(α(x), β(x)) ∶=
α(x)γ0(β(x)), γ̃∞(α(x), β(x)) ∶= α(x)γ∞(β(x)) and m = 0; here γ0(β(x)) and γ∞(β(x))
are the mappings associated with (ψβ)β∈I by the growth condition (4.1).

(ii). C∞
c (Rd) is a core for the generator (L,D(L)) of (Xt)t≥0 and C2

∞(Rd) ⊆ D(L). Moreover,

p is a fundamental solution to the Cauchy problem for the operator ∂t −L.

(iii). (Xt)t≥0 is the unique solution to the (L,C∞
c (Rd))-martingale problem.

(iv). The associated semigroup has the strong Feller property.

In dimension d = 1 Theorem 4.8 remains valid if we just assume that (ψβ)β∈I satisfies (4.1),

(4.1), (4.8) and (S), i. e. we can drop the assumption of rotational invariance.

Acknowledgements I would like to thank René Schilling for helpful comments and sugges-

tions.

References

[1] Bass, R. F.: Uniqueness in Law for Pure Jump Markov Processes. Probab. Th. Rel. Fields

79 (1988), 271–287.

[2] Bendikov, A.: Asymptotic formulas for symmetric stable semigroups. Expo. Math. 12

(1994), 381–384.

[3] Blumenthal, R., Getoor, R.: Some theorems on stable processes. Trans. Amer. Math. Soc.

95 (1960), 263–273.

[4] Blumenthal, R., Getoor, R.: Sample functions of stochastic processes with stationary

independent increments. J. Math. Mech. 10 (1961), 493–516.

18



[5] Bogdan, K., Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semi-

groups. J. Funct. Anal. 266, 3543–3571.

[6] Bogdan, K., Jakubowski, T.: Estimates of Heat Kernel of Fractional Laplacian Perturbed

by Gradient Operators. Commun. Math. Phys. 271 (2007), 179–198.
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