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Abstract

We present an existence result for Lévy-type processes which requires only weak regularity
assumptions on the symbol q(z,£) with respect to the space variable x. Applications range
from existence and uniqueness results for Lévy-driven SDEs with Hoélder continuous coefficients
to existence results for stable-like processes and Lévy-type processes with symbols of variable
order. Moreover, we obtain heat kernel estimates for a class of Lévy and Lévy-type processes.
The paper includes an extensive list of Lévy(-type) processes satisfying the assumptions of our
results.
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1 Introduction

The Lévy—Khintchine formula gives a one-to-one correspondence between Lévy processes and
continuous negative definite functions (i.e. characteristic exponents). For any continuous
negative definite function t : R — € with 4(0) = 0, i. e. any function of the form

YO =p(0) ~ib €4 26-Q+ [ (1= wig oyl (WD) v(dy), £ R
y+0

for some b € R?, a positive semidefinite symmetric matrix Q ¢ R%*¢ and a measure v on Rd\{O}
such that f]Rd\ (0} [yl> A 1v(dy) < oo, there exists a Lévy process with characteristic exponent
1. Over the past years, there has been an increasing interest in so-called Lévy-type processes.
This is a class of Markov processes which behave locally like a Lévy process, but the (analogue
of the) Lévy triplet depends on the current position of the process in the state space. If the
smooth functions with compact support C¢” ( ]Rd) are contained in the domain of the generator
of a Lévy-type process (X¢)t»0, then the process can be characterized via its symbol ¢,

0(2,8) = 4(2,0) - ib(x)- €+ € Qu)E+ [ e eyt () v dy). =€ <R, (1)

which is a continuous negative definite function for each fixed = € R%. Typical examples are
processes with variable index of stability (this corresponds to g(z,€) = |¢|*(®)) and solutions
of Lévy-driven SDEs, see Table 3 on page 15 for further examples.

It is natural to ask whether for a given function g of the form (1), i. e. family (¢(,€)) era
of continuous negative definite functions, there exists a Lévy-type process with symbol g. The
answer is, in general, no (see e. g. [7, Example 2.26] for counterexamples), and therefore it is im-
portant to find sufficient conditions on the symbol g or the characteristics (b(z), Q(z),v(x,dy)) Lerd
which ensure the existence of a Lévy-type process with a given symbol q. Many existence re-
sults in the literature (see [7] for an overview) are rather restrictive in the sense that they either
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assume that ¢ is of a particular form (typically “stable-like” or “lower-order perturbation”) or
they require strong assumptions on the regularity of the symbol ¢ with respect to the space
variable z (typically smoothness).

In this paper, we present a new existence result for Lévy-type processes which requires
only mild regularity assumptions on the symbol ¢ with respect to . Applications range from
variable order subordination and Lévy-type processes with symbols of variable order to ex-
istence and uniqueness results for solutions to Lévy-driven stochastic differential equations
(SDEs) with globally Hoélder continuous coefficients. The proof of the main result, Theo-
rem 4.1, relies on a parametrix construction; this is an analytical method which has become
an increasingly popular tool in probability theory to prove the existence of certain stochas-
tic processes and to establish heat kernel estimates, e.g. processes with variable order of
differentiation (Kolokoltsov [14, 15] and Chen & Zhang [9]), gradient perturbations of Lévy
generators (Bogdan & Jakubowski [6] and Jakubowski & Szczypkowski [12]) and solutions of
SDEs with Hélder continuous coefficients (Knopova & Kulik [16, 22] and Huang [11]). Using
the parametrix construction, we can not only prove the existence of Lévy-type processes with
symbols from certain classes, but also get additional information on the process such as heat
kernel estimates, well-posedness of the associated martingale problem or the richness of the
domain of the generator, cf. Theorem 4.2.

As a by-product of the parametrix construction, we obtain heat kernel estimates for a class
of Lévy processes; the estimates are crucial to prove the convergence of the parametrix expan-
sion. Estimates for the transition density of Lévy processes have attracted a lot of attention,
for example heat kernel estimates for unimodal [5], rotationally invariant [8], tempered stable
[27] Lévy processes or Lévy processes with exponential moments [17, 28], to mention but a
few. In contrast to many of these results, we state our assumptions on the Lévy process in
terms of the characteristic exponent 1 and not in terms of the Lévy triplet (b,Q,v). Since
there are few Lévy processes for which both the characteristic exponent and the Lévy triplet
can be calculated explicitly, both approaches (i.e. via Lévy triplet or via characteristic ex-
ponent) have their own justification. In fact, for most of the examples which we present in
Section 3 the Lévy triplet is unknown, and therefore it is very hard to verify conditions on the
Lévy triplet. Our result applies, for instance, to relativistic stable, Lamperti stable, normal
tempered stable, truncated Lévy processes, cf. Example 3.4, and a class of subordinators; see
Table 1 and Table 2 in Section 3 for further examples.

This paper is organized as follows. In Section 2 we introduce the basic definitions and
some notation. Section 3 is devoted to heat kernel estimates for Lévy processes. In Sec-
tion 4 we present our main result, the existence result for Lévy-type processes, and discuss
several applications, including a new existence and uniqueness result for Lévy-driven SDEs
with Holder continuous coefficients (Corollary 4.7), an existence result for stable-like processes
(Example 4.6) and Feller processes with symbols of variable order (Corollary 4.8).

The results presented in this paper are essentially taken from my PhD thesis [19]. The
aim of this paper is to give a brief summary of the most important results and make them
accessible to a larger audience; in particular, we do not include proofs since they are very
technical and lengthy, and we refer to [19, 20] for full proofs.

2 Preliminaries

We consider the Euclidean space R? endowed with the canonical scalar product z-y = Z?Zl T5Yj
and the Borel-o-algebra B(R?). The continuous bounded functions are denoted by Cj(R?),
and Coo(]Rd) is the space of continuous functions f : RY - R vanishing at infinity. Superscripts
k € IN are used to denote the order of differentiability, e.g. f € Cf;(Rd) means that f and its
derivatives up to order k are Coo(R%)-functions. A function £ : (0,00) — (0,00) is slowly
varying (at infinity) if

lim {(Az) =

a=oo {(x)
We say that a function f: R? - RF is (globally) Holder continuous if there exist constants
0¢€(0,1], C >0 such that |f(z) - f(y)| < Clx —y|® for all z,y e R%.

1 for all A>0.




A d-dimensional Markov process (Q, A4, P%, xz e R?, X;,t > 0) with cadlag (right-continuous
with left-hand limits) sample paths is called a Lévy-type process if the associated semigroup
(Pt)¢s0 defined by

P.f(z) =E"f(X:), me€ R?, fe ‘Bb(IRd) ={f: R? - R, f bounded, Borel measurable}

has the Feller property and (P, )0 is strongly continuous at t = 0, i.e. Pif € Coo(R?) for all
Co(R?) and [Pf = flloo 29 0 for any f € Coo(R%). Lévy-type processes are also known as
Feller processes; we use both terms synonymously. A semigroup (P;):»0 has the strong Feller
property if Pif € Cy(R?) for any f € By(R?), t > 0. If the smooth functions with compact
support C2°(R%) are contained in the domain of the generator (L, D(L)), then we speak of a
rich Lévy-type process. A result due to von Waldenfels and Courrége, cf. [7, Theorem 2.21],
states that the generator L of a rich Lévy-type process is, when restricted to C2°(R?), a

pseudo-differential operator with negative definite symbol:
Li@) == [ e @ O)f©)ds,  feCT®RD, aeR",
where f(£):= (2r)7? Jra e”*®¢ f(z) dz denotes the Fourier transform of f and

a(2,€) = a(w,0) - ib(x) € + 26 Qe+ [

gy (L€ + iy Elon () v dy). ()

We call ¢ the symbol of the rich Lévy-type process (X¢)0 and —g the symbol of the pseudo-
differential operator. For each fixed € R?, (b(z),Q(z),v(x,dy)) is a Lévy triplet, i.e.
b(z) € RY, Q(z) e R™ is a symmetric positive semidefinite matrix and v(z,dy) a o-finite
measure on (R*\{0}, B(R¥\{0})) satisfying Lye0 min{|y|?, 1} v(z,dy) < co. A set D ¢ Coo (R)
is a core for the generator (L,D(L)) if (L,‘D)".HD° = (L,D(L)). Our standard reference for
Lévy-type processes is the monograph [7].

A Lévy process (Lt )ts0 is a rich Feller process whose symbol g does not depend on x. This
is equivalent to saying that (L:)¢»0 has stationary and independent increments and cadlag
sample paths, cf. [7, Theorem 2.6]. The symbol ¢q = ¢(&) (also called characteristic exponent)
and the Lévy process (Lt )0 are related through the Lévy—Khintchine formula:

£ (Lem2) _ gmta(®) for all ¢>0,z,&e R

A Lévy process with non-decreasing sample paths is a subordinator and can be characterized
by its Laplace exponent, cf. [25]. We refer to Sato [23] for a detailed discussion of Lévy
processes and to Schilling [13] for an introduction to Lévy and Lévy-type processes.

3 Heat kernel estimates for Lévy processes

In this section, we present transition density estimates for a class of Lévy processes. The main
results are Theorem 3.1 (heat kernel estimates for rotationally invariant Lévy processes in
dimension d > 1), Theorem 3.2 (heat kernel estimates for one-dimensional Lévy processes which
are not necessarily symmetric) and Corollary 3.5 (heat kernel estimates for subordinators). In
contrast to many results in the literature, we state our assumptions on the Lévy process (Lt )0
in terms of the characteristic exponent and not in terms of the Lévy triplet.

3.1 Theorem Let (Lt)¢s0 be a d-dimensional Lévy process and suppose that its characteristic
exponent 1 : R* — C satisfies (L1)-(L3).

(L1) 4 is rotationally invariant, i. e. there exists ¥ : R — R such that (&) = T([¢]), € e R?.
If m>0: ¥ is even, i.e. ¥(r) =Y (-r) for all r > 0.

(L2) There exists 0 € (0,5 ) and m 20 such that ¥ has a holomorphic extension to

Q:=Q(m,0) :={zeC;|Imz| <m}u{zeC\{0};argze (-0,0)u (r -0, 7+0)}. (3)



Figure 1: The domain Q = Q(m,¥) for m >0 (left) and m =0 (right).

(L3) There exist constants c1,c2 > 0 and 70,7 € (0,2] and a slowly varying (at infinity)
increasing function £: (0,00) - (0,00) such that

Re¥(z) > é(T;D |27 forall zeQ,)z| 21 (4)
and
[0 (2)] < e2(l2]) (|21 Lgzeny + 1217 Lgjappry) for all z €. (5)

Then the transition density
o1 —iag (&)
pe(z) = W/].Rde € d¢
ezists, is infinitely often differentiable and satisfies the estimates
pe(2)| < CS(z,1)
|%pt(z)| <Ct'S(x,t)
for any x € R?, t € (0,T] where C = C(T) >0 is an absolute constant and

v lz| <t/ A,
S(x,t) i= S () = exp (-%m) (1+£(ct™=)) St || 4, 7= < |z| < 1,

¢/l =0, 2 > 1

for some absolute constant ¢ = ¢(T) > 0. Moreover, for any multi-index 8 = (B1,...,084) € N
and any T > 0 there ezists a constant ¢ >0 such that

< ctUPaleHBaDlve (4 ) for all xR te(0,T).

85
‘Wpt(x)

In dimension d = 1 we do not need any symmetry assumption like rotational invariance in
(L1).

3.2 Theorem Let (Lt)t=0 be a one-dimensional Lévy process with characteristic exponent .
If W () :=(&) satisfies (L2) and (L3), then the results of Theorem 3.1 remain valid.

To prove Theorem 3.1 and Theorem 3.2 we apply Cauchy’s theorem to shift the contour
of integration; for details see [20, Section 4.1] or [19, Section 4.1]. Using this idea, we can also
obtain heat kernel estimates for subordinators, cf. Corollary 3.5. Let us give some remarks on
both Theorem 3.1 and Theorem 3.2.



3.3 Remarks (i). Condition (L3) implies that ¢ satisfies the sector condition, i.e. there

(i)

exists a constant C1 > 0 such that
[Tm ()] < C1|Rep(€)|  for all €eR™.
Moreover, it follows from (L3) that there exists a constant C > 0 such that
Re¥(z) > -Cs > —o0 for all ze€Q.

Note that the existence of such a constant is not trivial; although any continuous negative
definite function 9 : R* - C satisfies Re)(¢) > 0 for all £ € R?, the inequality does, in
general, not need to be true for complez z.

. The constant m/4 in the definition of the function S introduced in Theorem 3.1 can be

replaced by m(1 —§) for any & € (0,1). Since it is well-known, cf. [29, Theorem 5.26],
that the characteristic function of L

Eett = ©) 150 ¢eRY,

is analytic on the strip {z € C;|Imz| < m} if, and only if, Eem -l ¢ o for any
0 €(0,1), the exponential decay exp(—|xz|m(1-7)) is, in general, the best we can expect.
Let 9 be a continuous negative definite function with Lévy triplet (b,0,v). If ¢ satisfies
the sector condition, then it is possible to give sufficient conditions in terms of fractional
moments of v|pg(p,1) and v|g(o,1)c which ensure that v satisfies the growth condition (5)
for real z, cf. Blumenthal & Getoor [4] and Schilling [24]. This is, however, no longer
possible for the holomorphic extension. For instance if we consider 1(§) := 1-cos&, then
the associated Lévy measure v = %61 + %6,1 has arbitrary moments, but the (unique)
holomorphic extension ¥(z) =1 - cos z does not satisfy (5).

If the characteristic exponent v is given in closed form, it is usually easy to check whether

the assumptions of Theorem 3.1 are satisfied.

3.4 Example Let (Lt)+0 be a d-dimensional Lévy process with one of the following charac-

teristic exponents.

. (isotropic stable) ¥ (&) = €]*, € e R, a € (0,2],
. (relativistic stable) ¥ (&) = (|¢]* + 02)*/? - o, € € R?, 0> 0, a € (0,2),

(Lamperti stable) (&) = (J€]* + 0)a — (0)a, £ € RY, 0> 0, a € (0,1), where (r)q =
I'(r + @)/T(r) denotes the Pochhammer symbol,

. (TLP: truncated Lévy process) 1(£) = (|€]* + 0%)°/% cos(aarctan(o}[¢])) - 0, € € RY,

a€(0,2), 0>0,

() = (g7 -D)/(g" - 1), € R, 0<a< f<,
i). (NTS: normal tempered stable, d = 1) 9(&) = (k% + (€ —ib)*)*/? — (k% - b*)*/?, ¢ € R,

a€(0,2),b>0, k>b.

The characteristic exponents (i)-(v) and (vi) satisfy the assumptions of Theorem 3.1 and

Theorem 3.2, respectively, with

(i)

11

—~

(iii
(iv
(v
(vi).

).
).
).
).

Yo =Yoo =, m=0,£=1,
Yo=2, Vo =, m=p, £ =1,

Y0 =2, Yo =20, m= /0, £ =1,
Yo=2, Vo =, m=p, £ =1,
Yo=0Q, Yoo =B -, m=0,0=1,
Yo=2, Yo =, m=k—-b, £=1.

Consequently, Theorem 3.1, respectively, Theorem 3.2, provide heat kernel estimates for the

transition density p, its time derivative and derivatives with respect to the space variable

z. For the particular case of isotropic stable Lévy processes, we recover well-known (sharp)

estimates for the heat kernel, cf. [2, 3].

The following list of examples satisfying the assumptions of Theorem 3.1 and Theorem 3.2,

respectively, is taken from [20, Table 5.2].



Name char. Exponent Parameter Dim. Heat Kernel Estimate (Thm. 3.1)
1  isotropic a-stable [ a€(0,2] d>1  Y=Yeo=a,m=0,/(=1
2 relativistic stable (€ + gz)"/2 -0“ a€(0,2),0€(0,00) d>1 =2, v0=a,me(0,0),¢=1
3 normal tempered stable (k% + (£ — b))% — (k2 = b?)*/? a€(0,2),ke(0,00), d=1 =2, V0=a,me(0,k=0),¢=1
(NTS) b<k
2

4 & 96(0700) d>1 70:27700:17“7‘6(07\/9)76:1

VIEP +o
5 & a€(0,2), 0€(0,00) d>21 Y =2,9%=2-a,me(0,\/0),l=1

(|£|2+Q)a ) ) ) = ) ) ) )

-1
6 E:a 1—1(extendedbycontinuityatle) O<a<f<l1 d>1  Yy=a,Y%e=0-a,m=0,£0=1
-1
7 —£||£Jé21 (extended by continuity at £ = 1) a€(0,2) d>21  Y%=2-a,Y%=2,m=0,£=1
“-1
8 §||£°|‘21 -1 (extended by continuity at & = 1) a€(2,4] d>1 Y=a-2,7%.=2,m=0,£=1
2 [€]" - 0 .
9 €] |§|272 (extended by continuity at £ = p) a€(0,2),0€(0,00) d>21 Y=2,Vo=a,m=0,£=1
-0

10 (€7@ +1€]™%)! (extended by continuity at £ =0) «a, 3 € (0,2] d>21 y=aVh, Ye=arB, m=0,{=1
11 €1(1 - 72 0¢(0,00) d>1 =2 Ye=1,m=0(=1
12 €11 + 7€) o€ (0,00) d>1  70=7Yu=1m=0,(=1
13 o€l (€[ + 1) log(1 + [€]7%) 0€(0,00) d>1 7 =70=2,m=0,£(r)=log(rve)

Table 1: Examples of Lévy processes satisfying the assumptions of Theorem 3.1 and Theorem 3.2, respectively



Name char. Exponent Parameter Dim. Heat Kernel Estimate (Thm. 3.1)
P (EP + 1)
14 0 0€(0,00) d>21 40 =7 =2, me (0,3/2), £(r) = log(r ve)
(€7 +2) log([¢]* +2)
15 |¢| arctan(ol¢]) 0¢€(0,00) d>1  Y=70=1,m=0,¢=1
16  truncated Lévy process (|¢|* + Q2)O‘/2 cos (a arctan %) 0% @€(0,2),0€(0,00) d21 49=2,7v0=a,me(0,0),¢=1
(TLP)
cosh” (/2
17 cos1 AV el € (0, 00 d>1 v =1,m=0,¢=1
Q|£|sinh(2\/§|§|) 2 € (0,00) Yo ="
(V7))
18 S Avakl e (0, 00 d>1 v =1,m=0,0=1
Q|§|sinh(2\/§\§|) 0 €(0,00) Yo ="
19 ol¢|coth((2[¢)) ™) - ol¢? 0€(0,00) d>1  Y=1,7%=2,m=0,¢(=1
20 olog(sinh(V2[¢])) - olog(V2I¢]) o€ (0,00) d>1  7=2%0=1,m=0,(=1
21 isotropic Meixner olog(cosh(V/2[¢])) 0¢€(0,00) d>21 Y%=2,7%=1,m=0,¢=1
22 (log(1+ o tanh (b)) be(0,00), 0€(0,00) d21 p=rm=1,m=0,0=1
T(oé? +1/2
23 LE/) 0¢€(0,00) d>1 Y% =2,7%=1,me(0,1/3/20),£=1
I'(0l¢l?)
r Zil-«
21 gpliekl+1-a) ae(0,1) 031 A0=2 pe =20 0= 1 me(0./aT 1)
I'(alg]? +1)
L(aléf +1) 1
25 - 0,1 d>1 =2 v = a, 0,vVa 1), r=1
T(off+1-a) T(1-a) ac(OD) 70=2 Ye =, me (0, Va)
IN(EE r
26 Lamperti stable (€F +a+e) - (a+o) a€e(0,1),0€(0,00) d>21 Y =2,%0=2a,me(0,\/Jo+ta), =1

L([¢ + o)

I'(o)

Table 1: (cont.)



If (Lt)+s0 is a subordinator, i.e. a Lévy process with non-decreasing sample paths, then
we can relax the assumptions of Theorem 3.2; the reason is that we know that the support of
L is contained in [0, c0) and therefore we have to establish upper bounds for p;(z) only for
x > 0. Note that the characteristic exponent ¢ of a subordinator with Laplace exponent f is

given by 9 (€) = f(~i€), £ € R.

3.5 Corollary Let (St)t=0 be a subordinator with Laplace exponent f satisfying (S1), (S2).
(S1) There exist 0 € (0,%) and m >0 such that f has a holomorphic extension F' to

T:=T(m,0):={2eC;-m<Rez<0}u{zeC\{0};argz e (7/2,r—0) U (-7 +0,-7/2)}.

(S2) There exist constants c1,c2 > 0 and Yo0,7 € (0,2] and a slowly varying (at infinity)
increasing function £:(0,00) — (0,00) such that

C1
ReF(z) > ——|z[™ forall zeX, |z|21
£(lz])

and
|F(Z)| < C2E(|Z|) (|Z|’YO]1{|Z|51} + ‘Z‘Wm]l{‘zbl}) fOT all ze7.

Then St has a density p: with respect to Lebesque measure,

L —iw€ ~tf(~i€)
= — d€.
pile)i= 5 [t 3
The density is infinitely often differentiable and satisfies the estimates
pe(@)] < Clpo,00) (2)S (2, 1)

0 -
‘&pt(ﬂﬂ)‘ < Clpg,e0y (2)t S (, 1)
for any x € R, t € (0,T] where C = C(T) >0 is an absolute constant and
e |lz] <t/ A1,
S(z,t) := Sy (x,t) = exp (7%@0 (1 +€(ct_1/7°")) tf || e, 1o o lz| <1,

tf]x) I ] > 1

for some absolute constant ¢ = ¢(T) > 0. Moreover, for any k € N and T > 0 there exists a
constant ¢ >0 such that
k

%pt(w) < cIL[O’oo)(x)tko”S(x,t) forall zeR,te(0,T].

Corollary 3.5 follows from the proof of Theorem 3.2, see [19, pp. 131] or [20, Section 4.9].
In Table 2 we have collected examples of Laplace exponents satisfying the assumptions of
Corollary 3.5.



Laplace Exponent Parameter Heat Kernel Estimate (Cor. 3.5)
1 A a€(0,1] V=Yoo=, m=0,£=1
2 (>‘+9)a_ga 046(071)796(0,00) 70:2770020477”6(059)76:1
3 A € (0, 00) 1 1/2, me (0,0), (=1

y 00 =1 Yo = s y0), £ =
JA+o o Yo Y 0
A

4 W a€(0,1), o€ (0,00) Y =1, Yo =1 -, me(0,\/0), £ =1

N -1 .
5 o 1—1(extendedbycontmultyat/\=1) O<a<fB<l1 Vo= Yo =f—a,m=0,¢=1
6 ATl ded b inui A=1 0,1 =1 =1,m=0,0=1

“esisq (extended by continuity at A =1) ae(0,1) Yo=1-a, Yo =1, m=0,£=

A -1 .
7 m—l (extended by continuity at A =1) ace(1,2] Yo=a-1, 7Y% =1, m=0,£=1

P
8 )\/\79 (extended by continuity at A = p) a€(0,1), o€ (0,00) Yo=1, Yo =, m=0,£=1
-0

9 (A + A7) (extended by continuity at A = 0) a,fe€(0,1] Yo=aVB, Yo=arB, m=0,£=1
10 Va(1-e?2?) 0€(0,00) Yo=1, %0 =1/2,m=0, =1
11 V1 +e2e) 0€(0,00) Yo=Y =1/2,m=0, (=1
12 oA(A+1)log(1+1/X) 0¢€(0,00) Y0 =Yoo =1, m =0, £(r) =log(rve)

Table 2: Examples of Laplace exponents satisfying the assumptions of Corollary 3.5



0T

Laplace Exponent Parameter Heat Kernel Estimate (Cor. 3.5)
AA+1)
1 = e =1, 12), 0(r) =1
3 0T 2)lea(r12) 0€(0,00) Yo =7 m e (0,2), {(r) =log(r ve)
14 Varctan(pVA) 0€(0,00) Y0 =0 =1/2, m=0, =1
15 ()\Jrg)o‘cos(aarctan\/%)—g’l a€(0,1), p€(0,00) Y=1, 70 =a, me(0,0), {=1
cosh?(V/2))
16 VA— 22 € (0, 00 =Y =1/2,m=0,0=1
sinh(2v/2)\) ocl ) T /
sinh®(v/2))
17 VAT Y2 € (0,00 =Y =1/2,m=0, (=1
o o€ (0,00) 0= e = 1/
18 oV Acoth((2VA) 1) - oA 0¢€(0,00) Y0=1/2, Yo =1, m=0,£=1
19 olog(sinh(v/2\)) — olog(v/2)) 0¢€(0,00) Y=1,7v=1/2,m=0,£0=1
20 olog(cosh(V2X)) 0¢€(0,00) Y=1,7=1/2,m=0,0=1
21 VAlog(1 + otanh(bV/)) be (0,00), o€ (0,00) Y0 =70 =1/2, m=0, £ =1
r 1/2
g L(A*12) o€ (0,00) 1021, 70 = 12, m € (0,1/(20)), £=1
(o))
Flar+1-a) _
P oar_ o) 1 1, ym=l-a,l=1, oo
3 F(Oé)\‘i'l) 046(07 ) Yo et «a me((]a )
T(ar+1) 1 B
24 - 1 =1, Yo = v, ) =1
Tar+1-a) T(l-a) ac(0.1) Yo =1 Yoo =, m e (0,07)
r T
25 (A+a+o) Tla+o) ae(0,1), o€ (0,00) =170 =a,me(0,0+a), £=1

L(A+0) L'(o)

Table 2: (cont.)



4 Existence result for Lévy-type processes
Let ¢: R x R? - C be defined by

q(xvf) = wa(z)(g), "L',g € ]R,d

for a family (¢3)ger of continuous negative definite functions, a Holder continuous mapping
a:R? > I and a set of parameters J € R™. Our main result, Theorem 4.1, gives a sufficient
condition on (¥3)ger for the existence of a rich Lévy-type process with symbol q.

4.1 Theorem Let I ¢ R"™ be open and convex andm > 0. Let (Yg)ger be a family of continuous
negative definite functions g : R? > € with ¥3(0) =0 for all B € I. Suppose that there exist
0 € (0,7/2) and constants c1,c2,cs >0 such that each g, B € I, satisfies (4.1)—(4.1).

(LTP1) 4 is rotationally invariant for each B € I, i.e. there exists Vg : R > R such that
V(&) = Vs (lE]), €€ R If m>0: Wg(r) =Wg(-r) for all r > 0.
(LTP2) s has a holomorphic extension to the domain Q = Q(m,0) defined in (3).

(LTP3) There ezist a measurable mapping vo : I — (0,2], a Hélder continuous mapping Yeo :
I - (0,2] and a slowly varying (at infinity) increasing function £ : (0,00) — (0,00) such

that
C1

Re \115(2) 2 €(|Z|)

|Re 2|7 forall zeQ,|z|>1,B¢€l
and

W (2)] < cal(]2]) (\Z\WO(B)ﬂuzm} + |Z|’Y°q(ﬂ)]l{\z\>l}) forall zeQ, Bel.

Moreover, v& := inf ges Yoo (B) > 0, 7¢ = infges v0(B) > 0.
(LTP4) The partial derivative aiﬁjllfg (r) exists for all 7 € R and extends holomorphically to
forall je{1,...,n} and B € I. Moreover,
7]

‘—wz)

9, gC3(1+e(\z\))(|z|”°<ﬂ>n{|z‘g}+|z|%°<ﬁ>11ﬂz,>1}) forall zeQ, Bel.
J

Then for any Holder continuous mapping o : R? — I there exists a rich Lévy-type process
(Xt)t0 with symbol
d
q(l‘,é-) = wa(z)(g)v x7£€R .

To prove Theorem 4.1 we use the parametrix method, cf. [19, Chapter 4] and [20, Chapter
4]. The idea is to construct the transition density as the fundamental solution of the Cauchy
problem for the operator (9; — L) where L equals, when restricted to C¢° (]Rd), the pseudo-
differential operator

Li@) == [ a@O)e " f©d xR

The parametrix method gives a candidate for the fundamental solution, and the main part
of the proof is to verify that this candidate is indeed a fundamental solution to the Cauchy
problem and the transition density of a Feller process.

As a by-product of the parametrix construction, we get the following additional information
on (X¢)+»0 and its transition semigroup (Pr)¢»0.

4.2 Theorem Under the assumptions of Theorem 4.1, the Lévy-type process (Xi)s0 with
symbol q(x,&) = a2y (§) has the following additional properties:

(i). The associated semigroup (P:)so has the strong Feller property, i.e. Pif € Cy(R®) for
any [ € By(RY).

(ii). CZ(RY) is a core for the generator L and C2(R%) ¢ D(L),

LI(2) = @)}V F (@)+5 Q@) T F @)+ [ (F)=F (@)= F@)yLaco.(w)) v(a,dy)

11



for any f € CL(RY); here (b(x),Q(z),v(x,dy)) denotes the Lévy triplet associated with
q(z,-). There exists a constant C >0 such that

ILfloo <C Y 0%floo=Clflly  forall feCo(RY).

0<|a<2

Moreover, P;f € D(L) for all t >0 and f € Coo (R?).

The distribution P*(Xy € -) has a density p(t,x,-) with respect to Lebesque measure for
all t >0 and € R, The mapping p : (0,00) x RY x R* - [0,00) is continuous and
differentiable with respect to t.

. The transition density p is a fundamental solution to the Cauchy problem for the op-

erator (0; — L), i.e. p(t,-,y) converges weakly to 65 ast — 0, (0,00) 3t — p(t,z,y) is
differentiable, p(t,-,y) € D(L) for all t >0, y e R? and

(0¢ — Lz)p(t,z,y) =0 for all t>0,z,yeR"

. The (L,CZ(R%))-martingale problem is well-posed; its unique (in the sense of finite-

dimensional distributions) solution is (X¢)to.

. Denote by o € (0,1] the Hélder exponent of o and choose v € (0,1/7%] such that & :=

ymin{o, (-d+~Y) +1} > 0. Define
t_d/"/m(ﬁ)7 ‘m| < tl/’Voe(ﬁ) A 1’

m
S(CC,/B,t) ‘= exp (_Z|‘T|) t/|‘r|d+7°°(ﬁ)7 tl/’yw(ﬁ) < |-:C| < 17
t/|x|d+vo(ﬂ)mw(3)7 |z| > 1.

For any T > 0 there ezists a constant C' = C(T') >0 such that

1 m
t,z,y)| <CS(z-y,aly),t) +Ct  ———————ex (——m— )
Ip(t, =, y)l (z-y,a(y),t) oy B P 71zl

- _ 1 m
Ap(t,z,y)| < Ct ' S(x —y, O — (_7 - )
|0ip(t, 2, y)] (z-y,a(y),t) Ltz gk exp 4|w yl

for all z,y e R* and t € (0,T7].

4.3 Remarks (i). In dimension d = 1 we can drop the assumption (4.1) of rotational invari-

(ii).

(ii).

ance, see Theorem 4.4 below.

The constant m/4 in the definition of S, cf. Theorem 4.2(vi), may be replaced by m(1-4)
for any 6 € (0,1); see also Remark 3.3.

In Theorem 4.1 we make separate assumptions on the regularity of I 5 8 — v¥g(&)
(differentiability) and R? 5 & — a(z) € I (Holder continuity). Note that this is much
weaker than assuming differentiability of & — g(x, &) = a () (€). For instance, if (&) :=
€ |ﬁ , then the assumptions of Theorem 4.1 are satisfied for any Hélder continuous function
«; in contrast, differentiability of = — ¢(z,§) = |£|a(”) requires differentiability of a.

. The first order approximation of the transition probability p is given by

1 —i(m—y)E — )
po(t,z,y) = @) Ade (@=9)€ ~tPa(y) () de;

it is possible to derive upper bounds for [p(t,z,y) — po(t,z,y)|, cf. [20, Theorem 3.8] for
details.

4.4 Theorem (Case d = 1) Let I € R™ be an open convezr set and m > 0. Suppose that
(¢8)ger is a family of continuous negative definite functions g : R - C, 93(0) = 0, such
that Ug(€) = ¥a(§), B € I, satisfies (4.1)-(4.1). Then the statements of Theorem 4.1 and
Theorem 4.2 remain valid; in particular, there exists a rich Lévy-type process (Xt)tzo with
symbol q(,€) = a2y (£), x,€ € R, for any Hélder continuous mapping o: R — 1.

12



The next theorem shows that in dimension d = 1 the transition probability p(t,z,y) is
differentiable with respect to @ provided that the mappings I 3 8~ ¢g(€) and a: R* — I are
sufficiently smooth.

4.5 Theorem Let (1g)ger be as in Theorem 4.4 and assume additionally that there exists a
constant ¢4 >0 such that (4.5) holds.

(LTP5) aa—;wg(ﬁ) exists for all £ € R, j € {1,...,n} and has a holomorphic extension to
satisfgjmg

<ea(L+ L0z (2P0 ey + 2= P g1y, 2eQBel

82
’aﬁgwﬁ(z)
where £ denotes the slowly varying function from (4.1).

Let a: R - I be such that o € CZ(R). Denote by (X:)iso the Lévy-type process from Theo-
rem 4.4 with symbol q(x, &) = o) (§) and transition density p. Then:

(i). The transition probability p(t,z,y) is continuously differentiable with respect to x for any
t>0 and y € R. For any T >0 there exists a constant C' = C(T') >0 such that

9] _1/4L " 1 m
[apt)] < 5 [ S ma ) + 1 e (e )|

14|z - y|d+7§M°L°

for all t e (0,T] and x,y € R; see Theorem 4.2(vi) for the definition of k and S.

(ii). The semigroup (Pi)=0 asssociated with the Lévy-type process (X¢)eo0 satisfies the gradi-
ent estimate

9 )| <t e fle forall te(0,T], feBy(R)

oz

sup
zeR

for some absolute constant C = C(T) > 0.

(iii). Suppose additionally that each ¥g: R — R, B €1, is even. Then for any T > 0 there exist
constants C1,C2,Cs >0 such that

p(t, x, y) > Cltfl/"/m(a(y))(l _ Czt’l/')’oo (&(y)>|l' _ y| _ Cgtn)+

forall z,ye R, t e (0,T].
(iv). If g :R - R is an even function for all B € I, then (X¢)tso0 is A-irreducible, i. e.

f P* (X, ¢ B)dt >0
(0,00)
for all zx € R and B € B(R) with A(B) > 0.

The remaining part of this article is devoted to applications of the above results. First, we
state an existence result for “stable-like” processes. The most popular examples are isotropic
stable-like processes (processes with variable index of stability); this corresponds to symbols
of the form q(z,€) = |€|*(*). Bass [1] proved the well-posedness of the associated martingale
problem in dimension d = 1 for Dini continuous functions «, and, more recently, Kolokoltsov
[15] established the existence of Feller processes with symbol ¢(z, ¢) = |¢|*® in dimension d > 1
for Holder continuous mappings «. Using the results from the first part of this Section, we can
derive existence results for many stable-like processes, for instance relativistic stable-like and
Lamperti stable-like processes. With the exception of the well-studied isotropic stable case,
such existence results were so far only known under much stronger regularity assumptions;
e.g. a general existence result by Hoh [10] requires a € C5**3(R).

4.6 Example Let ¢(z,&) be one of the following functions.

(i). (isotropic stable-like) q(z,&) = [¢[*®) where a : R? — (0,2] is a Hélder continuous
mapping such that inf_ g« a(z) > 0.
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(ii). (relativistic stable-like) g(z,&) = ([€]* + o(z)?)*@/2 = o(2)*™ for Hélder continuous
mappings o : R? - (0,2) and ¢: R? - (0, ) such that

inf a(z)>0 and 0<p”:= inf o(z) < sup o(z) < .
zeR4 zeRd zeRd

(iif). (Lamperti stable-like) q(,£) = (|¢€]* + 0(%)) a(z) = (0(2))a(x) for Holder continuous map-
pings o : R% - (0,1) and ¢: R? - (0, %) such that

0< inf a(z) <sup a(z) <1 and 0< " := inf o(z) < sup o(x) < oo;
zeR4 reRd zeRd zeRd

here (1)a :=I'(r + @)/T'(r) denotes the Pochhammer symbol.
(iv). (TLP-like) q(z,£) = (¢ + o(2)*)*®/2 cos [a(z) arctan Q%)] - 0(2)*® for Holder con-
tinuous mappings o : R — (0,1) and g: R? - (0, c0) such that

0< inf a(z) < sup a(z) <1 and 0<o”:= inf o(x) < sup o(z) < oo.
zeRd zeRd zeR4 2eRd

By Theorem 4.1, there exists a rich Lévy-type process (X:):0 with symbol g. The process
(Xt)¢=0 has the properties listed in Theorem 4.2; the heat kernel estimate 4.2.(vi) holds with

(). m =0, Yo ((2)) = Y0(a(2)) = ()

(ii). m = 0", Yoo ((2),0()) = a(z), yo(a(2), 0(x)) = 2,
(). m = /0, e (a(®), o(x)) = 2a(x), Yo(al(z), o(x)) = 2,
(iv). m=0", Yoo (a(2), 0(x)) = a(x), 0(a(2), o(x)) = 2.

Let us remark that is possible to obtain further information on the richness of the domain of
the infinitesimal generator of (X;)so0, cf. [21, Example 4.11].

Applying Theorem 4.4 we obtain in a similar fashion an existence result for one-dimensional
rich Lévy-type processes with symbol

a(@,€) = (r(@)” + (€~ ib(2))*) " = (r(2)* - b(x))" ", wgeR
for Holder continuous bounded mappings b: R - R, a: R - (0,2), k: R - (0, 00) such that
ol = inlg a(x) >0, k= iné k(z) >0, kY = b]es > 0;

we call such a Lévy-type process an NTS-like process; NTS is short for normal tempered
stable. More generally, it is possible to consider symbols of the form

Q(Iv 5) = fa(x)(‘E‘Z)

for a family of Bernstein functions (fg)ger, this leads to, so-called, variable order subordina-
tion; see [20, Section 5.1] for a general existence result.

Further examples of families of continuous negative definite functions satisfying (4.1)-(4.1)
are listed in Table 3; in Table 3 we use C’>O(I ) to denote the space of bounded Holder continuous
functions f: R? - I satisfying

fH(2)i= inf f(e)el and f7(z):= sup f(z)el.

zeR%

14



Gl

Name Symbol Assumptions Dim. Parameters (Thm. 4.1)
isotropic a-stable-like  |¢]*(®) aeC?°((0,2]) d>1  Aela(z)) =y (a(z)) =a(z), m=0
relativistic stable-like (|| + 0%(z))*®)/? = p(z)*® aeC>9((0,2]) d>1  y(a(z),o(x)) =2, me (0,0")
0€C*°((0,0)) Yoo (), 0()) = ()
NTS-like (k(z)? + (€ —ib(x))?) @2 _ (k(2)? = b(x)?)*®)/2 aeC?0((0,2]) d=1 ~(a(z),b(z),k(x)) =2
ke C*°((0,0)) Yoo ((2), b(2), () = ()
be C7O°(R) m e (0,5 = [b]oo)
. K~ [bles >0
. 0eC(0,0)) A1 ne(r)) =2, Ye(o(x)) = 1
€] +|7(3:) m e (0,7/20)
52 >0
Ty aeC?((0,2)) d>1  yolafz), o(z)) =2, me (0,4/oF)
e e o€ C((0,%0)) 1o (), 0(2)) =2 - ()
E:a(x) :1 -1 (extended by continuity at £ = 1) a,eC((0,1)) d21  Ao(a(z),B(x)) = a(z), m=0
- (B-a)->0 Voo (0(2)) = B(x) - ()
—|£||é1($)_2__11 (extended by continuity at £ = 1) aeC>((0,2)) d>1  yla(z))=2-a(x), Yeol(a(zr)) =2
m=0
a(z) _
|é|‘|£o|¢(r)—2_11 -1 (extended by continuity at & = 1) aeC?9((2,4]) d>1  ~o(a(z)) =a(x) -2, Yo (a(x)) =2
m=0
ST () — :
€] T oa)? (extended by continuity at £ = o(z)) «eC>°((0,2)) d>1  ~y(a(z),o(r))=2, m=0
0€ C7°((0,00)) Yoo ((2), 0(x)) = ()
(€]~ + 1€ 7P@) 71 (extended by continuity at & = 0) a,eC>°((0,2]) d=21  Ao(a(z),B(x)) =a(z) vB(z), m=0
Yoo (a(2), B(2)) = a(x) A B(x)
€(1 - e2eI) 0€C?((0,00))  d21  o(o()) =2, Y (0(x)) =1, m=0
€11+ e2e=el) 0eC?((0,)  d21 0(e(2)) =es(e(x)) =1, m =0
o(x) [ (|€]* + 1) log(1 + [¢[7*) 0€C™((0,00))  d21  yo(e(2)) =Yee(e(x)) =2, m=0

Table 3: Examples of admissible symbols
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Name Symbol Assumptions Dim. Parameters (Thm. 4.1)
P +1) >0
o(7) 70 5 0eC7((0,00)) d21  7o(e(x)) =vee(e(x)) =2
(I + 2) log (€2 + 2) e (0./3)
(| axctan(o(x)[€]) 0eC((0,00)) d21  70(0(x)) = vee(0(x)) = 1, m =0
TLP-like (|€]* + o(2)?)*®)/2 cos (a(:r) arctan %) —0(2)*@ 0 eC™((0,2)) d>1  yo(a(z),o(x)) =2, me(0,0")
; 0 C*°((0,00)) Yoo (a(), 0(2)) = ()
9(5”)|§Zm 0€C™((0,)) d>1  7o(e(x)) = 7w (o(x)) =1
in m=0
sinh” (V2[¢]) > ) - ) =
Q(@Hm 0eC™((0,00)) d>1 zg(zé’(()l))—%o(g(x))—l
o(@)[¢lcoth((21¢) ™) - o(@)[¢f 0€C™((0,00)) d>1  7o(e(x)) =1, Yeo(o(2)) =2, m =0
o(x) log(sinh(V2[¢])) - o(x) log(V2¢]) 0€C™((0,00)) d>21  7o(e(x)) =2, Yeo(o(z)) =1, m =0
isotropic Meixner-like  o(z) log(cosh(v/2[¢])) 0€C™°((0,00)) dx1 7o(o(x)) =2, Yoo (o(z))=1,m=0
[€[1og(1 + o(x) tanh(b(2)<])) beC™((0,00)) d21  70(b(x), 0(x)) = Yo (b(2), 0(x)) = 1
0€C>9((0,00)) m=0
Te@EF1/2) o _ _
€ C7((0,00)) d>1  (e(x)) =2, e (o(x)) = 1
C(e(@)igP) ‘ .
m e (0,1//20Y)
2 T(a(2)g]’ +1-a(z)) >0
R @eC((O,1) d21 0(a() =2, 1e(a(x) =2 al2)
m e (0,4/1/aV - 1)
Fa@EF1) i o _ _
- aeC™((0,1)) dx21  (a()) =2, yeo(a(x)) = ()
[(a(x)lg?+1-a(x)) T(1-a(z)) .
me (0,4/1/aV)
Lamperti stable-like L + afx) + o) _ Da(@) + o)) aeC?0((0,1)) d>1  y(a(x),o(x)) =2,me (0,\/oX +al)

L([g? + o(x)) I'(o(x))

0€C*((0,00))

Table 3: (cont.)

Yoo (@), 0(7)) = 20()



Theorem 4.4 allows us to deduce an uniqueness and existence result for solutions of Lévy-
driven stochastic differential equations, i..e. SDEs of the form

dX; =b(X:)dt +o(X;)dL:,  Xo=xzeR*

where (Li)¢>0 is a n-dimensional Lévy process. If the SDE has a unique weak solution, then
it is possible to give conditions in terms of o and the Lévy measure v of (Lt):>0 which ensure
that the solution is a rich Feller process, cf. Kiihn [18]. It is, however, in general a non-trivial
problem to prove the uniqueness of the solution, see [26] for the particular case that (L¢):0
has a non-vanishing diffusion part and e.g. [22, 30] for the case that (L¢)¢so is an isotropic
stable process.

Using the parametrix construction, we can give sufficient conditions in terms of the char-
acteristic exponent 1 such that the SDE has a unique weak solution which is a rich Feller
process.

4.7 Corollary Let (Lt)t>0 be a one-dimensional Lévy process with characteristic exponent .
Suppose that 1 has a holomorphic extension U to Q = Q(m*,0) for some m™ >0, 0 € (0,7/2)
which satisfies the following two growth conditions:

(i). There exist a € (0,2], B € (1,2) and constants c1,c2 >0 such that
ReW(z) > c1|Rez|’ forall |z]>1, zeQ
and
[W(2)| < ca(l2]* T jz<ay + |Z|B]l{|z|>l}): z€Q.
(ii). There exists a constant c3 >0 such that W' (2)| < cs|2|®™ for all z € Q, |2 > 1.

Let b: R — R and o : R - R be Hélder continuous bounded functions such that
L. . U
0<o” :=inf|o(z)| <suplo(z)| =10 < oo.
zeR zeR

Then there exists a unique weak solution to the SDE
dXt =b(Xt_)dt+O'(Xt_)st, X() =x, (6)
and the solution is a rich Lévy-type process with symbol q(x,&) = —ib(z)€ + (o (x)E). The

solution has the following additional properties:

(i). The transition probability p: (0,00) x R x R — [0, 00) 4s continuous, differentiable with
respect to t and satisfies the heat kernel estimates from Theorem 4.1 with vo(b(x),o(x)) =
min{a, 1}, Yoo (b(z),0(x)) = B and any m € (0,m*/cY).

(ii). C(R) is a core for the generator (L, D(L)) of (X:)s0 and C%(R) ¢ D(L). Moreover,
p is a fundamental solution to the Cauchy problem for the operator 0y — L.

(iil). (X¢)ss0 is the unique solution to the (L,C(RY))-martingale problem.

(iv). The associated semigroup has the strong Feller property.

Corollary 4.7 applies, in particular, to Lévy processes (L¢):0 with the following charac-
teristic exponents:

(i). (isotropic stable) ¥(€) = €], £ € R, a € (1,2],

(ii). (relativistic stable) (&) = (¢ + 0°)*/* = 0, €€ R, 0> 0, e (1,2),

(iii). (Lamperti stable) ¥(€) = (|€* + 0)a = (0)a, € € R, 0 > 0, a € (1/2,1), where (7)q =
I'(r + «)/T(r) denotes the Pochhammer symbol,

(iv). (truncated Lévy process) ¥ (&) = (|€]* + 0%)*/? cos(a arctan(o [¢])) - 0%, € € R, € (1,2),
0>0,

(v). (normal tempered stable) (&) = (k2 + (&€ —ib)?)*/? = (k% = b*)*? €€ R, a€ (1,2), b >0,
|| > 18]
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Up to know, this result was only known for the particular case that (L¢):»0 is an isotropic
stable process, see Knopova & Kulik [16, 22] and the references therein.

We close this section with an existence result for Lévy-type processes with symbols of
variable order.
4.8 Theorem Let I € R™ an open convex set and g : RY > C, B €1, be a family of continuous
negative definite functions satisfying (4.1)-(4.1) on
Q(9) :={ze C\{0};argz e (-9,9) u(r -, 7 +9)}
for some 9 € (0,7/2). Assume, in addition, that

(LTP4’) The partial derivative Biﬁj\l’g(r) exists for all v € R and extends holomorphically to

Q) for all j € {1,...,n} and o € I. There exist an increasing slowly varying (at o)
function €: (0,00) — (0,00) and a constant cs4 >0 such that

‘ 05;V5(2)
Vs (z)

<ca(1+2(|2])) forall zeQ(9), j=1,...,n,

and

(S) (vp)per satisfies the sector condition, i. e. there exists a constant ¢ >0 such that

| Im Ug(z)| < ¢ Re ¥a(2)| for all zeQ(9), Bel.

Then for any two Hélder continuous mappings « : RY — (0,1] and B : R? > I such that

ob = inf, s a(z) > 0, there exists a rich Lévy-type process (X )iso0 with symbol

a(x,€) = (Yay (€)', z,6eR™

The process (X¢)i=0 has the following properties:

(i). The transition probability p: (0,00) x R x R — [0, 00) is continuous, differentiable with
respect to t and satisfies the heat kernel estimates from Theorem 4.2 with Yo (a(x), B(x)) =
a(2)70(8(2)), Feo (a(), B(x)) := a(x) 70 (B(x)) andm = 0; here yo(B(x)) and v (B(x))
are the mappings associated with (Yg)ger by the growth condition (4.1).

(il). CZ(RY) is a core for the generator (L, D(L)) of (X¢ )0 and CZ(R?Y) € D(L). Moreover,
p s a fundamental solution to the Cauchy problem for the operator 0; — L.

(iii). (X¢)es0 45 the unique solution to the (L,C(RY))-martingale problem.

(iv). The associated semigroup has the strong Feller property.

In dimension d = 1 Theorem 4.8 remains valid if we just assume that (¢3)ges satisfies (4.1),
(4.1), (4.8) and (S), i.e. we can drop the assumption of rotational invariance.

Acknowledgements I would like to thank René Schilling for helpful comments and sugges-
tions.
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