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1
Introduction

Large deviation theory deals with the decay of probabilities of rare events on an exponential

scale. Roughly speaking, large deviation estimates are of the form

P(Xn ∈ B) ≈ exp(−nI(B)) for n large,

where the rate function I(B) is a measure for the asymptotic probability that the sequence

(Xn)n∈N of random variables attains values in the set B. In the last years large deviation

theory has attracted more and more attention because of its variety of applications in the

fields of financial mathematics, statistics, engineering, statistical physics, and chemistry.

A thorough discussion of various applications can be found in the monograph [23] by

Hollander. Our standard references for large deviation theory are Dembo-Zeitouni [10]

and Feng-Kurtz [17].

In this work we focus on large deviation results for a certain type of stochastic processes;

namely, we consider scaled Lévy processes and solutions of stochastic differential equations

(SDEs) driven by a Lévy process. Both Lévy processes and solutions of SDEs driven by

Lévy processes are an important subclass of Lévy-type processes which we briefly discuss

in Chapter 6. In particular, we motivate that symbols are the natural generalization of

characteristic exponents in the theory of Lévy-type processes.

Since (the proofs of) the main results are quite technical, the first part of the thesis

aims at making the reader familar with some basic concepts in large deviation theory. In

Chapter 2 we introduce the notion of large deviation principle and present fundamental

results such as the contraction principle and Varadhan’s lemma. Subsequently, we show

that the Legendre transform plays – at least in a convex framework – an important role

and formulate sufficient conditions for large deviations in terms of the limiting logarithmic

moment generating function. Historically, this approach is due to Gärtner [20] and Ellis

[15].

The results obtained will be used in Chapter 5 in order to establish large deviations

for scaled Lévy processes. As an application, we derive two statements on the longtime

behavior of Lévy processes: the law of iterated logarithm and the counterpart of Strassen’s

law.

Chapter 4 is concerned with some recent investigations on extensions of the contraction

principle. They prove to be a crucial tool when considering large deviations for solutions
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1. Introduction 2

of SDEs; we will discuss this approach in Section 7.2. In Section 7.1 we follow the lines of

Freidlin and Wentzell [18] and give a purely probabilistic proof of a large deviation result

for SDEs driven by a Lévy process.

We emphasize that we do not attempt to state the results in their most general form since,

otherwise, the proofs would become even more technical. However, we try to point the

reader to notable generalizations.

To keep notation as simple as possible, we restrict ourselves to one-dimensional processes;

most of the results can be proved in a similar fashion for multi-dimensional processes.

Unless otherwise indicated, we assume that the processes are one-dimensional.

Finally, I would like to thank my advisor René Schilling not only for his support and

valuable contributions but also for the interesting lectures (which succeeded in drawing my

attention to the topic of stochastic processes) and the never-ending kindness to answer

(most of) my never-ending questions. A special thanks goes to Johannes Huhn for his

amiable companionship during the last year. Both to Johannes Huhn and Dirk Spitzner

my thanks for reading substantial parts of my thesis and pointing out quite a few mistakes.



2
Basic Definitions & Properties

Throughout this chapter (M,d) denotes a metric space and (Ω,A,P) a probability space.

2.1 Definition Let (µε)ε>0 be a family of probability measures on (M,B(M)) and

λ ∶ (0,∞) → R be such that λ(ε) → ∞ as ε → 0. (µε)ε>0 satisfies a large deviation

principle as ε → 0 with rate function I ∶ M → [0,∞] and normalizing coefficient λ if the

following conditions hold.

(L0) I is lower semicontinuous, i. e. its sublevel sets Φ(r) ∶= {x ∈M ; I(x) ≤ r}, r ≥ 0, are

closed.

(L1) For any open set A ⊆M ,

lim inf
ε→0

1

λ(ε) logµε(A) ≥ − inf
x∈A

I(x).

(L2) For any closed set B ⊆M ,

lim sup
ε→0

1

λ(ε) logµε(B) ≤ − inf
x∈B

I(x).

I is called a good rate function if its sublevel sets Φ(r), r ≥ 0, are compact. A family of

random variables Xε ∶ (Ω,A,P) → (M,B(M)), ε > 0, obeys a large deviation principle as

ε → 0 if the family of distributions µε(⋅) ∶= P(Xε ∈ ⋅) satisfies a large deviation principle.

Modifying (L1) and (L2) in an obvious fashion, we will also speak of a sequence of proba-

bility measures (µn)n∈N satisfying a large deviation principle as n→∞ with rate function

I and normalizing sequence (λn)n∈N.

Unless otherwise stated, we consider λ(ε) = ε−1 and λn = n, respectively. Most of the

results presented in Chapter 2 and 3 can be formulated for any normalizing coefficient and

normalizing sequence, respectively.

Remarks (i). The rate function I is uniquely determined by the values µε(B(x, δ)),
x ∈M , δ, ε > 0. In fact,

− I(x) = lim
δ→0

lim inf
ε→0

ε logµε(B(x, δ)) = lim
δ→0

lim sup
ε→0

ε logµε(B[x, δ]). (2.1)

3



2. Basic Definitions & Properties 4

This follows readily from the lower semicontinuity of I, cf. [18, Theorem 3.5]. On

the other hand, if I satisfies (2.1), then (µε)ε>0 obeys a weak large deviation principle

with rate function I, i. e. (L0),(L1) hold and (L2) holds for all compact sets B ⊆M ,

see e. g. [10, Theorem 4.1.11].

(ii). It is widely known, see e. g. [25, Theorem 1.2.11], that a sequence of random variables

(Xn)n∈N converges in distribution to a random variable X if, and only if, for each

open set A and closed set B,

lim inf
n→∞

P(Xn ∈ A) ≥ P(X ∈ A), lim sup
n→∞

P(Xn ∈ B) ≤ P(X ∈ B).

We note the analogy to (L1) and (L2). In this chapter, we will see that the so-

called exponential tightness is the counterpart of tightness and state the analogue of

Prokhorov’s theorem.

2.2 Example Let (Bt)t∈[0,1] be a one-dimensional Brownian motion. The family of scaled

processes (√εB)ε>0 satisfies a large deviation principle in (C[0,1], ∥ ⋅ ∥∞) as ε → 0 with

good rate function

I(f) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∫

1
0 ∣f ′(s)∣2 ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise,

where AC[0,1] denotes the set of absolutely continuous functions f ∶ [0,1] → R. This

large deviation principle is a special case of large deviation results we will encounter in

Chapter 5. For a direct proof, based on the Cameron-Martin formula, we refer the reader

to [38, Chapter 12].

The following lemma provides an alternative characterization of the large deviation lower

bound (L1) and upper bound (L2). It is due to Freidlin and Wentzell [18].

2.3 Lemma Under (L0), the conditions (L1), (L2) are equivalent to

(L1’) For any δ > 0 and x ∈M ,

lim inf
ε→0

ε logµε(B(x, δ)) ≥ −I(x).

(L2’) For any δ > 0 and r > 0,

lim sup
ε→0

ε logµε({x ∈M ;d(x,Φ(r)) ≥ δ}) ≤ −r.

Proof. Let A ⊆M open. Clearly, (L1) is equivalent to

lim inf
ε→0

ε logµε(A) ≥ −I(x) for all x ∈ A.

Since A is open, there exists δ = δ(x) > 0 such that B(x, δ) ⊆ A. If (L1’) holds, then

lim inf
ε→0

ε logµε(A) ≥ lim inf
ε→0

ε logµε(B(x, δ)) ≥ −I(x),
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i. e. (L1) is satisfied. Since (L1) implies obviously (L1’), this proves (L1) ⇔ (L1’). Now

let B ⊆M be closed, and suppose that (L2’) is satisfied. Set

r ∶= min{ inf
x∈B

I(x) − γ, 1

γ
}

for γ > 0 sufficiently small. Since Φ(r) is compact and B closed, we have δ ∶= d(B,Φ(r)) >
0. Consequently,

µε(B) ≤ µε({x ∈M ;d(x,Φ(r)) ≥ δ}).

Therefore, by (L2’),

lim sup
ε→0

ε logµε(B) ≤ −r γ→0ÐÐ→ − inf
x∈B

I(x).

On the other hand, applying (L2) to the closed set {x ∈M ;d(x,Φ(r)) ≥ δ} yields (L2’).

Recall that a family (µε)ε>0 of probability measures on M is called tight if for each δ > 0

there exists a compact set K ⊆M such that supε>0 µε(Kc) ≤ δ. The corresponding concept

in large deviation theory is exponential tightness.

2.4 Definition A family (µε)ε>0 of probability measures on M is called exponentially

tight if for any r > 0 there exists a compact set Kr ⊆M such that

lim sup
ε→0

ε logµε(Kc
r) ≤ −r. (2.2)

A family of random variables (Xε)ε>0 is called exponentially tight if the family of distri-

butions (PXε)ε>0 is exponentially tight.

Note that in general exponential tightness is not equivalent to goodness of the rate func-

tion. Exponential tightness implies the goodness of the rate function, but the converse is

not true. For a counterexample we refer the reader to [13].

2.5 Lemma Let (µε)ε>0 be a sequence of probability measures on (M,B(M)).

(i). If µε, ε > 0, is tight and (µε)ε>0 satisfies a large deviation principle with a good rate

function, then (µε)ε>0 is exponentially tight.

(ii). If (µε)ε>0 is exponentially tight and satisfies the large deviation lower bound (L1)

with rate function I, then I is a good rate function.

(iii). If (µε)ε>0 satisfies a weak large deviation principle with rate function I and (µε)ε>0

is exponentially tight, then (µε)ε>0 satisfies a large deviation principle with (good)

rate function I.

Note that tightness holds automatically if (M,d) is a Polish space.

Proof. (i). cf. Lemma 5.2
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(ii). For r ≥ 0 let K2r ⊆M be as in the definition of exponential tightness (2.2). By (L1)

and (2.2),

− inf
x∈Kc

2r

I(x) ≤ lim inf
ε→0

ε logµε(Kc
2r) ≤ lim sup

ε→0
ε logµε(Kc

2r) ≤ −2r.

In particular, the sublevel set Φ(r) ⊆ K2r is relatively compact. Since I is lower

semicontinuous, hence Φ(r) closed, we conclude that Φ(r) is compact.

(iii). By definition it suffices to show (L2) for any closed set B ⊆M . To this end, let Kr be

as in the definition of exponential tightness. Obviously, µε(B) ≤ µε(B∩Kr)+µε(Kc
r).

Applying (L2) to the compact set B ∩Kr yields

lim sup
ε→0

ε logµε(B) ≤ max{lim sup
ε→0

ε logµε(B ∩Kc
r), lim sup

ε→0
ε logµε(Kc

r)}

≤ max{− inf
x∈B∩Kr

I(x),−r} ≤ max{− inf
x∈B

I(x),−r} .

The claim follows letting r →∞.

The importance of exponential tightness is illustrated by the following analogue of

Prokhorov’s theorem. It was first formulated by Puhalskii [33]. Proofs can be found

for instance in [17, Theorem 3.7] and [10, Lemma 4.1.23].

2.6 Theorem Let (µn)n∈N be an exponentially tight sequence of probability measures on

M . Then there exists a subsequence (µnk)k∈N which satisfies a large deviation principle

with a good rate function.

Theorem 2.6 provides an approach to prove large deviation results (“subsequence princi-

ple”):

(i). Show that the sequence (µn)n∈N is exponentially tight.

(ii). Choose an arbitrary subsequence (µ′n)n∈N and prove that the rate function I of the

subsequence of (µ′n)n∈N satisfying a large deviation principle does not depend on the

subsequence (µ′n)n∈N.

In the theory of large deviations for stochastic processes, cf. Chapter 5 and 7, exponential

tightness in the Skorohod space D[0,1] is of particular interest. For (sufficient and nec-

essary) conditions regarding exponential tightness in D[0,1] we refer the reader to Feng

[17, Theorem 4.1] and Puhalskii [34, Theorem 3.2.1].

2.7 Lemma Let (M,d) be a metric space and (µε)ε>0, (νε)ε>0 exponentially tight families

of probability measures on (M,B(M)). Assume that (µε)ε>0 and (νε)ε>0 are exponentially

tight and satisfy a large deviation principle in (M,d) as ε → 0 with (good) rate function

I and J , respectively. Then the family of product measures (µε ⊗ νε)ε>0 obeys a large

deviation principle in M ×M endowed with the metric

d((x1, y1), (x2, y2)) ∶= d(x1, x2) + d(y1, y2), x1, x2, y1, y2 ∈M



2. Basic Definitions & Properties 7

as ε→ 0 with (good) rate function K(x, y) ∶= I(x) + J(y).

Proof. K is clearly lower semicontinuous, i. e. a rate function. Moreover, the relation

ΦK(r) ⊆ ΦI(r) × ΦJ(r) implies that K is a good rate function if I and J are good rate

functions. Next we prove the large deviation lower bound (L1). Let A ⊆M ×M be open,

and pick (x, y) ∈ A. There exists δ > 0 such that A ⊇ B(x, δ) ×B(y, δ). By the definition

of the product measure and (L1) (for (µε)ε>0 and (νε)ε>0), we find

lim inf
ε→0

ε logµε ⊗ νε(A) ≥ lim inf
ε→0

ε log (µε(B(x, δ))νε(B(y, δ)))

≥ −(I(x) + J(y)) = −K(x, y).

This proves the large deviation lower bound (L1). Now let B ⊆ M ×M be compact and

γ > 0. For any (x, y) ∈ B we can choose δ = δ((x, y)) > 0 such that

I(x′) ≥ min{I(x) − γ, γ−1} =∶ Iγ(x) and J(y′) ≥ min{J(y) − γ, γ−1} =∶ Jγ(y)

for all x′ ∈ B[x, δ], y′ ∈ B[y, δ]. Since B is compact, there exists a finite subcover

⋃nj=1B(xj , δj) ×B(yj , δj). Consequently,

lim sup
ε→0

ε logµε ⊗ νε(B) ≤ lim sup
ε→0

ε log (n max
1≤j≤n

{µε(B[xj , δj])νε(B[yj , δj])})

≤ max
1≤j≤n

(− inf
x∈B[xj ,δj]

I(x) − inf
y∈B[yj ,δj]

J(y))

≤ − min
1≤j≤n

(Iγ(xj) + Jγ(yj))

≤ − inf
(x,y)∈B

(Iγ(x) + Jγ(y)).

Letting γ → 0 proves the large deviation upper bound (L2) for any compact set B. More-

over, the exponential tightness of (µε)ε>0 and (νε)ε>0 obviously entails the exponential

tightness of (µε ⊗ νε)ε>0. It follows from Lemma 2.5(iii) that (L2) holds for each closed

set B ⊆M ×M .

It is natural to ask how a large deviation principle is transformed under a continuous

mapping. The result is known as contraction principle [10, Theorem 4.2.1]. It is the

counterpart of the continuous mapping theorem.

2.8 Theorem (Contraction principle) Let (M1, d1), (M2, d2) be metric spaces and

f ∶ M1 → M2 be a continuous function. Suppose that a family (µε)ε>0 of probability

measures on M1 satisfies a large deviation principle with good rate function I. Then the

sequence of image measures (νε)ε>0, νε ∶= µε ○f−1, on M2 obeys a large deviation principle

with good rate function

J(y) ∶= inf{I(x);x ∈M1, y = f(x)}.



2. Basic Definitions & Properties 8

Proof. Since I is lower semicontinuous, it attains its minimum on compact sets. This

implies that for any y ∈ M2, J(y) < ∞, there exists x ∈ M1 such that f(x) = y and

J(y) = I(x). Consequently,

ΦJ(r) = {y ∈M2;J(y) ≤ r} = f(ΦI(r)) for all r ≥ 0.

In particular, ΦJ(r) is compact, i. e. J is a good rate function. Now let A ⊆ M1 open.

Since f is continuous, hence f−1(A) open, we can apply the large deviation lower bound

(L1) to f−1(A) and obtain

lim inf
ε→0

ε log νε(A) = lim inf
ε→0

ε logµε(f−1(A)) ≥ − inf
x∈f−1(A)

I(x) = − inf
y∈A

J(y).

The upper bound (L2) follows in the same way.

The contraction principle can be extended beyond the continuous case, cf. Chapter 4.

The following example is an application of the contraction principle and gives a glimpse

how one might prove a large deviation principle for solutions of stochastic differential

equations using (an extended version of) the contraction principle. We will discuss this

approach in Section 7.2.

2.9 Example Let (Bt)t≥0 be a one-dimensional Brownian motion, b ∶ R → R a bounded,

Lipschitz continuous function (with Lipschitz constant L > 0) and x ∈ R. Denote by

(Xε
t )t∈[0,1] the (unique) solution of the stochastic differential equation

dXε
t = b(Xε

t )dt +
√
εdBt, Xε

0 = x.

The family (Xε)ε>0 of stochastic processes satisfies a large deviation principle in

(C[0,1], ∥ ⋅ ∥∞) as ε→ 0 with good rate function

J(ψ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∫

1
0 ∣ψ′(s) − b(ψ(s))∣2 ds, ψ ∈ AC[0,1], ψ(0) = x,

∞, otherwise.

Proof. The Lipschitz continuity of b entails the existence of a (unique) solution of the

given SDE, see e. g. [38]. For f ∈ C[0,1] we denote by Ff the solution of the integral

equation

ψ(t) = x + ∫
t

0
b(ψ(s))ds + f(t), t ∈ [0,1].

Then,

∣(Ff1)(t) − (Ff2)(t)∣ ≤ ∥f1 − f2∥∞ +L∫
t

0
∣(Ff1)(s) − (Ff2)(s)∣ds.

Applying Gronwall’s lemma, see e. g. [38, Theorem A.43], we obtain

∥Ff1 − Ff2∥∞ ≤ C ∥f1 − f2∥∞.
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Consequently, F defines a continuous bijection on (C[0,1], ∥ ⋅ ∥∞). From the contraction

principle, Theorem 2.8, and Example 2.2 we conclude that F (√εB) =Xε satisfies a large

deviation principle as ε→ 0 with good rate function J ,

J(ψ) = 1

2
∫

1

0
∣ d
ds

(F−1ψ)(s)∣
2

ds = 1

2
∫

1

0
∣ψ′(s) − b(ψ(s))∣2 ds

for ψ ∈ AC[0,1], ψ(0) = x.

Another application of the contraction principle is the following corollary which allows us

to transfer large deviation results from a topology to a coarser one.

2.10 Corollary Let (M,d1), (M,d2) be metric spaces such that d1(x, y) ≤ d2(x, y) for all

x, y ∈M . If a family (µε)ε>0 of probability measures on (M,d2) satisfies a large deviation

principle in (M,d2) with good rate function I, then it obeys a large deviation principle in

(M,d1) with good rate function I.

In general, the converse does not hold. The inverse contraction principle [10, Theorem

4.2.4] gives a sufficient condition under which this is true.

Finally, we characterize large deviations in terms of asymptotics of exponential integrals.

As we will see in Chapter 3, Theorem 2.11 plays a key role in large deviation theory; it

is a very useful tool in many applications to large deviation theory as well as in proving

large deviation principles and identifying rate functions. We follow the presentation given

in [17, Theorem 3.8], see also [10, Theorem 4.3.1,Theorem 4.4.2].

2.11 Theorem Let (Xn)n∈N be a sequence of M -valued random variables.

(i). Varadhan’s Lemma: If (Xn)n∈N satisfies a large deviation principle with good rate

function I, then:

lim
n→∞

1

n
logE(enf(Xn)) = sup

x∈M
(f(x) − I(x)) for all f ∈ Cb(M).

(ii). Bryc formula: Suppose that (Xn)n∈N is exponentially tight and that the limit

Λ(f) ∶= lim
n→∞

1

n
logE(enf(Xn)) (2.3)

exists for all f ∈ Cb(M). Then (Xn)n∈N satisfies a large deviation principle with

good rate function

I(x) ∶= sup
f∈Cb(M)

(f(x) −Λ(f)).

Proof. We prove only (i). For a proof of Bryc’s formula we refer the reader to [17, Propo-

sition 3.8] or [10, Theorem 4.2]. Let f ∈ Cb(M), x ∈ M and ε > 0. In abuse of notation,

we write1

f(ε) ∶= min{f(y); y ∈ B[x, ε]}.
1Revised version: Reformulated.
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Then f(ε)→ f(x) as ε→ 0, and by Markov’s inequality2 we get

P(Xn ∈ B[x, ε]) ≤ E (enf(Xn)−nf(ε)) .

Thus,

lim inf
n→∞

1

n
logP(Xn ∈ B[x, ε]) ≤ −f(ε) + lim inf

n→∞
1

n
logE(enf(Xn))

⇒ lim
ε→0

lim inf
n→∞

1

n
logP(Xn ∈ B[x, ε]) ≤ −f(x) + lim inf

n→∞
1

n
logE(enf(Xn)). (2.4)

Combining (2.1) and (2.4) yields

sup
x∈M

(f(x) − I(x)) ≤ lim inf
n→∞

1

n
logE(enf(Xn)).

It remains to show the upper bound. For each x ∈M we can choose δx > 0 such that

max
y∈B[x,δx]

f(y) ≤ f(x) + ε, inf
y∈B[x,δx]

I(y) ≥ min{I(x) − ε, ε−1} =∶ Iε(x). (2.5)

By assumption, I is a good rate function, and therefore there exists a finite subcover of

Φ(r)3 for r ∶= 2∥f∥∞, i. e. Φ(r)4 ⊆ ⋃mi=1B(xi, δxi). It follows from the large deviation

upper bound (L2) that

lim sup
n→∞

1

n
logE(enf(Xn)1(⋃mi=1B(xi,δxi))

c(Xn))

≤ lim sup
n→∞

1

n
log(en∥f∥∞P [Xn ∈ (

m

⋃
i=1

B(xi, δxi))
c

])

≤ ∥f∥∞ + lim sup
n→∞

1

n
logP(Xn ∈ (

m

⋃
i=1

B(xi, δxi))
c

) ≤ −∥f∥∞.

This implies

lim sup
n→∞

1

n
logE(enf(Xn)) ≤ lim sup

n→∞

1

n
logE(enf(Xn)1⋃mi=1B(xi,δxi)(Xn)).

Since

lim sup
n→∞

1

n
logE(enf(Xn)1⋃mi=1B(xi,δxi)(Xn))

(2.5)
≤ lim sup

n→∞

1

n
logE(

m

∑
i=1

en(f(xi)+ε)1B(xi,δxi)(Xn))

≤ max
1≤i≤m

(f(xi) + ε + lim sup
n→∞

1

n
logP(Xn ∈ B[xi, δxi]))

(L2)
≤ max

1≤i≤m
(f(xi) + ε − inf

y∈B[xi,δxi ]
I(y))

(2.5)
≤ sup

x∈M
(f(x) + ε − Iε(x))

the claim follows letting ε→ 0.

2We call P(∣X ∣ ≥ δ) ≤ f(δ)−1Ef(∣X ∣) Markov inequality for any increasing function f ∶ [0,∞) → [0,∞).

Common choices are f(x) = eλx, λ > 0, and f(x) = xn, n ∈ N.
3Revised version: corrected misprint.
4Revised version: corrected misprint.



3
Gärtner-Ellis Approach

In this chapter we establish a large deviation lower and upper bound under assumptions

on the limiting behavior of the logarithmic moment generating function. This approach

is due to Gärtner [20] and Ellis [15] who proved the corresponding result for real-valued

random variables, see e. g. [10, Section 2.3]. Starting from the definition of the Legendre

transform we motivate that the Legendre transform of the limiting logarithmic moment

generating function is a natural candidate for the rate function.

3.1 Definition Let (M,d) be a metric space and denote by M∗ its dual space. The

Legendre transform (or Fenchel-Legendre transform, conjugate function) of a function

f ∶M∗ → [−∞,∞] is defined by

f∗(x) ∶= sup
λ∈M∗

(⟨λ,x⟩ − f(λ)), x ∈M.

3.2 Definition Let (M,d) be a metric space and (µn)n∈N a family of probability measures

on (M,B(M)). We call

Λµn(λ) ∶= log (∫ e⟨λ,x⟩ dµn(x)) , λ ∈M∗

the logarithmic moment generating function of µn and define

Λ̄(λ) ∶= lim sup
n→∞

1

n
Λµn (nλ) , λ ∈M∗.

Whenever the limit exists, we write Λ(λ). If X is a random variable, we denote by ΛX

the logarithmic moment generating function of the distribution P(X ∈ ⋅).

3.3 Lemma (i). Λ̄ ∶M∗ → (−∞,∞] is convex.

(ii). Λ̄∗ is a convex lower semicontinuous non-negative function on M .

Proof. (i). By the subadditivity of limes superior, it suffices to show that the logarithmic

moment generating function Λµn , n ∈ N, is convex. Pick λ1, λ2 ∈M∗ and α ∈ (0,1).
Applying Hölder’s inequality for the conjugate exponents 1/α and 1/(1−α), we find

Λµn(αλ1 + (1 − α)λ2) ≤ log [(∫ e⟨λ1,x⟩ dµn(x))
α

(∫ e⟨λ2,x⟩ dµn(x))
1−α

]

= αΛµn(λ1) + (1 − α)Λµn(λ2).

11
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(ii). By definition, Λµn(0) = 0, thus Λ̄∗ ≥ 0. The convexity follows obviously from the

definition of the Legendre transform. Observe that M ∋ x↦ ⟨λ,x⟩ − Λ̄(λ) ∈ R is, for

fixed λ ∈M∗, a continuous mapping. Being the supremum of a family of continuous

functions, Λ̄∗ is lower semicontinuous.

The following theorem [10, Theorem 4.5.10] shows that Λ̄∗ is a good candidate for the rate

function, at least if the rate function is convex.

3.4 Theorem Let (M,d) be a metric space. Suppose that a family (µn)n∈N of probability

measures on (M,B(M)) satisfies a large deviation principle with good rate function I and

Λ̄(λ) = lim sup
n→∞

1

n
Λµn (nλ) <∞ for all λ ∈M∗. (3.1)

(i). The limit

Λ(λ) = lim
n→∞

1

n
Λµn (nλ)

exists, is finite and

Λ(λ) = sup
x∈M

(⟨λ,x⟩ − I(x)) =∶ I∗(λ). (3.2)

(ii). Λ∗ is the affine regularization of I, i. e.

Λ∗(x) = sup{f(x); f convex, f ≤ I}, x ∈M.

In particular, if I is convex, then

I(x) = Λ∗(x) = sup
λ∈M∗

(⟨λ,x⟩ −Λ(λ)).

Proof. (i). The claim follows from Varadhan’s Lemma, cf. Theorem 2.11. Note that

Theorem 2.11 is applicable since we can drop the assumption on the boundedness

and replace it by the tail condition (3.1), see [10, Theorem 4.3.1].

(ii). By the definition of the Legendre transform and (3.2), we have

Λ∗(x) = sup
λ∈M∗

(⟨λ,x⟩ −Λ(λ)) ≤ sup
λ∈M∗

(⟨λ,x⟩ − (⟨λ,x⟩ − I(x))) = I(x)

By Lemma 3.3, Λ∗ is convex and therefore,

Λ∗(x) ≤ sup{f(x); f convex, f ≤ I}.

Clearly, g ≤ h implies g∗ ≥ h∗ for any two functions g, h. Applying this twice, we

get f = (f∗)∗ ≤ (I∗)∗ (3.2)= Λ∗ for any f ≤ I convex. If I is convex, then by duality

lemma, cf. Theorem A.3, (I∗)∗ = I.

The remaining part of this chapter is devoted to the formulation of sufficient conditions for

large deviation lower and upper bounds in terms of the limiting behavior of the logarithmic

moment generating function Λ. They are tailored to the application in Chapter 5. We

start with the large deviation upper bound. The result is based on [8, Theorem 2.1].
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3.5 Theorem Let (M,d) be a metric space and B a σ-algebra on M such that

(C1) The vector space operations are B-measurable.

(C2) B contains all compact sets.

For n ∈ N let Xn ∶ (Ω,A,P)→ (M,B) be random variables and F ⊆M∗ such that

(C3) ⟨λ, ⋅⟩ is B-measurable for all λ ∈ F .

Define

Λ̃(λ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Λ̄(λ), λ ∈ F,
∞, λ ∈M∗/F

where

Λ̄(λ) = lim sup
n→∞

1

n
logEen ⟨λ,Xn⟩.

Then

lim sup
n→∞

1

n
logP(Xn ∈ B) ≤ − inf

x∈B
Λ̃∗(x) (3.3)

for any compact set B ⊆ M . If (Xn)n∈N is exponentially tight, (3.3) holds for all closed

sets B ∈ B.

Proof. We adapt the proof given in [10, Theorem 4.5.3]. Without loss of generality we

may assume F /= ∅. Let B ⊆M be compact and fix δ > 0. By definition, we have

Λ̃∗(x) = sup
λ∈F

(⟨λ,x⟩ − Λ̄(λ)) for all x ∈ B.

Therefore, there exists λx ∈ F such that

⟨λx, x⟩ − Λ̄(λx) ≥ min{Λ̃∗(x) − δ, 1

δ
} =∶ Iδ(x).

Since λx is continuous at x, we can choose rx > 0 such that

∀y ∈ B[x, rx] ∶ ∣⟨λx, y⟩ − ⟨λx, x⟩∣ ≤ δ. (3.4)

Note that B[x, rx] ∩B is compact, hence B[x, rx] ∩B ∈ B. Markov’s inequality yields

P(Xn ∈ B[x, rx] ∩B) ≤ E exp(⟨θ,Xn⟩ − inf
y∈B[x,rx]

⟨θ, y⟩)

= exp(− inf
y∈B[x,rx]

(⟨θ, y⟩ − ⟨θ, x⟩))E exp (⟨θ,Xn⟩ − ⟨θ, x⟩)

for any θ ∈ F . In particular, for θ = nλx,

1

n
logP(Xn ∈ B[x, rx] ∩B)

(3.4)
≤ δ − (⟨λx, x⟩ −

1

n
ΛXn(nλx)) .

By the compactness of B, there exists a finite subcover B ⊆ ⋃mi=1B(xi, rxi). From

1

n
logP(Xn ∈ B) ≤ 1

n
log (m max

1≤i≤m
P(Xn ∈ B[xi, rxi] ∩B))



3. Gärtner-Ellis Approach 14

we conclude

lim sup
n→∞

1

n
logP(Xn ∈ B) ≤ δ − min

1≤i≤m
(⟨λxi , xi⟩ − Λ̄(λxi))

≤ δ − min
1≤i≤m

Iδ(xi)

≤ δ − inf
x∈B

Iδ(x) δ→0ÐÐ→ − inf
x∈B

Λ̃∗(x).

This proves (3.3) for B ⊆M compact. If (Xn)n∈N is exponentially tight, then (L2) holds

for each closed set B by Lemma 2.5(iii).

Remark For any function J satisfying Λ̃ ≤ J we may substitute the Legendre transform

J∗ for Λ̃∗ in (3.3). This turns out to be quite useful if Λ̃ is difficult to compute but easy

to bound.

The proof of the large deviation lower bound (L1) requires more effort; we will have to

strengthen the assumptions of Theorem 3.5. As a first step we quickly establish some

basic properties under an absolute change of measure.

3.6 Lemma Let (M,d) be a metric space, (M,B) a measurable space and F ⊆M∗ such

that (C1)-(C3) are satisfied. For n ∈ N let Xn ∶ (Ω,A,P) → (M,B) be random variables.

Assume that

Λ(λ) = lim
n→∞

1

n
logEen⟨λ,Xn⟩

exists for each λ ∈ F . Define probability measures Qλ
n on (Ω,A) by

dQλ
n ∶=

1

Een⟨λ,Xn⟩
en⟨λ,Xn⟩ dP, λ ∈ F.

(i). The limiting logarithmic moment generating function

Λλ(η) ∶= lim
n→∞

1

n
log (∫ en⟨η,Xn⟩ dQλ

n)

satisfies

Λλ(η) = Λ(η + λ) −Λ(λ).

(ii). Λ̃∗
λ(x) = Λ̃∗(x) − ⟨λ,x⟩ +Λ(λ) for x ∈M .

(iii). If (Xn)n∈N is exponentially tight, then the sequence of distributions Qλ
n(Xn ∈ ⋅),

n ∈ N, is exponentially tight.

Proof. By the definition of Qλ
n,

Λλ(η) = lim
n→∞

1

n
log ( 1

Een⟨λ,Xn⟩
Een⟨η+λ,Xn⟩) = −Λ(λ) +Λ(λ + η).

This proves (i). Since Λ̃(η) = Λ̃λ(η) =∞ for η ∈M∗/F , we have

Λ̃∗
λ(x) = sup

η∈F
(⟨η, x⟩ −Λλ(η))

(i)= sup
η∈F

(⟨η + λ,x⟩ − ⟨λ,x⟩ −Λ(λ + η) +Λ(λ))

= sup
η∈F

(⟨η, x⟩ −Λ(η)) − ⟨λ,x⟩ +Λ(λ)

= Λ̃∗(x) − ⟨λ,x⟩ +Λ(λ).
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It remains to show (iii). If (Xn)n∈N is exponentially tight, then there exists for each r ≥ 0

a compact set Kr ⊆M such that

lim sup
n→∞

1

n
logP(Xn ∈Kc

r) ≤ −r.

By Hölder’s inequality, we have

Qλ
n(Xn ∈Kc

r) ≤
1

Een⟨λ,Xn⟩
√
P(Xn ∈Kc

r)
√
Ee2n⟨λ,Xn⟩.

Consequently,

lim sup
n→∞

1

n
logQλ

n(Xn ∈Kc
r) ≤ −Λ(λ) − r

2
+ 1

2
Λ(2λ) r→∞ÐÐÐ→ −∞.

Let us recall that a set F ⊆M∗ separates points in M if

{∀λ ∈ F ∶ ⟨λ,x⟩ = ⟨λ, y⟩}Ô⇒ x = y

for any x, y ∈M . The next lemma shows that the sequence of distributions (Qλ
n(Xn ∈ ⋅))n∈N

concentrates mass at some point x(λ) ∈M as n → ∞, namely, the Gâteaux derivative of

Λ at λ. The following two results are based on [8, Theorem 2.2].

3.7 Lemma Let (M,d) be a metric space, (M,B) be a measurable space and F ⊆ M∗

such that (C1)-(C3) hold and

(C4) F separates points in M .

Let (Xn)n∈N be an exponentially tight sequence of B-measurable random variables. Suppose

that the mapping

F ∋ λ↦ Λ(λ) = lim
n→∞

1

n
logEen⟨λ,Xn⟩ ∈ R

is M -Gâteaux differentiable, i. e. for any λ ∈ F there exists Dλ ∈M such that

⟨η,Dλ⟩ = lim
t→0

Λ(λ + tη) −Λ(λ)
t

for all η ∈ F.

Then

lim sup
n→∞

1

n
logQλ

n(Xn ∈ Ac) < 0

holds for any open set A ∈ B such that Dλ ∈ A.

Proof. Pick λ ∈ F . Let A ∈ B be open such that Dλ ∈ A. By Lemma 3.6(iii) it suffices to

show

lim sup
n→∞

1

n
logQλ

n(Xn ∈ Ac ∩K) < 0

for any compact set K ⊆M . By Theorem 3.5, we have

lim sup
n→∞

1

n
logQλ

n(Xn ∈ Ac ∩K) ≤ − inf
x∈Ac∩K

Λ̃∗
λ(x),

i. e. the claim follows if

c ∶= inf
x∈Ac∩K

Λ̃∗
λ(x) > 0.
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Suppose that c = 0. Since Λ̃∗
λ is lower semicontinuous, cf. Lemma 3.3, there exists

x0 ∈ Ac ∩K such that Λ̃∗
λ(x0) = 0. Consequently, by Lemma 3.6(ii),

⟨λ,x0⟩ −Λ(λ) = Λ̃∗(x0) ≥ ⟨λ + tη, x0⟩ −Λ(λ + tη)

for any η ∈ F , t > 0. Thus,

⟨η,Dλ⟩ = lim
t→0

Λ(λ + tη) −Λ(λ)
t

≥ ⟨η, x0⟩.

Since the same calculation holds for −η and F separates points in M , we conclude x0 =Dλ.

Obviously, Dλ = x0 ∈ Ac ∩K contradicts Dλ ∈ A.

Before we finally state the large deviation lower bound, we introduce the notion of sub-

differentiability.

3.8 Definition Let (M,d) be a metric space and f ∶M → [−∞,∞] be a function.

(i). f is called proper ∶⇔ ∀y ∈M ∶ f(y) > −∞, ∃x ∈M ∶ f(x) <∞.

(ii). If f is convex and proper, the subdifferential of f at x is defined by

∂f(x) ∶= {λ ∈M∗;∀y ∈M ∶ f(y) − f(x) ≥ ⟨λ, y − x⟩}.

3.9 Theorem Let (M, ∥ ⋅ ∥) be a Banach space, B a σ-algebra on M , F ⊆ M∗ a linear

subspace and M0 ⊆M a closed subspace. Suppose that (C1)-(C4) are satisfied as well as

(C5) M∗
0 = F ∣M0

(C6) M0 separates points in F .

(C7) (M,B) ∋ x↦ ∥x∥ ∈ (R,B(R)) is measurable.

Let (Xn)n∈N be an exponentially tight sequence of (M,B)-measurable random variables. If

Λ(λ) = lim
n→∞

1

n
logEen⟨λ,Xn⟩, λ ∈ F

is M0-Gâteaux differentiable and dom Λ̃∗ ⊆M0, then the large deviation lower bound holds

for every open set A ∈ B:

lim inf
n→∞

1

n
logP(Xn ∈ A) ≥ − inf

x∈A
Λ̃∗(x).

Proof. Let A ∈ B be open. Without loss of generality we may assume that there exists

x ∈ A such that Λ̃∗(x) < ∞. By assumption, dom Λ̃∗ ⊆ M0, hence x ∈ M0. Choose ε > 0

such that B(x, ε) ⊆ A. From (the proof of) Lemma 3.3 we know that Λ̃∗∣M0 is a lower

semicontinuous, convex, proper function. By Theorem A.5, there exists y ∈M0 such that

∂Λ̃∗(y) /= ∅ and

∣x − y∣1 < ε, ∥Λ̃∗(x) − Λ̃∗(y)∥ < ε. (3.5)
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Pick λ ∈ ∂Λ̃∗(y). Note that the function Λ̃∣F = Λ∣F is convex and lower semicontinuous.

Since M∗
0 = F ∣M0 , an application of the duality lemma A.3 yields (Λ̃∗∣M0)∗ = Λ̃ and there-

fore, by Lemma A.4(i), y ∈ ∂Λ̃(λ). On the other hand, the M0-Gâteaux differentiability

implies ∂Λ̃(λ) = {Dλ}. Thus, Dλ = y. Set

U ∶= B(x, ε) ∩ {z ∈M ; ∣⟨λ,Dλ − z⟩∣ < δ}

for δ > 0. By (C3) and (C7), we have U ∈ B. Obviously, Dλ ∈ U and

P(Xn ∈ A) ≥ P(Xn ∈ U) = Een⟨λ,Xn⟩∫ 1U(Xn)e−n⟨Xn,λ⟩ dQλ
n

≥ Een⟨λ,Xn⟩e−n(⟨λ,Dλ⟩+δ)Qλ
n(Xn ∈ U).

where Qλ
n is defined as in Lemma 3.6. Applying Lemma 3.7, we get

lim inf
n→∞

1

n
logP(Xn ∈ A) ≥ −(⟨λ,Dλ⟩ −Λ(λ)) + δ

≥ − sup
µ∈F

(⟨µ,Dλ⟩ −Λ(µ)) + δ

= −Λ̃∗(Dλ) + δ = −Λ̃∗(y) + δ.

Finally, by (3.5),

lim inf
n→∞

1

n
logP(Xn ∈ A) ≥ −Λ̃∗(x) + δ + ε.

Since ε, δ > 0 are arbitrary, we are done.

Remark If (Xn)n∈N meets the assumtions of Theorem 3.5 and Theorem 3.9, then (Xn)n∈N
satisfies the large deviation lower bound (L1) and upper bound (L2) for any sets A,B ∈ B
with convex rate function Λ̃∗. We say that (Xn)n∈N satisfies a large deviation principle in

(M,d) with respect to B. Note that Λ̃∗ is even a good rate function, cf. Lemma 2.5.

3.10 Corollary (Abstract Gärtner-Ellis theorem) Let (M, ∥ ⋅ ∥) be a Banach space and

(Xn)n∈N an exponentially tight sequence of B(M)-measurable random variables. If

Λ(λ) = lim
n→∞

1

n
logEen⟨λ,Xn⟩

is M -Gâteaux differentiable for each λ ∈ M∗, then (Xn)n∈N satisfies a large deviation

principle with convex good rate function Λ∗.

Proof. By the Hahn-Banach theorem, F ∶=M∗ separates points in M . Consequently, the

claim follows by applying Theorem 3.9 and Theorem 3.5.

Remark In fact, Corollary 3.10 holds for any locally convex Hausdorff topological space,

see e. g. [10, Theorem 4.6.14].



4
Extensions of the Contraction Principle

In Example 2.9 we have shown that the contraction principle can be used to derive large

deviation results for SDEs of the form

dXε
t = b(Xε

t )dt +
√
εdBt.

If we consider more interesting SDEs, for example

dXε
t = b(Xε

t )dt +
√
εσ(Xε

t )dBt,

this approach fails since the corresponding function F , defined in the proof of Example 2.9,

is, in general, not continuous. Consequently, it is of interest to know in which way the

contraction principle can be extended beyond the continuous case.

We present two generalizations of the contraction principle. The first applies to (mea-

surable) functions which can be approximated by continuous functions and is due to

Dembo-Zeitouni [10]. Garcia [21] introduces the notion of quasi-continuous almost com-

pact functions and proves a contraction principle for this class of functions. It is worth

mentioning that his paper contains a thorough discussion of some more extensions, see

[21, Section 2].

In Chapter 7 we will use these extensions in order to deduce large deviation results for

solutions of SDEs.

4.1 Exponential Approximations

Throughout this section (Ω,A,P) denotes a probability space and (M,d) a metric space.

Unless otherwise mentioned, the results are taken from [10, Section 4.2.2].

4.1 Definition Let (Xε,m)ε>0,m∈N and (Yε)ε>0 be families of M -valued random variables

on (Ω,A,P). (Xε,m)ε>0,m∈N is called exponentially good approximation of (Yε)ε>0 if

lim
m→∞

lim sup
ε→0

ε logP(d(Xε,m, Yε) > δ) = −∞ for all δ > 0. (4.1)

If Xε,m does not depend on m ∈ N, we say that (Xε)ε>0 and (Yε)ε>0 are exponentially

equivalent.

18
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The following theorem is the main result of this section and provides a relation between

large deviation principles of exponentially good approximations.

4.2 Theorem Let (Xε,m)ε>0,m∈N be an exponentially good approximation of (Yε)ε>0 such

that (Xε,m)ε>0 satisfies a large deviation principle with rate function Im as ε→ 0.

(i). (Yε)ε>0 satisfies a weak large deviation principle with rate function

I(y) ∶= sup
δ>0

lim inf
m→∞

inf
z∈B(y,δ)

Im(z). (4.2)

(ii). If I is a good rate function and

inf
y∈B

I(y) ≤ lim sup
m→∞

inf
y∈B

Im(y) (4.3)

holds for each closed set B ⊆ M , then (Yε)ε>0 satisfies a large deviation principle

with good rate function I.

Proof. (i). It suffices to show

I(y) = − inf
δ>0

lim sup
ε→0

ε logP(Yε ∈ B[y, δ]) = − inf
δ>0

lim inf
ε→0

ε logP(Yε ∈ B(y, δ)) (4.4)

for any y ∈M , cf. (2.1). Fix δ > 0 and y ∈M . From

P(Xε,m ∈ B(y, δ)) ≤ P(Yε ∈ B(y,2δ)) + P(d(Xε,m, Yε) > δ)

we conclude by the large deviation lower bound (L1) for (Xε,m)ε>0

− inf
z∈B(y,δ)

Im(z) ≤ lim inf
ε→0

ε logP(Xε,m ∈ B(y, δ))

≤ max{lim inf
ε→0

ε logP(Yε ∈ B(y,2δ)), lim sup
ε→0

ε logP(d(Xε,m, Yε) > δ)} .

Since (Xε,m)ε>0,m∈N is an exponentially good approximation, we get

inf
δ>0

lim inf
ε→0

ε logP(Yε ∈ B(y,2δ)) ≥ inf
δ>0

lim sup
m→∞

(− inf
z∈B(y,δ)

Im(z)) = −I(y). (4.5)

Interchanging the roles of Xε,m and Yε, we find

lim sup
ε→0

ε logP(Yε ∈ B[y, δ])

≤ max{lim sup
ε→0

ε logP(Xε,m ∈ B[y,2δ]), lim sup
ε→0

ε logP((Xε,m, Yε) > δ)} .

Therefore, by the large deviation upper bound for (Xε,m)ε>0 and (4.1),

inf
δ>0

lim sup
ε→0

ε logP(Yε ∈ B[y, δ]) ≤ inf
δ>0

lim sup
m→∞

(− inf
z∈B[y,2δ]

Im(z)) = −I(y). (4.6)

Combining (4.5) and (4.6) yields (4.4).
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(ii). It follows from the first part of this theorem that (Yε)ε>0 satisfies a weak large

deviation principle; it remains to show (L2) for any closed set B ⊆ M . Fix δ > 0.

The large deviation upper bound (L2) for (Xε,m)ε>0 implies

lim sup
ε→0

ε logP(Yε ∈ B)

≤ max{ lim sup
ε→0

ε logP(Xε,m ∈ B +B[0, δ]), lim sup
ε→0

ε logP(d(Xε,m, Yε) > δ)}

≤ max{ − inf
y∈B+B[0,δ]

Im(y), lim sup
ε→0

ε logP(d(Xε,m, Yε) > δ)}.

Consequently, by (4.1) and (4.3),

lim sup
ε→0

ε logP(Yε ∈ B) ≤ − lim
δ→0

lim sup
m→∞

inf
y∈B+B[0,δ]

Im(y)

(4.3)
≤ − lim

δ→0
inf

y∈B+B[0,δ]
I(y) = − inf

y∈B
I(y).

In the last step we used that I is a good rate function, cf. [10, Lemma 4.1.6]. This

finishes the proof.

In particular, Theorem 4.2 entails the following corollary which we will apply in Chapter 5

in order to prove large deviation results for scaled Lévy processes. It is compiled from [8].

4.3 Corollary Let (M, ∥ ⋅ ∥) be a normed space and B a σ-algebra on M satisfying

(C1), (C2) and (C7). Let (Xε)ε>0 and (Yε)ε>0 be exponentially equivalent families of

B-measurable random variables. If (Xε)ε>0 is exponentially tight and obeys a large devia-

tion principle with respect to B with good rate function I as ε → 0, then (Yε)ε>0 obeys a

large deviation principle with respect to B with good rate function I as ε→ 0.

Proof. We start with the proof of the large deviation lower bound (L1). Obviously, it

suffices to show

lim
ε→0

ε logP(Yε ∈ B(x, δ)) ≥ −I(x)

for any δ > 0 and x ∈M such that I(x) <∞. By (C1) and (C7), B(x, δ) ∈ B and

(x, y)↦ d(x, y) ∶= ∥x − y∥

is B⊗B/B(R)-measurable. Fix % ∈ (0,1). We have

P(Yε ∈ B(x, δ)) ≥ P(Xε ∈ B(x, δ/2), d(Xε, Yε) ≤ δ/2)
≥ P(Xε ∈ B(x, δ/2)) − P(d(Xε, Yε) > δ/2) =∶ Aε −Bε.

By (L1) and (4.1),

Aε ≥ e−(I(x)+%)ε
−1 > 0 Bε ≤ e−2(I(x)+1)ε−1

for ε > 0 sufficiently small. In particular, Bε/Aε → 0 as ε→ 0. Consequently,

lim inf
ε→0

ε logP(Yε ∈ B(x, δ)) ≥ lim inf
ε→0

ε log (Aε (1 − Bε
Aε

))

≥ lim inf
t→∞

ε logAε ≥ −(I(x) + γ).
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Since % > 0 is arbritrary, this proves the large deviation lower bound. Now let B ⊆ M
closed, δ > 0. For any r ≥ 0, let Kr ⊆ M compact as in the definition of exponential

tightness. From

P(Yε ∈ B) ≤ P(Xε ∈ (B +B[0, δ]) ∩Kr) + P(Xε ∈Kc
r) + P(d(Xε, Yε) > δ)

we conclude by the exponential tightness and (L2)

lim sup
ε→0

ε logP(Yε ∈ B) ≤ max{lim sup
ε→0

ε logP(Xε ∈ (B +B[0, δ]) ∩Kr),−r}

≤ max{− inf
x∈(B+B[0,δ])∩Kr

I(x),−r}

≤ max{− inf
x∈B+B[0,δ]

I(x),−r} .

Note that (B +B[0, δ]) ∩Kr ∈ B is closed. Letting r →∞ and δ → 0 yields

lim sup
ε→0

ε logP(Yε ∈ B) ≤ − lim
δ→0

inf
x∈B+B[0,δ]

I(x) = − inf
x∈B

I(x).

Here we used the lower semicontinuity of I, cf. [10, Lemma 4.1.6]. This completes the

proof.

Now we are ready to prove our first extension of the contraction principle.

4.4 Theorem (Extended contraction principle I) Let (M1, d1), (M2, d2) be metric spaces

and (Xε)ε>0 a family of random variables obeying a large deviation principle in (M1, d1)
with good rate function I. For m ∈ N let fm ∶ M1 → M2 be continuous functions and

f ∶M1 →M2 measurable such that

lim sup
m→∞

sup
x∶I(x)≤r

d2(fm(x), f(x)) = 0 for all r ≥ 0. (4.7)

Then for any family of random variables (Yε)ε>0 for which (fm(Xε))ε>0,m∈N is an expo-

nentially good approximation holds a large deviation principle with good rate function

J(y) = inf{I(x); y = f(x)}.

Proof. Since the functions fm, m ∈ N, are continuous, the contraction principle entails

that (fm(Xε))ε>0 satisfies a large deviation principle with good rate function

Jm(y) ∶= inf{I(x); y = fm(x)}.

Moreover, by (4.7), f is continuous on any sublevel set ΦI(r) ∶= {x ∈M1; I(x) ≤ r}, r ≥ 0.

Hence, J is a good rate function with sublevel sets f(ΦI(r)). In view of Theorem 4.2 it

suffices to check (4.3) and to identify the rate function. To this end, fix B ⊆ M2 closed

and δ > 0, and set

c ∶= lim inf
m→∞

inf
y∈B

Jm(y).
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Suppose that c < ∞; then we can choose a sequence (xm)m∈N ⊆ M1 and r > 0 such that

fm(xm) ∈ B and I(xm) = infy∈B Jm(y) ≤ r. From (4.7) we conclude f(xm) ∈ B +B[0, δ]
for m =m(δ) sufficiently large. Thus,

inf
y∈B+B[0,δ]

J(y) ≤ J(f(xm)) ≤ I(xm) = inf
y∈B

Jm(y).

Taking δ → 0 and m→∞, we find

inf
y∈B

J(y) ≤ lim inf
m→∞

inf
y∈B

Jm(y) = c.

Obviously, this inequality is trivially satisfied if c =∞. In particular, (4.3) holds. In order

to identify the rate function, we use the preceding inequality for B ∶= B[y, δ] and let δ → 0.

For more details, see [10, Theorem 4.2.23].

4.2 Quasi-Continuity & Almost Compactness

In this section we prove a contraction principle for quasi-continuous almost compact func-

tions. The results are adapted from Garcia [21] who considers topological spaces whereas

we restrict ourselves to metric spaces. Throughout this section (M1, d1), (M2, d2) de-

note metric spaces and (Xε)ε>0 a family of M1-valued random variables. For a function

f ∶M1 →M2 and x ∈M1 we set

fx ∶= {y ∈M2;∃(xn)n∈N ⊆M1 ∶ xn → x, f(xn)→ y}.

We start with the definition of quasi-continuity and show its relevance for the large devi-

ation lower bound.

4.5 Definition Let f ∶M1 →M2 be a function and x ∈M1. We call f quasi-continuous

at x if for every y ∈ fx there exists a sequence (xn)n∈N ⊆M1 such that xn → x, f(xn)→ y,

and f is continuous at xn for all n ∈ N. We call any such sequence companion sequence for

the tuple (x, y). We say that f is quasi-continuous if it is quasi-continuous at any x ∈M1.

4.6 Theorem Let f ∶ M1 → M2 be quasi-continuous. Assume that for any x ∈ M1 and

y ∈ fx there exists a companion sequence (xn)n∈N such that I(xn) → I(x). If (Xε)ε>0

satisfies a large deviation principle in (M1, d1) with rate function I, then (Xε, f(Xε))ε>0

satisfies the large deviation lower bound (L1) with rate function

J(x, y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I(x), y ∈ fx,
∞, otherwise.

Proof. First of all, the lower semicontinuity of J follows directly from the lower semicon-

tinuity of I, cf. [21, Lemma 4.2]. Moreover, it suffices to show (L1) for A = A1 ×A2 where

A1 ⊆M1, A2 ⊆M2 are open sets. By the large deviation lower for (Xε)ε>0, we have

lim inf
ε→0

ε logP((Xε, f(Xε)) ∈ A1 ×A2) ≥ lim inf
ε→0

ε logP(Xε ∈ int(A1 ∩ f−1(A2)))

≥ − inf
z∈int(A1∩f−1(A2))

I(z).
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Consequently, we are done if

inf
z∈int(A1∩f−1(A2))

I(z) ≤ J(x, y) for all (x, y) ∈ A1 ×A2. (4.8)

Fix (x, y) ∈ A1 × A2 and ε > 0. If y ∉ fx, (4.8) holds trivially. Otherwise, there exists a

sequence (xn)n∈N such that xn → x, f(xn) → y, I(xn) → I(x), and f is continuous at xn.

Since A2 is open, B(y, δ) ⊆ A2 for δ > 0 sufficiently small. For n ∈ N sufficiently large we

have xn ∈ A1, f(xn) ∈ B(y, δ) ⊆ A2, I(xn) ≤ I(x)+ε. As f is continuous at xn, this implies

xn ∈ int(A1 ∩ f−1(A2)). Hence,

inf
z∈int(A1∩f−1(A2))

I(z) ≤ I(xn) ≤ I(x) + ε = J(x, y) + ε.

4.7 Definition A function f ∶ M1 → M2 is called almost compact at x ∈ M1 if for any

sequence (xn)n∈N, xn → x, there exists a subsequence (xnk)k∈N such that (f(xnk))k∈N
converges.

4.8 Example (i). Càdlàg and càglàd functions are quasi-continuous and almost com-

pact.

(ii). The function

f(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sin ( 1
x
) , x ≠ 0,

f(0), x = 0,

is quasi-continuous and almost compact for any f(0) ∈ [−1,1].

(iii). f(x) ∶= −1(−∞,0)(x) + 1(0,∞)(x), x ∈ R, is not quasi-continuous but almost compact

at x = 0.

(iv). f(x) ∶= 1
x1(0,∞)(x), x ∈ R, is quasi-continuous but not almost compact at x = 0.

4.9 Theorem Suppose that (Xε)ε>0 satisfies a large deviation principle in (M1, d1) with

rate function I. Let f ∶ M1 → M2 be almost compact on dom I. Then (Xε, f(Xε))ε>0

satisfies the large deviation upper bound (L2) with rate function J defined in Theorem 4.6.

Proof. Fix B ⊆M1 ×M2 closed. By (L2) for (Xε)ε>0,

lim sup
ε→0

ε logP((Xε, f(Xε)) ∈ B) ≤ − inf
x∈B̃

I(x)

for B̃ ∶= cl({x ∈ M1; (x, f(x)) ∈ B}). For any x ∈ B̃, there exists (xn)n∈N ⊆ M1 such

that (xn, f(xn)) ∈ B and xn → x. If x ∈ dom I then the almost compactness implies

(xn, f(xn)) → (x, y) for some y ∈ M2 and a suitable subsequence of (xn)n∈N. As B is

closed, (x, y) ∈ B. This shows

I(x) = J(x, y) ≥ inf
(x1,y1)∈B

J(x1, y1) for all x ∈ B̃ ∩ dom I.

Note that this inequality is trivially satisfied for x ∉ dom I. Thus,

lim sup
ε→0

ε logP((Xε, f(Xε)) ∈ B) ≤ − inf
(x1,y1)∈B

J(x1, y1).
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Combining Theorem 4.6 and Theorem 4.9, we find

4.10 Theorem (Extension of the contraction principle II) Suppose that f ∶ M1 → M2

satisfies the following conditions.

(i). f is almost compact on dom I.

(ii). For each x ∈M1 there exists a companion sequence (xn)n∈N such that I(xn)→ I(x).

In particular, f is quasi-continuous.

If (Xε)ε>0 obeys a large deviation principle with (good) rate function I, then (Xε, f(Xε))ε>0

satisfies a large deviation principle with (good) rate function J defined in Theorem 4.6. In

particular, (f(Xε))ε>0 obeys a large deviation principle with (good) rate function

I0(y) ∶= inf{J(x, y);x ∈M1 ∶ y ∈ fx} = inf{I(x);x ∈M1 ∶ y ∈ fx}.

Let us finally mention the following theorem which shows basically that almost compact-

ness preserves exponential tightness.

4.11 Theorem ([21, Theorem 6.3], [22, Theorem 7.1])

(i). If (Xε)ε>0 is exponentially tight and f ∶M1 →M2 almost compact, then (f(Xε))ε>0

is exponentially tight.

(ii). Let (Xε)ε>0 be exponentially tight and (fm)m∈N a sequence of almost compact func-

tions. If (fm(Xε))ε>0,m∈N is an exponentially good approximation of (Yε)ε>0, then

(Xε, Yε)ε>0 is exponentially tight.



5
Large Deviation Principles for Scaled Lévy

Processes

Let (Ω,A,P) be a complete probability space and (Lt)t≥0 a real-valued Lévy process on

(Ω,A,P), i. e. a family of random variables Lt ∶ Ω→ R, t ≥ 0, such that

(i). L0 = 0

(ii). Lt −Ls ∼ Lt−s for 0 ≤ s < t (stationary increments)

(iii). (Ltj − Ltj−1)j=1,...,n are independent for 0 = t0 < t1 < . . . < tn, n ∈ N (independent

increments)

(iv). t↦ Lt(ω) is càdlàg for all ω ∈ Ω.

For x ∈ R we call (x +Lt)t≥0 Lévy process started at x. Throughout this chapter

Lt = γt + σBt + ∫
t

0
∫∣z∣>1

z N(dz, ds) + ∫
t

0
∫

0<∣z∣≤1
z Ñ(dz, ds)

denotes the Lévy-Itô decomposition of (Lt)t≥0, where (Bt)t≥0 is a Brownian motion, N

the jump counting measure of (Lt)t≥0, Ñ its compensated jump counting measure, and

(γ, σ2, ν) the Lévy triplet comprising the drift γ ∈ R, the diffusion coefficient σ ≥ 0, and

the Lévy measure ν on (R/{0},B(R/{0})) which satisfies

∫
R/{0}

(y2 ∧ 1)ν(dy) <∞.

By Lévy-Khinchine’s formula, the characteristic function of Lt is given by

Eeı ξLt = e−tψ(ξ), ξ ∈ R, t ≥ 0 (5.1)

where

ψ(ξ) ∶= −ı γξ + 1

2
σ2ξ2 + ∫

R/{0}
(1 − eı yξ + ı ξy 1∣y∣≤1) ν(dy), ξ ∈ R

is called the characteristic exponent of (Lt)t≥0. We say that (Lt)t≥0 is a Lévy process

without Gaussian component if σ = 0. For a thorough discussion of Lévy processes we

refer the reader to [36].

25
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In this chapter we consider large deviations for scaled Lévy processes of the form

ω ↦ L(t⋅, ω)
S(t) ∈D[0,1]

where S is a suitable increasing function. One of the first results is due to Wentzell [40] who

studied a certain type of time-homogeneous Markov processes. We discuss this approach

in Chapter 7. Lynch-Sethuraman [29] proved a large deviation principle for Lévy processes

of bounded variation and the scaling function S(t) = t with respect to the weak∗-topology

on BV[0,1] ∩D[0,1]. These results were generalized by Mogulskii [31] to Lévy processes

with possibly infinite variation and the J1-topology. Moreover, Mogulskii stated a large

deviation principle with respect to the uniform norm under the growth condition

lim
t→∞

S(t)
t

= 0 and lim
t→∞

S(t)√
t
=∞. (5.2)

In this work we follow the approach suggested by de Acosta [8] who proved large deviations

for Lévy processes taking values in a separable Banach space relative to the scaling function

S(t) = t. More recently, Feng and Kurtz [17] developed a technique using tools of viscosity

solutions and nonlinear semigroups associated with Markov processes. In particular, all

earlier results on scaled Lévy processes are covered, see [17, Section 10.1].

In order to show large deviations for scaled Lévy processes, one has to pose an exponential

integrability condition on L1; namely, for S(t) = t,

Eeλ∣L1∣ <∞ for all λ ∈ (0, λ0]1 /= ∅

for results with respect to the weak∗- or J1-topology, and

Eeλ∣L1∣ <∞ for all λ ≥ 0

for large deviations with respect to the uniform topology.

We start with a large deviation result relative to the scaling function S(t) = t. Subse-

quently, we modify the proof appropriately in order to prove a large deviation principle

under the growth condition (5.2). Finally, two results on the longtime behavior of Lévy

processes are stated: the law of iterated logarithm and the counterpart of Strassen’s law ;

both under an exponential integrability condition. They are typical applications of large

deviation results.

We denote by D[0,1] the space of real-valued càdlàg functions on [0,1] endowed with the

uniform norm

∥f∥∞ ∶= sup
t∈[0,1]

∣f(t)∣

and the σ-algebra B ∶= σ(πt; t ∈ [0,1]) generated by the projections πt ∶ D[0,1] → R,
f ↦ f(t), t ∈ [0,1]. Let us remark that B equals the Borel σ-algebra generated by the

J1-metric, see e. g. [14, Proposition 3.7.1] or [4, Theorem 12.5].

1Revised version: Corrected misprint throughout this chapter.
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5.1 Theorem Let (Lt)t≥0 be a Lévy process started at x such that

Eeλ∣L1∣ <∞ for all λ ≥ 0. (5.3)

Then (L(t⋅)/t)t>0 satisfies a large deviation principle in (D[0,1], ∥ ⋅ ∥∞) with respect to B

as t→∞ with good rate function I,

I(f) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ 1
0 Ψ∗(f ′(s))ds, f ∈ AC[0,1], f(0) = x,
∞, otherwise,

(5.4)

where

Ψ(w) ∶= γw + 1

2
σ2w2 + ∫

R/{0}
(eyw − 1 − yw1∣y∣≤1) ν(dy), w ∈ R (5.5)

denotes the logarithmic moment generating function of L1, i. e.

lim inf
t→∞

1

t
logP(L(t⋅)

t
∈ A) ≥ − inf

f∈A
I(f) (5.6)

lim sup
t→∞

1

t
logP(L(t⋅)

t
∈ B) ≤ − inf

f∈B
I(f) (5.7)

for any open set A ∈ B and closed set B ∈ B.

First of all, we note that it suffices, because of the spatial homogeneity of the Lévy process

(Lt)t≥0, to consider x = 0. We split the proof into several steps:

(i). The sequence of discretizations (Zn)n∈N defined by

Zn(s,ω)
n

∶= 1

n
L(⌊n ⋅ s⌋ , ω) = 1

n

⎛
⎝
n−1

∑
j=0

L(j, ω)1[j/n,(j+1)/n)(s) +L(n,ω)1{1}(s)
⎞
⎠

is exponentially tight in (D[0,1], ∥ ⋅ ∥∞), cf. Lemma 5.3.

(ii). (Zn/n)n∈N satisfies a large deviation principle in (D[0,1], ∥ ⋅ ∥∞) with respect to B

with good rate function I,

I(f) ∶= sup
α∈BV[0,1]∩D[0,1]

(∫
1

0
f dα − ∫

1

0
Ψ(α(1) − α(s))ds) , (5.8)

cf. Theorem 5.5.

(iii). (Z⌊t⌋/ ⌊t⌋)t>0 and (L(t⋅)/t)t>0 are exponentially equivalent, cf. Lemma 5.6.

(iv). (L(t⋅)/t)t>0 satisfies a large deviation principle with good rate function I and I

equals the rate function defined in (5.4), cf. Theorem 5.7.

Remark The mapping ω ↦ L(t⋅, ω) ∈ D[0,1] is A/B-measurable for each t ≥ 0. In

particular, the probabilities appearing in (5.6) and (5.7) are well-defined. If ω ↦ L(t⋅, ω)
is measurable with respect to the Borel-σ-algebra generated by the uniform norm ∥ ⋅∥∞ on

D[0,1], then (5.6) and (5.7) hold for any open set A and closed set B, respectively. Mind

that B ⊊ B((D[0,1], ∥ ⋅ ∥∞)), cf. [4, p. 157].
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In order to show the exponential tightness of (Zn/n)n∈N, we need the following lemma [17,

Lemma 3.3].

5.2 Lemma Let (M,d) be a metric space and (µn)n∈N be a sequence of tight probability

measures on (M,B(M)). If for any r > 0, ε > 0, there exists Kr,ε ⊆M compact such that

lim sup
n→∞

1

n
logµn({x ∈M ;d(x,Kr,ε) ≥ ε}) ≤ −r

then (µn)n∈N is exponentially tight.

Proof. Since µn is tight for each n ∈ N, we may assume that

sup
n∈N

1

n
logµn({x ∈M ;d(x,Kr,ε) ≥ ε}) ≤ −r

i. e.

µn({x ∈M ;d(x,Kr,ε) ≥ ε}) ≤ e−nr.

Define

Kr ∶= cl(⋂
k∈N

(Kr+k,1/k +B(0,1/k))) .

It is not diffcult to show that Kr is complete and totally bounded, hence compact. More-

over,

µn(Kc
r) ≤ ∑

k∈N
µn({x ∈M ;d(x,Kr+k,1/k) ≥ 1/k}) ≤ ∑

k∈N
e−n(r+k) ≤ e

e − 1
e−nr.

This proves the exponential tightness of (µn)n∈N.

5.3 Lemma (i). For each n ∈ N, Zn/n is tight in (D[0,1], ∥ ⋅ ∥∞).

(ii). (Zn/n)n∈N is exponentially tight.

Remark It is widely known that any probability measure on a Polish space is tight. Since

(D[0,1], ∥ ⋅ ∥∞) is not a Polish space – it is not separable – this result does not apply.

Proof. Since the mapping

(Rn, ∥ ⋅ ∥) ∋ x↦ (Tnx)(t) ∶=
n−1

∑
j=1

xj1[j/n,(j+1)/n)(t) + xn1{1}(t) ∈ (D[0,1], ∥ ⋅ ∥∞)

is continuous, it follows that Tn(K) is compact for any compact set K ⊆ Rn. For K ⊆ R
compact, we have

P(Zn
n

∉ Tn(Kn)) ≤
n

∑
j=1

P(Lj
n

∉K) .

Since Lj/n is tight – its distribution is a probability measure on (R,B(R)), hence tight

– for j = 1, . . . , n, we conclude that Zn/n is tight in (D[0,1], ∥ ⋅ ∥∞). This proves (i). We
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Figure 5.1: The function f ∈ Tn(Kn) and its approximation fm.

proceed to show that the assumptions of Lemma 5.2 are satisfied. To this end fix r > 0

and ε > 0. For K ⊆ R and n ≥m, we have

P(d(Zn
n
,Tm(Km)) > ε) ≤ P(Zn

n
∉ Tn(Kn)) + P(Zn

n
∈ Tn(Kn), d(Zn

n
,Tm(Km)) > ε)

=∶ I1 + I2. (5.9)

We choose K ∶= [−r, r] and estimate the terms separately. Applying Etemadi’s inequality,

cf. Corollary A.2, and Markov’s inequality yields

I1 = P( sup
1≤j≤n

∣Lj
n

∣ > r) ≤ 3 sup
1≤j≤n

P(∣Lj ∣ >
nr

3
) ≤ 3 sup

1≤j≤n
Ee∣Lj ∣−nr/3 ≤ 3e−nr/3βn1

where β1 ∶= Ee∣L1∣ <∞ because of (5.3). In order to estimate I2 we observe that if we set

fm ∶= f(⌊m⋅⌋ /m), then

d(f, Tm(Km)) ≤ ∥f − fm∥∞ for all f ∈ Tn(Kn). (5.10)

Moreover,

∥f − fm∥∞ = max
1≤i≤m−1

sup
t∈[i/m,(i+1)/m)

∣f(t) − fm(t)∣

= max
1≤i≤m−1

sup
t∈[i/m,(i+1)/m)

∣f (⌊nt⌋
n

) − f (⌊mt⌋
m

)∣

≤ max
1≤i≤m−1

sup
1≤j≤⌊n/m⌋+1

RRRRRRRRRRR
f
⎛
⎝
⌊n i

m
⌋

n
+ j

n

⎞
⎠
− f

⎛
⎝
⌊n i

m
⌋

n

⎞
⎠

RRRRRRRRRRR
. (5.11)

For the last line we used that

f
⎛
⎝
⌊n i

m
⌋

n

⎞
⎠
= f ( i

m
) = f (⌊mt⌋

m
) for all t ∈ [ i

m
,
i + 1

m
)

as f ∈ Tn(Kn), see Figure 5.1. Combining (5.10) and (5.11), we get
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I2 ≤ P
⎛
⎝

sup
1≤i≤m−1

sup
1≤j≤⌊n/m⌋+1

RRRRRRRRRRR
Zn

⎛
⎝
⌊n i

m
⌋

n
+ j

n

⎞
⎠
−Zn

⎛
⎝
⌊n i

m
⌋

n

⎞
⎠

RRRRRRRRRRR
> nε

⎞
⎠

≤
m−1

∑
i=1

P
⎛
⎝

sup
1≤j≤⌊n/m⌋+1

∣L(⌊n i
m

⌋ + j) −L(⌊n i
m

⌋)∣ > nε
⎞
⎠
.

By the stationarity and independence of the increments and Markov’s inequality,

I2 ≤mP
⎛
⎝

sup
1≤j≤⌊n/m⌋+1

∣Lj ∣ > nε
⎞
⎠
≤ 3m sup

1≤j≤⌊n/m⌋+1
P(∣Lj ∣ >

nε

3
)

≤ 3m sup
1≤j≤⌊n/m⌋+1

Eer ∣Lj ∣−nrε/3

≤ 3mβ
⌊n/m⌋+1
2 e−nrε/3

where β2 ∶= Eer ∣L1∣ <∞. Consequently,

lim sup
n→∞

1

n
logP(d(Zn

n
,Tm(Km)) > ε) ≤ max{logβ1 −

r

3
,

1

m
logβ2 −

rε

3
}

r,m→∞ÐÐÐÐ→ −∞.

Now the claim follows from Lemma 5.2.

As a next step we prove a large deviation principle for (Zn/n)n∈N using the results of

Chapter 3. In particular, we have to verify the conditions (C1)-(C7). Let us recall Riesz’

representation theorem, see e. g. [27, Theorem 2.6.1]. It states that the topological dual

of (C[0,1], ∥ ⋅ ∥∞) is isomorphic to BV[0,1] ∩ D[0,1], the space of càdlàg functions of

bounded variation on [0,1]. The mapping I ∶ BV[0,1] ∩D[0,1]→D[0,1]∗,

(Iα)(f) ∶= ⟨α, f⟩ ∶= ∫
1

0
f dα ∶= lim

n→∞

n−1

∑
j=0

f (j + 1

n
) [α(j + 1

n
) − α( j

n
)] ,

allows us to consider any set F ⊆ BV[0,1] ∩ D[0,1] as a subset of D[0,1]∗. Observe

that (Iα)(f) is well-defined, see for instance [11, Proposition 2.1.6]. We call (Iα)(f)
Lebesgue-Stieltjes integral of f with respect to α.

5.4 Lemma For (M, ∥ ⋅ ∥) ∶= (D[0,1], ∥ ⋅ ∥∞), M0 ∶= C[0,1], F ∶= BV[0,1] ∩D[0,1] and

B ∶= σ(πt; t ∈ [0,1]) the conditions (C1)-(C7) are satisfied.

Proof. (C1) The mapping (f, g) ↦ f + g is B ⊗ B/B-measurable since its composition

with the projection πt, t ≥ 0, is B ⊗ B/B(R)-measurable. Obviously, f ↦ λf is

B/B-measurable.

(C2) cf. Lemma A.10.

(C3) Let α ∈ BV[0,1] ∩D[0,1]. The mapping

f ↦
n−1

∑
j=0

f (j + 1

n
) [α(j + 1

n
) − α( j

n
)]

is B/B(R)-measurable. Since the right side converges to ⟨α, f⟩ as n→∞, the claim

follows.
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(C4) Obvious.

(C5) This follows from Riesz’ representation theorem.

(C6) Clear by Riesz’ representation theorem.

(C7) Let (tk)k∈N be dense in [0,1]. Then, by the right-continuity,

BD[0,1][0, ε] = ⋂
k∈N

π−1
tk

(BR[0, ε]) ∩ π−1
1 [BR(0, ε)] ∈ B for all ε > 0.

The next result is based on [8, Lemma 4.2].

5.5 Theorem The sequence (Zn/n)n∈N satisfies a large deviation principle in

(D[0,1], ∥ ⋅ ∥∞) with respect to B as n→∞ with good rate function I defined by

I(f) ∶= sup
α∈BV[0,1]∩D[0,1]

(∫
1

0
f dα − ∫

1

0
Ψ(α(1) − α(s))ds) . (5.12)

Proof. In view of Theorem 3.5, Theorem 3.9 and Lemma 5.4, it suffices to show that

(i). The limit

Λ(α) ∶= lim
n→∞

1

n
logEe⟨α,Zn⟩

exists and equals ∫ 1
0 Ψ(α(1) − α(s))ds for each α ∈ BV[0,1] ∩D[0,1].

(ii). Λ is C[0,1]-Gâteaux differentiable on BV[0,1] ∩D[0,1].

(iii). dom I ⊆ BV[0,1] ∩D[0,1]

We defer the proof of (iii) to Theorem 5.7; there we will show that dom I ⊆ AC[0,1]. As

AC[0,1] ⊆ BV[0,1] ∩D[0,1], this proves (iii). Note that

Zn =
n−1

∑
j=1

Lj1[ j
n
, j+1
n
) +Ln1{1} =

n

∑
j=1

(Lj −Lj−1)1[ j
n
,1].

Consequently, by the stationarity and independence of the increments,

Ee⟨α,Zn⟩ = E exp
⎛
⎝
n

∑
j=1

(Lj −Lj−1)(α(1) − α(j/n))
⎞
⎠

=
n

∏
j=1

E exp (L1(α(1) − α(j/n))) .

Since (Lt)t≥0 is a Lévy process with finite exponential moments, we have

EeλL1 = eΨ(λ) for all λ ∈ R,

where Ψ is given by (5.5), see [36, Theorem 25.17]. Therefore,

Λ(α) = lim
n→∞

1

n

n

∑
j=1

Ψ(α(1) − α(j/n)) = ∫
1

0
Ψ(α(1) − α(s))ds.
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Pick β ∈ BV[0,1] ∩D[0,1] and set

u(t, s) ∶= Ψ((α(1) − α(s)) + t(β(1) − β(s))), t ∈ [−1,1], s ∈ [0,1].

Obviously, α,β ∈ BV[0,1] implies ∥α∥∞ + ∥β∥∞ ≤ C <∞. By (5.3), we have

−∞ < logEe−2C∣L1∣ ≤ ∣u(t, s)∣ ≤ logEe2C∣L1∣ <∞.

By the differentiability lemma for parameter-dependent integrals, cf. [37, Theorem 11.5],

u(⋅, s) is differentiable and

∣∂tu(t, s)∣ ≤ 2C
1

Ee−2C∣L1∣

√
E(L2

1)
√
Ee2C∣L1∣ <∞ for all t ∈ [−1,1].

Another application of the differentiabilty lemma yields

Λ(α + tβ) −Λ(α)
t

t→0ÐÐ→ ∫
1

0
∂tu(0, s)ds

= ∫
1

0
(β(1) − β(s)) 1

EeL1(α(1)−α(s))
E(L1e

L1(α(1)−α(s)))ds.

This shows that Λ is C[0,1]-Gâteaux differentiable at α, and its derivative equals, by the

integration-by-parts formula Lemma A.9,

Dα(t) ∶= ∫
t

0

1

EeL1(α(1)−α(s))
E(L1e

L1(α(1)−α(s)))ds, t ∈ [0,1].

Remark Observe that (Zn/n)n∈N satisfies a large deviation principle with good rate func-

tion I as n→∞ if, and only if, (Z⌊t⌋/ ⌊t⌋)t>0 satisfies a large deviation principle with good

rate function I as t→∞.

Finally, we claim that the large deviation principle for (Z⌊t⌋/ ⌊t⌋)t>0 entails the large devia-

tion principle for (L(t⋅)/t)t>0. In view of Corollary 4.3, it suffices to show that (Z⌊t⌋/ ⌊t⌋)t>0

and (L(t⋅)/t)t>0 are exponentially equivalent. The following result is essentially [8, Lemma

4.3].

5.6 Lemma (Z⌊t⌋/ ⌊t⌋)t>0 and (L(t⋅)/t)t>0 are exponentially equivalent.

Proof. Let ε > 0 and r ≥ 0. Obviously,

∥
Z⌊t⌋
⌊t⌋ − L(t⋅)

t
∥
∞
≤ ( 1

⌊t⌋ −
1

t
)∥Z⌊t⌋∥∞ + ∥

Z⌊t⌋
t

− L(t⋅)
t

∥
∞
=∶ At +Bt (5.13)

We estimate P(At > ε) and P(Bt > ε) separately. As in the proof of Lemma 5.3 we find

P(At > ε) ≤ P
⎛
⎝

sup
0≤k≤⌊t⌋

∣Lk∣ > t(t − 1)ε
⎞
⎠
≤ 3 exp(−t(t − 1)ε

3
)β⌊t⌋

1 (5.14)

where β1 ∶= Ee∣L1∣. In order to estimate Bt we note that

sup
s∈[0,1]

∣Z⌊t⌋(s) −L(ts)∣ ≤ sup
0≤k≤⌊t⌋

sup
u∈[0,2]

∣Lk+u −Lk∣
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as ts − ⌊⌊t⌋ s⌋ ≤ 2. By the stationarity of the increments and Etemadi’s inequality, cf.

Corollary A.2, this implies

P (Bt > ε) ≤ P
⎛
⎝

sup
0≤k≤⌊t⌋

sup
u∈[0,2]

∣Lk+u −Lk∣ > tε
⎞
⎠
≤ 3(⌊t⌋ + 1) sup

u∈[0,2]
P(∣Lu∣ >

tε

3
) .

If we set µ ∶= EL1, then we have for sufficiently large t

P(∣Lu∣ >
tε

3
) ≤ P(∣Lu − uµ∣ >

tε

6
) for all u ∈ [0,2].

Since (Lu − uµ)u≥0 is a martingale, we know that (er∣Lu−uµ∣)u≥0 is a submartingale. By

Markov’s inequality,

sup
u∈[0,2]

P(∣Lu − uµ∣ >
tε

6
) ≤ e−trε/6Eer∣L2−2µ∣ =∶ β2e

−trε/6. (5.15)

Combining (5.13), (5.14) and (5.15) yields

lim sup
t→∞

1

t
logP(∥

Z⌊t⌋
⌊t⌋ − L(t⋅)

t
∥
∞
> 2ε)

≤ max{lim sup
t→∞

1

t
logP(At > ε), lim sup

t→∞

1

t
logP(Bt > ε)} ≤ −rε

6

r→∞ÐÐÐ→ −∞.

This finishes the proof.

Proof of Theorem 5.1. By Theorem 5.5, (Z⌊t⌋⌋/ ⌊t⌋)t>0 satisfies a large deviation principle

in (D[0,1], ∥ ⋅ ∥∞) with respect to B with good rate function I defined in (5.8). Since

(Z⌊t⌋⌋/ ⌊t⌋)t>0 and (L(t⋅)/t)t>0 are exponentially equivalent, cf. Lemma 5.6, the claim

follows by applying Corollary 4.3 and Theorem 5.7 below.

5.7 Theorem The good rate function I defined in (5.8) equals

J(f) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ 1
0 Ψ∗(f ′(s))ds, f ∈ AC[0,1], f(0) = 0,

∞, otherwise.

Proof. First, we show that I(f) <∞ implies that f is absolutely continuous and f(0) = 0.

Then, there exists g ∈ L1([0,1], λ∣[0,1]) such that

f(t) = ∫
t

0
g(s)ds, t ∈ [0,1]. (5.16)

Fix ε > 0, 0 < s1 < t1 ≤ . . . < sn < tn ≤ 1, and c = (c1, . . . , cn) ∈ Rn. We define

α(t) ∶=
n

∑
j=1

cj1[sj ,tj)(t), t ∈ [0,1]. (5.17)

Obviously, α ∈ BV[0,1] ∩D[0,1] and

∫
1

0
f dα =

n

∑
j=1

cj(f(sj) − f(tj)). (5.18)
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Moreover, by the definition of α,

∫
1

0
logEeL1(α(1)−α(s)) ds =

n

∑
j=1
∫

1

0
logEe−cjL11[sj ,tj)(s)ds

≤ logEe∥c∥∞∣L1∣
n

∑
j=1

(tj − sj). (5.19)

From the very definition of the rate function I, cf. (5.8), we see

∫
1

0
f dα ≤ I(f) + ∫

1

0
logEeL1(α(1)−α(s)) ds.

Using (5.18) and (5.19), we find

n

∑
j=1

cj(f(sj) − f(tj)) ≤ I(f) + logEe∣L1∣∥c∥∞
n

∑
j=1

(tj − sj).

In particular, for cj ∶= r sgn(f(sj) − f(tj)), r > 0,

n

∑
j=1

∣f(tj) − f(sj)∣ ≤
I(f)
r

+ logEe∣L1∣r

r

n

∑
j=1

(tj − sj).

Choosing r > 0 sufficiently large and δ > 0 sufficiently small, we see that

n

∑
j=1

(tj − sj) < δ⇒
n

∑
j=1

∣f(tj) − f(sj)∣ < ε,

i. e. f is absolutely continuous. A similar calculation shows

∣f(t)∣ ≤ I(f)
r

+ t logEe∣L1∣r

r
.

Letting t→ 0 and r →∞ yields f(0) = 0. This proves (5.16). Now let f ∈D[0,1] be given

by (5.16). By Lemma A.9,

∫
1

0
f dα − ∫

1

0
Ψ(α(1) − α(s))ds = ∫

1

0
[g(s)(α(1) − α(s)) −Ψ(α(1) − α(s))]ds

≤ ∫
1

0
Ψ∗(g(s))ds = ∫

1

0
Ψ∗(f ′(s))ds

for any α ∈ BV[0,1] ∩D[0,1]. Thus, I(f) ≤ J(f). It remains to prove I(f) ≥ J(f) for

f ∈ AC[0,1], f(0) = 0. By the monotone convergence theorem, it suffices to show

∫
1

0
Λk(f ′(s))ds ≤ I(f)

where

Λk(x) ∶= sup
∣α∣≤k

(αx −Ψ(α)), x ∈ R, k ∈ N.

Note that Λk is convex and locally bounded, hence continuous, see e. g. [35, Corollary

10.1.1]. Since
n−1

∑
j=0

f ( j+1
n

) − f ( j
n
)

1
n

1[ j
n
, j+1
n
)(s)→ f ′(s) a.s.
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we get from the dominated convergence theorem

∫
1

0
Λk(f ′(s))ds = lim

n→∞

n−1

∑
j=0

1

n
Λk (n [f (j + 1

n
) − f ( j

n
)]) .

As α ↦ αx −Ψ(α) is continuous, we can choose ∣α(x)∣ ≤ k such that

Λk(x) = α(x)x −Ψ(α(x)).

Consequently, for suitable αn0 , . . . , α
n
n−1,

∫
1

0
Λk(f ′(s))ds = lim

n→∞

n−1

∑
j=0

[αnj (f (j + 1

n
) − f ( j

n
)) − 1

n
Ψ(αnj )]

= lim
n→∞

(∫
1

0
fdαn − ∫

1

0
Ψ(αn(1) − αn(s))ds) ≤ I(f),

where αn ∈ BV[0,1] ∩D[0,1], n ∈ N, is a step function of the form (5.17). This finishes

the proof.

It is natural to ask whether there are other scalings than S(t) = t which yield a large

deviation principle. The following large deviation principle was stated by Mogulskii [31]

without providing a detailed proof. We show that de Acosta’s approach remains valid in

this setting.

5.8 Theorem Let (Lt)t≥0 be a Lévy process such that EL1 = 0, EL2
1 > 0 and Eeλ∣L1∣ <∞

for all λ ∈ (0, λ0] /= ∅. If S ∶ [0,∞)→ [0,∞) is an increasing function such that

S(t)
t

t→∞ÐÐ→ 0 and
S(t)√
t

t→∞ÐÐ→∞, (5.20)

then (L(t⋅)/S(t))t≥0 satisfies a large deviation principle in (D[0,1], ∥ ⋅ ∥∞) with respect to

B with normalizing coefficient S2(t)/t and good rate function I given by

I(f) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2EL2

1
∫ 1

0 f
′(t)2 dt, f ∈ AC[0,1], f(0) = 0,

∞, otherwise,
(5.21)

i. e.

lim inf
t→∞

t

S2(t) logP(L(t⋅)
S(t) ∈ A) ≥ − inf

f∈A
I(f)

lim sup
t→∞

t

S2(t) logP(L(t⋅)
S(t) ∈ B) ≤ − inf

f∈B
I(f)

for any open set A ∈ B and closed set B ∈ B.

Note that the rate function I coincides with the rate function of the scaled Brownian

motion, cf. Example 5.10. In order to prove Theorem 5.8 we need the following lemma.
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5.9 Lemma Let (Lt)t≥0 be as in Theorem 5.8. Then there exists C ≥ 0 such that

EeλLt ≤ exp [(1

2
EL2

1λ
2 +Cλ3) t] for all λ ∈ (0, λ0]. (5.22)

In particular, for some constant C ′,

EeλLt ≤ eC′λ2t for all λ ∈ (0, λ0]. (5.23)

Proof. Let 0 ≤ λ ≤ λ0. First of all, eλ∣L1∣ ∈ L1 implies eλ∣Lt∣ ∈ L1 for any t ≥ 0, cf. [36,

Theorem 25.17]. Moreover, EeλLt = etΨ(λ) where

Ψ(λ) ∶= 1

2
σ2λ2 + ∫

R/{0}
(eλy − 1 − λy)ν(dy),

cf. [36, Theorem 25.17]. (Recall that EL1 = 0.) The integral appearing on the right-hand

side is finite as eλ∣L1∣ ∈ L1, cf. [36, Theorem 25.17]. Using Taylor’s formula, we find

Ψ(λ) = 1

2
(σ2 + ∫

R/{0}
y2 ν(dy))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
EL2

1

λ2 + 1

6
λ3∫

R/{0}
eλξ(y)y3 ν(dy)

≤ 1

2
EL2

1λ
2 + 1

6
λ3∫

R/{0}
eλ0∣y∣∣y∣3 ν(dy)

for some intermediate value ξ(y) between 0 and y. As Eeλ0∣L1∣ < ∞ the latter integral is

finite, cf. [36, Theorem 25.3]. Consequently, the claim follows.

Proof of Theorem 5.8. Essentially, we have to show that Lemma 5.3, Theorem 5.5 and

Lemma 5.6 are satisfied for the discrete approximations Zn/S(n) of L(t⋅)/S(t). Without

mentioning it explicitely, we pick up the notation from the the corresponding results. The

remaining part of the proof goes through as in the proof of Theorem 5.1.

(i). Lemma 5.3: Obviously, Zn/S(n) is tight. In order prove the exponential tightness of

(Zn/S(n))n∈N, we modify the estimates of I1 and I2. By Etemadi’s inequality and

Markov’s inequality,

I1 = P( sup
1≤j≤n

∣ Lj

S(n)∣ > r) ≤ 3 sup
1≤j≤n

[P(Lj >
S(n)r

3
) + P(−Lj >

S(n)r
3

)]

≤ 3 exp(−S(n)r
3

λ(n)) sup
1≤j≤n

(Eeλ(n)Lj +Ee−λ(n)Lj)

for any λ(n) > 0. For λ(n) ∶= S(n)/n we obtain from (5.23)

I1 ≤ 6 exp(−r −C
3

S(n)2

n
)

for a constant C > 0 which does not depend on n ∈ N and r ≥ 0. I2 is treated in a

similar way. Consequently, we get

lim sup
n→∞

n

S2(n) logP(d( Zn
S(n) , Tm(Km)) > ε) m→∞ÐÐÐ→ −∞.

This shows the exponential tightness of (Zn/S(n))n∈N, cf. Lemma 5.2.
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(ii). Theorem 5.5: For α ∈ BV[0,1] ∩D[0,1] set

Λ(α) ∶= lim
n→∞

n

S2(n) logE exp(S(n)
2

n
⟨α, Zn

S(n)⟩) .

First of all, we have to show that the limit exists. As in the proof of Theorem 5.5

we see

logE exp(S(n)
n

⟨α,Zn⟩) =
n

∑
j=1

Ψ(S(n)
n

(α(1) − α(j/n))) .

where

Ψ(w) = 1

2
σ2w2 + ∫

R/{0}
(ewy − 1 −wy)ν(dy), ∣w∣ ≤ λ0,

is the logarithmic moment generating function of L1. Observe that the expectation

values are finite for sufficiently large n ∈ N since S(n)/n→ 0 as n→∞. Consequently,

n

S2(n) logE exp(S(n)
n

⟨α,Zn⟩)

= 1

2
σ2 1

n

n

∑
j=1

(α(1) − α(j/n))2

+ n

S(n)2

n

∑
j=1
∫
R/{0}

(e
S(n)
n

(α(1)−α(j/n))y − 1 − S(n)
n

(α(1) − α(j/n))y) ν(dy)

=∶ J1 + J2

Since J1 can be seen as a Riemann sum, we find

J1
n→∞ÐÐÐ→ 1

2
σ2∫

1

0
(α(1) − α(s))2 ds.

Using Taylor’s formula and the growth condition (5.20), it is not difficult to show

that

J2
n→∞ÐÐÐ→ 1

2
(∫

R/{0}
y2 ν(dy))∫

1

0
(α(1) − α(s))2 ds.

Indeed: By Taylor’s formula,

J2 =
1

2

1

n
(∫

R/{0}
y2 ν(dy))

n

∑
j=1

(α(1) − α(j/n))2

+ S(n)
n2

(∫
R/{0}

e
S(n)
n

(α(1)−α(j/n))xx3 ν(dx))
n

∑
j=1

(α(1) − α(j/n))3

=∶ J1
2 + J2

2

Obviously, it suffices to show J2
2 → 0. Since

∣J2
2 ∣ ≤

S(n)
n

8∥α∥3
∞∫R/{0}

(1(−∞,0) + eλ0x)∣x∣3 ν(dx)

the claim follows with (5.20). This proves

Λ(α) = 1

2
EL2

1∫
1

0
(α(1) − α(s))2 ds for all α ∈ BV[0,1] ∩D[0,1].
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In view of Theorem 5.5 and Theorem 5.7, it follows easily that Λ is C[0,1]-Gâteaux

differentiable and its Legendre transform is given by

Λ∗(f) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2EL2

1
∫ 1

0 f
′(t)2 dt, f ∈ AC[0,1], f(0) = 0,

∞, otherwise.

(iii). Lemma 5.6: As in step (i) the estimates of At and Bt are modified appropriately

using Lemma 5.9.

Before we proceed with two applications, let us give some examples.

5.10 Example (i). Both Brownian motion and Poisson process have exponential mo-

ments of all orders. Therefore, the corresponding scaled processes satisfy a large

deviation principle in (D[0,1], ∥ ⋅ ∥∞) as t → ∞ relative to the scaling function

S(t) = t as well as any scaling function meeting the growth condition (5.20). For the

scaled Brownian motion the domain of the rate function equals the Cameron-Martin

space H1 ∶= {f ∈ AC[0,1]; f(0) = 0, ∫ 1
0 f

′(t)2 dt <∞} and

I(f) = 1

2
∫

1

0
f ′(t)2 dt for all f ∈H1.

By the scaling property,

B(ts)
t

∼ B(s)√
t
, s, t > 0,

and it is therefore not difficult to see that (B(⋅)/
√
t)t>0 satisfies the same large

deviation principle as (B(t⋅)/t)t>0 for any Brownian motion (Bs)s≥0.

(ii). Let (Lt)t≥0 be a Gamma process, i. e. a Lévy process such that

Lt ∼
αt

Γ(t)x
t−1e−αx1(0,∞)(x)dx, t > 0,

for some α > 0. Then Eeλ∣L1∣ < ∞ for 0 ≤ λ < α. Consequently, by Theorem 5.8,

(L(t⋅)/S(t))t>0 obeys a large deviation principle relative to any scaling function S

satisfying (5.20). Lynch and Sethuraman proved that a large deviation principle

holds for (L(t⋅)/t)t>0 with respect to the weak∗-topology, cf. [29, Example 6.2].

(iii). Neither Theorem 5.1 nor Theorem 5.8 does apply to Lévy processes with infinite

moments of order k for some k ∈ N. In particular, α-stable processes are not covered.

Theorem 5.8 shows that, under the growth condition (5.20) on the scaling function S,

scaled Lévy processes share the rate function with the scaled Brownian motion. Therefore,

it is a natural guess that some asymptotics of the Brownian motion carry over to Lévy

processes. In fact, using Theorem 5.8, it is not difficult to prove the analogue of the

(functional) law of iterated logarithm. The assumption on the exponential moments is

due to our approach; there are more general statements, see e. g. [36, Proposition 48.9].
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5.11 Theorem (Law of iterated logarithm) Let (Lt)t≥0 be a Lévy process such that

Eeλ∣L1∣ <∞ for all λ ∈ (0, λ0] ≠ ∅. Then

lim sup
t→∞

Lt − tEL1√
2t log log t

=
√
VL1 a.s. (5.24)

lim inf
t→∞

Lt − tEL1√
2t log log t

= −
√
VL1 a.s. (5.25)

Proof. Clearly, it suffices to consider the case EL1 = 0, VL1 = 1. Moreover, applying (5.24)

to −L yields (5.25); it remains to prove (5.24). The idea of the proof is taken from [38,

Corollary 11.2] where the result is shown for Brownian motion. Set S(s) ∶=
√

2s log log s,

and pick q > 1. Note that S satisfies the growth condition (5.20).

(i). Let ε > 0. Consider B ∶= {f ∈ D[0,1]; f(0) = 0, sups∈[0,1] f(s) ≥ 1 + ε}. Obviously,

B ∈ B is closed (with respect to the uniform topology)2 and therefore, by Theo-

rem 5.8,

P(sup
s≤qn

L(s)
S(qn) ≥ (1 + ε)) = P(L(q

n⋅)
S(qn) ∈ B) ≤ exp(−S(q

n)2

qn
( inf
f∈B

I(f) − ε)) (5.26)

for n ≥ n0 = n0(ε) sufficiently large where I denotes the rate function (5.21). For

f ∈ B such that I(f) <∞ we have by Jensen’s inequality

(1 + ε)2 ≤ sup
s∈[0,1]

∣f(s) − f(0)∣2 ≤ ∫
1

0
∣f ′(s)∣2 ds = 2I(f).

On the other hand, if we set t ↦ f(t) ∶= (1 + ε)t, then f ∈ B and I(f) = 1/2(1 + ε)2.

Hence, inff∈B I(f) = 1/2(1 + ε)2. By (5.26) and the definition of S, we conclude

∞
∑
n=1

P(sup
s≤qn

L(s)
S(qn) ≥ (1 + ε)) ≤

∞
∑
n=1

1

(n log q)2 inff∈B I(f)−2ε
<∞.

Now Borel-Cantelli’s lemma shows

lim sup
n→∞

sups≤qn Ls

S(qn) ≤ (1 + ε) a.s.

Clearly, any t > 1 is contained in an interval of the form [qn−1, qn]; thus

Lt
S(t) ≤

sups≤qn Ls

S(qn)
S(qn)
S(qn−1)

as S is increasing. Letting q → 1 and ε→ 0 along countable sequences yields

lim sup
t→∞

L(t)
S(t) ≤ (1 + ε)√q q→1,ε→0ÐÐÐÐÐ→ 1 a.s.

(ii). By the stationarity of increments, we have3

P(L(q
n) −L(qn−1)

S(qn − qn−1) > (1 − ε)) ≥ P(L((q
n − qn−1)⋅)

S(qn − qn−1) ∈ A)

2Revised version: Reformulated.
3Revised version: Corrected misprint.
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where A ∶= {f ∈ D[0,1]; f(1) > 1 − ε}4. Obviously, A ∈ B is open. Applying Theo-

rem 5.8, we obtain

P(L(q
n) −L(qn−1)

S(qn − qn−1) > (1 − ε)) ≥ exp(−S(q
n − qn−1)2

qn − qn−1
(I(f) + ε/4))

for n ≥ n0 = n0(ε) sufficiently large and any f ∈ A. If we choose f(t) ∶= (1 − ε/2)t,
then f ∈ A and I(f) = 1/2(1 − ε/2)2. Thus,

P(L(q
n) −L(qn−1)

S(qn − qn−1) > (1 − ε)) ≥ 1

(log(qn(1 − q−1)))1−ε/2+ε2/4 .

Since the increments are independent, Borel Cantelli’s lemma yields for ε > 0 suffi-

ciently small

L(qn) ≥ (1 − ε)S(qn − qn−1) +L(qn−1)

for infinitely many n ∈ N. Applying the first part of this proof to the Lévy process

−L, we find

−L(qn−1) ≤ 2S(qn−1) ≤ 2
√
q
S(qn) a.s.

for n ≥ n1 sufficiently large. Hence,

L(qn)
S(qn) ≥ (1 − ε)S(q

n − qn−1)
S(qn) − 2

√
q

Letting q →∞ and ε→ 0 along countable sequences, we conclude

lim sup
t→∞

L(t)
S(t) ≥ lim sup

n→∞

L(qn)
S(qn) ≥ 1 a.s.

5.12 Theorem (Functional law of iterated logarithm) Let (Lt)t≥0 be a Lévy process such

that ELt = 0 and Eeλ∣L1∣ <∞ for λ ∈ (0, λ0] /= ∅. The set5

{ L(t⋅, ω)√
2t log log t

; t > e}

is relatively compact in (D[0,1], ∥ ⋅ ∥∞) a.s., and the set of limit points (as t →∞) is for

almost all ω ∈ Ω given by the sublevel set Φ(E(L2
1)/2) of the good rate function I defined

in (5.21).

Remark Obviously, it suffices to consider the case EL2
1 = 1 (otherwise we apply the result

to Lt/
√
EL2

1). If EL2
1 = 0 the statement is obvious.

5.13 Lemma The set of all limit points L(ω) satisfies L(ω) ⊆ Φ(1/2).

Proof. Since Φ(1/2) = ⋂r>0 Φ(1/2 + r), it suffices to show L(ω) ⊆ Φ(1/2 + r). Set S(t) ∶=
√

2t log log t and Zt ∶= L(t⋅)
S(t) . Fix q > 1, δ > 0. By Theorem 5.8 and (L2’), we find for γ < r

P (d(Zqn ,Φ(1/2 + r)) > δ) ≤ exp(−2 log log qn (1

2
+ r − γ)) .

4Revised version: Corrected misprint.
5Revised version: Corrected misprint.
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for n ≥ n0(γ,ω) sufficiently large. Thus, by Borel-Cantelli’s theorem,

d(Zqn(⋅, ω),Φ(1/2 + r)) ≤ δ

for n ≥ n0. It remains to fill the gaps in the sequence (qn)n∈N. Note that

sup
qn−1≤t≤qn

∥Zt −Zqn∥∞ = sup
qn−1≤t≤qn

sup
0≤r≤1

∣L(rt)
S(t) − L(rq

n)
S(qn) ∣

≤ sup
qn−1≤t≤qn

sup
0≤r≤1

∣L(rt) −L(rqn)∣
S(qn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶An

+ sup
qn−1≤t≤qn

sup
0≤r≤1

∣L(rt)∣
S(qn) ∣S(q

n)
S(t) − 1∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Bn

.

From

Bn ≤ sup
s≤qn

∣L(s)∣
S(qn) ∣ S(q

n)
S(qn−1) − 1∣

it follows easily from the law of iterated logarithm, cf. Theorem 5.11, that Bn ≤ δ
2 for

n ≥ n1(ω, δ, q) sufficiently large. In order to estimate An we note that

P(An >
δ

2
) = P

⎛
⎝

sup
q−1≤t≤1

sup
0≤r≤1

∣L(qnrt) −L(qnr)∣
S(qn) > δ

2

⎞
⎠
≤ P(L(q

n⋅)
S(qn) ∈ B)

where

B ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∈D[0,1]; sup

q−1≤t≤1

sup
0≤r≤1

∣f(rt) − f(r)∣ ≥ δ
2

⎫⎪⎪⎬⎪⎪⎭
.

It is not difficult to see that inff∈B I(f) = δ2

8
q
q−1 , cf. [38, Lemma 12.16]. Therefore, by

Theorem 5.8,

P(An >
δ

2
) ≤ exp(−2 log log qn ⋅ (δ

2

8

q

q − 1
− γ))

for any γ > 0 and n ≥ n2(γ) sufficiently large. If q > 1 is close to 1, this implies ∑n∈N P(An >
δ/2) <∞. Applying Borel-Cantelli’s theorem yields

sup
qn−1≤t≤qn

∥Zt −Zqn∥∞ ≤ δ

for n ≥ n3(ω) sufficiently large. Finally,

d(Zs(⋅, ω),Φ(1
2 + r)) ≤ ∥Zs(⋅, ω) −Zqn(⋅, ω)∥∞ + d(Zqn(⋅, ω),Φ(1

2 + r)) ≤ 2δ

for s ≥ s0(ω) ∶= qN(ω)+1, N(ω) ∶= maxj=0,1,2,3 nj(ω). Since Φ(1/2 + r) is closed, this proves

the claim.

5.14 Lemma L(ω) ⊇ Φ(1/2).

Proof. Since the sublevel sets are compact, we have cl (⋃r<1/2 Φ(r)) ⊆ Φ(1/2). On the

other hand, any f ∈ Φ(1/2) can be approximated by (1−ε)f ∈ Φ((1−ε)2), ε > 0. Therefore,

cl (⋃r<1/2 Φ(r)) = Φ(1/2). Consequently, it suffices to show that for any r < 1/2, ε > 0,

f ∈ Φ(r), there is a. s. a sequence sn = sn(ω)→∞ such that

lim sup
n→∞

∥Zsn − f∥∞ ≤ ε.
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We set sn ∶= qn for some q > 1. Obviously,

∥Zsn − f∥∞ ≤ sup
q−1≤t≤1

∣L(tsn) −L(sn−1)
S(sn)

− f(t)∣ + ∣L(sn−1)∣
S(sn)

+ sup
t≤q−1

∣f(t)∣ + sup
t≤q−1

∣L(tsn)∣
S(sn)

.

We estimate the terms separately. By the stationarity of the increments, we have

P(An) ∶= P
⎛
⎝

sup
q−1≤t≤1

∣L(tsn) −L(sn−1)
S(sn)

− f(t)∣ < ε
4

⎞
⎠
= P

⎛
⎝

sup
q−1≤t≤1

∣L(tq
n − qn−1)
S(qn) − f(t)∣ < ε

4

⎞
⎠

= P
⎛
⎝

sup
0≤t≤1−q−1

∣L(q
nt)

S(qn) − f(t + q−1)∣ < ε
4

⎞
⎠

≥ P(L(q
n⋅)

S(qn) ∈ B (g, ε
8
))

where

g(t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(t) − f(q−1), 0 ≤ t ≤ 1 − q−1,

f(1) − f(q−1), 1 − q−1 ≤ t ≤ 1,

and q > 1 is sufficiently large such that ∣f(q−1)∣ ≤ ε/8. Obviously, I(g) < 1
2 and therefore

we conclude by Theorem 5.8 that ∑n∈N P(An) = ∞. Taking a subsequence, if necessary,

we obtain by applying Borel-Cantelli’s theorem,

lim sup
n→∞

sup
q−1≤t≤1

∣L(tsn) −L(sn−1)
S(sn)

− f(t)∣ ≤ ε
4
.

By Lemma 5.9 (for λ(n) = S(qn−1)/qn−1) and Markov’s inequality, we find

P(∣L(q
n−1)

S(qn) ∣ > ε
4
) ≤ 2 exp(log log qn−1 (−√q ε

4
+C)) .

Similarly, by Etemadi’s inequality,

P
⎛
⎝

sup
0≤t≤q−1

∣L(tq
n)

S(qn) ∣ > ε
4

⎞
⎠
≤ 6 exp(log log qn−1 (−√q ε

12
+C)) .

Moreover, by Hölder’s inequality,

sup
t≤q−1

∣f(t)∣ ≤ ∫
1/q

0
∣f ′(s)∣ds ≤

√
2r

√
q
< 1

√
q
.

For q > 1 sufficiently large, we find by Borel-Cantelli’s lemma

lim sup
n→∞

⎛
⎝
∣L(sn−1)∣
S(sn)

+ sup
t≤q−1

∣f(t)∣ + sup
t≤q−1

∣L(tsn)∣
S(sn)

⎞
⎠
< 3

4
ε.

This finishes the proof.



6
From Lévy to Lévy-Type Processes

One natural way to generalize the concept of Lévy processes are Lévy-type processes.

Roughly speaking, a Lévy-type process is a time-homogeneous Markov process which

locally resembles a Lévy process. In order to give a precise definition we have to introduce

some notions which are closely connected with (time-homogeneous) Markov processes.

For a survey on Lévy-type processes we refer the reader to [5]. Throughout this chapter

(Ω,A,P) denotes a probability space.

6.1 Definition Let (Xt,Ft)t≥0 be an adapted stochastic process and (Px)x∈R a family of

probability measures on (Ω,A). (Xt,Ft)t≥0 is a (time-homogeneous) Markov process if

Ex(f(Xt) ∣ Fs) = EXsf(Xt−s) Px − a.s. for all f ∈ Cb(R), x ∈ R, s ≤ t. (6.1)

Equation (6.1) is also called Markov property. The transition semigroup (Tt)≥0 of the

Markov process (Xt,Ft)t≥0 is defined by

Ttf(x) ∶= Exf(Xt), f ∈ Bb(R), t ≥ 0, x ∈ R.

We associate the generator A ∶ domA→ C∞(R) with (Xt)t≥0
1,

domA ∶= {f ∈ C∞(R);∃g ∈ C∞(R) ∶ lim
t→0

∥Ttf − f
t

− g∥
∞
= 0}

Af ∶= lim
t→0

Ttf − f
t

.

Using the Markov property (6.1), it is not difficult to see that (Tt)t≥0 defines indeed a

semigroup; that is TtTs = Tt+s for all s, t ≥ 0. For some basic properties of the transition

semigroup and the generator see e. g. [38, Chapter 7].

6.2 Definition A Markov process2 (Xt,Ft)t≥0 is called a Lévy-type process with symbol q

if

x↦ q(x, ξ) ∶= − lim
t→0

Exeı ξ(Xt−x) − 1

t

defines a continuous function for each ξ ∈ R and q(x, ξ) is of the form

q(x, ξ) = −ı γ(x)ξ + 1

2
a(x)ξ2 + ∫

R/{0}
(1 − eı yξ + ı yξ1∣y∣≤1)N(x, dy)

1Revised version: Corrected misprint.
2More precisely: a Feller process. For the sake of simplicity we omit this detail here.
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where, for fixed x ∈ R, (γ(x), a(x),N(x, ⋅)) is a Lévy triplet, i. e. γ(x) ∈ R, a(x) ≥ 0 and

N(x, ⋅) is a measure on (R/{0},B(R/{0})) satisfying ∫R/{0}(y2 ∧ 1)N(x, dy) <∞.

6.3 Example Let (Lt)t≥0 be a Lévy process with Lévy triplet (γ, σ2, ν). The Lévy-

Khinchine formula (5.1) implies

− lim
t→0

Exeı ξ(Lt−x) − 1

t
= −ı γξ + 1

2
σ2ξ2 + ∫

R/{0}
(1 − eı yξ + ı yξ1∣y∣≤1)ν(dy).

Moreover, (Lt)t≥0 is a Markov process with respect to the canonical filtration, see [5,

Theorem 2.6] for more details. Consequently, (Lt)t≥0 is a Lévy-type process, and its

symbol coincides with the characteristic exponent. In particular, the symbol q does not

depend on the variable x. This indicates that Lévy processes are homogeneous in space.

Another typical example for Lévy-type processes are solutions of SDEs driven by a Lévy

process, i. e. SDEs of the form

dXt = f(Xt−)dLt (6.2)

where (Lt)t≥0 is a Lévy process. Our standard references for stochastic integration and

SDEs are Ikeda-Watanabe [24] and Protter [32]. The next result is compiled from [32,

Theorem V.7].

6.4 Theorem Let f ∶ R → Rn be bounded and (Lt)t≥0 be an n-dimensional Lévy process.

Suppose that f is locally Lipschitz continuous, i. e. for any R > 0 there exists L = L(R) > 0

such that

∣f(x) − f(y)∣ ≤ L ∣x − y∣ for all x, y ∈ B[0,R].

Then there exists a unique solution (Xt)t≥0 of the SDE

dXt = f(Xt−)dLt, X0 = x ∈ R. (6.3)

Note that Theorem 6.4 entails in particular existence and uniqueness of solutions for SDEs

of the form

dXt = b(Xt−)dt + σ(Xt−)dBt + η(Xt−)dLt (6.4)

where (Bt)t≥0 is a Brownian motion and (Lt)t≥0 an independent Lévy process. This follows

simply from the fact that (t,Bt, Lt)t≥0 is a Lévy process. We call b drift coefficient and σ

diffusion coefficient.

In order to consider solutions of SDEs as Lévy-type processes we need to overcome a minor

technical difficulty: we have to enlarge the underlying probability space (Ω,A,P). Define

Ω̄ ∶= R ×Ω Ā ∶= B(R)⊗A Px ∶= δx ⊗ P.

Any random variable X on (Ω,A) can be extended to (Ω̄, Ā) by setting X(x,ω) ∶=X(ω).
We further define a process (Xt)t≥0 on (Ω̄, Ā) by Xt(x,ω) ∶=Xx

t (ω) where (Xx
t )t≥0 is the

unique solution of (6.3). Clearly,

Xt = x + ∫
t

0
f(Xs−)dLs Px − a.s.
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In abuse of notation we call (Xt)t≥0 unique solution of (6.2). The following theorem is

taken from [39, Section 3.1].

6.5 Theorem Let f ∶ R → Rn be bounded and (locally) Lipschitz continuous and (Lt)t≥0

be an n-dimensional Lévy process with symbol ψ. Then the unique solution (Xt)t≥0 of the

SDE (6.2) is a Lévy-type process with symbol q(x, ξ) = ψ(f(x)ξ), x, ξ ∈ R.

6.6 Example Let b, σ, η ∶ R→ R be bounded and (locally) Lipschitz continuous. If (Bt)t≥0

is a Brownian motion and (Lt)t≥0 an independent Lévy process with symbol ψ, then the

symbol q of the unique solution of (6.4) is given by

q(x, ξ) = −b(x)ξ + 1

2
σ2(x)ξ2 + ψ(η(x)ξ).



7
Large Deviations for Lévy-Driven SDEs

In this chapter we consider large deviation results for solutions of SDEs of the form

dXε
t = f(Xε

t−)dLεt (7.1)

where Lεt ∶= εLt/ε, ε > 0, is a scaled Lévy process. They are a special case of so-called

Freidlin-Wentzell results. Wentzell [40] studied families of time-homogeneous Markov pro-

cesses (Xε)ε>0 with generators of the form

Aεf(x) = b(x)f ′(x) + ε
2
a(x)f ′′(x) + 1

ε
∫
R/{0}

(f(x + εy) − f(x) − εyf ′(x))N(x, dy) (7.2)

for f ∈ C∞
c (R). Speaking in terms of symbols, cf. Definition 6.2, this corresponds to

qε(x, ξ) = −ı b(x)ξ + ε
2
a(x)ξ2 + 1

ε
∫
R/{0}

(1 − eı εyξ + ı εyξ)N(x, dy),

cf. [5, Corollary 2.23]. We have seen in Theorem 6.5 and Example 6.6 that the symbols

of solutions of (7.1) are indeed of this form.

The original proof of Wentzell is based on a change of measure (for the large deviation

lower bound) and an approximation of the solutions by polygons (for the large deviation

upper bound). Since both are typical large deviation techniques, we present this approach

in Section 7.1 following the monograph [18] by Freidlin and Wentzell. Let us remark that

the (quite restrictive) assumptions have been relaxed since then. In particular for SDEs

driven by Brownian motion there exists rich literature, see e. g. Azencott [1] and Baldi-

Chaleyat-Maurel [3] (ε-dependent coefficients), Cutland [7] (time-dependent coefficients),

Millet-Sanz-Nualart [30] (anticipating SDEs), and Kulik-Soboleva [26] (discontinuous drift

coefficient). The most general extension has been obtained by Feng-Kurtz [17, Section

10.3].

Liptser and Puhalskii [28] studied large deviations for SDEs driven by Brownian motion

and random measures; this comprises SDEs driven by Lévy processes. Their results cover

SDEs of a quite general form: the coefficients may be time-dependent functionals of the

past of the process Xε. Later on we will see that the assumptions formulated by Freidlin

and Wentzell [18] are hard to check; it is therefore worth mentioning that Liptser and

Puhalskii give sufficient conditions for their assumptions in terms of the coefficients of

the SDE. More recently, de Acosta [9] has developed a generalization of the Gärtner-

Ellis approach presented in Chapter 3 which works in a non-convex framework. As an

46
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application, a large deviation principle for SDEs driven by Brownian motion and random

measures is proved. Dembo and Zeitouni [10] obtained a large deviation result for SDEs

driven by Brownian motion using an extension of the contraction principle, cf. Section 4.1.

A generalisation to SDEs driven by Lévy processes is presented in Section 7.2. We will

close this section with a glimpse into a more general setting; namely, large deviations for

stochastic integrals with respect to semimartingales, cf. Theorem 7.12. For a thorough

discussion we refer the reader to Garcia [22] and Ganguly [19].

Throughout this chapter (Ω,A,P) denotes a complete probability space, (Ω̄, Ā,Px) the

corresponding enlarged probability space, cf. Chapter 6, and (Bt)t≥0 a Brownian motion

on (Ω,A,P).

7.1 Solutions as Markov Processes

Here we give a purely probabilistic proof of a large deviation principle for solutions of (7.1)

following the presentation in the monograph [18] by Freidlin and Wentzell. We restrict

ourselves to solutions of (7.1) – instead of considering time-homogeneous Markov processes

with generators of the form (7.2) – and re-write the statement in terms of symbols.

7.1 Theorem Let f ∶ R → Rn be bounded and locally Lipschitz continuous. Let (Lt)t≥0

be a Lévy process with Lévy triplet (γ, σ2, ν) and symbol ψ such that Eeλ∣L1∣ < ∞ for all

λ ∈ R. Denote by (Xε
t )t≥0 the unique solution of the SDE

dXt = f(Xt−)dLεt
where Lεt ∶= εLt/ε is the scaled Lévy process. The symbol of the solution of the SDE

dXt = f(Xt−)dLt

is given by q(x, ξ) = ψ(f(x)ξ). Set Q(x, ξ) ∶= q(x,−ı ξ), and denote by Q∗(x, ⋅) the Leg-

endre transform of the convex function Q(x, ⋅). Suppose that the following conditions are

satisfied.

(S1) Q∗(x,β) < ∞ for all x,β ∈ R; for any R > 0 there exist constants C1,C2 > 0 such

that

Q∗(x,β) + ∣ ∂
∂β

Q∗(x,β)∣ ≤ C1 and
∂2

∂β2
Q∗(x,β) > C2 for all x ∈ R, ∣β∣ ≤ R.

(S2) Continuity condition:

∆Q∗(δ) ∶= sup
∣x−y∣<δ

sup
β∈R

Q∗(x,β) −Q∗(y, β)
1 +Q∗(y, β)

δ→0ÐÐ→ 0.

Then the family (Xε)ε>0 of processes on (Ω̄, Ā,Px) satisfies a large deviation principle in

(D[0,1], ∥ ⋅ ∥∞) with good rate function

Ix(ϕ) ∶= I(ϕ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ 1
0 Q

∗(ϕ(t), ϕ′(t))dt, ϕ ∈ AC[0,1], ϕ(0) = x,
∞, otherwise.

(7.3)
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Remarks (i). Since (Lt)t≥0 has exponential moments, its symbol ψ is twice differen-

tiable. This implies in particular that ξ ↦ Q(x, ξ) is twice differentiable and so is

its Legendre transform β ↦ Q∗(x,β), see e. g. [35]. Therefore, we do not have to

assume differentiability in (S1).

(ii). Using the boundedness of f and the definition of Q, it is not difficult to see that the

following condition is automatically satisfied:

(S3) There exists Q̄ ∶ R → [0,∞) such that Q̄(0) = 0 and Q(x, ξ) ≤ Q̄(ξ) for all

x, ξ ∈ R .

(iii). The large deviation lower and upper bound hold uniformly in the initial point x ∈ R,

see [18, Theorem 5.2.1]. Moreover, we can replace the Lipschitz continuity by uniform

continuity if we assume that there exists a solution to the SDE dXt = f(Xt−)dLεt
for each ε > 0 (we do not need uniqueness).

(iv). The assumptions on the Legendre transform Q∗ are quite restrictive. In fact, The-

orem 7.1 does not even apply to the scaled Poisson process – i. e. f = 1, (Lt)t≥0

Poisson process – since the Legendre transform Q∗ of the logarithmic moment gen-

erating function Q of the Poisson distribution does not satisfy Q∗ <∞.

Theorem 7.1 claims that I, defined in (7.3), is a good rate function; we defer the proof to

the appendix, see Lemma A.8. To keep notation simple, we restrict ourselves to the case

n = 1 and assume that (Lt)t≥0 admits the Lévy-Itô decomposition

Lt = t +Bt + ∫
t

0
∫ z Ñ(dz, ds) =∶ t +Bt + Jt, t ≥ 0, (7.4)

cf. Chapter 5. Then Q equals

Q(x, ξ) = f(x)ξ + 1

2
f(x)2ξ2 + ∫

R/{0}
(ef(x)ξy − 1 − f(x)ξy)dν(y). (7.5)

We prove the large deviation lower and upper bound separately. In order to obtain the

large deviation lower bound, we need the following lemma. Let us remark that Freidlin

and Wentzell use a different argumentation based on the fact that (Xε
t )t≥0 is a (non-

homogeneous) Markov process with respect to the family of measures (Qx,ε)x∈R defined in

Lemma 7.2.

7.2 Lemma (i). For any bounded Borel-measurable function α ∶ [0,1]×R→ R and ε > 0

the process

Mα,ε
t ∶= exp(1

ε
∫

t

0
α(r−,Xε

r−)dXε
r −

1

ε
∫

t

0
Q(Xε

r , α(r,Xε
r))dr) , t ∈ [0,1]

is a Px-martingale with respect to the canonical filtration Fεt ∶= σ{Bε
s , J

ε
s ; s ≤ t}. In

particular, ExMα,ε
t = 1.
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(ii). Let ϕ ∈ C[0,1] be piecewise differentiable, and set α(t, y) ∶= ∂
∂βQ

∗(y,ϕ′(t)). Then

(Xε
t − ϕt)t∈[0,1] is a martingale with respect to the probability measure

dQx,ε ∶=Mα,ε
1 dPx, and its variance equals

EQx,ε((Xε
t − ϕt)2) = εEQx,ε (∫

1

0

∂2

∂ξ2
Q(Xε

r , α(r,Xε
r))dr) . (7.6)

Proof. Denote by Ñε the compensated jump counting measure of the Lévy process Lεt . It

follows from Itô’s formula that (Mα,ε
t )t∈[0,1] satisfies

dMα,ε
s = 1

ε
Mα,ε
s− f(Xs−)α(s−,Xs−)dBε

s +M
α,ε
s− (eε−1α(s−,Xs−)f(Xs−)z − 1)dÑε(dz, ds). (7.7)

This shows that (Mα,ε
t )t∈[0,1] is a positive local martingale, hence ExMα,ε

t < ∞, cf. [38,

Proposition 17.3]. In order to deduce that (Mα,ε
t )t∈[0,1] is a martingale, we show that

supt∈[0,1](Mα,ε
t )2 ∈ L1(Px). Set

Nα,ε
t ∶= exp(ε−1∫

t

0
α(r−,Xε

r−)d(Xε
r − ∫

r

0
f(Xε

s−)ds)) , t ∈ [0,1].

Note that the exponent is a martingale; as a stochastic integral with respect to a martin-

gale. Since ExM2α,ε
t < ∞, condition (S3) implies Nα,ε

t ∈ L2(Px). Therefore, by Jensen’s

inequality, (Nα,ε
t )t∈[0,1] is a submartingale. Applying Doob’s maximal inequality yields

E
⎛
⎝

sup
t∈[0,1]

(Mα,ε
t )2⎞

⎠
= E

⎡⎢⎢⎢⎣
sup
t∈[0,1]

(Nα,ε
t )2 exp(2

ε
∫

t

0
(f(Xε

r−) −Q(Xε
r , α(r,Xε

r)))dr)
⎤⎥⎥⎥⎦

≤ 4 exp
⎛
⎝

2

ε
∥f∥∞ + 2

ε
sup

∣ξ∣≤∥α∥∞
Q̄(ξ)

⎞
⎠
E((Nα,ε

1 )2) <∞.

This proves (i). Now let α(t, y) ∶= ∂
∂βQ

∗(y,ϕ′(t)). For brevity, we suppress the index ε

and set Mt ∶=Mα
t . First of all, by (i), Qx is indeed a probability measure. Recall that for

any measure of the form dQ = β dP where β > 0 is a random variable, we have

EQ(X ∣ F) = E(Xβ ∣ F)
E(β ∣ F) ,

see e. g. [38, pp. 255-6]. Hence, since (Mt)t∈[0,1] is a Px-martingale, we get

EQx(Xt − ϕt ∣ Fs) =
Ex((Xt − ϕt)M1 ∣ Fs)

Ex(M1 ∣ Fs)
= Ex((Xt − ϕt)Mt ∣ Fs)

Ms
for all s ≤ t ≤ 1.

This means that it suffices to show that ((Xt − ϕt)Mt)t∈[0,1] is a Px-martingale. Using

(7.7) and

d(Xt − ϕt) = (f(Xs−) − ϕ′(s))ds + f(Xs−)dBε
s + f(Xs−)dJεs ,
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cf. (7.4), we conclude from Itô’s formula

(Xt − ϕt)Mt − (x − ϕ0)

= ∫
t

0
f(Xs−)Ms− dB

ε
s +

1

ε
∫

t

0
(Xs− − ϕs)Ms−f(Xs−)α(s−,Xs−)dBε

s

+ ∫
t

0
∫ [(Xs− − ϕs− + zf(Xs−))Ms−e

ε−1α(s−,Xs−)f(Xs−)z − (Xs− − ϕs−)Ms−]dÑε(dz, ds)

+ ∫
t

0
Ms[ f(Xs) + f(Xs)2α(s,Xs) + ∫

R/{0}
f(Xs)y(eα(s,Xs)f(Xs)y − 1)ν(dy)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(7.5)= ∂

∂ξ
Q(Xs,α(s,Xs))

−ϕ′(s)]ds.

By (A.4), we have ∂
∂ξQ(Xs, α(s,Xs)) − ϕ′(s) = 0. This shows that ((Xt − ϕt)Mt)t∈[0,1] is

a local Px-martingale. In fact, it is a martingale; we do not dwell on this technical issue.1

A similar calculation yields the desired expression for the variance.

Proof of the lower bound. We have to show that the large deviation lower bound (L1’)

holds for each δ > 0 and ϕ ∈ D[0,1] for which I(ϕ) < ∞. For any such ϕ there ex-

ists a sequence of polygons (`k)k∈N such that `k → ϕ and lim supk→∞ I(`k) ≤ I(ϕ), cf.

Lemma A.8(ii). Therefore, it suffices to prove (L1’) for piecewise differentiable functions.

Let ϕ ∈ C[0,1] be piecewise differentiable, and set α(t, y) ∶= ∂
∂βQ

∗(y,ϕ′(t)). For constants

C,D > 0 we define

Aε ∶= {∥Xε − ϕ∥∞ ≤ 4C
1
2 ε

1
2} , Bε ∶= {∣∫

1

0
α(t−,Xε

t−)d(Xε
t − ϕt)∣ ≤ 4D

1
2 ε

1
2} .

Clearly, Aε ∩Bε ⊆ {∥Xε − ϕ∥∞ < δ} for ε sufficiently small. We choose

C ∶= sup
t,y

∂2

∂ξ2
Q(y,α(t, y)) D ∶= sup

t,y

∂2

∂ξ2
Q(y,α(t, y))α2(t, y).

Let Mα,ε
t and Qx,ε be as in Lemma 7.2. By Lemma 7.2(ii), (Xε

t − ϕt)t∈[0,1] is a Qx,ε-

martingale. Therefore, we obtain by applying Markov’s inequality and Doob’s maximal

inequality

Qx,ε((Aε)c) ≤ 1

16εC
EQx,ε ( sup

0≤t≤1
∣Xε

t − ϕt∣2) ≤ 1

4εC
EQx,ε(∣Xε

1 − ϕ1∣2)
(7.6)
≤ 1

4
.

Similarly, we find Qx,ε((Bε)c) ≤ 1
4 . Hence, Qx,ε(Aε ∩ Bε) ≥ 1

2 . Since Qx,ε/Px has the

strictly positive density Mα,ε
1 , we get

Px(∥Xε − ϕ∥∞ < δ) ≥ EQx,ε (1Aε∩Bε
1

Mα,ε
1

) ≥ 1

2
inf

ω∈Aε∩Bε
1

Mα,ε
1 (ω) . (7.8)

By virtue of our choice of α, Lemma A.7 shows

1

Mα,ε
1

= exp [−1

ε
(∫

1

0
α(t−,Xε

t−)d(Xε
t − ϕt) + ∫

1

0
(α(t,Xε

t )ϕ′(t) −Q(Xε
t , α(t,Xε

t )))dt)]

(A.3)= exp [−1

ε
(∫

1

0
α(t−,Xε

t−)d(Xε
t − ϕt) + ∫

1

0
Q∗(Xε

t , ϕ
′(t))dt)] . (7.9)

1Apply Doob’s maximal inequality (for the martingale Mt) and the Burkholder-Davis-Gundy inequality

(for Xt) in order to show that the integrands are properly integrable.
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On Aε ∩Bε we have

∣∫
1

0
α(t−,Xε

t−)d(Xε
t − ϕt)∣ ≤ 4D

1
2 ε

1
2 (7.10)

and

∫
1

0
Q∗(Xε

t , ϕ
′(t))dt = ∫

1

0
Q∗(Xε

t , ϕ
′(t)) −Q∗(ϕ(t), ϕ′(t))dt + ∫

1

0
Q∗(ϕ(t), ϕ′(t))dt

≤ ∆Q∗(4C
1
2 ε

1
2 ) + (1 +∆Q∗(4C

1
2 ε

1
2 ))∫

1

0
Q∗(ϕ(t), ϕ′(t))dt. (7.11)

Recall that ∆Q∗(4C 1
2 ε

1
2 )→ 0 as ε→ 0, cf. (S2). Therefore, combining (7.8), (7.9), (7.10)

and (7.11) yields

lim inf
ε→0

ε logPx(∥Xε − ϕ∥∞ < δ) ≥ −∫
1

0
Q∗(ϕ(t), ϕ′(t))dt = −I(ϕ).

It remains to prove the large deviation upper bound. The following lemma comes in handy;

it shows in particular how to approximate the Legendre transform Q∗(x, ⋅) by polygons.

7.3 Lemma (i). Q∗(x, ⋅)∣(−∞,f(x)) is strictly decreasing, Q∗(x, ⋅)∣(f(x),∞) is strictly in-

creasing, and Q∗(x, f(x)) = 0 for all x ∈ R.

(ii). For any ε, δ > 0 and x ∈ R there exist ξ1, . . . , ξm, m = m(x) ≤ M , such that the

polygon

P (x,β) ∶= max
i=1,...,m

(ξiβ −Q(x, ξi))

satisfies 0 < Q∗(x,β) − P (x,β) < ε for ∣β∣ < δ.

(iii). For each δ > 0 and ξ ∈ R,

Q(y, (1+∆Q∗(δ))−1ξ)− (1+∆Q∗(δ))−1Q(x, ξ) ≤ ∆Q∗(δ)
1 +∆Q∗(δ) for all ∣x− y∣ < δ.

Proof. (i). Fix x ∈ R. By definition, we have Q(x,0) = 0 and therefore Q∗(x,β) ≥ 0 for

any β ∈ R. Thus, by (7.5), Q∗(x, f(x)) = 0, i. e. Q∗(x, ⋅) attains its minimum at

β = f(x). Moreover, by (S1), ∂2

∂β2Q
∗(x,β) > 0; this implies that Q∗(x, ⋅) is strictly

convex. This proves the claimed monotonicity.

(ii). Let k ∈ N such that Q∗(x, ⋅)([−δ, δ]) ⊆ [−kε, kε]. By (i), there exist (at most) two

points βj , β−j such that ∣β±j ∣ < δ and Q∗(x,β±j) = jε, j = 1, . . . , k; for j = 0, there

exists (at most) one point β0 ∈ R, ∣β0∣ < δ, such that Q∗(x,0) = 0, see Figure 7.1.

Define

P (x,β) ∶= max
j=−k,...,k

(Q∗(x,βj) +
∂

∂β
Q∗(x,βj)(β − βj)).

Because of the monotonicity and convexity of Q∗(x, ⋅), it is not difficult to see

that 0 < Q∗(x,β) − P (x,β) < ε. If we set ξj ∶= ∂
∂βQ

∗(x,βj), j = −k, . . . , k, then by

Lemma A.7

Q∗(x,βj) +
∂

∂β
Q∗(x,βj)(β − βj) = ξjβ −Q(x, ξj).
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Figure 7.1: The Legendre transform Q∗(x, ⋅) and the approximating polygon P (x, ⋅)

This finishes the proof. Note that we need at most

M ∶=
⎢⎢⎢⎢⎣
2ε−1 sup

x∈R
sup
∣β∣≤δ

Q∗(x,β)
⎥⎥⎥⎥⎦
<∞

supporting points βj for any x ∈ R.

(iii). For brevity, we write ∆∗ ∶= ∆Q∗(δ). By the definition of ∆∗, cf. (S2),

Q∗(x,β) − (1 +∆∗)Q∗(y, β) ≤ ∆∗ for all ∣x − y∣ < δ.

Hence,

inf
α∈R

(ξ(β − α) +Q∗(x,α) − (1 +∆∗)Q∗(y, β)) ≤ ∆∗

for fixed β ∈ R. Applying the duality lemma, cf. Theorem A.3, yields

Q(y,(1 +∆∗)−1ξ) − (1 +∆∗)−1Q(x, ξ)

= sup
β∈R

inf
α∈R

((1 +∆∗)−1ξ(β − α) −Q∗(y, β) + (1 +∆∗)−1Q∗(x,α)) ≤ ∆∗

1 +∆∗ .

Proof of the upper bound. By Lemma 2.3, it suffices to show2

lim sup
ε→0

ε logPx(d(Xε,Φ(r)) ≥ δ) ≤ −r for all r ≥ 0,

where Φ(r) is the sublevel set of the rate function I. For n ∈ N we denote by Πn(X)(⋅, ω)
the linear interpolation of X(⋅, ω) on the grid ti ∶= i∆t ∶= i/n, i = 0, . . . , n, n ∈ N. Fix r ≥ 0

and δ,χ > 0. Choose % < δ/2 sufficiently small such that ∆Q∗(%) < χ. Obviously,

Px(∥Xε −Φ(r)∥∞ ≥ δ) ≤ Px (
n−1

⋃
i=0

(Aεi )c) + Px (
n−1

⋂
i=0

Aεi ∩ {Πn(Xε) ∉ Φ(r)}) =∶ I1 + I2

for

Aεi ∶= { sup
0≤t≤∆t

∣Xε
ti+t −X

ε
ti ∣ < %} .

2Revised version: Corrected misprint.
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We estimate the terms separately. Using the Markov property and a well-known inequality

for Markov processes, see e. g. [9, Lemma 5.1] or [12, Lemma 6.3], we find3

I1 ≤ n sup
y∈R

Py ( sup
0≤t≤∆t

∣Xε
t − y∣ ≥ %) ≤ 2n sup

y∈R
sup

0≤t≤∆t
Py (∣Xε

t − y∣ ≥
%

2
)

≤ 2n exp(−C
ε

%

2
) sup
y∈R

sup
t≤∆t

Ey [exp(C
ε
(Xε

t − y)) + exp(−C
ε
(Xε

t − y))] . (7.12)

By Lemma 7.2(i) (applied to the constant function α = ±C) and (S3),

Eye±
C
ε
(Xε

t −y) = Ey [exp(±C
ε
(Xε

t − y) −
1

ε
∫

t

0
Q(Xε

s ,±C)ds) exp(1

ε
∫

t

0
Q(Xε

s ,±C)ds)]

≤ exp (ε−1∆t(Q(C) ∨Q(−C))) . (7.13)

for any constant C > 0 and t ≤ ∆t. Plugging this estimate into (7.12) yields4

I1 ≤ 4n exp(−%
2

C

ε
+ ∆t

ε
(Q(C) ∨Q(−C))) .

For C = 4r/% und n ∈ N sufficiently large such that ∆t(Q(C) ∨Q(−C)) ≤ r, we conclude

lim sup
ε→0

ε logPx (
n−1

⋃
i=0

(Aεi )c) ≤ −r.

It remains to estimate I2. Since Πn(Xε) is a piecewise linear function, we can calculate

I(Πn(Xε)) explicitely. As ∆Q∗(%) < χ, cf. (S2), we obtain

I(Πn(Xε)) =
n−1

∑
i=0
∫

ti+1

ti
Q∗ (Πn(Xε)(t),

Xε
ti+1 −X

ε
ti

∆t
) dt

≤ χ +
n−1

∑
i=0

∆t(1 + χ)Q∗ (Πn(Xε)(ti),
Xε
ti+1 −X

ε
ti

∆t
)

= χ +
n−1

∑
i=0

∆t(1 + χ)Q∗ (Xε
ti ,
Xε
ti+1 −X

ε
ti

∆t
) (7.14)

on ⋂n−1
i=0 A

ε
i . Applying again Markov’s inequality, we find

I2 = Px (
n−1

⋂
i=0

Aεi ∩ {I(Πn(Xε)) ≥ r})

≤ exp (−ε−1(1 + χ)−2r) Ex [exp (ε−1(1 + χ)−2I(Πn(Xε)))
n−1

∏
i=0

1Aεi ]

(7.14)
≤ exp (−ε−1(1 + χ)−2(r − χ))Ex [

n−1

∏
i=0

1Aεi exp(ε−1(1 + χ)−1∆tQ∗ (Xε
ti ,
Xε
ti+1 −X

ε
ti

∆t
))] .

Since (Xε
t )t≥0 is a Markov process, it is not difficult to see that

I2 ≤ exp (−ε−1(1 + χ)−2(r − χ)) sup
y∈R

I3(ε, y)n (7.15)

3Revised version: Corrected misprints.
4Revised version: Corrected misprint.
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where

I3 ∶= I3(ε, y) ∶= Ey [1Aε0 exp(ε−1(1 + χ)−1∆tQ∗ (y, X
ε
∆t − y
∆t

))] .

Now let ξi = ξi(y), 1 ≤ i ≤ m(y) ≤M , as in Lemma 7.3(ii) (applied for ε=̂χ, δ=̂%/∆t). Set

ξi(y) = 0 for m(y) < i ≤M . Then,

I3 ≤ Ey {1Aε0 exp [ε−1(1 + χ)−1∆t(χ + max
i=1,...,M

(ξi
Xε

∆t − y
∆t

−Q(y, ξi)))]}

≤ eε−1(1+χ)−1χ∆t
M

∑
i=1

Ey{1Aε0 exp [ε−1(1 + χ)−1(ξi(Xε
∆t − y) −∆tQ(y, ξi))]}.

Using a similar argumentation as in (7.13) and applying Lemma 7.3(iii), we get

I3 ≤ eε
−1(1+χ)−1χ∆t

M

∑
i=1

sup
ω∈Aε0

exp(ε−1∫
∆t

0
Q(Xε

s(ω), (1 + χ)−1ξi)ds − ε−1(1 + χ)−1∆tQ(y, ξi))

≤M exp (2ε−1(1 + χ)−1χ∆t) .

Combining the estimates gives

log I2 ≤ n logM − ε−1(1 + χ)−1((r − χ) + 2χ).

Finally, we conclude

lim sup
ε→0

ε log I2(ε) ≤ −(1 + χ)−1((r − χ) + 2χ) χ→0ÐÐ→ −r.

Let us mention the following two important corollaries.

7.4 Corollary Let b, σ, η ∶ R → R be bounded, locally Lipschitz continuous functions and

(Lt)t≥0 a Lévy process with Lévy triplet (0,0, ν) such that Eeλ∣L1∣ <∞ for all λ ≥ 0. If

Q(x, ξ) = b(x)ξ + 1

2
σ2(x)ξ2 + ∫

R/{0}
(eyη(x)ξ − 1 − yη(x)ξ1∣y∣≤1)dν(y)

satisfies (S1) and (S2), then the family (Xε)ε>0 of solutions on (Ω̄, Ā,Px),

dXε
t = b(Xε

t−)dt +
√
εσ(Xε

t−)dBt + η(Xε
t−)dLεt , (7.16)

obeys a large deviation principle in (D[0,1], ∥ ⋅ ∥∞) with good rate function I defined in

(7.3).

Proof. Since (Lt)t≥0 is a non-Gaussian Lévy process, the processes (Bt)t≥0 and (Lt)t≥0

are independent, see e. g. [24, Theorem II.6.3]. Therefore, the claim follows by applying

Theorem 7.1 to (t,Bt, Lt)t≥0. (As indicated in Example 5.10, we may replace Bε
t by

√
εBt.)

In general, the Legendre transform Q∗(x, ⋅) cannot be calculated explicitly5, and con-

sequently it is difficult to formulate sufficient conditions for (S1) and (S2) in terms of

the coefficients of the SDE. Corollary 7.5 gives a sufficient condition for SDEs driven by

Brownian motion.
5Revised version: Corrected misprint.
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7.5 Corollary Let b, σ ∶ R → R be bounded, locally Lipschitz continuous functions such

that infx∈R σ(x) > 0. Assume that (Xε
t )t∈[0,1] is a solution of the SDE

dXε
t = b(Xε

t )dt +
√
εσ(Xε

t )dBt, Xε
0 = x.

Then (Xε)ε>0 satisfies a large deviation principle in (C[0,1], ∥⋅∥∞) with good rate function

I(f) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∫

1
0

1
σ(f(t))(f

′(t) − b(f(t)))2
dt, f ∈ AC[0,1], f(0) = x,

∞, otherwise.

In the next section we will show that a large deviation principle holds whenever the

coefficients b, σ, η are globally Lipschitz continuous.

7.2 Large Deviations by Exponential Approximations

Dembo and Zeitouni [10] obtained a large deviation principle for solutions of SDEs driven

by Brownian motion, i. e. SDEs of the form

dXt = b(Xt)dt +
√
εσ(Xt)dBt, X0 = x,

by applying a generalization of the contraction principle, cf. Theorem 4.4. The key point

is the approximation of the drift and diffusion coefficient by simple functions:

dXm
t = b(Xm

⌊tm⌋
m

)dt +
√
εσ(Xm

⌊tm⌋
m

)dBt, m ∈ N.

Doing so, the stochastic integral can be evaluated pathwise, and therefore, similar to

Example 2.9, we can define continuous mappings Fm such that Fm(√εB) = Xm. Using

the large deviation principle for the scaled Brownian motion (√εB)ε>0, Theorem 4.4 yields

the desired large deviation principle. In this section we will show that the approach remains

valid if we consider solutions of SDEs driven by Lévy processes, i. e.

dXt = b(Xt−)dt +
√
εσ(Xt−)dBt + η(Xt−)dLεt X0 = x, (7.17)

where Lεt ∶= εLt/ε is a scaled Lévy process with finite exponential moments. Let us remark

that the result we are going to prove is a special case of large deviation results presented

in [9] and [19] for SDEs driven by Brownian motion and random measures. Throughout

this section we denote by

Fεt ∶= σ(Bs, Lεs,N; s ≤ t)

the canonical filtration augmented by the P-nullsets N. We remind the reader that this

filtration satisfies the usual hypotheses, i. e. it is a right-continuous complete filtration,

cf. [32, Theorem I.31], and is admissible for both (Bt)t≥0 and (Lεt)t≥0. We call a process

(Xt)t≥0 Fε-previsible if it is measurable with respect to the σ-algebra generated by the

left-continuous Fε-adapted processes.
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7.6 Theorem Let (Lt)t≥0 be a Lévy process with Lévy triplet (γ,0, ν) and symbol ψ such

that Eeλ∣L1∣ <∞ for all λ ≥ 0. Let b, σ, η ∶ R → R be bounded globally Lipschitz continuous

functions. In particular, there exists L > 0 such that

∣b(x) − b(y)∣ + ∣σ(x) − σ(y)∣ + ∣η(x) − η(y)∣ ≤ L∣x − y∣ for all x, y ∈ R.

Then the family (Xε)ε>0 of solutions of (7.17) satisfies a large deviation principle in

(D[0,1], ∥ ⋅ ∥∞) as ε→ 0 with good rate function

I(f) ∶= Ix(f) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf (1
2 ∫

1
0 ∣g′(t)∣2 dt + ∫ 1

0 Ψ∗(h′(t))dt) , f ∈ AC[0,1], f(0) = x,

∞, otherwise,
(7.18)

where the infimum is taken over all functions g, h ∈ AC[0,1], g(0) = h(0) = 0, such that

f(t) = x + ∫
t

0
b(f(s))ds + ∫

t

0
σ(f(s))g′(s)ds + ∫

t

0
η(f(s))h′(s)ds

and

Ψ(w) ∶= ψ(−ıw) = γw + ∫
R/{0}

(eyw − 1 − yw1∣y∣≤1) ν(dy), w ∈ R

denotes the logarithmic moment generating function of L1.

Remarks (i). Comparing Theorem 7.6 and Theorem 7.1, it seems reasonable to claim

that the rate functions (7.18) and (7.3) coincide. In case both theorems are applica-

ble, this follows from the uniqueness of the rate function. Unfortunately, we did not

succeed in proving the equality directly except for the special cases η = 0 (continuous

SDE) and σ = 0 (jump-only SDE).

(ii). The assumption on the boundedness of the coefficients can be weakened. Feng-Kurtz

[17, Theorem 10.17, Remark 10.18] have shown that a large deviation principle holds

if b, σ are of linear growth, i. e.

∣b(x)∣ + ∣σ(x)∣ ≤M(1 + ∣x∣), x ∈ R

for some constant M > 0, and η satisfies a certain integrability condition.

We split the proof of Theorem 7.6 into several parts:

(i). Show that (√εB,Lε)ε>0 satisfies a large deviation principle in D[0,1] ×D[0,1] as

ε→ 0, cf. Lemma 7.7.

(ii). Define continuous mappings Fm ∶ D[0,1] × D[0,1] → D[0,1], m ∈ N, such that

(Fm(√εB,Lε))m∈N,ε>0 is an exponentially good approximation of (Xε)ε>0, cf.

Lemma 7.9.

(iii). Apply Theorem 4.4 in order to obtain the large deviation principle for (Xε)ε>0.
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Throughout the remaining part of this section the processes (Lt)t≥0, (Bt)t≥0, and the

coefficients b, σ, η are supposed to meet the assumptions of Theorem 7.6. Without loss of

generality we may assume ELt = tEL1 = 0 (otherwise consider the Lévy process Lt− tEL1).

Then, by the Lévy-Itô decomposition,

Lεt = ∫
t

0
∫ z dÑε(dz, ds) (7.19)

where Ñε denotes the compensated jump counting measure of the Lévy process Lε. It

follows from the Lévy-Khinchine formula that the compensator N̂ε(dz, ds) of the jump

counting measure Nε equals ε−1dsν(ε−1dz).

7.7 Lemma (√εB,Lε)ε>0 satisfies a large deviation principle in D[0,1]×D[0,1] endowed

with the norm

∥(f, g)∥ ∶= ∥f∥∞ + ∥g∥∞, f, g ∈D[0,1]

as ε→ 0 with good rate function I0,

I0(g, h) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ∫

1
0 ∣g′(t)∣2 dt + ∫ 1

0 Ψ∗(h′(t))dt, g, h ∈ AC[0,1], g(0) = h(0) = 0,

∞, otherwise.
(7.20)

Proof. In accordance with Chapter 5 we denote by ZB⌊1/ε⌋/ ⌊1/ε⌋ and ZL⌊1/ε⌋/ ⌊1/ε⌋ the ap-

proximations of (Bε
t )t∈[0,1] and (Lεt)t∈[0,1], respectively. Since (Bt)t≥0 and (Lt)t≥0 are

independent, see e. g. [24, Theorem II.6.3], we find by combining Lemma 5.3, Theorem 5.5

and Lemma 2.7 that (ZB⌊1/ε⌋/ ⌊1/ε⌋ , Z
L
⌊1/ε⌋/ ⌊1/ε⌋)ε>0 satisfies a large deviation principle in

(D[0,1] ×D[0,1], ∥ ⋅ ∥) as ε → 0 with good rate function I0. Using the scaling property,

cf. Example 5.10, and Lemma 5.6, it is not difficult to see that this family of processes is

exponentially equivalent to (√εB,Lε)ε>0. Therefore, the claim follows from Corollary 4.3

and Theorem 5.7.

Remark By Theorem 5.1, (√εB)ε>0 as well as (Lε)ε>0 satisfies a large deviation principle

in (D[0,1], ∥ ⋅∥∞) with a good rate function but, since (D[0,1], ∥ ⋅∥∞) is not a Polish space,

this does not imply exponential tightness, cf. Lemma 2.5. Therefore, we cannot apply

Lemma 2.7 to (√εB,Lε)ε>0 directly.

The remaining part of the proof is based on the idea that the solutions (Xε,m
t )t∈[0,1] of the

stochastic differential equation

dXε,m
t = b(Xε,m

⌊mt⌋
m

−
)dt +

√
εσ(Xε,m

⌊mt⌋
m

−
)dBt + η(Xε,m

⌊mt⌋
m

−
)dLεt , Xε,m

0 = x. (7.21)

are an exponentially good approximation of (Xε)ε>0. In order to prove this we need the

following technical lemma.

7.8 Lemma Let b, σ, η ∶ [0,∞) ×Ω→ R be Fε-previsible bounded processes, and set

Zt ∶= z0 + ∫
t

0
bs ds +

√
ε∫

t

0
σs dBs + ∫

t

0
ηs dL

ε
s.
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Let τ be a Fεt -stopping time and % > 0, M > 0 such that

∣bt∣ + ∣σt∣ + ∣ηt∣ ≤M(%2 + ∣Zt−∣2)
1
2 for all t ∈ [0, τ]. (7.22)

Then, for fixed δ > 0,

ε logP
⎛
⎝

sup
t∈[0,τ∧1]

∣Zt∣ > δ
⎞
⎠
≤ C + log(%

2 + z2
0

%2 + δ2
) for all ε ≤ 1

for a constant C > 0 which does not depend on δ, %, ε.

Proof. Set ϕ(y) ∶= (%2 + y2) 1
ε . By Itô’s formula and (7.19),

ϕ(Zt) − ϕ(Z0) = ∫
t

0
ϕ′(Zs−)bs ds +

√
ε∫

t

0
ϕ′(Zs−)σs dBs

+ ε
2
∫

t

0
ϕ′′(Zs−)σ2

s ds + ∫
t

0
∫ (ϕ(Zs− + ηsz) − ϕ(Zs−))dÑε(dz, ds)

+ ∫
t

0
∫ (ϕ(Zs− + ηsz) − ϕ(Zs−) − ϕ′(Zs−)ηs z)dN̂ε(dz, ds). (7.23)

Obviously,

ϕ′(y) = 2

ε

ϕ(y)
%2 + y2

y ϕ′′(y) = 2

ε

ϕ(y)
%2 + y2

(1 + 2(1

ε
− 1) y2

%2 + y2
) . (7.24)

Define a stopping time τ1 ∶= inf{t ≥ 0; ∣Zt∣ > δ} ∧ τ ∧ 1. Using the boundedness of σ, η and

∫R/{0} ∣y∣n ν(dy) <∞, n ≥ 2, we find

E(∫
1

0
ϕ′(Zs−)2σ2

s1[0,τ1](s)ds) <∞,

E(∫
1

0
∫
R/{0}

(ϕ(Zs− + ηsz) − ϕ(Zs−))
2
1[0,τ1](s)dN̂ε(dz, ds)) <∞.

This means that the corresponding stochastic integrals in (7.23) are martingales, and

therefore we obtain

E(∫
t∧τ1

0
ϕ′(Zs−)σs dBs) +E(∫

t∧τ1

0
∫ (ϕ(Zs− + ηsz) − ϕ(Zs−))dÑε(dz, ds)) = 0.

Moreover, because of the growth condition (7.22), it is not difficult to see that

E(∫
t∧τ1

0
ϕ′(Zs−)bs ds) +E(ε

2
∫

t∧τ1

0
ϕ′′(Zs−)σ2

s ds) ≤
C1

ε
E(∫

t∧τ1

0
ϕ(Zs−)ds)

for some constant C1 which does not depend on %, δ, ε. In order to apply Gronwall’s lemma

we have to estimate the remaining term in (7.23). By Taylor’s formula and the definition

of Lεt , cf. (7.19),

I ∶= ∫
t∧τ1

0
∫ (ϕ(Zs− + ηsz) − ϕ(Zs−) − ϕ′(Zs−)ηs z)dN̂ε(dz, ds)

= 1

ε
∫

t∧τ1

0
∫
R/{0}

(ϕ(Zs− + εηsy) − ϕ(Zs−) − ϕ′(Zs−)εηsy)ν(dy)ds

= 1

ε
∫

t∧τ1

0
∫
R/{0}

ϕ′′(Zs− + εΘηsy)(εηsy)2 ν(dy)ds
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for some intermediate value Θ = Θ(ω, s, y) ∈ (0,1).6 By (7.22) and (7.24),

∣I ∣ ≤ 2M2 (1 + 1

ε
)∫

t∧τ1

0
∫
R/{0}

y2(%2 + (Zs− + εΘηsy)2)
1
ε
−1(%2 +Z2

s−)ν(dy)ds.

Note that

(1 + εx)
1
ε ↑ ex as ε ↓ 0 for all x ≥ 0.

Therefore, we find

(%2 + (Zs− + εΘηsy)2)
1
ε
−1 ≤ (1 + 2ε

∣Zs−ηsy∣
%2 +Z2

s−
+ ε2 η2

sy
2

%2 +Z2
s−

)
1
ε

(%2 +Z2
s−)

1
ε
−1

(7.22)
≤ (1 + εM ′ ∣y∣)

2
ε (%2 +Z2

s−)
1
ε
−1

≤ e2M ′ ∣y∣(%2 +Z2
s−)

1
ε
−1

for all s ∈ [0, τ1] for a constant M ′ > 0. Thus,

∣I ∣ ≤ 2M2 (1 + 1

ε
)(∫

R/{0}
y2e2M ′∣y∣ ν(dy))(∫

t∧τ1

0
ϕ(Zs−)ds) =∶ C2(ε)∫

t∧τ1

0
ϕ(Zs−)ds.

Clearly,

lim
ε→0

εC2(ε) = 2M2∫
R/{0}

y2e2M ′∣y∣ ν(dy). (7.25)

Recall that L1 has exponenial moments so that the integral on the right hand side is finite.

Consequently, we have shown

Eϕ(Zt∧τ1) − ϕ(z0) ≤ (C1

ε
+C2(ε))∫

t

0
Eϕ(Zs∧τ1)ds.

Applying Gronwall’s lemma yields

Eϕ(Zτ1) ≤ ϕ(z0) exp(C1

ε
+C2(ε)) .

Finally, by the definition of τ1 and Markov’s inequality,

ε logP
⎛
⎝

sup
t∈[0,τ∧1]

∣Zt∣ > δ
⎞
⎠
≤ ε logP(∣Zτ1 ∣ ≥ δ) ≤ ε logEϕ(Zτ1) − ε logϕ(δ)

≤ C1 + εC2(ε) + log(%
2 + ∣z0∣2
%2 + δ2

) .

Now we are ready to show that the family of solutions (Xε,m)ε>0,m∈N given by (7.21) is

indeed an exponentially good approximation.

7.9 Lemma For m ∈ N define Fm ∶D[0,1] ×D[0,1]→D[0,1] via f = Fm(g, h) where

f(t) = f (tmk )+b (f (tmk −)) (t − tmk )+σ (f (tmk −)) (g(t) − g(tmk ))+η (f (tmk −)) (h(t) − h(tmk ))

for t ∈ (tmk , tmk+1], tmk ∶= k/m, k = 0, . . . ,m − 1, and f(0) ∶= f(0−) ∶= x. Then

Xε,m ∶= Fm(√εB,Lε) defines an exponentially good approximation of (Xε)ε>0.

6The measurability of the mapping (s,ω, y)↦ ϕ′′(Zs− +εΘηsy) follows from the integral representation

of the remainder term in the Taylor formula.
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Proof. Let δ, %, ε > 0. Obviously, (Xε,m
t )t∈[0,1] is the (unique) solution to the SDE

dYt = b(Y ⌊mt⌋
m

−)dt +
√
εσ(Y ⌊mt⌋

m
−)dBt + η(Y ⌊mt⌋

m
−)dL

ε
t , 0 ≤ t ≤ 1, Y0 = x.

Define a Fεt -stopping time by

τ ∶= τ(%) ∶= inf{t ≥ 0; ∣Xε,m
t −Xε,m

⌊mt⌋/m∣ > %} ∧ 1,

and set

bt ∶= b(Xε,m
⌊mt⌋/m−) − b(X

ε
t−) σt ∶= σ(Xε,m

⌊mt⌋/m−) − σ(X
ε
t−) ηt ∶= η(Xε,m

⌊mt⌋/m−) − η(X
ε
t−).

By the global Lipschitz continuity,

∣bt∣ + ∣σt∣ + ∣ηt∣ ≤ L∣Xε,m
⌊mt⌋/m− −X

ε
t−∣ ≤

√
2L(%2 + ∣Xε,m

t− −Xε
t−∣2)

1
2

for any t ∈ [0, τ]. Lemma 7.8 (applied to Zt ∶=Xt −Xε,m
t ) shows

ε logP
⎛
⎝

sup
t∈[0,τ]

∣Xε,m
t −Xε

t ∣ > δ
⎞
⎠
≤ C + log( %2

%2 + δ2
) .

for some constant C > 0 which does not depend on m,ε, %. Hence,

lim
%→0

sup
m≥1

lim sup
ε→0

ε logP
⎛
⎝

sup
t∈[0,τ]

∣Xε,m
t −Xε

t ∣ > δ
⎞
⎠
= −∞ for all δ > 0.

As

{∥Xε,m −Xε∥∞ > δ} ⊆ {τ < 1} ∪
⎧⎪⎪⎨⎪⎪⎩

sup
t∈[0,τ]

∣Xε,m
t −Xε

t ∣ > δ
⎫⎪⎪⎬⎪⎪⎭

it remains to show

lim
m→∞

lim sup
ε→0

ε logP(τ < 1) = −∞ for all % > 0. (7.26)

Since the coefficients are bounded, we find

∣Xε,m
k
m
+s −X

ε,m
k
m

∣ ≤ C
⎛
⎜
⎝

1

m
+
√
ε max

0≤k≤m−1
sup

0≤s≤ 1
m

∣B k
m
+s −B k

m
∣ + max

0≤k≤m−1
sup

0≤s≤ 1
m

∣Lεk
m
+s −L

ε
k
m

∣
⎞
⎟
⎠

for 0 ≤ s ≤ 1/m where C ∶= max{∥b∥∞, ∥η∥∞, ∥σ∥∞}. By the stationarity of the increments,

we conclude

P(τ < 1) = P
⎛
⎝
m−1

⋃
k=0

⎧⎪⎪⎨⎪⎪⎩
sup

0≤s≤1/m
∣Xε,m

k
m
+s −X

ε,m
k
m

∣ > %
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

≤mP
⎛
⎜
⎝

sup
0≤s≤ 1

m

∣Bs∣ ≥
% −C/m
2
√
εC

⎞
⎟
⎠
+mP

⎛
⎜
⎝

sup
0≤s≤ 1

mε

∣Ls∣ ≥
% −C/m

2εC

⎞
⎟
⎠

(7.27)

for all m > C/%. Applying Etemadi’s inequality, Markov’s inequality and Lemma 5.9 gives

P
⎛
⎜
⎝

sup
0≤s≤ 1

mε

∣Ls∣ ≥
% −C/m

2εC

⎞
⎟
⎠
≤ 6 exp(−

√
m
% −C/m

2εC
+ C

′

ε
) .

for a constant C ′ > 0. An analogous estimate holds for the first term in (7.27). Combining

these estimates proves (7.26).
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Summarizing, we have shown that (√εB,Lε)ε>0 satisfies a large deviation principle with

good rate function I0, and that (Fm(√εB,Lε))ε>0,m∈N defines an exponentially good ap-

proximation of (Xε)ε>0. The task is now to find a function F ∶D[0,1]×D[0,1]→D[0,1]
such that Fm converges uniformly on the sublevel sets of I0 to F . Then, the claim follows

from Theorem 4.4.

7.10 Lemma (i). The mappings Fm, m ∈ N, defined in Lemma 7.9 are continuous.

(ii). For absolutely continuous functions g, h ∈ D[0,1] and x ∈ R denote by f ∶= F (g, h)
the unique solution of the integral equation

f(t) = x + ∫
t

0
b(f(s))ds + ∫

t

0
σ(f(s))g′(s)ds + ∫

t

0
η(f(s))h′(s)ds, t ∈ [0,1].

Then,

lim
m→∞

sup
(g,h)∈Φ(r)

∥Fm(g, h) − F (g, h)∥∞ = 0 for all r ≥ 0,

where Φ(r) ∶= {(g, h) ∈ D[0,1] ×D[0,1]; I0(g, h) ≤ r} is the sublevel set of the good

rate function I0 defined in (7.20).

Proof. (i). For (g1, h1), (g2, h2) ∈ D[0,1] ×D[0,1] we set fj(t) ∶= Fm(gj , hj)(t), j = 1,2,

and

e(t) ∶= ∣f1(t) − f2(t)∣. By the Lipschitz continuity and boundedness of σ, we have

∣σ(f1(tmk −))g1(t) − σ(f2(tmk −))g2(t)∣ ≤ ∥σ∥∞ ⋅ ∥g1 − g2∥∞ + e(tmk −) ⋅ ∥g2∥∞.

Using similar estimates for the other terms, we find

sup
t∈[tm

k
,tm
k+1]

e(t) ≤ C (e(tmk ) + e(tmk −) + ∥g1 − g2∥∞ + ∥h1 − h2∥∞) , k = 0, . . . ,m − 1,

for some constant C > 0 which does only depend on (g2, h2). Since e(0) = e(0−) = 0

the continuity of Fm at (g1, h1) follows by iterating the above estimate over k.

(ii). By assumption, b, σ, η are (globally) Lipschitz continuous, and therefore there exists

a unique solution of the given integral equation. In order to prove the uniform

convergence on the sublevel sets of I0 we apply Gronwall’s lemma. We claim that

there exists a sequence (εm)m∈N such that εm → 0 as m→∞ and

∫
t

⌊tm⌋
m

∣h′(s)∣ds ≤ εm for all t ∈ [0,1], (g, h) ∈ Φ(r). (7.28)

Indeed: By the definition of the Legendre transform,

h′(s) ≤ Ψ∗(h′(s)) +Ψ(α)
α

for all α > 0.

Hence,7

∫
t

⌊tm⌋
m

h′(s)1{h′(s)≥0} ds ≤
1

αm
∫

1

0
Ψ∗(h′(s))ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤r

+ 1

m

Ψ(αm)
αm

(7.29)

7Revised version: Corrected misprint.
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for any sequence (αm)m∈N ⊆ (0,∞). If Ψ∣(0,∞) is bounded, we choose αm ∶= m;

otherwise we set

αm ∶= sup{x ≥ 0; ∣Ψ(x)∣ ≤m}, m ∈ N;

then clearly αm →∞ as m→∞. In both cases, (7.29) entails8

∫
1

0
h′(s)1{h′(s)≥0} ds ≤ εm

m→∞ÐÐÐ→ 0

for a sequence (εm)m∈N which does not depend on (g, h) ∈ Φ(r) and t ∈ [0,1]. A

similar estimate holds for the integral ∫ t⌊tm⌋
m

(−h′(s))1{h′(s)<0} ds
9. This proves (7.28).

An even simpler computation shows

∫
1

0
∣h′(s)∣ds ≤ ∫

1

0
Ψ∗(h′(s))ds + (Ψ(1) +Ψ(−1)). (7.30)

Fix (g, h) ∈ Φ(r). Using the boundedness of the coefficients, we find by the Cauchy-

Schwarz inequality

sup
0≤t≤1

∣Fm(g, h)(t)−Fm(g, h)(⌊tm⌋
m

) ∣

≤ ∥b∥∞
m

+ ∥σ∥∞
√

1

m

√

∫
1

0
g′(s)2 ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤
√

2r

+∥η∥∞εm =∶ δm
m→∞ÐÐÐ→ 0.

A similar calculation shows

e(t) ∶= ∣F (g, h)(t) − Fm(g, h)(t)∣

≤ L∫
t

0
(1 + ∣g′(s)∣ + ∣h′(s)∣) ∣F (g, h)(s) − Fm(g, h)(⌊ms⌋

m
)∣ ds

≤ LCδm +L∫
t

0
(1 + ∣g′(s)∣ + ∣h′(s)∣)e(s)ds

where we used that

∫
t

0
(1 + ∣g′(s)∣ + ∣h′(s)∣)ds

(7.30)
≤ 1 +

√

∫
1

0
g′(s)2 ds + ∫

1

0
Ψ∗(h′(s))ds +Ψ(1) +Ψ(−1)

≤ 1 +
√

2r + r +Ψ(1) +Ψ(−1) =∶ C (7.31)

for any t ∈ [0,1] as (g, h) ∈ Φ(r). From Gronwall’s lemma we see

e(t) ≤ LCδm [1 +L∫
t

0
(1 + ∣g′(s)∣ + ∣h′(s)∣) exp(L∫

t

s
(1 + ∣g′(r)∣ + ∣h′(r)∣)dr) ds]

(7.31)
≤ LCδm (1 +LCeLC)

Since the constants L,C, δm do not depend on t and (g, h), we conclude

sup
(g,h)∈Φ(r)

∥F (g, h) − Fm(g, h)∥∞ ≤ LCδm (1 +LCeLC) m→∞ÐÐÐ→ 0.

8Revised version: Corrected misprint.
9Revised version: Corrected misprint.
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Proof of Theorem 7.6. In Lemma 7.7 we have shown that (√εB,Lε)ε>0 obeys a large

deviation principle with good rate function I0. Since (Fm(√εB,Lε))ε>0,m∈N is an expo-

nentially good approximation of (Xε)ε>0, cf. Lemma 7.9, and Fm converges uniformly

on the compact sublevel sets of I0 to F the assumptions of Theorem 4.4 are satisfied.

Consequently, (Xε)ε>0 satisfies a large deviation principle with good rate function

I(f) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf (1
2 ∫

1
0 ∣g′(t)∣2 dt + ∫ 1

0 Ψ∗(h′(t))dt) , f ∈ AC[0,1], f(0) = x,

∞, otherwise,

where the infimum is taken over all functions g, h ∈ AC[0,1], g(0) = h(0) = 0, such that

f(t) = F (g, h)(t) = x + ∫
t

0
b(f(s))ds + ∫

t

0
σ(f(s))g′(s)ds + ∫

t

0
η(f(s))h′(s)ds.

Remark It is not difficult to see that the proof of Theorem 7.6 carries over to solutions

of non-homogeneous SDEs of the form

dXε
t = b(t,Xt−)dt +

√
εσ(t,Xt−)dBt + η(t,Xt−)dLεt

if the coefficients b, σ, η are bounded and (globally) Lipschitz continuous in both compo-

nents, i. e. there exists a constant L > 0 such that

∣b(s, x) − b(t, y)∣ + ∣σ(s, x) − σ(t, y)∣ + ∣η(s, x) − η(t, y)∣ ≤ L(∣t − s∣ + ∣y − x∣)

for any s, t ∈ [0,1], x, y ∈ R.

The following result shows that the large deviation bounds in Theorem 7.6 can be strength-

ened; they hold uniformly (with respect to the initial condition x ∈ R) on compact sets.

7.11 Corollary Let K ⊆ R be compact. Denote by (Xε,x
t )t∈[0,1] the solution of (7.17) for

the initial condition Xε,x
0 = x ∈ R. Then,

lim sup
ε→0

ε log sup
x∈K

P(Xε,x ∈ B) ≤ − inf
x∈K

inf
f∈B

Ix(f) (7.32)

for any closed set B ⊆D[0,1], and

lim inf
ε→0

ε log inf
x∈K

P(Xε,x ∈ A) ≥ − sup
x∈K

inf
f∈A

Ix(f) (7.33)

for any open set A ⊆D[0,1].

Proof. Let (xε)ε>0 such that xε → x ∈ R as ε → 0. As b, σ, η are (globally) Lipschitz

continuous, Lemma 7.8 applied to Y ε
t ∶=X

ε,xε
t −Xε,x

t and the stopping time τ = 1 yields

ε logP(∥Xε,xε −Xε,x∥∞ > δ) ≤ C + log(%
2 + ∣xε − x∣2
%2 + δ2

) .

Letting % → 0 and ε → 0, we find that (Xε,xε)ε>0 and (Xε,x)ε>0 are exponentially equiva-

lent, and therefore (Xε,xε)ε>0 obeys a large deviation principle in D[0,1] with good rate

function Ix, cf. Corollary 4.3. In particular,

lim sup
ε→0

ε logP(Xε,xε ∈ B) ≤ − inf
f∈B

Ix(f) (7.34)
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for any closed set B ⊆ D[0,1]. Fix δ > 0. By (7.34), there exists for each x ∈ K some

εx > 0 such that

ε log sup
y∈B(x,εx)

P(Xε,y ∈ B) ≤ −min{ inf
f∈B

Ix(f) − δ,
1

δ
} for all ε ≤ εx;

otherwise we could construct a sequence (xε)ε>0, xε → x, such that (7.34) is violated.

Choosing a finite cover ⋃nj=1B(xj , εxj) of K, we conclude

ε log sup
y∈K

P(Xε,y ∈ B) ≤ −min{ inf
f∈B

Ix(f) − δ,
1

δ
} for all ε ≤ min

j=1,...,n
εxj .

As δ > 0 is arbitrary, this proves (7.32); (7.33) follows in a similar way.

So far we have used the extended contraction principle presented in Section 4.1 which

relies on the (uniform) approximation of the function (g, h)↦ f = F (g, h),

f(t) = x + ∫
t

0
b(f(s))ds + ∫

t

0
σ(f(s))g′(s)ds + ∫

t

0
η(f(s))h′(s)ds,

by continuous functions. In particular, F is continuous on the sublevel sets of the good

rate function I0. In a more general setting – for example if one wants to consider SDEs

driven by semimartingales – we cannot expect continuity, and, consequently, our approach

breaks down. Recently, Garcia [22] has shown a way to define a family of almost compact

functions which gives rise to an exponential approximation of stochastic integrals with

respect to semimartingales. Using the results of Section 4.2, Garcia proves the following

7.12 Theorem ([22, Theorem 8.2]) Let (Y ε)ε>0 be a family of semimartingales satisfy-

ing a large deviation principle in D[0,1] with rate function I0. Suppose that (Y ε)ε>0 is

uniformly exponentially tight, i. e. for any α > 0 there exists R > 0 such that

lim sup
ε→0

ε log sup
Z∈S

P [ sup
0≤t≤1

∣∫
t

0
Zs− dY

ε
s ∣ ≥ R] ≤ −α

where S denotes the collection of simple functions Z for which sup0≤t≤1 ∣Z(t)∣ ≤ 1. Let

b ∶ R → R be a bounded, Lipschitz continuous function, and assume that Xε is a solution

of the SDE

dXε
t = b(Xε

t−)dY ε
t , Xε

0 = x.

If (Xε, Y ε)ε>0 is exponentially tight, then (Xε)ε>0 satisfies a large deviation principle with

rate function

I(f) = inf {I0(g); g ∈ BV[0,1] ∶ f(t) = x + ∫
t

0
b(f(s))dg(s), t ∈ [0,1]} .

The result has been further generalized by Ganguly [19] to infinite-dimensional semi-

martingales.



8
Conclusion

The purpose of our work was to present large deviation results for Lévy processes and

solutions of Lévy-driven SDEs. We did not make any attempt to state the results in their

most general form; instead we intended to demonstrate typical large deviation techniques.

Starting from the Gärtner-Ellis approach we saw that exponentially good approximations

play an important role in large deviation theory. In many cases they allow us to reduce

our investigations to processes which are easier to handle, such as polygons or simple

functions. Secondly, exponentially good approximations give rise to extended versions of

the contraction principle. These extensions turn out to be crucial when considering large

deviations for SDEs or – more generally – stochastic integrals. Moreover, the change-of-

measure technique proved itself a fundamental tool for large deviation lower bounds.

Chapter 7 left us with some open questions. First of all, it was unsatisfying that we did not

succeed in identifying the rate functions obtained in Section 7.1 and Section 7.2. Possibly,

the proof would have revealed a connection between those totally different approaches.

Furthermore, it would be interesting to see in which way the results of Section 7.2 can be

extended:

� Does the approach remain valid if we consider ε-dependent coefficients, i. e. SDEs

of the form

dXt = bε(Xt−)dt +
√
εσε(Xt−)dBt + ηε(Xt−)dLεt ,

where bε → b, σε → σ, ηε → η uniformly as ε→ 0?

� In Chapter 5 we have shown that scaled Lévy processes of the form L(ε−1⋅)/S(ε−1)
obey a large deviation principle as ε→ 0 if the scaling function S satisfies the growth

conditions

εS(ε−1) ε→0ÐÐ→ 0 and
√
εS(ε−1) ε→0ÐÐ→∞,

and used this result in order to establish the law of iterated logarithm for Lévy

processes. Can we modify the proof such that this large deviation principle carries

over to SDEs driven by Lévy processes? And, secondly, does it give rise to a law

of iterated logarithm? For SDEs driven by Brownian motion this question was

discussed by Baldi [2].
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Appendix

A.1 Lemma (Etemadi’s inequality [16]) Let (Xn)n∈N be a sequence of independent ran-

dom variables. Set Sn ∶= ∑nj=1Xj. Then

P(max
1≤j≤n

∣Sj ∣ ≥ 3r) ≤ 3 max
1≤j≤n

P(∣Sj ∣ ≥ r) for all r ≥ 0.

Proof. For

Aj ∶= {max
1≤k<j

∣Sk∣ < 3r, ∣Sj ∣ ≥ 3r} , j = 1, . . . , n

we have

{max
1≤j≤n

∣Sj ∣ ≥ 3r} =
n

⋃⋅
j=1

Aj .

Consequently, by the independence of the random variables,

P(max
1≤j≤n

∣Sj ∣ ≥ 3r) ≤ P(∣Sn∣ ≥ r) +
n−1

∑
j=1

P(Aj ∩ {∣Sn∣ < r})

≤ P(∣Sn∣ ≥ r) +
n−1

∑
j=1

P(Aj)P(∣Sn − Sj ∣ > 2r)

≤ P(∣Sn∣ ≥ r) + max
1≤j≤n

P(∣Sn − Sj ∣ > 2r)

≤ 3 max
1≤j≤n

P(∣Sj ∣ ≥ r).

A.2 Corollary Let (Xt)t≥0 be a Lévy process. Then

P
⎛
⎝

sup
u∈[s,t]

∣Xu −Xs∣ ≥ 3r
⎞
⎠
≤ 3 sup

u∈[s,t]
P(∣Xu −Xs∣ ≥ r) for all t > s ≥ 0, r ≥ 0.

Proof. Since X has càdlàg sample paths, we find

sup
u∈[s,t]

∣Xu −Xs∣ = sup
u∈([s,t]∩Q)∪{t}

∣Xu −Xs∣.

Therefore, the claim follows readily from Lemma A.1 and the monotone convergence the-

orem.

A.3 Theorem (Duality lemma [10, Lemma 4.5.8]) Let (M,d) be a metric space, and let

f ∶M → (−∞,∞] be a lower semicontinuous, convex function. For

f∗(λ) ∶= sup
x∈M

(⟨λ,x⟩ − f(x)), λ ∈M∗
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we have f = (f∗)∗, i. e.

f(x) = sup
λ∈M∗

(⟨λ,x⟩ − f∗(λ)), x ∈M.

Proof. Obviously, the definition of f∗ implies

sup
λ∈M∗

(⟨λ,x⟩ − f∗(λ)) ≤ sup
λ∈M∗

(⟨λ,x⟩ − (⟨λ,x⟩ − f(x))) = f(x) for all x ∈M.

Consequently, (f∗)∗ ≤ f holds in any case. The inequality ‘≥’ is basically a consequence of

the Hahn-Banach theorem. For a detailed proof we refer the reader to [10, Lemma 4.5.8]

or [35, Theorem 12.2].

A.4 Lemma Let (M,d) be a metric space and f ∶M → [−∞,∞] a proper, convex func-

tion.

(i). λ ∈ ∂f(x)⇒ x ∈ ∂f∗(λ)

(ii). f is lower semicontinuous at x ∈M if, and only if, f is weakly lower semicontinuous

at x ∈M , i. e. for any sequence (xn)n∈N in M , xn → x in σ(M,M∗), we have

f(x) ≤ lim inf
n→∞

f(xn).

(iii). If f is Gâteaux differentiable at x with Gâteaux derivative Dx ∈ M∗, then

∂f(x) = {Dx}.

Proof. (i). Let λ ∈ ∂f(x). Then, by definition, f(y) ≥ f(x) + ⟨λ, y − x⟩ for all y ∈ M .

Hence,

f∗(λ) = sup
y∈M

(⟨λ, y⟩ − f(y)) ≤ sup
y∈M

(⟨λ, y⟩ − (f(x) + ⟨λ, y − x⟩)) = ⟨λ,x⟩ − f(x).

Thus,

f∗(µ) − f∗(λ) ≥ ⟨µ,x⟩ − f(x) − (⟨λ,x⟩ − f(x)) = ⟨µ − λ,x⟩ for all µ ∈M∗.

This shows x ∈ ∂f∗(λ).

(ii). Note that f is convex and (weakly) lower semicontinuous if, and only if, its sublevel

sets

Φ(r) ∶= {x ∈M ; f(x) ≤ r}, r ∈ R

are (weakly) closed and convex. Therefore, the claim follows from the widely known

fact that any convex set is closed if, and only if, it is weakly closed.

(iii). Fix y ∈M . Since the mapping

(0,∞) ∋ t↦ f(x + ty) − f(x)
t
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is increasing, we have

⟨Dx, y⟩ = lim
t→0

f(x + ty) − f(x)
t

= inf
t>0

f(x + ty) − f(x)
t

.

Clearly, this implies Dx ∈ ∂f(x). On the other hand,

⟨Dx, y⟩ = lim
t↓0

f(x + ty) − f(x)
t

≥ lim
t↓0

⟨λ, (x + ty) − x⟩
t

= ⟨λ, y⟩

for any λ ∈ ∂f(x). Repeating the argumentation for t ↑ 0, we find Dx = λ. This

finishes the proof.

A.5 Theorem ([6]) Let (M, ∥ ⋅ ∥) be a Banach space and f ∶M → R a lower semicontin-

uous, proper, convex function. For any x ∈ dom f and ε > 0 there exists y ∈ M such that

∂f(y) ≠ ∅ and

∥x − y∥ ≤ ε ∣f(x) − f(y)∣ ≤ ε.

A.6 Lemma ([6]) Let (M, ∥ ⋅∥) be a Banach space and f ∶M → R a lower semicontinuous,

proper, convex function. Define

∂εf(x) ∶= {x∗ ∈M∗;∀y ∈M ∶ f(y) ≥ (f(x) − ε) + ⟨y − x,x∗⟩}, ε > 0, x ∈M. (A.1)

For x∗ ∈ ∂εf(x) and γ > 0 there exist x̄ ∈M and x̄∗ ∈M∗ such that x̄∗ ∈ ∂f(x̄),

∥x − x̄∥ ≤ γ, ∥x∗ − x̄∗∥ ≤ ε

γ
.

Proof. We define a relation on dom f by

y ≤ z ∶⇔ ε

γ
∥y − z∥ ≤ (f(y) − ⟨x∗, y⟩) − (f(z) − ⟨x∗, z⟩) (A.2)

Obviously, ≤ is a partial order on dom f . In order to apply Zorn’s lemma, we show that

any totally ordered subset {xα;α ∈ I} ⊆ dom f has an upper bound. Since x∗ ∈ ∂εf(x),

f(xα) − ⟨x∗, xα⟩
(A.2)
≥ f(xβ) − ⟨x∗, xβ⟩

(A.1)
≥ f(x) − ⟨x∗, x⟩ − ε

for any α ≤ β. Consequently, there exists a > −∞ such that f(xα)− ⟨xα, x∗⟩ ↓ a for α ↑. In

particular, we can choose α = α(δ) such that

f(xβ) − ⟨x∗, xβ⟩ ≤ a +
δε

γ
for all β ≥ α.

By (A.2), this shows that (xα)α∈I is a Cauchy net in M . Since M is a Banach space, there

exists x̄ ∈M such that xα → x̄. In particular, xα ≤ x̄ for all α ∈ I.

Applying Zorn’s lemma, we find that {y ∈ dom f ;x ≤ y} has at least one maximal element

x̄. Then, x ≤ x̄ entails

ε

γ
∥x − x̄∥ ≤ f(x) − f(x̄) − ⟨x∗, x − x̄⟩ ≤ ε
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by the definition of ∂fε, i. e. ∥x − x̄∥ ≤ γ. Moreover, since x̄ is the maximal element, we

have
ε

γ
∥z − x̄∥ ≥ (f(x̄) − ⟨x̄, x∗⟩) − (f(z) − ⟨z, x∗⟩) for all z ≠ x̄.

Define

H1 ∶= {(y, c) ∈M ×R; c ≥ f(x̄ + y) − f(x̄) − ⟨x∗, y⟩},

H2 ∶= {(y, c) ∈M ×R; c < − ε
γ
∥y∥} ,

then H1 ∩H2 = ∅. Note that H1 is closed and convex as f is lower semicontinuous and

convex. By Hahn-Banach’s theorem, there exists z∗ ∈M∗ such that

− ε
γ
∥y∥ ≤ ⟨z∗, y⟩ ≤ f(x̄ + y) − f(x̄) − ⟨x∗, y⟩ for all y ∈M.

Setting x̄∗ ∶= x∗ + z∗ finishes the proof.

Proof of Theorem A.5. First of all, we note that ∂fε(x) ≠ ∅ for any ε > 0. Indeed: By the

duality lemma A.3, we have

f(x) = sup
x∗∈M∗

(⟨x∗, x⟩ − f∗(x∗)).

In particular, there exists x∗ = x∗(ε) such that

f(x) − (⟨x∗, x⟩ − f∗(x∗)) ≤ ε.

By the definition of the Legendre transform, f∗(x∗) ≥ ⟨x∗, y⟩−f(y) for any y ∈M . Hence,

x∗ ∈ ∂εf(x).
Pick x∗ ∈ ∂ε/2f(x) and choose γ > 0 such that γ < ε and γ∥x∗∥ < ε/2. Let x̄ ∈ M and

x̄∗ ∈M∗ as in Lemma A.6. Then,

f(x̄) − f(x) ≤ −⟨x − x̄, x̄∗⟩ ≤ ∥x − x̄∥∥x̄∗∥ ≤ γ (∥x∗∥ + ε

2γ
) ≤ ε.

Thus, x̄ ∈ dom f , f(x̄) ≤ f(x) + ε. This finishes the proof.

A.7 Lemma Let f ∶ R → R be a convex, continuously differentiable function such that

f∗(λ) <∞ for all λ ∈ R. For any λ ∈ R there exists x = x(λ) such that f ′(x(λ)) = λ and

f∗(λ) = x(λ)λ − f(x(λ)). (A.3)

If f∗ is differentiable, then

f ′((f∗)′(λ)) = λ. (A.4)

In particular, (A.3) holds for x(λ) = (f∗)′(λ).

Proof. We claim that for any λ ∈ R there exists x ∈ R such that f ′(x) ≥ λ. Indeed: Suppose

not; then we have f(x) ≤ 2λx for ∣x∣ ≥ R sufficiently large. Hence,

f∗(4λ) = sup
x∈R

(2λx + (2λx − f(x))) ≥ sup
∣x∣≥R

(2λx) =∞.
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This contradicts f∗ < ∞. Similarly, there exists x ∈ R such that f ′(x) ≤ λ. As f ′ is

continuous, the intermediate value theorem shows f ′(R) = R. Moreover, we see that

λx − f(x)Ð→ −∞ as ∣x∣→∞. This means that the mapping attains its maximum, i. e.

f∗(λ) = max
x∈R

(λx − f(x)) = λx(λ) − f(x(λ))

where x(λ) satisfies f ′(x(λ)) = λ. (Note that x ↦ λx − f(x) is concave; therefore any

local maximum is a global maximum.) This proves the first claim. Now suppose that f∗

is differentiable. By the duality lemma A.1 and Lemma A.4(i),(iii), we have

λ = f ′(x)⇔ x = (f∗)′(λ).

Thus,

f ′((f∗)′(λ)) = f ′(x) = λ.

A.8 Lemma Let (Lt)t≥0 be a Lévy process with symbol ψ such that Eeλ∣L1∣ < ∞ for all

λ ≥ 0, and let f ∶ R→ R be bounded. Set Q(x, ξ) ∶= ψ(f(x)ξ) and

I(ϕ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫ 1
0 Q

∗(ϕ(t), ϕ′(t))dt, ϕ ∈ AC[0,1], ϕ(0) = 0,

∞, otherwise.

for ϕ ∈D[0,1]. Suppose that (S1) and (S2) hold.

(i). I is a good rate function.

(ii). For ϕ ∈ D[0,1], I(ϕ) < ∞, and ε > 0 there exists δ > 0 such that for any partition

Π = {0 = t0 < . . . < tm = 1} for which ∣Π∣ < δ, the piecewise linear approximation Π(ϕ)
on the grid Π satisfies ∥ϕ −Π(ϕ)∥∞ ≤ ε and I(Π(ϕ)) ≤ I(ϕ) + ε.

Proof. To prove (i), it suffices, by the Arzèla-Ascoli theorem, to show that the sublevel sets

Φ(r), r ≥ 0, are uniformly bounded, uniformly equicontinuous, and closed. Let ϕ ∈ Φ(r).
By the definition of the Legendre transform,

Q∗(ϕ(t), ϕ′(t)) ≥ ξϕ′(t) −Q(ϕ(t), ξ) for all ξ ∈ R.

Hence,

±ϕ′(t) ≤ Q
∗(ϕ(t), ϕ′(t))

ξ
+ Q(ϕ(t),±ξ)

ξ

(S3)
≤ Q∗(ϕ(t), ϕ′(t))

ξ
+ Q(ξ) ∨Q(−ξ)

ξ

for any ξ > 0. Consequently, we get

∣ϕ(t) − ϕ(s)∣ ≤ ∫
t

s
∣ϕ′(u)∣du ≤ r

ξ
+ Q(ξ) ∨Q(−ξ)

ξ
∣t − s∣

for all s, t ∈ [0,1] and ξ > 0. This shows that Φ(r) is uniformly bounded and uniformly

equicontinuous. It remains to show that Φ(r) is closed, i. e. that I is lower semicontin-

uous. To this end let (ϕn)n∈N ⊆ D[0,1] such that ϕn → ϕ ∈ D[0,1] uniformly and fix
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ε > 0. We may assume lim infn→∞ I(ϕn) < ∞. Let (Πn)n∈N be a sequence of partitions

Πn = {0 = t0 < . . . < tm = 1} such that ∣Πn∣ ∶= maxtj∈Πn ∣tj+1 − tj ∣ → 0 as n → ∞. From the

first part of the proof we know that {ϕn;n ∈ N} is uniformly equicontinuous. Since ϕn → ϕ

uniformly, it is therefore not difficult to see that ϕ ∈ AC[0,1] and

ϕ′(t) = lim
n→∞ ∑

tj∈Πn

ϕn(tj+1) − ϕn(tj)
tj+1 − tj

1[tj ,tj+1)(t) a.s.

Moreover,

∥ϕn − ϕ∥∞ + sup
tj∈Πn

sup
t∈[tj ,tj+1]

∣ϕn(tj) − ϕn(t)∣ ≤ ε (A.5)

for n ∈ N sufficiently large. Since Q∗ ≥ 0 we obtain from Fatou’s lemma

I(ϕ) ≤ lim inf
n→∞ ∑

tj∈Πn
∫

tj+1

tj
Q∗ (ϕ(t), ϕn(tj+1) − ϕn(tj)

tj+1 − tj
) dt

≤ ∆Q∗(ε) + (1 +∆Q∗(ε)) lim inf
n→∞ ∑

tj∈Πn
(tj+1 − tj)Q∗ (ϕn(tj),

ϕn(tj+1) − ϕn(tj)
tj+1 − tj

) ,

(A.6)

cf. (S2). Recall that Q∗(x, ⋅) is, for fixed x ∈ R, a convex function. Therefore, Jensen’s

inequality shows

Q∗ (ϕn(tj),
ϕn(tj+1) − ϕn(tj)

tj+1 − tj
) = Q∗ (ϕn(tj),∫

tj+1

tj
ϕ′n(t)

dt

tj+1 − tj
)

≤ ∫
tj+1

tj
Q∗(ϕn(tj), ϕ′n(t))

dt

tj+1 − tj
. (A.7)

Combining (A.5), (A.6) and (A.7) yields

I(ϕ) ≤ ∆Q∗(ε) + (1 +∆Q∗(ε)) lim inf
n→∞ ∑

tj∈Πn
∫

tj+1

tj
Q∗(ϕn(tj), ϕ′n(t))dt

≤ ∆Q∗(ε)(2 +∆Q∗(ε)) + (1 +∆Q∗(ε))2 lim inf
n→∞ ∫

1

0
Q∗(ϕn(t), ϕ′n(t))dt

= ∆Q∗(ε)(2 +∆Q∗(ε)) + (1 +∆Q∗(ε))2 lim inf
n→∞

I(ϕn).

By assumption, ∆Q∗(ε) → 0 as ε → 0; this proves the lower semicontinuity; hence, (i).

Now let ϕ ∈D[0,1], I(ϕ) <∞, and ε > 0. Obviously, ϕ ∈ dom I ⊆ AC[0,1]. For fixed % < ε
we can choose δ > 0 such that ∣ϕ(t)−ϕ(s)∣ ≤ % for ∣t−s∣ < δ. In particular, ∥ϕ−Π(ϕ)∥∞ ≤ ε
holds for any partition Π = {0 = t0 < . . . < tm = 1} of [0,1] such that ∣Π∣ < δ. Using similar

arguments as in the first part of this proof, we get

I(Π(ϕ)) =
m−1

∑
j=0

∫
tj+1

tj
Q∗ (Π(ϕ)(t), ϕ(tj+1) − ϕ(tj)

tj+1 − tj
) dt

≤ ∆Q∗(%) + (1 +∆Q∗(%))
m−1

∑
j=0

(tj+1 − tj)Q∗ (ϕ(tj),
ϕ(tj+1) − ϕ(tj)

tj+1 − tj
)

≤ ∆Q∗(%) + (1 +∆Q∗(%))
m−1

∑
j=0

∫
tj+1

tj
Q∗ (ϕ(tj), ϕ′(t)) dt

≤ ∆Q∗(%)(2 +∆Q∗(%)) + (1 +∆Q∗(%))2I(ϕ).
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By (S2), ∆Q∗(%) → 0 as % → 0; therefore, the claim follows by choosing % sufficiently

small.

A.9 Lemma (Integration by parts) Let α ∈ BV[0,1] ∩D[0,1], f ∈ L1([0,1], λ∣[0,1]), and

set F (t) ∶= ∫ t0 f(s)ds for t ∈ [0,1]. Then

∫
1

0
F dα = ∫

1

0
f(s)(α(1) − α(s))ds.

Proof. Set tnj ∶= j/n, j = 0, . . . , n. By definition of the left-hand side and the dominated

convergence theorem,

∫
1

0
F dα = lim

n→∞

n−1

∑
j=0

F (tnj+1) (α(tnj+1) − α(tnj ))

= lim
n→∞

n−1

∑
k=0

n−1

∑
j=k

(F (tnk+1) − F (tnk))(α(tnj+1) − α(tnj ))

= lim
n→∞

n

∑
k=0
∫

tnk+1

tn
k

f(s)(α(1) − α(tnk))ds

= ∫
1

0
f(s)(α(1) − α(s))ds.

Note that the dominated convergence theorem applies since α ∈D[0,1] has at most count-

able discontinuity points.

A.10 Lemma Let (M, ∥ ⋅ ∥) be a normed space and B a σ-algebra on M such that (C1)

and (C7) hold. Let K ⊆ M be compact and δ ≥ 0. Then K +B[0, δ] ∈ B. In particular,

(C2) holds.

Proof. From (C1) and (C7) we see that B(x, r) ∈ B for any x ∈ M , r > 0. Since K is

compact, there exists Fn ⊆M finite such that

K ⊆ ⋃
x∈Fn

B (x, 1

n
) .

It is not difficult to show that

K +B[0, δ] = ⋂
n∈N

⋃
x∈Fn

B (x, 1

n
+ δ) .

Since the right side is contained in B, the claim follows.
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