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SCHAUDER ESTIMATES FOR POISSON EQUATIONS ASSOCIATED WITH
NON-LOCAL FELLER GENERATORS

FRANZISKA KUHN

ABSTRACT. We show how Holder estimates for Feller semigroups can be used to obtain regularity
results for solutions to the Poisson equation Af = g associated with the (extended) infinitesimal
generator of a Feller process. The regularity of f is described in terms of Hélder-Zygmund
spaces of variable order and, moreover, we establish Schauder estimates. Since Holder estimates
for Feller semigroups have been intensively studied in the last years, our results apply to a wide
class of Feller processes, e.g. random time changes of Lévy processes and solutions to Lévy-
driven stochastic differential equations. Most prominently, we establish Schauder estimates for
the Poisson equation associated with the fractional Laplacian of variable order. As a by-product,
we obtain new regularity estimates for semigroups associated with stable-like processes.

1. Introduction

Let (X;)s0 be an Révalued Feller process with semigroup P;f(z) = E®f(X;), » € R% In this
paper, we study the regularity of functions in the abstract Holder space

Pf(x) - f(@)| _ oo}
t )

the so-called Favard space of order 1, cf. [8, 12]. Tt is known that for any f € Fj the limit
E*f(Xy) - f(2)
t

Fi:={f¢ Bb(Rd); sup sup
te(0,1) xeR?

Acf (@)= lim (1)

exists up to a set of potential zero, cf. [1], and this gives rise to the extended infinitesimal generator
A, which maps the Favard space F} into the space of bounded Borel measurable functions B, (R9),
cf. Section 2 for details. It is immediate from Dynkin’s formula that A. extends the (strong)
infinitesimal generator A of (X;)¢»0, in particular F; contains the domain D(A) of the infinitesimal
generator. We are interested in the following questions:

e What does the existence of the limit (1) tell us about the regularity of f € F; 7 In particular:
How smooth are functions in the domain of the infinitesimal generator of (X¢)¢s0?

e If f € F} is a solution to the equation A.f = g and g has a certain regularity, say g is
Hélder continuous of order § € (0,1), then what additional information do we get on the
smoothness of f7

Our aim is to describe the regularity of f in terms of Holder spaces of variable order. More precisely,
we are looking for a mapping  : R% — (0,2) such that

feF, = fe Gg(')(Rd)
where GZ(') (R%) denotes the Holder-Zygmund space of variable order equipped with the norm

[f(z+2h) -2f(z+h)+ f(z)]
Jllero = || flloo + sup sup )
H Heb (R4) H H 2eR 0<|h<1 |h|/{(a:)

cf. Section 2 for details. If A.f =g ¢ Gg(Rd) for some § > 0 then it is natural to expect that f
“inherits” some regularity from g, i.e.

5 d )+ d
feF,Acf=geC(RY) = feGZ() ?(R%)
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for some constant ¢ = () > 0. Moreover, we are interested in establishing Schauder estimates,
i.e. estimates of the form

[flexo ray S CUL oo + [ Acflleo)  and [ flgrervegay € C'([floo + [Acfleg ay)- (2)

The toy example, which we have in mind, is the stable-like Feller process (X;):»0 with infinitesimal
generator A,

Af@) = caator [ (Fa+) = 1@) =y V5@ o (D) T

e W [EOC®RD. (3)

which is, rougly speaking, a fractional Laplacian of variable order, i.e. A = —(-=A)*(*)/2_ Intuitively,
(X1t)s=0 behaves locally like an isotropic stable Lévy process but its index of stability depends on
the current position of the process. In view of the results in [24, 26], it is an educated guess that
any function f € D(A) is “almost” locally Holder continuous with Holder exponent «f(-), in the
sense that

|f(z+2h) = f(z+h) + f(z)] < Cf |p|*®=, z,heR? (4)

for any small € > 0. We will show that this is indeed true and, moreover, we will establish Schauder
estimates for the equation —(~A)*(®)/2f = g cf. Theorem 4.1 and Corollary 4.3.

Let us comment on related literature. For some particular examples of Feller generators A there
are Schauder estimates for solutions to the integro-differential equation Af = g available in the
literature; for instance, Bass obtained Schauder estimates for a class of stable-like operators
(v(z,dy) = c(z,y)|y| > with ¢ : R? - (0,00) bounded and inf, ,c(z,y) > 0) and Bae & Kass-
mann [2] studied operators with functional order of differentiability (v(z,dy) = c(x,y)/(|y|%(y))
for “nice” ). The recent article [24] establishes Schauder estimates for a large class of Lévy
generators using gradient estimate for the transition density p; of the associated Lévy process.
Moreover, we would like to mention the article [26] which studies a complementary question —
namely, what are sufficient conditions for the existence of the limit (1) in the space Co (R?) of
continuous functions vanishing at infinity — and which shows that certain Holder space of variable
order are contained in the domain of the (strong) infinitesimal generator.

This paper consists of two parts. In Section 3 we show how regularity estimates on Feller semigroups
can be used to establish Schauder estimates (2) for functions f in the Favard space of a Feller process
(X¢)t20. Our first result, Proposition 3.1, states that if the semigroup Pu(z) = E*u(X;) satisfies

| Prulesmay <t ulee,  te(0,1), ueBy(RY)
for some 3 €[0,1) and & > 0, then F; ¢ C5(R?) and
[ Flegwray S C(If oo + [Acflloe)  forall feFy.

Proposition 3.1 has interesting applications but it does, in general, not give optimal regularity
results but rather a worst-case estimate on the regularity of f € Fy; for instance, if (X;)so is
an isotropic stable-like process with infinitesimal generator A = —(-=A)*(*)/2 ¢f. (3), then an
application of Proposition 3.1 shows

|f(x+2h) = 2f(x + h) + f(x)] < Cf |h|*, z,heR?, feD(A)

where ag := inf e @(2), and this is much weaker than the regularity (4) which we would expect.
Our main result in Section 3 is a “localized” version of Proposition 3.1 which takes into account the
local behaviour of the Feller process (X;):»o and which allows us to describe the local regularity
of a function f € Fy, cf. Theorem 3.2 and Corollary 3.4. As an application, we obtain a regularity
result for solutions to the Poisson equation A, f =g with g € G‘g(Rd), cf. Theorem 3.5.

In the second part of the paper, Section 4, we illustrate the results from Section 3 with several
examples. Applying the results to isotropic-stable like processes, we establish Schauder estimates
for the Poisson equation —(-A)*®)/2f = ¢ associated with the fractional Laplacian of variable
order, cf. Theorem 4.1 and Corollary 4.3. Schauder estimates of this type seem to be a novelty in
the literature. As a by-product of the proof, we obtain Holder estimates for semigroups of isotropic
stable-like processes which are of independent interest, see Section 6.1. Furthermore, we present
Schauder estimates for random time changes of Lévy processes (Proposition 4.5) and solutions to
Lévy-driven SDEs (Proposition 4.7) and discuss possible extensions.



SCHAUDER ESTIMATES FOR EQUATIONS ASSOCIATED WITH FELLER GENERATORS 3
2. Basic definitions and notation

We consider the Euclidean space R? with the canonical scalar product z -y := Z?zl x;y; and the

Borel o-algebra B(R?) generated by the open balls B(x,r) and closed balls B(x,r). As usual,
we set & Ay = min{x,y} and z vy = max{z,y} for x,y € R. If f is a real-valued function,
then supp f denotes its support, Vf the gradient and V2f the Hessian of f. For two stochastic
processes (X¢)wo and (Y;)0 we write (Xi)iso0 d (Yi)es0 if (Xi)is0 and (Y7)is0 have the same
finite-dimensional distributions.

Function spaces: By(R?) is the space of bounded Borel measurable functions f : R - R. The
smooth functions with compact support are denoted by C(R?), and Co(R?) is the space of
continuous functions f : R - R vanishing at infinity. Superscripts k € IN are used to denote
the order of differentiability, e.g. f € CX (R?) means that f and its derivatives up to order k are
Coo (R%)-functions. For U ¢ R? and a: U — [0, 00) bounded we define Hélder-Zygmund spaces of
variable order by

Ak
e (U) = {f eC(U);VzeU: sup 184f ()] < oo}
o<hj<t  |R]*@)
x+heU
" ALS ()
. A7 f(x
Ga()U::{ e Ch(U); e = su )|+ su h<oo}
SOW) = {1 QW oy =smpli@ls s RS
x+helU
where k € IN is the smallest number which is strictly larger than |a]e and
Apf(x) = f(z+h) - f(z), W)= A AR (), m>2, (5)

are the iterated difference operators. Moreover, we set
af- a()+e a()- max{a(-)-¢,0
Oy = O (W) and €O (U) = N errO==0 ().
e>0 e>0
Clearly,
Oty ety e () and €OW) e ().
If a(z) = a is constant, then we write C*(U) and Cg(U) for the associated Holder—Zygmund
spaces. For U = R? and o ¢ IN the Hélder Zygmund space G?(Rd) is the “classical” Hélder space
C&(R?) equipped with the norm

0° f(x) - 0° f(y)]
| - ylole]

L)
ooy = [ fleo+ 3 30 10°f]oe + max sup

7=0 geNd BelNG z+y
(] 1B=La)

|7

)

cf. [43, Section 2.7]. For a =1 it is possible to show that C}(R?) is strictly larger than the space
of bounded Lipschitz continuous functions, cf. [42, p. 148|, which is in turn strictly larger than
CL(RY).

Feller processes: A Markov process (X;)so is a Feller process if the associated transition semigroup
P f(x):=E*f(X:) is a Feller semigroup, see e.g. [5, 16] for details. Without loss of generality, we
may assume that (X;):0 has right-continuous sample paths with finite left-hand limits. Following
[12, I1.5.(b)] we call

Fy:=F{ i={ f e By(R); sup MH < 00 (6)
te(0,1) t o
the Favard space of order 1. The (strong) infinitesimal generator (A, D(A)) is defined by
Pf-
D) = {7 € Cu(®DY; 39 € Cu(RY s ting | PLZE )=o)

Af;:g%y, FeD(A).

If D(A) is rich, in the sense that C°(R?) ¢ D(A), then a result by Courrége & van Waldenfels,
see e. g. [5, Theorem 2.21], shows that Al (gay is a pseudo-differential operator,

Af(@) = =a(@.D)f (@)=~ [ a(@. Qe f(©dt,  feCT®Y), xR (7)
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where f(&) := (2m)™ [ra €7 f(2) dz is the Fourier transform of f and

0(@.€) = a(2,0) = b(a) £+ 56 Q@)+ [ (1= wiy €l (W) viady).  (®)

is a continuous negative definite symbol. If (7) holds, then we say that (X;);0 is a Feller
process with symbol q. We assume from now on that ¢(z,0) = 0. For each fixed z ¢ R,
(b(z),Q(x),v(x,dy)) is a Lévy triplet, i.e. b(z) € RY, Q(z) e R¥? is symmetric positive semidefi-
nite and v(z,-) is a measure on R%\{0} satisfying fy¢0 min{1,|y|?} v(x,dy) < co. The symbol ¢ has
bounded coefficients if

sup (@) +1Q()| + [ min(L ) v(a.dy) ) < oo

y=0

by [40, Lemma 6.2], ¢ has bounded coefficients if, and only if, sup,cga supjc; [q(,§)[ < oo, If
(X}¢)i0 is a Feller process with symbol ¢ then

P (sup|Xs—a:|>7’) <ect sup sup |q(y,€)|, r>0,t>0, zeR? (9)

s<t ly-w|<r [¢|<r=
holds for an absolute constant ¢ > 0; this maximal inequality goes back to Schilling [38], see also [5,
Theorem 5.1] or [19, Lemma 1.29]. If the symbol ¢(&) = q(«,&) of a Feller process (L:)+o does not
depend on z € R?, then (L;):s0 is a Lévy process. By [5, Theorem 2.6] this is equivalent to saying
that (Lt)¢o has stationary and independent increments. Later on, we will use that any Feller
process (X} )0 with infinitesimal generator (A, D(A)) solves the (A, D(A))-martingale problem,
ie.

M, = F(X2) - f(Xo) - /OtAf(Xs)ds

is a P*-martingale for any = € R? and f € D(A). Our standard reference for Feller processes are
the monographs [5, 16], and for further information on martingale problems we refer the reader to
[13, 15].
In the remaining part of this section we define the extended infinitesimal generator and state some
results which we will need later on. Following [36] we define the extended (infinitesimal) generator
A, in terms of the A-potential operator Ry, that is, f e D(A.) and g = A.f if and only if
(i) feBy(R?) and g is a measurable function such that | Rx(|g|)]e < oo for some (all) A > 0,
(ii) f=Rx(Af-g) for all A>0.
The mapping g = A.f is defined up to a set of potential zero, i.e. up to a set B € B(R?) which
satisfies E* f(o,oo) 15(X;)dt =0 for all z € R%. We will often choose a representative with a certain
property; for instance if we write “A.f is continuous” this means that there exists a continuous
function g such that (i),(ii) hold. In abuse of notation we set

| Acflloo :=inf{c > 0;]Acf| < c up to a set of potential zero}.

Clearly, the extended infinitesimal generator (A.,D(A.)) extends the (strong) infinitesimal gen-
erator (A, D(A)). The following result is essentially due to Airault & Foéllmer [1] and shows the
connection to the Favard space of order 1, cf. (6).

2.1. Theorem Let (X;)i»0 be a Feller process with semigroup (P;)iso0 and extended generator
(Ae, D(A.)). The associated Favard space Fy of order 1 satisfies

Fr={feD(Ac); | Acflloo < 00}
If f € Fy then

1
sup —[|Pif = fleo = [Aeflloo (10)
te(0,1) t

and, moreover, Dynkin’s formula
E*f(X,) - f(2) :]EI(/O Aef(XS)ds) (11)
holds for any x € R? and any stopping time T such that E*T < oo.

The next corollary shows how the Favard space can be defined in terms of the stopped process
Xinrz. It plays an important role in our proofs since we will frequently use stopping techniques.



SCHAUDER ESTIMATES FOR EQUATIONS ASSOCIATED WITH FELLER GENERATORS 5

2.2. Corollary Let (X;)s0 be a Feller process with semigroup (P;)is0, extended generator (A., D(A.))
and symbol q. Denote by
72 = 1nf{t > 0;| Xy — x| > r}
the exit time of (X;)»0 from the closed ball B(x,r). If g has bounded coefficients, then the following
statements are equivalent for any f € By(R?).
(i) feF1, e feD(Ae) and supy(o 1yt | Pef = floo = [Aef oo < 00,
(i) There exists r >0 such that
1 x
K, (f) = sup - sup [E*f(Xinrz) = f(2)] < 00.
te(0,1) ¥ zeRd
If one (hence both) of the conditions is satisfied, then

E? f(Xypre) —
A (o) = tim ¢ t{') /()

up to a set of potential zero for any r > 0. In particular, |Aef| e < K- (f) for r>0.

(12)

For the proof of Theorem 2.1 and Corollary 2.2 and some further remarks we refer to the appendix.

3. Main results

Let (X¢)s0 be a Feller process with semigroup (P;)s»0. Throughout this section,

<)

FX=F = {f e By(RY); sup
te(0,1)

is the Favard space of order 1 associated with (X})»0. By Theorem 2.1, we have
Fr={feD(Ae);[Aef oo < 00}

where A, denotes the extended infinitesimal generator. The results which we present in this section
will be proved in Section 5.

Our first result, Proposition 3.1, shows how regularity estimates for the semigroup (P;):>0 can be
used to obtain Schauder estimates of the form

Ifleyray < C(If oo + [ Acf o), f e Fr.

3.1. Proposition Let (X;)iso be a Feller process with semigroup (Py)is0, extended generator
(Ae, D(Ae)) and Favard space Fy. If there exist constants M >0, T >0, k >0 and 8 € (0,1)
such that

| Prulles ey < Mt ufl oo (13)

for all u e By(R?) and t € (0,T], then
Fy c G5 (RY)
and
Iflesray < CUIflloo + [Aeflleo),  feFr,
for some constant C = C(T,M, k, ().

Since the domain D(A) of the (strong) infinitesimal generator of (X} )0 is contained in Fy, Propo-
sition 3.1 gives, in particular, D(A) c CF (R?).

Proposition 3.1 is a useful tool but it does, in general, not give optimal regularity results. Since
Feller processes are inhomogeneous in space, the regularity of f € F; will, in general, depend on
the space variable z, e. g.

AT f ()] = |f (x +2R) = 2f (z + h) + f(2)| < CI[*®, b <1, (14)

and therefore it is much more natural to use Hélder—Zygmund spaces of variable order to describe
the regularity; this is also indicated by the results obtained in [26].

Our second result, Theorem 3.2, shows how Holder estimates for Feller semigroups can be used to
establish local Holder estimates (14). Before stating the result, let us explain the idea. Let (X} )0
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be a Feller process with symbol ¢ and Favard space F;*, and fix x € R, Let (Y;)s0 be another
Feller process which has the same behaviour as (X} ):»o in a neighbourhood of z, in the sense that
its symbol p satisfies

p(z8) =q(8),  zeB(x,0),EcR? (15)

for some 6 > 0. The aim is to choose (Y;)¢»0 in such a way that its semigroup (7}):o satisfies a
“good” regularity estimate

|Tulex (ray < Mt oo, u e By(R);
here “good” means that « is large. Because of (15) it is intuitively clear that
B f(Xy) - f(2)|~|E*f(Y:) — f(2)] for z close to x and “small” t. (16)

If x is a truncation function such that 1p(, ) < X < Lp(y,2:) for small € > 0, then it is, because of
(16), natural to expect that for any f € F;X the truncated mapping g := f-x is in the Favard space
F}Y associated with (Y;)ss0, i.e.

sup_sup ¢ [B*(f - x) (V) = (f - X)(2)] < oo.
te(0,1) zeR4

Since, by Proposition 3.1, g € F ¢ Cy (R%), and g = f in a neighbourhood of z, this entails that
f() is k-Hélder continuous in a neighbourhood of z. Since & = r(z) depends on the point = € RY,
which we fixed at the beginning, this localizing procedure allows us to obtain local Holder estimates

(14) for f.

3.2. Theorem Let (X;)s0 be a Feller process with extended generator (Ae,D(Ae)) and Favard
space F{X such that

Acf(2)=~4(2,D)[(2),  [eCF(RY), zeR",
for a continuous negative definite symbol q, cf. (7). Let x € R and § € (0,1) be such that there
exists a Feller process (Y;(x))tzo with the following properties:
(C1) The infinitesimal generator (L), D(L®))) of(Y,;(x))tzo equals when restricted to C° (RY)

a pseudo-differential operator with negative definite symbol p™*),

p(‘”)(zf) = —ib(m)(z) E+ [ . (1 —eWE 4 iy~§]l(0,1)(|y|)) V(z)(z,dy), z,€ e RY

YyF
p*) has bounded coefficients and
(28 =q(2,6)  forall £eR? |z-a2]< 45, (17)

(C2) The (L™, C(RY))-martingale problem is well-posed.
(C3) There exist constants M(x) > 0, x(z) € [0,2] and B(z) € (0,1) such that the semigroup
(Tt(m))tzo associated with (Yt(m))tzo satisfies

1Tl gor gy < M (@) Ju] oo

for all u e By(RY), te(0,1).
If f e X and o(z) € [0,1] are such that

- l+o(z) ()
flegercaam <o and - sup [ W00 edy) < oo (18)
then
(27 @) < CW D (1F oo + 1A o+ Ul eger aasn)) (19)

for all |h| < /2. The finite constant C' > 0 depends continuously on M (x) € [0,00), B(x) € [0,1)
and K(x) € [0,00),

K(a) = sup (B9 () + [ min{LlyR)v@ () )+ sup [ minflyl#0, 1300 (2 dy).
zeR y#0 |z—z|<48 Jy#0
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3.3. Remark (i) The assumption f € Cf(x)(B(mA&)) is an a-priori estimate on the regularity of
f. If the semigroup (P:)ss0 of (X¢)iso satisfies a regularity estimate of the form (13), then such
an a-priori estimate can be obtained from Proposition 3.1. Note that, by (18), there is a trade-
off between the required a-priori regularity of f and the roughness of the measures v(*)(z,dy),
z € B(x,40). If the measures v(*)(z,dy) only have a weak singularity at y = 0, in the sense that

sup [ [yl vz, dy) < oo,
|z—z|<46 Jlyl<1

then we can choose p(z) = 0, i.e. it suffices that f is continuous. In contrast, if (at least) one
of the measures has a strong singularity at y = 0, then we need a higher regularity of f (in a
neighbourhood of x).

(ii) It is not very restrictive to assume that (Yt(m))tzo has bounded coefficients since (Y;(w))tzo
is only supposed to mimic the behaviour of (X;):s¢ in a neighbourhood of z, cf. (17). We are,
essentially, free to choose the behaviour of the process far away from z. In dimension d =1 it is,
for instance, a natural idea is to consider

q(x—46,¢), z<x-40,

P (2,€) = a(2,€), |2 — 2| < 46;
gz +46,¢), z>x+40

note that p(*) has bounded coefficients even if ¢ has unbounded coefficients.
(iii) Condition (C2) is automatically satisfied if C2°(R?) is a core for the infinitesimal generator

of (Yt(x))tzo, see e.g. [17, Proposition 3.9.3] or [19, Theorem 1.38].

(iv) It is possible to extend Theorem 3.2 to Feller processes with a non-vanishing diffusion part.
The idea of the proof is similar but we need to impose stronger assumptions on the regularity on
[, e.g. that f|p( 4s) is differentiable.

As a direct consequence of Theorem 3.2 we obtain the following corollary.

3.4. Corollary Let (X¢)ws0 be a Feller process with extended generator (Ae,D(A.)) and symbol
q. If there exist U € R% open, § >0 and o: U — [0,1] such that for any x € U the assumptions of
Theorem 3.2 hold, then the Favard space of order 1 satisfies

CeO(U) n Fy c €*O(U).
If additionally
Su[IJ)(M(.T) +K(x))<oo sugﬁ(x) <1 (20)
TE xTe
then Gg(')(U) nFkc 6:(‘)(U) and there exists a constant C >0 such that
[lesor @ € C (1o + 1AF oo + 1 flesir ) Jor all fe €O U)n Fy; (21)

in particular, the the infinitesimal generator (A, D(A)) satisfies Gf(')(U) NnD(A) ¢ GZ(')(U) and
(21) holds for any f € Gg(‘)(U) nD(A).

In many examples, see e.g. Section 4, it is possible to choose the mapping ¢ in such a way that
F c Gs(')(U); in this case, Corollary 3.4 shows that Fy ¢ C*C)(U) (resp. F} ¢ Gg(')(U)) and
the Schauder estimate (21) holds for any function f € Fy. In our applications we will even have
||f|\e§(-)(U) <c(|[flloe + [|Aef]o) and therefore (21) becomes

1Fleso oy <€ (fle + |Afl) — forall feR.

In Section 4 we will apply Corollary 3.4 to isotropic stable-like processes, i. e. Feller processes with
symbol of the form gq(z, €) = [€]*®). The study of the domain D(A) of the infinitesimal generator A
is particularly interesting since A is an operator of variable order. We will show that any function
f € D(A) satisfies the Holder estimate of variable order

AR (@) < Celh™ ([ flw + |Af ), [l <1, e RY,

for € > 0, cf. Theorem 4.1 for the precise statement.
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Our final result in this section is concerned with Schauder estimates for solutions to the equation
A.f = g for Holder continuous mappings g. To establish such Schauder estimates we need additional
assumptions on the regularity of the symbol and improved regularity estimates for the semigroup
of the “localizing” Feller process (Y;(x))tzo in Theorem 3.2.

3.5. Theorem Let (X;)is0 be a Feller process with extended generator (Ae,D(A.)) and Favard
space F{X such that

Acf(z)=-a(,D)f(z),  feCZ(RY), zeR,
for a continuous negative definite symbol q. Assume that there exists § € (0,1) such that for any
x € RY there exists a Feller process (Y;(GC))QO with symbol

p(z)(z,f):—z’b(x)(z)-£+/0(1—eiy'5+iy-§]l(0,1)(|y|))V(I)(z,dy), z,EeRY, (22)

YF

satisfying (C1)-(C3) in Theorem 3.2. Assume additionally that the following conditions hold for
absolute constants C1,Cy > 0.

(S1) For any x,z € R? there exists ™) (z) € (0,2) such that
V) (z,dy) < Caly O dy - on B(0,1)

and 0 < inf, g a(®(2) < SUD, ,eRd a®)(2) < 2.
(S2) There exists 6 € (0,1] such that

D (2) =D (z 4 h)| < Calhl®,  x,2,h e R, (23)

and the following statement holds true for any r € (0,1) and z,z e R%: Ifu:RY > R is a
measurable mapping such that

lu(y)| < ey min{|y]*” 1Y, yeRY,

for some ¢, >0, then there exist Cs ., >0 and H, >0 (not depending on u, z,z) such that

/ u(y) v® (z,dy) - f u(y) v (z + h, dy)| < Cs ey |h)° for all |h| < H,. (24)

ere exists A > 0 such that the semigroup >0 Of the Feller process >0 satisfies
S3) Th A >0 such that th TS) 150 of the Fell VAR fi
1Tl grvmo ay € M (@) Juleymay,  we €RY), te (0,1), (25)

for any x € RY and X\ € [0,A]; here M (), k(x) and B(x) denote the constants from (C3).
(S4) The mapping r : R — (0, 00) is uniformly continuous and bounded away from zero, i. e.
Ko = inf g k(x) > 0.
(S5) It holds that

- (@) (@) -
sup M(x) < sup B(z) <1 sup (|b (2)|+ /I;J\Zl v (z,dy)) < o0.

reRa reR4 x,zeR4
Let 0:R% - [0,2] be a uniformly continuous function satisfying

o:=inf inf (1+o(z)- oz(x)(z)) > 0. (26)

zeR4 |2—z[<45
If f e F{X is such that f € Gf(‘)(Rd) and
Acf = g e C(R?)
for some A € [0,A], then f € Cl(f(')min{e’)"”})*(Rd), i.e.

f c m eg(~)+min{9,)\,o}—6(Rd)' (27)
e€(0,k0)

Moreover, the Schauder estimate
17 ggomntonr-e ey < Ce (14e Fleyn + 17 les0 ) (28)

holds for any € € (0,kq) and some finite constant C. which does not depend on f, g.
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3.6. Remark (i) In our examples in Section 4 we will be able to choose p in such a way that
a®)(2) - o(2) is arbitrary small for 2 € R and z € B(x,46), and therefore the constant o in (26)
will be close to 1. Noting that 0 < 1, it follows that we can discard ¢ in (27) and (28) i.e. we get

feerOminloAs(rdy 2 ¢ (0, k). (29)

We would like to point out that it is, in general, not possible to improve this estimate and to
obtain that f € GZ(‘)M_E(]RCI), € €(0,k0). To see this consider a Feller process (X} )0 with symbol
q(x,8) =ib(x)E, x,€ € R, for a mapping b € Cy(RY) with inf, b(x) > 0. If we define

z 1
flx) ::fo @dy, zeRY,

then A.f =bf' =1 is smooth. However, the regularity of f clearly depends on the regularity of b,
regularity of f ~ 1+ regularity of b

which means that f is less regular than A.f.

(ii) It suffices to check (25) for A = A; for A € (0, A) the inequality then follows from the interpolation
theorem, see e. g. [43, Section 1.3.3] or [34, Theorem 1.6], and the fact that €] (R?) can be written
as a real interpolation space, see [43, Theorem 2.7.2.1] for details.

(iii) (24) is an assumption on the regularity of z = v (z,dy). If v(*)(2,dy) has a density, say
m(m)(z, y), with respect to Lebesgue measure, then a sufficient condition for (24) is

. o) ()41 x T
S min{L ™ Oy m ) () = m (2 ) dy < G bl

(iv) Condition (S1) is not strictly necessary for the proof of Theorem 3.5; essentially we need
suitable upper bounds for

Jy O Gy and [z dy)

<|ly|[<R

where 0 <7< R< 1, z,z € R and v € (0, 3).
(v) In (S2) we assume that € < 1; this assumption can be relaxed. To this end, we have to replace
in (23) and (24) the differences of first order,

f u(y) 1/(3”)(27 dy) - f u(y) V(m)(z +h,dy)|,

by iterated differences of higher order, cf. (5). This makes the proof more technical but the idea
of the proof stays the same.

b&@) (2) =6 (2 +h)| and

The proofs of the results, which we stated in this section, will be presented in Section 5.

4. Applications

In this section we apply the results from the previous section to various classes of Feller processes.
We will study processes of variable order (Theorem 4.1 and Corollary 4.3), random time changes
of Lévy processes (Proposition 4.5) and solutions to Lévy-driven SDEs (Proposition 4.7). Our aim
is to illustrate the range of applications, and therefore we do not strive for the greatest generality
of the examples; we will, however, point the reader to possible extensions of the results which we
present. We remind the reader of the notation

e?(')Jr(Rd) = G?(')*E(]Rd) e?(')*(Rd) = eznax{a(')*f’o}(ﬂd)

e>0 e>0

which we introduced in Section 2.

The first part of this section is devoted to isotropic stable-like processes, i. e. Feller processes (X3 )¢»0
with symbol of the form ¢(z,¢) = |¢|*(®). A sufficient condition for the existence of such a Feller
process is that a : RY - (0,2] is Hélder continuous and bounded from below, cf. [19, Theorem 5.2].
If a(R?) c (0,2) then the infinitesimal generator A of (X;)so satisfies

1

AF@) = canen [ @+ 0) = F@) =0 TF@Lon (D) prmacy dvr f €O (R,
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which means that A is a fractional Laplacian of variable order, i.e. A = —(~A)*)/2. This makes
A — and hence the stable-like process (X;):»0 — an interesting object of study. To our knowledge
there are no Schauder estimates for the Poisson equation Af = g available in the existing literature.
Using the results from the previous section, we are able to derive Schauder estimates for functions
f in the Favard space F; (and, hence in particular, for f € D(A)), cf. Theorem 4.1, as well as
Schauder estimates for solutions to Af = g, cf. Corollary 4.3 below.

4.1. Theorem Let (X,);s0 be a Feller process with symbol q(z,&) = |€|*®) for a Hélder continuous
function o : R - (0,2) such that

0<ay = inf a(zr) < sup a(x) <2.
zeR4 2eR4

The associated Favard space Fy of order 1, cf. (6), satisfies
Fc Gg()_(Rd)
For any € € (0,ar) there exists a finite constant C' = C(g,a) such that

[flea0re(gay € OUSlee + [Acfllee),  f e B, (30)

where A. denotes the extended generator of (X¢)iso. In particular, (30) holds for any f in the
domain D(A) of the (strong) generator of (X¢)ts0, and D(A) ¢ G?(')f(Rd).

4.2. Remark (i) Theorem 4.1 allows us to obtain information on the regularity of the transition
density p(t,z,7) of (Xt)so. Since p(t,-,y) € D(A) for each ¢t >0 and y € R, cf. [19, Corollary 3.6],
Theorem 4.1 shows that p(t,-,y) € G?(')f(Rd); in particular,  — p(t,z,y) is differentiable at any
x € {a>1}. Moreover, (0; — Az )p(t,x,y) = 0 entails by [19, Theorem 3.8] that

Hp(ta K y)”@‘;(')‘E (R4) < Ct_l_d/aL; te (0, T)7 Yy € Rd,

for a finite constant C = C(g,«, T). Some related results on the regularity of the transition density
were recently obtained in [9].

(ii) Theorem 4.1 gives a necessary condition for a function f € Cs (R?) to be in the domain D(A) of
the infinitesimal generator; sufficient conditions were established in [26, Example 5.5]. Combining
both results it is possible to show that D(A) is an algebra, i.e. f,g € D(A) implies f-g € D(A),
and that

A(f-9) = fAg+gAf+T(f,9),  f,9€D(A),
see [24, Proof of Theorem 4.3(iii)] for the idea of the proof; here

L(.0)() =€t [+ 0) = @) (o ) = 0()) sy

is the so-called Carré du Champ operator, cf. [7, 11], and v(z, dy) = cd)a(I)|y|’d”l(“7) dy is the family
of Lévy measures associated with the symbol |§|”‘(“’) via the Lévy—Khintchine representation.

(iii) Theorem 4.1 can be generalized to a larger class of “stable-like” Feller processes, e. g. relativis-
tic stable-like processes and tempered stable-like processes, cf. [19, Section 5.1] or [22, Example
4.7] for the existence of such processes. In order to apply the results from Section 3 we need two
key ingredients: general existence results — which ensure the existence of a “nice” Feller process
(Y2)ts0 whose symbol is “truncated” in a suitable way, cf. Step 1 in the proof of Theorem 4.1 —
and certain heat kernel estimate which are needed to establish Holder estimates for the semigroup;
in [19] both ingredients were established for a wide class of stable-like processes.

As a corollary of Theorem 4.1 and Theorem 3.5 we will establish the following Schauder estimates
for the elliptic equation Af = g associated with the infinitesimal generator A of the isotropic
stable-like process.

4.3. Corollary Let (X;)is0 be a Feller process with infinitesimal generator (A, D(A)) and symbol
q(z, &) = |€]*®) for a mapping a : R - (0,2) which satisfies
O<ayp:= inf < sup a(z)<2 (31)

zeRY  LeRd
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and o € C) (R?) for some vy € (0,1). If f € D(A) is such that
Af = geCy(RY)

for some XA >0, then f € Gl()a(')Jdnin{)"'Y})_(IRd). For any ¢ € (0,ay) there exists a constant Cc > 0
(not depending on f, g) such that

[ laermmnirni-s gay < Ce (14F | guminin ay + 1fllo ) - (32)

It is possible to extend Corollary 4.3 to a larger class of “stable-like” processes, see also Re-
mark 4.2(ii). Let us give some remarks on the assumption that o e C} (R?) for v € (0,1).

4.4. Remark (i) Let a be Lipschitz continuous function satisfying (31). Since a € €;75(R¢) for
any € € (0,1), the Schauder estimate (32) holds with v = 1 -¢/2 and € ~ £/2, and this entails
that (32) holds with v = 1. This means that Corollary 4.3 remains valid for Lipschitz continuous
functions (with v =1 in (32)).

(ii) Ifae C;’(Rd) for v > 1, we can apply Corollary 4.3 with v = 1 but this gives a weaker regularity
estimate for f than we would expect; this is because we lose some information on the regularity of
a. The reason why we have to restrict ourselves to 7 € (0,1) is that two tools which we need for the
proof (Theorem 3.5 and Proposition 6.2) are only available for v € (0,1). However, we believe that
both results are valid for v > 0, and that, hence, that the assumption v € (0,1) in Corollary 4.3
can be dropped.

Since the proofs of Theorem 4.1 and Corollary 4.3 are quite technical, we defer them to Section 6.
The idea is to apply Theorem 3.2 and Theorem 3.5. As “localizing” process (Yt(r))tzo we will use
a Feller process with symbol

T o™ (2
P28 =g, 2R

where

o (2) = (a(z) —€) va(z) A (a(z) +¢), zeRY,
for fixed 2 € R? and small € > 0. In order to apply the results from the previous section, we
need suitable regularity estimates for the semigroup (P;)¢»o associated with an isotropic stable-like
process (Yi)s0. We will study the regularity of x — Pu(x) using the parametrix construction of
(the transition density of) ()0 in [19]; the results which we obtain are of independent interest,
we refer the reader to Subsection 6.1.

Next we study Feller processes with symbols of the particular form g(z,£) = m(x)|¢|%. They can
be constructed as random time changes of isotropic a-stable Lévy processes, see e.g. [5, Section
4.1] and [23] for further details. This class of Feller processes includes, in particular, solutions to
SDEs

dXt :O'(Xt_)st, XO =X
driven by a one-dimensional isotropic a-stable Lévy process (L )¢s0, « € (0,2]; for instance if o > 0

is continuous and at most of linear growth, then there exists a unique weak solution to the SDE,
and the solution is a Feller process with symbol ¢(z, &) = |o(z)|*[¢]*, cf. [20, Example 5.4].

4.5. Proposition Let (X)s0 be a Feller process with symbol q(x,&) = m(x)|€|* for a € (0,2) and
a Hélder continuous function m: R — (0,00) such that

0 < inf m(x) < sup m(x) < co.
zeR4 zeRd

(i) The infinitesimal generator (A, D(A)) and the Favard space Fy of order 1 satisfy
CL (R c D(A) ¢ Fy c €y (RY),
where

CH(RY) NCw(RY), ae(0,1)

e (RY) n CL(RY), ael,2). (33)

e (RY) =€ (RY) nCL (RY) = {
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For any k € (0,) there exists a finite constant Cy >0 such that
[ flegmey < Crlllflloo + [Acflleo) — for all feFy; (34)

here A, denotes the extended infinitesimal generator.

(1) Let 6 € (0,1] be such that m e CO(RY). If f € D(A) is such that Af = g € Cp(RY) for some
A >0, then f € @gwmm{/\’e})_(Rd) and for any r € (0,«) there ewists a constant Cy > 0
(not depending on f, Af) such that

[ £l ggeminin ot gay < Co (1o + |1 AF

e:ﬁn{/\,e}(Rd)) .

Proof. Tt follows from [19, Theorem 3.3] that there exists a unique Feller process (X} )t»o with sym-
bol q(x,&) = m(x)|¢|, =, & e RE. Using a very similar reasoning as in the proof of Proposition 6.1
and Proposition 6.2, it follows from the parametrix construction of the transition density p in [19]
that the semigroup (P;):»o satisfies

HPtuHCg(]R,d) < Cl,mt_m/a HuHoo’ u € Bb(Rd)7 te (07 1)7

and
”PtuHeg“(]Rd) < CQ,nfﬁ/a HUHG;(JRd)a we €y (RY), te(0,1),

for any k € (0,) and X € [0, 0]; for the particular case « € (0, 1] the first inequality follows from [32].
Applying Proposition 3.1 we get (34); in particular Fy € €&~ (R?). The inclusion €% (R?%) c D(A)
is a direct consequence of [26, Example 5.4]. The Schauder estimate in (ii) follows Theorem 3.5
applied with Yt(m) := X; for all z € R? (using the regularity estimates for (P;)ss from above). [

4.6. Remark (Possible extensions of Proposition 4.5) (i) Proposition 4.5 can be extended to sym-
bols g(x,£) =m(x)y (&) for “nice” continuous negative definite functions ¢, e. g. the characteristic
exponent of a relativistic stable or tempered stable Lévy process, cf. [19, Table 5.2] for further
examples.

(ii) The family of Lévy kernels associated with (X;)sso is of the form v(z,dy) = m(z)|y|~4* dy.
More generally, it is possible to consider Feller processes with Lévy kernels v(z, dy) = m(z,y) v(dy),
for instance [4, 32, 41] establish existence results as well as Holder estimates under suitable assump-
tions on m and v. Combining the results with Proposition 3.1 we can obtain Schauder estimates
for functions in the domain of the infinitesimal generator of (X;):;»o. Let us mention that for
v(z,y) = m(z,y)|y| 9 dy Schauder estimates were studied in [3].

We close this section with some results on solutions to Lévy-driven SDEs.

4.7. Proposition Let (L;)so be a 1-dimensional isotropic a-stable Lévy process, a € (0,2). Con-
sider the SDE
dX; =b(Xs-)dt + o(X;-) dLy, Xo =1z, (35)
for a bounded B-Hdélder continuous mapping b : R - R and a bounded Lipschitz continuous mapping
o:R—(0,00). If
B+a>1 and op:= irél}fha(x) >0 (36)

then there exists a unique weak solution (X;)i»o0 to (35), and it gives rise to a Feller process with
infinitesimal generator (A, D(A)). The associated Favard space Fy of order 1 satisfies

D(A) c Fy ¢ () errtbe bRy,

kelN
and there ezists for any k € N a finite constant C >0 such that
I lgmte-sien gy € CUTIow + [ Acflo)  forall feFy (37)

where A, denotes the extended generator. In particular, (37) holds for any f € D(A) with A.f = Af.

Proof. Tt follows from (36) that the SDE (35) has a unique weak solution (X¢):o for any z € R,
cf. [28]. By [40], see also [21], (X} )0 is a Feller process. Moreover, [31] shows that for any x < «
there exists a constant ¢ > 0 such that the semigroup (P;)ss0 satisfies

Pl ey < clluloot ™
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for all t € (0,1) and u € By(R). Applying Proposition 3.1 proves the assertion. |

Before giving some remarks on possible extensions of Proposition 4.7, let us mention that sufficient
conditions for a function f to be in the domain D(A) were studied in [26]; for instance if the SDE
has no drift part, i.e. b =0, then it follows from Proposition 4.7 and [26, Example 5.6] that

CY(R)cD(A)c ey (R) if ae(0,1] (38)
and
CU(R)cD(A)cCr(R) if e (1,2); (39)

see (33) for the definition of €% (R). Intuitively one would expect that (38) holds for a € (0,2). If
we knew that the semigroup (P )sso of the solution to (35) satisfies

| Prullepray < et [u]eo,  uweBy(R), te(0,1), ke (0,0) (40)

for some constant ¢ = ¢(x) > 0, this would immediately follow from Proposition 3.1. We could
not find (40) in the literature but we strongly believe that the parametrix construction of the
transition density in [28] can be used to establish such an estimate; this is also indicated by the
proof of Theorem 4.1 (see in particular the proof of Proposition 6.1). In fact, we are positive that
the parametrix construction in [28] entails estimates of the form

weCr(RY), te(0,1), ke (0,a),A>0

HPtUHe:*mi““ﬁ}(]Rd) < et Hle [ emintA ) (Ray)
(recall that 8 is the Holder exponent of the drift b) which would then allow us to establish Schauder
estimates to the equation Af =g for g € @b)‘(Rd) using Theorem 3.5.

4.8. Remark (Possible extensions of Proposition 4.7) (i) The gradient estimates in [31] were ob-
tained under more general conditions, and (the proof of) Proposition 4.7 extends naturally to this
more general framework. Firstly, Proposition 4.7 can be extended to higher dimensions; the as-
sumption oz, >0 in (36) is then replaced by the assumption that ¢ is uniformly non-degenerate in
the sense that

Mg < inf min{lo(z)¢], o ()¢} < sup max{|o(2)€], lo(z) 7 €[} < M¢]

for some absolute constant M > 0 which does not depend on ¢ € R%. Secondly, Proposition 4.7
holds for a larger class of driving Lévy processes; it suffices to assume that the Lévy measure v
satisfies v(dz) > c|z[*"*1 ||,y for some ¢, > 0 and that the SDE (35) has a unique weak solution.
Under the stronger balance condition 8+ «/2 > 1 this is automatically satisfied for a large class of
Lévy processes, e.g. if (L:)+s0 is an relativistic stable or a tempered stable Lévy process, cf. [10].
(ii) Recently, Kulczycki et al. [27] established Hélder estimates for the semigroup associated with
the solution to the SDE

dXt = O'(Xt_) st
driven by a d-dimensional Lévy process (L¢)¢s0, d > 2, whose components are independent a-
stable Lévy processes, a € (0,1), under the assumption that o : R - R% is bounded, Lipschitz
continuous and satisfies inf, det(o(z)) > 0. Combining the estimates with Proposition 3.1 we find

that the assertion of Proposition 4.7 remains valid in this framework, i.e. the Favard space F}
associated with the unique solution (X;);s0 satisfies Fy ¢ €2 (R?) and

[fleo-1/t (gay < Okl flloe + [ Acfllee)s  f e Fr.

(iii) Using coupling methods, Liang et. al [33] recently studied the regularity of semigroups asso-
ciated with solutions to SDEs with additive noise

dXt = b(Xt,) dt + st

for a large class of driving Lévy processes (L¢)¢>0. The results from [33] and Section 3 can be used
to obtain Schauder estimates for functions in the domain of the infinitesimal generator of (X¢)s0-
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5. Proofs of results from Section 3

For the proof of Proposition 3.1 we use the following lemma which shows how Holder estimates for
a Feller semigroup translate to regularity properties of the A-potential operator

Rw::f( )e—“Ptudt, we By(RY), A> 0.
0,00

5.1. Lemma Let (X;)w0 be a Feller process with semigroup (P;)is0 and A-potential operators
(Rx)as0-
(i) If there exist T >0, M >0, k>0 and § >0 such that

| Prlleg may < Mt Jlufo
for all t € (0,T) and u € By(R?) then
| Pral e (ray < Me™ ™ Jull oo (41)

for allt >0 and u € By(R?) where m :=log(2)3/T.
(ii) Ifu e By(RY) is such that (41) holds for some B € [0,1), then Ryu € C§(R?) for any A >m
and

1 1
IRxuleg ey < e (5= + 725 (A1 + 1)

Proof. (i) By the contraction property of (F;)is0, we have |Puufer(gay < [Pij2ufep(ray for all
t >0, and so

t\ P
| Pul eg (ray < M(i) =M2°t%  forall te(0,27T).

Tterating the procedure, it follows easily that (41) holds.
(i) Let u € By(R?) be such that (41) holds for some 3 < 1. If we choose K > k then (41) gives
that the iterated difference operator AK, cf. (5), satisfies
AR Pu(a)| < Me™ P |u]o|h]”
for any 2 € R? and |h| < 1. Since, by the linearity of the integral,

A Ryu(z) = /( )e_)‘tAhKPtu(x) dt
0,00

we find that
IAK Ryu(z)] < MBS [u] o f( O,
0

,00

On the other hand, we have | Rat]o < A7} 4], and therefore we get for all A > m

1 oo
Raulegaun <A Nuloo + Mluloo [ ¢ de+ [~ O ar)

which proves the assertion. O

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. It follows from Lemma 5.1(i) that (41) holds with m :=log(2)5/T for any
u € By(RY). If we set A :=2m and u:= \f - A.f for f e Fy, then f = Ryu. Applying Lemma 5.1(ii)
we find that

[ fles ey = [Bauleyrey < Klufoo < AK[ flloo + K| Acf oo
for K :==2m™ +(1-8)"L. O

For the proof of Theorem 3.2 we need two auxiliary results.
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5.2. Lemma Let (X;)is0 and (Yi)is0 be Feller processes with infinitesimal generator (A, D(A))
and (L,D(L)), respectively, such that

Af(2)=-a(2.D)f(2) and Lf(z)=-p(z,D)f(x)  forall feCZ(R"),zeR",
cf. (7), and assume that the (A, C(R%))-martingale problem is well-posed. Let U € RY be an open

set such that
p(2,€) =q(z,€)  foral zeU EeR™

If x €U and r >0 are such that B(x,r) c U, then for the stopping times
X = inf{t > 0;|X; — 2| >} = inf{t > 0;Y; - x| > 7} (42)

the random variables X, .x and Y.,y are equal in distribution with respect to P* for any t > 0.}

Proof. Set
o =inf{t>0; X, ¢Uor X, ¢ U} oY =inf{t>0;Y; ¢ U or Y,_ ¢ U}

It follows from the well-posedness of the (A, C=°(RR%))-martingale problem that the local martingale
problem for U is well-posed, cf. [13, Theorem 4.6.1] or [15] for details. On the other hand, Dynkin’s
formula shows that both (X;.,x )0 and (Yia,v )is0 are solutions to the local martingale problem,
and therefore (X ,x )is0 equals in distribution (Y;,,v )0 with respect to P* for any = € U. If
x €U and r > 0 are such that B(x,r) € U, then it follows from the definition of 7% and 7V that

X <X and 7V < 05; in particular,

Xt/\TX = Xt/\'rx/\ax and YI-SATY = Y—t/\'ry/\cry'

Approximating 7% and 7Y from above by sequences of discrete-valued stopping times, we conclude
d d
frOm (Xt/\o'x)tZO = (Yt/\aY)tzO that Xt/\TX = }/:‘,/\TY' |:|

5.3. Lemma Let (Y;)s0 be a Feller process with infinitesimal generator (A, D(A)) and symbol
p(x,&) = —ib(x) - €+ [ (1 — W4 iy~§]l(o,1)(|y|)) v(z,dy), z, € e RY.

y=0

Ifa>1 and U e B(R?) are such that
sup ()| + [ min{1,lyi*} (e dy) ) < o,
zeU y#0
then there exists an absolute constant ¢ >0 such that the stopped process (Yinry )20,

Tu=inf{t >0;Y; ¢ U},

satisfies
E* ([Vinr, - af* n1) < ctsup ()| + [ min{L]yl") v(zdy))
2eU y#0
forallzeU, t>0.

If (Y2)i»0 has a compensated drift, in the sense that b(z) = [|y|<1y1/(z,dy) for all z € U, then

Lemma 5.3 holds also for a € (0,1]. Let us mention that estimates for fractional moments of Feller
processes were studied in [18]; it is, however, not immediate how Lemma 5.3 can be derived from
the results in [18].

Proof of Lemma 5.3. Let (fi)kew € CF(R?) n C.(R?) be such that fi >0, fx(z) = min{1,|2|*} for

|2| <k and M := supy, || fxes < co. Pick a function y € CZ(R%), x > 0 such that [, x(z)de =1
and set x.(2) == 1x(e712). If we define for fixed z € U

fre@) = (il =2) X)) = [ fulz-a-px)dy, =R,

1Here and below we are a bit sloppy in our notation. The Feller processes (X¢)t>0 and (Y:)t>0 each come
with a family of probability measures, i.e.their semigroups are of the form [ f(X;)P*(dy) and [ f(Yt)]Pl (dy),
respectively, for families of probability measures (P*)_  pa and (E’I)ZGRd. To keep the notation simple, we will not
distinguish these two families. Formally written, the assertion of Lemma 3.5 reads P*(X,,, . x €-) = I~PI(YMTY €).
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then fy. = fi(- - z) uniformly as e > 0 and |fycleo(mray < M. As fi. € C>(R%) ¢ D(A) an
application of Dynkin’s formula shows that

B foe (Yinrs ) = fie @) = E7 (
for all t > 0. Since « > 1 there exists an absolute constant C' > 0 such that

|ka75(2)| < Cka,e ”Gg(]Rd) <CM

Afre(Ys) ds)

AT

and
|fk,8(z + y) - fk,s(z) -y vfk,s(z)]l(o,l)(|y|)| < Oka,E|

for all z e R%. This implies
AN < OV + [ el +9) = fez) =y V(@0 (] v(z.dy)

<CM (|b(z)| + f Omin{l, ly|*} V(z,dy))
Y+
for any z € U. Hence,

B fue (Vi)  ficl@) + 200 tsup (B + [ min1, 1y} vz, )
z€ Yy

co(rey min{1, [y|*}

for € U. Applying Fatou’s lemma twice we conclude that

E* min{1, [Yiar, —2|%} < lilgninf limiélf E? fi.e (Yirry )
—00 £—
§2CMtsup(|b(z)|+f min{1,|y|a}u(z,dy)). O
zeU y#0

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Since = € R? is fixed throughout this proof, we will omit the superscript z
in the notation which we used in the statement of Theorem 3.2, e.g. we will write (Y;)¢s0 instead
of (Y "))0, L instead of L(*) etc.

Denote by (L., D(L.)) the extended generator of (Y;)ss0, and fix a truncation function y € C2°(R%)

such that I < x < I 55 and Ixllczray < 10672. To prove the assertion it suffices by (C3)
and Proposition 3.1 to show that v:= f-x € D(L.) and
IZevloo < C ([ Acf oo + 110 + 1l st 5z ) (43)

for a suitable constant C' > 0. The first — and main— step is to estimate
1
sup T sup [B0(Yiurs) () ()
te(0,1) l serd
for the stopping time
75 =inf{t > 0;|Y; - z| > 6}.

We consider separately the cases z € B(z,30) and z € R¥\B(x,35). For z e R\B(z,30) it follows
from supp x € B(x,26) that v =0 on B(z,d), and so

v(Yiprz (w)) —v(2) =0 for all we {15 >t}.

Hence,

B0 (Yiarz ) = v(2)] < 2 v]P*(75 < ).
Applying the maximal inequality (9) for Feller processes we find that there exists an absolute
constant ¢; > 0 such that

[E*0(Yinrz) = v(2)| < crt] flloo sup sup [p(y, &)
yeR4 [¢]<o-1
for all z e R?\ B(x, 36); the right-hand side is finite since p has, by assumption, bounded coefficients.
For z € B(x,30) we write
[E*v(Yiprz) —v(2)| < 1 + I + I3
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for

I = X (2)E7(f (Year) - f(2)

I = f(2)E* (x(Yearz ) — x(2))]

= [B* [(f (Yinrz) = £(2)) (x(Yinrz) = x(2))]]-

We estimate the terms separately. By (17) and (C2), it follows from Lemma 5.2 that

E* f(Xinrz(x)) = E*f (Yinrz) forall >0
where 77(X) is the exit time of (X;)s0 from B(z,8). As 0< x < 1 we thus find

I < |Ez(f(XtArg(X)) - f(z))|
Since f € F{X an application of Dynkin’s formula (11) shows that
I < [Acf oo B (E A 75 (X)) < [Acf oot

We turn to I. As y € C=°(R%) ¢ D(L) we find from the (classical) Dynkin formula that

E* ( RG0! ds)
(0,tATE)

A straight-forward application of Taylor’s formula shows that
X <2l ez (B + [ mindLLIy}v(z.dp)

Since 0 < o(z) <1 and x is chosen such that |x[c2ra) < 10672 we thus get

Iy <2067 f|o sup (|b<z)| [ min{ LIy} vz dy) ).
y#0

zm<

[La| < [ flloolB* (X (Yearz ) = X(2))] = [ f oo <t[fleo sup |Lx(2)|

|z—xz|<48

It remains to estimate I3. Because of the assumptions on the Holder regularity of f on B(x,49),
we have

T3 <16572(1f | gotor gy + 1o)X ey B (Vne — 2117250 1),

It follows from Lemma 5.3 that there exists an absolute constant ¢y > 0 such that

Iy < 28”0 leger gy * 1l=) sup (b [ min(yl 1y vz, ).

_z<

Combining the estimates and applying Corollary 2.2 we find that v=x-f € D(L.) and
1Ll < € (14 flew + [ low + 1 gt B 255))

where

C':=c3sup sup |p(z,&)|+ c30™t sup (|b(z)| + f min{|y|1+9(x), 1} V(z,dy))
y#0

zeR4 |¢|<6-1 |z—x|<46

for some absolute constant c3 > 0. Since there exists an absolute constant ¢4 > 0 such that
sup. sup [p(=.)| < exsup ()] + [ min{L [y} v(z.d) )07
zeR4 |€]<5-1 y=#0

for 6 € (0,1), cf. [40, Lemma 6.2] and [5, Theorem 2.31], we obtain, in particular, that
IZevlo < € (1A oo + 1F oo + 1 Lo sy )

for
C" = c56™* sup (|b(z)| f min{1, |y|*} v(z, dy)) +e50t sup min{|y|"* 2@ 1} v(z, dy).
zeR4 #0 |z—x|<48 lyl<1

This finishes the proof of (43). The continuous dependence of the constant C' > 0 in (19) on the
parameters 8(z) € [0,1), M(x) € [0,00), K(z) € [0,00) follows from the fact that each of the
constants in this proof depends continuously on these parameters, see also Lemma 5.1. |

The remaining part of this section is devoted to the proof of Theorem 3.5. We need the following
auxiliary result.
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5.4. Lemma Let (Y;)s0 be a Feller process with infinitesimal generator (L,D(L)), symbol p and
characteristics (b(x), Q(x),v(x,dy)). For x e R? and r >0 denote by
72 =inf{t > 0;|Y; - z| > r}

the exit time from the closed ball B(x,r). For any fived x € R? and r >0 the family of measures
pelr B) = TP (Vs ~w€B), 150, BeBRN(0)),
converges vaguely to v(x,dy), i. e.
lig S f(Vinrz ~2) = [ J@)v(andy)  forall € CLRNOD).
The main ingredient for the proof of Lemma 5.4 is [26, Theorem 4.2] which states that the family
of measures p;(z, B) := t 1P*(Y; —x € B), t > 0, converges vaguely to v(z,dy) as t - 0.
Proof of Lemma 5.4. By the Portmanteau theorem, it suffices to show that

lim sup p¢ (z, K) < v(z, K) (45)
t—0

for any compact set K ¢ R¥\{0}. For given K ¢ R%\{0} compact there exists by Urysohn’s lemma
a sequence (Xn)nen € C°(R?) and a constant § > 0 such that supp x,, € B(0,8)¢ for all n € N and
1x = inf,en Xn- It follows from [26, Theorem 4.2] that

. E'xa(Yi-z
fig E XY 2 0) f Xn(y) v(z,dy)
t—0 t y#0
for all n € N. On the other hand, an application of Dynkin’s formula yields that
B Xn (Yeary = ) = E X0 (Y - 2)[ < | Lxn | B (¢ - min{t, 77}) <t Ly [P (7 <1).

Since (Y;)ss0 has right-continuous sample paths, we have P*(7* < t) - 0 as t - 0, and therefore
we obtain that

E*xp (Yipre —
i £ X (Yonr =) f Xn () dy.
t—0 t y#0
Hence,
. . 1
limsup g, K) <l sup T (Vorrs = 1) = [ xny) dy.
t—0 t-0 1 y#0
As 1k =inf,en Xn, the monotone convergence theorem gives (45). O

Proof of Theorem 3.5. For fixed x € R? let (Yt(z))tzo be the Feller process from Theorem 3.5. Let

X0 € C=°(R%) be a truncation function such that I5w5y < Xo < I pgas), and set X (2) = xo(z-1),

z e R?%. Since z € R? is fixed throughout Step 1-3 of this proof, we will often omit the superscript
x in our notation, i.e. we will write (Y} )sso instead of (Y;(x))tzo, x(z) instead of x(*)(2), etc.
Step 1: Show that v := x - f is in the domain D(L.) of the extended generator of (Y;):»o and
determine L, (v).

First of all, we note that (X;):s0, (Yz)es0 and f satisfy the assumptions of Theorem 3.2. Since we
have seen in the proof of Theorem 3.2 that v = - f is in the Favard space F}Y of order 1 associated
with (Y;)s0, it follows that v € D(L.) and |L.(v)|e < 0o. Applying Corollary 2.2 we find that

E*v(Yiarz) —v(2)
t

Lov(z) = lli%
(up to a set of potential zero) where
75 =inf{t > 0;|Y; - z| > 6}.
On the other hand, the proof of Theorem 3.2 shows that
E*v(Yinrz) —v(2)
t

= I1(t) + I (t) + I5(t)
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where
L(t) =t f(2)(B*X(Yiars ) = X(2))
L(t) =t X (2) (B f (Xinrz (x)) = £(2))
L3(t) =t B[ (f (Yinrg) = F(2)) (X(Yenrg) = x(2))];
here 77 (X) denotes the exit time of (X;)so from B(z,8). Since x € C=°(R?) is in the domain

of the (strong) infinitesimal generator L of (Y;)s0 and f is the Favard space F;X associated with
(X1)t20, another application of Corollary 2.2 shows that

lim 4 (8) = F(:)Lx(z) and L Do(t) = X()Acf(2)
for all z e RY. We claim that
lim 13() = D(£.0)(2) = | (F(z+9) = F) (= + ) = X(2)) vz dy) (46)

for all z € R? where v(z,dy) = v*)(z,dy) denotes the family of Lévy measures associated with
(Yi)es0 = (}ft(w))tzo, cf. (22). Once we have shown this, it follows that

Lev=fLx+xAcf +T(f,x)- (47)
To prove (46) we fix a truncation function ¢ € C2°(R%) such that 1591y < ¢ < Lp(2) and set

0:(y) = p(ety) for € >0, y e R%. Since y = (1 - ¢.(y)) is zero in a neighbourhood of 0, we find
from Lemma 5.4 that

E*[(1 - @ (Yinr; = 2))(f (Yirrs) = F(2)) (X(Yirr; ) = x(2))]

t
t—0

— (=) (f(y+2) = f(2))(x(z +y) - x(2)) v(2,dy).

y#0

If z e RN\ B(x,35) then x = 0 on B(z,d), and therefore the integrand on the right hand side equals
zero for |y| < 0. Applying the dominated convergence theorem we thus find that the right-hand
side converges to I'(f, x)(z), defined in (46), as e - 0. For z € B(z,38) we note that y € C} (R?)
and f € Gbg(‘)(]Rd) for o satisfying (26); it now follows from (S1) and the dominated convergence

theorem that the right-hand side converges to I'(f,x)(z) as € > 0. To prove (46) it remains to
show that

J(e.t,2) 1= [E*[0e (Yinrz = 2)(f (Yearz) = F(2)) (X(Yearz ) = x(2)) ]|

satisfies )
limsup limsup —J(e,t,2) =0 for all zeRY.
e»0 t-0
By (26) and (S1), there exists some constant v > 0 such that

1+min{o(2),1} > a(z) + 2y for all ze€ B(z,36). (48)

Indeed: On {p > 1} this inequality holds since « is bounded away from 2, cf. (S1), and on {g <1}
this is a direct consequence of (26). Now fix some z € B(x,30). As supp . € B(0,2¢) it follows
from f e C2(R%) and y € C} (R%) that

J(et,2) < 167 | s gy XD g ey B min{[¥irs = 210, 1)

with v from (48) and some constant ¢; > 0 (not depending on f, x, z). An application of Lemma 5.3
now yields

Tt st swp (o) + [ minflyl, 1z, dy)
|z—xz|<48 y*0
which is finite because of (S1) and (S5). Hence,
1
lim sup lim sup ;J(E,t, 2)=0 for all |z - x| < 34.

t—0 e—0

If z e R\B(z,36) then it follows from x|p(,.5) =0 and supp ¢ ¢ B(0,2¢) that
J(e;t,2) <de|| fllool Xl cp (may P (75 < 2).
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Applying the maximal inequality (9) for Feller processes we conclude that

limsuplimsupt ™ J(e,t,z) =0  for all ze RY\B(z,30).

e—0 t—0

Step 2: If o: R - [0,2] is a uniformly continuous function satisfying (26) and g := inf, o(2) > 0,
then
FeFXnClORY), Acf = geCr(RY) —> Ve>0: Lo(fx) e €M) ==(RY)

for any A[0,A] where x = x®) is the truncation function chosen at the beginning of the proof; see
(52), (S3) and (26) for the definition of 6, A and o.
Indeed: We know from Step 1 that

Le(fx) = fLx + xAef +T(f,x) = Ia + Ia + Is.

As 0 <1 we have gg AAABO Ao <1, and therefore it suffices to estimate

sup |Ix(2)| + sup |Ix(z+h) - Ix(2)]
zeRd z,heRd

for k=1,2,3.
Estimate of I; = fLy: First we estimate the Holder norm of Ly. As x € C2(R?) a straight-
forward application of Taylor’s formula shows that

|0 < 2xlegmey sup (D) + [ min(L bl o(z.dn)).
If we set Dyyx(2) = x(z+y) - x(2) = x'(2)yl(0,1)(|yl), then
|ILx(2) = Lx(z + R)|[ < [b()|[VXx(2 + h) = Vx(2)[ +[b(z + h) = b(2)|[Vx(2 + h)]|

+ [wo |Dyx(z+h) - Dyx(2)|v(z,dy) + fyqto Dyx(z+h) (v(z+h,dy) —v(z,dy))|.

for all z,h e R%. To estimate the first two terms on the right-hand side we use the Holder continuity
of b, cf. (S2), and the fact that y € C2(IR?). For the third term we use

IDyx (2 + 1) = Dyx(2)| < [ x]lcs mey bl min{ly[*, 1},
cf. [3, Theorem 5.1] for details, and noting that
[Dyx (2 +h)| < 2] x| c2(mey min{L, [y*}
we can estimate the fourth term for small h by applying (S2). Hence,
ILx(2) = () < Il ogansy (D)1 + | min{L Iy} (. dg)) + 218 Il ez

for small h > 0. Hence,
IExlegenny < ealxlopeney sup (1+162) + [ min{L 1y} v(z.dy))
zeR? y*0
for some absolute constant ¢; > 0. Since f € Gf(')(Rd) c €2°(R%), this entails that
Il gpen sy < 1 legoqun Xl cgamny sup (14 () + [ minfL, P} vz, )

Estimate of I, = YA, f: By assumption, A.f = g € €)(R?) and x € C°(R?). Thus,
IxAefllex < 2lxlopAcf ey < oo

Estimate of I3 = I'(f,x): As f ¢ Cf(')(]Rd) and x € C}(R?), it follows from the definition of
T'(f,x), cf. (46), that

(0 A ego gy Wlcgen [ mindl 0 A1, 1} (e, dy) < o
for all |z — x| < 35. If z e R\B(x,36), then A,x(2) =0 for all |y| < §, and so
LU s [ vz dy)

lyl>
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for all z € R4\ B(z,38). Combining both estimates and using (26), (S1) and (S5), we get
ITCf 00 < 2] fll e (ay

for some constant ¢o > 0 not depending on x, z and f. To study the regularity of T'(f,x) we
consider separately the cases [¢] o <1 and ||g]e > 1. We start with the case |g|« < 1, see the end
of this step for the other case. To estimate ALT'(f,x) we note that

[ARL(F ) ()] =0 x) (2 +h) =T(F ) () < T+ Ja + Js (49)

where

BGEY= [ 8GR = ANz + )| vz dy)
B = [ BTN +R) = Ayx(:)| vz dy)

Jo(2) = UM Ay (2 + B)AX(z +h) (w2 dy) - v(z + h.dy))]
We estimate the terms separately and start with J;. Fix € € (0,min{og,0}/2), cf. (26) for the
definition of o. Since p is uniformly continuous there exists r € (0,1) such that
lo(z) —o(z+h)|<e  forall zeR? |h| <7
For |h| <r and |y| < r it then follows from f € Gg(')(]Rd) that
1Ay £ (2 +h) = Dy F(2)] £ 20 f ] goor pay ming[y[ M) pfetrr2ne))

< 2Hf||e§(')(]Rd) min{|y|9(z)‘5’ |h|9(2)—6}'

(Here we use ||g]e < 1; otherwise we would need to replace o(z) by o(z) A1l etc.) On the other
hand, we also have

[y 2+ ) = By F()] <20 g0 gy 11 (50)
for all y € RY. Combining both estimates yields

T2 2200 gy Wlegaen ) mindll? O el vz + i [ vz

for |h| < 7. Tt is now not difficult to see from (S1) and (S5) that there exists a constant ¢z >0 (not
depending on x, z, f) such that

J1(2) < sl f ot gy (A% + [BECI10D2)  for al || <7,z € B(, 36)
b
By the very definition of o, cf. (26), this implies that

sup  Ji(z) < c?,HfHe‘_:@(]Rd)|I"L|mi“{90’”}_‘S for all |h| <.
zeB(x,38) b

If z e RY\B(z,35) then A,x(z+h) =0 for |h| <§/2 and |y| < §/2. Using (50) we get

J1(2) < 2|h|% Hf“eg("(]Rd) A!|>5/2 v(z,dy) for all |h|<d/2.

Invoking once more (S1) and (S5) we obtain that

Sup J1(z) < calh|® Hf”@é’(')(]Rd), | <6/2,
zeR4\B(z,36) b

for some constant ¢4 not depending on x, z and f. In summary, we have shown that

sup Ji(z) < sl o077 1|

() (Rrdy*
zeR4 € (RY)

To estimate Jo we consider again separately the cases z € B(r,36) and z € R)\B(z,35). If
z e RN\B(z,35) then A,x(z+h)=0=A,x(z) for all [y| <§/2 and |h| < §/2. Since we also have

1Ayx (2 +h) = Ayx(2)| < 2| x| o2(ray min{ly|, |} (51)
we find that
J2(2) <A flleo x| c2(Re)lR] f v(z,dy)
ly|=6/2
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for |h| < §/2. Because of (S1) and (S5) this gives the existence of a constant cg > 0 (not depending
on f, z and z) such that

sup Jy(2) < o[ flloo|h]-
zeR¥\ B(z,36)

For z € B(z,3d) we combine
18, £ €20 s gy min{[517), 1)
with (51) to get
1a(2) <41 egr Loz [ min{lle D, paminlol, 1) oz, dy)

which implies, by (S1), (S5) and (26), that
sup  Jo < 7 fll oot ay IR
o [ fleee> gaylhl

We conclude that
sup Jo(2) < cslh|”" | £]

zeR4

It remains to estimate J3. By the uniform continuity of ¢ there exists r € (0,1) such that |Ayo(z)] <
o/2 for all |h| <. Since f € Gg(')(]Rd) we have

Ay f (2 + B)AX (2 + B < AL f | goor gy X g ety minJy 27 1}
and thus, by (26) and our choice of r € (0, 1),
18y f (2 + 1) Ayx (2 + D] < 4 fl geos oy I oy min{ly|“* 17772, 1)

<4 fll e gy Il ey mingJy|7/2* ), 1)

eg(‘)(Rd) .

for all |z — x| < 3§ and |h| <. On the other hand, if z e RY\B(z,34), then y =0 on B(z,d) and so
|Ayf(z+h)Ayx(z+h)|=0  forall |h|<d/2,|yl<d/2.
Consequently, there exists a constant cg = co(d,7) > 0 such that
|Ayf(z + h)AyX(Z +h)|<cg Hf“ezvo(w) HXHC;(Rd) min{|y|o+a(z)a 1}
for all z e RY, y e R? and |h| < min{r,5}/2. Applying (S2) we thus find
0

sup 15(2) 5 x| g ey

Combining the above estimates we conclude that
”F(f, X)”ego/\e/\”-s (R4) <cnn ||f”e§(')(Rd)

provided that |¢|e < 1. In the other case, i.e. if o takes values strictly larger than one, then
we need to consider second differences AZI'(f,x)(z) in order to capture the full information on
the regularity of f. The calculations are very similar to the above ones but quite lengthy (it is
necessary to consider nine terms separately) and therefore we do not present the details here.
Conclusion of Step 2: For any small € > 0 there exists a finite constant K . > 0 such that

ILe(fx)

The constant K; . does not depend on z, z and f.
Step 3: If u e D(L,) is such that u € C}(R?) and Leu € € (R?) for some A < A (cf. (S3)) then

emmteon0.01-2 gy < K1e (J4ef lepme + 1 leso ey ) (52)

HU”e:(wM(Rd) < KZ(HUHeg(JRd) + HLeUHeg(le))

for some constant K5 > 0 which does not depend on z, z and f. (Recall that L. = L((f) is the

extended generator of the Feller process (Y )¢»0 = (Yt(x))tzo; this explains the z-dependence of the
regularity on the left-hand side of the inequality.)
Indeed: The p-potential operators (R,,) >0 associated with (Y)ss0 = (Yt(w))tzo satisfies

”RHvHe:(T/)**(Rd) < KH”HG?(]Rd)v Ve eb)\(Rd)7 A<A (53)
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for p sufficiently large and some constant K = K (p) > 0. This is a direct consequence of (S3) and
Lemma 5.1. Now if u € D(L,) is such that u € €} (R?) and L.u € C)(R?), then we have u = R,v
for v := pu - Leu € Cp(R?). Applying (53) proves the desired estimate.

Conclusion of the proof: Let f € @f(')(Rd)nle for p satisfying (26) be such that A, f € Cp (R?)
for some A < A. Without loss of generality we may assume that gg := inf, o(z) > 0. Indeed: It
follows from Corollary 3.4 that f € Gg(')_e(]Rd) for € := kg/2 = inf, k(z)/2 > 0, and therefore we
may replace o by 0(z) := max{o(z), k(z) —€} which is clearly bounded away from zero and satisfies
the assumptions of Theorem 3.5.

For fixed z € R? denote by y = x(*) the truncation function chosen at the beginning of the proof,
and fix e € (0, min{ g, k0 }/2). It follows from Step 2 and Step 3 that there exists a constant ¢; >0
such that

X goormmtanmon-« gy < 1 (14e Flepcaey + 1Flesoo o)
for all z e R?. As x(®) =1 on B(z,6) we obtain that

[ 1 gsrmmintas o0 gy < & (1AeS Tepemay + 1l gsr cmay)

Since, by assumption, f € C’f(')(Rd), this implies f € Gfl(')(Rd) for
o' (z) :== max{o(x), k(x) — € + min{ oy, 7,0, A} }, zeRY,
and we have
£l gete oy < €5+ D) (1Aefleymay + 1 Flesor ey ) -
As o' satisfies (26) (with o replaced by gl) we may apply Step 2 with o replaced by o' to obtain
that

fo(:v) Hem(:ﬂ)+x1]iil{yéyo,9,>\}—a <co (HAefH(fg‘(]Rd) + Hf“@g’(‘)(]Rd))
b

(R)

where g} := inf,ge 0' (). Repeating the argumentation from above, i.e. using that x*) = 1 on
2

B(z,8), we obtain f € €] (')(Rd) for o*(x) := max{o(z),k(x) — € + min{g},0,0,\}} and

7l gs20 gy < 5 (14ed lep ey + 1l ooy )

We proceed by iteration, i.e. we define ¢"(z) = max{o(z),x(x) — e + min{oh~!,0,0,A}}, n > 2,
where g ~! :=inf, 0" (x). By Step 2 and 3, we then have

£ les o gay < en (14eF lepray + 1o () (54)

for some constant ¢, > 0. Since kg = inf, k(x) > 0 and € < ko /2 it is not difficult to see that we can
choose n € N sufficiently large such that of > min{o, 8, A} and so

0" (z) > k(z) - + min{o,0, \}.

Using (54) (with n replaced by n + 1) we conclude that

[ flepeysminteon-e gay < Enaa (HAefHe;(]Rd) + \|f||e§<4>(Rd))

which proves the assertion. O

6. Proof of Schauder estimates for isotropic stable-like processes

In this section we present the proof of the Schauder estimates for isotropic stable-like processes
which we stated in Theorem 4.1 and Corollary 4.3. Throughout this section, (X )0 is an isotropic
stable-like process, i.e. a Feller process with symbol of the form ¢(x,&) = |§|"(Z), z,& € RY, for a
mapping o : R — (0,2]. We remind the reader that such a Feller process exists if a is Holder
continuous and bounded away from zero.

We will apply the results from Section 3 to establish the Schauder estimates. To this end, we
need regularity estimates for the semigroup (P;)so associated with (X;):»0. The results, which we
obtain, are of independent interest and we present them in Subsection 6.1 below. Once we have
established another auxiliary statement in Subsection 6.2, we will present the proof of Theorem 4.1
and Corollary 4.3 in Subsection 6.3.
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6.1. Regularity estimates for the semigroup of stable-like processes

Let (P;)ss0 be the semigroup of an isotropic stable-like process (X;);so with symbol g(z,€) = |¢[*(*).
In this subsection we study the regularity of the mapping x — Pyu(x). We will see that there are
several parameters which influence the regularity of Pyu:

e the regularity of x — u(x),

e the regularity of x — a(z),

o «ay :=inf e a(x);
the larger these quantities are, the higher the regularity of P,u. The regularity estimates, which we
present, rely on the parametrix construction of (the transition density of) (X}):»0 in [19]. Let us
mention that there are other approaches to obtain regularity estimates for the semigroup. Using
coupling methods, Luo & Wang [35] showed that for any « € (0, ) there exists ¢ > 0 such that

| Prufepnt ey < clufoet™ D0 forall we By(RY), te (0,T).

For o, > 1 this estimate is not good enough for our purpose, we need a higher regularity of Pyu.

6.1. Proposition Let (X;);s0 be a Feller process with symbol q(x,&) = |€|*®), z,& € R?, for a
mapping o : R? = (0,2) which is bounded away from zero, i.e. ay := inf ga a(x) >0, and y-Holder
continuous for vy € (0,1). For any T >0 and x € (0,ar) there exists a constant C >0 such that the
semigroup (Py)¢so satisfies

| Pl ex(ray < Clluf| ot ex for all ueBy(R?), te(0,T]. (55)
In particular, (Py)ts0 has the strong Feller property. The constant C' >0 depends continuously on

ap €(0,2), ap -k e (0,ar), |afeyway €[0,00) and T € [0, 00).

For the proof of Proposition 6.1 we use a representation for the transition density p which was
obtained in [19] using a parametrix construction, see also [22]. Let us introduce some notation
and recall some estimates from [19]. For g € (0,2) denote by p?(t,z) the transition density of an
isotropic p-stable Lévy process and set

pO(tax7y) ::pa(y)(tax_y)a t>07 xayERd'
The transition density p of (X;):»0 has the representation
p(tx,y)=po(t,a?,y)+(p0®<1>)(t,a?,y), t>0a aj,yE]Rd (56)

where @ is a suitable function (see [19, Theorem 4.25] for the precise definition) and ® is the
time-space convolution, i.e.

t
(Foptay)= [ [ ft-sm2)g(sz)dzds. 50,2y R
0

There exists for any T'> 0 a constant C7 > 0 such that

[po(t,z,9)| < CLS(z —y,aly),t),  te(0,T), z,y R (57)
where
gt
S(xvavt) = 1mnin {t 4 ) |$|d+(x}7 (58)
cf. [19, Section 4.1]. Moreover, the function ® in (56) satisfies
sup |®(t, 2, )| dy < Cot ™, te(0,T) (59)
zeRd JR4

for some constant A >0 and Cy = C5(T") > 0, cf. [19, Theorem 4.25(iii), Lemma A.8].
Proof of Proposition 6.1. Fix T > 0, u € By(R?) and & € (0,ar). Since |Piufe < [1]oo it suffices
to show that the iterated differences of order 2, cf. (5), satisfy

sup |A2 Pau(z)| < Ct™ |ul|  for all te(0,T],|h|<1.

zeRd

Because of the representation (56) we have

A2 Pou(z)| < |A2 POu(x)| + a2 PP ()]
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for any 2,h € R? and t € (0,T] where
Pt(o)u(z) = fRd u(y)po(t,z,y)dy and Pt(l)u(z) = fRd u(y)(po ® D) (¢, 2,y) dy.

We estimate the terms separately; we start with P(?). The transition density p? (t,x) of an isotropic
o-stable Lévy process is twice differentiable, and by [19, Theorem 4.12] there exists a constant ¢; > 0
such that

100,02 (t,2)| < ert™eS (2, 0,t) 100,00, p%(t,x)] < 18728 (2, 0,) (60)

for any o € [ag,||ale], t € (0,T), x € R and 4,5 € {1,...,d}. For the parametrix po(t,z,y) =
p“(y)(t, x —y) this implies, by Taylor’s formula, that there exists a constant co > 0 such that

lpo(t, @ + 2k, y) = 2po(t, x + h,y) + po(t, x,y)| < cat 2/ D|n2S(n(x, h) -y, a(y),t), x, heR?
for some intermediate value n(xz,h) € B(x,2h). As t <T we find that

[po(t, + 2h,y) = 2po(t.x + hoy) + po(t,x,y)| < cat ™ BPS(n(x. ) ~ y,a(y).1), . heR?
for a suitable constant ¢z = ¢3(7T, oL, |« ). On the other hand, (57) gives

|p0(t7 T+ 2h7y)_2p0(t7 T+ h7y) +p0(t7 xz, y)|
< CI(S(x + 2h_y7a(y)7t) + 25($+ h_y7a(y)at) + S(.'E—y,Ot(y),t))

Combining both estimates we obtain that there exists a constant ¢4 = c4 (T, ar, || ) such that
[po(t, @ +2h,y) = 2po(t,x + hyy) + po(t,z,y)| < ea| "t LUt 2.y, h) (61)

for

U(t,fE,y, h) = S(W(fah) - y,a(y)at) + S(I’ +h- y,()é(y),t) + S(.T —h- yva(y)vt) + S(l’ - y’a(y)7t)7

cf. Lemma B.1 with r := t1/*2 . Hence,
1P Ou(z +2h) - 2PVu(z + h) + POu(x)] < callul oot ™" || [R L U(t@,,h) dy
for any z,h e R and t € (0,T). Since [19, Lemma 4.16] shows that

cr = sup sup S(z-y,a(y),t)dy < oo (62)
te(0,T") zeR4 R4

we have

sup sup U(t,z,y,h)dy < der < oo, (63)
te(0,T) zeRd Y R4

and therefore we conclude that
|Pt(0)u(m +2h) - 2Pt(0)u(x +h)+ Pt(o)u(:c)| < degep|ufot ™1 |B)".
It remains to establish the Holder estimate for Pt(l). By (61), we have
[(po ® ®)(t, 2+ 2h,y) = 2(po ® ) (£, + h,y) + (po ® D) (¢, 2,y)|

< cq|h|” fotf]Rd (t—s)"LU(t - s,2,2,h)|®(s,2,y)|dz ds.
Integrating with respect to y € R%, it follows from (59) and (63) that
1P u(z +2h) - 2PMu(z + h) + POu(x)] < col bl 1] oo /Ot(t — ) rar g g
< erl " ) oo

for suitable constants cg and ¢;. Combining the estimates we find that (55) holds for some finite
constant C' > 0. The continous dependence of C on the parameters ay, — k € (0,ar), o, € (0,2),
lafley > 0 and T' > 0 follows from the fact that each of the constants in this proof depends
continuously on these parameters. ]

In Proposition 6.1 we studied the regularity of = —» Pyu(x) for measurable functions u. The next
result is concerned with the regularity of Pu(-) for Holder continuous functions w. It is natural to
expect that Pyu “inherits” some regularity from wu.
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6.2. Proposition Let (X;);s0 be a Feller process with symbol q(x,&) = |€|*®), z,& € R?, for a
mapping o : R* > (0,2) such that ay, = inf g a(z) > 0 and o € CJ (R?) for some v € (0,1)
satisfying

¥> v = | — ar.
For any T >0, k € (0,ar) and € € (9, min{vy,ar}) there exists a constant C' > 0 such that the
semigroup (Py)eso of (Xi)e0 satisfies

[ Pot] gremints - oy < CQU+Tog D™ Jul guinisn gy € CH(RY, (64)

for all 6 >0 and t e (0,T]. The constant C >0 depends continuously on ar, € (0,2), k- ay, € (0,2),
(e - lafe)/ar € (1,00), [afcyray € [0,00) and T € [0, 00).

For the proof of the Schauder estimates, Corollary 4.3, we will apply Proposition 6.2 for an isotropic
stable-like process (X;)sso with symbol g(z,€) = [€]*®) for a “truncated” function « of the form

a(z) = (e(z0) = 6) v o(z) A (o(w0) +6), xR’

where zo € R? is fixed and § > 0 is a constant which we can choose as small as we like; in particular
Y0 = || — @ < 26 is small and therefore the assumptions € > vy and v > vy in Proposition 6.2
are not a restriction. Let us mention that both assumptions, i.e. € > y9 and v > g, come into play
when estimating one particular term in the proof of Proposition 6.2, see (75) below; a more careful
analysis of this term would probably allow us to relax these two conditions.

Proof of Proposition 6.2. Fix € € (v9,7yAar), k € (0,ar) and T > 0. First of all, we note that it
clearly suffices to show (64) for u € G’g(Rd) with § < < 1. Throughout the first part of this proof,
we will assume that

K<l (65)

Under (65) the assertion follows if we can show that
A} Pru()| < Cllul e ey (1 + [log(D) )t/ *# [p*°, zeRY, B[ <1, t € (0,T]

where A? denotes as usual the iterated difference operator, cf. (5). For the proof of this inequality
we use the notation which we introduced in the proof of Proposition 6.1, in particular

p(t,x,y)=p0(t,1‘,y)+(po®<1>)(t,zz:,y), t>07 ‘T7y€Rd (66)
is the transition density of (X;)s0, cf. (56), and
po(t,x,y):pa(y)(t,x—y), t>0a mvyeRd7 (67)

where p?(¢t, x) is for each fixed g € (0,2) the transition density of the isotropic g-stable Lévy process.
Since

AnPa) = [ Avu@)p(tay)dy= [ (uly+Dptey) - up(ta+hy) dy
= [ Anup(t ey dy= [ uly+h)(p(ta.y) ~plta+hoy+ 1) dy
we find that A,%Ptf(:c) = J; - Jo where
Jy = fRd Apu(y) (p(t, = +h,y) - p(t, z,y)) dy
Joi= [ uly+h) (p(ta+ hyy) = plt.+ 2y + ) = p(ta,y) + plta -+ hyy-+ ) dy.

We estimate the terms separately. For fixed h € R%, |h| < 1, define an auxiliary function v by
v(y) := Apu(y). Proposition 6.1 gives

1] < D" | P eg rey < Calbl™ [vlloot ™5, te(0,T],
and so, by the definition of v and the Hélder continuity of w,
|J1] < Cl|h|m5||UHeg(1R.d)t7K/aLa te(0,T].

It remains to establish the corresponding estimate for .J5, and to this end we use the representation
(66) for the transition density p.
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Step 1: There exists a constant ¢; > 0 such that
q(t,z,y) = po(t,z +h,y) —po(t,x +2h,y + h) = po(t,z,y) + po(t,x + h,y + h) (68)
satisfies

fRd lq(t, 2,9 dy < c1|B (1 + [log(D)E*r for all o, h e RY, ¢ € (0,T].

Indeed: Denote by p? = p@? the transition density of the d-dimensional isotropic o-stable Lévy
process, g € (0,2). It follows from the Fourier representation of p¢ that o + p@?(t,z) is differentiable
and

0

1 int —tlEle
g ) =t [ S el og(l) de (+)

for all t > 0 and x € R%. By [26, Theorem 4.7], this implies that there exists a constant ¢, > 0 such
that

[ore.2) —_r |1og(|x>|>} (69)

for all t € (0,T], x €e R and ¢ € [ar, |afe] € (0,2]. By (), 9,p%¢ is the Fourier transform of a
rotationally invariant function, and therefore it follows from the dimension walk formula for the
Fourier transform, see e.g. [19, Lemma 4.13] or [25] and the references therein, that

0 0 0
0,d ¢ Y, W 0,d+2 ¢
8l’j 8Qp ( ,Z‘) 771‘] agp ( ,J))

forj=1,...,d,t>0, z e R? and g € (0,2). Using (69) for dimension d +2 we obtain that there is
a constant ¢z > 0 such that
o 0
7pg,d(ta .CL')

fRL‘ 9z, Do

for all t € (0,T], je{1,...,d} and g€ [ar, o] € (0,2]. Tterating the procedure, we can obtain
estimates for higher order derivatives:

i 99
R | 028 Op

for t € (0,T] and g € [ar, |afe] € (0,2] where 3 € INd is a multi-index of order |3| = Zle B, € IN.
From now on, we fix again the dimension d and write p? instead of p2?. We are now ready to
prove the desired estimate. To shorten the notation, we fix 2,k € R? and t € (0,T], and write ¢(y)
for the function defined in (68). By the very definition of pg, cf. (67), we have

lq(W)| = PP (t,z + h—y) —p* @Mtz + h—y) - p*@ (¢, —y) + p* ™) (t.z — ),

and so, by the fundamental theorem of calculus and the mean value theorem,

a(y+h)
la(y)| = ‘fa(y) (O (t,x +h—y) = 0pp?(t,x —y)) do (71)

<co min{(l +|log(t)|)t=e, ]
x

dz < c5(1 +|log(t)|)t/* (70)

p®(t,2)| dz < C(1 + [log(t)])t 1PV

a(y+h)
<l [T Va0 g, ) - ) do
a(y)

for some intermediate value n,(x,h) € B(x,h). Integrating with respect to y and using (70) we
obtain that

a(y+h)
S lawldy < cat+ [log(he 4 bl [ do < calaleg oy (1 [log(DE a7 (72)
On the other hand, it follows from (71) and the Holder continuity of « that
la@)ldy < |h["|elleyray  sup  sup | [9pp?(t,n - y)|dy.
s PO pefar ol ert SR

Hence, by (69),

. la@)ldy < eslh (1+ 1og(8)): (73)
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Combining (72) and (73) we find that

fm la(y)| dy < colh™ (1 + [log(D))t™/**,  ke[0,ar];

the reasoning is very similar to the proof of Lemma B.1, alternatively we can use an interpolation
theorem.
Step 2: There exists a constant ¢ > 0 such that

| J2| < ¢|n|r*oe ||UHeg(]Rd)(1 +|log ()t x for all te(0,T], |h| <1, 2z eR%

recall that € € (7, r, A7) has been fixed at the beginning of the proof.
Indeed: Because of the decomposition (66), we have Ja = Ja 1 + Jo o for

B [ uly+h)alt ) dy
Jzi= [ uly+h) (o ® D)(t3+hyy) = (po ® ®) (0 + 20y -+ ) dy
o [ uw o) (o © ®) (b + hoy+ 1) = (b0 © D)(t,.9)) dy
with ¢ defined in (68). It follows from Step 1 that
[ a,1] < exf[ul e ey (1+ [log(O)E/*2 B, € (0,T].

It remains to estimate J 5. By the definition of the time-space convolution, we have

(Po® @)(t,x+h,y) — (po ® P)(t,x +2h,y +h) — (po ® )(t,2,y) + (po ® ®)(t,x + h,y + h)
t
~ [ ot .2 h2) = po(t = 5,,2))0(s, 2, y) dds
0o JR
t
—f N (po(t—s,x+2h,2) —po(t—s,x+h,2))P(s,z,y+h)dzds
0 d
t
= t- P dzd
L[ at=s.2,2)0(s,2y) dzds

t
—/[(po(t—s7x+2h,z+h)—po(t—s,x+h,z+h))(<1>(s,z+h7y+h)—@(s,z,y))dzds
0

=: Hl(tay) _HQ(tay)'
Integrating with respect to y and applying Tonelli’s theorem, we obtain that
t
+th,ds<X,f f@,,d(f t—,,d)d.
| strenmea]<tae [ (s [ 106 ( [ -zl as
Thus, by (59) and Step 1,
MRJU(wh)Hl(t,y)dy

for a suitable constant ¢; > 0 and Ay > 0. It remains to estimate Hs. We claim that there exist
constants cg > 0 and A9 > 0 such that

t
< erh|" | oo [0 s (1 +]log(t-s))(t- s)_“/O‘L ds (74)

sup R |®(t,z + h,y+h) = B(t,2,y)| dy < cg|h[7 =t 712 75)

zeR4

for all ¢ € (0,7] and |h| < 1; here € € (y9,ar, Ay) is the constant which we have chosen at the
beginning of the proof. We postpone the proof of (75) to the end of this subsection, see Lemma 6.3
below. Using (75) and the fact that

[d Ipo(t = s, +2h,z +h) — po(t — 8,2 + h, z + h)| dz < colt — s| /L |h|"

R:

for some constant cg > 0, see the first part of the proof of Proposition 6.1, we obtain that
fm u(y + h)Ha(t,y) dy

Combining this estimate with (74) gives

t
< cgCol|t| oo ||V 7E f s (- g)Trlor g,
0

¢
|J2,2] < (e7 + cseg)|[u]oo| A[7T7E fo 3_1”(1? - s)_”/O‘L (1 +|log(t - s)|) ds.
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Hence,
1
59| < oo R|TTETEET r- -r)” -7 r
|J2,2] < exoufoo| Rt f MA@ =)o (14 log(1- 7)) d
0

for all ¢ € (0,7] where A := min{A1,A2}. This finishes the proof of Step 2 and, hence, of Propo-
sition 6.2 for the case k < 1. If kK > 1 we need to estimate the iterated differences of third order
A?LPtu(x); the calculations then become more technical and lengthy but the idea of the proof does
not change. O

6.3. Lemma Let (X;);s0 be a Feller process with symbol q(z,€) = |€]*®) satisfying the assumptions
of Proposition 6.2, and denote by

p(ta IL’,y) = po(t,l’, y) + (pO ® @)(LLL‘, y)
the parametriz representation of the transition density p of (X¢)iso. For any T > 0 and any
€€ (y0,7 Aayr) there exist finite constants C >0 and X >0 such that

fRd @ (8, + h,y + h) - B(t, 2, y)|dy < Clp[15+>

for all z e RY, || < 1 and t € (0,T]. The constant C > 0 depends continuously on oy, € (0,2),
k—ar €(0,2), (e |afe)/ar € (1,00), |afcyray € [0,00) and T' € [0,00). The constant A > 0
depends continuously on (g - || e )/ar € (1,00) and (7 - || )/ar € (1,00).

Proof. Fix € € (y0,ar, A7). To keep the calculations as simple as possible we consider T":= 1. The
function ® has the representation

oo

(D(t,l',y):ZF®i(t,£L'7y)7 t>0a 1’,y€Rd (76)

=1
where F® := F @ F®(0~1) denotes the i-th convolution power of
F(ta9) = e [ (0 ") €0t g, 150, ay R,
R

cf. [19, Theorem 4.25].
Step 1: There exist constants C'> 0 and A > 0 such that

fd \F(t,+ hyy +h) - F(t,z,y)|dy < CIB5t™ " for allz e RY, [B|< 1, te (0,1).  (77)
R
Indeed: For fixed |h| <1 we write

F(t,x+h,y+h) - F(t,z,y) = (2r)" (D1(t,2,y) + Da(t, 2,y))

where

Dlty)s= [ (00 g ®) = (Jglo™) - () e et g
R

Datr.y) = [[ (J€°0) — gl (@) 6 (et oot e
R4

We estimate the terms separately. As a € €)(R?) it follows that @ = r*(®) € ) (R?) for any fixed
r >0 and

7O leg ey < (leleg oy lTog(r)] + 1) max{res, plel=}.
Applying Lemma B.2 we find that there exists a constant ¢; > 0 such that
|(,r(x(y+h) _ r(x(y)) _ (Toz(a:+h) _ Ta(w))| < cl|h|'y—a|x _ y|aHr(x() HCZ(]Rd)
< 4B =yl (log(r)] + 1) max{r*s, It~}

for all » > 0, x,y € R? and |h| < 1. By [19, (proof of) Theorem 4.7] this implies that there is a
constant co > 0 such that

1+ |log(|z -
|D1(t7x,y)lsCQIhl”‘Elx—ylsmin{(l+|10g(t)l)t‘(d+'a'°°)/“ P }

"min{|z - y|trer, o - yldrlel-}
for all 2,y e R%, t € (0,1) and || < 1. Splitting up the domain of integration into three parts,
{yeR% |z —y|<t/or} {yeRELEVOr <lo—y|<1} {yeR%jz—y/>1}
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we obtain that [g.[D1(t,x,y)|dy is bounded by

. _ _ 1 +|log(|2)] 1 +[log(]2])
(1411 (d+]a]e=e) /o / f 2 +1loe([z])] f 2+ 1oeliz)l
calhl (( + |[log(t))t . dz + AR v e dz + 1 Jofrar—s dz

< A7 (1 + [log (1))t~ (¥ I==)er,
As >4y = ||a| s — o this means that there exists A; > 0 such that

fm ID1(t,x,y)|dy < cst™™ M7, te(0,1), zeR™
In order to estimate the second term we note that

a(y+h)  ra(y) w iE-(y—z) —tl€|®
Datry)=-t 7 [0 [ (Goa(i)?lel e e ag dude.

It follows from [19, Theorem 4.7] and the Holder continuity of « that there exists a constant ¢4 > 0
such that

: - 1+ |log(lz - y|)?
Y — og|Y 2y —(d+]allee)/cr
D2 (t,2,y)| < cat|h[]z - y| mln{(1+|1og(f)| )t |z — ylPer [ — ylel=] |

Now we can proceed exactly as in the first part of this step to conclude that
[ D2t )ldy < esh (1 + [log(p)R)Uel=mlon < oo
R,

for all 2 € R, |h| <1 and ¢ € (0,1) and suitable constants cs, c5, Ao > 0; for the second estimate we
used that v > v = || — ar.
Step 2: For any € € (79, min{v, «y,}) there exist constants C' >0 and A > 0 such that

. , TN i e
F®(t,x+h,y+h)—F®(t,z,y)|dy < 2°C =L ¢~ 1Hirp—e 78
Sy ) = )y <2 OGS (78)

for all i e N, z e R%, || <1 and t € (0, 1).
Indeed: Fix € € (v, min{vy,a}). By [19, Lemma 4.21 & 4.24] there exist constants C >0 and A >0
such that

[V )y < O’FE j)t 1) (79)

for all z € R, i >1 and t € (0,1). Without loss of generality, we may assume that C' >0 and \ >0
are such that (77) holds (otherwise we enlarge C' > 0 and choose A > 0 smaller). We claim that
(78) holds for this choice of C' >0 and A >0 and prove this by induction. For ¢ = 1 the estimate is
a direct consequence of (77). Now assume that (78) holds for some i > 1. By the very definition of
the time-space convolution, we have

. t .
(F®F®Z)(t,x+h,y+h):f '/I;{dF(t—s,x+h,z)F®z(s,z,y+h)dzds
0
t .
:[ de(t—s,x+h,z+h)F®’(s,z+h,y+h)dzds
o Jr

and so
|(F®F®)(t,z+h,y+h) - (FeF®)(t,z,y)| < Li(t,z,y) + Lr(t,z,y)

for

t .
Il(t,gc,y)::/o fRd|(F(t—s,:v+h7z+h)—F(t—s,x7z))F®l(s,z+h,y+h)|dzds

t , .
Iry(t,z,y) ::f0 f]Rd|(F®l(s,z+h,y+h)—F®Z(s,z,y))F(t—8,x,z)|dzds.

Using first (79) and then (77) we obtain

‘[]Rd |Il(taxay)|dyﬁci+1 ( ) |h|’Y gf (t 1+)‘371+“‘d$
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for all z € RY, |h| <1 and ¢ € (0,1). In order to estimate the second term, we use (79) with i = 1
and our induction hypothesis to find that

; Tr
[tz pldy <20t EOY

F( )\)|h|—y ef (t ) 1+A —1+z)\d

for all z e R%, |h| <1 and t € (0,1). Combining both estimates gives that F®(*1) = F @ F® satisfies
Jua P+ by ) =P 1) dy
R

< (2C)z+1 F( ‘ |’y a[ (t 1+)\S—1+i/\ ds.

Performing a change of variables, s ~ tr, and using the product formula for the Beta function,
B(u,v) =T(u)I'(v)/T(u+v), we get

[t(t — ) I g = I HDAR (N N = t‘l“f(”l))\M
0 ’ L((i+1)A)

Plugging this identity in the previous estimate shows that (78) holds for 7+ 1, and this finishes the
proof of Step 2.
Conclusion of the proof: Fix ¢ € (79,7 A ar). Since, by (76),

[ B(t,x+h,y+h) = ®(t,2,y)| < 3 [F®(t,x+ h,y+h) - F®(t,2,y)|
=1

it follows from the monotone convergence theorem that

fm | @(t, 2+ hyy + h) - (t,2,y)|dy < Zfﬁd [FE (t, @+ hyy + h) - F&'(t, 2,)|dy,
i=1

and so, by Step 2,

INOYX

/ |®(t,z + h,y+h)-®(t,z,y)|dy < ||~ stflw‘ZTC” )

1>1 F(Z)‘)
for all 2 € R, |h| <1 and t € (0,1) and suitable constants C' >0 and A >0 (not depending on z, h,
t). It is not difficult to see that the series on the right-hand side converges, see [19, Lemma A.6]
for details, and consequently we have proved the desired estimate. O

6.2. Auxiliary result for the proof of Theorem 4.1

Let (X; )0 be an isotropic stable-like process with symbol g(z, ) = [€]*®) for a Holder continuous
mapping a : RY - (0,2) with ap = inf, a(z) > 0. From Proposition 6.1 and Proposition 3.1 we
obtain immediately that any function f in the Favard space F) associated with (X;);so satisfies
the a-priori estimate

| Fleyaray < c(lAcf lloo + 1 1o0) (80)

for x € (0,arz); in particular, Fy ¢ €y*~(R%). For the proof of Theorem 4.1 we need the following
auxiliary result which will allow us to derive an improved a priori estimate once we have shown
that f e F} is sufficiently regular on {z € R%;a(x) < 1}.

6.4. Lemma Let (X;)is0 be a Feller process with extended infinitesimal generator (A, D(A.)),
Favard space Fy and symbol q(x,€) = |€|**®) for a Hélder continuous mapping o : R - (0,2) such
that

O<ap:= 1nf a(x) < sup ax) < 2.

zeR4
Let f € Fy be such that for any e € (0, aL) there exists a constant M(g) >0 such that
[Anf(@)| = f(x+h) = f(@)| < M(e)|p]*@™=, |n| <1, (81)

for any x € {a < 1}. Then there exists for any 0 € (0,1) a constant C = C(«,0) such that
[ARF(@) < O (JAcf oo + [ oo + M(6/12)),  [R] <1,

for any x e {a > 1}.
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Proof. The idea of the proof is similar to the proof of Theorem 3.2. For fixed 0 < § < min{ay,1/4}
define @(x) := max{1 - 360, a(z)}. By [19, Theorem 5.2] there exists a Feller process (¥;):»0 with
symbol p(z,€) = [£|*®) and the (L, C(R?))-martingale problem for the generator L of (Y;)s is
well-posed. Since « is Holder continuous, there exists ¢ > 0 such that

|z - 2] <20 = |a(z) —a(z)] <0. (82)

As usual, we denote by
7y = inf{t > 0;|Y; — x| > 0}

the exit time from the closed ball B(z,d). Pick € C3°(R?), 0 < k < 1, such that x(z) = 0 for
any x € {a < 1-20} and k(x) =1 for z € {a > 1 -0}, see Lemma C.1 for the existence of such a
mapping.

Step 1: We are going to show that for any f € F} the product v := f -k is in the domain D(L.) of
the extended generator of (Y} )¢s0; we will use a similar reasoning as in the proof of Theorem 3.2,
i.e. we will estimate

1 xT
= S [ 0(Vinrg) ~ 0()].

reRd

Clearly,
[E*v(Yirrz ) —v(2)| < [1(2) + La(x) + I3(2)
where
Ii(z) = k(@) E*(f (Yinrg ) - f(2))]
Ir(z) = |f (@) E* (k(Yiarz ) - £(2)))
L) = [E°((f (Yirrg) = F(2)) (K (Yirrg) = 5(2)))|-
We are going to estimate the terms separately; we start with I;. If x € {a > 1 — 260} then it follows
from (82) that B(x,2d) € {a>1-30} and therefore
9(2.€) =g = [¢]"? = p(2,¢)  forall zeB(z,20), £eR", (83)
Applying Lemma 5.2 we find that
Ii(z) = |p(2)E* (f (Xiarg (x)) = (@)
where 7§ (X) is the exit time of (X )0 from B(xz,d). As f € Fy an application of Dynkin’s formula
(11) gives
I(x) <t]|Acf]eo-
If x € {a < 1-20} then k(z) = 0 by the very definition of &, and so I1(z) = 0. Hence,
sup I1(x) < t|Acf|oo-

zeR4

For I we note that x € C°(R?) € D(L), and therefore an application of the (classical) Dynkin
formula gives

sup I2(z) <t floo | L] oo-
zeR4

To estimate I we consider two cases separately. If x € {« < 1} then it follows from our assumption
on the regularity of f, cf. (81), and the Lipschitz continuity of x that

1 Venrg) = f(@)] - 16(Yenrg ) = w(2)] < A oo + M(8/3)) ] o3 ety min{[Yenrg —a* 7073 1)
Applying Lemma 5.3 we find that there exists a constant ¢z = ca(ar, || ) > 0 such that
. a(e)-0/3+1 1
I3(x) < o[ flloo + M(6/3)) |5l cy ray sup min{1, [y| ViTra W- (*)
b y#0 |y|d+o¢(z)

|z—x|<d

For x € R? with a(z) < 1-26 we note that it follows from the definition of & that &(z) > 1 - 36 for
all z € R?, and so

swp  Ta(a) <eal(fleo+ M@ ([ Wl g+ [ g dy) < oo,
lyl<1 lyl>1

ze{a<1-20}
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If 1-260 < a(x) <1 then a(z) = a(z) for all |z — x| < §; using (82) we find from () that

sup  Ty(a) < a(lf |+ M) ( [ WPy [ s dy) <o
ze{1-20<a<1} lyl<1 lyl>1

Finally, if x € {a > 1} then B(«x,0) ¢ {a > 1 -0}, and therefore x(z) = 1 for any |z — x| < §; hence,
[f Yinrg) = F(@)] - [£(Yinrg ) = 6(2)] < 2] flloo L gre <ty

which implies
I3(z) <2 flleP* (75 < 1).
Applying the maximal inequality (9) we get

I3(z) <cs|flleot sup sup [p(z,§)]
|z—x|<8 |€|<6-1

for some absolute constant ¢z > 0. As |p(z,€)| < [€]* for all € e R? this shows that
sup I3(z) < 3| footd 2.

ze{a>1}
Combining the estimates we conclude that
1 xr
sup — sup [E*0(Yiars ) = v(2)] < ca([flloo + [Acf oo + M(6/3))
t0 ¢ zeR4

for some constant ¢g = c4(0,0, ar, [, | LE] o )-
Step 2: Applying Corollary 2.2 we find that v = f-x is in the Favard space I of order 1 associated
with (Y7)¢s0 and
ILe(f - K)o < 5[ flloo + [Acf oo + M (6/3)).
Since Proposition 6.1 shows that the semigroup (7} ):»0 associated with (Y3 )so satisfies the Holder

estimate
| Trullgr-s0 (gay < collufloat 4D 1 e (0,1], we By(RY)

for ¢ = cg(a,0) > 0, it follows from Proposition 3.1 that
|f - Kller-soray S c7([flloo + | Acf oo + M(6/3))

for some constant ¢7 > 0 which does not depend on f. Finally, we note that for any = € {a > 1} we
have k(2) =1 for z € B(x, ), and therefore it follows for all |h| < §/2 that

[f(x+2h)=2f(x+h)+ f(x)] =|s(x+2h)f(x+2h)-2k(x+h)f(x+h)+r(x)+ f(x)|
<crlhl (| flloo + [ Acfloo + M(6/3)). O

6.3. Proof of Theorem 4.1 and Corollary 4.3

Proof of Theorem 4.1. Fix € € (0, ). Since « is Holder continuous there exists § > 0 such that
la(z) — a(y)] < % for all |x -yl < 44. (*)

Moreover, |« < 2 implies that we can choose @ € (0,az) such that a(x) < 2 -0 for all 2 € R,
without loss of generality, we may assume that € < §. We divide the proof in two steps. In the
first part, we will establish the Holder regularity of functions f € F; at points € R? such that
a(x) <1+ ap - 6. In the second part, we will consider the remaining points.

Step 1: There exists a constant Cy > 0 such that
AL F(@) < CLR @ (|Acf oo + [ floo)  forall feFy |h<d, zef{a<aL+1-0}. (84)
Indeed: Fix z € R? such that a(z) < o +1 -6 and define
a®(z) = max{a(z),a(z) - €/2}, zeRY.

It is not difficult to see that [a”|ey(ray < || ey (ray and, moreover,

e
7= 1inf a®(2) > -=>0.
o = inf o (2) 2 a(z) 5
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It follows from [19, Theorem 5.2] that there exists a Feller process with symbol p(z,€) := |¢]*" (%)
and that the (L, C2°(R?))-martingale problem for the generator L of (Y;)sso is well-posed. Note
that, by (), a®(z) = a(z) for |z — x| < 46 and therefore

4(2,0) = {1 = g7 =pD(2,6)  forall £eR?,|z-a|<46.
Moreover, an application of Proposition 6.4 shows that there exists a constant ¢; = ¢;(e, ) such

that the semigroup (7} )¢s0 associated with (Y;):s0 satisfies
HTt’LLHe:(z)—s (R) <c HU”wt‘(a(z)—s)/(a(x)—s/Q) (85)

for any u € By(R?) and t € (0,1]. This shows that the conditions (C1)-(C3) in Theorem 3.2 are
satisfied. By (80) it follows from Theorem 3.2 (with o(x) := oy, — 6/4) that there exists a constant
2 = c2(e, o) such that

ALf (@) < K@) O (| Acfloo + [ floo)s  feFu | <6

where
1

1+O(L—0/4 .
| }|y|d+(¥m(z) dy?

1
. 2 .
= sup min{l, |y|°} ———=dy+ sup min{1, |y
( ) zeRd Jy#0 { 7| | }|y|d+o¢ =) |z—z|<46 Jy#0 { ’|

if we can show that K := sup,c(qca, +1-0) K (¥) < oo this gives (84). To this end, we note that ¢ <
and (x) imply
. € 0 0
@ (z):a(z)éa(x)+§s(aL+1—9)+§:aL+1—§ for all |z-x| <46
and so

Ko swp [ winfLlP) = dyv s ] mindge ) i dy < 0
Step 2: There exists C5 > 0 such that
A2 F(2)] < Colhl*@ (| A flloo + |flec)  forall feFy, bl <, ae{a>as+1-0}.
Indeed: Tt follows from Lemma 6.4 and Step 1 that there exists a constant ¢s > 0 such that
AL F (@) < eslh] P (| Acf oo + [ o), AI<1, (86)

for any f € Fy and z € {a > 1}. Thanks to this improved a priori-estimate for f € F; we can use
a very similar reasoning as in the first part of the proof to deduce the desired estimate. If we set
a®(2) == max{a(z),a(x) —¢/2} for fixed x € {a > 1+ ap — 0}, then it follows exactly as in Step 1
that the Feller process (Y;)ss0 with symbol p(z,€) = [€]*"(*) satisfies (C1)-(C3) in Theorem 3.2;
in particular, (85) holds for the associated semigroup (7}):s0. Because of (86) we may apply
Theorem 3.2 with o(x) :=1-6/2 to obtain

A7 f(@)| < ca K (@)D" (|Acf oo + [ floo),  feF

for a constant ¢4 (not depending on f and z) and

1 1
K(x) = sup min{1, |y|? ————dy+ sup min{1, y279/2 ———dy
S N P VO R A e S
By our choice of 6, we have ay, < a”(z) < |af e <2 -0, and so
1
sup K(z)<2 sup f min{1, Jy|*} 75+ ly[~4*02 dy < co. O
ze{azl+ar-0} Belor,|lorfee] Y ¥#0 |y lyl<1

Proof of Corollary 4.3. We are going to apply Theorem 3.5 to prove the assertion. To this end,

we first need to construct for each z € R? a Feller process (Yt(r))tzo which satisfies (C1)-(C3) from
Theorem 3.2 as well as (S1)-(S5) from Theorem 3.5. Recall that ay = inf, a(z) > 0 and that
~€(0,1) is the Holder exponent of a.

Fix € € (0,ar A7) and € R Since a is Holder continuous there exists J > 0 such that

la(z +y) —a(2)| < Z for all zeR%, |h| <4 (%)

If we define
a®(2) = (a(x) —/4) va(z) A (a(x) +e/4), zeRY,
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then it follows from [19, Theorem 5.2] that there exists a Feller process (Yt(x))tzo with symbol
) (2,¢) = |§|"‘1(z) such that the martingale problem for its generator is well-posed. Moreover, by
our choice of §,

q(2,€) = €@ = ¢ = p(z,6)  forall £eRY, |z - 2| <4,

and so (C1) and (C2) from Theorem 3.2 hold. Applying Proposition 6.1 and Proposition 6.2, it
follows that the semigroup (7)) associated with (V")) satisfies

HTt(x)u”e:(”:)(]Rd) S C1 ”’U’Hwt_ﬁ(m)v u € Bb(Rd)a t € (07 1)7

and
HTt(x)u”e:(mHA(]Rd) < H’u’”Gi‘(]Rd)t_B(m)? u € eb)\(IRd)a te (07 1)7
for any A < A := where ¢; >0 is some constant (not depending on u, ¢, x) and
_ _afx)-2¢
k(z)=a(z)-¢c B(x) = NOEP

Consequently, we have established (C3) and (S3). Since k is clearly uniformly continuous and
bounded away from zero, we get immediately that (S4) holds. Moreover, as « is bounded away
from zero and from two, it follows easily that (S1) and (S5) hold with a(*)(2) = a®(2). Finally, we
note that the Hélder condition (S2) on the symbol p(*) is a consequence of the Holder continuity
of a, see Lemma 6.5 below for details.

We are now ready to apply Theorem 3.5. Let f € D(A) be such that Af = g € C)(R?) for some
A > 0. Without loss of generality, we may assume that A <. Since (X} )¢so satisfies the assumptions

of Theorem 4.1, it follows that f € Gf(')(Rd) for o(z) := a(z) - £/4 and, moreover,
[ fleee gay < CeClAf oo + 1l e0)- (87)
Furthermore, by our choice of §, cf. (x), we find that

o= inf inf 5(1 +o(x) —a”(z))

zeR? |z—x|<4
satisfies 0 > 1 —¢/4. Applying Theorem 3.5 we conclude that
f c e;(')+min{'y,k,1—e/4}—s/4(Rd) c eg(~)+min{’y,)\}—28(Rd)
and
1/ g commnts nr-2e gty < CU AT ley oy * 1l ggor uay) < CL AT ey ey + 1£1)

where we used (87) for the last inequality. O

6.5. Lemma For fized o € (0,2) denote by v, the Lévy measure of the isotropic a-stable Lévy
process, 1. e.

= [ (0 -costu-E)rnldy), <R (83)
Let 3:R% — (0,2) be such that B € C)(R?) for some v € (0,1] and
0<fL:= irﬁ{fdﬁ(z) < sup B(z) < 2.

zeR4

Ifu:R* > R is a measurable mapping such that
[u(y)l < M min{|y| "7 1}, yeR, (89)

for some z € R%, >0 and M > 0, then there exist constants K >0 and H >0 (not depending on u
and z) such that

| w v @) = [ uw)vacen ()| < MR for i |bl < B
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Proof. Tt is well known that v, (dy) = c(a)|y|"¢® where c¢(a) is a normalizing constant such that
(88) holds. Noting that, by the rotational invariance of & — |¢|%,

= c(e) |1 cos(uule) ey dy = €7e(e) [ (1 cosn)) e dy
for all £ e R?, we find c(a) = 1/h(«) for

(o) = [ (1 costun)) s dy

Using that
1 1

pdta pdté

1
T p2d+o+p |T

48—y < log(r)lr max{r*, ™ }a - 6] (90)

for any r >0 and o, & € I := [0, [|8] ] € (0,2), it follows easily that
|h(a) — h(&)| < Cyl|a-al, a,ael
for some constant C7 > 0. As inf,ey h(a) > 0 this implies that c¢(a) = 1/h(«) satisfies
le(@) = e(@)] < Cola - @, a,ael (91)

for some constant Cy > 0.
Now let u : R? - R be a measurable mapping such that (89) holds for some z € R%, M > 0 and
7> 0. Since vq(dy) = c(a)|y|" < dy we have

‘/ u(y) Vﬁ(z)(dy)—fu(y)’/ﬁ(zm)(dy)

<h+1
where
1
B = 1eB)) =5+ D [ W) s

1
|d+ﬁ(z+h)

1
=3 ) [ |t - &

By the first part of the proof, cf. (91), and by (89), we find

ly

z T 1
1< CoMIB() =BG+ ] f | min{ll* 1) dy

and so
Lo < CMIRP|Bley (ray sup f  min{ly[*7 1| dy = Cs MR
e Y

for all h € R®. To estimate Iy we choose H > 0 such that
min{r, 8
8() - B+ ) P L)

By (89) and (90), we get

for all zeR? |h| < H.

. . masc{[y]-#E) || -BE+)
By < MIB(:) = 3(z+ Wl supe(o) [ minsf"7 1 1og(l) =2 gy
for all |h| < H. By our choice of H, it holds that
B(Z) <B(z) - <6(z+h)<ﬁ(z)+f for all |h] < H,

and therefore
I < MI5(2) - Bz + ] supe(a) [
ael lyl<1
< C4M|h|’y
for all |h| < H and

™2 log (D] dy + [

O gy )

o= Wleanyspeto) [ 14 ol du-vsup [ - os(ul) ) <os. 0
ael lyl<1 ael Jlyl>1
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Appendix A. Extended generator

In this section, we collect some material on the extended generator of a Feller process; in particular,
we present the proofs of Theorem 2.1 and Corollary 2.2. The extended infinitesimal generator was
originally introduced by Kunita [29] and was studied quite intensively in the 80s, e.g. by Airault
& Follmer [1], Bouleau [6], Hirsch [14], Meyer [36] and Mokobodzki [37]. Recall the following
definition, cf. Section 2.

A.1. Definition Let (X;):»0 be a Feller process with u-potential operators (Ry)xso. A function
f is in the domain D(A.) of the extended generator and g = A, f if

(i) f e By(R?) and g is a measurable function such that |Rx(|g|)|le < oo for some (all) A > 0,
(ii) f=Rx(Af—g) for all A>0.
Condition A.1(ii) may be replaced by
(i) My := f(Xy) - f(Xo) - [Otg(XS) ds, t >0, is a local P*-martingale for any z € R%;

cf. Meyer [36] or Bouleau [6]. Moreover, it was shown in [1] that the extended generator can also
be defined in terms of pointwise limits

g%t‘l(E””f(Xt) - f(2)),

see also Corollary A.3 below. The domain D(A,) is, in general, quite large; this is indicated by
the fact that it is possible to show under relatively weak assumptions (e.g. C°(R?) € D(A.)) that
D(A,) is closed under multiplication, cf. [36, pp. 144]. The following statement is essentially due
to Airault & Follmer [1].

A.2. Theorem Let (X;)i»0 be a Feller process with semigroup (Py)eso and extended generator
(Ae, D(Ae)). The associated Favard space Fy of order 1, cf. (6), satisfies
Fr={feD(Ac); | Acfloo < 00}.
If f € F then
1
K(f) = sup 2IBf = flw = [Acfl

te(0,1)
and, moreover, Dynkin’s formula

EFOG) - (o) =B ( [ Acf(X) ds) (92
holds for any x € R and any stopping time T such that E*T < oo.
Proof. Denote by (Rx)as0 the A-potential operators of (X;):»o and set

D= {f e By(R?); | Aef]oo < 00}

First we prove Fy € D. Let f € Fy. Airault & Follmer [1, p. 320-322] showed that the limit
g(x) =lim;ot 1 (P, f(x) - f(x)) exists outside a set of potential zero and that

t
M= f(X) = f(Xo)= [ g(X)ds, 20,

is a P*-martingale for any x € R?; we set g = 0 on the set of potential zero where the limit does
not exist. Clearly, |g]le < K(f) < o0, and therefore it is obvious that Ry(|g|) is bounded for any
A > 0. It remains to check A.1(ii). Since the martingale (My);»0 has constant expectation, we have
Pf=f +f0t P,gds, and so

A (0,00 e MP,f(z)dt = ) /(;Loo) e M (f(x) + /: Pyg(x) ds) dt
= f(z) - (0.00) (%B_M) ([Ot Psg(a:)ds) dt.

Applying the integration by parts formula we find that
A f e MP,f(x)dt = f(x) + f e MP,g(z)dt,
(0,00) (0,00)
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i.e. ARy f = f + Ryg. This proves f e D(A.), Aef =g and |Acflleo < K(f).
If f € D then the local martingale

My = (%)~ F(X0) - [ AF(X) ds

satisfies

E* (M) < (2] fleo + [Acfle)?(1+1), 20, z€RY,
for any stopping time 7. It is immediate from Doob’s maximal inequality that sup,., | M| is square-
integrable, and this, in turn, implies that (M} );so is a martingale. In particular, E*(M;) = E*(M)),
i.e.

B 700 - f@) = B [ A () ds),

and 80 K(f) < |Aef]|loo < o0 and f € Fy. Finally, we note that Dynkin’s formula (92) was shown in
[1, Corollary 5.11] for any function f € By(R?) satisfying K (f) < 0. O

A.3. Corollary Let (X;):»0 be a Feller process with semigroup (Py)¢s0, extended generator (Ae, D(Ae))
and symbol q. Denote by
72 =1nf{t > 0;| Xy — x| >}
the exit time of (X¢)is0 from the closed ball B(x,r). If the symbol q has bounded coefficients, then
the following statements are equivalent for any f € By(R?).
(i) feFy, de feD(Ae) and supyeio 1yt [ Pef = flloo = |Aef oo < 00,
(i) There exists r >0 such that

1
K’El) f = sup Ssup ———— ]E;Cf X o) - f 2| < co.
( ) te(0,1) zeR4 Em(t/\’rrz)‘ ( A 'r) ( )|

(i4i) There exists r >0 such that
1
K (f) = sup — sup [B°f(Xare) = f(2)] < oo,
te(0,1) U zeR4
If one (hence all) of the conditions is satisfied, then

E f(Xtnrs) - f(2) lim E?f(Xinrz) = f()
t S0 Er(taT®)

Acf(x) = lim (93)

up to a set of potential zero for any r € (0,00]. In particular, |Aeflloo < K,(,i)(f) forie{1,2} and
r € (0, 00].

The proof of Corollary A.3 shows that the implications (i) = (ii), (i) = (iii) and (i) = (93)
remain valid if the symbol ¢ has unbounded coefficients.

Proof of Corollary A.3. (i) = (ii): If f € Fy then it follows from Dynkin’s formula (92) that
KD (f) < |Acf oo < 00 for all r>0.
(i) = (iii): This is obvious because E*(t A 77) < .
(ili) = (i): Fix t € (0,1). Clearly,
B f(X:) = f(@)| < |E” f(Xinre ) = f(@)| + B (f(Xiarz) = F(Xe))I-

By assumption, the first term on the right-hand side is bounded by K. 52)( f)t. For the second term
we note that

B (f (Xenrp) = f(X)) < 2] flleoP* (77 <1).
An application of the maximal inequality (9) for Feller processes shows that there exists an absolute
constant ¢ > 0 such that

IE*(f (Xiarz) = f(Xe)) < 2¢t] flloo sup sup |q(y,&)] < 2¢t| [ sup sup. la(y, )

ly-zl<r gl yeRd [¢l<r

note that the right-hand side is finite because ¢ has bounded coefficients. Combining both estimates
gives (i).
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Proof of (93): For r = oo this follows from [1], see the proof of Theorem A.2. Fix r € (0, 00).
Applying Dynkin’s formula (92) we find
E7f(Xy) - f(x) B f(Xinrg) — f(2)
t t

1 T : xr x xT
< T Acf B (¢ - min{r,t}) < [AcflloP* (7,7 < 7).
The right-continuity of the sample paths of (X:):so gives P* (77 <t) - 0 as t - 0, and therefore

we obtain that
. Ezf(Xt/\Tf)_f(I) L ETA(XG) - f(2)
lim = lim .
t—0 t t—0 t

Since the right-hand side equals A, f(z) up to a set of potential zero, see the proof of Theorem A.2,

this proves the first “=” in (93). Similarly, it follows from Dynkin’s formula that

E® f(Xipr=) = f(x) B E? f(Xinrz) = f(x) 1 1
t Ez(t ATE) t E=(taT?)

< [Aef B (77 At)

<[ AeflloP?(77 < 1)

As P?(7¥ <t) —» 0 we find that the right-hand side converges to 0 as t - 0, and this proves the
second “=” in (93). O

Appendix B. Inequalities for Hélder continuous functions

We present two inequalities for Hélder continuous functions which we used in Section 6.

B.1. Lemma Let f: R% >R be a function. If x € R% and My, M5 >0 are such that
AL f()| < My|h*  and |AFf(2)| < My

for all h e RY, then
| AR f ()] < [ max{ M™%, Mar™"}
for any r>0, he R? and s € [0,2].

Proof. Fix k€[0,2] and r > 0. If h e R? is such that |h| > r, then
al”
re

|ARf(2)] < My < My
If |h| < 7 then
AR f (@) < Mulh” < My |h|"r27". O
B.2. Lemma Let f € €)(R?) for some v € (0,1). There exists a constant C = C(7) >0 such that
|ALf (@) = AnfWI < Cl S ey raylz = y|* A~ (94)
for all a € [0,7] and x,y, h € R%.

If f:R? - R is Lipschitz continuous and bounded, then (94) holds for ~ = 1; the norm | ey may
needs to be replaced by the sum of the supremum norm and the Lipschitz constant of f.

Proof. By the very definition of the Hélder-Zygmund space GZ(Rd) we have
|f (@ +h) = f(@) < | flley ey A" Lgnisay + 20 floo L1y < 20 ey raylhl”
for any x,h € R?. Hence,
[Anf(x) = AnfWI<|f (@ +h) = f(@)[+|f(y+h) = FWI < 4] flley eyl (95)

and
IAnf(2) = AnfWI < |f(@) = f)l + |f(z+h) = fly+h)| < 4] fley maylz -y’ (96)

for all z,y,h € R%, i.e. (94) holds for & = 0 and « = . Next we show that (94) holds for a = v/2
and to this end we use interpolation theory. Let f =u+wv for u e Cy(RY) and v € Cl? (R%). Clearly,

[Apu(z) = Apu(y)] < 4]ufe
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and, by the gradient theorem,
1
Ano@) = Sno()l = b [ (Voo ) = oty + i) dr| < Ihl ke = gl ol
for all z,y, h e RY. Hence,
Anf(@) = Anf()| <4uloo + Bl 2 =yl 0] c2mey,  @,y,h e R

Since €] (R?) is the real interpolation space? (Cyp(R%), CZ(R%),/2,00, cf. [43, Section 2.7.2], this
implies that there exists a constant C' > 0 such that

Anf (@) = A f ()] < CIP e =y fle may (97)
which shows (94) for « = /2. Now let a € (0,7/2). For |h| < |z -y it follows from (95) that
|ARf(2) = Anf )] <Al flley maylhl” < 4] fley waylhl®z =y~
If |h| > |z — y| then (97) gives
ARf (@) = Anf ()] < Cllfle; eyl =y IR < Ol f ey rayl =yl [p72O72)

where we used a < v/2 for the second estimate. For « € (7/2,v) a very similar reasoning shows
that (94) follows from (96) and (97). O

Appendix C. A separation theorem for closed subsets

In Section 6 we used the following result on the smooth separation of closed subsets of R<.

C.1. Lemma Let F,G cR? be closed sets. If

d(F,G) =inf{|lz -y;ze F,ye G} >0 (98)
then there exists a function f € C;°(R?), 0< f <1, such that
{0 =F and f7({1H=G. (99)

It is well known, see e.g. [30], that for any two closed sets F,G ¢ R¢ there exists f € C*=(R?),
0 < f <1, satisfying (99); however, we could not find a reference for the fact that (98) implies
boundedness of the derivatives of f. It is not difficult to see that boundedness of the derivatives fails,
in general, to hold if d(F,G) = 0; consider for instance F := R x (—00,0] and G := {(x,y);y > " }.

Proof of Lemma C.1. As d(F,G) >0 we can choose € > 0 such that the sets

F.:=F+B(0,¢) G: =G+ B(0,¢)
are disjoint. It is known, see e. g. [30, Problem 2-14], that there exists h € C*(R%), 0 < h < 1, such
that h1({0}) = F. and h™'({1}) = G.. Pick ¢ € C=(R?), ¢ > 0, such that suppp = B(0,¢) and
Jra e(y)dy =1, and set

[@) = (e )@) = [ o=y, zeR’,

Since f is the convolution of a bounded continuous function with a smooth function with compact
support, it follows that f is smooth and its derivatives are given by

9% f () = fR W)z -y)dy,  xeRY,

for any multi-index o € N¢, see e. g. [39]. This implies, in particular, [0%f]e < [0%¢|z1 < 0o, and
so f e Cg°(R?). Moreover, as suppy € B(0,¢), it is obvious that f(x) = 0 for any = € F and
f(x) =1 for x € G. It remains to check that 0 < f(z) <1 for any z € (FuUG)°.
Case 1: 2 e RY\(F. uG,). Then 0 < h(z) <1, and therefore we can choose 7 € (0,¢) such that

0< inf h(y)< sup h(y)<1.

ly—=|<r ly—z|<r

2More precisely, the norm on the interpolation space (C’b(]Rd),C’b2 (]Rd)),y/z,m is equivalent to the norm on
Y (RY).
b
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Since supp ¢ = B(0,¢) 2 B(0,r) this implies
xé[ r-y)dy+ sup h T - d<[ r-—y)dy=1.
f(x) Rd\B(mw( y)dy e (v) B(m)w( yydy< | e(x-y)dy

A very similar estimate shows f(z) > 0.

Case 2: x € F.\F. We have B(x,e)n F¢ # @, and therefore there exist € R? and r > 0 such that
B(y,r) € F°n B(z,¢).

In particular

0< inf h(z)< sup h(z)<1.
zeB(y,r) zeB(y,r)

As supp ¢ = B(0,¢) it follows very similar as in the first case that 0 < f(z) < 1.
Case 3: z € G:\G. Analogous to Case 2. O
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