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2.2.5. Construction of Lévy Processes . . . . . . . . . . . . . . . . . 47
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Zusammenfassung

Im Rahmen von Lévy-Prozessen, untersuchen wir die vorhersagbare Darstellbarkeits-
eigenschaft, die wir mit PRP abkürzen (von dem englischen Ausdruck “predictable
representation property”). Um eine allgemeine Definition der PRP zu geben, ver-
wenden wir die Theorie der stabilen Räume. Sei L ein Lévy-Prozess bezüglich seiner
vervollständigten erzeugten Filtration FL und sei ν das zugehörige Lévy-Maß. Wir
konstruieren Familien von FL-Martingalen, welche die PRP besitzen. Die Martingale,
die wir betrachten, werden mittels der stochastischen Integration von deterministi-
schen Funktionen bezüglich des kompensierten Poissonschen zufälligen Sprungmaßes
von L erzeugt.

Als Nächstes erklären wir das Obenstehende im Detail. Wir betrachten einen
Lévy-Prozess bezüglich seiner vervollständigten erzeugten Filtration FL. Sei N ein
lokales Martingal bezüglich FL und q = 1, 2. Wir definieren die Norm

‖N‖H q := E[supt≥0 |Nt|]
1
q

und bezeichnen den Raum aller FL-adaptierten Martingale N , für die N0 = 0 und
‖N‖H q < +∞, mit H q

0 . Der Raum (H q
0 , ‖ · ‖H q) ist ein Banach-Raum.

Sei M das Sprungmaß von L. Es ist bekannt, dass M ein Poissonsches zufälliges
Maß auf dem messbaren Raum (R+×R,B(R+)⊗B(R)) ist. Das Intensitätsmaß von
M ist das Produktmaß m := λ+ ⊗ ν, wobei λ+ das Lebesgue-Maß auf der positiven
Halblinie R+ bezeichnet und ν das Lévy-Maß von L. Wir setzen M := M−m auf dem
Ring {A Borel-Menge : m(A) < +∞} und nennen M das kompensierte Poissonsche
zufällige Maß. Dieses ist ein orthogonales Maß und es ist wohlbekannt, wie man
diesbezüglich das stochastische Integral deterministischer Funktionen in L2(λ+⊗ ν)

definiert. Für f ∈ L2(ν) führen wir den Prozess X(f) = (X
(f)
t )t≥0 mit

X
(f)
t :=

∫
R+×R

1[0,t](s)f(x)M(ds,dx) =

∫ t

0
f(x)M(ds, dx), t ≥ 0,

ein. Wir werden sehen, dass X(f) ein FL-adaptiertes, lokal quadratisch integrierbares
Martingal ist. Mit Wσ bezeichnen wir den Gaußschen Anteil des Lévy-Prozesses L,
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welcher ein Wiener-Prozess mit E[Wσ
t

2] = tσ2, σ2 ≥ 0, t ≥ 0, ist. Nun betrachten
wir ein Funktionensystem T ⊆ L2(ν) und führen die Martingalfamilie

XT := {Wσ} ∪ {X(f), f ∈ T }

ein. Wir beweisen, dass XT die H 1-PRP besitzt, falls T total in L2(ν) ist (d.h.
die lineare Hülle dicht in L2(ν) liegt). Für den Fall H 2

0 zeigen wir, dass XT die
H 2-PRP genau dann hat, wenn T total in L2(ν) liegt. Das bedeutet, dass wir eine
Charakterisierung der H 2-PRP geben. Die H 2-PRP ist besonders interessant, falls
T ⊆ L2(ν) ein totales System ist, welches aus orthogonalen Funktionen besteht.

Der Hauptteil dieser Dissertation unterteilt sich in fünf Kapitel, denen sich zwei
Anhänge anschließen.

In Kapitel 1 tragen wir die benötigten grundlegenden Resultate der Maßtheorie
und der stochastischen Analysis zusammen. Insbesondere rufen wir die Definition
des stochastischen Integrals bezüglich eines lokalen Martingals in Erinnerung und
skizzieren die Theorie stabiler Unterräume. Anschließend geben wir die Definition
der H q-PRP.

In Kapitel 2 führen wir einige grundlegende Eigenschaften stochastisch stetiger
Prozesse mit unabhängigen Zuwächsen relativ zur einer Filtration ein. Weiterhin de-
finieren wir das stochastische Integral deterministischer Funktionen bezüglich eines
Poissonschen zufälligen Maßes und eines kompensierten Poissonschen zufälligen Ma-
ßes. Durch diese Art der stochastischen Integration konstruieren wir Lévy-Prozesse.

In Kapitel 3 zeigen wir mit Hilfe eines geeigneten Martingalproblems, dass XT die
H 1-PRP besitzt, falls T total in L2(ν) ist. Wir betonen, dass es uns nicht gelungen
ist, eine Charakterisierung der H 1-PRP zu finden.

In Kapitel 4 wenden wir uns dem Problem der H 2-PRP zu und beweisen, dass
die Familie XT die H 2-PRP genau dann besitzt, wenn T total in L2(ν) ist. Ein
wichtiges Resultat dieses Kapitels betrifft totale Orthogonalsysteme in L2(ν).

In Kapitel 5 stellen wir Anwendungen der entwickelten Theorie zu konkreten Bei-
spielen vor.

Auf den Hauptteil folgen zwei Anhänge. Anhang A ist eine Ergänzung zu Kapitel
2. In Anhang B diskutieren wir hinreichende Bedingungen, um zu versichern, dass
von einer beliebigen Familie Z := (Zα)α∈I quadratisch integrierbarer Zufallsvaria-
blen erzeugte Polynome in L2(Ω,FZ ,P) dicht sind, wobei FZ die von Z erzeugte
σ-Algebra bezeichnet.



Abstract

We investigate the predictable representation property (PRP) in the frame of Lévy
processes. To give a general definition of the PRP we use the theory of stable
subspaces. Let L be a Lévy process relative to its augmented generated filtration FL
and let ν be its Lévy measure. We construct families of FL-martingales which possess
the PRP. The martingales that we consider are obtained via stochastic integration
of deterministic functions with respect to the compensated Poisson random measure
of the jumps of L.

We now explain in more details the above-mentioned. We consider a Lévy process
L relative to its completed generated filtration FL. Let N be an FL-adapted local
martingale and q = 1, 2. We define the norm

‖N‖H q := E[supt≥0 |Nt|]
1
q

and denote by H q
0 the space of all FL-adapted martingales N starting at zero such

that ‖N‖H q < +∞. The space (H q
0 , ‖ · ‖H q) is a Banach space.

Let M be the jump measure of L. It is well-known that M is a Poisson random
measure on R+ ×R with intensity measure m := λ+ ⊗ ν, where λ+ is the Lebesgue
measure on R+ and ν the Lévy measure of L. We put M := M − m on the ring
{A Borel set : m(A) < +∞} and call M the compensated Poisson random measure.
The signed random measure M is an orthogonal measure and it is well-understood
how to define the integral of functions in L2(λ+⊗ν) with respect to M. If f ∈ L2(ν),

we introduce the process X(f) = (X
(f)
t )t≥0 by integrating the function 1[0,t]f with

respect to M, i.e.,

X
(f)
t :=

∫
R+×R

1[0,t](s)f(x)M(ds,dx) =

∫ t

0
f(x)M(ds, dx), t ≥ 0.

We shall see that X(f) is a locally square integrable FL-adapted martingale, for
every f ∈ L2(ν). Let Wσ be the Gaussian part of L. It is known that Wσ is a
Wiener process such that E[Wσ

t
2] = σ2t, σ2 ≥ 0, t ≥ 0. For a system T ⊆ L2(ν),

we introduce the family

XT := {Wσ} ∪ {X(f), f ∈ T }.
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We prove that if T is total in L2(ν), then XT has the H 1-PRP. In case of H 2
0 ,

we show that XT possesses the H 2-PRP if and only if T is total in L2(ν), that
is, in this case we give a characterization of the predictable representation property.
The case of the H 2-PRP for XT is particularly interesting if T is a total system
in L2(ν) consisting of orthogonal functions.

The main part of the thesis is divided in five chapters to which follow two ap-
pendixes.

In Chapter 1 we collect some basic results of measure theory and of stochastic
analysis. In particular, we recall the definition of the stochastic integral with respect
to a local martingale and we sketch the theory of stable subspaces. Then we give
the definition of H q-PRP.

In Chapter 2 we recall some basic properties of stochastically continuous processes
with independent increments and of Poisson random measures. Furthermore, we
define the stochastic integral of deterministic functions with respect to a Poisson
random measure and a compensated Poisson random measure. By means of this
stochastic integration we construct Lévy processes.

In Chapter 3, with the help of an appropriate martingale problem, we show that
the family XT possesses the H 1-PRP if T ⊆ L2(ν) is total. We stress that we
were not able to give a characterization of the H 1-PRP.

In Chapter 4 we face the problem of the H 2-PRP: We prove that the family XT

possesses the H 2-PRP if and only if T is total in L2(ν). One of the most important
results of this chapter concerns total orthogonal systems in L2(ν).

In Chapter 5 we present applications of the developed theory to some concrete
examples.

Two appendices conclude the thesis. Appendix A is a complement to Chapter
2. In Appendix B we discuss sufficient conditions to ensure that the family of
polynomials generated by an arbitrary family Z := (Zα)α∈I of square integrable
random variables is dense in L2(Ω,FZ ,P), where FZ is the σ-algebra generated by
Z.



Introduction

Description of the Thesis

The aim of this PhD thesis is to investigate the predictable representation property
(PRP) in the frame of Lévy processes. Let (Ω,F ,P) be a complete probability space
and F a filtration of σ-algebras of Ω satisfying the usual conditions. As a first step,
we specify what we mean by PRP. To this aim we need to introduce the stochastic
integral with respect to a local martingale and stable subspaces generated by families
of local martingales. We refer to Jacod (1979), Chapter II and Chapter IV. Let M
be a local martingale. We introduce the norm ‖ · ‖H q by

‖M‖H q :=
(
E[supt≥0 |M |q]

) 1
q

and the space of q-integrable martingales H q by

H q := {M martingale such that ‖M‖H q < +∞}.

The class H q
0 is the class of the martingales in H q starting at 0, while the classes

H q
loc and H q

loc,0 are introduced from H q and H q
0 , respectively, by localization.

With a local martingale M we associate the process [M,M ] = ([M,M ]t)t≥0 defined
by

[M,M ]t := 〈M c,M c〉t +
∑

0<s≤t
(∆Ms)

2, t ≥ 0.

This is a process of finite variation and it is well-understood how to define the
integral with respect to it for nonnegative measurable processes. We consider a
local martingale M and fix q ∈ [1,+∞). For a measurable process H we define the
norm ‖ · ‖Lq(M) by

‖H‖Lq(M) :=

(
E
[(∫ ∞

0
H2
s d[M,M ]s

) q
2
]) 1

q

and then the space of processes

Lq(M) := {H predictable : ‖H‖Lq(M) < +∞}.
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The class Lqloc(M) is obtained from Lq(M) in the following way: We say that a
predictable process H belongs to Lqloc(M) if there exists a sequence (Tn)n≥1 of stop-
ping times such that Tn ↑ +∞ and that the predictable process H1[0,Tn] belongs to
Lq(M), n ≥ 1. Obviously, for every p ≤ q, the inclusion Lqloc(M) ⊆ Lploc(M) holds.
The stochastic integral with respect to M for a predictable process H belonging
L1

loc(M) is defined as the unique element of H 1
loc,0, say X, such that

[X,N ] =

∫
H d[M,N ], N ∈H 1

loc,0.

Moreover, L1
loc(M) is the largest class of predictable processes such that the stochastic

integral with respect to M is again a local martingale. We denote the element X as
above by

X := H ·M.

We notice that the stochastic integral with respect to M of a predictable process H
belongs to H q

0 (respectively H q
loc,0) if and only if H belongs to Lq(M) (respectively

Lqloc(M)). Now we introduce stable subspaces. This notion is specially important for
our purposes because it allows to give a general definition of the PRP. We consider
q ∈ [1,+∞) and the space of q-integrable martingales starting at 0, H q

0 . We
say that a linear subspace H ⊆ H q

0 is a stable subspace of H q
0 if it is closed

in (H q
0 , ‖ · ‖H q) and it is stable under stopping, i.e., such that if M ∈ H , then

MT ∈ H for every stopping time T . The property of the stability under stopping
is a particular operation of stochastic integration. Indeed, we have MT = 1[0,T ] ·M
and the process 1[0,T ] is predictable and belongs to Lq(M). More generally, a stable
subspace is characterized as it follows. A linear space H ⊆ H q

0 which is closed in
(H q

0 , ‖ · ‖H q) is a stable subspace of H q
0 if and only if it is stable under stochastic

integration, i.e., for every M ∈ H and H ∈ Lq(M) the stochastic integral H ·M
belongs to H . The notion of stable subspace raises the definition of stable subspace
generated by a family of local martingales. Let X be a family of local martingales
starting at zero and q ≥ 1. We know that the set

Xq :=
{
H ·M, H ∈ Lq(M), M ∈X

}
is contained in H q

0 . We define the stable subspace generated by X in H q
0 as the

smallest linear subspace of H q
0 which is closed in (H q

0 , ‖ · ‖H q) and contains Xq.
We denote it by L q(X ). Now we can give the general notion of the PRP. We say
that the family of local martingales X has the H q-PRP relative to F if the stable
subspace generated by X in H q

0 equals H q
0 itself, i.e., if

L q(X ) = H q
0 .

Historically, the PRP was first studied for a single local martingale or for finite
families of local martingale and not in full generality. In case of a single martingale
we can reformulate the PRP as it follows. An F-local martingale M has the PRP
relative to F if for any F-adapted local martingale N there exists a predictable
process HN ∈ Lloc(N) such that

N = N0 +HN ·M. (1)
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A seminal paper for the study of the PRP is certainly Itô (1951), where the multiple
stochastic integral for the Wiener process was defined. In Kunita & Watanabe (1967)
and Clark (1970) it was proven that if M is a Wiener process on the probability space
(Ω,FM

∞ ,P), where FM
∞ is the completion of the σ-algebra σ(Mt, t ≥ 0), and FM

is the smallest filtration satisfying the usual conditions and containing the filtration
generated by M , then M possesses the PRP relative to FM . In Kabanov (1973) and
Kabanov (1974) a similar result was obtained for the compensated Poisson process.
However, the Wiener process and the compensated Poisson process are not the
unique martingales possessing the PRP relative to the smallest filtration satisfying
the usual conditions and containing their generated filtration. In a series of papers,
amongst others Boel, Varaiya & Wong (1975), Chou & Meyer (1975), Davis (1976),
Elliott (1976), similar representation results were obtained for martingales adapted
to the filtration generated by certain kind of jump processes. In Engelbert & Hess
(1980) and Engelbert & Hess (1981) conditions of probabilistic type were given for
certain continuous local martingales to have the classical PRP with respect to their
natural augmented filtration. On the other side, it is well-known that a Lévy process
L which is a martingale possesses the PRP relative to FL, i.e., L 1(L) = H 1

0 (FL),
where FL is the smallest filtration satisfying the usual conditions and containing the
filtration generated by L, if and only if it is a Wiener process or a compensated
Poisson process. It is clear then, that to obtain new interesting results for Lévy
processes, we need to consider the general formulation of the PRP. Let L be a Lévy
process relative to FL. With this work we answer to the following question: Can we
construct a family X of FL-local martingales possessing the PRP relative to FL?
Obviously, if X is the family of all the FL-local martingales, it possesses the PRP
relative to FL, but this case is not of interest and we would like to construct the
family X in such a way to be “as small as possible”.

To verify that a family X of local martingales possesses the H q-PRP, there are
two possible strategies. If q = 1, we can formulate a certain martingale problem
for the family X . If the set of the probability measures which are solutions of
this martingale problem is a singleton, then X has the H 1-PRP. This result was
shown in Jacod & Yor (1977). The approach by means of the martingale problem is
typical of the H 1-PRP and it seems that it cannot be applied in general to prove
the H q-PRP with q > 1. The other possible way is, for a fixed q ≥ 1, to look at the
family of the martingales belonging to H p

0 which are orthogonal to the family X ,
where p is the conjugate exponent of q, that is, p ∈ (1,+∞] such that 1

p + 1
q = 1 (we

recall that two local martingales M and N are orthogonal if MN is again a local
martingale). If X is contained in H q

loc,0, then it has the H q-PRP if and only if all

the martingales in H p
0 which are orthogonal to X are evanescent. This result is

shown in Jacod (1979), Chapter IV.

Let L be a Lévy process. We apply the theory sketched above only to study
the H 1-PRP and the H 2-PRP of certain families of FL-martingales which we now
describe.

By a Lévy process L relative to a filtration F satisfying the usual condition, we
mean a stochastically continuous and càdlàg process L starting at zero such that
for every 0 ≤ s ≤ t, the random variable Lt − Ls is distributed as Lt−s and is
independent of Fs. We consider only one-dimensional Lévy processes, that is, with
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values in the measurable space (R,B(R)). The jump measure M of L is defined by

M(ω,A) :=
∑
s≥0

1{∆Ls(ω)6=0}1A(s,∆Ls(ω)), A ∈ (R+ × R,B(R+)⊗B(R)),

and it is an integer-valued random measure M. Furthermore, M is a Poisson random
measure on the measurable space (R+×R,B(R+)⊗B(R)) relative to the filtration
F. The definition of Poisson random measures relative to a filtration is given in
Jacod & Shiryaev (2000), §II.1. The intensity measure of M is the product measure
λ+ ⊗ ν, where λ+ is the Lebesgue measure on the positive half line R+, and ν is a
σ-finite measure on (R,B(R)) such that ν({0}) = 0 and the function min{x2, 1} is
integrable with respect to ν. The measure ν is known in the literature as the Lévy
measure of the Lévy process L. Let E be the ring of the B(R+)⊗B(R)-measurable
sets A such that (λ+ ⊗ ν)(A) is finite. On E we define the signed measure M by

M := M− λ+ ⊗ ν.

We call M the compensated Poisson random measure of L: It is an orthogonal meas-
ure and it is well-understood how to introduce the stochastic integral of deterministic
functions with respect to it (cf. Gihman & Skorohod (1974), §IV.4). If f belongs
to L2(λ+ ⊗ ν), the stochastic integral of f with respect to M, which we denote by
M(f), is a square integrable random variable. Moreover, the stochastic integral with
respect to M is a (continuous) isometric mapping on L2(λ+ ⊗ ν) into L2(P). For

f ∈ L2(ν) we introduce the process X(f) = (X
(f)
t )t≥0 by

X
(f)
t := M(1[0,t]f), t ≥ 0.

The process X(f) is an F-martingale in H 2
loc,0. Moreover, it is a Lévy process relative

to F. Let Wσ be the Gaussian part of the Lévy process L. The process Wσ is a
Wiener process relative to F with variance function σ2(t) := σ2t, where σ2 ≥ 0. Let
us define the family X by

X := {Wσ} ∪ {X(f), f ∈ L2(ν)}. (2)

This is a family that we consider to obtain results on the PRP. More precisely, if
we define the σ-algebra FL

∞ as the P-completion of the σ-algebra σ(Lt, t ≥ 0) and
we restrict our attention to the probability space (Ω,FL

∞,P), we shall show that
the family X has the H 2-PRP with respect to the filtration FL. The H 2-PRP
implies that X possesses also the H 1-PRP. However, we prove that X possesses
the H 1-PRP independently of the H 2-PRP as an elegant application of the theory
developed in Jacod & Yor (1977). The simplest way to prove that the family X
introduced in (2) has the H 2-PRP relative to FL is to look at the problem from a
more general point of view. We consider a general family Z of martingales in H 2

loc,0

on the probability space (Ω,FZ
∞ ,P) with respect to the filtration FZ , where FZ

∞
is the P-completion of the σ-algebra σ(Zt, t ≥ 0, Z ∈ Z ) and FZ is the smallest
filtration satisfying the usual conditions and containing the filtration generated by
Z . We give sufficient conditions on Z to ensure that L 2(Z ) = H 2

0 . We obtain
as a consequence the H 2-PRP for the family X introduced in (2). Although this
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result is theoretically interesting, the family X is too large for applications. In
particular, it is always uncountable. So the question is now how far the family
X can be diminished without loosing the H 2-PRP. In other words, for a system
T ⊆ L2(ν), we introduce the family XT by

XT := {Wσ} ∪ {X(f), f ∈ T }. (3)

We look for necessary and sufficient conditions on the system T for the family XT

to possess the H 2-PRP relative to FL. We obtain that the family XT possesses the
H 2-PRP if and only if the system T is total (i.e., its linear hull is dense) in L2(ν).
The space L2(ν) is a separable Hilbert space so there always exists a countable
system T ⊆ L2(ν) which is total. Hence it is always possible to choose a countable
subfamily of X with the H 2-PRP. If the system T consists of orthogonal functions,
then the associated family XT is an orthogonal family of martingales and if T is
moreover total in L2(ν), then XT is a family of orthogonal martingales with the
H 2-PRP. In this special case the structure of the stable subspace generated by XT

in H 2
0 becomes particularly simple and any martingale M ∈H 2

0 can be written as
an infinite sum (converging in (H 2, ‖ · ‖H 2)) of stochastic integrals with respect to
martingales in XT , that is, we have

M = φ ·Wσ +
∞∑
n=1

Hn ·X(fn) (4)

where φ ∈ L2(Wσ), Hn ∈ L2(X(fn)) and fn ∈ T , for every n ≥ 1. We also show
that the integrands in (4) are uniquely determined by the martingale M .

In Nualart & Schoutens (2000) it was proven that the family of orthogonalized
Teugels martingales possesses the H 2-PRP with respect to the filtration FL under
rather strong assumptions on the Lévy measure. We are able to obtain the results of
Nualart & Schoutens (2000) as an application of the theory that we developed. We
can also find a large number of examples for which the Teugels martingales cannot
be introduced and nevertheless we can construct interesting families of orthogonal
martingales with the H 2-PRP.

The Plan of the Thesis

The main part of the thesis is divided in five chapters which are followed by two
appendixes.

In Chapter 1 we collect some basic results of measure theory and of stochastic
analysis. In particular, we recall the definition of the stochastic integral with respect
to a local martingale and we sketch the theory of stable subspaces. Then we give
the definition of H q-PRP and we discuss some sufficient conditions to ensure that a
family X of local martingales possesses the H q-PRP for q ∈ [1,+∞). For this part
the main references are Meyer (1966), Dellacherie (1972), Lepingle (1977), Jacod &
Yor (1977), Jacod (1979), Brezis (1983), He, Wang & Yan (1992), Jacod & Shiryaev
(2000), Bauer (2001) and Protter (2005).

In the first part of Chapter 2 we recall some basic properties of stochastically
continuous processes with independent increments relative to a filtration satisfying
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the usual conditions. We also formulate a nice characterization of the independence
for families of such processes. The proof of this result require some preparation
and we postpone it to Appendix A. The second part of the chapter is devoted
to random measures and to Poisson random measures relative to a filtration. We
do not consider general Poisson random measure but only homogeneous Poisson
random measures associated with the jumps of càdlàg processes. This restriction
avoids technical difficulties and we refer to Jacod & Shiryaev (2000) for a complete
treatment. Furthermore, we define the stochastic integral of deterministic functions
with respect to a Poisson random measure and a compensated Poisson random
measure. For these topics we refer to Gihman & Skorohod (1974) and Kallenberg
(1997). We also explain how to construct Lévy processes by means of integration of
deterministic functions with respect to a Poisson random measure. The last part of
Chapter 2 is devoted to some general aspects of Lévy processes, like the Itô–Lévy
decomposition, the Lévy-Kintchine decomposition and the existence of moments.
For this part we refer to He, Wang & Yan (1992), Kallenberg (1997) and Sato
(1999).

In Chapter 3, as an application of Jacod & Yor (1977), we show that the family X
introduced in (2) possesses the H 1-PRP relative to the filtration FL: We formulate
a suitable martingale problem for X and we show that its solution is unique. Then
we prove that the family XT defined by (3) possesses the H 1-PRP if T is total in
L2(ν). We stress that in this case we were only able to obtain that the totality of
T in L2(ν) is a sufficient condition for the family XT to have the H 1-PRP with
respect to FL and not that this is also necessary. We conclude Chapter 3 discussing
some open problems related the H 1-PRP.

In Chapter 4 we face the problem of the H 2-PRP and we prove that the family
XT defined as in (3) possesses the H 2-PRP if and only if T is total in L2(ν). Prob-
ably, the most important result of this chapter concerns total orthogonal systems T
in L2(ν).

In Chapter 5 we present some interesting examples of countable families of or-
thogonal martingales with the H 2-PRP (and hence with the H 1-RPP) relative
to FL, as the family obtained by the orthogonalization of the Teugels martingales.
However, we are able to consider also more general cases of Lévy process for which
the Teugels martingales cannot be defined, as, for example, the case in which L is a
Cauchy process. Notice that thanks to the results that we obtained, we achieved a
large freedom to construct families of martingales with the H 2-PRP.

The thesis is concluded by two appendices. In Appendix A we give the proof of
the characterization of the independence for stochastically continuous semimartin-
gale with independent increments, of the Itô–Lévy decomposition and of the Lévy-
Kintchine decomposition. In Appendix B we discuss sufficient conditions to ensure
that the family of polynomials generated by an arbitrary family Z := (Zα)α∈I of
square integrable random variables is dense in L2(Ω,FZ ,P), where FZ is the com-
pleted σ-algebra generated by the family Z.



CHAPTER 1

Preliminaries

In this chapter we collect some of the results of measure theory and of stochastic
analysis needed for this work. §1.1 is devoted to basics of measure theory, while §1.2
to generalities on stochastic processes. The most important parts are §1.3 and §1.4
which deal with stochastic integration and stable subspaces of martingales, respect-
ively. In particular, in §1.4 the definition of the predictable representation property
for an arbitrary family of local martingales is given. Most of the results included in
this chapter are stated without proof and we refer, among others, to Meyer (1966),
Dellacherie (1972), Jacod & Yor (1977), Lepingle (1977), Jacod (1979), He, Wang
& Yan (1992), Jacod & Shiryaev (2000), Bauer (2001) and Brezis (1983) for a more
detailed treatment.

1.1. Measure Theory

In this section we present some well-known facts of measure theory, like the ab-
stract integration, the uniqueness theorem for measures, the theorem of Lebesgue
on dominated convergence, the theorem of B. Levi on monotone convergence and
some formulations of monotone class theorems. We also briefly discuss the totality
of systems of functions in Lq-spaces.

1.1.1. Measurability and Integration

We consider an arbitrary nonempty set Ω. If A ⊆ Ω we denote by Ac the complement
of A in Ω. Let (An)n≥1 be a sequence of subsets of Ω and A ⊆ Ω. If An ⊆ An+1,
n ≥ 1, and A = ∪∞n=1An, we write An ↑ A. If An+1 ⊆ An, n ≥ 1, and A = ∩∞n=1An,
we write An ↓ A.

A system R of subsets of Ω is called a semiring of subsets of Ω if it possesses
the following properties: The empty set belongs to R; if A and B belong to R,
then their intersection A ∩ B does; if A and B belong to R and A ⊆ B, then the
set-difference B \ A can be written as finite union of pairwise disjoint elements of
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R. A system R of subsets of Ω with the following properties is called a ring : The
empty set belongs to R; if A and B belong to R, then their union A ∪B and their
set-difference A \ B do. Notice that a ring contains also the intersection of two of
its elements because A ∩B = A \ (A \B). Obviously a ring is also a semiring.

1.1.1 Definition. A system F of subsets of Ω is called an algebra (in Ω) if it has
the following properties:

(i) Ω ∈ F ;

(ii) if A ∈ F , then Ac ∈ F ;

(iii) if A,B ∈ F , then A ∪B ∈ F .

If (iii) is replaced by

(iii′) if (An)n∈N ⊆ F , then ∪n∈NAn ∈ F ,

then F is denominated a σ-algebra (in Ω).

We notice that an algebra is a ring that in addition contains Ω. If C ⊆ Ω is a
system of sets, the σ-algebra generated by C is denoted by σ(C ) and is defined as
the smallest σ-algebra containing C . If C ⊆ F is such that σ(C ) = F we say that
C generates F and call it a generator of F . If C is a generator of F which is stable
under intersection of two sets, we call it an ∩-stable generator. If the σ-algebra F
can be generated by a countable system C , we say that it is a separable σ-algebra.
Let (C )i∈I be a family of systems of subsets in Ω, where I is an arbitrary set of
indexes. By

∨
i∈I Ci we denote the σ-algebra generated by the union of all the Cis,

that is,
∨
i∈I Ci := σ(

⋃
i∈I Ci). Let Ω be a topological space. We denote by B(Ω)

the Borel σ-algebra on Ω, i.e., the σ-algebra generated in Ω by the open sets in the
topology of Ω. If, for example, Ω = R, then B(R) is separable.

For any σ-algebra F of Ω, we call the couple (Ω,F ) a measurable space and we
say that the subsets of Ω which belong to F are F -measurable or simply measurable.
We consider two measurable spaces (Ω,F ) and (Ω′,F ′) and a function f from Ω into
Ω′. We say that f is (F ,F ′)-measurable or simply measurable, if for any A′ ∈ F ′

the set f−1(A′) := {a ∈ Ω : f(a) ∈ A′} is F -measurable. We call the set f−1(A′)
the inverse image of A′ by f . If f is a function on (Ω,F ) into (Ω′,F ′) the system of
sets f−1(F ′) := {f−1(A′) : A′ ∈ F ′} is a σ-algebra in Ω. Let {(Ωi,Fi) : i ∈ I} be a
family of measurable spaces and {fi : i ∈ I} be a family of functions on Ω such that
fi takes values in Ωi, for every i ∈ I. The σ-algebra in Ω generated by

⋃
i∈I f

−1
i (Fi)

is the smallest σ-algebra F ′ with respect to which every fi is (F ′,Fi)-measurable.
We designate this σ-algebra by σ(fi : i ∈ I), that is, σ(fi : i ∈ I) :=

∨
i∈I f

−1
i (Fi)

and we call it the σ-algebra generated by {fi : i ∈ I}.
Let (Ω,F ) be a measurable space. A set-function µ on F into [0,+∞] such that

µ(∅) = 0 and that µ(
⋃
n∈NAn) =

∑∞
n=1 µ(An), for any sequence (An)n∈N ⊆ F of

pairwise-disjoint sets, is called a measure on (Ω,F ). If µ takes values in [−∞,+∞],
then it is called a signed measure. If µ is a measure on (Ω,F ), we say that (Ω,F , µ)
is a measure space. A measure µ such that µ(Ω) < +∞ is called a finite measure.
If there exists an increasing sequence (An)n∈N ⊆ F such that µ(An) < +∞ for
every n ∈ N and

⋃
n∈NAn = Ω, then the measure µ is called σ-finite. If Ω is a

Hausdorff space with σ-algebra B(Ω), we say that µ is locally finite if every point
of Ω has an open neighborhood of finite measure µ. The following result holds for



1.1 Measure Theory 3

σ-finite measures and it is well-known in the literature as uniqueness theorem (cf.,
e.g., Bauer (2001), Theorem I.5.4).

1.1.2 Theorem (Uniqueness theorem). Let (Ω,F ) be a measurable space, C ⊆ F
an ∩-stable generator of F and (An)n∈N ⊆ C satisfying the property

⋃
n∈NAn = Ω.

We suppose that µ1 and µ2 are σ-finite measures on F such that

(i) µ1(A) = µ2(A), for every A ∈ C ;

(ii) µ1(An) = µ2(An) < +∞, for every n ∈ N.

Then µ1 and µ2 are identical on F .

For a measure µ on the measurable space (Ω,F ), it is well understood how to
define the integral of a measurable function with values in (R,B(R)). We introduce
the notation

µ(f) :=

∫
Ω
f dµ :=

∫
Ω
f(x)µ(dx)

if the integral on the right-hand side exists. In particular, µ(f) is well defined if f is
nonnegative. We say that a measurable function f of arbitrary sign is µ-integrable
or simply integrable if µ(|f |) < +∞. We do not go into details and we refer to Bauer
(2001), Chapter II. By functions, if not otherwise specified, we mean functions with
values in (R,B(R)), that is numerical functions. Let f be a measurable function.
By ‖f‖q we denote the following norm

‖f‖q :=


µ(|f |q)

1
q , q ∈ [1,+∞),

ess supx∈Ω |f(x)| , q = +∞ ,

and we put

Lq(µ) := {f measurable : ‖f‖q < +∞} , q ∈ [1,+∞].

We recall that f ∈ Lq(µ) is uniquely determined up to equivalence classes µ-a.e.
Sometimes, we write Lq(Ω,F , µ) to stress the measure space and ‖ · ‖Lq(µ) to stress
the space Lq(µ). The space (Lq(µ), ‖ · ‖q) is a Banach space. The space L2(µ) is
especially important because it is a Hilbert space with respect to the scalar product
(f, g)L2(µ) := µ(fg). If f, g ∈ L2(ν) are such that (f, g)L2(µ) = 0, we say that they
are orthogonal (in L2(µ)) and denote it by f⊥g. If G is a subset of functions in
L2(ν) and f ∈ L2(ν) is such that f⊥g for every g ∈ G , we say that f is orthogonal
(in L2(µ)) to G and we denote it by f⊥G . For a finite measure µ, the inclusions
Lq(µ) ⊆ Lp(µ), 1 ≤ p ≤ q, hold. In particular, L∞(µ) is contained in every Lq(µ),
for q ∈ [1,+∞). However, these inclusions are not valid for a general measure µ.

A function f belonging to L1(µ) is called integrable, while it is called square
integrable if it belongs to L2(µ). In general, we say that f is q-integrable if it
belongs to Lq(µ), q ∈ [1,+∞). Let (fn)n≥1 be a sequence of measurable functions
on the measure space (Ω,F , µ). We say that (fn)n≥1 converges (µ-a.e.) pointwise
to the measurable function f if

lim
n→+∞

|fn(x)− f(x)| = 0
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for (µ-almost all) x ∈ Ω. We write fn −→ f pointwise to mean that the sequence
(fn)n≥1 converges pointwise to f . If the sequence (fn)n≥1 is monotonically increasing
(resp., decreasing), i.e., fn ≤ fn+1 (resp., fn ≥ fn+1), we write fn ↑ f (resp., fn ↓ f)
to mean that it converges pointwise to f . If (fn)n≥1 ⊆ Lq(µ) and f ∈ Lq(µ), we say
that (fn)n≥1 converges to f in Lq(µ) if

lim
n→+∞

‖fn − f‖q = 0.

It is important to establish under which conditions a sequence (fn)n≥1 ⊆ Lq(µ)
converging a.e. to a measurable function f converges in fact to f in Lq(µ). Now we
state two classical theorems which answer this question: The theorem of Lebesgue
on dominated convergence and the theorem of B. Levi on monotone convergence.
We refer to Bauer (2001) II§.11 and II§.15. The following is the theorem of Lebesgue
on dominated convergence.

1.1.3 Theorem. We fix q ∈ [1,+∞) and consider a sequence (fn)n∈N ⊆ Lq(µ) such
that fn −→ f µ-a.e. pointwise as n→ +∞. If there exists a function g ≥ 0 in Lq(µ)
such that |fn| ≤ g, for every n ∈ N, then f ∈ Lq(µ) and the convergence takes place
also in Lq(µ).

Now we state the theorem of B. Levi on monotone convergence.

1.1.4 Theorem. Let (fn)n∈N be a monotone sequence of nonnegative functions
such that fn ↑ f pointwise as n → +∞. Then f is measurable and µ(fn) ↑ µ(f) as
n→ +∞.

1.1.2. Monotone Class Theorems

Monotone class theorems are of different kinds and they are present in the literature
in several formulations. We consider only one formulation for sets and one for
functions. We refer to Sharpe (1988) and He, Wang & Yan (1992). We start with
a monotone class theorem for systems of sets in the same form as He, Wang & Yan
(1992), Theorem 1.2. We say that a class K of subsets of Ω is a monotone class if for
every monotone sequence (An)n∈N ⊆ K such that An ↑ A or An ↓ A as n → +∞,
A ∈ K .

1.1.5 Theorem (Monotone class theorem for sets). Let F be an algebra and K a
monotone class of sets of Ω such that F ⊆ K . Then σ(F ) ⊆ K .

For the formulation of the monotone class theorem for classes of functions we refer
to Sharpe (1988), Appendix A0. Let (Ω,F ) be a measurable space. We denote by
B := B(Ω,R) the set of bounded measurable functions on (Ω,F ) into (R,B(R)). If
K is a linear subspace of B we say that it is a monotone vector space if 1 = 1Ω ∈ K
and if it is monotonically closed, that is, if (fn)n∈N ⊆ K is such that 0 ≤ fn ≤ fn+1,
for all n ∈ N and f ∈ B is such that f = limn→+∞ fn, then f ∈ K . We observe that
the limit f belongs to B if and only if (fn)n∈N is uniformly bounded. A set C ⊆ B
is called a multiplicative class if it is closed with respect to the multiplication of two
elements, meaning that if h and g belong to C , then also their product hg does.

1.1.6 Theorem (Monotone class theorem for functions). Let K be a monotone
vector space and C a multiplicative class such that C ⊆ K and σ(C ) = F . Then
K = B.



1.1 Measure Theory 5

1.1.3. Total Systems

Let (Ω,F ) be a measurable space and µ a measure on it. Given a system T of
numerical functions on (Ω,F ), we denote by Span(T ) its linear hull. Now we fix q

in [1,+∞). If T ⊆ Lq(µ) we denote by T
(Lq(µ),‖·‖q)

the closure of T in (Lq(µ), ‖·‖q).
A system T ⊆ Lq(µ) of functions is called total in (Lq(µ), ‖ · ‖q) if its linear hull

is dense, that is, Span(T )
(Lq(µ),‖·‖q)

= Lq(µ). If µ is a finite measure, then the
inclusions Lq(µ) ⊆ Lp(µ), q ≥ p, hold and Lq(µ) is a total system in (Lp, ‖ · ‖p).
In particular, L∞(µ) is an example of total system in Lq(µ), for every q ∈ [1,+∞).
The space Lq(µ) is called separable if there exists a countable system T ⊆ Lq(µ)
which is dense. If the σ-algebra F is separable, then the space Lq(Ω,F , µ) is also
separable (cf., e.g., Brezis (1983)). It will be useful to determine when a system
T ⊆ Lq(µ) is total in Lq(µ). The following lemma is mathematically simple but
it is of interest because it allows to reduce the problem of finding a total system
in Lq(µ) to the one of finding a total system in Lq(µg), where µg is a certain finite
measure.

1.1.7 Lemma. Let g be such that g(x) 6= 0 for every x ∈ Ω and define the measure
µg by

dµg := |g|q dµ.

Then µg is a measure on (Ω,F ). Furthermore:
(i) µg is a finite measure if and only if g ∈ Lq(µ), q ∈ [1,+∞).
(ii) f ∈ Lq(µg) if and only if fg ∈ Lq(µ). Moreover, ‖f‖Lq(µg) = ‖fg‖Lq(µ).
(iii) T ⊆ Lq(µg) is total if and only if gT := {gf, f ∈ T } is total in Lq(µ).
(iv) Let q = 2. Then f, h ∈ L2(µg) are orthogonal if and only if fg and hg are

orthogonal in L2(µ).

Proof. Because of Radon-Nikodyn’s Theorem, the measure µg is equivalent to µ. We
have µg(Ω) = µ(|g|q) so µg is finite if and only if g ∈ Lq(µ). Moreover, f ∈ Lq(µg)
if and only if µg(|f |q) < +∞, that is if and only if gf ∈ Lq(µ) and (i) and (ii) are
proven. To verify (iii) we first assume that T is total in Lq(µg) and observe that
because of (ii) f ′ := f

g ∈ L
q(µg) if and only if f ∈ Lq(µ). Hence, if f ∈ Lq(µ) there

exists a sequence (fn)n∈N ⊆ Span(T ) such that fn −→ f ′ in Lq(µg) as n → +∞.
From (ii) we get gfn ∈ Lq(µ). So∫

Ω
|f − gfn|q dµ =

∫
Ω
|g(f ′ − fn)|q dµ =

∫
Ω
|f ′ − fn|q dµg −→ 0 , n→ +∞ ,

and hence gT ⊆ Lq(µ) is a total system. The converse implication can be shown in
a similar way. To see (iv) it is enough to observe that for f, h ∈ L2(µg) we have

µg(fh) = µ((fh)g2) = µ((fg)(hg))

and to use (ii) once again.

As an application of Theorem 1.1.6, we want to establish a general lemma stating
sufficient conditions for a system T ⊆ Lq(µ) of bounded functions to be total in
Lq(µ), for q ∈ [1,+∞). We recall that we use the notation B := B(Ω,R) to denote
the space of bounded measurable functions on (Ω,F ) into (R,B(R)).
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1.1.8 Lemma. Let T ⊆ Lq(µ) be a subset of B. Then T is total in Lq(µ) if the
following conditions are satisfied:

(i) T is stable under multiplication;
(ii) σ(T ) = F ;
(iii) There exists a sequence (hn)n∈N ⊆ Span(T ) such that hn ≥ 0 and hn ↑ 1

pointwise as n→ +∞.

Proof. First, we consider the case in which µ is a finite measure. In this case

B ⊆ Lq(µ) and it is dense in (Lq(µ), ‖ · ‖q). We define H := Span(T )
(Lq(µ),‖·‖q)

and then K := H ∩ B. Clearly, K is a closed linear space and T ⊆ K . By
assumption, hn ↑ 1 pointwise as n → +∞ and by the finiteness of µ, 1 ∈ Lq(µ).
From the theorem of Lebesgue on dominated convergence (cf. Theorem 1.1.3) hn
converges to 1 in Lq(µ) and so 1 ∈ K . Moreover, K is closed under monotone
convergence of uniformly bounded nonnegative functions, as a consequence of the
finiteness of µ and of Theorem 1.1.3. Consequently, K is a monotone class and
by Theorem 1.1.6, we get K = B. Hence B ⊆ H and since B is dense and H
is closed, this yields Lq(µ) = H . Now we consider the case of a general measure
µ. For f ∈ Lq(µ) we put dµn := |hn|q dµ, n ≥ 1, where (hn)n∈N is as in the
assumptions of the lemma. Obviously, µn is a finite measure for every n. Moreover,
µn(|f |q) = µ(|fhn|q) ≤ µ(|f |q) < +∞ and hence f ∈ Lq(µn). We choose a sequence
(εn)n∈N such that εn > 0 and εn ↓ 0 as n→ +∞. By the previous step, there exists
a sequence (gn)n∈N ⊆ Span(T ) such that∫

Ω
|f hn − gn hn|q dµ =

∫
Ω
|f − gn|q|hn|q dµ < εn , n ≥ 1.

The system T is stable under multiplication so gnhn ∈ Span(T ). On the other side,
‖f − fhn‖Lq(µ) = ‖|f |q|1 − hn|q‖L1(µ) −→ 0, as n → +∞. Indeed, |1 − hn|q ↓ 0 as
n → +∞ and |f |q|1 − hn|q ≤ |f |q ∈ L1(µ). Theorem 1.1.3 yields the result. Hence
gnhn converges to f in Lq(µ) as n→ +∞.

We remark that under the assumptions of Lemma 1.1.8, the measure µ is also
σ-finite.

1.2. Basics of Stochastic Processes

Let (Ω, F̃ ) be a measurable space and let P be a probability measure on it. We call
the measure space (Ω, F̃ ,P) a probability space. By N (P) we denote the null sets of
P, i.e., N (P) := {A ⊆ Ω : ∃B ∈ F̃ , A ⊆ B, P(B) = 0}. If N (P) is not contained in
F̃ we enlarge the σ-algebra by setting F := F̃ ∨N (P). We call F the completion
of F̃ (in itself ) with respect to P or simply P-completion of F̃ and we say that
(Ω,F ,P) is a complete probability space. If not otherwise specified, we assume a
probability space to be complete. In the remaining of this chapter we assume that a
complete probability space (Ω,F ,P) is fixed. A measurable mapping X on (Ω,F )
into (R,B(R)) is called a random variable. We denote by E the expectation with
respect to P. If G is a sub-σ-algebra of F , we denote by E[·|G ] the conditional
expectation with respect to G . Sometimes we write EP or EP[·|G ] to emphasize the
dependence on the probability measure P.
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Now we recall the notion of the uniform integrability. We say that a family
K ⊆ L1(Ω,F ,P) is uniformly integrable if

supX∈K E[|X|1{|X|≥N}] −→ 0 as N → +∞.

If K is dominated in L1(P), i.e., there exists Y ∈ L1(P) such that |X| ≤ Y , X ∈ K ,
then K is uniformly integrable. Clearly, any finite family of integrable random
variables is uniformly integrable. La Vallée–Poussin’s Theorem (cf. Meyer (1966),
Theorem II.22) gives a characterization of the uniform integrability. It states that
a family K of integrable random variables is uniformly integrable if and only if
there exists a function G on [0,+∞] into [0,+∞) such that: (i) G(x)

x converges to
+∞ as x→ +∞ and (ii) supX∈K E[G(|X|)] < +∞. Because of La Vallée–Poussin’s
Theorem, we can conclude that a family of random variables is uniformly integrable
if it is q-integrable and bounded in Lq(P), q > 1.

A familyX = (Xt)t≥0 of ((R,B(R))-valued) random variables is called a stochastic
process or simply a process. The space (R,B(R)) is the space of states of the process
X and the random variable Xt is the state of the process X at time t ≥ 0. As
observed in Dellacherie (1972), Chapter III a stochastic process X can be interpreted
as a mapping X : (t, ω) 7−→ X(t, ω) of R+ × Ω into R. We use the notation
Xt(ω) := X(t, ω) and in most cases we omit ω. If we endow the space R+ ×Ω with
the σ-algebra B(R+)⊗F , we say that the process X = (Xt)t≥0 is measurable if X
is a B(R+)⊗F -measurable mapping of R+ × Ω into R.

Let X be a stochastic process. We call the mapping t 7→ Xt(ω) path or trajectory
of the process X. We say that the stochastic process X is right-continuous with left-
hand limit, and we use the abbreviation of French “continu à droite, limité à gauche”
càdlàg, if every trajectory is càdlàg. Analogously, we say that X is continuous or
left-continuous if all its trajectories have this property. For a càdlàg process X, we
define the random variable Xt− for every t > 0 as Xt− := lims↑tXs which is finite.
Adopting the convention X0− := X0, we can introduce the process X− = (Xt−)t≥0

on the whole positive real line. With a càdlàg process X we associate the process
∆X := (∆Xt)t≥0 of jumps of X by

∆Xt := Xt −Xt−, t ≥ 0.

A consequence of the convention X0− = X0 is that ∆X0 = 0. If X is continuous
stochastic process, then we have X− = X and ∆X = 0.

For two stochastic processes X and Y , there exist different concepts of equality:

(i) X is equal to Y if Xt(ω) = Yt(ω) for every t ≥ 0 and for every ω ∈ Ω.

(ii) X and Y are modifications if P(Xt = Yt) = 1, for every t ≥ 0.

(iii) X and Y are indistinguishable if P(Xt = Yt, for every t ≥ 0) = 1.

Two processes which are indistinguishable are also modifications. The converse is,
in general, not true. However, if X and Y are a.s. right-continuous (resp., left-
continuous), then they are indistinguishable if and only if they are modifications (cf.
Dellacherie (1972), Theorem III.6).

Let X be a càdlàg process. If, for a fixed t > 0, ∆Xt 6= 0 we say that the
process X has a fixed discontinuity at fixed time t > 0. The convention X0− := X0

ensures that a càdlàg process X has no fixed discontinuity at time t = 0. It is well
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known (cf., e.g., Appelbaum (2009), §2.9 p. 139]) that a càdlàg process has at most
countably many fixed discontinuities, which means that the set {t ∈ R+ : ∆Xt 6= 0}
is at most countable. Moreover, for every fixed ε > 0 and T > 0 the set {t ∈ [0, T ] :
|∆Xt| > ε} is finite. We say that a stochastic process X is stochastically continuous
(or continuous in probability) if

lim
s→t

P(|Xt −Xs| > ε) = 0, t ≥ 0, ε > 0. (1.1)

For a càdlàg process which is stochastically continuous we have ∆Xt = 0 a.s. for
every fixed t ≥ 0. In other words, if a càdlàg process X is stochastically continuous,
then a.s. fixed discontinuities are excluded. This is a delicate point: The stochastic
continuity of a càdlàg process does not mean that ∆X is indistinguishable from the
null process but only that it is a modification of it.

1.2.1. Filtrations and Stopping Times

Let (Ω,F ,P) be a complete probability space and N (P) the class of the null sets
of P. A family F̃ = (F̃t)t≥0 of sub-σ-algebras of F which is increasing is called a
filtration, that is, F̃t ⊆ F is a σ-algebra, t ≥ 0, and F̃s ⊆ F̃t, 0 ≤ s ≤ t. A filtration
F is called complete if N (P) ⊆ Ft for every t ≥ 0. If a filtration F̃ is not complete
we can introduce the complete filtration F = (Ft)t≥0 by setting Ft := F̃t ∨N (P),
t ≥ 0, and we call the filtration F the P-completion of F̃ (in F ). With a filtration F̃
we associate the filtration F̃+ = (F̃t+)t≥0 by F̃t+ := ∩ε>0F̃t+ε. The filtration F̃ is
called right-continuous if F̃ = F̃+, that is, if F̃t+ = F̃t, t ≥ 0. Note that F0+ = F0.
A filtration F which is complete and right-continuous is said to satisfy the usual
conditions. Given a filtration F̃ we can always associate to it a filtration F satisfying
the usual conditions by setting Ft := F̃t+ ∨N (P), t ≥ 0. In the following of this
work, if not otherwise specified, we shall always consider filtrations satisfying the
usual conditions. By convention we set

F∞ := F . (1.2)

1.2.1 Example. With a stochastic process X, we associate the σ-algebra F̃X
t :=

σ(Xs, 0 ≤ s ≤ t). We call the filtration F̃X = (F̃X
t )t≥0 the filtration generated

by X. Let FX
t := F̃X

t ∨ N (P) denote the P-completion of F̃X
t . The filtration

FX := (FX
t )t≥0 is the P-completion of F̃X (in F ). By F̃X+ = (F̃X

t+)t≥0 we denote
the smallest right-continuous filtration containing the filtration generated by X, i.e.,
F̃X
t+ ⊇ F̃X

t , t ≥ 0. In the sequel, the most relevant filtration associated with the

stochastic process X will be FX+ , i.e., the P-completion in F of F̃X+ . The filtration
FX+ satisfies the usual conditions and we call it the natural filtration of X. With

a stochastic process X we associate the two σ-algebras F̃X
∞ := σ(Xt, t ≥ 0) and

FX
∞ := F̃X

∞ ∨N (P). This notation could cause ambiguities with the one introduced
in (1.2). However, every time that we consider one of the filtrations associated with
the process X, we also work on the probability space (Ω,FX

∞ ,P).

A process X is adapted to a filtration F if Xt is Ft-measurable, for every t ≥ 0. An
adapted stochastic process X which is càdlàg is B(R)⊗F -measurable. A stochastic
process X is always adapted to its generated filtration F̃X . Moreover, it is adapted
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to a filtration F if and only if F̃X ⊆ F. If X is adapted and càdlàg, then it is
B(R)⊗ F̃X

∞ -measurable.

A mapping T on Ω into [0,+∞] is called a stopping time if the set {T ≤ t} :=
{ω ∈ Ω : T (ω) ≤ t} is Ft-measurable, for every t ≥ 0. With a stopping time T
we associate the two σ-fields FT := {A ∈ F : A ∩ {T ≤ t} ∈ Ft} and FT− :=
F0 ∨ {A ∩ {t < T}, A ∈ Ft, t ≥ 0}.

Let S, T be two stopping times. We define the stochastic interval [S, T ) by

[S, T ) := {(t, ω) ∈ R+ × Ω : S(ω) ≤ t < T (ω)}.

The definitions of (S, T ], (S, T ) and [S, T ] are analogous.

A stopping time T is called predictable if there exists an increasing sequence
(Tn)n∈N of stopping times such that Tn ↑ T ω-wise as n → +∞ and Tn < T on
{T > 0}. We now introduce two important σ-algebras on R+ × Ω: The optional
σ-algebra and the predictable σ-algebra. We stress that these σ-algebras, as well as
the notion of a stopping time, are always related with a filtration. We introduce the
following σ-algebras of subsets of R+ × Ω:

O := σ({[0, T ) : T st. time}) and P := σ({[0, T ) : T predictable st. time}),

where the acronym st. stands for stopping. We call O = O(F) the optional σ-algebra
while P = P(F) the predictable σ-algebra. We stress that both O and P are σ-
algebras of the product space R+ × Ω. A set A ⊆ R+ × Ω is said to be optional
(resp., predictable) if it is O-measurable (resp., P-measurable). Analogously, a
stochastic process X is called optional (resp., predictable) if it is O-measurable
(resp., P-measurable) as a mapping on R+ × Ω. Obviously, the inclusions P ⊆
O ⊆ B(R+)⊗F hold. Moreover, optional processes are also adapted (cf. Jacod &
Shiryaev (2000), Proposition I.1.21). The predictable σ-algebra plays a special role
in the theory of stochastic integration. We recall that any left-continuous adapted
process is predictable (cf. Dellacherie (1972) Theorem IV.22). It is important to note
that for any stopping time T , the stochastic interval [0, T ] is a predictable set (cf.
Dellacherie (1972), Theorem IV.3) and consequently the process 1[0,T ] is predictable.
Moreover, if X is a càdlàg process, the processes ∆X and X− are optional and
predictable, respectively. For the optionality of ∆X cf. Jacod & Shiryaev (2000),
Corollary I.1.25. The predictability ofX− is immediate because it is a left-continuous
adapted process.

Let X be a stochastic process and T a stopping time with values in [0,+∞]. On
{T < +∞}, we define the random variable XT by XT (ω) := XT (ω)(ω) = X(T (ω), ω)

and, consequently, the stochastic process XT = (XT
t )t≥0 by XT

t := Xt∧T , t ≥ 0,
where the symbol “ ∧ ” denotes the minimum function. We say that XT is the
stopped process at time T . If X is an optional (resp., predictable) process, then the
stopped process XT is optional (resp., predictable) (cf. Jacod & Shiryaev (2000),
Proposition I.1.21 and I.2.4). A class C of processes is called stable under stopping
if for every X ∈ C the stopped process XT belongs again to C , for every stopping
time T . The procedure that we are going to describe will be used several times in
this work and it is well-known as localization. If C is a class of processes, we denote
by Cloc the localized class, defined as such: A process X belongs to Cloc if and only
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if there exists an increasing sequence (Tn)n∈N of stopping times (depending on X)
such that Tn ↑ +∞ a.s. and each stopped process XTn belongs to C . The sequence
(Tn)n∈N is called a localizing sequence or a reducing sequence for X (relative to C ). If
for example C is the class of bounded processes, the class of locally bounded processes
Cloc is the class of processes X such that there exists a reducing sequence (Tn)n∈N
such that XTn is bounded. Let X be a càdlàg process. The process (Xt−)t≥0 is
locally bounded if and only if X0− := X0 is a bounded random variable. If X is a
càdlàg process, we can write

X = X− + ∆X.

Therefore a càdlàg process X with bounded jumps such that X0 is bounded is locally
bounded.

In the sequel of this chapter we fix a complete probability space (Ω,F ,P) and a
filtration F satisfying the usual conditions.

1.2.2. Martingales

A martingale (resp., submartingale; resp., supermartingale) relative to the filtration
F is an adapted process X, such that Xt ∈ L1(P) for every t ≥ 0 and that for all
0 ≤ s ≤ t, we have

E[Xt|Fs] = Xs (resp., E[Xt|Fs] ≥ Xs; resp., E[Xt|Fs] ≤ Xs).

Sometimes, for shortness, we simply say that a martingale (resp., a submartin-
gale; resp., a supermartingale) relative to a filtration F is an F-martingale (resp.,
F-submartingale; resp., F-supermartingale) to emphasize the filtration. Because the
filtration F satisfies the usual conditions, every F-martingale admits a càdlàg modi-
fication which is again an F-martingale (cf., e.g., Meyer (1966), Chapter VI or He,
Wang & Yan (1992), Chapter II). If not otherwise specified, we always consider
càdlàg martingales.

We say that a process X has a terminal variable X∞ if Xt converges a.s. to a limit
X∞ as t ↑ +∞. If T is a stopping time, the random variable XT := XT (ω)(ω) is, in
general, only defined on {T < +∞}. If the process X admits the terminal variable
X∞, the random variable XT is defined also on {T = +∞}.

We denote by M the class of uniformly integrable martingales, i.e., the class of all
martingales M such that the family of random variables (Mt)t≥0 is uniformly integ-
rable. By M0, we denote the subset of uniformly integrable martingales starting at
0. The terminal value M∞ of a uniformly integrable martingale exists and Mt con-
verges in L1(P) to M∞. Furthermore, for every stopping times T , MT = E[M∞|FT ].
For a proof of these facts, cf. Jacod & Shiryaev (2000), Theorem I.1.42. Doob’s Stop-
ping Theorem (cf. Jacod & Shiryaev (2000), Theorem I.1.39) implies that for every
stopping time T the random variable MT , M ∈M , is integrable and, if S is also a
stopping time, we have E[MT |FS ] = MS on {S ≤ T}. A first consequence of these
facts is that M is stable under stopping. Indeed, if M ∈ M and T is a stopping
time, we have that T ∧ t is a stopping time and that M∞ and MT∧t are integrable,
t ≥ 0. Moreover,

|MT
t | = |MT∧t| = |E[M∞|FT∧t]| ≤ E[|M∞||FT∧t],
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where we used Jensen’s inequality in the last passage. Because of He, Wang & Yan
(1992), Theorem 1.8, the right-hand side in the previous estimation is uniformly
integrable and so MT = (MT

t )t≥0 is uniformly integrable. By Doob’s Stopping The-
orem, we get Mt = E[MT |Ft] on {t ≤ T} and, by the properties of the conditional
expectation, E[MT |Ft] = MT on {t > T}. Hence MT

t = E[MT |Ft], t ≥ 0, and
so the process MT is an F-martingale. Now we state a lemma which gives neces-
sary and sufficient conditions for an adapted process X to be a uniformly integrable
martingale. For the proof cf. Jacod & Shiryaev (2000), Lemma I.1.44.

1.2.2 Lemma. Let X be an adapted process with a terminal random variable X∞.
Then X is a uniformly integrable martingale (non necessarily càdlàg) if and only if
for every stopping time T the random variable XT is integrable and E[XT ] = E[X0].

By localization we can introduce from M (resp., M0) the space Mloc (resp.,
Mloc,0). A local martingale (resp., a local martingale starting at 0) will be an
element of Mloc (resp., of Mloc,0). We observe that the classes Mloc and Mloc,0

are stable under stopping. Sometimes, we shall use the notation Mloc,0(P) (resp.,
Mloc,0(F); resp. Mloc,0(P,F)) to stress the probability measure P (resp., the filtration
F; resp., the probability measure P and the filtration F) with respect to which we
consider the space Mloc.

A sufficient condition to ensure that a local martingale M is a true uniformly
integrable martingale is that M is bounded in L1(P). This is an easy consequence of
the theorem of Lebesgue on monotone convergence. Indeed, if (Tn)n≥1 is a sequence
of stopping times localizing M to M and we assume that there exists and integrable
random variable X ≥ 0 such that |MTn

t | ≤ X, then we can apply the theorem of
Lebesgue on dominated convergence to get, for every 0 ≤ s ≤ t,

Ms = lim
n→+∞

MTn
s = lim

n→+∞
E[MTn

t |Fs] = E[ lim
n→+∞

MTn
t |Fs] = E[Mt|Fs],

meaning that M is a true martingale. The uniform integrability follows because
Mt ∈ L1(P) converges to M∞ a.s. as t→ +∞. A new application of the theorem of
Lebesgue on dominated convergence implies that M∞ belongs to L1(P). Because M
is a martingale, |M | is a submartingale and so we have |Mt| ≤ E[|M∞||Ft], t ≥ 0,
and by He, Wang & Yan (1992), Theorem 1.8, we get that M is uniformly integrable.

We conclude this part with a lemma showing the stability of the martingale prop-
erty under L1(P)-convergence.

1.2.3 Lemma. Let (Mn)n≥1 be a sequence of F-martingales and M a stochastic
process such that Mt is integrable, t ≥ 0. If Mn

t converges in L1(P) to Mt for every
t ≥ 0, then the process M is an F-martingale (non necessarily càdlàg).

Proof. Let 0 ≤ s ≤ t and A ∈ Fs. Then the random variable 1AM
n
t converges in

L1(P) to 1AMt as n → +∞ and this implies that E[1AM
n
t ] converges to E[1AMt]

as n → +∞, for every t ≥ 0. Therefore, because of E[1AM
n
t ] = E[1AM

n
s ], we get

E[1AMt] = E[1AMs] and hence M is a martingale.

1.2.3. Increasing Processes

We denote by V + (resp., by V ) the set of all real-valued processes A that are
càdlàg, adapted, with A0 = 0 and whose paths are non-decreasing (resp., have finite
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variation on each finite interval [0, t]). We say that a process in V + (resp., in V ) is
an increasing process (resp., a process of finite variation).

For a process A ∈ V , by Var(A) = (Var(A)t)t≥0 we denote the associated variation
process, that is, the process such that Var(A)t(ω) is the total variation of the function
s 7→ As(ω) on the interval [0, t]. Of course, Var(A) = A if A ∈ V +. In Jacod &
Shiryaev (2000), Proposition I.3.3 the following important relation between V and
V + is established: If A ∈ V , then there exists a unique pair of processes B,C ∈ V +

such that A = B−C and Var(A) = B+C (hence, Var(A) ∈ V + and V = V +	V +).
Moreover, if A is predictable, then B, C and Var(A) are also predictable.

For a process A ∈ V + the function t 7→ At(ω) is a measure-generating function,
that is, it is the distribution function of a measure,say µAω , defined on R+ by

µAω ([0, t]) := At(ω), t ∈ R+, ω ∈ Ω,

which is a locally finite measure.
The stochastic integral with respect to A ∈ V + of a measurable process H is

defined as a Stiltjes–Lebesgue integral, i.e., by fixing ω ∈ Ω and defining the integral
pathwise with respect to the trajectory t 7→ At(ω). We say that a measurable process
H is integrable with respect to A if

∫ t
0 |Hs(ω)|µAω (ds) < +∞ for every t ≥ 0 and for

every ω ∈ Ω. If H is integrable with respect to A by∫ t

0
Hs(ω) dAs(ω) :=

∫ t

0
Hs(ω)µAω (ds), t ≥ 0,

we denote the integral of H with respect to A up to time t. We introduce the integral
process H ·A = (H ·At)t≥0 by

H ·At(ω) :=


∫ t

0 Hs(ω) dAs(ω), if
∫ t

0 |Hs(ω)|dAs(ω) < +∞

+∞, otherwise.

If A ∈ V , we can introduce the integral for measurable processes in a similar way.
Indeed, there exist two unique processes B,C ∈ V + such that A = B − C and
Var(A) = B + C. In this case, we say that a measurable process H is integrable
with respect to A if it is integrable with respect to Var(A) and we introduce the
integral process H ·A = (H ·At)t≥0 by

H ·At(ω) :=


∫ t

0 Hs(ω) dAs(ω), if
∫ t

0 |Hs(ω)| dVar(A)s(ω) < +∞

+∞, otherwise.

If H is a measurable process (resp., nonnegative) which is integrable with respect
to A ∈ V (resp., A ∈ V +), then the process H · A belongs to V (resp., V +). If
moreover A and H are predictable, then H ·A is predictable (cf. Jacod & Shiryaev
(2000), Proposition I.3.5). We notice that locally bounded measurable processes
are always integrable with respect to A ∈ V . Indeed, if H is a locally bounded
measurable process and (Tn)n∈N is a reducing sequence, say such that |HTn | ≤ cn,
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we have, for every n ≥ 1 and every fixed t ≥ 0, |HTn | ·Var(A)t ≤ cnVar(A)t < +∞.
On the other side, Tn ↑ +∞. Hence, for every fixed t ≥ 0, there exists n(t) ∈ N such
that Tn ≥ t for every n ≥ n(t) and so |H| ·Var(A)t ≤ cnVar(A)t < +∞, n ≥ n(t).

Now we introduce two other classes of processes.

(i) A + := {A ∈ V + : E[A∞] < +∞}: set of integrable processes.

(ii) A := {A ∈ V : E[Var(A)∞] < +∞}: set of processes integrable variation.

We note that from the classes A +, A , V + and V the corresponding localized classes
A +

loc, Aloc, V +
loc and Vloc can be introduced. We have V +

loc = V + and Vloc = V . All
the previous classes of processes are stable under stopping. Moreover, we have
A = A + 	A +, Aloc = A +

loc 	A +
loc and the following inclusions A + ⊆ A +

loc ⊆ V +,
A ⊆ Aloc ⊆ V hold. We observe that the set of local martingales of finite variation
is contained in Aloc, i.e., Aloc ⊇ Mloc ∩ V (cf. Jacod & Shiryaev (2000), Lemma
I.3.11). Now we formulate a very important theorem which states the existence
of the compensator for processes in A +

loc. We refer to Jacod & Shiryaev (2000),
Theorem I.3.17.

1.2.4 Theorem. Let A ∈ A +
loc. There exists a process, called the compensator

of A and denoted by Ap, which is unique up to an evanescent set and which is
characterized by being a predictable process in A +

loc meeting any one of the following
three equivalent statements:

(i)A−Ap is a local martingale;

(ii) E[ApT ] = E[AT ] for all stopping times T ;

(iii) E[H ·Ap∞] = E[H ·A∞] for all nonnegative predictable process H.

Theorem 1.2.4 can be extended to processes of locally integrable variation as
in Jacod & Shiryaev (2000), Theorem I.3.18. If A ∈ Aloc the compensator of A
is denoted again by Ap and it is the unique (up to an evanescent set) predictable
process of Aloc such that A−Ap is a local martingale. Moreover, for each predictable
process H such that H ·A ∈ Aloc, it holds H ·Ap ∈ Aloc and (H ·A)p = H ·Ap. In
particular H · A −H · Ap is a local martingale. We conclude this section with the
following proposition.

1.2.5 Proposition. (i) A ∈ Aloc ∩Mloc if and only if Ap = 0.

(ii) A ∈Mloc ∩A if and only if A ∈M ∩A .

(iii) If A ∈Mloc ∩V (hence A ∈Mloc ∩Aloc) and H is a predictable process such
that H ·A ∈ Aloc, then H ·A ∈Mloc.

Proof. (i) is a consequence of the uniqueness of the Doob–Meyer decomposition of
submartingales (cf. Jacod & Shiryaev (2000), Theorem I.3.15 and Corollary I.3.16).
To see (ii) it is enough to observe that if A ∈Mloc ∩A , because of |At| ≤ Var(A)∞
and of Var(A)∞ ∈ L1(P), then A is a local martingale bounded in L1(P), hence a
uniformly integrable martingale. The converse implication is trivial. Now we show
(iii). If H is a predictable process which is integrable with respect to A and such
that H · A ∈ Aloc, from the properties of the compensator for processes of locally
integrable variation we get (H · A)p = H · Ap. But Ap = 0 because of (i). A new
application of (i) yields (H ·A) ∈Mloc and this concludes the proof.
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1.2.4. The Poisson process

In this part we want to discuss an important example of increasing process: The
Poisson process. As a first step, we introduce simple point processes. Let N ∈ V +.
We say that it is a simple point process relative to F if

(i) N is F-adapted;
(ii) N takes values in N a.s.;
(iii) ∆N takes values in {0, 1} a.s.

We observe that a simple point process belongs to A +
loc and is even a locally bounded

process (it has bounded jumps, starts at 0 and is càdlàg).

1.2.6 Definition. Let N be a simple point process relative to F. We say that it is
a Poisson process relative to F if:

(i) E[Nt] < +∞, for every t ∈ R+;
(ii) The function a(t) := E[Nt], called intensity function of N , is continuous;
(iii) Nt −Ns is independent of Fs, for every 0 ≤ s < t.

If N is a Poisson process relative to F with intensity function a(·) of the form
a(t) = γ t, t ≥ 0, γ > 0, we say that N is a homogeneous Poisson process (with
parameter γ) relative to F .

We notice that a Poisson process N is stochastically continuous. Indeed, by
definition it is a càdlàg process end hence it is right-continuous. To show that it is
stochastically continuous it is enough to prove that it is stochastically continuous
from the left. But this is an immediate consequence of Markov’s inequality. For any
ε > 0 and 0 ≤ s ≤ t we have Nt ≥ Ns and

lim
s↑t

P[(Nt −Ns) ≥ ε] ≤
1

ε
lim
s↑t

E[Nt −Ns] =
1

ε
lim
s↑t

(a(t)− a(s)) = 0,

where in the first passage we applied Markov’s inequality and in the last equality
we used the continuity of the intensity function a(·).

A nice characterization for a simple point process relative to F to be a Poisson
process relative to F in term of its compensator can be given. This result will play
a key role in the further development. For this reason we formulate it here as a
theorem but we refer to Jacod & Shiryaev (2000), Proposition I.3.27 and Theorem
II.4.5 for the proof.

1.2.7 Theorem. A simple point process N relative to F is a Poisson process relative
to F if and only if its compensator Np is a deterministic continuous increasing
function, say a(·).

Theorem 1.2.7 can be reformulated saying that a simple point process is a Poisson
process if and only if there exists a deterministic continuous increasing function a(·)
such that N − a(·) is a local martingale. If N is a Poisson process relative to F with
intensity function a(·), then its characteristic function is given by

E[exp((iu(Nt −Ns))] = exp((eiu − 1)(a(t)− a(s))), 0 ≤ s ≤ t, u ∈ R. (1.3)

(cf. Jacod & Shiryaev (2000), Theorem II.4.5). Note that from (1.3) one immediately
deduces that if N is a Poisson process relative to F, then the random variable Nt is
Poisson distributed with parameter a(t), t ≥ 0.
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1.2.5. Locally Square Integrable Martingales

We denote by H 2 the class of square integrable martingales, that is, we put

H 2 :=
{
M ∈Mloc : E[supt≥0(Mt)

2] < +∞
}
.

The space H 2
loc of locally square integrable local martingales is introduced from H 2

in the usual way. Clearly, any locally bounded local martingale belongs to H 2
loc. In

particular, any continuous local martingale is locally square integrable. The space
of local martingales H 2 is a subspace of M . Indeed, if M ∈ H 2, then |Mt| is
dominated in L2(P) by supt≥0 |Mt|. Therefore, if M ∈ H 2, the terminal variable
M∞ is defined and, because of E[M2

∞] ≤ E[supt≥0(Mt)
2] < +∞, it belongs to L2(P).

For M,N ∈H 2 the following expressions

(M,N)H 2 := E[M∞N∞], ‖M‖∗2 := ‖M∞‖L2(P) (1.4)

define a scalar product and a norm, respectively. The space (H 2, ‖ · ‖∗2) can be
identified with (L2(P), ‖ · ‖L2(P)) as it follow: With every M ∈H 2 we associate the
terminal variable M∞ ∈ L2(P). This yields (H 2, ‖ · ‖∗2) is a Hilbert space.

The space H 2
loc is especially important because of the following well-known result

(cf. Jacod & Shiryaev (2000), Theorem I.4.2): For any M and N belonging to H 2
loc,

there exists a predictable process 〈M,N〉 ∈ V , called point brackets (or predict-
able process of finite variation) associated to M and N , which is unique up to an
evanescent set, such that MN − 〈M,N〉 ∈Mloc. The so-called polarization identity
holds:

〈M,N〉 =
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉). (1.5)

If M,N ∈ H 2, then 〈M,N〉 ∈ A and MN − 〈M,N〉 ∈ M . Furthermore, the
identity 〈M,N〉 = 〈M −M0, N −N0〉 holds and 〈M,M〉 belongs to V +. The next
relation explains the behavior of the point brackets with respect to the stopping
procedure (cf. He, Wang & Yan (1992), Theorem 6.31). For every stopping time T
it follows that

〈M,NT 〉 = 〈MT , N〉 = 〈MT , NT 〉 = 〈M,N〉T . (1.6)

Furthermore, because of the definition of the point brackets, we have

(M,N)H 2 := E[〈M,N〉∞] + E[M0N0], M,N ∈H 2. (1.7)

1.2.6. The Wiener process

One of the most important locally square integrable martingales, but probably one
of most important stochastic processes, is the Wiener process. In this short section
we collect some properties of the Wiener process which will be useful in this work.

1.2.8 Definition. A continuous adapted process W such that W0 = 0 is called a
Wiener process (or a Brownian motion) relative to F if:

(i) E[W 2
t ] < +∞ and E[Wt] = 0, for every t ≥ 0;

(ii) Wt −Ws is independent of Fs, for all 0 ≤ s ≤ t.
The function σ2(t) := E[W 2

t ] is called the variance function of W . If σ2(t) = t, we
say that W is a standard Wiener process.
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It is immediate to see that a Wiener process relative to F is an F-martingale.
The point brackets associated with W are given by 〈W,W 〉t = σ2(t). The converse
is a famous theorem due to P. Lévy and known as characterization of P. Lévy of
the Wiener process. We now formulate it and refer to Jacod & Shiryaev (2000),
Theorem II.4.4 for the proof.

1.2.9 Theorem (Characterization of P. Lévy of the Wiener process). Let W be
a continuous F-local martingale such that W0 = 0. Then it is a Wiener process
relative to F if 〈W,W 〉 is deterministic, say 〈W,W 〉t = σ2(t), for some increasing
continuous function σ2(·). In this case the function σ2(·) is the variance function of
the Wiener process W .

In Jacod & Shiryaev (2000), Theorem II.4.4, it is proven that if W is a Wiener
process relative to F with variance function σ2(·), then the random variable Wt−Ws

is Gaussian, centered and with variance σ2(t) − σ2(s), for all 0 ≤ s ≤ t. Therefore
the characteristic function of Wt −Ws is given by

E
[
eiu(Wt−Ws)

]
= e−

1
2
u2(σ2(t)−σ2(s)), 0 ≤ s ≤ t, u ∈ R. (1.8)

1.2.7. Orthogonality of Local Martingales

We recall that two local martingales M and N are called orthogonal if MN ∈Mloc.
We denote it by M⊥N . If X ⊆ Mloc and M ∈ Mloc is such that M⊥N for
every N ∈ X , we say that M is orthogonal to X and denote it by M⊥X . This
notation is ambiguous with the notation introduced to denote the orthogonality of
two functions in L2(P). However, in most of cases, it will be clear from the contest
to which orthogonality we refer. When it will not be possible, we shall prefer the
terminology strong orthogonality to designate the notion of orthogonality for local
martingales. Let us assume that M and N belong to H 2 and that M0 = N0 = 0. By
the definition of the point brackets associated with M and N , it is clear that M⊥N
if and only if 〈M,N〉 = 0. From (1.7) and (1.4) this means E[M∞N∞] = 0. Hence
the strong orthogonality of the martingales M and N implies the orthogonality of
the terminal values M∞ and N∞ in L2(P) and therefore the orthogonality of the
martingaleM andN in the Hilbert space (H 2, ‖·‖∗2). For this reason we use the same
notation to designate the orthogonality of local martingales and the orthogonality
in L2(P). The converse is not true however (for a counterexample cf., e.g., Protter
(2005), IV.§3, the comment after the last definition on page 181) and this explains
the reason of the terminology “strong orthogonality”.

The notion of orthogonality for local martingales leads to the one of purely dis-
continuous local martingale: A local martingale M is called purely discontinuous
if M0 = 0 and if it is orthogonal to every continuous local martingale. We denote
by M c

loc and M d
loc the classes of continuous and purely discontinuous local martin-

gales, respectively. In the next proposition we collect some relevant properties of
orthogonal local martingales.

1.2.10 Proposition. (i) If M and N belong to H 2 and M is orthogonal to N , then
the local martingale MN is such that supt≥0 |MtNt| < +∞. In particular, MN is a
uniformly integrable martingale.
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(ii) A local martingale M is orthogonal to itself if and only if M0 ∈ L2(P) and
M = M0 a.s.

(iii) If M and N are orthogonal local martingales, then the local martingales MT

and NS are again orthogonal, for every pair of stopping times T and S.

Proof. For (i) cf. Jacod (1979), Proposition 2.11 while for (ii) and (iii) we refer to
Jacod & Shiryaev (2000), Lemma I.4.13.

A deep result of martingales theory asserts that any local martingale M admits
the a.s. unique decomposition

M = M0 +M c +Md, (1.9)

where M c
0 = Md

0 = 0, M c is a continuous local martingale and Md is a purely
discontinuous local martingale (cf. Jacod & Shiryaev (2000), Theorem I.4.18). We
call M c and Md as in (1.9) the continuous and the purely-discontinuous part of M ,
respectively.

1.2.8. Semimartingales

An adapted process X is called a semimartingale if

X = X0 +M +A, (1.10)

where X0 is an F0-measurable random variable, M ∈ Mloc,0 and A ∈ V . We
call M the martingale part and A the finite-variation part of the semimartingale X,
respectively. We call a representation as (1.10) a semimartingale decomposition ofX.
Note that the paths of a semimartingale are càdlàg (we assume that martingales are
càdlàg if not otherwise specified). Clearly Mloc and V are classes of semimartingales.
From (1.9) we can rewrite (1.10) as

X = X0 +M c +Md +A (1.11)

Although the decomposition (1.11) is, in general, not unique, the martingale M c is
uniquely determined (up to indistinguishability) by X. In other words, if X is a
semimartingale and (M,A) and (M ′, A′) are two semimartingale decompositions of
X, then M c and M ′c are indistinguishable (cf. Jacod & Shiryaev (2000), Proposition
I.4.21). In the sequel, we shall denote by Xc the unique continuous local martingale
meeting (1.11) and call it the continuous martingale part of X. Let A and M
be a semimartingale decomposition of X. We notice that from (1.10) the sum∑

0<s≤t(∆Xs)
2 is a.s. finite, t ≥ 0. Indeed,

∑
0<s≤t |∆As| ≤ Var(A)t < +∞, t ≥ 0

(we recall that A is càdlàg and so the previous summation has at most countably
many summands). This implies that also

∑
0<s≤t(∆As)

2 < is finite. Furthermore,

He, Wang & Yan (1992), Lemma 7.27 ensures that
∑

0<s≤t(∆Ms)
2 < +∞ a.s., t ≥ 0.

Hence for any semimartingale X we can introduce the process [X,X] = ([X,X]t)t≥0

by

[X,X]t := 〈Xc, Xc〉t +
∑

0<s≤t
(∆Xs)

2, t ≥ 0.
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Clearly, the process [X,X] belongs to V +. Moreover, it is continuous if and only if
X is continuous (notice that from Jacod & Shiryaev (2000), Theorem I.4.2 the point
brackets of a continuous local martingale are continuous).

If X and Y are two semimartingales and Xc and Y c are the respective continuous
martingale parts, we define the process [X,Y ] = ([X,Y ]t)t≥0 by

[X,Y ]t =
1

4
([X + Y,X + Y ]t − [X − Y,X − Y ]t), t ≥ 0.

Thanks to Jacod & Shiryaev (2000), Proposition I.3.3, [X,Y ] belongs to V . Obvi-
ously, the following identity holds:

[X,Y ]t := 〈Xc, Y c〉t +
∑

0≤s≤t
∆Xs∆Ys, t ≥ 0. (1.12)

We call the process [X,Y ] the quadratic covariation or simply the covariation of X
and Y . If X or Y are continuous, then [X,Y ] = 〈Xc, Y c〉 and [X,Y ] is continuous
(cf. Jacod & Shiryaev (2000), Theorem I.4.2). From (1.12), it is immediate to see
that ∆[X,Y ] = ∆X∆Y . Moreover, if X is continuous and Y is of finite variation,
then [X,Y ] = 0. Indeed, if X is continuous, from (1.12) we have [X,Y ] = 〈Xc, Y c〉.
On the other side, a semimartingale decomposition of Y is Y = 0 + Y . But the
continuous martingale part Y c of Y is uniquely determined and Y c = 0c = 0. The
next relation is immediate from (1.6) and (1.12). It explains the behavior of the
quadratic covariation process with respect to the operation of stopping. For any
stopping time T it follows:

[X,Y T ] = [XT , Y ] = [XT , Y T ] = [X,Y ]T . (1.13)

If M and N are local martingales, the process [M,N ] has additional properties as
the following proposition shows:

1.2.11 Proposition. (i) If M and N belong to Mloc,0, then MN − [M,N ] is a local
martingale and M⊥N if and only if [M,N ] ∈Mloc.

(ii) If M and N belong to H 2
loc, then [M,N ] ∈ Aloc and 〈M,N〉 is its compensator,

i.e., 〈M,N〉 ∈ Aloc and [M,N ] − 〈M,N〉 ∈ Mloc,0. In case M,N ∈ H 2 we have
[M,N ] ∈ A and furthermore supt≥0 |MtNt − [M,N ]t|, supt≥0 |[M,N ]t − 〈M,N〉t| ∈
L1(P). In particular, MN − [M,N ] ∈M and [M,N ]− 〈M,N〉 ∈M0.

Proof. For (i) cf. Jacod (1979), Corollary 2.29. Now we come to (ii). We assume
M,N ∈H 2 and the other part follows by localization. In case M,N ∈H 2, to see
[M,N ] ∈ A and supt≥0 |MtNt − [M,N ]t| ∈ L1(P) cf. Jacod (1979), Lemma 2.28.
From (i) MN − [M,N ] is a local martingale and because supt≥0 |MtNt− [M,N ]t| ∈
L1(P) it is dominated in L1(P) and therefore it is a uniformly integrable martingale.
The process 〈M,N〉 is defined and MN−〈M,N〉 belongs to M (cf. Jacod & Shiryaev
(2000), Theorem I.4.2) Subtracting the latter process to MN − [M,N ] we obtain
[M,N ]−〈M,N〉 ∈M . By definition we have [M,N ]0 = 〈M,N〉0 = 0 and the proof
is finished.
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1.3. Spaces of Martingales and Stochastic Integration

In this section we introduce some important subspaces of uniformly integrable mar-
tingales and briefly recall the definition of stochastic integral for an arbitrary local
martingale: Given a local martingale M , we define the largest class of processes
such that the stochastic integral with respect to M is again a local martingale. We
also define the stochastic integral with respect to a semimartingale X. However,
we do not consider the largest class of processes such that the stochastic integral
with respect to X is again a semimartingale. Instead, we restrict our attention to a
particular case. Finally, we introduce Itô’s formula.

1.3.1. Spaces of Martingales

In §1.2.5 we have introduced the space H 2 of square integrable martingales. Now
we want to generalize this definition to the one of q-integrable martingales. Let
M ∈Mloc and q ∈ [1,+∞]. We put

‖M‖H q := ‖ supt≥0 |Mt|‖q, (1.14)

where ‖ · ‖q denotes the Lq(P)-norm, and introduce the following classes of local
martingales:

H q := {M ∈Mloc : ‖M‖H q < +∞}. (1.15)

We denote by H q
0 the subset of elements of H q starting at 0. The spaces H q

loc

and H q
loc,0 are introduced in the usual way from H q and H q

0 , respectively. The
space (H q, ‖ · ‖H q) is a Banach space. If p, q ∈ [1,+∞], p ≤ q, then H q ⊆ H p

and H q is dense in (H p, ‖ · ‖H p) (cf. Jacod (1979), Proposition 2.39). We observe
that the space of local martingales H q is in fact a subspace of M . Indeed, if
M ∈H q, then it is a local martingale which is dominate in L1(P) by supt≥0 |Mt|q.
Therefore the terminal value M∞ of M ∈ H q exists and belongs to Lq(P). For
any M ∈ H q, q ≥ 1, the process |M |q is a uniformly integrable submartingale and
obviously supt≥0 E[|Mt|q] ≤ E[supt≥0 |Mt|q] < +∞. Now we state Doob’s inequality
(cf. He, Wang & Yan (1992), Theorem 2.49). If q > 1 and X is a nonnegative càdlàg
submartingale such that supt≥0 E[Xq

t ] < +∞, then supt≥0Xt ∈ Lq(P) and

E
[
supt≥0X

q
t

]
≤
(

q
q−1

)q
supt≥0 E [Xq

t ] = E [Xq
∞] . (1.16)

We assume q > 1 and introduce the norm

‖M‖∗q := ‖M∞‖q.

Obviously, E [|M∞|q] ≤ E
[
supt≥0 |Mt|q

]
< +∞ and so (1.16) yields the equivalence

of the norms ‖ · ‖H q and ‖ · ‖∗q . The norm ‖ · ‖∗q is specially important because,
for q > 1, the space (H q, ‖ · ‖∗q) can be identified with the space (Lq(P), ‖ · ‖q) by
identifying each martingale M ∈ H q with its terminal value M∞ ∈ Lq(P). It is
important to stress that the space H 2 equipped with the norm ‖ · ‖∗2 is a Hilbert
space because it is isomorphic to (L2(P), ‖ · ‖2). The space H 2 equipped with the
norm ‖ · ‖H 2 is not a Hilbert space however, because the previous identification



20 1. Preliminaries

cannot be done. Because of the identification of (H q, ‖ · ‖∗q) with (Lq(P), ‖ · ‖q) for
q > 1, we can identify the dual of (H q, ‖ · ‖∗q) with (H p, ‖ · ‖∗p), where p is the

conjugate exponent of q, i.e., p ∈ (1,+∞) is such that 1
p + 1

q = 1. The same is
not true for q = 1. Indeed, for q = 1 Doob’s inequality does not hold in the form
of (1.16). On the other side, we cannot identify the space H 1 with L1(P): From
Jacod & Shiryaev (2000), Theorem I.1.42, is the space M of uniformly integrable
martingales that can be identified in a natural way with L1(P) and, in general,
H 1 ( M . In the sequel the spaces (H q

0 , ‖ · ‖H q) will play a key role. In particular,
we shall introduce the dual space of H 1

0 .
Let M be a uniformly integrable martingale. We introduce the norm

‖M‖BMO := sup
T
‖M∞ −MT−‖/

√
P(T < +∞), (1.17)

where the supremum is taken over all stopping times with the conventions M∞− :=
M∞ and 0/0 := 0. By BMO we denote space of uniformly integrable martingales
with finite BMO-norm, that is,

BMO := {M ∈M : ‖M‖BMO < +∞}. (1.18)

By BMO0 we denote the subset of elements of BMO starting at zero, while BMOloc

and BMOloc,0 are introduced as usual from BMO and BMO0, respectively, by
localization. The following inequalities and inclusions hold (cf. Jacod (1979), p. 28,
formula (2.8) and (2.9)).

‖M‖H 2 ≤ 2‖M‖BMO ≤ 4‖M‖H ∞ , H ∞ ⊆ BMO ⊆H 2. (1.19)

Furthermore, H 1
loc = Mloc and BMOloc = H ∞

loc . In particular, BMO ⊆ H ∞
loc (cf.

Jacod (1979), Lemma 2.38). We recall that M c
loc and M d

loc designate the spaces of
continuous and purely discontinuous local martingales, respectively, and introduce
the following notation:

H q,c := H q ∩M c
loc; H q,d := H q ∩M d

loc. (1.20)

For every q ∈ [1,+∞] the subspaces H q
0 , H q,c and H q,d are closed in (H q, ‖·‖H q)

(cf. Jacod (1979), Lemma 2.12). Therefore, because the norm ‖ · ‖∗2 is equivalent to
the norm ‖ · ‖H 2 , the space H 2

0 is closed in (H 2, ‖ · ‖∗2) and so (H 2
0 , ‖ · ‖∗2) is a

Hilbert space.
Now we state some fundamental inequalities. The first is Kunita–Watanabe’s

inequality (cf. Jacod (1979), Theorem 2.32): Let q ∈ (1,+∞); M,N ∈ Mloc; be p
the conjugate exponent of p and U an optional process. Then

E
[
|U | ·Var([M,N ])∞

]
≤ ‖(U2 · [M,M ]∞)1/2‖q‖[N,N ]1/2∞ ‖p. (1.21)

Kunita–Watanabe’s inequality holds only for q-integrable martingales with q > 1.
The following inequality, known as Fefferman’s inequality, generalize (1.21) to the
case q = 1. We refer to Jacod (1979), Theorem 2.33. For any M,N ∈ M and U
optional process, we have

E
[
|U | ·Var([M,N ])∞

]
≤ ‖(U2 · [M,M ]∞)1/2‖1‖N‖BMO. (1.22)
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The last of the inequalities that we need is Davis–Burkholder–Gundy’s inequality
which we abbreviate by DBG’s inequality (cf. Jacod (1979), Theorem 2.34): Let
M ∈Mloc and q ∈ [1,+∞). There exist two positive constants cq and Cq such that

‖M‖H q ≤ cq‖[M,M ]1/2∞ ‖q ≤ Cq‖M‖H q . (1.23)

Formula (1.23) expresses that the norms ‖M‖H q and ‖[M,M ]
1/2
∞ ‖q are equivalent.

If q = 2 and M ∈ H 2
0 we get Doob’s inequality. Indeed, by Proposition 1.2.11,

M2 − [M,M ] ∈H 1
0 and so E[[M,M ]∞] = E[M2

∞] = supt≥0 E[M2
t ].

A consequence of Kunita–Watanabe’s inequality (resp., of Fefferman’s inequality)
and DBG’s inequality with U = 1 is that if M ∈ H q, q > 1 (resp. q = 1),
and N ∈ H p, where p is the conjugate exponent of q (resp., N ∈ BMO), then
the process [M,N ] belongs to A , i.e., [M,N ]∞ ∈ L1(P). Therefore if M ∈ H q,
q > 1 (resp., q = 1), and N ∈ H p, where p is the conjugate exponent of q (resp.,
N ∈ BMO), we can define the functional

CN (M) := E[[M,N ]∞], M ∈H q, N ∈H p (resp., N ∈ BMO). (1.24)

The following lemma holds:

1.3.1 Lemma. Let CN (·) be the linear functional introduced in (1.24). If M ∈H q,
q > 1 (resp., q = 1), and N ∈ H p, where p is the conjugate exponent of q (resp.,
N ∈ BMO), the linear functional CN (·) is continuous on H q.

Proof. We verify only the case M ∈ H q, q > 1 and N ∈ H p, where p is the
conjugate exponent of q. The case q = 1 and N ∈ BMO can be shown in a similar
way and is a consequence of Fefferman’s inequality. Because of Kunita–Watanabe’s
inequality and of DBG’s inequality with U = 1 we have

E[|[M,N ]∞|] ≤ ‖[M,M ]1/2∞ ‖q‖[N,N ]1/2∞ ‖p ≤ CqCp‖M‖H q‖N‖H p < +∞.

This, in particular, shows that CN (·) is a functional on H q which is linear and
bounded. Therefore it is a continuous functional on H q.

Thanks to Fefferman’s inequality and DBG’s inequality, we can identify the space
(BMO0, ‖ · ‖BMO) with the dual space of (H 1

0 , ‖ · ‖H 1) in the following way: We
identify every N ∈ BMO0 in a unique way with the continuous linear form CN (·)
defined by (1.24). We do not show this result and we refer to Protter (2005),
Theorem IV.55. We only verify that CN in an injective functional from BMO0

into the dual of H 1
0 . Let N ′, N ∈ BMO0 be such that CN = CN ′ on H 1

0 . Then
CN−N ′(Z) = 0, for every Z which belongs to H 1

0 . Hence for any stopping time T
and any M ∈ H 1

0 , because of (1.13) and the stability under stopping of H 1
0 , it

follows
E[[M,N −N ′]T ] = E[[M,N −N ′]T∞] = CN−N ′(M

T ) = 0

and so Lemma 1.2.2 implies that [M,N − N ′] belongs to M0, for every M ∈ H 1
0 ,

i.e., N − N ′⊥H 1
0 (cf. Proposition 1.2.11.(i)). This yields N − N ′ is orthogonal to

itself because BMO0 ⊆ H 2
0 ⊆ H 1

0 . Proposition 1.2.10.(ii) implies that N − N ′ =
N0 −N ′0 = 0 a.s., that is, N = N ′ a.s., proving that CN (·) is injective from BMO0

into the dual of H 1
0 .
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We consider q ∈ (1,+∞) and its conjugate exponent p ∈ (1,+∞). We have
already discussed that, thanks to Doob’s inequality, the dual space of (H q, ‖ · ‖∗q)
can be identified with (H p, ‖ · ‖∗q), where p is the conjugate exponent of q and
q > 1. However, it is not difficult to see that the dual space of (H q

0 , ‖ · ‖H q) can be
identified with (H p

0 , ‖ · ‖H p) by means of the functional CN (·) in a similar way as
we did for the dual space of (H 1

0 , ‖ · ‖H 1). We do not go further into details and we
refer to Jacod (1979), Remark 2.36. We only stress that this identification cannot
be done between the dual space of (H q, ‖ · ‖H q) and (H p, ‖ · ‖H p) in the same
way: If we do not assume N0 = M0 = 0, the functional CN (·) is not injective from
(H p, ‖ · ‖H p) into the dual of (H q, ‖ · ‖H q) because we always have [M,N ]0 = 0.
In Jacod (1979) this problem on the initial value does not appear. The difference is
that in Jacod (1979), the convention X0− := 0 for the left-hand limit of the initial
value of a càdlàg process X is used and from this it follows that [M,N ]0 = M0N0.

1.3.2. Stochastic Integral for Local Martingales

In this part we briefly recall the definition of the stochastic integral with respect to a
local martingale for the largest class of predictable processes such that the stochastic
integral remains a local martingale. Let M be a local martingale and q ∈ [1,+∞).
For every measurable process H we introduce the norm

‖H‖Lq(M) := ‖(H2 · [M,M ]∞)1/2‖q. (1.25)

Then we introduce the following class of processes:

Lq(M) := {H predictable process : ‖H‖Lq(M) < +∞}. (1.26)

We call Lq(M) the space of integrands of order q for the local martingale M . The
classes Lqloc(M) are introduced from Lq(M) in following way: We say that a predict-
able process H belongs to Lqloc(M) if there exists an increasing sequence (Tn)n≥0 of
stopping time such that Tn ↑ +∞ and 1[0,Tn]H ∈ Lq(M). Although this procedure
is different from the usual localization procedure, we shall use the same termino-
logy and the same notations for both of them. Obviously, Lq(M) ⊆ Lp(M) and
Lqloc(M) ⊆ Lploc(M) if q ≥ p. We shall introduce the stochastic integral with respect
to a local martingale M for predictable processes belonging to L1

loc(M). We follow
Jacod (1979), II.§2.

In a first step we introduce the stochastic integral with respect to continuous local
martingales. Let M ∈M c

loc,0. In this special case the space Lqloc(M) coincides with

L1
loc(M) for every q ≥ 1. The inclusion L1

loc(M) ⊇ Lqloc(M) for every q ≥ 1 is clear.
For the converse inclusion we first observe that [M,M ] is an increasing process (cf.

§1.2.8). If H ∈ L1
loc(M), the process

(
H2 · [M,M ]

)1/2
is locally integrable. Hence it

assumes finite values at every time t and so also the process H2 · [M,M ] does. From
Jacod & Shiryaev (2000), Proposition I.3.5, the process H2 · [M,M ] is an increasing
process and furthermore is continuous because M is a continuous local martingale.
Therefore H2 · [M,M ] is locally bounded. In particular, this yields H ∈ Lqloc(M)
for every q ≥ 1. Then to introduce the stochastic integral of a process H ∈ L1

loc(M)
with respect to M ∈ M c

loc,0, it is enough, by localization, to define the stochastic

integral for H ∈ L2(M).
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We consider a continuous local martingale M ∈ M c
loc,0 and H ∈ L2(M). We

define the linear form C(·) by C(N) := E[H · [M,N ]∞], which is well-defined for
every N ∈H 2

0 . Because of Kunita–Watanabe’s inequality and of DBG’s inequality
(cf. (1.21) and (1.23)), we have

|C(N)| ≤ ‖H‖L2(M)‖[N,N ]1/2∞ ‖2
≤ c2‖H‖L2(M)‖N‖H 2

≤ c2‖H‖L2(M)‖N‖∗2 < +∞, N ∈H 2
0 ,

where in the last passage we used that the norm ‖ · ‖H 2 and the norm ‖ · ‖∗2 are
equivalent, as a consequence of Doob’s inequality (cf. (1.16)). Hence C(·) is linear
and continuous on (H 2

0 , ‖ · ‖∗2). The space (H 2
0 , ‖ · ‖∗2) is a reflexive Hilbert space

and therefore, because of Riesz’s Theorem, there exists a unique element X ∈ H 2
0

such that the functional C(·) can be represented as

C(N) := E[H · [M,N ]∞] = E[X∞N∞] =: (X,N)H 2
0
, N ∈H 2

0 , (1.27)

where (·, ·)H 2
0

denotes the scalar product in (H 2
0 , ‖ · ‖∗2). We give the following

definition.

1.3.2 Definition. Let M ∈M c
loc,0 and H ∈ L2(M). We call the unique element X

satisfying (1.27) the stochastic integral of H with respect to M and we denote it by
H ·M := X or by

∫ ·
0 HsdMs := X.

We notice that Definition 1.3.2 does not introduce any ambiguity with the notation
K ·A or

∫ ·
0 KsdAs used to denote the stochastic integral of a measurable process K

with respect to A ∈ V because if M ∈M c
loc ∩V , then M ≡ 0: It is well known that

any local martingale which belongs to V and is continuous is evanescent (cf. Jacod
& Shiryaev (2000), Lemma I.4.13 and I.4.14).

In Jacod (1979), Proposition 2.43, the following characterization of the stochastic
integral with respect to continuous local martingales is established: Let M ∈M c

loc,0

and H ∈ L2(M). Then H ·M ∈H 2,c
0 and it is the unique element of H 2

0 such that

[H ·M,N ] = H · [M,N ], N ∈H 2
0 . (1.28)

From Jacod (1979), formula (2.44), we have that, for every stopping time T ,

(H ·M)T = H ·MT = (1[0,T ]H) ·M. (1.29)

More generally, if M ∈ M c
loc,0 and H and K are locally bounded predictable pro-

cesses, then H ·(K ·M) = HK ·M . Indeed, by (1.29) this is true if H = 1[0,T ], where
T is a stopping time. To obtain the formula for a (locally) bounded predictable H is
now a standard procedure with the help of a monotone class argument (cf. §1.1.2).

We notice that for every N ∈ H 2
0 , because of the continuity of H ·M for M ∈

M c
loc,0 and H ∈ L2(M), the relation [H ·M,N ] = 〈H ·M,N〉 holds (cf. §1.2.8). It is

clear that the stochastic integral is linear in both the integrator and the integrand,
i.e., if M,N ∈M c

loc,0 and H ∈ L2(M)∩L2(N), then H · (M +N) = H ·M +H ·N ,

and if K ∈ L2(M), then (H +K) ·M = H ·M +K ·M .
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We now introduce the stochastic integral with respect to general local martingales
for predictable processes in H ∈ L1

loc(M). We do not go into details but we refer to
Jacod (1979) II.§2 for a complete and formal treatment of the topic. We recall that
any local martingale M can be decomposed in an a.s. unique way as in (1.9) in its
continuous and purely discontinuous parts M c and Md, respectively.

1.3.3 Definition. Let M ∈Mloc,0 and H ∈ L1
loc(M). The stochastic integral of H

with respect to M is the unique element X ∈Mloc,0 such that

Xc = H ·M c and ∆X = H∆M, (1.30)

where M c denotes the continuous part of the martingale M . We use the notation
H ·M := X or

∫ ·
0 HsdMs := X to denote the unique element X ∈Mloc,0 satisfying

(1.30).

Thanks to Lepingle (1977), if M ∈ Mloc,0 and H ∈ L1
loc(M), the element X ∈

Mloc,0 satisfying the properties of Definition 1.3.3 always exists and is unique. We
stress that by definition, H ·M0 = 0.

If M ∈ Mloc ∩ V and H ∈ L1
loc(M), then we can also introduce the integral of

Stiltjes–Lebesgue of H with respect to M . As proved in Jacod (1979), Remark 2.47,
in this case the stochastic integral and the integral of Stiltjes–Lebesgue of H with
respect to M coincide. Therefore it is not an abuse of notation to designate the
stochastic integral with respect to M ∈ Mloc,0 in the same way as we did for the
integral with respect to processes in V . The following proposition collects some
important properties of the stochastic integral. For the proof, cf. Jacod (1979),
Proposition 2.48.

1.3.4 Proposition. Let M ∈Mloc,0 and H ∈ L1
loc(M).

(i) H ·M is the unique element of Mloc,0 satisfying [H ·M,N ] = H · [M,N ], for
every N ∈Mloc,0.

(ii) H ·M ∈H q
0 (resp., H q

loc,0) if and only if H ∈ Lq(M) (resp., Lqloc(M)).

Sometimes one takes the characterization in Proposition 1.3.4.(i) as the definition
of the stochastic integral with respect to a local martingale (cf. Jacod (1979), Remark
2.49). Notice that any predictable and locally bounded process belongs to L1

loc(M).
Moreover, for every stopping time T and H ∈ L1

loc(M) we have

(H ·M)T = H ·MT = H1[0,T ] ·M (1.31)

More generally, if H and K are locally bounded and M ∈Mloc,0, then

H · (K ·M) = HK ·M. (1.32)

To verify (1.32) is immediate. Indeed, because (1.32) holds for continuous local
martingales, we have (H · (K ·M))c = H · (K ·M)c = H · (K ·M c) = HK ·M c and
∆(H · (K ·M)) = HK∆M . The assertion follows from Definition 1.3.3.

The class L1
loc(M) is the largest class of predictable integrands for the local mar-

tingale M such that the stochastic integral is again an element of Mloc,0. Indeed,
Proposition 1.3.4.(i) implies that H ·M ∈H 1

loc,0 if and only if H ∈ L1
loc(M). On the
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other side, we know that H 1
loc,0 = Mloc,0 (cf. Jacod (1979), Lemma 2.38) and this

proves the assertion.
It is clear that the stochastic integral is linear in both the integrand and the

integrator, i.e., if M,N ∈ Mloc,0 and H ∈ L2(M) ∩ L2(N), then H · (M + N) =
H ·M +H ·N , and if K ∈ L2(M), then (H +K) ·M = H ·M +K ·N .

In some literature the stochastic integral with respect to a local martingale M ∈
H 2

loc,0 is introduced for the class of predictable processes H satisfying the following

condition: E[H2·〈M,M〉∞] < +∞ (cf. Jacod & Shiryaev (2000), I.§4). However, this
class coincides with L2(M) because E[H2 · [M,M ]∞] = E[H2 · 〈M,M〉∞]. Indeed, for
M ∈H 2

loc,0, [M,M ] belongs to A +
loc and 〈M,M〉 is its compensator (cf. Proposition

1.2.11.(ii) and §1.2.3).
We conclude this part with an analogue of the theorem of Lebesgue on domin-

ated convergence for stochastic integrals. For the proof we refer to Jacod (1979),
Proposition 2.73.

1.3.5 Proposition. Let M ∈ Mloc; q ∈ [1,+∞) and (Hn)n∈N be a sequence of
predictable processes converging pointwise to a limit H. If there exists a K ∈ Lq(M)
such that |Hn| ≤ K for every n, then Hn ∈ Lq(M), H ∈ Lq(M) and Hn · M
converges in (H q

0 , ‖ · ‖H q) to H ·M .

1.3.3. Stochastic Integral for Semimartingales

In this part we present the stochastic integral with respect to a general semimartin-
gale X. For local martingales we have introduced the largest class of predictable pro-
cesses with respect to which the stochastic integral is again a local martingale. Now
we restrict our attention to some special cases of predictable integrands for which
the stochastic integral is again a semimartingale without considering the problem of
which is the largest class of predictable integrands preserving this property. For a
complete description of the topic we suggest Jacod (1979), Chapter II.

Let K be the following class of predictable processes:

K := {H predictable : 1(0,+∞)H is locally bounded}. (1.33)

We notice that H ∈ K is locally bounded if and only if H0 is bounded. To introduce
the stochastic integral with respect to a semimartingale X of a process in K, we put
together what we recalled in §1.2.3 and in §1.3.2, for the integral with respect to
processes of finite variation and with respect to local martingales, respectively.

Let X be a semimartingale and X = X0 + M + A be a semimartingale decom-
position of X, where M ∈ Mloc,0 and A ∈ V . If H ∈ K, then H ∈ L1

loc(M).
Furthermore, H · A is well defined as Stiltjes–Lebesgue integral, finite valued (be-
cause A0 = 0) and it belongs to V (cf. Jacod & Shiryaev (2000), Proposition I.3.5).
We put

H ·X := H ·M +H ·A. (1.34)

We need to show that the previous definition does not depend on the particular
semimartingale decomposition of X. Let A′ ∈ V and M ′ ∈ Mloc,0 be another
semimartingale decomposition of X and H ∈ K. All the integrals H ·M , H ·M ′,
H ·A andH ·A′ are well defined. MoreoverH ·A,H ·A′ ∈ V andH ·M,H ·M ′ ∈Mloc,0.
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From the identityM−M ′ = A′−A ∈Mloc∩V , we also getH ·(M−M ′) = H ·(A′−A).
Indeed, M −M ′ ∈Mloc∩V and in this case the stochastic integral and the Stiltjes–
Lebesgue integral of H with respect to (M − M ′) coincide. By linearity we get
H · M + H · A = H · M ′ + H · A′. Hence formula (1.34) defines the stochastic
integral for processes in K with respect to the semimartingale X independently of
the semimartingale decomposition of X.

1.3.6 Proposition. Let X be a semimartingale and H ∈ K. Then H ·X is again a
semimartingale and (1.34) is a semimartingale decomposition; (H · X)c = H · Xc;
∆(H · X) = H∆X and H · X is linear in both the integrand and the integrator.
Moreover, if K ∈ K, then H · (K ·X) = HK ·X. For every semimartingale Y , we
have [H ·X,Y ] = H · [X,Y ].

Proof. cf. Jacod (1979), Proposition 2.51.

Now we are ready to state Itô’s formula. Recall that for any càdlàg process X the
process X− belongs to K. We refer to Jacod (1979), Theorem 2.52.

1.3.7 Theorem. Let X1, . . . , Xd be semimartingales and f a two-times continuously
differentiable function from Rd into R. The process f(X) = (f(Xt))t≥0 is again a
semimartingale and

f(Xt) = f(X0)+

d∑
i=1

∂xif(X−) ·Xi
t +

1

2

d∑
i,j=1

∂2
xixjf(X−) · 〈(Xi)c, (Xj)c〉t

+
∑

0≤s≤t

{
f(Xs)− f(Xs−)−

d∑
i=1

∂xif(Xs−)∆Xi
s

}
,

where the symbols ∂xi and ∂2
xixj denote the partial derivative and the second partial

derivative, respectively.

An important corollary to Theorem 1.3.7 is the so called formula of integration
by parts. It states that for two semimartingales X and Y the identity

XY = X0Y0 +X− · Y + Y− ·X + [X,Y ] (1.35)

holds. To prove it, it suffices to apply Theorem 1.3.7 to the function f(x, y) := xy
and compare the result to (1.12).

Itô’s formula can be applied for two-times continuously differentiable transform-
ations of a semimartingale. Nevertheless, it is sometimes important to establish if
some less regular transformations of a semimartingale preserve the semimartingale
property. The next lemma gives an answer to this question in a special case which
we shall meet later.

1.3.8 Lemma. Let X be a semimartingale that does not vanish a.s. Then 1
X is

again a semimartingale.

Proof. We cannot apply directly Itô’s formula because the function f(x) := 1
x is

not two-times continuously differentiable on R. We choose two-time continuously
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differentiable functions fn, n ≥ 1, such that fn(x) = f(x) on {|x| ≥ 1
n}. By Theorem

1.3.7, fn(X) is a semimartingale, for every n ≥ 1. Now we define the sequence of
stopping times (Tn)n∈N by Tn := inf{t ≥ 0 : |Xt| < 1

n}, n ∈ N. Then Tn ↑ +∞ as
n → +∞ because X does not vanish. Moreover, 1[0,Tn)fn(X) is a semimartingale
and so

f(X)Tn =
(

1
X

)Tn = 1[0,Tn)
1
X + 1

XTn
1[Tn,+∞) = 1[0,Tn)fn(X) + 1

XTn
1[Tn,+∞)

is a semimartingale. Therefore we can conclude that f(X) is a semimartingale too
(cf. Protter (2005), Theorem II.6 and its corollary).

1.4. Stable Subspaces of Martingales

We recall that we fixed a complete probability space (Ω,F ,P) and a filtration F
satisfying the usual conditions. The aim of this section is to introduce a general
definition of predictable representation property (PRP) for an arbitrary family of
local martingales X ⊆Mloc,0(F). To achieve this goal we use the notion of generated
stable subspaces. The following definition is as Jacod (1979), Definition 4.1.

1.4.1 Definition. Let q ∈ [1,+∞). A linear subspace H of H q
0 is called a stable

subspace of H q
0 if:

(i) H is closed in (H q
0 , ‖ · ‖H q);

(ii) H is stable under stopping, that is, MT ∈H for every stopping time T and
every M ∈H .

The terminology “stable subspace” comes from the stability under stopping. On
the other side, the stopping operation is a particular case of stochastic integration.
Indeed, as we observed at p. 9, for any stopping time T the process 1[0,T ] is predict-
able and bounded. Hence for any M ∈ H q

0 and for any stopping time T we have
1[0,T ] ∈ Lq(M) and from formula (1.31) we get

MT = 1[0,T ] ·M.

From the previous formula, with the help of a monotone class argument (we recall
that the stochastic intervals of the form [0, T ] generate the predictable σ-algebra P,
cf. Jacod & Shiryaev (2000), Theorem I.2.2), it is immediate to obtain that a stable
subspace in H q

0 is stable under stochastic integration of locally bounded predictable
processes, i.e., H ·M ∈ H if M ∈ H and H is locally bounded and predictable.
More generally, the following proposition holds (cf. Jacod (1979), Proposition 4.3).

1.4.2 Proposition. A linear subspace H of H q
0 is a stable subspace of H q

0 if and
only if it is closed in (H q

0 , ‖ · ‖H q) and stable under stochastic integration, i.e.,
H ·M ∈H for every M ∈H and H ∈ Lq(M).

The definition of stable subspace in H q
0 leads to the notion of generated stable

subspace in H q
0 by a family X ⊆Mloc,0.



28 1. Preliminaries

1.4.3 Definition. Let X ⊆Mloc,0 and q ∈ [0,+∞). We denote the stable subspace
generated by X in H q

0 by L q(X ) and we define it as it follows:
(i) If X ⊆H q

0 , L q(X ) is the smallest stable subspace of H q
0 containing X .

(ii) If X ⊆Mloc,0, L q(X ) is defined as the stable subspace generated in H q
0 by

Xq :=
{
H ·M : H ∈ Lq(M), M ∈X

}
, i.e., L q(X ) := L q(Xq).

If X ⊆ H q
0 , the definition of stable subspace generated by X in H q

0 is well-
posed because the arbitrary intersection of stable is again a stable subspace of H q

0 .
We notice that, from Proposition 1.3.4.(ii), the system Xq introduced in Definition
1.4.3, is contained in H q

0 , for any X ⊆Mloc,0. Hence, for every family X ⊆Mloc,0,
L q(X ) is well defined and it is a stable subspace of H q

0 . Nevertheless, it is not
true, in general, that X ⊆ L q(X ) and, in the extreme case, it can happen that
L q(X ) contains only the null martingale (cf. Jacod (1979), Exercise 4.1).

If X ⊆ H q
loc,0, q ∈ [1,+∞), we can give a nice characterization of the stable

subspace generated by X in H q
0 .

1.4.4 Lemma. Let X ⊆ H q
loc,0. Then L q(X ) is the smallest stable subspace of

H q
0 containing H := {MT : M ∈X , T stopping time such that MT ∈H q

0 }.

Proof. Clearly H ⊆ H q
0 , hence, by Definition 1.4.3, L q(H ) is the smallest stable

subspace of H q
0 containing H . Because of X ⊆ Mloc,0, L q(X ) is the smallest

stable subspace of H q
0 containing Xq, where Xq is as in Definition 1.4.3. From

Proposition 1.4.2, H ⊆ Xq because for every stopping time T , 1[0,T ] ∈ Lq(M) and

MT = 1[0,T ] ·M . But this implies L q(H ) ⊆ L q(Xq) =: L q(X ) because L q(X )
is a stable subspace. Now we verify the inclusion Xq ⊆ L q(H ). If X ∈ Xq there
exists M ∈X and H ∈ Lq(M) such that X = H ·M . We choose a sequence (Tn)n∈N
of stopping times reducing M to H q

0 and put Xn := XTn . From Proposition 1.4.2,
we have Xn ∈ L q(H ) because Xn = (H ·M)Tn = H ·MTn and MTn ∈ H for
every n ∈ N. On the other side, Xn = H1[0,Tn] ·M . If we put Hn := H1[0,Tn], H

n

converges pointwise to H and |Hn| ≤ |H| ∈ Lq(M). Proposition 1.3.5 implies that
Xn converges to X in (H q

0 , ‖ · ‖H q). Hence X ∈ L q(H ) because L q(H ) is closed
in (H q

0 , ‖ · ‖H q). In conclusion, Xq ⊆ L q(H ) and by the stability of L q(H ), we
get L q(X ) := L q(Xq) ⊆ L q(H ).

We now formulate a result which gives a complete description of L q(X ) for
X ⊆Mloc,0. We refer to Jacod (1979), Theorem 4.6 and Proposition 4.7

1.4.5 Theorem. (i) If M ∈Mloc,0, then L q(M) = {H ·M, H ∈ Lq(M)}.
(ii) If X ⊆Mloc,0, then

L q(X ) = Span

( ⋃
M∈X

L q(M)

)
.

(H q
0 ,‖·‖H q )

In particular, from (i) it follows that every X ∈ L q(X ) can be represented as

X = lim
n→∞

mn∑
k=1

Hn,k ·Mn,k, Hn,k ∈ Lq(Mn,k), Mn,k ∈X , k, n ≥ 1,

where the limit is taken in (H q
0 , ‖ · ‖H q).
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Let M,N ∈Mloc,0 be orthogonal. If we consider H ∈ L1
loc(M) and K ∈ L1

loc(N)
the stochastic integrals X := H ·M and Y := K ·M need not to be again orthogonal
local martingales. The following lemma gives conditions on H and K to preserve
the orthogonality of H ·M and K ·N .

1.4.6 Lemma. Let M,N ∈Mloc,0 be orthogonal local martingales.

(i) If q ∈ (1,+∞) and p is its conjugate exponent, then L p(N)⊥L q(M). Fur-
thermore, for every H ∈ Lq(M) and K ∈ Lp(N) the process HK · [M,N ] belongs to
M0 and the process |HK| ·Var([M,N ]) is integrable.

(ii) If N ∈ BMO0, then N⊥L 1(M). Furthermore, for every H ∈ L1(M) the
process H · [M,N ] belongs to M0 and the process |H| ·Var([M,N ]) is integrable.

Proof. We show the first statement. Let q > 1 and p > 1 be its conjugate exponent.
For H ∈ Lq(M) and K ∈ Lp(N), by Proposition 1.3.4.(ii), we have H ·M ∈ H q

0

and K ·N ∈H p
0 . By Kunita–Watanabe’s inequality with U = 1 (cf. (1.21)) and by

Proposition 1.3.4.(i), we get

E[Var([H ·M,K ·N ])∞] ≤ ‖([H ·M,H ·M ]∞)
1
2 ‖q‖([K ·N,K ·N ]∞)

1
2 ‖p

≤ ‖(H2 · [M,M ]∞)
1
2 ‖q‖(K2 · [N,N ]∞)

1
2 ‖p

= ‖H‖Lq(M)‖K‖Lq(N) < +∞.

(1.36)

Hence [H ·M,K ·N ] ∈ A . Moreover, the process of finite variation [M,N ] belongs
to Mloc,0 because of the orthogonality of M and N (cf. Proposition 1.2.11.(i)). By
Proposition 1.3.4.(i), we have [H ·M,K · N ] = HK · [M,N ]. In particular, this
means that the process of finite variation HK · [M,N ] belongs to A . Because
[M,N ] is a local martingale of finite variation, we can apply Proposition 1.2.5.(iii)
to deduce that HK · [M,N ] is a local martingale. But then also [H ·M,K ·N ] is a
local martingale and this yields K ·N⊥H ·M (cf. Proposition 1.2.11.(i)). Because
of Theorem 1.4.5.(i) we can conclude that L p(N)⊥L q(M). We have proven that
the process HK · [M,N ] belongs to Mloc,0 ∩ A and so, by Proposition 1.2.5.(ii),
it belongs to M0. From Var([H ·M,K · N ]) = |HK| · Var([M,N ]) and (1.36) it
follows that |HK| · Var([M,N ]) is integrable and the proof is concluded. Part (ii)
can be verified in a similar way applying Fefferman’s inequality (cf. (1.22)) instead
of Kunita–Watanabe’s inequality.

In Theorem 1.4.5 we gave a complete description of the stable subspace generated
in H q

0 , q ≥ 1, by an arbitrary family X ⊆ Mloc,0. We now assume that X is a
countable family of orthogonal local martingales contained in H 2

loc,0 and we show

that the structure of the generated stable subspace L 2(X ) becomes much simpler
than that one expressed in Theorem 1.4.5. We need a preliminary lemma which is
purely analytical.

1.4.7 Lemma. Let H be a Hilbert space with the scalar product (·, ·)H and let ‖·‖H
be the norm induced by the scalar product. If (Hn)n≥1 ⊆H is a sequence of closed
pairwise orthogonal linear subspaces of H , then the linear subspace H̃ :=

⊕∞
n=1 Hn

is closed in (H , ‖ · ‖H ).
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Proof. Let (xi)i≥1 ⊆ H̃ be such that xi −→ x in (H , ‖ · ‖H ) as i → +∞. We
have to show that x ∈ H̃ . Because of xi ∈ H̃ , we can write it in a unique way as
xi =

∑∞
n=1 x

i
n, where xin ∈Hn and n ≥ 1. The sequence (xin)i≥1 ⊆Hn is a Cauchy

sequence in H . Indeed, because of the pairwise orthogonality of (Hn)n≥1

‖xin − xjn‖2H ≤
∞∑
n=1

‖xin − xjn‖2H ≤ ‖xi − xj‖2H −→ 0 as i, j → +∞.

The subspace Hn is closed and so there exists x̃n ∈ Hn such that xin −→ x̃n in H
as i→ +∞. Fatou’s lemma implies that

∞∑
n=1

‖xin − x̃n‖2H ≤ lim inf
j→+∞

∞∑
n=1

‖xin − xjn‖2H −→ 0 as i→ +∞ (1.37)

and, if i is big enough, it follows

∞∑
n=1

‖x̃n‖2H ≤ 2

( ∞∑
n=1

‖xin − x̃n‖2H +

∞∑
n=1

‖xin‖2H
)
< +∞.

Then we can put

x̃ :=
∞∑
n=1

x̃n, x̃n ∈Hn,

and, by definition, x̃ ∈ H̃ . Note that the left-hand side of (1.37) is just ‖xi− x̃‖H .
Because of (1.37), xi −→ x̃ in H as i→ +∞ and by the uniqueness of the limit we
conclude x = x̃ ∈ H̃ .

Now we apply Lemma 1.4.7 to describe the structure of the stable subspace gen-
erated in H 2

0 by X ⊆H 2
loc,0. We recall that the terminology “strongly orthogonal”

is used to denote orthogonal local martingale in case of ambiguity with the usual
orthogonality in a Hilbert space (cf. §1.2.7).

1.4.8 Theorem. Let X = {M1, . . . ,Mn, . . .} ⊆H 2
loc,0 be a countable set of strongly

orthogonal local martingales. Then (L 2(Mn))n≥1 is a sequence of closed, pairwise
strongly orthogonal subspaces of (H 2

0 , ‖ · ‖H 2) and

L 2(X ) =

∞⊕
n=1

L 2(Mn). (1.38)

In particular, any X ∈ L 2(X ) is of the form

X =

∞∑
n=1

Hn ·Mn, Hn ∈ L2(Mn), Mn ∈X , n ≥ 1, (1.39)

where the limit is taken in (H 2
0 , ‖ · ‖H 2).
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Proof. We put Hn := L 2(Mn). Because of Lemma 1.4.6, the sequence (Hn)n≥1 ⊆
H 2

0 is a sequence of closed, pairwise strongly orthogonal subspaces of (H 2
0 , ‖ · ‖H 2)

hence, a sequence of closed, orthogonal subspaces of the Hilbert space (H 2
0 , ‖ · ‖∗2)

(the norm ‖ · ‖∗2 was introduced in (1.4)). We set

H̃ :=
∞⊕
n=1

Hn

and, from Lemma 1.4.7, H̃ is closed in (H 2
0 , ‖ · ‖∗2). Thanks to Doob’s inequality

(cf. (1.16)) the norms ‖ · ‖∗2 and ‖ · ‖H 2 are equivalent and hence H̃ is closed also in
(H 2

0 , ‖ · ‖H 2). Obviously, H̃ is linear and stable under stopping, thus it is a stable
subspace of (H 2

0 , ‖ · ‖H 2). From Theorem 1.4.5.(ii), H̃ ⊆ L 2(X ). We show the
converse inclusion. Let M ∈X and let T be a stopping time such that MT ∈H 2

0 .
Because of (1.31) and Theorem 1.4.5.(i), MT ∈ L 2(M) and therefore MT ∈ H̃ .
Hence H̃ is a stable subspace containing

X T := {MT : M ∈X , T stopping time such that MT ∈H 2
0 }.

From Lemma 1.4.4, L 2(X ) is the smallest stable subspace of (H 2
0 , ‖ · ‖H 2) con-

taining X T so that L 2(X ) ⊆ H̃ and the identity L 2(X ) = H̃ is proven. Let
now X ∈ L 2(X ). By (1.38), X can be written as

X =

∞∑
n=1

Xn, Xn ∈Hn, n ≥ 1.

From Theorem 1.4.5.(i), any Xn ∈ Hn := L 2(Mn) is of the form Xn = Hn ·Mn

with Hn ∈ L2(Mn), n ≥ 1, and (1.39) is proven.

We are ready to give the definition of PRP for a subset X of Mloc,0.

1.4.9 Definition. Let X ⊆Mloc,0. We say that X has the H q-PRP, q ∈ [1,+∞),
with respect (or relative) to F if the stable subspace generated by X in H q

0 equals
H q

0 itself, i.e., L q(X ) = H q
0 .

We observe that if X ⊆ Mloc,0 has the H q-PRP, q ≥ 1, the decomposition
into a direct sum H q = L q(X ) ⊕ Lq(Ω,F0,P) holds. Indeed, if M ∈ H q, then
N := M −M0 ∈ H q

0 and M0 ∈ Lq(Ω,F0,P). Hence N ∈ L q(X ) and we can
decompose M in a unique way as M = M0 +N .

Now we investigate the relation between the H q-PRP of a family X ⊆ Mloc,0

and the set of local martingales which are orthogonal to X . The next definition
was stated in Jacod (1979), Condition 4.9.

1.4.10 Definition. Let X ⊆ Mloc,0 and q ∈ [1,+∞]. We say that X satisfies
condition Cq if every martingale M ∈ H q

0 (or, by localization, M ∈ H q
loc,0 ), such

that M⊥X , is evanescent.

We notice that, if X ⊆ Mloc,0 has the H q-PRP, then it has the H p-PRP, for
every p ∈ [1, q]. Moreover, if X satisfies condition Cq, then it satisfies also condition
Cp, for every p ∈ [q,+∞]. These results are easy to prove and are established in



32 1. Preliminaries

Jacod (1979), Proposition 4.10. The relation between the conditions Cq and the
H q-predictable representation properties is given by the following theorem. For the
proof cf. Jacod (1979), Theorem 4.11.

1.4.11 Theorem. Let X ⊆ Mloc,0, and q ∈ [1,+∞) with conjugate exponent
p ∈ (1,+∞].

(i) If X has the H q-PRP, then it also satisfies condition Cp.
(ii) X ⊆H q

loc,0 has the H q-PRP if and only if it satisfies condition Cp.

We stress that X ⊆ Mloc,0 satisfies condition C∞ if and only if it possesses the
H 1-PRP. Indeed, H 1

loc,0 coincides with Mloc,0 (cf. Jacod (1979), Lemma 2.38) and
the assertion follows from Theorem 1.4.11.(ii).

Condition C1 is the strongest of the conditions Cq (cf. Jacod (1979), Proposition
4.10), i.e., if X satisfies condition C1, all the conditions Cq are equivalent. If
X ⊆ H q

loc,0 for every q ≥ 1, e.g. X ⊆ H ∞
loc,0, and it satisfies condition C1, then

from Theorem 1.4.11, X has the H q-PRP, for every q ∈ [1,+∞). Examples of
families X ⊆ Mloc,0 satisfying condition C1 are the case in which X ⊆ M c

loc,0 or
the one in which X consists of finitely many local martingales, as showed in Jacod
(1979), Proposition 4.13 and 4.67.

The problem of finding sufficient conditions for a family of Mloc,0 to have the
H 1-PRP can be approached in an elegant alternative way looking at the solutions
of an appropriate martingale problem. Let (Ω, F̃ ) be a measurable space and F̃ a
right-continuous filtration. We consider a family X of F̃-adapted processes. We say
that a probability measure P on the measurable space (Ω, F̃ ) is a solution of the
martingale problem associated with X if X ⊆Mloc(P, F̃). We denote by Q(X ) the
set of all the probability measures on (Ω, F̃ ) which are solutions of the martingale
problem associated with X . We conclude this chapter with a result due to Jacod
and Yor (cf. Jacod & Yor (1977)) which states the connection between the solutions
of the martingale problem associated with X and the H 1-PRP. For the formulation
we refer to Jacod (1979), Theorem 11.2 and 11.3.

1.4.12 Theorem. Let F̃ be a right-continuous filtration; X a family of adapted
processes starting at 0 and P ∈ Q(X ). Then L 1(X ) = H 1

0 (P, F̃) if F0 is trivial
and if the the following property holds: Any probability measure Q on (Ω, F̃ ) which
is equivalent to P on F̃ and belongs to Q(X ) is in fact identical to P on (Ω, F̃ ).



CHAPTER 2

Poisson Random Measures and Lévy Processes

In §2.1 we recall some basic properties of stochastically continuous processes with
independent increments relative to a filtration. As common in the literature, we call
these processes additive processes whereas we call additive processes with homogen-
eous increments Lévy processes. We refer to He, Wang & Yan (1992) and Sato (1999).
§2.2 concerns Poisson random measures relative to a filtration. In a first step, we
introduce the general notion of random measures but then we come to the discussion
of random measures which are associated with the jumps of a càdlàg process: We
state the definition of Poisson random measure relative to a filtration only for such
random measures. For this part we follow Jacod & Shiryaev (2000), Chapter II. Fur-
thermore, we define the stochastic integral of deterministic functions with respect to
a Poisson random measure and a compensated Poisson random measure. For this
part the reference books are Kallenberg (1997) and Gihman & Skorohod (1974). We
also show how to construct purely non-Gaussian Lévy processes by integration of
deterministic functions with respect to a Poisson random measure. In §2.3 we prove
that the jump measure of a Lévy process relative to a filtration F is a Poisson ran-
dom measure relative to F. We conclude the chapter with some well-known results
on Lévy processes, as Itô–Lévy decomposition, and describing the structure of the
natural filtration (cf. Example 1.2.1) of a Lévy process.

2.1. Additive Processes and Lévy Processes

We fix a probability space (Ω,F ,P) and a filtration F. For the moment, F is a general
filtration and we do not assume that the probability space is complete. We recall
that an F-adapted stochastic process X is said to have homogeneous one-dimensional
increments if (Xt−Xs) is distributed as Xt−s, for every 0 ≤ s ≤ t, while it is said to
have independent increments if the random vector (Xt0 , Xt1 −Xt0 , . . . Xtn −Xtn−1)
is independent, for every 0 ≤ t0 < t1 < . . . < tn, n ∈ N. We say that an adapted
process X has F-independent increments if (Xt − Xs) is independent of Fs, for
every 0 ≤ s ≤ t. Notice that a process with independent and homogeneous one-
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dimensional increments has also homogeneous n-dimensional increments, for every
n ≥ 1. In this case we simply say thatX has homogeneous increments. To verify that
an adapted process with F-independent increments is an F-martingale is a simple
task:

2.1.1 Lemma. Let X be an adapted process with F-independent increments such
that X0 = 0. Then X is a martingale (not necessarily càdlàg) if and only if the
random variable Xt is integrable and E[Xt] = 0, for every t ≥ 0.

Proof. If X is a process with F-independent increments such that X0 = 0 and a (not
necessarily càdlàg) martingale then E[Xt] = E[X0] = 0, t ≥ 0. Conversely, if X is a
process with F-independent increments such that X0 = 0 and that E[Xt] = 0, t ≥ 0,
we get

E[Xt|Fs] = E[Xt −Xs|Fs] +Xs = E[Xt −Xs] +Xs = Xs,

proving that X is an F-martingale.

The F-independence of the increments and the homogeneity of the one-dimensional
increments are stable under convergence in probability, as the following lemma
shows.

2.1.2 Lemma. Let X be an F-adapted process. If (Xn)n≥1 is a sequence of processes
with F-independent increments (resp., homogeneous one-dimensional increments)
such that Xn

t converges to Xt in probability, for every t ≥ 0, as n → +∞, then X
has F-independent increments (resp., homogeneous one-dimensional increments).

Proof. We assume that the sequence (Xn)n≥1 has F-independent increments (resp.,
homogeneous one-dimensional increments). For every 0 ≤ s ≤ t, we have

E[eiu(Xn
t −Xn

s )|Fs] = E[eiu(Xn
t −Xn

s )] (resp., E[eiu(Xn
t −Xn

s )] = E[eiuX
n
t−s ]), u ∈ R.

Letting n converge to +∞ in the previous formula and applying the theorem of
Lebesgue on dominated convergence we get

E[eiu(Xt−Xs)|Fs] = E[eiu(Xt−Xs)], ( resp., E[eiu(Xt−Xs)] = E[eiuXt−s ]), u ∈ R,

which concludes the proof.

In this work we only consider processes with independent increments which are
also stochastically continuous (cf. (1.1)). If F is a filtration satisfying the usual
conditions, a stochastically continuous adapted process with F-independent incre-
ments has a unique càdlàg modification which is again a stochastically continuous
adapted process with F-independent increments (cf., e.g., He, Wang & Yan (1992),
Theorem 2.68). We observe that any process X with one-dimensional homogen-
eous increments such that X0 = 0 a.s. and that Xt −→ 0 in probability as t ↓ 0 is
stochastically continuous. Indeed,

lim
s→t
|Xt −Xs| = lim

u→0
|Xu| = 0,

where the limits are considered in probability and the equalities in distribution. In
particular, any càdlàg process with one-dimensional homogeneous increments which
starts at zero is stochastically continuous.
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2.1.3 Definition. Let X be an adapted and stochastically continuous process such
that X0 = 0.

(i) We say that X is an additive process in law if it has independent increments.
(ii) If X is a càdlàg additive process in law, we simply call it an additive process.
(iii) We say that X is an additive process in law relative to the filtration F if it has

F-independent increments. If X is also càdlàg, we simply call it an additive process
relative to F.

The notation (X,F) emphasizes the filtration relative to which X is an additive
process (resp., an additive process in law) and sometimes we simply say that (X,F)
is an additive process (resp., an additive process in law) to mean that X is an
additive process (resp., an additive process in law) relative to the filtration F. Let
X be an additive process (resp., an additive process in law). We use the same
notation introduced in Example 1.2.1: F̃X is the filtration generated by X; F̃X+ is

the smallest right-continuous filtration containing F̃X ; FX is the P-completion of F̃X
in F ∨N (P), i.e., FX = (F̃X

t ∨N (P)), where N (P) denotes the collection of the
P-null sets, and FX+ is the natural filtration of X.

2.1.4 Proposition. Let X be an adapted stochastically continuous process such that
X0 = 0.

(i) If X is an additive process in law, then FX satisfies the usual conditions.
(ii) If (X,F) is an additive process in law, then X is an additive process in law.
(iii) The following statements are equivalent:

(a) X is an additive process in law.
(b) (X, F̃X) is an additive process in law.
(c) (X, F̃X+ ) is an additive process in law.
(d) (X,FX) is an additive process in law.
(e) (X,FX+ ) is an additive process in law.

Proof. For the proof of (i) we refer to Wang (1981). The other statements are
clear.

A relevant subclass of additive processes, which we are going to introduce, are
Lévy processes.

2.1.5 Definition. (i) We say that an additive process (resp., an additive process
in law) is a Lévy process (resp., a Lévy process in law) if it has also homogeneous
increments.

(ii) We say that an additive process (resp., an additive process in law) relative
to F is a Lévy process (resp., a Lévy process in law) relative to F if it has also
homogeneous increments.

Let L be a Lévy process (resp., a Lévy process in law) relative to F. The notation
(L,F) emphasizes the filtration with respect to which L is a Lévy process (resp.,
a Lévy process in law) and sometimes we simply say that (L,F) is a Lévy process
(resp., a Lévy process in law) to mean that L is a Lévy process (resp., a Lévy process
in law) relative to F.

A Lévy process with bounded jumps has a finite moment of every order, as the
following proposition states.
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2.1.6 Proposition. Let (L,F) be a Lévy process with bounded jumps, i.e., such
that |∆Lt| ≤ c, for every t ≥ 0, a.s. Then for every t ≥ 0, the random variable Lmt
belongs to L1(P), for every m ∈ N, thus,

E[|Lt|m] < +∞, t ≥ 0, m ∈ N.

The proof of Proposition 2.1.6 can be find in Appelbaum (2009), Theorem 2.4.7
and it is given in an elementary way, only making use of the strong Markov property
of a Lévy process with respect to its natural filtration.

We now assume that the filtration F satisfies the usual conditions. We also require
that the probability space (Ω,F ,P) is complete. We keep these assumptions for all
the remaining part of this chapter. First examples of additive processes relative to
F are the Poisson process and the Wiener process, while the homogeneous Poisson
process and the standard Wiener process are examples of Lévy processes relative to
F (cf. §1.2.4 and §1.2.6).

For an additive process in law X, we denote by ϕ the characteristic function of
X, i.e.,

ϕt(u) := E[exp(iuXt)], t ≥ 0, u ∈ R. (2.1)

Because of the stochastic continuity, it is easy to see that the characteristic function
ϕ of an additive process X is continuous in both the variables t and u. Additive
processes in law are processes with infinitely divisible distribution. We do not go fur-
ther into details but we only recall that a well-known property of infinitely divisible
distribution is that ϕt(u) 6= 0, u ∈ R, t ≥ 0 (cf. He, Wang & Yan (1992), Lemma
2.65 or also Sato (1999), Lemma 7.5). Let X be an additive process relative to F.
We introduce the process Z = (Zt)t≥0 by

Zt := ϕt(u)−1 exp(iuXt), t ≥ 0, u ∈ R. (2.2)

Because ϕt(u) 6= 0, (2.2) is well posed. We remark that the process Z depends
also on the parameter u and so we should write Z(u) but we write only Z to keep
notations simpler. In He, Wang & Yan (1992), Lemma 2.66, it is proven that the
process Z is an F-martingale. We call the process Z the martingale associated with
X.

While Lévy processes are always semimartingales, as we shall see later, the same
is not true for additive processes. However, necessary and sufficient conditions can
be given for an additive process (X,F) to be a semimartingale:

2.1.7 Theorem. Let (X,F) be an additive process. If it is a semimartingale, then
for all u ∈ R the function t 7→ ϕt(u) is of finite variation. Conversely, if for some
u 6= 0, t 7→ ϕt(u) is of finite variation, then X is a semimartingale.

Proof. This result is formulated in He, Wang & Yan (1992), Theorem 11.34. How-
ever, they only show that if for some u 6= 0, the function t 7→ ϕt(u) is of finite
variation, then X is a semimartingale and we do not verify it again. The other
implication of the theorem is left as an exercise and therefore we give now a proof of
it. Assume that X is a semimartingale. Because of Itô’s formula exp(iuX) is a semi-

martingale. On the other side, Zt 6= 0 because of its definition and ϕt(u) = exp(iuXt)
Zt

.
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By Lemma 1.3.8 (adapted to complex-valued processes), 1
Z is a semimartingale and

Itô’s formula implies that (ϕt(u))t≥0 is a semimartingale. By Jacod & Shiryaev
(2000), Proposition I.4.27, it is of finite variation.

We now formulate a theorem which gives sufficient conditions for a family of
additive processes which are also semimartingales to be independent.

2.1.8 Theorem. Let X1, . . . , Xm be semimartingales and additive processes relative
to F. If

[Xj , Xk] = 0, j, k = 1, . . . ,m; j 6= k,

then the random vector (X1
t − X1

s , . . . , X
m
t − Xm

s ) is independent of Fs, for every
0 ≤ s ≤ t. Moreover, the vector (X1, . . . , Xm) of additive processes is independent.

Theorem 2.1.8 is of great importance for the further development. On the other
side, a detailed proof of it requires some preparation and several preliminary lemmas.
For this reason we postpone the discussion of its proof to Appendix A. A similar
result can be found in He, Wang & Yan (1992), Theorem 11.43 but the statement
of Theorem 2.1.8 and the proof which we shall give differs in some parts from He,
Wang & Yan (1992).

2.2. Poisson Random Measures

We devote this section to Poisson random measures relative to a filtration. We do
not consider general Poisson random measures. Rather we restrict our attention to
random measures associated with the jumps of adapted càdlàg processes and con-
sider only the homogeneous case. Before we need to introduce the notion of random
measure and of integer-valued random measure. Of particular interest will be the
part concerning the definition of the stochastic integral of deterministic functions
with respect to a Poisson random measure and with respect to a compensated Pois-
son random measure. We recall that we fixed a complete probability space (Ω,F ,P)
and a filtration F satisfying the usual conditions. For the sake of simplicity, we
introduce the following notation:

(E,B(E)) := (R+ × R,B(R+)⊗B(R)). (2.3)

2.2.1. The Jump Measure of a càdlàg Process

A random measure M on (E,B(E)) is a mapping on Ω×B(E) in [0,+∞] such that:
(i) M(·, A) is a random variable for every A ∈ B(E).
(ii) M(ω, ·) is a measure on (E,B(E)) such that M(ω; {0} × R) = 0, ω ∈ Ω.

If M is a random measure on (E,B(E)), we write

M(A) := M(ω,A), A ∈ B(E).

For any measurable set A, M(A) is a nonnegative random variable on (Ω,F ,P). We
can therefore introduce the expectation of M(A) (note that, by definition, M(A) ≥
0). We call intensity measure of M the mapping m on B(E) in [0,+∞] defined by

m(A) := E[M(A)]. (2.4)
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The intensity measure m is a (deterministic) measure on (E,B(E)). Indeed, m(∅) =
0 because M(ω, ∅) = 0, for every ω, M(ω, ·) being a measure. The σ-additivity of m
follows from the theorem of B. Levi on monotone convergence (cf. Theorem 1.1.4).

We say that a random measure M on (E,B(E)) is an integer-valued random
measure if M(A) takes values in N ∪ {+∞}, for every A ∈ B(E). Integer-valued
random measures are of special importance because of the relation that they have
with càdlàg adapted processes. Let X be a càdlàg adapted process. For every
A ∈ B(E) we define on (E,B(E)) the random measure M by

M(ω;A) =
∑
s≥0

1{∆Xs(ω)6=0}1A(s,∆Xs(ω)), ω ∈ Ω, A ∈ B(E). (2.5)

2.2.1 Proposition. Let X be an adapted càdlàg process with values in R. Then
the random measure M defined on (E,B(E)) by (2.5) is an integer-valued random
measure.

Proof. Cf. Jacod & Shiryaev (2000), Proposition I.1.16.

We call the integer-valued random measure M defined in (2.5) the jump measure
of X. Let X be an F-adapted càdlàg process and let M be its jump measure. It is
easy to see that M({t} × R) ∈ {0, 1}. Indeed, from the definition of M, we get

M({t} × R) =
∑

s≥0 1{∆Xs 6=0}1{t}×R(s,∆Xs)

= 1{∆Xt 6=0}1{t}×R(t,∆Xt)

= 1{∆Xt 6=0} ∈ {0, 1}.

If A ∈ B(E), we define the process NA = (NA
t )t≥0 by

NA
t := M(A ∩ [0, t]× R). (2.6)

2.2.2 Lemma. Let X be an F-adapted càdlàg process and let M be its jump measure
with intensity measure m. If A ∈ B(E) is such that M(A ∩ [0, t] × R) < +∞ for
every t ≥ 0, then the process NA introduced in (2.6) is a simple point process.

Proof. By definition, the process NA is increasing. Proposition 2.2.1 implies that M
is an integer-valued random measure and so NA

t ∈ N, t ≥ 0. Furthermore, we have
M(A∩ [0, t]×R) < +∞ for every t ≥ 0 which yields M(A∩ [0, t+ 1

n ]×R) < +∞ for
every n ≥ 1 and M(A ∩ [0, t + 1

n ] × R) ↓ M(A ∩ [0, t] × R) as n → +∞. Therefore
NA is right-continuous. The left-limit of NA

t is given by M(A ∩ [0, t) × R) < +∞.
Thus, NA is a càdlàg increasing process. For every t ≥ 0, NA

t− = M(A ∩ [0, t) × R)
and from this it follows that

∆NA
t = M(A ∩ {t} × R) ≤ M({t} × R) ∈ {0, 1}.

We know that M(A∩{t}×R) ∈ N, because M is integer-valued and so the previous
formula yields ∆NA ∈ {0, 1}. It remains to prove that NA is an F-adapted process.
To this aim, we recall that for any càdlàg process X the random set {∆X 6= 0} is a
thin set, i.e., there exists a sequence of F-stopping times (Tn)n≥1 such that

{∆X 6= 0} =
∞⋃
n=1

[Tn]
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and the sequence (Tn)n≥1 can be chosen is such a way that [Tn] ∩ [Tm] = ∅, m 6= n.
The sequence (Tn)n≥1 is called an exhausting sequence for the jumps of X. For
this result, cf. Jacod & Shiryaev (2000), Proposition I.1.32. For A ∈ E such that
M(A ∩ [0, t]× R) < +∞, we have

NA
t = M(A ∩ [0, t]× R) =

∑
0≤s≤t 1{∆Xs 6=0}1A(s,∆Xs)

=
∑∞

n:Tn≤t 1A(Tn,∆XTn),

where (Tn)n≥1 is an exhausting sequence for the jumps of X such that [Tn]∩[Tm] = ∅,
m 6= n. The process ∆X is an optional process and therefore the random variable
∆XTn is FTn-measurable, for every n ≥ 1 (cf. Jacod & Shiryaev (2000), Proposition
I.1.21). Hence 1A(Tn,∆XTn) is FTn-measurable and therefore 1A(Tn,∆XTn)1{Tn≤t}
is Ft-measurable, because Tn is a stopping time for every n ≥ 1. The proof is now
concluded

We notice that if A ∈ B(E) is such that M(A) < +∞, then it satisfies the
assumptions of Lemma 2.2.2. However it is not true that if A ∈ B(E) is such that
M(A ∩ [0, t] × R) for every t ≥ 0, then M(A) < +∞. For example, if we fix ε > 0,
then the set R+ × {|x| > ε} has, in general, not finite measure with respect to M.
On the other side, M([0, t] × {|x| > ε}) < +∞ because M is the jump measure of
a càdlàg process. The assumption of Lemma 2.2.2 can be weakened requiring that
M(A∩ [0, t]×R) < +∞ a.s. for every t ≥ 0. In this case the process NA introduced
in (2.6) is defined only a.s. and therefore the statement of Lemma 2.2.2 holds a.s.
To extend the definition of NA everywhere we can set NA

t (ω) = 0 on the exceptional
set on which it is not defined by (2.6). The filtration F satisfies the usual conditions
and this version of the process NA is adapted and càdlàg. We denote this process
again by NA and obviously the statement of Lemma 2.2.2 holds also for such a
modification.

2.2.2. Definition of Poisson Random Measures

We consider an F-adapted càdlàg process X with jump measure M. Let m be the
intensity measure of M. Thanks to Proposition 2.2.1, we know that the random
measure M is an integer-valued random measure. Now we are going to discuss the
case in which the jump measure of X is a homogeneous Poisson random measure
relative to the filtration F. The definition of a Poisson random measure relative to
a filtration can be given in full generality, without relating it to the jump measure
of an adapted càdlàg process. Such a general definition requires some technical pre-
paration which would exceed the purpose of this thesis. For the complete treatment
of the topic we refer to Jacod & Shiryaev (2000), Chapter II.

2.2.3 Definition. Let X be an F-adapted process and let M be its jump measure
with intensity measure m (cf. (2.5) and (2.4), respectively). We say that M is a
Poisson random measure relative to the filtration F if:

(i) The intensity measure m is of the form m = λ+⊗µ, where λ+ is the Lebesgue
measure on (R+,B(R+)) and µ is a σ-finite measure on (R,B(R)).

(ii) For every fixed s ∈ R+ and every A ∈ B(E) such that A ⊆ (s,+∞) × R,
m(A) < +∞, the random variable M(A) is independent of Fs.
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We remark that if X is a càdlàg process and its jump measure M is a Poisson
random measure relative to F, then the process X has no fixed-time discontinuities
a.s. Indeed, we have m({t} × R) = λ+({t})µ(R). Because µ is σ-finite, this implies
m({t}×R) = 0. Therefore E[M({t}×R)] = 0 and so M({t}×R) = 0 a.s., t ≥ 0. The
definition of Poisson random measure relative to a filtration may appear different
from the usual definition of Poisson random measure (cf., e.g., Sato (1999), Definition
19.1). We are going to prove that a Poisson random measure relative to a filtration
is also a Poisson random measure in the usual sense. To this aim the first step that
we do is to show that if M is a Poisson random measure relative to F and A ∈ B(E)
is such that m(A) < +∞, then the process NA introduced in (2.6) is a Poisson
process relative to F (cf. Definition 1.2.6).

2.2.4 Lemma. Let M be the jump measure of a càdlàg adapted process X with
intensity measure m. If M is a Poisson random measure relative to F, then for
every set A ∈ B(E) such that m(A ∩ [0, t] × R) < +∞, t ≥ 0, the process NA

introduced in (2.6) is an F-adapted Poisson process relative to the filtration F with
intensity function aA(·) := m(A ∩ [0, ·]× R).

Proof. We are going to prove that under the stated assumptions the process NA

fulfills all the properties of Definition 1.2.6. Because of m(A ∩ [0, t]× R) < +∞ for
every t ≥ 0, it follows that M(A∩ [0, t]×R) < +∞ a.s. for every t ≥ 0. From Lemma
2.2.2 and the comment following it, the process NA is an F-adapted simple point
process. Moreover, m(A ∩ [0, t]×R) < +∞, t ≥ 0, yields NA

t ∈ L1(P), t ≥ 0. Thus,

aA(t) := E[NA
t ] = m(A∩[0, t]×R+) = (λ+⊗µ)(A∩[0, t]×R+) < +∞, t ≥ 0. (2.7)

The previous equalities imply that aA(·) is a continuous function because λ+ is
the Lebesgue measure on R+. It remains to prove that NA has F-independent
increments. But this is immediate from the properties of M. Indeed,

NA
t −NA

s = M(A ∩ (s, t]× R), 0 ≤ s ≤ t,

and A∩(s, t]×R ⊆ (s,+∞)×R. Because M is a Poisson random measure relative to
the filtration F, it follows that NA

t −NA
s is independent of Fs, 0 ≤ s ≤ t. Therefore

(NA,F) is a Poisson process relative to F with intensity function aA(·).

We are ready to prove that a Poisson random measure relative to the filtration F
is also a Poisson random measure in the usual sense.

2.2.5 Theorem. Let M be the jump measure of an F-adapted càdlàg process X with
intensity measure m. If M is a Poisson random measure relative to the filtration F,
then it has the following properties:

(i) For every A ∈ B(E) such that m(A) < +∞, the random variable M(A) is
Poisson distributed with parameter m(A).

(ii) If A1, . . . , Am, m ≥ 1, are B(E)-measurable pairwise disjoint subsets such
that m(Aj) < +∞, j = 1, . . . ,m, then the vector (M(A1), · · · ,M(Am)) of random
variable is independent.

(iii) If A1, . . . , Am, m ≥ 1, are B(E)-measurable subsets such that m(Aj) < +∞
and that Aj ⊆ (s,+∞) × R, s > 0, j = 1, . . . ,m, then (M(A1), · · · ,M(Am)) is a
random vector independent of Fs.
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Proof. Let A ∈ B(E) be such that m(A) < +∞. We show that M(A) is Poisson
distributed with parameter m(A). By Lemma 2.2.4, the process (NA,F) is a Poisson
process with intensity function a(·) = m(A ∩ [0, ·]× R) and therefore, by (1.3)

E
[
eiuN

A
t
]

= exp((eiu − 1)m(A ∩ [0, t]× R)).

When t → +∞, applying the theorem of Lebesgue on dominated convergence, we
obtain

E
[
eiuM(A)

]
= exp

(
(eiu − 1)m(A)

)
, u ∈ R.

In particular, this implies that M(A) is Poisson distributed with parameter m(A)
and (i) is proven. Let A1, . . . , Am ∈ B(E) be pairwise disjoint and such that
m(Aj) < +∞. By Lemma 2.2.4, we know that the process (NAj ,F) is a Pois-
son process, hence an additive process and a semimartingale (it is a simple point
process), j = 1, . . . ,m. Furthermore,

[NAj , NAk ]t =
∑

0<s≤t ∆N
Aj
s ∆NAk

s

=
∑

0<s≤t ∆M(Aj ∩ [0, s]× R)∆M(Ak ∩ [0, s]× R)

=
∑

0<s≤t 1{∆Xs 6=0}1Aj∩Ak(s,∆Xs) = 0, j, k = 1, . . . ,m, j 6= k.

(2.8)

Now we discuss (ii). If A1, . . . , Am are pairwise disjoint subsets of E such that
m(Aj) < +∞, because of (2.8) and Theorem 2.1.8, the vector (NA1 , . . . NAm) is
an independent vector of Poisson processes and therefore (M(A1), . . . ,M(Am)) =
(NA1
∞ , . . . , NAm

∞ ) is an independent vector of random variables. To see (iii) it is
sufficient to prove it for pairwise disjoint sets. Indeed, we can always reduce the
general situation to this particular case by considering an appropriate partition of
the union of the Ajs. If A1, . . . , Am are pairwise disjoint subsets of E such that
m(Aj) < +∞ and that Aj ⊆ (s,+∞) × R, j = 1, . . . ,m, because of (2.8) and of
Theorem 2.1.8, the vector (NA1

t − NA1
s , . . . , NAm

t − NAm
s ) is independent of Fs,

0 ≤ s ≤ t. On the other side, Aj ⊆ (s,+∞) × R implies N
Aj
s = 0, j = 1, . . . ,m.

This yields the vector (NA1
t , . . . , NAm

t ) is independent of Fs, t ≥ 0. Therefore
(M(A1), . . . ,M(Am)) = (NA1

∞ , . . . , NAm
∞ ) is independent of Fs.

2.2.3. The Stochastic Integral for Poisson Random Measures

Let X be an F-adapted càdlàg process. We assume that that jump measure of X is
a Poisson random measure relative to the filtration F with intensity measure m =
λ+ ⊗ µ. In this section we define the integral of deterministic measurable functions
with respect to M. We observe that this part remains valid also if M is a general
Poisson random measure relative to the filtration F (cf. Jacod & Shiryaev (2000),
Chapter II) and not only a homogeneous Poisson random measure which moreover
is the jump measure of an adapted càdlàg process. To simplify the terminology,
in this section we call a Poisson random measure relative to a filtration simply a
Poisson random measure. We recall that the definition of (E,B(E)) was given in
(2.3). For a deterministic numerical function f which is B(E)-measurable we have
introduced the notation

m(f) :=

∫
E
f(t, x) m(dt,dx)
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(cf. p.3) if the integral on the right-hand side exists. In particular m(f) is well
defined if f is nonnegative. We define the integral of f with respect to M ω-wise
in an analogous way, because M(ω, ·) is a (nonnegative) measure on (E,B(E))
for every ω ∈ Ω. If f is a nonnegative measurable function, then the integral∫
E f(t, x) M(ω,dt,dx) always exists. We shall use the notation M(f) for this random

variable with values in [0,+∞]. This definition extends to functions f of arbitrary
sign. More precisely, for any measurable function f on (E,B(E)), by Ωf we denote
the set of all ω ∈ Ω such that

∫
E f(t, x) M(ω,dt,dx) exists and is finite a.s. Obviously

Ωf ∈ F . We say that the integral of f with respect to M exists and is finite a.s. if
P[Ωf ] = 1. In this case the random variable M(f) defined by

M(ω, f) := M(f)(ω) :=


∫
E f(t, x) M(ω,dt,dx), if ω ∈ Ωf ;

0, otherwise;

(2.9)

is called the stochastic integral of f with respect to the Poisson random measure
M. Note that the stochastic integral M(f) exists and is finite a.s. if and only if
M(|f |) < +∞ a.s. We now state the so-called exponential formula (cf. Kallenberg
(1997), Lemma 10.2).

2.2.6 Lemma (Exponential Formula). Let f be a function on (E,B(E)). If f ≥ 0,
then

E[e−M(f)] = exp(m(e−f − 1)). (2.10)

Proof. First we take f ≥ 0 of the form f = u1A, where u ≥ 0 and A ∈ (E,B(E))
is such that m(A) < +∞. From Theorem 2.2.5, we know that M(A) is Poisson
distributed with parameter m(A). This implies

E[e−uM(A)] = exp((e−u − 1)m(A)).

Let now f be a simple function of the form f =
∑m

j=1 cj1Aj where cj ≥ 0 for
every j = 1, . . . ,m and A1, . . . , Am ∈ (E,B(E)) are pairwise disjoint sets such that
m(Aj) < +∞, for every j = 1, . . . ,m. Thanks to Theorem 2.2.5, the random vector
(M(A1), . . . ,M(Am)) is independent and so, from the previous step, we get

E[eM(−f)] = E
[
exp

(
−
∑m

j=1 cjM(Aj)

)]
=
∏m
j=1 exp((e−cj − 1)m(Aj))

= exp

(
−
∑m

j=1(e−cj − 1)m(Aj)

)
= exp(m(e−f − 1)).

If f is an arbitrary nonnegative function, it can be approximated by an increasing
sequence (fn)n∈N of simple functions and from the previous step formula (2.10) is
satisfied for every n ∈ N. We conclude the proof passing to the limit and applying
the theorem of B. Levi on monotone convergence (cf. Theorem 1.1.4).

Now we characterize, in terms of the intensity measure m, under which conditions
the integral of a deterministic function f with respect to M exists and is a.s. finite
(cf. Kallenberg (1997), Lemma 10.2).
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2.2.7 Proposition. Let M be a Poisson random measure on (E,B(E)) with intens-
ity measure m. Then M(f) exists and is finite a.s. if and only if m(|f | ∧ 1) < +∞.

Proof. If M(f) exists and is finite a.s., then, by definition, M(|f |) < +∞ a.s. Ap-
plying Lemma 2.2.6 to |f | and using the estimate c(|f | ∧ 1) ≥ 1 − e−f for some
constant c > 0, we deduce m(|f | ∧ 1) < +∞. Conversely, we now assume that
m(|f | ∧ 1) < +∞. We apply Lemma 2.2.6 to c|f |, where c > 0:

E[e−cM(|f |)] = exp(m(e−c|f | − 1)). (2.11)

Letting c converge to zero on the left-hand side of (2.11) and using the theorem of
Lebesgue on dominated convergence, we get E[e−cM(|f |)] −→ P[M(|f |) < +∞]. For
the right-hand side of (2.11) we observe that the inequality

|e−c|f | − 1| ≤ c|f | ∧ 2

holds. Because of c ↓ 0, we can assume c ∈ (0, 2] and so we get |e−c|f | − 1| ≤
2(|f | ∧ 1). We apply again the theorem of Lebesgue on dominated convergence to
get m(|e−c|f | − 1|) −→ 0. In conclusion we have

P[M(|f |) < +∞] = 1.

The following lemma can be shown in a similar way.

2.2.8 Lemma. Let f be a function on (E,B(E)). If m(|f | ∧ 1) < +∞, then

E[e−iM(f)] = exp(m(e−if − 1)). (2.12)

We now show how to compute the expectation of the random variable M(f), where
f is a function which belongs to L1(m).

2.2.9 Lemma. Let f ∈ L1(m). Then

E[M(f)] = m(f). (2.13)

Moreover, the stochastic integral with respect to M is a continuous operator on L1(m)
into L1(P).

Proof. For every nonnegative function f ∈ L1(m) formula (2.13) holds. Indeed, this
is true for indicator functions of the form 1A, A ∈ B(E), m(A) < +∞, and hence
for nonnegative simple functions f . For an arbitrary nonnegative function f we can
find a sequence (fn)n≥1 of nonnegative simple functions such that fn ↑ f pointwise
as n → +∞. The result follows applying the theorem of B. Levi on monotone
convergence (cf. Theorem 1.1.4). Clearly, formula (2.13) extends to functions f such
that m(|f |) < +∞. The statement on the continuity follows from

E[|M(f)|] ≤ E[M(|f |)] = m(|f |) < +∞.
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2.2.4. Compensated Poisson Random Measures

Let M be the jump measure of a càdlàg adapted process and a Poisson random
measure relative to F with intensity measure m = λ+⊗µ, where λ+ is the Lebesgue
measure on (R+,B(R+)) and µ a σ-finite measure on (R,B(R)). In this section we
define the compensated Poisson random measure and, using the theory of orthogonal
measures developed in Gihman & Skorohod (1974), we introduce the stochastic
integral of deterministic functions with respect to a compensated Poisson random
measure. First, we introduce the following ring of sets of E:

E := {A ∈ B(E) : m(A) < +∞}. (2.14)

To each set A ∈ E we associate the random variable M(A) by

M(A) := M(A)−m(A), A ∈ E . (2.15)

We remark that M is not defined on B(E) but only on E . Indeed, on B(E) ex-
pressions of the type “ +∞−∞” could appear. Notice that M defines a mapping
on Ω × E into (−∞,+∞] and that E[M(A)] = 0 for every A ∈ E . Now we recall
the notion of orthogonal measures (cf. Gihman & Skorohod (1974), IV§4). Let K
be a semiring of sets of E. We assume that to each A ∈ K there corresponds a
real-valued random variable ζ(A) with the following properties.

(i) ζ(A) ∈ L2(P) and ζ(∅) = 0.
(ii) ζ(A ∪B) = ζ(A) + ζ(B) a.s. for disjoint A and B in K .
(iii) E[ζ(A)ζ(B)] = α(A ∩B), where α is a set function on K .

The family ζ := {ζ(A), A ∈ K } of random variables satisfying the previous three
conditions is called an orthogonal random measure and α(·) is called structural func-
tion (of ζ).

2.2.10 Lemma. The family M := {M(A), A ∈ E } of random variables defined by
(2.15) is an orthogonal random measure on the ring E with structural function m.

Proof. It is clear that M(∅) = 0 and that M(A ∪ B) = M(A) + M(B) for disjoint
A and B in E . Because of Theorem 2.2.5, the random variable M(A) is Poisson
distributed with parameter m(A), for every A in E . Therefore, E[M(A)2] is the
variance of a Poisson-distributed random variable with parameter m(A), i.e.,

E[M(A)2] = E[M(A)] = m(A), A ∈ E . (2.16)

Because of m(A) < +∞ and of (2.16), we obtain M(A) ∈ L2(P), A ∈ E . It remains
to show that m is the structural function of M. For this aim, we notice that the
relation

M(A)M(B) = [M(A ∩B) + M(A \B)]× [M(A ∩B) + M(B \A)], A,B ∈ E ,

holds. This and (2.16), together with the fact that M(C) and M(D) are independent
if C and D are pairwise disjoint sets in E (cf. Theorem 2.2.5), yield

E[M(A)M(B)] = E[M(A ∩B)2] + E[M(A ∩B)M(A \B)]

+ E[M(A ∩B)M(B \A)] + E[M(A \B)M(B \A)]

= E[M(A ∩B)2] = m(A ∩B), A,B ∈ E ,

and the proof is concluded.
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We call the orthogonal random measure M defined by (2.15) on the ring E the com-
pensated Poisson random measure associated to the random measure M or simply
compensated Poisson random measure. We are going to define the stochastic integral
with respect to M for functions in L2(m). We start defining the stochastic integral
for functions belonging to the set D ⊆ L2(m) of simple functions:

D :=

{
f =

m∑
k=1

ak1Ak , (ak)
m
k=1 ⊆ R, (Ak)

m
k=1 ⊆ E pairwise disjoint

}
. (2.17)

For f ∈ D with the representation

f =
m∑
k=1

ak 1Ak , ak ∈ R, Ak ∈ E , k = 1, . . . ,m (2.18)

we define the elementary stochastic integral with respect to M, and denote it again
by M, by

M(f) :=

m∑
k=1

ak M(Ak), f ∈ D . (2.19)

One can verify in a standard way that the elementary stochastic integral with respect
to M defines a linear mapping on D into L2(P) and we omit the proof of this fact.
Moreover,

E[M(f)M(g)] = m(fg), f, g ∈ D . (2.20)

Because of the linearity of (2.19), it is enough to show (2.20) only for indicator func-
tions. If f = 1A and g = 1B, where A,B ∈ E , (2.20) is an immediate consequence
of Lemma 2.2.10. In particular we get M(f) ∈ L2(P), for every f ∈ D . Formula
(2.20) can be rephrased saying that (2.19) defines a linear isometric mapping on D
into L2(P). Now we extend the definition of elementary stochastic integral to every
function f ∈ L2(m) (cf. Gihman & Skorohod (1974), IV.§4 Theorem 1). We prelim-
inary note that the system D of simple functions is dense in L2(m). To see it, we
need only to verify that D satisfies the conditions of Lemma 1.1.8. The set of simple
functions is clearly such that σ(D) = B(E). Because E is a ring, D is ∩-stable and
so D is stable under multiplication. The measure m is σ-finite on E, hence there
exists a sequence (An)n∈N ⊆ E such that An ↑ E as n → +∞. Therefore, we can
construct a sequence (hn)n∈N ⊆ D converging pointwise to 1.

2.2.11 Theorem. There exists a unique (continuous) isometric mapping on L2(m)
into L2(P), again denoted by M, such that

M(1B) = M(B), B ∈ E . (2.21)

Proof. For a function f ∈ D , we have defined the elementary stochastic integral and
we know that it is an isometric mapping on D into L2(P). Moreover, by definition,
the elementary stochastic integral satisfies relation (2.21). The linear space D is
dense in L2(m), hence the elementary stochastic integral with respect to M, regarded
as a mapping from D into L2(P), has a unique isometric extension on L2(m). We
denote this extension again by M. We need to show the uniqueness of M satisfying
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(2.21). But for this it is enough to observe that any isometric mapping between two
Hilbert spaces is continuous. Relation (2.21) defines M uniquely on D and, by the
density of D in L2(m) and by continuity, uniquely on L2(m).

Let M be the unique isometric mapping of Theorem 2.2.11 and f ∈ L2(m). We call
M(f) the stochastic integral of f with respect to the compensated Poisson random
measure M. We can extend the definition of the stochastic integral with respect to
M also to functions in L1(m) as follows. Let f ∈ L1(m). We define the stochastic
integral of f with respect to M by

M(f) := M(f)−m(f). (2.22)

Of course, from Proposition 2.2.7, the right-hand side of (2.22) is well-defined and
finite-valued a.s. It remains to show that it is consistent with the definition of the
stochastic integral with respect to M.

2.2.12 Proposition. If f ∈ L1(m) ∩ L2(m), then M(f) and M(f) are both well-
defined and

M(f) = M(f)−m(f) a.s. (2.23)

Proof. By Proposition 2.2.7 and Theorem 2.2.11, the stochastic integrals M(f) and
M(f) are both well-defined and finite-valued a.s. for any f ∈ L1(m) ∩ L2(m). For
proving (2.23), in a first step we assume that f ∈ L1(m) ∩ L2(m) is such that
m({f 6= 0}) < +∞. Because D ⊆ L2(m) is a dense set, there exists a sequence
(fn)n≥1 ⊆ D converging to f in L2(m). Replacing, if necessary, fn with fn 1{f 6=0},
without loss of generality we can assume that fn vanishes outside of {f 6= 0}. This
implies that (fn)n≥1 converges in L1(m) as well. Relation (2.23), being obviously
true for every fn, now extends to f by the L2(m)-continuity of M and the L1(m)-
continuity of M and m. (cf. Theorem 2.2.11 and Lemma 2.2.9). In the case that
f ∈ L1(m)∩L2(m) is chosen arbitrarily, we define fn := f 1Bn where Bn ∈ E is such
that Bn ↑ E (such a sequence exists because m is a σ-finite measure on (E,B(E))).
Using the theorem of Lebesgue on dominated convergence, we observe that (fn)n≥1

converges to f in L1(m) and L2(m). Since m({fn 6= 0}) < +∞, we can apply the
first step and obtain (2.23) for every fn. Again by the continuity property of M, M
and m, we conclude that (2.23) remains valid for f .

We conclude this section by giving necessary and sufficient conditions for a B(E)-
measurable function f to be integrable with respect to M, i.e., to be such that M(f)
is well-defined and finite-valued a.s.

2.2.13 Theorem. Let f be a measurable function on (E,B(E)). The integral M(f)
exists and is a.s. finite if and only if m(f2 ∧ |f |) < +∞.

Proof. We first assume that m(f2 ∧ |f |) < +∞. We have

f = f1{|f |≤1} + f1{|f |>1}

with f1{|f |≤1} ∈ L2(m) and f1{|f |>1} ∈ L1(m). By Theorem 2.2.11, M(f1{|f |≤1})

exists and is a.s. finite. By Proposition 2.2.7 and Proposition 2.2.12, M(f1{|f |>1})
exists, is a.s. finite and consistent. By linearity we put

M(f) := M(f1{|f |≤1}) + M(f1{|f |>1}).
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Hence, M(f) exists, is a.s. finite and consistent. We do not verify the converse
implication and refer to Kallenberg (1997), Theorem 10.15 for a complete proof.

2.2.5. Construction of Lévy Processes

In §2.2.3 and §2.2.4 we have introduced the stochastic integral of deterministic func-
tions with respect to a Poisson random measure and the associated compensated
Poisson random measure, respectively. Now we want to apply the developed theory
to construct Lévy processes by integration of deterministic functions. We consider
a càdlàg process X with jump measure M. We assume that M is a Poisson random
measure relative to the filtration F. The intensity measure of M is m = λ+ ⊗ ν,
where λ+ is the Lebesgue measure on (R+,B(R+)), while ν is a σ-finite meas-
ure on (R,B(R)). We stress that this assumption implies that the process X has
no fixed time discontinuities a.s. Furthermore, we require that ν is a Lévy meas-
ure, i.e., ν({0}) = 0 and (x2 ∧ 1) ∈ L1(ν). Notice that the function h defined by
h(t, x) := 1[0,t]f(x) belongs to Lq(λ+ ⊗ ν) if and only if the function f belongs to
Lq(ν), q ≥ 1. We recall that, because F satisfies the usual conditions, every adap-
ted additive process in law relative to F has an adapted càdlàg modification which
is an additive process relative to F (cf. He, Wang & Yan (1992), Theorem 2.68).
In the sequel we do not distinguish an additive process in law from such a càdlàg
modification. We introduce the system of simple functions in Lq(ν), q ≥ 1, by

D :=

{
f =

∑m
j=1 aj 1Cj , aj ∈ R; Cj ∈ B(R) p.d., ν(Cj) < +∞

}
, (2.24)

where the acronym p.d. stands for pairwise disjoint.

2.2.14 Lemma. Let X be a càdlàg adapted process with jump measure M. If M is
a Poisson random measure relative to the filtration F with intensity measure λ+⊗ν,
then for every f ∈ D the process M(1[0,·]f) = (M(1[0,t]f))t≥0 is a Lévy process
relative to F.

Proof. Let f ∈ D have the representation f =
∑m

j=1 aj 1Cj . We put Aj := R+×Cj .
For every t ≥ 0 we have M(Aj ∩ [0, t]× R) < +∞ a.s. because m(Aj ∩ [0, t]× R) =
m([0, t]× Cj) = tν(Cj) < +∞ and the identity M(Aj ∩ [0, t] × R) = M([0, t]× Cj),
t ≥ 0, holds. Lemma 2.2.4 ensures that the process NAj = (M([0, t]× Cj))t≥0 is a
Poisson process relative to F. Therefore the process M(1[0,·]f) is càdlàg and adapted
because

M(1[0,t]f) =
m∑
j=1

ajM([0, t]× Cj).

Furthermore, M(1{0}f) = 0. For 0 ≤ s ≤ t, the function 1(s,t]f belongs to L1(λ+⊗ν)
and we can apply Lemma 2.2.8 to get

E
[
exp
(
iu(M(1[0,t]f)−M(1[0,s]f))

)]
= E

[
exp
(
iuM(1(s,t]f)

)]
= exp((t−s)ν(eiuf−1)).

This means, in particular, that M(1[0,·]f) has homogeneous one-dimensional incre-
ments. We show the F-independence of the increments. Obviously,

M(1[0,t]f)−M(1[0,s]f) = M(1(s,t]f) =

m∑
j=1

M((s, t]× Cj).
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The sets (s, t] × C1, . . . , (s, t] × Cm are pairwise disjoint because C1, . . . , Cm are.
Furthermore, (s, t] × Cj ⊆ (s,+∞) × R for every j = 1, . . . ,m. Hence, the vector
(M((s, t] × C1), . . . ,M((s, t] × Cm)) is an independent random vector independent
of Fs (cf. Theorem 2.2.5) and so M(1(s,t]f) is independent of Fs. We have that
M(1[0,·]f) starts at zero, is càdlàg and has homogeneous increments. This is sufficient
to assert that it is a stochastically continuous process. Therefore M(1[0,·]f) is a Lévy
process relative to F for every f ∈ D .

As a consequence of Lemma 1.1.8, the system D introduced in (2.24) is total in
Lq(ν), q ≥ 1. This allows to extend Lemma 2.2.14.

2.2.15 Proposition. Let X be a càdlàg adapted process with jump measure M. If M
is a Poisson random measure relative to the filtration F with intensity measure λ+⊗ν,
then for every f such that |f | ∧ 1 ∈ L1(ν) the process M(1[0,·]f) = (M(1[0,t]f))t≥0 is
a Lévy process relative to F.

Proof. First we assume f ∈ L1(ν). The system D is dense in L1(ν) and so there
exists a sequence (fn)n∈N ⊆ D such that fn −→ f in L1(ν) as n→ +∞. By Lemma
2.2.14, the sequence M(1[0,·]fn) is a sequence of Lévy processes relative to F. From
the linearity of the stochastic integral and Lemma 2.2.9 we get

0 ≤ E[|M(1[0,t]fn)−M(1[0,t]f)|] ≤ E[M(1[0,t]|fn − f |)]
= tν(|fn − f |) −→ 0, n→ +∞.

So we can conclude that M(1[0,t]fn) converges to M(1[0,t]f) in L1(P). Because the
filtration F satisfies the usual conditions, this implies that the process M(1[0,·]f)
is F-adapted. Furthermore, the L1(P)-convergence of M(1[0,t]fn) to M(1[0,t]f) im-
plies convergence in probability. By Lemma 2.1.2, M(1[0,·]f) is a process with
F-independent and homogeneous increments. Obviously, M(1[0,t]f) −→ 0 a.s. as
t ↓ 0 and from the homogeneity of the increments, we can assert that M(1[0,·]f)
is stochastically continuous (cf. p.34). In conclusion, (M(1[0,·]f),F) is a Lévy pro-
cess in law. Because the filtration F satisfies the usual conditions, we can find a
version of M(1[0,·]f) which is in fact a Lévy process relative to F, i.e., also càdlàg.
We do not distinguish these two processes and denote the càdlàg version again by
(M(1[0,·]f),F). Hence, for every f ∈ L1(P), the process (M(1[0,·]f),F) is a Lévy
process. We now weaken the assumptions and consider f such that |f | ∧ 1 ∈ L1(ν).
Because of Proposition 2.2.7, the stochastic integral M(1[0,t]f) exists and is finite
a.s. for every t ≥ 0. Denoting by f+ and f− the positive and the negative part of f ,
respectively, we have f± ≤ |f | so that f± ∧ 1 ∈ L1(ν) and the stochastic integrals
M(1[0,t]f

±) are well defined and the relation M(1[0,t]f) = M(1[0,t]f
+) −M(1[0,t]f

−)
holds a.s. Let us introduce the functions f±n := f±1{|f±|<n} and fn := f+

n − f−n ,
n ≥ 1. Then f±n ≥ 0 and f±n ↑ f± pointwise as n→ +∞. Furthermore, f±n ∈ L1(ν)
because f±n ≤ (f± ∧ n) ≤ n(f± ∧ 1) ∈ L1(ν). Therefore we also have fn ∈ L1(ν).
Hence M(1[0,t]f

±
n ) < +∞ a.s. t ≥ 0, n ≥ 1, and the theorem of B. Levi on monotone

convergence implies that M(1[0,t]f
±
n ) ↑ M(1[0,t]f

±) a.s. as n → +∞, t ≥ 0. Because
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of the previous step ((M(1[0,t]fn))t≥0,F) is a Lévy process for every n ≥ 1. Moreover,

lim
n→+∞

M(1[0,t]fn) = lim
n→+∞

M(1[0,t]f
+
n )− lim

n→+∞
M(1[0,t]f

−
n )

= M(1[0,t]f
+)−M(1[0,t]f

+)

= M(1[0,t]f), t ≥ 0.

The previous convergence takes place a.s. and so M(1[0,·]f) is F-adapted (the filtra-
tion satisfies the usual conditions). Furthermore, Lemma 2.1.2 yields M(1[0,·]f) has
F-independent and homogeneous increments. Clearly, M(1[0,t]f) converges to 0 a.s.
as t ↓ 0 and we know that this fact, together with the homogeneity of the increments
implies that M(1[0,·]f) is stochastically continuous. Therefore (M(1[0,·]f),F) is a Lévy
process in law. We do not distinguish such process from its càdlàg modification and
so we assert that (M(1[0,·]f),F) is a Lévy process.

We notice that if f is such that |f | ∧ 1 ∈ L1(ν), the process M(1[0,·]f) is a semi-
martingale. Indeed, because of Lemma 2.2.8, we have

E[exp
(
iuM(1[0,t]f)

)
] = exp

(
m(eui1[0,t]f − 1)

)
= exp

(
tν(euif − 1)

)
, t ≥ 0.

Therefore, the function t 7→ E[exp
(
iuM(1[0,t]f)

)
] is of finite variation and the state-

ment follows from Theorem 2.1.7.

Let now M be the compensated Poisson random measure of L. From Theorem
2.2.11, every deterministic function in L2(λ+⊗ ν) can be integrated with respect to

M. For any f ∈ L2(ν) we introduce the process X(f) = (X
(f)
t )t≥0 by

X
(f)
t = M(1[0,t]f), t ≥ 0. (2.25)

These processes will play a key role in the remaining of this thesis and in the following
theorem we collect some of their properties. We recall that the spaces H 2

0 (F) and
H 2

loc,0(F) were introduced in §1.3.1.

2.2.16 Theorem. Let X be a càdlàg adapted process with jump measure M. If
M is a Poisson random measure relative to the filtration F with intensity measure
λ+⊗ν and M is the associated compensated Poisson random measure, then for every
f ∈ L2(ν) the process X(f) defined by (2.25) has the following properties:

(i) E[(X
(f)
t )2] = t ν(f2) and, in particular, the random variable X

(f)
t is square

integrable, t ≥ 0;

(ii) (X(f),F) is a Lévy process;

(iii) X(f) belongs to H 2
loc,0(F) and 〈X(f), X(f)〉t = t ν(f2), t ≥ 0. Moreover, X(f)T

belongs to H 2
0 (F), for every deterministic time T ;

(iv) ∆X(f) = f(∆X)1{∆X 6=0} a.s. and, in particular, X(f) is locally bounded if f
is bounded;

(v) X(f) = 0 a.s. if and only if f = 0 ν-a.e.;

(vi) Let f, g ∈ L2(ν). The martingales X(f) and X(g) are orthogonal if and only
if f and g are orthogonal in L2(ν).
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Proof. (i) is consequence of the isometry of the stochastic integral with respect to
M for functions in L2(ν). We show (ii) and (iii) together. If f ∈ L2(ν), then the
sequence fn := f1{|f |> 1

n
} belongs to L1(ν) ∩ L2(ν) and converges to f in L2(ν) as

n→ +∞. For every n ≥ 1, Proposition 2.2.12 yields

X
(fn)
t = M(1[0,t]fn)− tν(fn) =

∑
0<s≤t fn(∆Xs)1{∆Xs 6=0} − tν(fn), t ≥ 0. (2.26)

From Proposition 2.2.15 we know that (X(fn),F) is a Lévy process for every n ≥ 1.

Moreover, from (2.26) and Lemma 2.2.9 it follows that E[X
(fn)
t ] = 0, t ≥ 0. Lemma

2.1.1 yields X(fn) is an F-martingale. We can apply the linearity of the stochastic
integral with respect to M and its isometry property for functions in L2(λ+ ⊗ ν) to
obtain

E[(X
(fn)
t −X(f)

t )2] = E[(X
(fn−f)
t )2] = tν((fn − f)2) −→ 0 as n→ +∞. (2.27)

Therefore X
(fn)
t converges to X

(f)
t in L2(P), hence in probability, as n → +∞. By

Lemma 2.1.2 we obtain that X(f) has F-independent and homogeneous increments.
The process X(fn) is F-adapted because it is a Lévy process relative to F, so (2.27)
shows that also X(f) is F-adapted, because the filtration F satisfies the usual con-
ditions. The stochastic continuity of X(f) is clear. Indeed, because of the isometry
of the stochastic integral with respect to M for functions in L2(ν), the mapping

t 7→ X
(f)
t is continuous as a function of R+ into L2(P), hence stochastically continu-

ous. Formula (2.27) implies that X
(fn)
t converges in L1(P) to X

(f)
t and thanks to

Lemma 1.2.3 we can conclude that X(f) is an F-martingale. The process (X(f),F)
is a Lévy process in law and we consider a version of X(f) which is also càdlàg, i.e.,
which is in fact a Lévy process relative to F (cf. He, Wang & Yan (1992), Theorem
2.68). We denote this modification again by X(f): (X(f),F) is a Lévy process and
an F-martingale. Because of (i), the martingale X(f) belongs to H 2

loc,0 and because
of the independence of the increments and (i)

〈X(f), X(f)〉t = E[(X
(f)
t )2] = tν(f2), t ≥ 0.

An application of Doob’s inequality implies that for every deterministic stopping

time T > 0, the stopped process X(f)T belongs to H 2
0 , and this concludes the proof

of (ii) and (iii). Let T > 0 be a deterministic stopping time. From (iii), the process

X(g)T belongs to H 2
0 , for every g ∈ L2(ν). The processes X(fn) and X(f) are both

càdlàg. An application of Doob’s inequality and of the linearity and the isometry of
the stochastic integral with respect to M for functions in L2(ν) implies:

E
[

supt∈[0,T ]

(
X

(fn)
t −X(f)

t

)2] ≤ 4E
[
(X

(fn−f)
T )2

]
= T ‖fn − f‖2L2(ν). (2.28)

We show (iv). By (2.26) we have

∆X
(fn)
t = fn(∆Xt)1{∆Xt 6=0}, t ≥ 0, a.s. (2.29)

Because X(f) is càdlàg we can define the process ∆X(f) and by (2.28) we get

lim
n→+∞

∆X
(fn)
t = ∆X

(f)
t , t ≤ T, a.s.
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From (2.29) we can conclude that ∆X(f) = f(∆X)1{∆X 6=0} a.s. because T > 0 was
chosen arbitrarily. From the relation

X(f) = X
(f)
− + ∆X(f) = X

(f)
− + f(∆X)1{∆X 6=0} a.s.

X(f) is (a.s.) locally bounded if f is bounded (note that X
(f)
− is locally bounded

because X
(f)
0− := X

(f)
0 = 0). Now we come to (v). If f = 0 ν-a.e., then it is clear

that X(f) = 0. If X(f) = 0, from (i), we get ν(f2) = 0 and so f = 0 ν-a.e. It remains
to verify (vi). Let f, g ∈ L2(ν). Using the identity of polarization for 〈X(f), X(g)〉
(cf. (1.5)) and the linearity of X(h) with respect to h ∈ L2(ν), we have

〈X(f), X(g)〉t = t ν(fg),

hence 〈X(f), X(g)〉 = 0 if and only if ν(fg) = 0, i.e., if and only if f and g are
orthogonal in L2(ν). The proof of the theorem is now complete.

Obviously, for any f ∈ L2(ν), the process X(f) is a semimartingale.

2.3. Generalities on Lévy Processes

In §2.3.1 we prove that the jump measure of a Lévy process (L,F) is a Poisson
random measure relative to the filtration F. In §2.3.2 we recall the Itô–Lévy decom-
position and some of its consequences. We do not verify the Itô–Lévy decomposition
in this chapter. Rather we postpone its proof to Appendix A. In §2.3.3 we discuss
the structure of the natural filtration of a Lévy process.

2.3.1. The Jump Measure of a Lévy Process

By definition, a Lévy process (L,F) is a càdlàg process. For this reason, the jump
measure M of L, given on (E,B(E)) (cf. (2.3)) by (2.5), i.e.,

M(ω,A) :=
∑
s≥0

1{∆Ls(ω) 6=0}1A(s,∆Ls(ω)), A ∈ B(E),

is an integer-valued random measure (cf. Proposition 2.2.1). In this section we show
that the jump measure of a Lévy process (L,F) is a Poisson random measure relative
to the filtration F with intensity measure m := λ+ ⊗ ν, where λ+ is the Lebesgue
measure on (R+,B(R+)) and ν is a Lévy measure on (R,B(R)), i.e., ν is σ-finite,
such that ν({0}) = 0 and (x2∧1) ∈ L1(ν). For any Borel subset B of R contained in
{|x| > ε}, where ε > 0 is arbitrary but fixed, we introduce the process ξB = (ξBt )t≥0

by
ξBt := M([0, t]×B), t ≥ 0. (2.30)

Notice that ξB can be obtained from (2.6) by choosing A = R+ × B. Because of
B ⊆ {|x| > ε} and of the càdlàg property of the paths of L, we have that for every
t ≥ 0, M([0, t]×B) < +∞. Therefore, from Lemma 2.2.2, ξB is an F-adapted simple
point process (cf. §1.2.4). We are going to show that the process ξB is a homogeneous
Poisson process relative to F. Now the situation is different from the one of Lemma
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2.2.4 because we only know that M is the jump measure of a Lévy process and not
(yet) that it is a Poisson random measure relative to F. We introduce the Skorohod
space and the Skorohod σ-algebra. The space

D := {z : R+ 7−→ R such that the mapping t 7→ z(t) is càdlàg} (2.31)

of càdlàg functions on R+ into R is called the Skorohod space over R. We consider the
mapping Zt : D 7−→ R such that Zt(z) := z(t). The σ-algebra FD := σ(Zt, t ≥ 0)
is called the Skorohod σ-algebra on D. With the Lévy process (L,F) we associate
the process tL by

tLs := Lt+s − Lt, s ≥ 0. (2.32)

We now show that the increment ξBt+s−ξBt can be represented as a time-homogeneous
(D,FD)-measurable functional of the increment Lt+s − Lt, s, t ≥ 0. From this it
follows, in particular, that ξB has F-independent and homogeneous increments.

2.3.1 Lemma. Let B ∈ B(R) be such that B ⊆ {|x| > ε}, where ε > 0 is arbitrary
but fixed. We consider the process ξB introduced by (2.30). For any s ≥ 0 there
exists a measurable functional Fs,B over (D,FD) such that

ξBt+s − ξBt = Fs,B(tL) a.s., t ≥ 0.

Moreover, there exists a constant, say νB ≥ 0, such that

aB(t) := E[ξBt ] = tνB. (2.33)

In particular, (ξB,F) is a homogeneous Poisson process.

Proof. We define the functional Gs,B by

Gs,B(z) :=
∑

0<u≤s
1{∆Zu(z) 6=0}1B(∆Zu(z)), z ∈ D,

and the sequence (τk)k≥0 by

τ0 := 0, τk+1 := inf{t > τk : ∆Zt(z) ∈ B}, k ≥ 1.

Let Q be a probability measure on (D,FD) and FQ
D the Q-completion of FD. We

get that τk is FQ
D -measurable. For this we only need to apply Dellacherie (1972),

Theorem IV.23, with the filtration (Gt)t≥0 defined by Gt := FQ
D . Then we have

that {z : Gs,B(z) = k} = {τk ≤ t < τk+1} and {τk ≤ t < τk+1} is FQ
D -measurable.

Hence the functional Gs,B is measurable on (D,FQ
D), for every probability measure

Q. Furthermore,

ξBt+s − ξBt =
∑

t<u≤t+s 1{∆Lu(z) 6=0}1B(∆Lu)

=
∑

0<u≤s 1{∆Lu(z)6=0}1B(∆Lu) = Gs,B(tL), t, s ≥ 0.

If we now choose Q := PL = PtL we find Fs,B on (D,FD) such that Fs,B = Gs,B PL-
a.s. (where PL denotes the law of L). From Lemma 2.2.2, we know that ξB is a simple
point process relative to F. We can assert that ξB is a simple point process with
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F-independent and homogeneous increments. Because ξB is càdlàg and starts at 0,
the homogeneity of the increments implies that ξB is also stochastically continuous,
i.e., (ξB,F) is a Lévy process with bounded jumps. Because of Proposition 2.1.6,
the process ξB has a finite moment of every order. We can introduce the process

ξ
B

= (ξ
B
t )t≥0 by ξ

B
t := ξBt −E[ξBt ]. Because of Lemma 2.1.1, ξ

B
is an F-martingale,

hence |ξB| is a submartingale. If T > 0 is arbitrary but fixed, we get ξ
B
T ∈ L1(P)

and
|ξBt | ≤ E

[
|ξBT |

∣∣Ft

]
, 0 ≤ t ≤ T.

From the previous estimate and He, Wang & Yan (1992), Theorem 1.8, (|ξBt |)0≤t≤T
is uniformly integrable and hence (ξBt )0≤t≤T is uniformly integrable. We define
aB(t) := E[ξBt ], t ≥ 0. Because of the uniform integrability, we can apply the
generalization of the theorem of Lebesgue on dominated convergence to uniformly
integrable families (cf. Meyer (1966), Theorem II.21) to obtain that aB(·) is a con-
tinuous function. Moreover, because of the homogeneity of the increments, we have

aB(t+ s) = E[ξBt+s − ξBt ] + E[ξBt ] = aB(s) + aB(t), t, s ≥ 0.

This relation together with the continuity, implies that the function aB(·) is linear
and therefore that there exists a νB ≥ 0 such that aB(t) = tνB. In conclusion ξB is a
stochastically continuous simple point process with F-independent and homogeneous
increments such that E[ξBt ] = tνB, t ≥ 0, νB ≥ 0, i.e., (ξB,F) is a homogeneous
Poisson process (cf. Definition 1.2.6) and the proof of the lemma is complete.

Thanks to Lemma 2.3.1, we can compute the explicit form of the intensity measure
of the random measure M. For any C ∈ B(R), we put

ν(C) := E[M([0, 1]× C)]. (2.34)

Clearly, (2.34) defines a measure on the space (R,B(R)). From the definition of
M, we have that ν({0}) = 0. Moreover, ν({|x| > ε}) < +∞, for every ε > 0.
Indeed, because of Lemma 2.3.1, the process (ξB,F), where B := {|x| > ε}, is a
homogeneous Poisson process and therefore

ν(B) = E[M([0, 1]×B)] = E[ξB1 ] = νB < +∞,

where the constant νB ≥ 0 was introduced in (2.33). This implies that ν is a σ-finite
measure on (R,B(R)) because the sequence (Bn)n≥1 defined by Bn := {|x| > 1

n},
n ≥ 1, is such that Bn ↑ R \ {0} as n → +∞ and ν(R) = ν(R \ {0}). It can be
proven that the function (x2 ∧ 1) is integrable with respect to ν. We do not verify
this property and we refer to, e.g., Kallenberg (1997), Theorem 13.4. In conclusion,
ν is a Lévy measure. We call ν the Lévy measure of the process L.

2.3.2 Lemma. Let M be the jump measure of the Lévy process (L,F) with intensity
measure m. Then m = λ+ ⊗ ν, where λ+ is the Lebesgue measure on (R+,B(R+))
and ν is the Lévy measure of L.

Proof. Because of Lemma 2.3.1, we have that m(A) = (λ+ ⊗ ν)(A) if A ∈ E is
such that A = [0, u] × {|x| > ε}, ε > 0, u ≥ 0. To obtain that m = λ+ ⊗ ν is
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now a standard procedure with the help of the uniqueness theorem for measures (cf.
Theorem 1.1.2). We introduce the system of sets

C := {{0} × C, C ∈ B(R) : ν(C) < +∞}∪
∪ {(r, v]× C : 0 ≤ r ≤ v, C ∈ B(R) : ν(C) < +∞}

which generates B(E) and is stable under intersections. If A = (r, v] × B with
0 < r < v and B ∈ B(R) is such that B ⊆ {|x| > ε}, ε > 0, then A ∈ C and
M(A) = M([0, v] × B) − M([0, r] × B) = ξBv − ξBr . From the previous step, this
yields m(A) = m([0, v]×B)−m([0, r]×B) = (v − r)ν(B) = (λ+ ⊗ ν)(A). The sets
An := [0, n]×

(
{|x| > 1

n} ∪ {0}
)
, n ≥ 1, belong to C and are such that ∪∞n=1An = E.

Hence (An)n≥1 is a sequence of sets of finite measure with respect to both m and
λ+ ⊗ ν. An application of the uniqueness theorem for measures (cf. Theorem 1.1.2)
shows that m = λ+ ⊗ ν on B(E).

Now we show that, for every A ∈ B(E) such that m(A) < +∞, the process
(NA,F) defined by (2.6) is a Poisson process.

2.3.3 Proposition. Let M be the jump measure of a Lévy process (L,F) with in-
tensity measure m = λ+ ⊗ ν and let A ∈ B(E) be such that (λ+ ⊗ ν)(A) < +∞.
Then the process NA := (NA

t )t≥0 defined by NA
t := M(A ∩ [0, t] × R), t ≥ 0, is a

Poisson process relative to F and aA(·) := (λ+ ⊗ ν)(A ∩ [0, ·] × R) is its intensity
function.

Proof. The random measure M is the jump measure of the càdlàg process L and
therefore, thanks to Lemma 2.2.2 and the comment following it, we know that NA

is an F-adapted simple point process. Because of the definition of NA and Lemma
2.3.2, we have E[NA

t ] = (λ+ ⊗ ν)(A∩ [0, t]×R) < +∞, t ≥ 0, which is a continuous
function of time. To conclude that (NA,F) is a Poisson process, we need only to
prove that it has F-independent increments. Let B be a Borel subset of {|x| > ε},
ε > 0. Because of Lemma 2.3.1 (ξB,F) is an homogeneous Poisson process. If now
A ∈ B(E) is of the form A = (r, v]×B, 0 < r < v and B Borel subset of {|x| > ε},
ε > 0, we get

NA = (ξB)v − (ξB)r,

where the superscripts v and r denote the operation of stopping at the deterministic
time v and r, respectively. From Lemma A.1.6, the process NA has F-independent
increments and so it is a Poisson process relative to F. If now we take A1, . . . , Am,
m ≥ 1, pairwise disjoint subsets of E such that Aj = (rj , vj ]×Bj , where 0 < rj < vj
and Bj is a Borel subset of {|x| > ε}, ε > 0, j = 1, . . . ,m, from the previous step,
we have that NA1 , . . . , NAm are Poisson processes relative to F and moreover

[NAj , NAk ]t =
∑

0<s≤t ∆N
Aj
s ∆NAk

s

=
∑

0<s≤t ∆M(Aj ∩ [0, s]× R)∆M(Ak ∩ [0, s]× R)

=
∑

0<s≤t 1{∆Xs 6=0}1Aj∩Ak(s,∆Xs) = 0, j, k = 1, . . . ,m, j 6= k.

.
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Therefore, from Theorem 2.1.8, the vector (NA1 , . . . , NAm) has F-independent in-
crements. We fix T > 0 and define the algebra of subsets C ⊆ B(E) as a such:

C :=

{ n⋃
j=1

Aj , Aj := (rj , vj ]×Bj p.d., 0 ≤ r ≤ v ≤ T,

Bj ∈ B(R) : Bj ⊆ {|x| > ε}
}
,

where the acronym p.d. stands for pairwise disjoint. For A ∈ C we have

NA
t −NA

s =
n∑
j=1

(N
Aj
t −N

Aj
s ).

Because of the previous step, (NA1
t −NA1

s , . . . , NAm
t −NAm

s ) is an Fs-independent
vector and therefore we can conclude that NA has F-independent increments, for
every A ∈ C . We now define the system of sets A ⊆ B(E) by

A := {A ∈ B(E), A ⊆ [0, T )× {|x| > ε} : NA has F-independent increments}.

It is clear that A is a monotone class of subsets of B(E) (cf. §1.1.2). From the
previous step, C ⊆ A and moreover σ(C ) = B([0, T )) ⊗ B({|x| > ε}). An ap-
plication of the monotone class theorem for systems of sets (cf. Theorem 1.1.5),
yields A = B([0, T )) ⊗B({|x| > ε}). We now consider the general case in which
A ∈ B(E) is a set such that m(A) < +∞. We define the sequence (An)n≥1 by

An := A ∩ [0, n)× {|x| > 1
n}, n ≥ 1.

From the previous step we know that NAn has F-independent increments. On the
other side, we have

(NA
t −NA

s ) = lim
n→+∞

(NAn
t −NAn

s ), 0 ≤ s ≤ t,

and the previous convergence takes place pointwise in ω. Therefore we can conclude
that (NA

t −NA
s ) is independent of Fs, 0 ≤ s ≤ t, and the proof is complete.

It is now immediate to see that if M is the jump measure of a Lévy process (L,F),
then it is a Poisson random measure relative to the filtration F. Indeed, if we fix
s > 0 and we consider a Borel subset A of (s,+∞) × R such that m(A) < +∞,
because of Proposition 2.3.3, the process (NA,F) is a Poisson process. Notice that
for such a choice of A, we have that NA

s = 0. Therefore

M(A) = NA
∞ = NA

∞ −NA
s = lim

t→+∞
(NA

t −NA
s ),

where the previous limit is meant pointwise in ω. Because of Proposition 2.3.3,
(NA

t −NA
s ) is independent of Fs, hence M(A) is independent of Fs. Lemma 2.3.2

implies that the intensity measure m of M is equal to λ+⊗ ν. In conclusion we have
shown the following result:
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2.3.4 Theorem. Let (L,F) be a Lévy process and let M be its jump measure. Then
M is a Poisson random measure relative to the filtration F and its intensity measure
is given by m = λ+ ⊗ ν, where λ+ is the Lebesgue measure on (R+,B(R+)) and ν
is the Lévy measure of the process L.

From now on, we call the jump measure of a Lévy process (L,F) the Poisson
random measure of L and the associated compensated Poisson random measure M
the compensated Poisson random measure of L.

2.3.2. Itô–Lévy Decomposition and Moments

In this section we consider a càdlàg adapted process L and we characterize the
structure that it must have to be a Lévy process relative to the filtration F. The
main result of this part is the well-known Itô–Lévy decomposition. We state the Itô–
Lévy decomposition for Lévy processes relative to a general filtration F satisfying the
usual conditions. Proofs of the Itô–Lévy decomposition for Lévy processes relative
to a filtration can be found, e.g., in He, Wang & Yan (1992) or Jacod & Shiryaev
(2000) but they make use of the general theory of semimartingales and, in particular,
of the decomposition of a semimartingale in its characteristics. We would like to give
a more elementary proof which does not use the general theory of semimartingales.
Some further preparation is necessary however and for this reason we postpone the
proof to Appendix A.1. Here we only formulate the Itô–Lévy decomposition in the
form which we need. In other books, like Kallenberg (1997) or Sato (1999) the Itô–
Lévy decomposition is established only for Lévy processes and not for Lévy processes
relative to a filtration.

2.3.5 Theorem (Itô–Lévy decomposition). Let L be a càdlàg adapted process with
jump measure M. Then (L,F) is a Lévy process if and only if M is a Poisson random
measure relative to F with intensity function λ+ ⊗ ν, where λ+ is the Lebesgue
measure on R+ and ν a Lévy measure, and there exists a Wiener process (Wσ,F)
with variance function σ2(t) = σ2t, σ2 ≥ 0, called Gaussian part of L, such that the
following decomposition holds

Lt = βt+ Wσ
t + M(1[0,t]×{|x|>1} x) + M(1[0,t]×{|x|≤1} x), t ≥ 0, a.s., (2.35)

where β ∈ R.

Let (L,F) be a Lévy process with Itô–Lévy decomposition as in (2.35). We call
the triplet (β, σ2, ν) appearing in (2.35) the characteristic triplet or simply the char-
acteristics of L. If σ2 = 0 we say that L is a purely non-Gaussian Lévy process.

Notice that in the usual formulation of the Itô–Lévy decomposition, the inde-
pendence of the terms appearing in (2.35) is required. However this is not needed,
because it is automatically guaranteed by Theorem 2.1.8. Let us discuss this fact.
We assume that M is the jump measure of a càdlàg process and that it is a Pois-
son random measure relative to F with intensity measure λ+ ⊗ ν. Furthermore, let
(W,F) be a Wiener process. We define the vector (L1, L2, L3) by

(L1, L2, L3) := (W,M(1[0,·]×{|x|>1} x),M(1[0,·]×{|x|≤1} x)).
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From §2.2.5, we know that (L2,F) and (L3,F) are Lévy processes (and semimartin-
gales). More precisely, they are purely non-Gaussian Lévy processes with no com-
mon jumps, so [L2, L3] = 0. Because (L1,F) is a Wiener process, it is a continuous
martingale and this yields [L1, Lj ] = 0, j = 2, 3. From Theorem 2.1.8 we can
conclude that the vector (L1, L2, L3) is independent. We can even state more: M
and W are independent. Indeed, if A1, . . . , Am are pairwise disjoint Borel subsets
of E such that m(Aj) < +∞, j = 1, . . . ,+∞, from Lemma 2.2.4, we know that
(NAj ,F) is a Poisson processes, j = 1, . . . ,m. Moreover, [NAj , NAk ] = 0, j 6= k,
and [W,NAj ] = 0, j = 1, . . . ,m. From Theorem 2.1.8, (W,NA1 , . . . , NAm) is an
independent vector and therefore (W,M(A1), . . . ,M(Am)) = (W,NA1

∞ , . . . , NAm
∞ ) is

independent. If A1, . . . , Am are not pairwise disjoint we can reduce the situation to
the previous case by considering an appropriate partition of the union of the Ajs,
and obtain that for every A1, . . . , Am Borel subsets of E such that m(Aj) < +∞,
the vector (M(A1), . . . ,M(Am)) is independent of W , which issues the independence
of W and M.

The characteristic triplet of a Lévy process characterizes the probability measure
P on the σ-field F̃L

∞ (cf. Example 1.2.1):

2.3.6 Theorem. Let (L,F) be a Lévy process with respect to two probability meas-
ures P and Q on F . If L has the same characteristic triplet (β, σ2, ν) both with
respect to P and Q, then P

∣∣
F̃L
∞

= Q
∣∣
F̃L
∞

.

Proof. cf. Jacod & Shiryaev (2000), Theorem II.4.25.

An immediate but important consequence of Theorem 2.3.5 is the Lévy-Khintchine
decomposition. We postpone the proof to Appendix A.1.

2.3.7 Corollary. Let L be a Lévy process with characteristics (β, σ2, ν). Then for
every u ∈ R and for every t ≥ 0 we have

E[eiuLt ] = exp

((
iuβ − 1

2
u2σ2 +

∫
R

(
eiux − 1− iux1{|x|≤1}

)
dν

)
t

)
. (2.36)

We notice that (2.36) implies that the mapping t 7→ E[eiuLt ], t ≥ 0, is of finite
variation for every u ∈ R. Therefore, from Theorem 2.1.7, we can deduce that every
Lévy process is a semimartingale. We conclude this part stating a result which
explains in terms of the Lévy measure when a Lévy process is of finite variation and
when its moments exist and are finite.

2.3.8 Theorem. Let (L,F) be a Lévy process with Lévy measure ν.

(i) L is of finite variation if and only if (|x| ∧ 1) ∈ L1(ν).

(ii) Let n ∈ N. Then E[|Lt|n] < +∞, t ≥ 0, if and only if 1{|x|>1}x
n ∈ L1(ν).

(iii) Let c > 0. Then E[ec|Lt|] < +∞, t ≥ 0, if and only if 1{|x|>1}e
c|x| ∈ L1(ν).

(iv) If L is a Lévy process with bounded jumps then it admits exponential moments
of every order c ≥ 0.

Proof. cf. Sato (1999), §25.
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2.3.3. The Structure of the Natural Filtration of a Lévy Process

Let L be a Lévy process on the probability space (Ω,FL
∞,P) and FL the completion

in FL
∞ of the filtration generated by L. Because of Proposition 2.1.4 L is a Lévy

process relative to FL and FL coincides with the natural filtration of L. We denote by
M the jump measure of L and by ν its Lévy measure. The Itô–Lévy decomposition
of L is

Lt = βt+ Wσ
t + M(1[0,t]×{|x|>1} x) + M(1[0,t]×{|x|≤1} x), t ≥ 0, a.s.

By F̃M
t := σ(M(A), A ∈ B(E), A ⊆ [0, t] × R), we define F̃M = (F̃M

t )t≥0 and we
call it the filtration generated by M. The space (E,B(E)) was introduced in (2.3).
By FM we denote the P-completion of F̃M in FL

∞. The terminal σ-algebra of F̃M is
F̃M
∞ := σ(M(A), A ∈ B(E)) and FM

∞ designates its P-completion in FL
∞. Now we

give a generator of the σ-algebra F̃M
t , t ≥ 0, and one of the σ-algebra F̃M

∞ . First
we introduce the subsystems C and Ct of B(E) by

C := {(u, v]× (a, b], u, v ≥ 0, 0 /∈ [a, b]},

Ct := {(u, v]× (a, b], 0 ≤ u ≤ v ≤ t, 0 /∈ [a, b]}.

2.3.9 Lemma. The system C M := {M(A), A ∈ C } generates the σ-algebra F̃M
∞ ,

while C M
t := {M(A), A ∈ Ct} generates F̃M

t , t ≥ 0.

Proof. We show only that C M generates F̃M
∞ . The proof that C M

t generates F̃M
t is

analogous. From the definition of F̃M
∞ , the inclusion σ(CM) ⊆ F̃M

∞ is evident. The
converse implication is an easy application of the theorem on Dynkin systems (cf.
Bauer (2001), I§2). The family C is an ∩-stable generator of B(E). If A ∈ B(E),
we can define the sequence An := A ∩ [0, n) × { 1

n < |x| ≤ n}, n ≥ 1, and we
have M(An) ↑ M(A) pointwise in ω as n → +∞. Therefore, it is enough to show
that M(An) is σ(CM)-measurable, for every n ≥ 1. We fix n ≥ 1. The system
K := {A ∈ B(E) : M(An) is σ(CM)-measurable} is a Dynkin system. Indeed,
R+ × R belongs to K . From this, it is immediate to get that if A ∈ K , then
Ac ∈ K . Moreover, countable unions of pairwise disjoint elements of K belong
again to it. We also have C ⊆ K . Because of the theorem on Dynkin systems (cf.
Bauer (2001), Theorem I.2.4), we have K = B(E).

Let D be the system of simple functions of Lq(ν), q ≥ 1, defined in (2.24). The
system D is total in Lq(ν), q ≥ 1 (cf. Lemma 1.1.8). By definition of F̃M

t , the
process M(1[0,·]f) is F̃M-adapted, for every f ∈ D . The proof of following proposition
is similar to the one of Proposition 2.2.15 and Theorem 2.2.16 and we omit it.

2.3.10 Proposition. Let M be the jump measure of L. If |f | ∧ 1 ∈ L1(ν), then
M(1[0,·]f) is FM-adapted and if f ∈ L2(ν), then X(f) (cf. (2.25)) is FM-adapted.

We define the vector (L2, L3) := (M(1[0,·]×{|x|>1}x),M(1[0,·]×{|x|≤1}x)) and the

process Y := (Yt)t≥0 by Yt := L2
t + L3

t = Lt − βt −Wσ
t , t ≥ 0. We denote by FY

the completion of the filtration generated by Y . It is easy to see that FM coincides
with FY . Indeed, because of Proposition 2.3.10, the process Y is clearly FM-adapted
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and so FY ⊆ FM. Conversely, by the definition of M, for A ∈ B(E) such that
A ⊆ [0, t]× R, we have

M(A) =
∑

0≤s≤t
1{∆Ls 6=0}1A(s,∆Ls) =

∑
0≤s≤t

1{∆Ys 6=0}1A(s,∆Ys)

which is F Y
t measurable. Hence F Y

t ⊇ FM
t , t ≥ 0, i.e., FM = FY .

We observe that by Theorem 2.1.8, the process Y is a Lévy process because
[L2, L3] = 0 and so the vector (L2, L3) has FL independent increments, hence inde-
pendent increments. Therefore (Y,FY ) is a Lévy process and FY satisfies the usual
conditions. As a consequence, the filtration FM satisfies the usual conditions and we
call it the natural filtration of M.

2.3.11 Proposition. Let (L,FL) be a Lévy process with Gaussian part Wσ and
jump measure M. The following identity holds:

FL = FWσ ∨ FM. (2.37)

Proof. The process Wσ is a Wiener process relative to FL (cf. Theorem 2.3.5).
Moreover, from the definition of Y we have that Y is FL-adapted and so FY ⊆ FL.
On the other side, we saw that FM = FY and hence FWσ ∨ FM ⊆ FL. From the
Ito-Lévy decomposition of L it is immediate to deduce that L is FWσ ∨FY -adapted.
Because of FM = FY , we can conclude that FWσ ∨ FM ⊇ FL and the proof is fin-
ished.





CHAPTER 3

Martingale Problems for Lévy Processes

Let (Ω,F ,P) be a probability space endowed with a Lévy process L. We denote by
F̃L
∞ the σ-algebra generated by L, i.e., F̃L

∞ := σ(Lt, t ≥ 0). By N (P) we designate
the P-null sets of the σ-algebra F̃L

∞ and by FL
∞ we denote the P-completion of F̃L

∞
in itself, thus FL

∞ := F̃L
∞∨N (P). We restrict our attention to the probability space

(Ω,FL
∞,P). Obviously, L is a Lévy process on this probability space. With the Lévy

process L we associate the filtration F̃L = (F̃L
t )t≥0 by setting F̃L

t := σ(Ls, s ≤ t)
and we call it the filtration generated by L. By F̃L+ = (F̃L

t+)t≥0 we denote the

smallest right-continuous filtration containing F̃L, i.e., such that F̃L
t ⊆ F̃L

t+, t ≥ 0.

The filtration FL = (FL
t )t≥0 denotes the completion of F̃L in FL

∞, i.e., FL
t :=

F̃L
t ∨N (P), t ≥ 0, while the filtration FL+ = (FL

t+)t≥0 denotes the completion of

F̃L+ in FL
∞, i.e., FL

t+ := F̃L
t+ ∨N (P), t ≥ 0. The filtration FL+ satisfies the usual

conditions and we call it the natural filtration of L. From Proposition 2.1.4, we know
that also FL satisfies the usual conditions and therefore we have FL = FL+. However,
the filtration FL+ satisfies the usual conditions independently of the fact that L is a
P-Lévy process, while to show that FL is right continuous we need to know that L is
stochastically continuous and has independent increments (cf. Wang (1981)). The
Lévy process L is clearly a Lévy process relative to the filtration FL+. The reference
filtration in this chapter is FL+. By M we denote the jump measure of the Lévy
process (L,FL+). From §2.3.1, we know that M is a Poisson random measure relative
to FL+. The intensity measure of M is m := λ+⊗ν, where λ+ is the Lebesgue measure
on (R+,B(R+)) and ν is the Lévy measure of L on (R,B(R)). We denote by M the
compensated Poisson random measure of L, i.e., we put M := M−m. In Theorem

2.2.16 we saw that for every function f ∈ L2(ν) the process X(f) = (X
(f)
t )t≥0 defined

by

X
(f)
t := M(1[0,t]f), t ≥ 0,

is a Lévy process relative to FL+. Moreover, X(f) is an FL+-martingale such that

X
(f)
t ∈ L2(P), t ≥ 0, that is, X(f) belongs to H 2

loc,0(FL+). From Proposition 2.2.15,

if f is such that |f | ∧ 1 ∈ L1(ν), then the process M(1[0,·]f) := (M(1[0,t]f))t≥0 is



62 3. Martingale Problems for Lévy Processes

a Lévy process relative to FL+. Furthermore, there exists a continuous process, say
Wσ, which is a Wiener process relative to the filtration FL+ with variance function
σ2(t) = σ2t, σ2 ≥ 0, t ≥ 0, such that

Lt = βt+ Wσ
t + M(1[0,t]×{|x|>1}x) + M(1[0,t]×{|x|≤1}x), t ≥ 0, a.s.,

where β ∈ R. This is the Itô–Lévy decomposition of L (cf. Theorem 2.3.5). We call
the process Wσ the Gaussian part of L. The family X defined by

X := {Wσ} ∪ {X(f), f ∈ L2(ν)} (3.1)

is a family of locally square integrable FL+-martingales starting at 0 and consequently
X ⊆H 2

loc,0(FL+). The aim of this chapter is to prove that the family X introduced

in (3.1) possesses the H 1-PRP with respect to FL+, meaning that

L 1(X ) = H 1
0 (FL+). (3.2)

We shall obtain (3.2) as a consequence of Theorem 1.4.12: This is the basic the-
oretical result of this chapter and we shall apply it to introduce other interesting
families of martingales with the H 1-PRP.

By Q(X ) we denote the set of all the probability measures Q on (Ω, F̃L
∞) solving

the martingale problem associated with X :

Q(X ) := {Q on (Ω, F̃L
∞) such that X ⊆Mloc,0(Q,FL+)}. (3.3)

The set Q(X ) is non-empty because the probability measure P belongs to it. Among
the probability measures in Q(X ), we consider the subset

Qe(X ) := {Q ∈ Q(X ) : Q ∼ P on F̃L
∞} (3.4)

of all the probability measures in Q(X ) which are equivalent to P on (Ω, F̃L
∞). We

prove that P is in fact the unique element of Qe(X ). That is, we are going to verify
the identity

Qe(X ) = {P}.

We observe that in a different context, a similar martingale problem was formulated
in Jacod & Shiryaev (2000) Theorem II.2.21. Notice that if Q is a probability
measure on (Ω, F̃L

∞) which is equivalent to P, then the filtration FL+ does not change
because N (Q) = N (P).

3.1. The Gaussian Part

Let Q be any probability measure on (Ω, F̃L
∞) belonging to Qe(X ). We are going to

verify that the Gaussian part of L, which is a P-Wiener process relative to FL+ with
variance function σ2(t) := σ2t, σ2 ≥ 0, remains a Q-Wiener process relative to FL+
with the same variance function. The Wiener process was introduced in Definition
1.2.8 and we stress that it is assumed to be a continuous process.

3.1.1 Proposition. The process (Wσ,FL+) is a Q-Wiener process with variance
function σ2(t) = σ2t, for every Q ∈ Qe(X ).
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Proof. The idea of the proof is to apply the theorem of P. Lévy on the character-
ization of the Wiener process (cf. Theorem 1.2.9). The process Wσ is a continuous
P-local martingale, because it is a Wiener process relative to FL+ with respect to P
(cf. Theorem 2.3.5). On the other side, Wσ is also a continuous local martingale
with respect to Q, because Q is a solution of the martingale problem associated with
X . Hence the process Wσ ·Wσ is a local martingale both with respect to P and Q.
By Ito’s formula we have

2Wσ ·Wσ
t = (Wσ

t )2 − σ2 t, t ≥ 0, P-a.s.

and, because of the equivalence of the probability measures, the previous equality
holds also Q-a.s. So, we can conclude that the process ((Wσ

t )2 − σ2t,FL
t+, t ≥ 0) is

a Q-local martingale. Therefore

〈Wσ,Wσ〉t = σ2 t, t ≥ 0, P-a.s. and Q-a.s.

By Theorem 1.2.9, Wσ is a Q-Wiener process relative to the filtration FL+ with
variance function σ2(t) = σ2t.

3.2. The Jump Measure

The process (L,FL+) is a Lévy process with respect to the probability P. Hence, by
definition, L is also an FL+-adapted càdlàg process and these properties do not depend
on the probability measure with respect to which L is considered. Therefore the
random measure M of the jumps of L, which with respect to P is a Poisson random
measure relative to FL+ with intensity measure λ+ ⊗ ν, remains an integer-valued
random measure (not necessarily a Poisson random measure) also with respect to
any other probability measure Q on (Ω, F̃L

∞) (cf. Proposition 2.2.1). Our aim is
to show that with respect to any Q in Qe(X ), the integer-valued random measure
M remains in fact a Poisson random measure relative to FL+ with intensity measure
λ+ ⊗ ν. Let ν be the Lévy measure of L with respect to P and let A ∈ B(E) be of
the form A = (r, v]× C, where 0 ≤ r < v and C ∈ B(R) is such that ν(C) < +∞.
For such an A, we define the process NA = (NA

t )t≥0 by

NA
t := M(A ∩ [0, t]× R), t ≥ 0, A = (r, v]× C, ν(C) < +∞. (3.5)

Because of Lemma 2.2.4, the process (NA,FL+) is a P-Poisson process with intensity
function a(·) := (λ+ ⊗ ν)(A ∩ [0, ·] × R). As first step, we show that with respect
to each probability measure Q ∈ Qe(X ) the process NA remains a Poisson process
relative to FL+ with the same intensity function. We stress that now the situation
is different from the one that we met in Chapter 2. Indeed, in §2.3.1 we considered
a filtration F satisfying the usual conditions and required that M was the random
measure associated with the jumps of the P-Lévy process (L,F). Under these as-
sumptions, we proved that M is a Poisson random measure relative to the filtration
F with intensity λ+ ⊗ ν with respect to P. Now we do not know that (L,FL+) is
a Q-Lévy process and we cannot proceed as in §2.3.1 to prove that (NA,FL+) is a
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Q-Poisson process. Instead, we shall prove this result with the help of the martin-
gale problem and as a consequence we shall deduce that M is a Q-Poisson random
measure relative to FL+. We recall that we use the following notation

(E,B(E)) := (R+ × R,B(R+)⊗B(R)).

3.2.1 Proposition. Let ν be the Lévy measure with respect to P of the P-Lévy
process (L,FL+) and let Q ∈ Qe(X ). Then the following assertions hold.

(i) Let A ∈ B(E) be of the form A = (r, v]× C, where 0 ≤ r < v and C ∈ B(R)
is such that ν(C) < +∞. For every such an A, the process NA defined by (3.5)
is a Q-Poisson process relative to the filtration FL+ and its intensity function is
aA(·) := (λ+ ⊗ ν)(A ∩ [0, ·]× R).

(ii) We fix s > 0. Let A1, . . . , Am, m ∈ N, be pairwise disjoint Borel subsets of
(s,+∞) × R of the form Aj = (rj , vj ] × Cj, where s < rj < vj and Cj ∈ B(R)
such that ν(Bj) < +∞, j = 1, . . . ,m. Then the vector (M(A1), . . . ,M(Am)) is
Q-independent of FL

s+, m ∈ N.

Proof. (i) The set A is of the form A = (r, v] × C where 0 ≤ r < v and C ∈ B(R)
is such that ν(C) < +∞. The process NA is a Poisson process under P and, by
the equivalence of the measures, it remains a simple point process with respect to
Q ∈ Qe(X ). Indeed, because ν(C) < +∞ we have M(A ∩ [0, t]× R) < +∞ P-a.s.,
and so Q-a.s., t ≥ 0. For the other properties characterizing a simple point process
cf. Lemma 2.2.2 and the comment following it. Moreover, for every t ≥ 0, we have

NA
t − (λ+ ⊗ ν)(A ∩ [0, t]× R)

= (M([0, t]× C)− (λ+ ⊗ ν)([0, t]× C))v − (M([0, t]× C)− (λ+ ⊗ ν)([0, t]× C)) ,r

where the superscripts v and r denote the stopping operation at the deterministic
time v and r, respectively. Because of ν(C) < +∞, the function f := 1C belongs to
L1(ν) ∩ L2(ν). Hence, from Proposition 2.2.12 and from the equivalence of P and
Q, it follows

M(1[0,t] f)− t ν(C) = X
(f)
t , t ≥ 0, P-a.s. and Q-a.s.

Consequently, (M(1[0,t] f)− t ν(C),FL
t+, t ≥ 0) ∈Mloc,0(Q) because X(f) ∈ X and

Q solves the martingale problem associated with X . The space Mloc,0(Q) is linear
and stable under stopping, therefore (NA

t − (λ+ ⊗ ν)(A ∩ [0, t] × R),FL
t+, t ≥ 0) is

a Q-local martingale as a difference of two local martingales. By Theorem 1.2.7 we
can conclude that (NA,FL+) is a Poisson process with intensity function aA(·) :=
(λ+ ⊗ ν)(A ∩ [0, ·]× R) with respect to each Q ∈ Qe(X ).

(ii) We fix s > 0 and consider A1, . . . , Am, m ∈ N, pairwise disjoint Borel subsets
of (s,+∞) × R of the form Aj = (rj , vj ] × Cj , where s < rj < vj and Cj ∈ B(R)
is such that ν(Cj) < +∞, j = 1, . . . ,m. Because of (i), NAj is a semimartingale
and an additive process relative to FL+ with respect to Q, j = 1, . . . ,m. For j 6= k,
j, k = 1, . . . ,m, we have Aj ∩Ak = ∅ and this yields

[NAj , NAk ]t =
∑

0<s≤t
∆N

Aj
s ∆NAk

s

=
∑

0<s≤t
1{∆Ls 6=0}1Aj∩Ak(s,∆Ls) = 0, t ≥ 0, P-a.s. and Q-a.s.
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Hence we can apply Theorem 2.1.8 to obtain that the vector (NA1 , . . . , NAm) has
FL+-independent increments with respect to Q. On the other hand, Aj ⊆ (s,+∞)×R
implies that N

Aj
s = 0, j = 1, . . . ,m. Therefore, the vector (NA1

t , . . . , NAm
t ) is Q-

independent of FL
s+ because (NA1

t , . . . , NAm
t ) = (NA1

t − NA1
s , . . . , NAm

t − NAm
s ),

t ≥ 0. But (NA1
t , . . . , NAm

t ) converges pointwise in ω to (M(A1), . . . ,M(Am)) as
t → +∞ and so we can assert that the latter vector is Q-independent of FL

s+,
m ∈ N, and the proof of the proposition is finished.

Now we show that the intensity measure of the integer-valued random measure M
is again λ+ ⊗ ν, with respect to any Q ∈ Qe(X ).

3.2.2 Proposition. Let M be the jump measure of L. With respect to any Q ∈
Qe(X ), the intensity measure of M is λ+ ⊗ ν.

Proof. We have to prove the relation

EQ[M(A)] = (λ+ ⊗ ν)(A), A ∈ B(E).

Let m be the intensity of M with respect to Q ∈ Qe(X ), i.e.,

m(A) = EQ[M(A)], A ∈ B(E).

We are going to show m = λ+ ⊗ ν on B(E). We introduce the system of sets

C := {{0} × C, C ∈ B(R) : ν(C) < +∞}∪
∪ {(r, v]× C : 0 ≤ r ≤ v, C ∈ B(R) : ν(C) < +∞}

which generates B(E) and is stable under intersections. Proposition 3.2.1 implies
that for A ∈ C the process NA is a Q-Poisson process relative to FL+ and its intensity
function is given by aA(·) := (λ+ ⊗ ν)(A ∩ [0, t]× R). We have

M(A) = M((r, v]× C) = NA
t , t ≥ v

and, for v = t, we get

m(A) = EQ[M(A)] = EQ[M((r, v]× C)] = EQ[NA
v ] = (λ+ ⊗ ν)(A).

Furthermore, the sets An := [0, n]×
(
{|x| > 1

n} ∪ {0}
)
, n ≥ 1, belong to C and are

such that ∪∞n=1An = E. Therefore, (An)n≥1 is a sequence of sets of finite measure
both with respect to m and λ+ ⊗ ν. An application of the uniqueness theorem for
measures (cf. Theorem 1.1.2) shows that m = λ+ ⊗ ν on B(E).

To conclude that M is a Poisson random measure relative to the filtration FL+ with
respect to each Q ∈ Qe(X ), we need to verify the independence property of Poisson
random measures relative to the filtration.

3.2.3 Proposition. Let Q be any probability measure in Qe(X ) and let M be the
the jump measure of L. For every fixed s ∈ R+ and every A ∈ B(E) such that A ⊆
(s,+∞) × R and (λ+ ⊗ ν)(A) < +∞, the random variable M(A) is Q-independent
of FL

s+.
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Proof. Let A1, . . . , Am ∈ B(E) be pairwise disjoint sets contained in (s,+∞) × R
of the form Aj = (rj , vj ] × Cj , where s < rj ≤ vj and Cj ∈ B(R) is such that
ν(Cj) < +∞, for every j = 1, . . . ,m. We recall that because of Proposition 3.2.2,
we know that the intensity measure of M is λ+ ⊗ ν. By Proposition 3.2.1, the
random vector (M(A1), . . . ,M(Am)) is Q-independent of FL

s+. Now we consider the
case Aj ⊆ (s, T ) × {|x| > ε}, for every j = 1, . . . ,m, where T > s and ε > 0 are
arbitrary but fixed.

C :=

{ n⋃
j=1

Aj , Aj := (rj , vj ]×Bj p.d., s < rj ≤ vj ≤ T,

Bj ∈ B(R) : Bj ⊆ {|x| > ε}
}
,

where the acronym p.d. stands for pairwise disjoint. We notice that C is an algebra
of measurable subsets of (s, T )×{|x| > ε} (cf. Definition 1.1.1) and it generates the
σ-fields B((s, T ))⊗B({|x| > ε}). For any A ∈ C it follows

M(A) = M

( n⋃
j=1

(rj , vj ]×Bj
)

=
n∑
j=1

M((rj , vj ]×Bj).

Because of the previous step the vector (M((r1, v1] × B1), . . . ,M((rn, vn] × Bn)) is
Q-independent of FL

s+, which implies that M(A) is Q-independent of FL
s+. The

class A ⊆ B(E) defined by

A :=
{
A ⊆ (s, T )⊗ {|x| > ε} Borel subset : M(A) is Q-independent of FL

s+

}
is a monotone class of sets (cf. §1.1.2). Indeed, if (An)n≥1 ⊆ A is such that An ↑ A
or that An ↓ A, then A ∈ A . By the previous step, C is contained in A and an
application of the monotone class theorem for systems of sets (cf. Theorem 1.1.5)
yields A = B((s, T )) ⊗B({|x| > ε}). Let now A be an arbitrary Borel subset of
(s,+∞)×R such that (λ+ ⊗ ν)(A) < +∞. We can define the sequence (An)n≥1 by

An := A ∩ (s, n]× {|x| > 1
n}, n ≥ 1.

Then An ↑ A \ (s,+∞) × {0}. Hence M(An) ↑ M(A \ (s,+∞) × {0}) and the
convergence is pointwise. On the other hand, M(A \ (s,+∞) × {0}) = M(A), Q-
a.s. because λ+ ⊗ ν is the intensity measure of M with respect to Q and clearly
(λ+ ⊗ ν)(A \ (s,+∞) × {0}) = (λ+ ⊗ ν)(A). From the previous step, M(An) is
Q-independent of FL

s+ for every n ≥ 1. Therefore the same holds for M(A) and the
proof is complete.

The jump measure M of the process L is an integer-valued random measure be-
cause L is an FL+-adapted càdlàg process. From Proposition 3.2.2 and Proposition
3.2.3 it follows that M is a Poisson random measure relative to the filtration FL+ with
intensity measure λ+⊗ν also with respect to any probability measure Q in Qe(X ).
In other words, we have proven the following theorem.

3.2.4 Theorem. The jump measure M of the process L is a Poisson random meas-
ure relative to the filtration FL+ with intensity measure m = λ+ ⊗ ν with respect to
each Q ∈ Qe(X ).
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3.3. Uniqueness of the Solution of the Martingale Problem

Let (L,FL+) be a P-Lévy process with characteristic triplet (β, σ2, ν). The Itô–Lévy
decomposition of L with respect to P is

Lt = βt+ Wσ
t + M(1[0,t]×{|x|>1}x) + M(1[0,t]×{|x|≤1}x), t ≥ 0, P-a.s.

In Proposition 3.1.1 we showed that under any probability measure Q equivalent to
P on (Ω, F̃L

∞) which is a solution of the martingale problem associated with X , the
process (Wσ,FL+) remains a Wiener process with variance function σ2(t) = σ2t. In
Theorem 3.2.4 we saw that, if Q ∈ Qe(X ), then the jump measure M of L remains
a Poisson random measure relative to the filtration FL+ with intensity measure m =
λ+ ⊗ ν with respect to Q. In this section we obtain that the set Qe(X ) defined in
(3.4) is equal to the singleton {P}.

3.3.1 Theorem. Let (L,FL+) be a Lévy process on the probability space (Ω,FL
∞,P)

with characteristic triplet (β, σ2, ν) and Itô–Lévy decomposition

Lt = βt+ Wσ
t + M

(
1[0,t]×{|x|>1} x

)
+ M

(
1[0,t]×{|x|≤1} x

)
, t ≥ 0, P-a.s.

where Wσ and M are the Gaussian part and the jump measure of L, respectively.
Then

Qe(X ) = {P}.

Proof. Let Q ∈ Qe(X ). Because of the equivalence of P and Q we can write

Lt = βt+ Wσ
t + M

(
1[0,t]×{|x|>1} x

)
+ M

(
1[0,t]×{|x|≤1} x

)
, t ≥ 0, Q-a.s., (3.6)

where M is the jump meausre of L. By Theorem 3.2.4, we know that M is a Poisson
random measure relative to the filtration FL+ with intensity measure λ+⊗ν also with
respect to Q. By Proposition 3.1.1, (Wσ,FL+) is a Q-Wiener process whose variance
function is 〈Wσ,Wσ〉t = σ2 t. From (3.6) and Theorem 2.3.5, we can conclude that
(L,FL+) is a Lévy process also with respect to Q. In other words, (3.6) is the Itô–
Lévy decomposition of L with respect to Q. The characteristic triplet of (L,FL+) with
respect to Q is equal to (β, σ2, ν), which was the characteristic triplet of (L,FL+) as

a P-Lévy process. Theorem 2.3.6 implies that Q is equal to P on F̃L
∞ and so

Qe(X ) = {P}.

We recall that as a consequence of Theorem 2.1.8 the summands appearing in
(3.6) are Q-independent. Moreover, the Wiener process Wσ and the Poisson ran-
dom measure M are Q-independent (cf. the comment following Theorem 2.3.5). We
conclude this section deducing the result on the H 1-PRP as an immediate con-
sequence of Theorem 3.3.1 and Theorem 1.4.12.

3.3.2 Theorem. Let (L,FL+) be a Lévy process with characteristic triplet (β, σ2, ν).
The family X defined in (3.1) has the H 1-PRP with respect to the filtration FL+,
i.e.,

L 1(X ) = H 1
0 (FL+).
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Proof. Thanks to Theorem 3.3.1 we get, as an application of Theorem 1.4.12, that

L 1(X ) = H 1
0 (FL+). (3.7)

3.4. Representation of Martingales

In the previous section, given a Lévy process (L,FL+) with characteristic triplet
(β, σ2, ν), we have proven that the family X defined in (3.1) posses the H 1-PRP
with respect to FL+. Notice that the filtrations FL+ and FL coincide: From now on, we
shall consider only the latter one. Using Theorem 3.3.2 as a starting point, we want
to construct other interesting families of martingales possessing the H 1-PRP. The
main result of this section is that with every total system T ⊆ L2(ν) it is possible to
associate a family of martingales with the H 1-PRP. Before we establish a technical
lemma.

3.4.1 Lemma. Let M ∈ H q
loc,0 and let (Tn)n≥1 be a sequence of stopping times

localizing M to H q
0 , i.e., Tn ↑ +∞ as n→ +∞ and MTn ∈H q

0 , n ≥ 1. Then

L q({MTn , n ≥ 1}) = L q(M).

Proof. By Lemma 1.4.4, the inclusion {MTn : n ≥ 1} ⊆ L q(M) holds. Therefore,
by the stability of L q(M), L q({MTn , n ≥ 1}) ⊆ L q(M). For the converse inclusion
it is enough to show that every element of the form H ·M , H ∈ Lq(M) (cf. (1.26)),
belongs to L q({MTn , n ≥ 1}) because L q(M) = {H ·M, M ∈ Lq(M)} (cf. Theorem
1.4.5.(i)). From Proposition 1.3.4.(ii), we have that the martingale X := H ·M ,
H ∈ Lq(M), belongs to H q

0 . Moreover,

XTn = (H ·M)Tn = (H 1[0,Tn]) ·M = (H 1[0,Tn]) ·MTn

(cf. (1.31)). From the last of these equalities, we get XTn ∈ L q({MTn , n ≥ 1}),
n ≥ 1. We define

Hn := H 1[0,Tn], n ≥ 1.

Clearly, Hn converges pointwise to H as n → +∞ and |Hn| ≤ |H| ∈ Lq(M). By
Proposition 1.3.5, we get Hn ·M −→ H ·M in (H q

0 , ‖ · ‖H q) as n→ +∞. But the
space L q({MTn : n ≥ 1}) is closed in (H q

0 , ‖ · ‖H q) and hence the integral process
H ·M belongs to it.

Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν) and let T be a
subset of L2(ν). We define the family

XT := {Wσ} ∪ {X(f), f ∈ T }. (3.8)

Now we prove that the totality in L2(ν) of the system T is a sufficient condition
for the associated family XT of martingales to have the H 1-PRP with respect to
FL.
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3.4.2 Theorem. Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν).
If T is total in L2(ν), then the family XT has the H 1-PRP with respect to FL.

Proof. For N ∈ N, we introduce the families

X N := {WσN} ∪ {X(f)N , f ∈ L2(ν)}, X N
T := {WσN} ∪ {X(f)N , f ∈ T },

where the superscript N denotes the operation of stopping at the deterministic time
N ∈ N. Under the assumption that T is total in L2(ν), we know that for every
f ∈ L2(ν) there exists a sequence (fn)n∈N ⊆ Span(T ) such that fn −→ f in L2(ν)
as n → +∞. Because of the linearity of X(g) with respect to g ∈ L2(ν), we can
conclude that X(fn) ∈ Span(XT ). By isometry, for any N ∈ N, we get

‖X(f)
N −X(fn)

N ‖L2(P) = ‖X(f−fn)
N ‖L2(P) =

√
N ‖f − fn‖L2(ν) −→ 0, n→ +∞.

The processes X(f)N and X(fn)N belong to H 2
0 for every N ∈ N (cf. Theorem

2.2.16.(iii)) and by Doob’s inequality we get that X(fn)N −→ X(f)N in (H 2
0 , ‖·‖H 2)

as n→ +∞. Hence the convergence holds in (H 1
0 , ‖ · ‖H 1), for every N ∈ N. This

implies that

X N ⊆ Span(X N
T )

(H 1
0 ,‖·‖H 1 )

⊆ L 1(X N
T ) ⊆ L 1(XT ),

the last inclusion being true because L 1(XT ) is a stable subspace of (H 1
0 , ‖ · ‖H 1).

The sequence (N)N∈N localizes X(f) to H 2
0 hence to H 1

0 . Therefore Lemma 3.4.1
yields

L 1({X(f)N , N ∈ N}) = L 1(X(f)).

Consequently,

L 1(Wσ) ∪
⋃

f∈L2(ν)

L 1(X(f)) ⊆ L 1(XT ). (3.9)

By Theorem 1.4.5.(ii), the left-hand side of (3.9) is total in L 1(X ) and, since
L 1(XT ) is linear and closed in (H 1

0 , ‖ · ‖H 1), we conclude

L 1(X ) ⊆ L 1(XT ) ⊆H 1
0 .

Theorem 3.3.2 yields H 1
0 = L 1(X ) and hence, from the previous inclusions, H 1

0 =
L 1(XT ).

Thanks to Theorem 3.4.2 we can show that, given a Lévy process (L,FL) it is
always possible to find a countable system of martingales with the H 1-PRP. This
because the Hilbert space L2(ν) is always separable.

3.4.3 Corollary. Let (L,FL) be a Lévy process with characteristics (β, σ2, ν). There
always exists a countable family XT with the H 1-PRP.

Proof. The Hilbert space L2(ν) is separable because B(R) is a separable σ-algebra.
Therefore we can find a system T ⊆ L2(ν) which is countable and total. The family
XT associated with T is countable and, from Theorem 3.4.2, it follows that it has
the H 1-PRP.
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If T ⊆ L2(ν) is a complete orthogonal system, i.e., a total system of orthogonal
functions, the family XT is a family of orthogonal martingales possessing the the
H 1-PRP (cf. Theorem 2.2.16.(vi) and Theorem 3.4.2). In conclusion the following
corollary to Theorem 3.4.2 holds.

3.4.4 Corollary. Let T ⊆ L2(ν) be a complete orthogonal system. Then the family
XT is a countable family of orthogonal martingales with the H 1-PRP.

Because of Corollary 3.4.4, we can state that, if T ⊆ L2(ν) is a total system,
any orthogonalization T̃ of it leads to a family XT̃ of orthogonal martingales with
the H 1-PRP. Notice that Theorem 3.4.2 is not a characterization of the H 1-PRP.
It is therefore of interest to try to give some conditions on a system T ⊆ L2(ν)
to ensure that its totality in L2(ν) is also necessary for the family XT to have the
H 1-PRP with respect to FL. The following proposition shows that this is the case
if, for example, T ⊆ L2(ν) is a finite system. We were not able to solve the problem
for a more general system T ⊆ L2(ν).

3.4.5 Proposition. Let T ⊆ L2(ν) be a finite system. Then XT has the H 1-PRP
if and only if T is total.

Proof. It is sufficient to prove that if XT has the H 1-PRP and T is a finite system,
then T is total in L2(ν). The converse implication is a consequence Theorem 3.4.2.
We assume that T ⊆ L2(ν) is a finite system and that XT has the H 1-PRP and
show that T is total in L2(ν). The system T is finite and hence XT is a finite
family of martingales. By assumption, XT possesses the H 1-PRP, hence it satisfies
condition C∞ (cf. Definition 1.4.10 and Theorem 1.4.11.(i)). But then XT satisfies
also condition C1, because it is a finite family of martingales satisfying condition
C∞ (cf. Jacod (1979), Proposition 4.67). Hence, recalling Jacod (1979), Proposition
4.10, XT satisfies condition C2. Let now h ∈ L2(ν) be an orthogonal function to
the closure in L2(ν) of Span(T ). The martingale X(h) ∈ H 2

loc,0 is orthogonal to

XT (cf. Theorem 2.2.16.(vi)) and from condition C2 we deduce X(h) = 0. As a
consequence of Theorem 2.2.16.(v), we get h = 0 which proves, in particular, that
T is total in L2(ν).

Although the possibility of finding a finite family XT with the H 1-PRP is par-
ticularly important, especially for application, it is not difficult to recognize that
this is possible only with a rather limited generality, as now we are going to verify.

3.4.6 Corollary. Let (L,FL) be a Lévy process with characteristics (β, σ2, ν). The
following statements are equivalent:

(i) There exists a finite family XT possessing the H 1-PRP with respect to FL.
(ii) L2(ν) is finite-dimensional.
(iii) ν has finite support.

Proof. The equivalence of (ii) and (iii) is obvious. Now we show that (ii) implies
(i). If L2(ν) is finite-dimensional, then there exists a finite system T ⊆ L2(ν)
which is total. The family XT associated with such a system contains finitely many
martingales and, from Theorem 3.4.2, it possesses the H 1-PRP. Conversely, XT

contains finitely many martingales if and only if T ⊆ L2(ν) is a finite system of
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functions. If we now assume that the finite family of martingales XT possesses
the H 1-PRP with respect to FL, by Proposition 3.4.5, it follows that T is total in
L2(ν). Hence T ⊆ L2(ν) is a finite total system in L2(ν) and therefore L2(ν) is
finite-dimensional.

The situation discussed in Corollary 4.2.7 occurs, for example, if L is a simple
Lévy process, i.e., it is of the form

Lt := Wσ
t +

m∑
j=1

αj N
j
t , t ≥ 0, (3.10)

where (Wσ,FL) is a Brownian motion with variance function 〈Wσ,Wσ〉t = σ2 t,
(N j ,FL) is a homogeneous Poisson process with parameter λj , j = 1, . . . ,m, and
the vector (Wσ, N1, . . . , Nm) of processes is independent; α1, . . . , αm are real num-
bers. In this case ν({αj}) = λj , j = 1, . . . ,m, and moreover we have supp(ν) =
{α1, . . . , αm}. For a simple Lévy process, L2(ν) is isomorphic to Rm, hence every
basis of Rm, in particular any orthogonal one, leads to a finite family of martingales
with the PRP with respect to FL.

The case in which T ⊆ L2(ν) is a finite total system of bounded functions is
specially interesting because of the following proposition.

3.4.7 Proposition. Let T ⊆ L2(ν) be a finite total system of bounded functions.
Then the associated family XT is contained in H ∞

loc,0 and it possesses the H q-PRP

with respect to FL, for every q ∈ [1,+∞).

Proof. If T ⊆ L2(ν) is total, then XT has the H 1-PRP. Therefore XT satisfies
condition C∞. Because XT is a finite system, from Jacod (1979), Proposition 4.67,
we can deduce that it satisfies also condition C1. But then, from Jacod (1979),
Proposition 4.10, XT satisfies also condition Cq, for every q ∈ [1,+∞]. From
Theorem 2.2.16.(iv), we know that XT is contained in H ∞

loc,0 and hence in H q
loc,0, for

every q ∈ [1,+∞]. Then XT is a family contained H q
loc,0 which satisfied condition

Cp, where p is the conjugate exponent of q, for every q. The assert of the proposition
follows immediately from Theorem 1.4.11.(ii).

3.5. Square Integrable Lévy Processes

In Theorem 3.4.2, given a Lévy process (L,FL) with characteristics (β, σ2, ν), we
obtained that if T ⊆ L2(ν) is a total system, then the family XT defined by

XT := {Wσ} ∪ {X(f), f ∈ T }

possesses the H 1-PRP with respect to FL. To prove this result we have showed in
a first step that the bigger family

X := {Wσ} ∪ {X(f), f ∈ L2(ν)}

possesses the H 1-PRP with respect to FL. Although both X and XT were con-
structed starting from the structure of the Lévy process, L does not appear in them
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explicitly. In this section we show that, under further regularity assumptions on the
Lévy process L, we can replace, roughly speaking, the Gaussian part Wσ by L itself.
Thereafter, we assume that L is square integrable, i.e., that Lt ∈ L2(P) for every
t ≥ 0. According to Theorem 2.3.8.(ii) this is equivalent to require that the function
1{|x|>1}x belongs to L2(ν), i.e., that x ∈ L2(ν). For a square integrable Lévy process

(L,FL) we define the process L := (Lt)t≥0 by

Lt := Lt − E[Lt], t ≥ 0, (3.11)

which is an FL-martingale because of Lemma 2.1.1. By X we designate the following
family of martingales in H 2

loc,0:

X := {L} ∪ {X(f), f ∈ L2(ν)}. (3.12)

Let T ⊆ L2(ν). We put

X T := {L} ∪ {X(f), f ∈ T }. (3.13)

We want to prove that, if T ⊆ L2(ν) is total in L2(ν), then X T possesses the H 1-
PRP with respect to FL. The first step that we do is to prove that the family X
possesses the H 1-PRP. To this aim we show that all the solutions of the martingale
problem associated with X which are equivalent to P on (Ω, F̃L

∞), say Qe(X ),
belong to Qe(X ) (cf. (3.4)). In other words, we put

Qe(X ) := {Q ∈ Q(X ) : Q ∼ P on F̃L
∞},

where
Q(X ) := {Q on (Ω, F̃L

∞) such that X ⊆Mloc,0(Q,FL+)},

and we prove that Qe(X ) = Qe(X ) = {P}, the last equality being true because of
Theorem 3.3.1. Notice that P ∈ Q(X )∩Qe(X ) and therefore Q(X ) 6= ∅ 6= Qe(X ).

3.5.1 Theorem. Let (L,FL) be a square integrable Lévy process on the probability
space (Ω,FL

∞,P) with characteristic triplet (β, σ2, ν) and Itô–Lévy decomposition

Lt = βt+ Wσ
t + M

(
1[0,t]×{|x|>1} x

)
+ M

(
1[0,t]×{|x|≤1} x

)
, t ≥ 0, P-a.s.,

where Wσ is the Gaussian part of L and M its the Poisson random measure. Then

Qe(X ) = {P}.

In particular, X possesses the H 1-PRP with respect to FL.

Proof. By Theorem 3.3.1 we have Qe(X ) = {P}. We need only to prove that every
element of Qe(X ) belongs to Qe(X ). From the Itô–Lévy decomposition of L and
Lemma 2.2.9, it follows that E[Lt] = t(β + ν(1{|x|>1}x)). Moreover, by the square

integrability of L, we have x ∈ L2(ν), so that we can define the martingale X(x) and
it belongs to X . We can write the Itô–Lévy decomposition of L as it follows:

L = Wσ +X(x), P-a.s.
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We consider Q belonging to Qe(X ). Because of the equivalence of P and Q we have

L = Wσ +X(x), Q-a.s. (3.14)

To show that Q ∈ Qe(X ) it is enough to prove that the process Wσ is a Q-local
martingale. But this is immediate from (3.14). Indeed, L,X(x) ∈ X and they are
Q-local martingales because Q ∈ Qe(X ). From

Wσ := L−X(x), Q-a.s.

we can deduce that also Wσ is a Q-local martingale. Hence we have the inclusion
Qe(X ) ⊆ Qe(X ) = {P}. An application of Theorem 1.4.12 yields

L 1(X ) = H 1
0 (FL)

and the proof is finished.

We remark that we could have shown Theorem 3.5.1 by verifying that L 1(Wσ) ⊆
L 1(X ). This is the approach that we shall use in Chapter 4, §4.2.2.

Now we state an analogue of Theorem 3.4.2 for X T . The proof of this result is
similar to the proof of Theorem 3.4.2 and we omit it.

3.5.2 Theorem. Let (L,FL) be a square integrable Lévy process. The family X T

defined in (3.13) has the H 1-PRP with respect to FL if T is total in L2(ν).

We want to establish a result similar to Proposition 3.4.5. Now the situation is
slightly different. The main point is that if we consider a function h ∈ L2(ν) which
is orthogonal to T ⊆ L2(ν), it is not true, in general, that the martingale X(h)

is orthogonal to X T , because it could happen that X(h) is not orthogonal to the
martingale L.

3.5.3 Proposition. Let (L,FL) be a square integrable Lévy process and T ⊆ L2(ν)
be a finite system. Then X T has the H 1-PRP and x ∈ Span(T ) if and only if T
is total.

Proof. It is enough to prove that if X T is a finite family with the H 1-PRP and
x ∈ Span(T ), then T is total in L2(ν). Indeed, the converse implication follows
from Theorem 3.5.2 and the fact that, because of x ∈ L2(ν), if T ⊆ L2(ν) is a finite
total system then clearly x ∈ Span(T ). We assume that X T is a finite family of
martingales with the H 1-PRP and that x ∈ Span(T ). We show that the finite
system T ⊆ L2(ν) is total. Because the family X T is finite and it possesses the
H 1-PRP, condition C∞ (cf. Definition 1.4.10) is satisfied. From Jacod (1979),
Proposition 4.67 we know that condition C1 is satisfied. Hence condition C2 is
satisfied (cf. Jacod (1979), Proposition 4.10). Let now h ∈ L2(ν) be orthogonal

to Span(T )
L2(ν)

= Span(T ), the equality being true because T is finite. The
function x belongs by assumption to Span(T ) and so h⊥x. Therefore the martingale
X(h) ∈H 2

loc,0 is orthogonal to X T and from condition C2 we deduce X(h) = 0. As
a consequence of Theorem 2.2.16.(v), we get h = 0 and this means that T is total
in L2(ν).
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We conclude this section by establishing the analogue of Corollary 3.4.6 for the
system X T .

3.5.4 Corollary. Let (L,F) be a square integrable Lévy process with Lévy measure
ν. The following statements are equivalent:

(i) There exists a finite family X T with the H 1-PRP with respect to FL.

(ii) L2(ν) is finite-dimensional.

(iii) ν has finite support.

Proof. The equivalence of (ii) and (iii) is obvious. If L2(ν) is finite dimensional
there exists a system T which is finite and total. From Theorem 3.5.2 we get that
X T is a finite family with the H 1-PRP and so (ii) implies (i). For the converse
implication we recall that x ∈ L2(ν) because L is square integrable. If the finite
family X T has the H 1-PRP, then the family X T x ⊇ X T has the H 1-PRP,
where T x := T ∪ {x}. Therefore, by Proposition 3.5.3, T x must be total in L2(ν)
and so L2(ν) is finite dimensional because T x is a finite total system.

We notice that for the family X T the analogue of Proposition 3.4.7 cannot be
proven unless the Lévy process (L,FL) is locally bounded.

3.6. Open Problems

Let (L,FL) be a Lévy process on the probability space (Ω,FL
∞,P) with characteristic

triplet (β, σ2, ν). In this section we discuss two problems which, in our opinion, are
the main open problems related to the H 1-PRP with respect to FL. The first
problem concerns the possibility to give a characterization of the H 1-PRP, i.e., to
prove the converse of Theorem 3.4.2. The second problem is if in some cases the
H 1-PRP can be simplified in such a way to represent every H 1

0 -martingales as a
series of stochastic integrals converging in (H 1

0 , ‖ · ‖H 1).

3.6.1. Characterization of the Predictable Representation Property

Let (L,FL) be a Lévy process with characteristics (β, σ2, ν). In Chapter 4 we shall
prove that if T is a system of functions in L2(ν), then the family

XT := {Wσ} ∪ {X(f), f ∈ T }

possesses the H 2-PRP with respect to FL if and only if the system T is total
in L2(ν). In other words, we shall give a characterization of the H 2-PRP for the
family of martingales XT in terms of the system of functions T . It was not possible
for us to prove a similar result for the H 1-PRP. Indeed, we only showed that if T
is a total system in L2(ν), then XT possesses the H 1-PRP with respect to FL but
not the converse statement. What is the difference between the H 1-case and the
H 2-case? The family XT consists of true martingales and is contained in H 2

loc,0.

If we assume that XT possesses the H 2-PRP and we consider a function h ∈ L2(ν)
such that

h⊥Span(T )
L2(ν)

,
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because of Theorem 2.2.16.(vi), we obtain that the martingale X(h) associated with
h is orthogonal to XT . But XT satisfies condition C2, because, by assumption,
it possesses the H 2-PRP (cf. Theorem 1.4.11). Hence X(h) = 0 and Theorem
2.2.16.(v) implies h = 0. If we assume that XT has the H 1-PRP, we can only
conclude that it satisfies condition C∞, i.e., that every locally bounded martingale
which is orthogonal to XT is evanescent. From this we cannot deduce as before that
T is total. Indeed, if h is an arbitrary function which is orthogonal to the closure in
L2(ν) of Span(T ), we cannot conclude, in general, that it is also a bounded function.
If it were the case, the associated martingale X(h) would be locally bounded and
orthogonal to XT (cf. Theorem 2.2.16) and by condition C∞ and Theorem 2.2.16,
we could conclude that h = 0. Note that if the system T is a finite total system, in
Proposition 3.4.5 we gave the desired characterization for the H 1-PRP in terms of
the totality of the system T in L2(ν). For this we used that, for finite families of
martingales, all the conditions Cq are equivalent.

It is clear that to give a characterization of the H 1-PRP in the general case of
a family XT which is not finite, the approach which goes trough the conditions Cq
cannot be followed. The relevant questions are then: Is it true that the totality of
T is necessary for XT to have the H 1-PRP? If not, how to construct a counter-
example? If yes, in which way should we prove it?

3.6.2. A Stronger Representation

Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν). We consider
a countable system T := {f1, f2, . . .} ⊆ L2(ν) which is total in L2(ν). This is
always possible because of the separability of L2(ν). To simplify the notations, we
denote the family of martingales associated with T by XT := {Xn, n ≥ 0}, where
X0 := Wσ and Xn := X(fn), n ≥ 1. We know that XT has the H 1-PRP with
respect to FL, thus, every M ∈H 1

0 can be represented as

M = lim
n→+∞

(
mn∑
k=0

Hn,k ·Xk

)
(3.15)

where Hn,k ∈ L1(Xk), n, k ≥ 0, and the limit in (3.15) is taken in (H 1
0 , ‖ · ‖H 1).

The meaning of (3.15) is that for every martingale M ∈H 1
0 , there exists a sequence

(Y n)n≥1,

Y n ∈ Span

( ∞⋃
n=0

L 1(Xn)

)
,

converging in (H 1
0 , ‖ · ‖H 1) to M . The H 1-PRP would become a stronger result if

every martingale M ∈ H 1
0 could be represented as a series of stochastic integrals,

that is, if for every M ∈H 1
0

M =
∞∑
n=0

Hn ·Xn, Hn ∈ L1(Xn), n ≥ 0. (3.16)

We investigated if it is possible to construct a family of martingales XT having the
H 1-PRP with respect to FL in the stronger form expressed in (3.16). In particular,
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we were looking for some conditions on the system T ⊆ L2(ν) to ensure (3.16). We
were not able to give a positive answer to this question. The problem risen by (3.16)
can be formulated in terms of stable subspaces, as it follows. We consider the linear
space C 1 ⊆ H 1

0 consisting of all the martingales in H 1
0 which can be represented

as in (3.16), i.e.,

C 1 := {M ∈H 1
0 such that (3.16) holds }.

It is evident that C 1 is a stable-under-stopping subset of L 1(XT ). Is C 1 also closed
in (H 1

0 , ‖ · ‖H 1)? Or, in other words, is C 1 a stable subspace of H 1
0 ? The system

XT is contained in H 2
loc,0 and hence in H 1

loc,0(= Mloc,0). Clearly, C 1 contains the
set

H := {(Xn)T : T stopping time such that (Xn)T ∈H 1
0 , n ≥ 0}

and therefore, if C 1 were a stable subspace, it would yield

C 1 = L 1(XT )

because L 1(XT ) is the smallest stable subspace of H 1
0 containing H (cf. Lemma

1.4.4). In Protter (2005), in the proof of Theorem IV.4.57, it is asserted that the
space C 1 is in fact closed in (H 1

0 , ‖·‖H 1) but neither we could understand the proof
of this claim proposed in Protter (2005), nor we were able to show it autonomously.

The situation in H 2
0 is simpler and we sketch it shortly. Let T ⊆ L2(ν) be an

orthogonal system and XT the associated family of strongly orthogonal martingales.
If instead of C 1 we consider the set C 2 of all the martingales belonging to H 2

0 for
which the analogue in H 2

0 of (3.16) holds, it is an easy task to show that C 2 is
closed in (H 2

0 , ‖ · ‖H 2) (cf. Lemma 1.4.7). This because the strong orthogonality
of the martingales XT passes to the stable subspace L 2(Xn), n ≥ 0. The strong
orthogonality of the spaces L 2(Xn), n ≥ 0, implies that they are closed orthogonal
subspaces in the sense of the Hilbert space (H 2

0 , ‖ · ‖∗2). We recall that ‖ · ‖∗2 is
the norm induced by the scalar product and that, thanks to DBG’s inequality (cf.
Theorem (1.23)), it is equivalent to the norm ‖ · ‖H 2 . From Theorem 1.4.8 it follows
that

L 2(XT ) =

∞⊕
n=0

L 2(Xn) =: C 2.

Therefore, assuming to know that the totality of T is sufficient for XT to have the
H 2-PRP, we can conclude that if T is a complete orthogonal system, then every
martingale M ∈H 2

0 can be represented as

M =

∞∑
n=0

Hn ·Xn, Hn ∈ L2(Xn), n ≥ 0,

where the previous series converges in (H 2
0 , ‖ · ‖∗2) and hence, by the equivalence

of the norms, in (H 2
0 , ‖ · ‖H 2). To obtain this representation, it seems that the

orthogonality of the system T ⊆ L2(ν), and hence the strong orthogonality of the
martingales XT , is also a necessary condition. Indeed, if T ⊆ L2(ν) is a finite total



3.6 Open Problems 77

system of functions, say T := {f1, . . . , fN}, which are not orthogonal in L2(ν) and
we consider the space L 2(XT ), it is not true that

L 2(XT ) = Span

( N⋃
n=0

L 2(Xn)

)
=: K .

Instead, we know that L 2(XT ) is equal to the closure in (H 2
0 , ‖·‖H 2) of K and, in

general, K is not closed in (H 2
0 , ‖·‖H 2) (cf. Jacod (1979), Exercise 4.6). This is due

to the following fact. If M = (M1, . . . ,Mm), M i ∈ H 2
loc,0, and H = (H1, . . . ,Hm),

H i ∈ L2(M i), i = 1, . . .m, m ≥ 1, it seems natural to define the stochastic integral
of H with respect to M as the sum of the one-dimensional stochastic integrals of
each component, i.e.,

H ·M :=

m∑
i=1

H i ·M i. (3.17)

However, this is not the most general stochastic integral with respect to M . Rather,
one should consider the multi-dimensional stochastic integral of H with respect to
M . We do not go here into details, but we refer to Jacod (1979), §4.2 and §4.4.
and Jacod & Shiryaev (2000), §III.4a. We only remark that if 〈M i,M j〉 = 0, i 6= j,
i, j = 1, . . . ,m, then the multi-dimensional stochastic integral of H with respect to
M coincides with the integral introduced in (3.17).

The orthogonality of the system T ⊆ L2(ν) seems not to be sufficient to (3.16).
Indeed, even in case of a complete orthogonal system T ⊆ L2(ν), and hence of an
orthogonal family of martingales XT , we cannot conclude that the spaces L 1(Xn),
n ≥ 0, are strongly orthogonal (cf. Lemma 1.4.6). On the other side, we cannot
exclude that formula (3.16) is true and, because an opportune choice of the system
T (say, e.g., a complete orthogonal system in L2(ν) of bounded functions) leads to
a family of martingales XT with very special properties, we can hope that there
is the possibility to obtain (3.16) at least in some special cases. Formula (3.16) is
particularly important for several reasons. First of all it is much simpler than (3.15)
and so more convenient for applications. But in our opinion the real interest of this
formula concerns the fact that, if it were true, it would be possible to construct
families consisting of countably may martingales for which all the conditions Cq,
q ≥ 1, are equivalent. This would be a nice complement to Jacod (1979), Proposition
4.13 and 4.67. We now show an idea to prove that if XT has the H 1-PRP in the
form of (3.16), then, for some special system T , XT satisfies condition C1. We
preliminary observe that if M ∈ H 2

loc,0 is such that 〈M,M〉t = ct, c > 0, then for

every H ∈ L1(M) such that H = 0 λ+ ⊗ P-a.e., it follows H ·M = 0. Indeed, if
M ∈H 2

loc,0, then [M,M ] ∈ A +
loc and 〈M,M〉 is its compensator and therefore

E[[H ·M,H ·M ]T ] = E[H2 · [M,M ]T ] = E[H2 · 〈M,M〉T ] = cE[

∫ T

0
H2
t dt] = 0.

This implies that [H · M,H · M ] is a martingale or, equivalently, that H · M is
orthogonal to itself, hence evanescent.

Let T ⊆ L2(ν) be a complete orthogonal system of bounded functions. Then XT

is a family of locally bounded and strongly orthogonal martingales (cf. Theorem



78 3. Martingale Problems for Lévy Processes

2.2.16) with the H 1-PRP. We claim that, if for XT the H 1-PRP assumes the
stronger form expressed in (3.16), then XT satisfies also condition C1 and this
would imply that all the conditions Cq are equivalent. Therefore, as a consequence
of Theorem 1.4.11, we could conclude that if T ⊆ L2(ν) is a complete orthogonal
system of bounded functions, XT possess the H q-PRP, for every q ∈ [1,+∞).

Proof. Under the mentioned assumptions on XT , we are going to show that all the
martingales in H 1

0 which are orthogonal to XT are evanescent. Let M ∈ H 1
0 be

such that M⊥XT . Because T is total and we have assumed that it is such that
the H 1-PRP holds as in (3.16), we have

M =
+∞∑
n=0

Hn ·Xn, Hn ∈ L1(Xn), n ≥ 0. (3.18)

Now we fix k > 0 and consider the martingale Xk. Because of Theorem 2.2.16.(iv),
this is a locally bounded martingale and it is orthogonal to M and, for every n 6= k,
to Xn. There exists a sequence (Sj)j≥1 of stopping times such that Sj ↑ +∞ as
j → +∞ and (Xk)Sj ∈H ∞

0 ⊆ BMO0. So the process

N j := (Xk)Sj

is in BMO0 and is again orthogonal to M and to Xn, for every n 6= k. Because
M ∈H 1

0 , we get that [M,N j ] is a uniformly integrable martingale starting at 0 (cf.
Lemma 1.4.6.(ii) with H = 1). The same holds for Hn · [Xn, N j ], for every n 6= k.
Hence, from Lemma 1.2.2, for every stopping time T ,

E[[M,N j ]T ] = 0, E[Hn · [Xn, N j ]T ] = 0, n 6= k.

Because of Lemma 1.3.1, the linear functional E[[·, N j ]∞] is continuous on H 1
0 .

This implies that also the linear functional E[[·, N j ]T ] is continuous on H 1
0 , for

every stopping time T . Hence, because the convergence in (3.18) takes place in
(H 1

0 , ‖ · ‖H 1), we get

E[Hk · [N j , Xk]T ] = 0, T stopping time. (3.19)

By Lemma 1.4.6.(ii), |Hk| ·Var([Xk, N j ]) is integrable and so, because of (3.19) and
Lemma 1.2.2, we can conclude thatHk·[Xk, N j ] is a uniformly integrable martingale.
For these reasons the compensator of Hk · [N j , Xk] exists and is equal to zero. On
the other side, because 〈Xk, N j〉 is the dual predictable projection of [Xk, N j ], we
get that the compensator of Hk · [Xk, N j ] is Hk · 〈Xk, N j〉. So, Hk · 〈Xk, N j〉 = 0.
Moreover, λ+ ⊗ P-a.e., we have

0 = Hk · 〈N j , Xk〉t = Hk · 〈XkSj , Xk〉t
= Hk · 〈Xk, Xk〉Sjt
= Hk1[0,Sj ] · 〈X

k, Xk〉t

= ν(f2
k )

∫ t

0
Hk
u1[0,Sj ](u) du, t ≥ 0,



3.6 Open Problems 79

and this implies Hk1[0,Sj ] = 0 λ+ ⊗ P-a.e., for every j ≥ 1. But

Hk
t 1[0,Sj ](u) −→ Hk

t , pointwise as j → +∞.

Hence Hk = 0 λ+⊗P-a.e. and above we have observed that this implies Hk ·Xk = 0.
Because of the arbitrariness of k > 0 and of (3.18), recalling that X0 := Wσ, we can
conclude that M is of the form

M = φ ·Wσ.

But then M ∈ H ∞
loc,0 hence MSj ∈ BMO0, where now (Sj)j≥1 is a sequence local-

izing M to H ∞
0 . Because of M⊥Wσ we have also MSj⊥Wσ and by Lemma 1.4.6

we get MSj⊥L 1(Wσ), for every j ≥ 1. Hence, MSj = 0 for every j ≥ 1, because
MSj ∈ L 1(Wσ) and so it is orthogonal to itself. Therefore, because of MSj −→M
pointwise as j → +∞, we get M = 0. We have then shown that XT satisfies con-
dition C1. Because of Jacod (1979), Proposition 4.10, this implies that XT satisfies
also condition Cq, for every q ∈ [1,+∞].

We observe that if T ⊆ L2(ν) is a system of bounded functions such that
L 1(X ) = C 1, then XT has the H 1-PRP, if and only if T is total in L2(ν).
Indeed, for such a system all the conditions Cq, q ≥ 1, are equivalent and, in partic-
ular it satisfies also condition C2. Note that, if T ⊆ L2(ν) is a finite total system of
bounded functions, we have shown in Proposition 3.4.7 that the associated family of
martingales XT possesses the H q-PRP with respect to FL, for every q ≥ 1. How-
ever, also in this specially simple case, even if T is a system of orthogonal functions,
we could not conclude that (3.16) holds.

Another important consequence of (3.16) concerns the uniqueness of the H 1-PRP.
More precisely, assuming (3.16), we were able to prove that the integrands appearing
in (3.16) are λ+ ⊗ P-a.e. uniquely determined by the martingale M . To verify this
fact it is enough to consider two representation of a martingale M ∈H 1

0 , one with
integrands (Hn)n≥0 and one with integrands (Kn)n≥0, and then, with similar ideas
as in the proof discussed above, to prove that Hn = Kn, λ+ ⊗ P-a.e.





CHAPTER 4

Representation of Square Integrable Martingales

Let L be a Lévy process on the probability space (Ω,FL
∞,P). We recall that we put

FL
∞ := σ(Lt, t ≥ 0)∨N (P), where N (P) denotes the null-sets of P in σ(Lt, t ≥ 0).

By FL = (FL
t )t≥0 we designate the completion in FL

∞ of the filtration generated
by L, i.e., FL

t := σ(Ls, 0 ≤ s ≤ t) ∨N (P), t ≥ 0. By Proposition 2.1.4, we know
that FL coincides with the natural filtration of L, thus, it is the smallest filtration
satisfying the usual conditions and making L adapted. Furthermore, L is a Lévy
process relative to FL. We are going to discuss the problem of the H 2-PRP with
respect to FL. More precisely, we show how to construct families of locally square
integrable FL-martingales whose generated stable subspace in H 2

0 (FL) equals the
space H 2

0 (FL) itself. The most elegant way to tackle the problem is at first to
consider a rather general case, outside of the frame of Lévy processes. For this
purpose, in §4.1 we consider a family Z of locally square integrable martingales
and we look for sufficient conditions to ensure that the stable subspace generated
by Z in H 2

0 equals H 2
0 itself. The reference filtration is the smallest filtration

satisfying the usual conditions with respect to which Z is a family of adapted local
martingales. In §4.2 we apply the theory developed in §4.1 to solve the problem
of finding a family of locally square integrable martingales possessing the H 2-PRP
in the special case of Lévy processes. We also analyze the particularly interesting
situation in which the family of locally square integrable FL-martingales with the
H 2-PRP consists of orthogonal martingales. The procedure which we shall follow
is different from the one that we saw in Chapter 3 for the H 1-PRP. This is due
to the fact that, if q > 1, Theorem 1.4.12 nothing says about the H q-PRP for a
family X ⊆Mloc,0 and therefore we cannot approach the problem of the H 2-PRP
by means of an appropriate martingale problem.

4.1. Compensated-Covariation Stable Families

We consider a complete probability space (Ω,F ,P) and a filtration F satisfying the
usual conditions. Let I be an arbitrary set of indexes and Z ⊆ H 2

loc,0 be a family
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of local martingales indexed on I, i.e.,

Z := {M (α), α ∈ I}. (4.1)

For two elements M (α) and M (β), α, β ∈ I, we define the process

M (α,β) := [M (α),M (β)]− 〈M (α),M (β)〉 (4.2)

and we call it the compensated-covariation process. From Proposition 1.2.11.(ii) we
know that the processes [M (α),M (β)] and 〈M (α),M (β)〉, α, β ∈ I, belong to Aloc and
the predictable process 〈M (α),M (β)〉 is the compensator of [M (α),M (β)]. Therefore,
in general, the process M (α,β) belongs only to Mloc,0 (cf. Theorem 1.2.4 and the
comment following it) and not to H 2

loc,0. This fact justifies the following definition.

4.1.1 Definition. Let I be a family of indexes and Z := {M (α), α ∈ I} a family
of local martingales in H 2

loc,0 indexed on I.
(i) We say that Z is a compensated-covariation stable family if the compensated-

covariation process M (α,β) (cf. (4.2)) belongs to Z for every α and β in I.
(ii) Let Z be a compensated-covariation stable family and let α1, . . . , αm ∈ I,

m ≥ 2. We define the process M (α1,...,αm) recursively by

M (α1,...,αm) := [M (α1,...,αm−1),M (αm)]− 〈M (α1,...,αm−1),M (αm)〉. (4.3)

The reader should keep in mind that the process M (α1,...,αm) is defined by (4.3)
only for m ≥ 2 and this does not cause ambiguity of notations with the case m = 1.
We note that, if the indexed family Z is a compensated-covariation stable family of
local martingales, then the process M (α1,...,αm) introduced in (4.3) is well defined for
every α1, . . . , αm. Indeed, by induction, it is immediate to see that for eachm ≥ 2 the
processes M (α1,...,αm−1) belongs to Z , because Z is compensated-covariation stable.
Hence M (α1,...,αm−1) and M (αm) belong to H 2

loc,0 and we can introduce the process

M (α1,...,αm). It is obvious that if Z is a compensated-covariation stable family of
H 2

loc,0, then the process M (α1,...,αm) belongs again to Z , for every α1, . . . , αm in I
and for every natural number m ≥ 2. Therefore, for every α1, . . . , αm ∈ I, m ≥ 2,
there exists an element γ ∈ I such that M (α1,...,αm) = M (γ). Contrarily, if Z is not
compensated-covariation stable, the process M (α1,α2) belongs only to Mloc,0 and so
we cannot introduce the process M (α1,...,αm) for m ≥ 3, because the predictable
process 〈M (α1,...,αm−1),M (αm)〉 could be not defined.

For any family Z ⊆ H 2
loc,0 indexed on I and any arbitrary collection of finite-

valued stopping times S , we define the family Z S by

Z S := {M (α)T , T ∈ S , α ∈ I}. (4.4)

It is clear that Z S ⊆ H 2
loc,0. The following lemma is an easy consequence of the

properties of the brackets [·, ·] and 〈·, ·〉.

4.1.2 Lemma. Let Z be a compensated-covariation stable family of H 2
loc,0 and S

a family of finite-valued stopping times such that T ∧ S ∈ S for every T and S
belonging to S . The family Z S introduced in (4.4) is a compensated-covariation
stable family of local martingales in H 2

loc,0.
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Proof. If M ∈H 2
loc,0 and T is a finite-valued stopping time, the process MT belongs

again to H 2
loc,0. Let M1 and M2 be two local martingales in Z S . By definition

of Z S , there exist two local martingales M (α1) and M (α2) in Z and two stopping

times T and S in S such that M1 = M (α1)T and M2 = M (α2)S . Then we have,

[M1,M2]− 〈M1,M2〉 = [M (α1)T ,M (α2)S ]− 〈M (α1)T ,M (α2)S〉
= [M (α1),M (α2)]T∧S − 〈M (α1),M (α2)〉T∧S

= ([M (α1),M (α2)]− 〈M (α1),M (α2)〉)T∧S

= M (α1,α2)T∧S .

By assumption, T ∧ S belongs to S and M (α1,α2) belongs to Z , because Z is a
compensated-covariation stable family. Hence [M1,M2]−〈M1,M2〉 ∈ Z S , meaning
that Z S is again a compensated-covariation stable family of H 2

loc,0.

For a compensated-covariation stable family in H 2
loc,0 we can obtain a nice rep-

resentation formula for products of its elements. The formula that we are going
to show is very important for the further development. Before we need some tech-
nical preparation. The first lemma that we state concerns integration of measurable
processes with respect to processes of finite variation.

4.1.3 Lemma. On the probability space (Ω,F ,P) we consider two measurable pro-
cesses H and K and a process A belonging to V . If the integral processes K ·A and
H · (K · A) belong to V , the same holds for the integral process (HK) · A and the
following formula holds:

H · (K ·A) = (HK) ·A. (4.5)

Proof. The proof of this result is classical and we sketch it very shortly. We first
assume that K ≥ 0 and A ∈ V +. In this special case, if we choose H of the form
H := 1[0,s]×B, where s ≥ 0 and B ∈ F , formula (4.5) is clearly true. The system
of all such H is stable under intersection. A monotone-class argument implies that
(4.5) holds for every bounded H. If now H is an arbitrary nonnegative process,
approximating it by Hn := H ∧ n, we can easily deduce (4.5) from the previous
step. We now consider the general case of A ∈ V and H and K arbitrary. We
know that there exist two unique processes B,C in V + such that A = B − C and
Var(A) = B + C (cf. Jacod & Shiryaev (2000), Proposition I.3.3). By assumption,
the process H · (K · A) belongs to V and so Var(H · (K · A)) is finite-valued. For
every process J such that J ·A ∈ V , we have Var(J ·A) = |J | ·Var(A). Using this,
we get

Var(H · (K ·A)) = |H| · (|K| ·Var(A)) = |H| · (|K| ·B) + |H| · (|K| · C)

and, from the previous step, we obtain Var(H ·(K ·A)) = (|H||K|) ·Var(A), meaning
that (HK) · A belongs to V . Decomposing the processes H and K in the positive
and negative part, A as A = B − C and using the linearity of the integral and the
previous step it is now a simple computation to obtain (4.5).
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We stress that in the previous lemma the processes H and K were only measurable
and not predictable.

In Jacod & Shiryaev (2000), Proposition I.4.49.(a) it is stated that if X is a
semimartingale and A belongs to V , then the covariation between X and A can be
represented as an integral with respect to A as it follows:

[X,A] = ∆X ·A. (4.6)

A consequence of (4.6) is that if X is a semimartingale and A belongs to V , then the
process ∆X ·A belongs to V . From (4.6) and Lemma 4.1.3 we deduce the following
result.

4.1.4 Lemma. Let X1, . . . , Xm be semimartingales, m ≥ 1 and A ∈ V . The
integral process (

∏m
i=1 ∆Xi) ·A belongs to V .

Proof. We show this lemma by induction on m. If m = 1, from (4.6), the result is
true. Let us now assume the claim for m and prove it for m+ 1. By the induction
hypothesis the process (

∏m
i=1 ∆Xi) ·A belongs to V and, by (4.6), we have

[Xm+1, (
∏m
i=1 ∆Xi) ·A] = ∆Xm+1 ·

((∏m
i=1 ∆Xi

)
·A
)
.

Hence the process on the right-hand side of the previous identity belongs to V . From
Lemma 4.5, we have ∆Xm+1 · ((

∏m
i=1 ∆Xi) ·A) = (

∏m+1
i=1 ∆Xi) ·A and the proof is

finished.

Now the necessary preparation is completed and we come, as announced, to
the representation of products of local martingales belonging to a compensated-
covariation stable family.

4.1.5 Proposition. Let Z := {M (α), α ∈ I} be a compensated-covariation stable
family of local martingales contained in H 2

loc,0. For every m ∈ N and for every
α1, . . . , αm ∈ I, we have

m∏
i=1

M (αi) =

m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )

+

m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

(4.7)

Proof. We show (4.7) by induction as a consequence of the formula of integration by

parts (cf. (1.35)). We stress that M
(α)
− , α ∈ I, is locally bounded because M

(α)
0 = 0.

Hence the each summand in the first summation on the right-hand side of (4.7) is
a local martingale. Lemma 4.1.4 ensures that every summand in the second sum-
mation appearing on the right-hand side of (4.7) is a process of finite variation.
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Therefore the right-hand side of (4.7) is well defined and is a semimartingale. By
convention,

∏
∅ = 1. After these preliminary remarks, we now start with the in-

ductive argument. If m = 1 there is nothing to prove. To begin with, for an easier
understanding, we verify (4.7) for m = 2 and we discuss it briefly for m = 3. The
formula of integration by parts implies that

M (α1)M (α2) = M
(α1)
− ·M (α2) +M

(α2)
− ·M (α1) + [M (α1),M (α2)]

= M
(α1)
− ·M (α2) +M

(α2)
− ·M (α1) +M (α1,α2) + 〈M (α1),M (α2)〉,

where M (α,β) is the compensated-covariation process associated with M (α) and M (β)

(cf. (4.2)). Hence (4.7) holds for m = 2. Notice that if m = 3, by the formula of
integration by parts, we get

M (α1)M (α2)M (α3)

= M
(α3)
− · (M (α1)M (α2)) + (M

(α1)
− M

(α2)
− ) ·M (α3) + [M (α1)M (α2),M (α3)].

If we look back to the formula for m = 2, it is clear that in the computation of
[M (α1)M (α2),M (α3)], the term [〈M (α1),M (α2)〉,M (α3)] appears. The process M (α3)

is a local martingale while 〈M (α1),M (α2)〉 is of finite variation. Therefore, from (4.6),
we obtain: [〈M (α1),M (α2)〉,M (α3)] = ∆M (α3) · 〈M (α1),M (α2)〉. In other words, the
factor involving the jumps of the martingales M (α) appearing in the second term
on the right-hand side of (4.7) for p > 0, comes into play only for m ≥ 3. We now
assume (4.7) for an arbitrary m and we show it for m + 1. From the formula of
integration by parts, it follows

m+1∏
i=1

M (αi) = M (αm+1)
m∏
i=1

M (αi)

=
( m∏
i=1

M
(αi)
−

)
·M (αm+1) +M

(αm+1)
− ·

m∏
i=1

M (αi) + [

m∏
i=1

M (αi),M (αm+1)].

(4.8)

By the induction hypothesis, we can compute explicitly the second and the third
term in the last equality of (4.8). Indeed, for the second summand, by the induction
hypothesis and Proposition 1.3.6, recalling that Lemma 4.1.4 ensures that every
summand in the second summation appearing on the right-hand side of (4.7) is a
process of finite variation, from (4.5), we get

M
(αm+1)
− ·

m∏
i=1

M (αi) =

m∑
i=1

∑
1≤j1<...<ji≤m

(
M

(αm+1)
−

m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )

+
m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{(
M

(αm+1)
−

m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

(4.9)
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Now we discuss the third summand in the last of the equalities in (4.8). We
fix 1 ≤ i ≤ m and then 1 ≤ j1 < . . . < ji ≤ m. Each one of the integrals

(
∏m
k 6=j1,...,jiM

(αk)
− )(

∏ji
`=ji−p+1

∆M (α`))·〈M (αj1 ,...,αji−p−1
),M (αji−p )〉 belongs to V . By

the induction hypothesis and Proposition 1.3.4.(i), we have

[

m∏
i=1

M (αi),M (αjm+1
)] =

m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
· [M (αj1 ,...,αji ),M (αm+1)]

+

m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{[
M (αm+1),

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉
]
.

From (4.6) and Lemma 4.1.3 we can conclude that

[

m∏
i=1

M (αi),M (αjm+1
)] =

m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
· [M (αj1 ,...,αji ),M (αm+1)]

+

m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
(

∆M (αm+1)
ji∏

`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

Using (4.3) in the first term on the right-hand side of the previous formula it follows:

[
m∏
i=1

M (αi),M (αjm+1
)] =

m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji ,αm+1)

+

m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
· 〈M (αj1 ,...,αji ),M (αm+1)〉

+
m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
(

∆M (αm+1)
ji∏

`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

(4.10)
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Inserting (4.9) and (4.10) in (4.8) we get:

m+1∏
i=1

M (αi) =
( m∏
i=1

M
(αi)
−

)
·M (αm+1) (4.11)

+

m∑
i=1

∑
1≤j1<...<ji≤m

(
M

(αm+1)
−

m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji ) (4.12)

+
m∑
i=1

∑
1≤j1<...<ji≤m

( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji ,αm+1) (4.13)

+
m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{(
M

(αm+1)
−

m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
× (4.14)

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉

+
m∑
i=1

∑
1≤j1<...<ji≤m

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
· 〈M (αj1 ,...,αji ),M (αm+1)〉 (4.15)

+
m−2∑
p=0

m∑
i=p+2

∑
1≤j1<...<ji≤m

{( m∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
× (4.16)

×
(

∆M (αm+1)
ji∏

`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

Let us now discuss (4.11), (4.12) and (4.13). We can rewrite (4.13) as it follows

(4.13) =

m+1∑
i=2

∑
1≤j1<...<ji≤m+1

ji=m+1

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )

while (4.11) is the term for i = 1. Putting together (4.11) and (4.13), we obtain

(4.11) + (4.13) =
m+1∑
i=1

∑
1≤j1<...<ji≤m+1

ji=m+1

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji ).

Furthermore, (4.12) can be written as

(4.12) =

m+1∑
i=1

∑
1≤j1<...<ji≤m+1

ji 6=m+1

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )

and this yields

(4.11) + (4.12) + (4.13) =

m+1∑
i=1

∑
1≤j1<...<ji≤m+1

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )



88 4. Representation of Square Integrable Martingales

which is the first summand on the right-hand side of (4.7) for m+ 1. Now we come
to the discussion of (4.14), (4.15) and (4.16). For (4.15) we have

(4.15) =
m+1∑
i=2

∑
1≤j1<...<ji≤m+1

ji=m+1

( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
· 〈M (αj1 ,...,αji−1

),M (αji )〉.

Setting p′ := p+ 1 and denoting it again by p, (4.16) gives

(4.16) =

(m+1)−2∑
p=1

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

ji=m+1

{( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

If we put together (4.15) and (4.16), we obtain

(4.15) + (4.16) =
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

ji=m+1

{( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

Finally, (4.14) can be written as

(4.14) =

(m+1)−2∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

ji 6=m+1

{( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

Notice that in the previous formula, when p = (m+1)−2, we get that {j1, . . . , ji} is
equal to the empty set. Indeed, this case for p yields i = m+1 but, from ji 6= m+1,
the case {j1, . . . , ji} with i = m+ 1 is impossible. As a result, we get

(4.14) + (4.15) + (4.16) =
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

{( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉.

This is the second summand on the right-hand side of (4.7) for m+ 1 and the proof
is finished.
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We remark that if Z is a compensated-covariation stable family consisting of
quasi-left continuous local martingales, then (4.7) becomes considerably simpler.
Indeed, according with Jacod & Shiryaev (2000), Theorem I.4.2, in this case we can
choose a continuous version of the process 〈M (α),M (β)〉, α, β ∈ I, and so all the
terms appearing in the second summation on the right-hand side of (4.7) vanishes
for p 6= 0.

Let Z := {M (α), α ∈ I} be a family of local martingales in H 2
loc,0 (not necessarily

compensated-covariation stable). By FZ
∞ we denote the P-completion of the σ-

algebra σ(M
(α)
t , t ≥ 0, α ∈ I) in itself, i.e.,

FZ
∞ := σ(M

(α)
t , t ≥ 0, α ∈ I) ∨N (P),

where N (P) indicates the null-sets of P in σ(M
(α)
t , t ≥ 0, α ∈ I). The filtration

FZ
+ := (FZ

t+)t≥0 is the natural filtration of Z , that is, the smallest filtration satisfy-
ing the usual conditions and with respect to which each process in Z is an adapted
local martingale, thus,

FZ
t+ :=

⋂
ε>0

σ(M (α)
r , 0 ≤ r ≤ t+ ε, α ∈ I) ∨N (P), t ≥ 0.

From now on, we restrict our attention to the probability space (Ω,FZ
∞ ,P) and to

the filtration FZ
+ , i.e., Z is a family of compensated-covariation stable martingales

contained in H 2
loc,0(FZ

+ ) on the probability space (Ω,FZ
∞ ,P).

In the remaining of this section, we look for sufficient conditions to ensure that
Z possesses the H 2-PRP with respect to FZ

+ . The first assumption which we
make concerns the existence of moments for the elements of Z . We assume that
Z ⊆ H 2

loc,0 is such that for every M (α), α ∈ I, and t ≥ 0 there exists a cα(t) > 0
such that

E
[
exp

(
cα(t)|M (α)

t |
)]

< +∞, t ≥ 0. (4.17)

In other words, we require that each element of Z is such that its state at time t ≥ 0
admits at least one exponential moment, for every t ≥ 0. If Z is a family of true
martingales contained in H 2

0 we can replace (4.17) by the following assumption:
For every M (α), α ∈ I, there exists a cα > 0 such that

E
[
exp

(
cα|M (α)

∞ |
)]

< +∞. (4.18)

Notice that (4.18) is stronger than (4.17). Indeed, if M (α) is a martingale, from
Jensen’s inequality, the process exp(cα|M (α)|) is a submartingale. Hence the function

t 7→ E[(cα|M (α)
t |)] is increasing and so

E
[
exp

(
cα|M (α)

t |
)]
≤ E

[
exp

(
cα|M (α)

∞ |
)]

< +∞.

In the latter case the constant cα > 0 is universal and not depending on time. If

Z ⊆ H 2
loc,0 satisfies (4.17), then each random variable M

(α)
t , t ≥ 0, has a finite

moment of every order. This is an immediate consequence of the Taylor expansion

of the exponential function. If Z ⊆ H 2
0 satisfies (4.18), the random variable M

(α)
∞
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has finite moment of every order and hence the same holds for M
(α)
t , t ≥ 0, for every

α ∈ I. We now recall the very well-known estimation of the geometric mean by the
arithmetic mean, which will be often used in the sequel. For every a1, . . . , am ≥ 0,
m ∈ N, it follows: ( m∏

i=1

ai

) 1
m

≤ 1

m

m∑
i=1

ai. (4.19)

For our purpose, the most important consequences of (4.17) are the following. We
define the family K by

K :=
{∏m

i=1M
(αi)
ti

, αi ∈ I, i = 1, . . . ,m, ti ∈ R, m ∈ N
}

(4.20)

which is the family of monomials generated by products of elements of Z at different
times. If Z ⊆ H 2

loc,0 satisfies (4.17), then K ⊆ L2(Ω,FZ
∞ ,P). Indeed, by (4.19),

for every integer p ≥ 1, α1, . . . , αm ∈ I and t1, . . . , tm ∈ R+, m ∈ N, we have

E
[∏m

i=1 |M
(αi)
ti
|p
]

= E
[ (∏m

i=1 |M
(αi)
ti
|pm
) 1
m
]
≤
∑m

i=1 E
[
|M (αi)

ti
|pm
]
< +∞,

where, in the last estimation, we used that (4.17) implies that M
(αi)
ti

has a finite
moment of every order, αi ∈ I, ti ∈ R+, i = 1, . . . ,m. In particular, for p = 2, we
obtain the assertion. Furthermore, the following proposition holds.

4.1.6 Proposition. Let Z ⊆H 2
loc,0 satisfy (4.17). The family K defined in (4.20)

is total in L2(Ω,FZ
∞ ,P).

Proof. cf. Theorem B.5.

Before to come to the discussion of the H 2-PRP, we need some technical prepar-
ation. We begin with the following lemma.

4.1.7 Lemma. Let A ∈ A be a deterministic process and Z := {M (α), α ∈ I} be
a family of martingales contained in H 2

0 satisfying (4.18). Let m, p, q ∈ N, q ≤ m.
For αi ∈ I, i = 1, . . . ,m, we define the processes H and K by

H :=
m∏
i=1

|M (αi)
− |p, K :=

( q∏
i=1

∆M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αk)
t−

)
. (4.21)

The processes H ·A and K ·A belong to A .

Proof. Notice that both the processes H ·A and K ·A are well defined and belong to
V . Indeed, H ·A ∈ V becauseH is a locally bounded process. ForK·A the statement
is easily deduced from Lemma 4.1.4. The proof that K ·A is of integrable variation
is similar to the one that H ·A is of integrable variation. We verify the statement in
a detailed way only for H · A. In a first step we assume that A ∈ A +, i.e., that A
is an integrable increasing process. Because A is, by assumption, deterministic, to
require A ∈ A + is equivalent to require that A∞ is finite valued. We have to show
that H ·A∞ belongs to L1(P). The measure µA(·) defined on (R+,B(R)) by

µA([0, t]) := At, t ≥ 0,
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is a finite measure. Indeed, µA([0,+∞]) = A∞ < +∞. Therefore the measure P⊗µA
is a finite measure on (Ω × R+,F ⊗B(R+)). For this reason, as a consequence of
the theorem of Fubini (cf. Bauer (2001), Corollary III.23.7), we can write

E[H ·A∞] = E[H] ·A∞, (4.22)

where by E[H] we denote the function t 7→ E[Ht], t ≥ 0. By the definition of H and
the estimate (4.19), from (4.22) we obtain:

E[H ·A∞] = E[H] ·A∞ :=

∫ +∞

0
E
[ m∏
i=1

|M (αi)
t− |p

]
dAt

=

∫ +∞

0
E
[( m∏

i=1

|M (αi)
t− |pm

) 1
m
]

dAt

≤
∫ +∞

0
E
[ m∑
i=1

|M (αi)
t− |pm

]
dAt.

By assumption, the process M (αi) belongs to H 2
0 , for every i = 1, . . . ,m and, thanks

to (4.18), |M (αi)
∞ |pm ∈ L1(P). From Dellacherie (1972), Theorem V.10, it follows that

M
(αi)
t− = E[M

(αi)
∞ |Ft−] and so, for every m ∈ N, we have

E[|M (αi)
t− |pm] ≤ E[|M (αi)

∞ |pm] < +∞.

Therefore

E[H ·A∞] ≤
∫ +∞

0
E
[ m∑
i=1

|M (αi)
t− |pm

]
dAt =

∫ +∞

0

m∑
i=1

E
[
|M (αi)

t− |pm
]

dAt

≤
∫ +∞

0

m∑
i=1

E
[
|M (αi)
∞ |pm

]
dAt

=
m∑
i=1

E
[
|M (αi)
∞ |pm

]
A∞ <∞

and this concludes the proof of the lemma for A ∈ A +. Let us now consider the
general case in which A is a deterministic process belonging to A , i.e., a deterministic
process of finite variation such that A∞ < +∞. By Jacod & Shiryaev (2000),
Proposition I.3.3, there exist two unique increasing processes B,C ∈ A + such that
A = B − C and Var(A) = B + C. We show that the random variable Var(H · A)∞
belongs to L1(P). The process H ≥ 0 is locally bounded and this ensures that
H ·A ∈ V . Furthermore, the relation Var(H ·A) = H ·Var(A) implies

Var(H ·A)∞ = H ·Var(A)∞ = H ·B∞ +H · C∞

and thanks to the previous step we can conclude. IfA ∈ A + the prove thatK·A ∈ A
is similar to the one for H. In the general case of A ∈ A , we have to apply Lemma
4.1.3 and Lemma 4.1.4.
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Now we can immediately deuce that if Z ⊆ H 2
0 satisfies (4.18) and M (α) ∈ Z

is such that 〈M (α),M (α)〉 is deterministic, then the predictable process
∏m
i=1M

(αi)
−

belongs to L2(M (α)) (cf. (1.26)), for every αi ∈ I, i = 1, . . . ,m. Indeed, because
M (α) ∈ H 2

0 , the process [M (α),M (α)] belongs to A + and 〈M (α),M (α)〉 is its com-
pensator (cf. Proposition 1.2.11.(ii)). Hence

E
[( m∏

i=1

M
(αi)
−

2
)
· [M (α),M (α)]∞

]
= E

[( m∏
i=1

M
(αi)
−

2
)
· 〈M (α),M (α)〉∞

]
.

From Lemma 4.1.7 it follows that the right-hand side in the previous relation is
integrable and the assertion is proved. We are going to discuss a lemma which
concerns the orthogonality of a random variable N ∈ L2(P) to products of elements
of K .

4.1.8 Lemma. Let Z ⊆ H 2
0 be a family of martingales which satisfies (4.18),

m ∈ N and N ∈ L2(P) such that for every α1, . . . , αm ∈ I, for every t1, . . . , tm ∈ R+,

N is orthogonal in L2(P) to
∏m
i=1M

(αi)
ti

. Then we also have

N⊥
( q∏
i=1

M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αk)
t−

)
, q ≤ m, 1 ≤ j1 < . . . < jq ≤ m.

Proof. We take q ≤ m and 1 ≤ j1 < . . . < jq ≤ m. Let (tn)n≥1 ⊆ R+ be such that
tn ↑ t. Then we have

m∏
k=1

k 6=j1,...,jq

M
(αk)
t− = lim

n→+∞

m∏
k=1

k 6=j1,...,jq

M
(αk)
tn , a.s.

Let β1, . . . , βm ∈ I be such that M (βji ) := M (αji ), if i = 1, . . . , q and M (βk) := M (αk),
if k 6= j1, . . . , jq. Analogously, we introduce the sequence (si)i≥1 of deterministic
times as sji = t, if i = 1, . . . , q and sk = tn if k 6= j1, . . . , jq. Then, for every fixed
n ≥ 1, we have

q∏
i=1

M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αk)
tn =

m∏
i=1

M (βi)
si

meaning that for every fixed n ≥ 1 it follows:

E
[
N

q∏
i=1

M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αk)
tn

]
= 0.

We now show that the sequence (an)n≥1 defined by

an := N

( q∏
i=1

M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αk)
tn

)
, n ≥ 1,
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is dominated in L1(P). By (4.19) we have

|an| ≤ N2 +

q∏
i=1

M
(αji )
t

2 m∏
k=1

k 6=j1,...,jq

M
(αk)
tn

2
.

By assumption N ∈ L2(P) and so it remains to show that the second summand
on the right-hand side of the previous inequality is integrable. Again by (4.19), for
every n ≥ 1, we obtain

q∏
i=1

M
(αji )
t

2 m∏
k=1

k 6=j1,...,jq

M
(αk)
tn

2
≤

q∑
i=1

M
(αji )
t

2m
+

m∑
k=1

k 6=j1,...,jq

M
(αk)
tn

2m

≤
q∑
i=1

M
(αji )
t

2m
+

m∑
k=1

k 6=j1,...,jq

supn≥1

(
M

(αk)
tn

2m)
.

Obviously,

supn≥1

(
M

(αk)
tn

2m)
≤ sup0≤s≤t

(
M

(αk)
s

2m)
and, by Doob’s inequality and (4.18), the right-hand side in the previous estimation
is integrable. Hence (an)n≥1 is dominated in L1(P) by a quantity which does not
depend on n. Therefore the theorem of Lebesgue on dominated convergence can be
applied to get

0 = lim
n→∞

E[an] = E
[

lim
n→∞

an

]
= E

[
N

q∏
i=1

M
(αji )
t

m∏
k=1

k 6=j1,...,jq

M
(αi)
t−

]

and this concludes the proof.

Now we come to the main result of this section. We are going to show that if
Z ⊆H 2

loc,0(FZ
+ ) is a compensated-covariation stable family of true martingales sat-

isfying (4.17) and such that for every M (α) and M (β) the associated point brackets
〈M (α),M (β)〉 are deterministic, α, β ∈ I, then Z possesses the H 2-PRP with re-
spect to the filtration FZ

+ . We recall that by L 2(Z ) we denote the stable subspace
generated by Z in H 2

0 .

4.1.9 Theorem. Let Z = {M (α), α ∈ I} be a compensated-covariation stable
family of true martingales in H 2

loc,0 on the probability space (Ω,FZ
∞ ,P) and with

respect to the filtration FZ
+ which satisfies (4.17). If, for every α and β belonging

to I, the process 〈M (α),M (β)〉 is deterministic, then the family Z has the H 2-PRP
with respect to FZ

+ , i.e.,

L 2(Z ) = H 2
0 (FZ

+ ).

Proof. Let S := R+ be the family of deterministic finite-valued stopping times
and Z S the family obtained from Z as in (4.4). Obviously Z S is stable under
stopping with respect to finite-valued deterministic stopping times and it satisfies
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(4.18) because Z satisfies (4.17). Hence, because Z ⊆ H 2
loc,0 is a family of true

martingale, we have that Z S is in fact contained in H 2
0 . Thanks to Lemma 4.1.2,

Z S is again a compensated-covariation stable family. Moreover, L 2(Z S ) is equal
to L 2(Z ). Indeed, for every α ∈ I, the increasing sequence (N)N∈N localizes
M (α) to H 2

0 because M (α) has finite moment of second order (cf. (4.17)). The set

{M (α)N , N ∈ N} is contained in Z S and so L 2({M (α)N , N ∈ N}) ⊆ L 2(Z S ),
for every α ∈ I. Lemma 3.4.1 implies

L 2({M (α)N , N ∈ N}) = L 2(M (α))

and, by Theorem 1.4.5, the system
⋃
α∈I L 2(M (α)) is total in L 2(Z ). Hence, by the

stability of L 2(Z S ), L 2(Z ) ⊆ L 2(Z S ). The converse inclusion is immediate and
therefore we have L 2(Z S ) = L 2(Z ). This means that to show that Z possesses
the H 2-PRP it is enough to verify that Z S possesses the H 2-PRP. Summarizing,
Z S is a compensated-covariation stable family contained in H 2

0 satisfying (4.18)
and the point brackets of elements of Z S are a deterministic process. Moreover, Z S

is stable under stopping with respect to finite-valued deterministic stopping times
and generates in H 2

0 the same stable subspace as Z . Without loss of generality, we
can assume for Z all the properties of Z S . These further assumptions on the family
Z will considerably simplify the notations in the sequel. Our aim is to show that the
compensated-covariation stable family Z such that 〈M (α),M (β)〉 is deterministic,
α, β ∈ I, with the further assumptions explained before, i.e., Z ⊆H 2

0 fulfills (4.18)
and is stable under stopping with respect to deterministic finite-valued stopping
times, satisfies condition C2 (cf. Definition 1.4.10). In other words, we show that
every martingale N belonging to H 2

0 which is orthogonal to Z is evanescent. To
prove this result we verify that if N ∈ H 2

0 is orthogonal to Z , then its terminal
variable N∞ is orthogonal in L2(Ω,FZ

∞ ,P) to the system K defined in (4.20) which
is total (cf. Proposition 4.1.6). We proceed by (strong) induction on m ∈ N. We

recall that from (4.18) and (4.19) it follows immediately that
∏m
i=1M

(αi)
∞ belongs to

L2(Ω,FZ
∞ ,P), for every α1, . . . , αm ∈ I. Let N ∈ H 2

0 (FZ
+ ) be such that N⊥Z . If

m = 1, because of the orthogonality, NM (α) ∈ H 1
0 (cf. Proposition 1.2.10.(i)) and

so

E[N∞M
(α)
∞ ] = E[N0M

(α)
0 ] = 0.

Now we assume that for every α1, . . . , αn ∈ I, n ≤ m, we have

E
[
N∞

n∏
i=1

M (αi)
∞

]
= 0, n ≤ m. (4.23)

From (4.23), it follows that

E
[
N∞

n∏
i=1

M
(αi)
ti

]
= 0, t1, . . . , tn ∈ R+, , n ≤ m. (4.24)

Indeed, by assumption, the family Z is stable under stopping with respect to determ-
inistic finite-valued stopping times, meaning that for every v ∈ R+ the martingale
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M (α)v belongs to Z , α ∈ I. Therefore, for every αi ∈ I and ti ∈ R+, i = 1, . . . , n,
n ≤ m, there exists βi ∈ I such that

M (αi)
ti

= M (βi), i = 1, . . . , n, n ≤ m,

and so

E
[
N∞

n∏
i=1

M
(αi)
ti

]
= E

[
N∞

n∏
i=1

M (αi)
∞

ti
]

= E
[
N∞

n∏
i=1

M (βi)
∞

]
= 0, n ≤ m,

where, in the last equality, we used (4.23). Now we prove (4.23) for m+ 1. Because

the random variable N∞ belongs to L2(Ω,FZ
∞ ,P), the product N∞

∏m+1
i=1 M

(αi)
∞ is

integrable and from Proposition 4.1.5 we have

E
[
N∞

m+1∏
i=1

M (αi)
∞

]
=

m+1∑
i=1

∑
1≤j1<...<ji≤m+1

E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )∞

)]

+
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

{
E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉∞
)]
.

(4.25)

For the first summand on the right-hand side of (4.25) we have

m+1∑
i=1

∑
1≤j1<...<ji≤m+1

E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )∞

)]
= 0. (4.26)

Indeed, from Lemma 4.1.7, for every fixed 1 ≤ j1 < . . . < ji ≤ m, it follows that:( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
∈ L2(M (αj1 ,...,αji )),

where we recall that for a local martingale M ∈Mloc,0, the space L2(M) was intro-
duced in (1.26). From Theorem 1.4.5.(i) it follows that every stochastic integral with
respect to M (αj1 ,...,αji ) appearing in (4.26) belongs to L 2(M (αj1 ,...,αji )). But each
element M (αj1 ,...,αji ) belongs again to Z , because Z is a compensated-covariation
stable family. From Lemma 1.4.6.(i) we know that if M (α) ∈ Z , then N is also
orthogonal to L 2(M (α)). Therefore, N is orthogonal to L 2(M (αj1 ,...,αji )) mean-
ing that NX ∈ H 1

0 , for every X belonging to L 2(M (αj1 ,...,αji )) (cf. Proposition
1.2.10.(i)). Hence, because N0X0 = 0, for every X ∈ L 2(M (αj1 ,...,αji )), we have

E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
·M (αj1 ,...,αji )∞

)]
= 0, 1 ≤ i ≤ m.
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Now we show that the second summation on the right-hand side of (4.25) vanishes.

The processes M (αji−p ) and M (αj1 ,...,αji−p−1
) belong to Z for every i and p, because

Z is compensated-covariation stable. By assumption, 〈M (αj1 ,...,αji−p−1
),M (αji−p )〉

are all deterministic. Moreover, from Lemma 4.1.7, we have that all the integrals

of the form (
∏m+1
k 6=j1,...,jiM

(αk)
− )(

∏ji
`=ji−p+1

∆M (α`)) · 〈M (αj1 ,...,αji−p−1
),M (αji−p )〉 are

processes of integrable variation. We can then apply the theorem of Fubini to get

m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

{
E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
)}
· 〈M (αj1 ,...,αji−p−1

),M (αji−p )〉∞
)]

=
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<...<ji≤m+1

{
E
[
N∞

(( m+1∏
k=1

k 6=j1,...,ji

M
(αk)
−

)
×

×
( ji∏
`=ji−p+1

∆M (α`)
))]}

· 〈M (αj1 ,...,αji−p−1
),M (αji−p )〉∞.

(4.27)

Let us fix p and i, 0 ≤ p ≤ m− 1, p+ 2 ≤ i ≤ m+ 1 and 1 ≤ j1 < . . . < ji ≤ m+ 1.
We consider the generic element

K :=

( m+1∏
k=1

k 6=j1,...,ji

M
(αi)
−

)( ji∏
`=ji−p+1

∆M (α`)

)
.

The first product appearing in the definition of K has (m+ 1)− i factors, while the
second product has p + 1 factors, if p ≥ 1 and it vanishes if p = 0. Therefore, the
process K consists of (m + 1) + (p + 1 − i) factors. On the other hand, i ≥ p + 2
and so (p + 1− i) ≤ 0. In conclusion, K consists of, at most, m factors. Also each
product appearing in the definition of K has not more than m factors, so we can
use the induction hypothesis. After expanding the product we observe that Kt is
equal to a finite sum of terms of type

q∏
k=1

M
(αik )
t−

q+r∏
j=q+1

M
(αij )

t , 1 ≤ i1, . . . , iq+r ≤ m+1 pairwise different, q+r ≤ m−1 .

From the induction hypothesis, (4.24) and Lemma 4.1.8, it follows that E[N∞Kt] =
0. Then (4.27) vanishes. This, together with (4.26) and (4.25), implies that

E
[
N∞

m+1∏
i=1

M (αi)
∞

]
= 0.

Hence, because of the induction, we can conclude that if N⊥Z , then for every
m ∈ N and every α1, . . . , αm ∈ I it follows:

E
[
N∞

m∏
i=1

M (αi)
∞

]
= 0.
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The family Z is assumed to be stable under stopping with respect to finite-valued
deterministic stopping times and this yields:

E

[
N∞

m∏
i=1

M
(αi)
ti

]
= 0, t1, . . . , tm ∈ R+, α1, . . . , αm ∈ R+, m ∈ N.

Therefore if N is (strongly) orthogonal to Z , then N∞ is orthogonal (in the sense
of the Hilbert space L2(Ω,FZ

∞ ,P)) to K , where K is the family of monomials
defined in (4.20). But K is a total system in L2(Ω,FZ

∞ ,P) (cf. Proposition 4.1.6)
and so N∞ = 0. From Jacod & Shiryaev (2000), Theorem I.1.42 we know that
Nt = E[N∞|FZ

t+] and so we get Nt = 0, a.s. for every t ≥ 0. By our definition of
martingale, the process N is càdlàg, thus we can deduce that N is indistinguishable
from the identically null process. We have proven that, if N ∈H 2

0 (FZ
+ ) is orthogonal

to Z , then it is evanescent, or equivalently that Z satisfies condition C2. Theorem
1.4.11.(ii) implies that the family Z possesses the H 2-PRP with respect to FZ

+ and
this completes the proof.

We now give first examples of compensated-covariation stable families fulfilling
all the assumptions of Theorem 4.1.9 and hence possessing the H 2-PRP.

4.1.1. Continuous Gaussian Families

We start by considering a Wiener process W on the probability space (Ω,FW
∞ ,P),

where FW
∞ := σ(Wt, t ≥ 0)∨N (P) and N (P) are the null-sets of σ(Wt, t ≥ 0). We

refer to the natural filtration of W , FW = (FW
t )t≥0. Obviously, [W,W ]−〈W,W 〉 = 0

and so the family Z := {W} ∪ {0} is a compensated-covariation stable family
satisfying all the assumptions of Theorem 4.1.9. Therefore

L 2(W ) = L 2(Z ) = H 2(FZ
+ ) = H 2(FW ).

In other words, from Theorem 4.1.9, we can deduce the very well-known fact (cf.
Clark (1970)) that a Wiener process W possesses the H 2-PRP with respect to FW .

More generally, on a complete probability space (Ω,F ,P) and with a filtration
F satisfying the usual conditions, we consider a family X := {M (α), α ∈ I} of

continuous local martingales such that M
(α)
0 = 0 and that 〈M (α),M (β)〉 is a determ-

inistic (continuous) function, for every α and β in I. We are going to show that
such a family X of continuous local martingales is a Gaussian family, i.e., for every

α1, . . . , αm ∈ I and for every t
(αi)
1 , . . . , t

(αi)
nαi
≥ 0, i = 1, . . . ,m, the vector(

M
(α1)

t
(α1)
1

, . . . ,M
(α1)

t
(α1)
nα1

; . . . ;M
(αm)

t
(αm)
1

, . . . ,M
(αm)

t
(αm)
nαm

)
is Gaussian distributed with covariance function

Cov(M
(α)
t ,M (β)

s ) = 〈M (α),M (β)〉t∧s, s, t ≥ 0. (4.28)

This result can be considered as a generalization of the theorem of P. Lévy on the
characterization of the Wiener process (cf. Theorem 1.2.9).
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4.1.10 Proposition. A family of continuous local martingales X := {M (α), α ∈ I}
such that M

(α)
0 = 0, α ∈ I, is a Gaussian family with covariance structure as in

(4.28) if and only if 〈M (α),M (β)〉 is a continuous deterministic process, for every α
and β belonging to I.

Proof. If X is a pairwise Gaussian family of continuous local martingale, then
M (α) +M (β) and M (α)−M (β) are Gaussian continuous local martingales and there-
fore processes with independent increments, for all α, β ∈ I. This implies that
〈M (α) +M (β),M (α) +M (β)〉 and 〈M (α)−M (β),M (α)−M (β)〉 are deterministic and
hence 〈M (α),M (β)〉 = 1

4(〈M (α) +M (β),M (α) +M (β)〉−〈M (α)−M (β),M (α)−M (β)〉)
is deterministic. We now show the converse implication. It is enough to verify that
for every 0 = t0 < t1 < . . . < tn, n ∈ N, the vector

(M
(α1)
t1

, . . . ,M
(α1)
tn ; . . . ;M

(αm)
t1

, . . . ,M
(αm)
tn )

is Gaussian with the following covariance structure:

Cov(M
(αj)
ti

,M
(αk)
t`

) = 〈M (αj),M (αk)〉ti∧t` , j, k = 1, . . . ,m; i, ` = 1, . . . , n.

We verify, without loss of generality, that for every t ≥ 0 the random vector

(M
(α1)
t , . . . ,M

(αm)
t ) is Gaussian and its covariance function is Cov(M

(α)
t ,M

(β)
t ) =

〈M (α`),M (αk)〉t, for every m ∈ N. Indeed, we can assume that the family X is
stable under stopping with respect to finite-valued deterministic stopping times. If
it is not the case we can consider the family X S defined as in (4.4), where S = R+

is the collection of all deterministic finite-valued stopping times. This simplifies
considerably the notations of the proof. We define the process Z := (Zt)t≥0 by

Zt := exp

(
i

m∑
j=1

M
(αj)
t +

1

2

m∑
`,k=1

u`uk〈M (α`),M (αk)〉t
)

Obviously, Z0 = 1 and, because M (α) is continuous, α ∈ I, and the process
〈M (α`),M (αk)〉 is deterministic and continuous, `, k = 1, . . . ,m, Z is a bounded
process on every compact interval. Moreover, applying Itô’s, formula we get

Zt = 1 +
m∑
j=1

ujZ ·M
(αj)
t , t ≥ 0.

Hence the process Z is a local martingale (notice that because of the continuity,
Z is a locally bounded predictable process and so Z ∈ Lqloc(M), q ≥ 1, for every
M ∈ Mloc). But because Z is bounded over compact intervals, it is in fact a
true martingale. Then we obtain E[Zt] = E[Z0] = 1, which, for every uk, u` ∈ R,
k, ` = 1, . . . ,m, implies that

E
[

exp

(
i

m∑
j=1

M
(αj)
t

)]
= exp

(
− 1

2

m∑
`,k=1

u`uk〈M (α`),M (αk)〉t
)
, m ∈ N, t ≥ 0.

In particular, from this it follows that the vector (M
(α1)
t , . . . ,M

(αm)
t ) is Gaussian

with covariance function Cov(M
(α)
t ,M

(β)
t ) = 〈M (α`),M (αk)〉t, for every m ∈ N and

the proof is finished.
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We consider a family X := {M (α), α ∈ I} of continuous local martingales such
that the process 〈M (α),M (β)〉 is deterministic, for every α, β ∈ I. We restrict our
attention to the probability space (Ω,FX

∞ ,P) and to the filtration FX
+ . Because of

Theorem 1.2.9, we know that M (α) is a Wiener process relative to FX
+ with variance

function σ2
α(t) = 〈M (α),M (α)〉t, for every α ∈ I and t ≥ 0. Therefore X is a

family of true martingales. Moreover, for every α ∈ I and for every t ≥ 0, the

random variable M
(α)
t satisfies condition (4.17). Thanks to the continuity of M (α),

α ∈ I, we have that, for every α, β ∈ I the compensated-covariation process M (α,β)

is identically equal to zero and therefore the family Z := X ∪{0} is a compensated
covariation-stable family which satisfies all the assumptions of Theorem 4.1.9. From
this follows that

L 2(X ) = L 2(Z ) = H 2
0 (FX

+ ),

i.e., X has the H 2-PRP with respect to FX
+ . Notice that because of the con-

tinuity of the family X , thanks to Jacod (1979), Proposition 4.13 and Theorem
1.4.11, we can even conclude that the Gaussian family X has the H q-PRP with
respect to FX

+ , for every q ≥ 1. In conclusion we have shown that every Gaussian
family X possesses the H q-PRP with respect to FX

+ , for every q ≥ 1. We stress
that fromJacod (1979), Proposition 4.13 we can deduce that X satisfies condition
C1. Indeed, X has the H 2-PRP and so it satisfies condition C2. Because of the
continuity of the martingales in X , this is equivalent to condition C1.

4.1.2. Independent Families of Poisson Processes

In Kabanov (1973) and Kabanov (1974) it was proven that a compensated Poisson
process N possesses the H 2-PRP with respect to its natural augmented filtration
FN . We now verify once again this result as a consequence of Theorem 4.1.9. We
consider a Poisson process N on the probability space (Ω,FN

∞ ,P), where FN
∞ :=

σ(Nt, t ≥ 0) ∨N (P) and N (P) are the null-sets of σ(Nt, t ≥ 0). Let a(·) be the
intensity function of N , which is a continuous deterministic increasing function. We
define the family Z by Z := {N}, where N := N − a(·). We have

[N,N ]− 〈N,N〉 =
∑

0<s≤t
(∆Ns)

2 − a(·) =
∑

0<s≤t
∆Ns − a(·) = N.

All the assumptions of Theorem 4.1.9 are satisfied and so we can conclude that
the family Z has the H 2-PRP with respect to FN = FN . More generally, for a
family X := {M (α), α ∈ I} of independent compensated Poisson processes, on the
probability space (Ω,FX

∞ ,P) and with respect to the filtration FX
+ , we have that, for

every α, β ∈ I such that α 6= β, the process [M (α),M (β)] is equal to zero (cf. Theorem
A.1.1). This implies that also the process 〈M (α),M (β)〉 is equal to zero. Therefore,
thanks to Theorem 4.1.9, the compensated-covariation stable family Z := X ∪ {0}
possesses the H 2-PRP with respect to FZ

+ = FX
+ .

We do not go on discussing further examples. Rather we demand this task to
§4.2, where, using the theory developed in this section, we shall construct families
of martingales with the H 2-PRP with respect to the natural filtration of a Lévy
process.
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4.2. Martingales of the Natural Filtration of a Lévy Process

In this section we apply the theory developed in the previous one to Lévy processes.
More precisely, given a Lévy process L with respect to the filtration FL on the
probability space (Ω,FL

∞,P), we construct a family Z of compensated-covariation
stable FL-martingales satisfying the assumptions of Theorem 4.1.9. As usual, for a
Lévy process (L,FL) with Lévy measure ν, we denote by M its jump measure. In
§2.3.1 we have shown that M is a Poisson random measure relative to the filtration FL
and that its intensity measure is given by λ+⊗ν, where λ+ is the Lebesgue measure
on (R+,B(R+)) and ν the Lévy measure of L. By M we denote the compensated
Poisson random measure of L, i.e., we put M := M−λ+⊗ν. In §2.2.5, for f ∈ L2(ν),

we have introduced the process X(f) = (X
(f)
t )t≥0 by

X
(f)
t := M(1[0,t]f), t ≥ 0.

In Theorem 2.2.16 we have shown that X(f) is a true martingale in H 2
loc,0 and that

for any deterministic stopping time v ≥ 0, the stopped process X(f)v belongs to
H 2

0 . Moreover, 〈X(f), X(g)〉 is given by 〈X(f), X(g)〉t = tν(fg). If the function f
belongs to L1(ν)∩L2(ν), then the martingale X(f) is of finite variation and we have
the identity (cf. Proposition 2.2.12)

X
(f)
t := M(1[0,t]f)− tν(f) =

∑
0≤s≤t

f(∆Ls)1{∆Ls 6=0} − tν(f) a.s., t ≥ 0.

4.2.1 Assumption. Let T ⊆ L2(ν) be a system of functions satisfying the following
properties:

(i) T ⊆ L1(ν) ∩ L2(ν).

(ii) T is total in L2(ν).

(iii) T is stable under multiplication.

(iv) T is a system of bounded functions.

We observe that, given a Lévy measure ν, a system T ⊆ L2(ν) with the properties
of Assumptions 4.2.1 always exists. For example, the system

T := {1(a,b], a, b ∈ R : a < b, 0 /∈ [a, b]}

is contained in L1(ν)∩L2(ν) and is stable under multiplication. Moreover, it satisfies
the assumptions in Lemma 1.1.8 and therefore it is total in L2(ν). Let T ⊆ L2(ν)
be as in Assumption 4.2.1 and Wσ denote the Gaussian part of the process L. We
define the family Z as it follows:

Z := {Wσ} ∪ {X(f), f ∈ T } ∪ {0}. (4.29)

At first, we show that the filtration FZ
+ coincides with FL. Because of the right-

continuity of FL, it suffices to show that the filtration FZ = (FZ
t )t≥0, where we set

FZ
t := σ(Ms 0 ≤ s ≤ t, M ∈ Z ) ∨N (P), t ≥ 0, and N (P) denotes the collection

of the null-sets of σ(Lt, t ≥ 0), is equal to FL. In §2.3.3 we have discussed the



4.2 Martingales of the Natural Filtration of a Lévy Process 101

structure of the filtration FL. In particular, from Proposition 2.3.11, we know that
the identity

FL = FWσ ∨ FM

holds, where FWσ
is the natural filtration of the Wiener process Wσ while FM is the

natural filtration of M, introduced in §2.3.3. So,

FL
t = FWσ

t ∨FM
t , t ≥ 0. (4.30)

By definition of FZ , we have

FZ := FWσ ∨ F{X
(f), f∈T }.

Now we show that F{X(f), f∈T } equals FM. We verify F
{X(f), f∈T }
∞ = FM

∞ . The

proof that F
{X(f), f∈T }
t is equal to FM

t for every t ≥ 0 is analogous.

4.2.2 Lemma. F
{X(f), f∈T }
∞ = FM

∞ .

Proof. Because of Proposition 2.3.10, each martingale X(f), with f ∈ T , is FM-
adapted. Because each X(f) is also càdlàg, we can conclude that it is a B(R+)⊗FM

∞ -

measurable process. Therefore X
(f)
t is FM

∞ -measurable for every t ≥ 0 and f ∈ T .

Hence F
{X(f), f∈T }
∞ ⊆ FM

∞ . We have to show the converse inclusion. Let C be
the system defined by C = {(u, v]× (a, b], u, v ≥ 0, 0 /∈ [a, b]}. In Lemma 2.3.9 we
proved that C M := {M(A), A ∈ C } generates the σ-algebra F̃M

∞ . So, to conclude, it

is enough to show that the system CM is F
{X(f), f∈T }
∞ -measurable. For this purpose,

we take A ∈ C of the form A = (u, v]× (a, b], where 0 ≤ u < v and a < b such that
0 /∈ [a, b]. For such an A we have M(A) = M(1[0,v]1(a,b]) −M(1[0,u]1(a,b]) and so it

is sufficient to verify that M(1[0,t]1(a,b]) is F
{X(f), f∈T }
∞ -measurable for every t ≥ 0.

The function 1(a,b] belongs to L2(ν) because 0 /∈ [a, b]. The system T is total in
L2(ν) (cf. Assumption 4.2.1). Therefore there exists a sequence (fn)n≥1 ⊆ Span(T )
such that fn −→ 1(a,b] in L2(ν) as n→ +∞. By linearity and isometry we have

‖X(fn)
t −X(1(a,b])

t ‖22 = ‖X(fn−1(a,b])
t ‖22 = t‖fn − 1(a,b]‖2L2(ν) −→ 0 as n→ +∞.

Consequently, X
(fn)
t converges in L2(Ω,FL

∞,P) to X
(1(a,b])
t , for every t ≥ 0. But the

random variable X
(fn)
t is F̃

{X(f), f∈T }
∞ -measurable, for every fixed t ≥ 0, and so

X(1(a,b]) is F
{X(f), f∈T }
∞ -measurable. On the other side, 1(a,b] belongs also to L1(ν)

which yields the relation

X
(1(a,b])
t = M(1[0,t]1(a,b])− tν((a, b]) a.s., t ≥ 0.

Hence M(1[0,t]1(a,b]) is F
{X(f), f∈T }
∞ -measurable too and so C M is F

{X(f), f∈T }
∞ -

measurable, which yields FM
∞ ⊆ F

{X(f), f∈T }
∞ .

Now we prove that the family Z in (4.29) satisfies the assumptions of Theorem
4.1.9.
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4.2.3 Proposition. The family Z in (4.29) is a compensated-covariation stable
family of FL-martingales in H 2

loc,0. Moreover, for every M ∈ Z and for every
c > 0, we have

E[exp(c|Mt|)] < +∞, t ≥ 0, (4.31)

and for every N ∈ Z , the predictable process of finite variation 〈M,N〉 is determ-
inistic and continuous.

Proof. It is clear that Z ⊆ H 2
loc,0. Furthermore, because each function f in T is

bounded, from Theorem 2.2.16.(iv) it follows that each martingale X(f) is locally
bounded. The process Wσ is continuous and so locally bounded. Consequently, Z
is a family of locally bounded Lévy processes and Theorem 2.3.8.(iv) ensures (4.31).
The process 〈Wσ,Wσ〉 is given by 〈Wσ,Wσ〉t = σ2t. For every f ∈ T we have
〈Wσ, X(f)〉 = 0 and if f, g ∈ T , then 〈X(f), X(g)〉t = ν(fg)t. Therefore 〈M,N〉
is a deterministic continuous process of finite variation, for every M,N ∈ Z . It
remains to show that Z is a compensated-covariation stable family. We have that
[Wσ,Wσ] − 〈Wσ,Wσ〉 = 0 and [Wσ, X(f)] − 〈Wσ, X(f)〉 = 0, f ∈ T , because Wσ

is a continuous martingale and X(f) a purely discontinuous martingale (cf. §1.2.7
and §1.2.8) and so these processes belong all to Z by definition. Now we compute
the compensated-covariation process X(f,g) for f, g ∈ T . Because T is stable under
multiplication, the function fg belongs to T , for every f, g ∈ T . Therefore the
martingale X(fg) can be defined and it belongs to Z . By Theorem 2.2.16, we have

X
(f,g)
t := [X(f), X(g)]t − 〈X(f), X(g)〉t

=
∑

0<s≤t
∆X(f)

s ∆X(g)
s − ν(fg)t

=
∑

0<s≤t
f(∆Ls)g(∆Ls)1{∆Ls 6=0} − ν(fg)t

= M(1[0,t]fg)− ν(fg)t = M(1[0,t]fg) =: X
(fg)
t , t ≥ 0, a.s., ,

where, in the last equality, we used that fg ∈ L1(ν)∩L2(ν) and Proposition 2.2.12.
In other words, we obtained the identity

X
(f,g)
t = X

(fg)
t t ≥ 0, a.s.,

i.e., X(f,g) and X(fg) are indistinguishable. So Z is a compensated-covariation
stable family of martingales.

Thanks to Theorem 4.1.9 and Proposition 4.2.3, we have that the family Z defined
in (4.29), possesses the H 2-PRP with respect to FZ

+ . From Lemma 4.2.2 we know
that FZ = FL hence FZ is right continuous, i.e., FZ

+ = FZ . In conclusion, we have
shown that the family Z has the H 2-PRP with respect to FL. Let us consider the
family of martingales X defined in (3.1), i.e.,

X := {Wσ} ∪ {X(f), f ∈ L2(ν)}.

Obviously, Z ⊆ X ∪ {0} and so L 2(Z ) ⊆ L 2(X ). On the other side, L 2(Z ) =
H 2

0 and L 2(X ) ⊆ H 2
0 . We can then claim that the family X has the H 2-

PRP with respect to FL. We summarize the results obtained until now in the next
theorem.
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4.2.4 Theorem. The family X introduced in (3.1) possesses the H 2-PRP with
respect to FL.

Although Theorem 4.2.4 is an interesting theoretical result, the family X seems
to be too large for applications. In particular, it is always uncountable. For any
arbitrary system of functions in L2(ν), say T , we define the family XT by

XT := {Wσ} ∪ {X(f), f ∈ T }. (4.32)

Our aim is to establish necessary and sufficient conditions on the system T ⊆ L2(ν)
for the family XT to have the H 2-PRP with respect to FL. In other words, we
want to reduce the family X as much as possible without losing the H 2-PRP.
The following theorem characterizes the H 2-PRP of the family XT in terms of the
system T .

4.2.5 Theorem. Let T be a system of functions in L2(ν). The family XT defined
in (4.32) possesses the H 2-PRP with respect to FL if and only if T is a total system
in L2(ν).

Proof. First we assume that the family XT possesses the H 2-PRP and show that
T is total in L2(ν). If XT has the H 2-PRP, by Theorem 1.4.11.(ii) it satisfies
condition C2. We consider a function h ∈ L2(ν) which is orthogonal to the closure in
L2(ν) of Span(T ). By Theorem 2.2.16.(vi), the martingale X(h) ∈H 2

loc,0 associated

with h is orthogonal to XT . But then, by condition C2, we have X(h) = 0 and again
by Theorem 2.2.16.(v), h = 0. Therefore T is total in L2(ν). Conversely, we assume
that T is total in L2(ν) and we show that XT has the H 2-PRP with respect to
FL. For any deterministic time N ∈ N we introduce the families

X N := {WσN} ∪ {X(f)N , f ∈ L2(ν)}; X N
T := {WσN} ∪ {X(f)N , f ∈ T }.

Under the assumption that T is total in L2(ν), we know that for every f ∈ L2(ν)
there exists a sequence (fn)n∈N ⊆ Span(T ) such that fn −→ f in L2(ν) as n→ +∞.
Because of the linearity of X(g) with respect to g ∈ L2(ν), we can conclude that
X(fn) ∈ Span(XT ). Now we fix N ∈ N. By isometry we get

‖X(f)
N −X(fn)

N ‖L2(P) = ‖X(f−fn)
N ‖L2(P) =

√
N ‖f − fn‖L2(ν) −→ 0, n→ +∞.

The processes X(f)N and X(fn)N belong to H 2
0 for every N ∈ N and, by Doob’s

inequality, we get that X(fn)N −→ X(f)N in (H 2
0 , ‖ · ‖H 2

0
) as n→ +∞. This means

X N ⊆ Span(X N
T )

(H 2
0 ,‖·‖H 2 )

⊆ L 2(X N
T ) ⊆ L 2(XT ),

the last inclusion being true because L 2(XT ) is a stable subspace of H 2
0 and

XT ⊆ H 2
loc,0, so that X N

T ⊆ L 2(XT ) (cf. Lemma 1.4.4). By Lemma 3.4.1, the
following identities hold

L 2({WσN , N ∈ N}) = L 2(Wσ); L 2({X(f)N , N ∈ N}) = L 2(X(f)), f ∈ T .
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Consequently,

L 2(Wσ) ∪
⋃

f∈L2(ν)

L 2(X(f)) ⊆ L 2(XT ).

From Theorem 1.4.5.(ii), the left-hand side in the previous relation is total in L 2(X )
and, since L 2(XT ) is linear and closed in (H 2

0 , ‖ · ‖H 2
0

), we conclude

L 2(X ) ⊆ L 2(XT ) ⊆H 2
0 .

Theorem 4.2.4 yields L 2(X ) = H 2
0 and hence L 2(XT ) = H 2

0 , meaning that XT

possesses the H 2-PRP with respect to FL.

Notice that with Theorem 4.2.5, we gave a characterization of the H 2-PRP of a
system XT in terms of the totality in L2(ν) of the system T . This was possible in
the general case, without further restriction on the system T . We could not obtain
a similar result for the H 1-PRP. In Theorem 3.4.2 we only proved that if a system
T ⊆ L2(ν) is total in L2(ν), then the associated family of martingales possesses
the H 1-PRP. Only in the special case in which T ⊆ L2(ν) is a finite system, we
could show that the totality of T is necessary for XT to have the H 1-PRP (cf.
Proposition 3.4.5).

A first consequence of Theorem 4.2.5 is the possibility of finding countable systems
of martingales with the H 2-PRP.

4.2.6 Proposition. It is always possible to find a countable family of martingales
with the H 2-PRP with respect to FL.

Proof. The space L2(ν) is a Hilbert space on the measurable space (R,B(R)). Be-
cause B(R) is a separable σ-algebra, L2(ν) is a separable Hilbert space and so there
always exists a system T which is countable and total in L2(ν). From Theorem
4.2.5, the associated family XT is a countable family of martingales with the H 2-
PRP.

We conclude this section turning to the problem of finding finite families of mar-
tingales with the H 2-PRP. A similar problem was considered for the H 1-PRP.
We shall obtain similar conclusions as in Corollary 3.4.6: Although the possibil-
ity of finding families of martingales XT consisting of finitely many elements and
possessing the H 2-PRP is of special interest, this is the case in a rather limited
generality.

4.2.7 Corollary. The following statements are equivalent:
(i) There exists a finite family XT possessing the H 2-PRP with respect to FL.
(ii) L2(ν) is finite-dimensional.
(iii) ν has finite support.

Proof. The equivalence of (ii) and (iii) is obvious. The equivalence of (i) and (ii) is
an immediate consequence of Theorem 4.2.5. Indeed, the family XT has the H 2-
PRP with respect to FL if and only if T is total. But XT is finite if and only if T
is finite. Therefore there exists a finite family XT with the H 2-PRP if and only if
there exists a finite total system in L2(ν), which is equivalent to say that L2(ν) is
finite dimensional.
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The situation discussed in Corollary 4.2.7 occurs, for example, if (L,FL) is a simple
Lévy process (cf. (3.10))

4.2.1. Complete Orthogonal Systems

We now come to the important case in which the system T ⊆ L2(ν) is a complete
orthogonal system, i.e., a total system consisting of orthogonal functions. Note that
a complete orthogonal system of a Hilbert space is always countable and so we use
the notation T := {fn, n ≥ 1}. In this situation the H 2-PRP becomes particularly
interesting, as the next theorem shows.

4.2.8 Theorem. Let T be a complete orthogonal system in L2(ν). The associ-
ated family XT has the H 2-PRP and any martingale M belonging to H 2

0 can be
represented as

M = φ ·Wσ +

∞∑
n=1

Hn ·X(fn), φ ∈ L2(Wσ), Hn ∈ L2(X(fn)), n ≥ 1, (4.33)

where the series converges in (H 2
0 , ‖ · ‖H 2).

Proof. Because of the orthogonality of T , the associated family of martingales XT

is orthogonal (cf. Theorem 2.2.16.(vi)). Thanks to Theorem 4.2.5 we have

L 2(XT ) = H 2
0 .

By Theorem 1.4.8, the orthogonality of XT implies that the generated stable sub-
space L 2(XT ) has the following structure:

L 2(XT ) = L 2(Wσ)⊕
∞⊕
n=1

L 2(X(fn)).

Combining the previous two identities we get (4.33).

4.2.9 Remark. It is well-known that any martingale X ∈ H 2(FL) has a repres-
entation

X = H ·Wσ +G ∗M (4.34)

where H ∈ L 2(Wσ) and G ∈ G 2(M) (for the definition of G 2(M) and of the
stochastic integral G ∗ M, see Jacod (1979), Formula (3.62) and Definition 3.63,
respectively). This integral representation is due to Kunita & Watanabe (1967).
Also see Jacod & Shiryaev (2000), Theorem III.4.34, where the proof is based on
the uniqueness of the solution of a certain martingale problem. Another approach
is given by Kunita (2004) using the chaos expansion of the seminal paper by Itô
(1956).

Here we want to present a sketch of an alternative and independent proof of the
integral representation (4.34) using Theorem 4.2.8. Let T = {fn, n ≥ 1} be a
complete orthogonal system of L 2(ν) and XT the associated family of martingales.
By Theorem 4.2.8 each martingale X ∈H 2(FL) can be represented as in (4.33). Let
(Hn)n≥1 be the sequence of integrands appearing in (4.33). Because Hnfn ∈ G 2(M),
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we have Hn ·X(fn) = Hnfn∗M (cf. Jacod (1979), Definition 3.63). So we can rewrite
(4.33) as

X = φ ·Wσ +
∞∑
n=1

{(Hnfn) ∗M}, φ ∈ L 2(Wσ), H n ∈ L 2(X(fn)), n ≥ 1.

It follows that
∑∞

n=1H
nfn =: G belongs to G 2(M). But this means that we can

consider the integral G ∗ M ∈ H 2 and
∑∞

n=1{(Hnfn) ∗ M} = G ∗ M. Therefore
every martingale X ∈ H 2(FL) can be represented as in (4.34), where G ∈ G 2(M)
is defined as above.

If T ⊆ L2(ν) is a complete orthogonal system, we can give a characterization of

the spaces H 2,d
0 and H 2,c

0 of the purely discontinuous and continuous martingales
in H 2

0 , respectively.

4.2.10 Corollary. Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν)
and let T ⊆ L2(ν) be a complete orthogonal system. We consider the family of
martingales XT := {Wσ} ∪ {X(fn), n ≥ 1} associated with T , where Wσ is the

Gaussian part of L. A martingale M ∈H 2
0 (FL) belongs to H 2,d

0 if and only if

M =

∞∑
i=1

Hn ·X(fn), Hn ∈ L2(X(fn)), n ≥ 1, (4.35)

while M belongs to H 2,c
0 if and only if

M = φ ·Wσ, φ ∈ L2(Wσ). (4.36)

Proof. Because of Theorem 4.2.8, if M ∈H 2
0 (FL), we can write

M = φ ·Wσ +
∞∑
n=1

Hn ·X(fn), φ ∈ L2(Wσ), Hn ∈ L2(X(fn)), n ≥ 1.

Each summand of the series on the right-hands side of the previous formula be-
longs to H 2,d

0 because H 2,d
0 is a stable subspace of H 2

0 (FL) (cf. Proposition 1.4.2).
Moreover, the series converges in (H 2

0 , ‖ · ‖H 2). From Jacod (1979), Lemma 2.12,

the space H 2,d
0 is closed in (H 2

0 , ‖ ·‖H 2), therefore there exists N ∈H 2,d
0 such that

N =

∞∑
n=1

Hn ·X(fn), Hn ∈ L2(X(fn)), n ≥ 1.

The martingale φ ·Wσ, φ ∈ L2(Wσ), belongs to H 2,c
0 . In conclusion, we have that

M ∈ H 2,d
0 if and only the term φ ·Wσ in (4.33) vanishes and so, if an d only if

M = N . Conversely, M ∈ H 2,c
0 if and only if N vanishes and so, if and only if

M = φ ·Wσ.

Let T ⊆ L2(ν) be a complete orthogonal system. Then the associated family of
martingales XT possesses the H 2-PRP and formula (4.33) holds. An interesting
question is whether the integrands appearing in the stochastic integrals in (4.33) are
uniquely determined by the martingale M ∈H 2

0 .
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4.2.11 Theorem. Let T be a complete orthogonal system in L2(ν) and XT the
associated family of martingales. Any Z ∈ H 2

0 can be represented as in (4.33) and
the integrands are λ+ ⊗ P-a.e. uniquely determined by Z.

Proof. Let Z ∈H 2
0 have two representations of the form (4.33), i.e.,

Z = φ ·Wσ +
∞∑
n=1

Hn ·X(fn) = ψ ·Wσ +
∞∑
n=1

Kn ·X(fn)

for φ, ψ ∈ L2(Wσ), Kn, Hn ∈ L2(X(fn)), n ≥ 1. Then

(φ− ψ) ·Wσ +
∞∑
n=1

(Hn −Kn) ·X(fn) = 0. (4.37)

Now we fix k ≥ 1 and consider the martingale X(fk). If J ∈ N is a deterministic
stopping time, we put

NJ := X(fk)J

and NJ ∈ H 2
0 (cf. Theorem 2.2.16.(iii)). If n 6= k, then X(fk) is orthogonal to

X(fn). By Proposition 1.2.10.(iii), the same holds for NJ . We note that [NJ , NJ ]
is integrable because NJ ∈ H 2

0 (cf. Proposition 1.2.11.(ii)) and so 1 ∈ L2(NJ).
By assumption the processes Hn and Kn belong to L2(X(fn)). Applying Lemma
1.4.6.(i) with M := X(fn), N := NJ , H := Hn−Kn, K := 1 and p = q := 2, we get
that the processes (Hn −Kn) · [X(fn), NJ ] belongs to M0 for n 6= k. If n = k, as a
consequence of Kunita–Watanabe’s inequality, the process (Hk −Kk) · [X(fk), NJ ]
is of integrable variation. If now T is a stopping time, by Lemma 1.2.2, we get

E[(Hn −Kn) · [X(fn), NJ ]T ] = 0, n 6= k. (4.38)

By Lemma 1.3.1 the linear functional E[[·, NJ ]∞] is continuous on H 2
0 . Using this

fact we can compute E[[·, NJ ]T ] in (4.37):

0 = E[[φ ·Wσ, NJ ]T ] +
∞∑
n=1

E[(Hn −Kn) ·X(fn), NJ ]T ]

=

∞∑
n=1

E[(Hn −Kn) · [X(fn), NJ ]T ] = E[(Hk −Kk) · [X(fk), NJ ]T ],

where, in the second equality we used Proposition 1.3.4.(i) and that for every con-
tinuous local martingale M , [M,NJ ] = 0 because NJ is purely discontinuous, while
in the last equality we applied (4.38). Therefore the process (Hk−Kk)·[X(fk), NJ ] is
of integrable variation and for every stopping time T , E[(Hk−Kk)·[X(fk), NJ ]T ] = 0.
Lemma 1.2.2 issues (Hk −Kk) · [X(fk), NJ ] ∈M0. Because (Hk −Kk) · [X(fk), NJ ]
belongs to M0 ∩ A , its compensator exists and is equal to zero. On the other
side, [X(fk), NJ ] belongs to A + and its compensator is 〈X(fk), NJ〉 (cf. Proposition
1.2.11). Hence the compensator of (Hk−Kk) · [X(fk), NJ ] is (Hk−Kk) · 〈X(fk), NJ〉
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(cf. Theorem 1.2.4 and the comment following it), i.e., (Hk −Kk) · 〈X(fk), NJ〉 = 0.
Consequently,

0 = (Hk −Kk) · 〈X(fk), NJ〉t = (Hk −Kk) · 〈X(fk), X(fk)J〉t
= (Hk −Kk) · 〈X(fk), X(fk)〉Jt
= (Hk −Kk)1[0,J ] · 〈X(fk), X(fk)〉t

= ν(f2
k )

∫ t

0
(Hk

s −Kk
s )1[0,J ](s) ds, t ≥ 0, a.s.

and this implies (Hk −Kk)1[0,J ] = 0 λ+ ⊗ P-a.e., for every J ≥ 1. The predictable

process (Hk−Kk)1[0,J ] converges pointwise to (Hk−Kk) as J → +∞ and therefore

Hk−Kk = 0 λ+⊗P-a.e., that is, Hk = Kk λ+⊗P-a.e. Because of the arbitrariness
of k, we can conclude that

Hk = Kk λ+ ⊗ P-a.e., k ≥ 1.

By (4.37), this implies that (ψ − φ) ·Wσ = 0 which yields

0 = (ψ − φ)2 · 〈Wσ,Wσ〉t = σ2

∫ t

0
(ψs − φs)2 ds, t ≥ 0, a.s.

and therefore ψ = φ λ+ ⊗ P-a.e. This concludes the proof.

Complete orthogonal systems in L2(ν) are related with minimal families of mar-
tingales with the H 2-PRP.

4.2.12 Definition. Let q ≥ 1 and Z be a family of local martingales with the
H q-PRP. We say that Z is a minimal family in H q

0 if no element of Z can be
omitted without loosing the H q-PRP.

If T is a total system in L2(ν), the associated family XT need not to be a minimal
family in H 2

0 . Indeed, as we shall see, it can happen that it is possible to omit some
elements from the system T and nevertheless it remains total. However, if T is
a complete orthogonal system, then the family XT is a minimal family in H 2

0 as
stated in the following proposition.

4.2.13 Proposition. Let T be a complete orthogonal system in L2(ν). The asso-
ciated family of martingales XT is a minimal family in H 2

0 .

Proof. To omit a martingale from the family XT means either to omit the Gaussian
part Wσ or a function h ∈ T . The Gaussian part Wσ can clearly not be omitted
without loosing the H 2-PRP. Indeed, by means of the family {X(f), f ∈ T } we

cannot represent continuous martingales in H 2
0 (FL), because the space H 2,d

0 is a
stable subspaces of H 2

0 (cf. Corollary 4.2.10). If we omit a function h from T , we
loose the totality of T in L2(ν) and from Theorem 4.2.5, XT \{h} cannot have the
H 2-PRP.

Although the problem of finding a family XT with the H 1-PRP which is moreover
minimal in H 1

0 is interesting, we were not able to furnish a positive answer to this
question.
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4.2.2. Square Integrable Lévy Processes

This part is analogous to §3.5 but we shall follow a different approach. In Theorem
4.2.5, given a Lévy process (L,FL) with Lévy measure ν, we showed that if T ⊆
L2(ν) is a total system, then the family XT defined by

XT := {Wσ} ∪ {X(f), f ∈ T }

possesses the H 2-PRP with respect to FL and conversely, if XT has the H 2-PRP,
then T is total in L2(ν). To prove this result we used that the bigger family

X := {Wσ} ∪ {X(f), f ∈ L2(ν)}

possesses the H 2-PRP with respect to FL (cf. Theorem 4.2.4). Although both
X and XT were constructed starting from the structure of the Lévy process, L
does not appear in them explicitly. Here we show that, under further regularity
assumptions on the Lévy process L, we can replace the Gaussian part Wσ by L
itself. Thereafter, we assume that L is square integrable, i.e., that Lt ∈ L2(P) for
every t ≥ 0. According to Theorem 2.3.8.(ii) this is equivalent to require that the
function 1{|x|>1}x belongs to L2(ν) and this implies that x ∈ L2(ν). For a square

integrable Lévy process (L,FL) we define the process L := (Lt)t≥0 by

Lt := Lt − E[Lt], t ≥ 0, (4.39)

which is an FL-martingale because of Lemma 2.1.1. By X we designate the following
family of martingales in H 2

loc,0:

X := {L} ∪ {X(f), f ∈ L2(ν)}. (4.40)

Let T ⊆ L2(ν). We put

X T := {L} ∪ {X(f), f ∈ T }. (4.41)

We now show that the family X possesses the H 2-PRP.

4.2.14 Theorem. Let (L,FL) be a square integrable Lévy process. The family X
defined in (4.40) possesses the H 2-PRP with respect to FL

Proof. In §3.5, we showed that X has the H 1-PRP with respect to FL, by showing
the uniqueness of the solution of an appropriate martingale problem associated with
X . Now we prove that the stable subspace generated by X in H 2

0 , L 2(X ), is
equal to L 2(X ). By Theorem 4.2.4 we have L 2(X ) = H 2

0 , therefore L 2(X ) ⊆
L 2(X ). To show the other inclusion it is enough to verify that L 2(Wσ) is contained
in L 2(X ). From the Itô–Lévy decomposition of L and Lemma 2.2.9, it follows that
E[Lt] = t(β + ν(1{|x|>1}x)). Moreover, by the square integrability of L, we have

x ∈ L2(ν), so that we can define the martingale X(x) ∈H 2
loc,0 and we can rewrite the

Itô–Lévy decomposition of L as it follows: L = Wσ +X(x). Hence Wσ := L−X(x).
The processes L and X(x) belong to H 2

loc,0 and for any deterministic time N ∈ N,
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L
N

and X(x)N belong to H 2
0 : For X(x) this follows from Theorem 2.2.16.(iii), while

for L we have
supt≥0 E

[
(L

N
t )2
]

= E
[
L

2
N

]
< +∞

and Doob’s inequality yields supt≥0

(
L
N
t

)2 ∈ L1(P). By Lemma 1.4.4, L
N

and X(x)N

belong to L 2(X ), for every N ∈ N. Therefore WσN belongs to L 2(X ) for every
N . The stable subspace L 2({WσN , N ∈ N}) is contained in L 2(X ), but, by
Lemma 3.4.1, L 2({WσN , N ∈ N}) = L 2(Wσ) and the proof is finished.

We are going to establish the analogue of Theorem 4.2.5 for X T . Now, to show
that if X T has the H 2-PRP, then the system T is total is L2(ν), we need to
proceed in a slightly different way. Indeed, if we consider a function h which is
orthogonal to T , the martingale X(h) need not to be orthogonal to X T because it
could happen that X(h) is not orthogonal to the martingale L = Wσ +X(x).

4.2.15 Theorem. Let (L,FL) be a square integrable Lévy process. The family X T

has the H 2-PRP and the function x belongs to the closure in L2(ν) of Span(T ) if
and only if T is total in L2(ν).

Proof. Obviously, if T is total in L2(ν) we have that x belongs to the closure in
L2(ν) of Span(T ) and the proof that X T has the H 2-PRP is similar to the proof
that XT has the H 2-PRP (cf. Theorem 4.2.5). Let us assume that X T has the
H 2-PRP and that x belongs to the closure in L2(ν) of Span(T ). If h ∈ L2(ν) is
orthogonal to the closure in L2(ν) of Span(T ), then, from L = Wσ + X(x), the
martingale X(h) is orthogonal to X T and, because X T satisfies condition C2, this
implies that X(h) = 0 and so h = 0. In particular, we can assert that T ⊆ L2(ν) is
total in L2(ν).

Now we deduce an analogue to Corollary 4.2.7.

4.2.16 Corollary. The following statements are equivalent:
(i) There exists a finite family X T possessing the H 2-PRP with respect to FL.
(ii) L2(ν) is finite-dimensional.
(iii) ν has finite support.

Proof. The equivalence of (ii) and (iii) is obvious. If L2(ν) is finite dimensional there
exists a system T which is finite and total. From Theorem 4.2.15 we get that X T is
a finite family with the H 2-PRP and so (ii) implies (i). For the converse implication
we recall that x ∈ L2(ν) because L is square integrable. If the finite family X T

has the H 2-PRP, then the family X T x has the H 2-PRP, where T x := T ∪ {x}.
Therefore, by Theorem 4.2.15, T x must be total in L2(ν) and so L2(ν) is finite
dimensional because T x is a finite total system.

Note that now to an orthogonal system T ⊆ L2(ν) there corresponds a family of
orthogonal martingales X T if and only if x is orthogonal to T . This means that if
T is a complete orthogonal system in L2(ν), the associated family X T cannot be
an orthogonal family. Indeed, if it were the case, we would have that T is a total
system such that x⊥T , which is impossible. However, if T is a countable total
family, we can obtain a family of orthogonal martingales possessing the H 2-PRP
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directly by orthogonalizing X T . We refer to, e.g., Kunita & Watanabe (1967) for
an analogue of the Gram–Schmidt orthogonalization procedure for locally square

integrable martingales. We denote by X
orth
T such an orthogonalization. Then any

martingale M ∈ H 2
0 can be represented as an infinite sum of stochastic integrals

with respect to elements of X
orth
T , i.e.,

M =
n∑
n=1

Hn ·Mn, Hn ∈ L2(Mn), Mn ∈X
orth
T , n ≥ 1,

and the family X
orth
T is minimal in H 2

0 . Moreover, the integrands appearing in the
previous decomposition are λ+ ⊗ P-a.e. uniquely determined by M . To prove this

result it is enough to adapt the proof of Theorem 4.2.11 to the family X
orth
T .





CHAPTER 5

Examples

In this chapter, given a Lévy process (L,FL) on the probability space (Ω,FL
∞,P), we

want to apply the theory developed in Chapter 4 to construct some concrete families
of martingales possessing the H 2-PRP with respect to FL. Let (β, σ2, ν) be the
characteristic triplet of L. Thanks to Theorem 4.2.5 every total system T ⊆ L2(ν)
leads to a family of locally square integrable martingales with the H 2-PRP with
respect to FL. Of course the more regular the Lévy measure ν is, the better are the
properties which we can require on the system T . For example we shall see that,
under rather strong assumptions on the measure ν we can choose T ⊆ L2(ν) as the
system of monomials in x. We stress that this choice is not always possible because
monomials are, in general, not contained in L2(ν). We shall see that the problem
of finding families of locally square integrable martingales with the H 2-PRP with
respect to FL can also be solved in an interesting way also for more general Lévy
measures.

For reasons of shortness, we consider in this chapter only the H 2-PRP, but all the
systems which we shall meet possess also the H 1-PRP. However, in the first case we
can obtain better results than in the latter one. Indeed, thanks to Theorem 4.2.8,
complete orthogonal systems in L2(ν) play a special role for the H 2-PRP because
the structure of the stable subspaces generated in H 2

0 by the associated families of
martingales becomes particularly simple.

5.1. Compensated Poisson Processes

The first example that we discuss is elementary but important because it exhibits
a concrete family of locally square integrable martingales with the H 2-PRP that
can be introduced for any Lévy process L, without further assumptions on the Lévy
measure ν. Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν). We
define the system T̃D ⊆ L2(ν) by

T̃D := {1(a,b], 0 /∈ [a, b], a, b ∈ D̃},
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whereD ⊆ R is a countable dense set as, e.g., the set of dyadic rational numbers. The
system T̃D is a countable system of bounded functions contained in L1(ν) ∩ L2(ν).
Moreover, T̃D is total in L2(ν). To see it is enough to observe that the system

T := {1(a,b], 0 /∈ [a, b], a, b ∈ R}

is total in L2(ν) as a consequence of Lemma 1.1.8. Because D is dense in R, it
follows that T is contained in the closure in L2(ν) of Span(T̃D) which yields T̃D is
total is L2(ν). From Theorem 4.2.5 the family

XT̃D
:= {Wσ} ∪ {X(f), f ∈ T̃D}

possesses the H 2-PRP with respect to FL. We observe that any martingale X(f),
with f ∈ T̃D, is a compensated homogeneous Poisson process. Of course XT̃D

is,

in general, not a minimal family. On the other side, because T̃D is countable,
we can orthogonalize it by the Gram–Schmidt orthogonalization procedure. Let
TD := {fn, n ≥ 1} be such an orthogonalization. We introduce the family of locally
square integrable martingales XTD := {Wσ} ∪ {X(fn), n ≥ 1} which is a minimal
family possessing the H 2-PRP with respect to FL (cf. Proposition 4.2.13). From
Theorem 4.2.8, any martingale M ∈H 2

0 (FL) can be represented as

M = φ ·Wσ +
∞∑
n=1

Hn ·X(fn), φ ∈ L2(Wσ), Hn ∈ L2(X(fn)), n ≥ 1 (5.1)

and, from Theorem 4.2.11, the integrands in (5.1) are λ⊗P-a.e. uniquely determined
by M . Each function fn ∈ TD is linear combination of functions in T̃D and therefore
the martingale X(fn) is linear combination of compensated homogeneous Poisson
processes, for every n ≥ 1. We notice that XTD is a family of locally bounded
martingales, because TD ⊆ L2(ν) is a system of bounded functions (cf. Theorem
2.2.16).

5.2. Teugels Martingales

This example shows that under some rather strong assumptions on the Lévy measure
ν, Teugels martingales can be introduced as a family possessing the H 2-PRP with
respect to FL. The H 2-PRP for Teugels martingales was established in Nualart &
Schoutens (2000) and we are going to deduce it as an example of the theory which
we developed.

Let (L,FL) be a Lévy process with characteristic triplet (β, σ2, ν). Teugels mar-
tingales are related with polynomials. Indeed, they can be defined if and only if
xn ∈ L2(ν) for every n ≥ 1. Furthermore, the family of Teugels martingales pos-
sesses the H 2-PRP with respect to FL if and only if the family {xn, n ≥ 1} is total
in L2(ν). The following lemma can be obtained as an immediate consequence of
Theorem B.4.

5.2.1 Lemma. Let µ be a finite measure on (R,B(R)). If there exists ξ > 0 such
that eξ|x| ∈ L2(µ), then the family T1 := {1, x, x2, . . .} is total in L2(µ).
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We require the following condition for the Lévy measure ν.

5.2.2 Assumption. There exist two constants ε, λ > 0 such that

e
λ
2
|x|1{|x|>ε} ∈ L2(ν).

The next proposition explains the first consequences of Assumption 5.2.2.

5.2.3 Proposition. Let ν be a Lévy measure on (R,B(R)) satisfying Assumption
5.2.2. Then

(i) xn ∈ L1(ν) ∩ L2(ν) for every n ≥ 2.
(ii) x ∈ L2(ν).
(iii) For every fixed m ≥ 1, the system {xn, n ≥ m} is total in L2(ν).

Proof. To begin with, we verify the first two claims. For a fixed n ≥ 1 we have

ν(x2n) = ν(1{|x|≤ε}x
2n) + ν(1{|x|>ε}x

2n).

The first term on the right-hand side of the previous formula can be controlled by

cε,nν(1{|x|≤1}x
2) and the second one by Cε,nν(1{|x|>1} e

λ
2
|x|), where cε,n and Cε,n are

positive constants depending on ε and n. Therefore ν(x2n) < +∞ for every n ≥ 1.
For n ≥ 2, a similar reasoning yields xn ∈ L1(ν). We now show that for every fixed
m ≥ 1 the system {xn, n ≥ m} is total in L2(ν). We define the measure νm by

dνm := (xm)2 dν, m ≥ 1. (5.2)

We apply Lemma 1.1.7 with g(x) = xm. The function xm belongs to L2(ν) and so
νm is a finite measure. In Lemma 1.1.7 the assumption is g(x) 6= 0 for every x but
now xm is equal to zero in zero. However, this does not cause problems: The point
0 does not play any role because νm({0}) = ν({0}) = 0. Thanks to Lemma 1.1.7,
to show that {xn, n ≥ m} is total in L2(ν) it is enough to verify that the system

1
xm {x

n, n ≥ m} = {xn, n ≥ 0} is total in L2(νm). From Lemma 5.2.1, it is enough

to show that there exists ξ > 0 such that eξ|x| ∈ L2(νm). We have

νm(e
λ
2
|x|) = ν(x2me

λ
2
|x|) = ν(x2me

λ
2
|x|1{|x|≤ε}) + ν(x2me

λ
2
|x|1{|x|>ε}).

The function x2meλ |x|1{|x|≤ε} can be controlled by cεx
21{|x|≤1}, cε > 0, and so the

first summand in the last equality is finite. By Assumption 5.2.2, the function

e
λ
2
|x|1{|x|>ε} belongs to L2(ν) and, by Proposition 5.2.3, xn ∈ L2(ν) for every n ≥ 1.

Therefore, by Cauchy–Schwarz inequality, the function x2me
λ
2
|x|1{|x|>ε} is integrable

with respect to ν. Hence νm(e
λ
2
|x|) < +∞, meaning that e

λ
4
|x| ∈ L2(νm). We can

now apply Lemma 5.2.1 and conclude that {xn, n ≥ 0} is total in L2(νm).

Because of Proposition 5.2.3, we can introduce the martingales X(n) = (X
(n)
t )t≥0

as
X

(n)
t := M(1[0,t] x

n) t ≥ 0, n ≥ 1. (5.3)

We write X(n) to keep notations simpler. Indeed, to be consistent with the notations
introduced in the previous chapters, we should write X(pn), where the function pn
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is defined by pn(x) := xn, n ≥ 1. Note that X(1) is an exceptional case because, in
general, x /∈ L1(ν). For n ≥ 2, xn ∈ L1(ν) ∩L2(ν) so that X(n) is of finite variation
and in view of Proposition 2.2.12

X
(n)
t = M(1[0,t] x

n)− t ν(xn), t ≥ 0, n ≥ 2.

With the subsystem of L2(ν)

T := {xn, n ≥ 2} (5.4)

we associate the family of martingales

X T := {L} ∪ {X(n), n ≥ 2}, (5.5)

where L has been defined in (4.39): X T is the family of Teugels martingales. By
Theorem 4.2.15, X T has the H 2-PRP with respect to FL, i.e.,

L 2(X T ) = H 2
0 (FL).

From Proposition 5.2.3, it is clear that the family X T is not minimal. Indeed, if
we consider the system T m := {xn, n ≥ m}, where m > 2 is fixed, we know that
T m is again a total system in L2(ν) and so the associated family X T m is another
family with the H 2-PRP on FL. Obviously, X T m ( X T , for every m > 2. The
non-minimality of X T is due to the fact that X T is not an orthogonal family
of martingales. By the procedure presented in Kunita & Watanabe (1967), we

can orthogonalize X T to achieve an orthogonal family X
orth
T of martingales, the

orthogonalized Teugels martingales, possessing the H 2-PRP with respect to FL.

According to Proposition 4.2.13, X
orth
T is a minimal family and every martingale

M ∈H 2
0 (FL) can be represented as

M = φ · L+
∞∑
n=2

Hn ·X(n), φ ∈ L2(L), Hn ∈ L2(X(n)), n ≥ 2. (5.6)

If we orthogonalize X T m we obtain a smaller minimal family X
orth
T m with the same

properties of X
orth
T .

In Nualart & Schoutens (2000), the definition of Teugels martingales was given
in a slightly different way and now we recall it shortly. It will be clear that the two
definitions are indeed equivalent. First of all, we introduce the power-jump processes

Z(n) := (Z
(n)
t )t≥0 by

Z
(n)
t :=


∑

0<s≤t(∆Ls)
n, n ≥ 2,

Lt, n = 1.

We point out that in the special case σ2 = 0 and |x| ∧ 1 ∈ L1(ν) the Lévy process L
is of finite variation and the identity

Z
(1)
t =

∑
0<s≤t

∆Ls, t ≥ 0



5.3 Lévy Measures Equivalent to the Lebesgue Measure 117

holds. For n ≥ 2, xn ∈ L1(ν) and then the process M(1[0,·] x
n) is of finite variation

so that

M(1[0,t] x
n) =

∑
0<s≤t

(∆Ls)
n1∆Ls 6=0 =

∑
0<s≤t

(∆Ls)
n = Z

(n)
t , t ≥ 0, n ≥ 2.

Hence the processes (Z(n),FL), n ≥ 1, are Lévy processes relative to FL (cf. Propos-
ition 2.2.15) and, in view of Lemma 2.2.9 and of Theorem 2.3.8,

E[Z
(n)
t ] :=


t ν(xn), n ≥ 2,

t ν(1{|x|>1} x), n = 1.

We can then compensate the power-jump processes Z(n) to martingales (cf. Lemma
2.1.1) by

Y
(n)
t := Z

(n)
t − E[Z

(n)
t ], t ≥ 0, n ≥ 1,

and the processes Y (n) = (Y
(n)
t )t≥0 are the Teugels martingales as they were intro-

duced in Nualart & Schoutens (2000).

5.3. Lévy Measures Equivalent to the Lebesgue Measure

We consider a Lévy process (L,FL) with characteristic triplet (β, σ2, ν) where ν is
of the form

dν = hdx, h > 0. (5.7)

An important class of Lévy processes with Lévy measure as in (5.7) is, for example,
the class of α-stable processes (see, e.g., Sato (1999), Chapter 3). We begin with
the simpler case of the Cauchy process. A Cauchy process (L,FL) is a purely non-
Gaussian Lévy process with characteristic triplet (0, 0, ν) and

dν :=
1

x2
dx,

where, for simplicity, we did not consider multiplicative constants. For a Cauchy
process no moment is defined and therefore, the Lévy measure does not satisfy
Assumption 5.2.2. Hence the problem of finding a family of martingales with the
H 2-PRP cannot be solved by means of Teugels martingales. Nevertheless, we are
able to introduce families of orthogonal locally bounded martingales possessing the
H 2-PRP with respect to FL. According to Theorem 4.2.5, for this goal it is enough
to find a complete orthogonal system in L2(ν) consisting of bounded functions.
Thanks to Lemma 1.1.7, for this it is sufficient to consider the problem of finding
a total system in L2(νg), where νg is a suitable finite measure equivalent to ν. We

choose the function g as g(x) := x exp(−x2

2 ), x ∈ R. Obviously, g ∈ L2(ν) and so
the measure νg defined by

dνg := g2 dν = e−x
2

dx
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is a finite measure on (R,B(R)). Let (Hn)n=0,1,... be the sequence of Hermite poly-
nomials and define

Pn := (π
1
4 (2nn!)

1
2 )Hn, n ≥ 0. (5.8)

The sequence (Pn)n≥0 is an orthonormal basis for L2(νg). Indeed, the measure νg is
a weighted Lebesgue measure and the Hermite polynomial Hn is the eigenfunction
of a Sturm–Liouville equation on (−∞,+∞) relative to the eigenvalue λn = n.
Therefore, because of Lemma 1.1.7, the system T = {Cn, n ≥ 0} ⊆ L2(ν), where

Cn := gPn, n ≥ 0,

is a complete orthonormal system in L2(ν). Moreover, each Cn is a bounded function.
In view of Theorem 2.2.16 and Theorem 4.2.5, the family XT := {X(Cn), n ≥ 0} is
a family of locally bounded orthogonal martingales with the H 2-PRP with respect
to FL. According to Proposition 4.2.13, XT is a minimal family in H 2

0 . Moreover,
every M ∈H 2

0 (FL) can be represented as

M =

∞∑
n=0

Hn ·X(Cn), Hn ∈ L2(X(Cn)), n ≥ 0,

and the integrands are λ+ ⊗ P-a.e. uniquely determined by M (cf. Theorem 4.2.8
and Theorem 4.2.11).

5.3.1. Hermite Polynomials

We have seen that for the Cauchy process Hermit polynomials can be used to gen-
erate a family of orthogonal martingales with the H 2-PRP. Now we consider the
general case of a Lévy process with Lévy measure of the form (5.7). Let (L,FL) be
a Lévy process with characteristics (β, σ2, ν) where ν is as in (5.7). We choose the

function g as g(x) := 1√
h

exp(−x2

2 ), which belongs to L2(ν), and define the finite
measure

dνg := g2dν.

The polynomials (Pn)n=0,1,... introduced as in (5.8) are a complete orthonormal
system in L2(νg) and the system T = {Cn, n ≥ 0}, where

Cn := gPn, n ≥ 0,

is a complete orthogonal system in L2(ν). For a general h > 0, we cannot expect
that this is a system of bounded functions. Then XT := {Wσ} ∪ {X(Cn), n ≥ 0}
is an orthogonal family of martingales and it has the H 2-PRP with respect to FL.
Because of the orthogonality, this is also a minimal family in H 2

0 . Moreover, every
M ∈H 2

0 (FL) can be represented as

M = φ ·Wσ +

∞∑
n=0

Hn ·X(Cn), φ ∈ L2(Wσ), Hn ∈ L2(X(Cn)), n ≥ 0,

and the integrands are λ+ ⊗ P-a.e. uniquely determined by M (cf. Theorem 4.2.8
and Theorem 4.2.11).
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5.3.2. Haar Wavelet

Haar functions are well known in functional analysis and in particular in the theory
of function spaces. For this part we refer to Wojtaszczyk (1997), Chapter 1. We
consider a Lévy process (L,FL) with characteristics (β, σ2, ν) and we assume that
the Lévy measure ν is as in (5.7). Let λ be the Lebesgue measure on (R,B(R)) and

ψ ∈ L2(λ). If the system {ψjk := 2
j
2 ψ(2j x − k), x ∈ R, j, k ∈ Z} is a complete

orthonormal system of L2(λ), the function ψ is called a wavelet. An example of a
wavelet is the function

ψ(x) :=


1, x ∈ [0, 1

2),

−1, x ∈ [1
2 , 1),

0, otherwise

known as Haar wavelet while the system T̃ := {ψjk, j, k ∈ Z} generated by it is the
Haar basis1 (cf. Wojtaszczyk (1997)). The generic element of the Haar basis can be
written as

ψjk(x) := 2
j
2

[
1[ k

2j
, 2k+1

2j+1

)(x)− 1[ 2k+1

2j+1 ,
k+1

2j

)(x)
]

and its support is {ψjk 6= 0} = [ k
2j
, k+1

2j
], j, k ∈ Z. Note that the boundary points

of these intervals are dyadic rational numbers. By Lemma 1.1.7, T := 1√
h

T̃ is a

complete orthogonal system in L2(ν). For a general h > 0 we cannot expect that
this is a system of bounded functions. The family XT := {Wσ} ∪ {X(f), f ∈ T }
is a family of orthogonal martingales possessing the H 2-PRP with respect to FL.
Because of the orthogonality this is also a minimal family in H 2

0 . Moreover, every
M ∈H 2

0 (FL) can be represented as

M = φ ·Wσ +
∞∑
n=0

Hn ·X(fn), φ ∈ L2(Wσ), Hn ∈ L2(X(fn)), n ≥ 0

and the integrands are λ+ ⊗ P-a.e. uniquely determined by M (cf. Theorem 4.2.8
and Theorem 4.2.11). It is clear that the previous reasoning can be repeated for
every wavelet ψ ∈ L2(λ).

5.3.1 Remark. It is not difficult to show that, also in the case of a general Lévy
measure ν, the Haar system appropriately transformed leads to a complete ortho-
gonal system in L2(ν). For reasons of shortness, we did not consider in this work
the general case and we discussed only the situation in which the Lévy measure is
equivalent to the Lebesgue measure as in (5.7).

1The idea of using the Haar basis as a total system in L2(λ) was suggested by Lev Markhasin.





APPENDIX A

Complement to Additive Processes

In this appendix we fix a complete probability space (Ω,F ,P) and a filtration F
of events of Ω which is assumed to satisfy the usual condition. In §A.1 we verify
Theorem 2.1.8 and its converse, while in §A.2 we show the Itô–Lévy decomposition.

A.1. Independence of Additive Processes

In He, Wang & Yan (1992), Theorem 11.43, the following result is established.

A.1.1 Theorem. Let X1, . . . , Xm be additive processes and semimartingales. If

[Xj , Xk] = 0, j, k = 1, . . . ,m; j 6= k,

then the vector (X1, . . . , Xm) is independent.

In He, Wang & Yan (1992), in the remark to Theorem 11.43, it is asserted that
also the converse of Theorem A.1.1 holds, but the proof is left as an exercise. In
this part we give a detailed proof of Theorem A.1.1 for additive process and of its
converse in the special case of Lévy processes. We shall proceed in a different way
from He, Wang & Yan (1992). We consider processes which are semimartingales
and additive processes relative to the filtration F and we prove the following result:

A.1.2 Theorem. Let X1, . . . , Xm be additive processes relative to F and semi-
martingales. If

[Xj , Xk] = 0, j, k = 1, . . . ,m; j 6= k,

then the vector (X1, . . . , Xm) has F-independent increments, that is, the random
vector (X1

t −X1
s , . . . , X

m
t −Xm

s ) is independent of Fs, for every 0 ≤ s ≤ t.

Theorem A.1.2 is stronger than Theorem A.1.1 and we shall obtain the latter
result as a corollary of the first one. Before to give the proof of Theorem A.1.2, we
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need some preparation. Let x1, . . . , xm and x1−, . . . , xm− be two sequence of real
numbers. We define

∆xj := xj − xj−, j = 1, . . . ,m; ∆
∏m
j=1 xj :=

∏m
j=1 xj −

∏m
j=1 xj−.

We now state a purely algebraic result.

A.1.3 Lemma. For any two sequences x1, . . . , xm and x1−, . . . , xm− of real numbers
such that ∆xj∆xk = 0, j, k = 1, . . . ,m, j 6= k, it follows:

∆

m∏
j=1

xj =

m∑
j=1

( m∏
k 6=j

xk−

)
∆xj . (A.1)

Proof. We proceed by induction on m ∈ N. If m = 1 there is nothing to show. Now
we assume (A.1) for m = n and show it for m = n+ 1.

∆
∏n+1
j=1 xj =

∏n+1
j=1 xj −

∏n+1
j=1 xj−

= xn+1
∏n
j=1 xj − x(n+1)−

∏n
j=1 xj + x(n+1)−

∏n
j=1 xj − x(n+1)−

∏n
j=1 xj−

= ∆xn+1

(∏n
j=1 xj− +

∏n
j=1 xj −

∏n
j=1 xj−

)
+ x(n+1)−

(∏n
j=1 xj −

∏n
j=1 xj−

)
= ∆xn+1

(∏n
j=1 xj− +

∑n
j=1

(∏
k 6=j xj−

)
∆xj

)
+ x(n+1)−

∑n
j=1

(∏
k 6=j xk−

)
∆xj

=
∑n+1

j=1

(∏
k 6=j xk−

)
∆xj ,

where in the last but one equality we used the induction hypothesis.

Let (Xj ,F), j = 1, . . . ,m, be additive processes. With (Xj ,F) we associate the
F-martingale Zj := (Zjt )t≥0 defined by

Zjt := ϕjt (u
j)−1 exp(iujXj

t ), t ≥ 0, uj ∈ R, j = 1, . . . ,m. (A.2)

We call the F-martingale Zj , the martingale associated with the process Xj , j =
1, . . . ,m. We remark that the process Zj depends also on the parameter uj and so
we should write Zj(uj) but we write only Zj to keep notations simpler.

A.1.4 Lemma. Let X1, . . . , Xm be additive processes relative to F and semimartin-
gales. For the martingales Z1, . . . , Zm associated with X1, . . . , Xm it follows that
[Zj , Zk] = 0, j, k = 1, . . . ,m, k 6= j, if and only if [Xj , Xk] = 0, j, k = 1, . . . ,m,
k 6= j.

Proof. We preliminary observe that for any semimartingales X and Y we have
[X,Y ] = 0 if and only if 〈Xc, Y c〉 = 0 and ∆X∆Y = 0 (cf. §1.2.8). Let ϕjt be
the characteristic function of Xj

t . We already know that ϕjt (u
j) is continuous in

both t and uj . Moreover, because Xj is a semimartingale, ϕjt (u
j) has finite vari-

ation, for every uj ∈ R (cf. Theorem 2.1.7). Because of ϕjt (u
j) 6= 0, j = 1, . . . ,m,

for every uj ∈ R and t ≥ 0, we can define ϕjt (u
j)−1 which is continuous and of finite

variation. Therefore, for every semimartingale S, we have [ϕj(uj)−1, S] = 0. Now
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we introduce the process Y j := exp(iujXj). By the formula of integration by parts
(cf. (1.35)) and the previous considerations, we have

Zjt = Y j
t ϕ

j
t (u

j)−1 = 1 + Y j
− · ϕ

j
t (u

j)−1 + ϕj(uj)−1 · Y j
t + [ϕj(uj)−1, Y j ]t

= 1 + Y j
− · ϕ

j
t (u

j)−1 + ϕj(uj)−1 · Y j
t .

By Proposition 1.3.6 we get

(Zj)c = (ϕj(uj)−1 · Y j)c = ϕj(uj)−1 · (Y j)c. (A.3)

Itô’s formula applied to Y j yields (Y j)c = iujY j · (Xj)c and inserting this in (A.3)
we obtain (Zj)c = iujZj · (Xj)c. Consequently

〈(Zj)c, (Zk)c〉 = −ujuk(ZjZk) · 〈(Xj)c, (Xk)c〉. (A.4)

Let us now compute ∆Zj∆Zk. By the definition of Zj and Zk, for every t ≥ 0 a.s.,
we get

|∆Zjt∆Zkt | = | exp(iuj∆Xj
t )− 1|| exp(iuk∆Xk

t )− 1| × |ϕjt (uj)−1||ϕkt (uk)−1|. (A.5)

We now prove that [Xj , Xk] = 0, j, k = 1, . . . ,m, k 6= j, yields [Zj , Zk] = 0,
j, k = 1, . . . ,m, k 6= j. The fact [Xj , Xk] = 0, j 6= k, implies that 〈(Xj)c, (Xk)c〉 = 0,
j 6= k. But this, together with (A.4), yields 〈(Zj)c, (Zk)c〉 = 0, j 6= k. Let us now
consider (A.5). The fact [Xj , Xk] = 0 implies ∆Xj∆Xk = 0, j 6= k. The last
factor on the right-hand side of (A.5) cannot vanish and the first is equal to zero
because ∆Xj∆Xk = 0. Therefore ∆Zj∆Zk = 0, j 6= k. Hence from the definition
of [Zj , Zk], we obtain that [Zj , Zk] = 0, j, k = 1, . . . ,m, k 6= j. Conversely, we
now assume that [Zj , Zk] = 0 j, k = 1, . . . ,m, k 6= j, and show that [Xj , Xk] = 0,
j, k = 1, . . . ,m, k 6= j. The martingale Zj is always different from zero. Therefore
from (A.4), we get

〈(Xj)c, (Xk)c〉 = −ujuk(ZjZk)−1 · 〈(Zj)c, (Zk)c〉

and 〈(Zj)c, (Zk)c〉 = 0 issues 〈(Xj)c, (Xk)c〉 = 0, j, k = 1, . . . ,m, k 6= j. The
left-hand side of (A.5) is equal to zero and the second factor on the right-hand
side cannot vanish. Therefore the first factor on the right-hand side of (A.5) must
vanish and this is possible if and only if ∆Xj∆Xk = 0, j, k = 1, . . . ,m, k 6= j. In
conclusion, we showed that [Zj , Zk] = 0, j, k = 1, . . . ,m, k 6= j, implies [Xj , Xk] = 0,
j, k = 1, . . . ,m, k 6= j and the proof is finished.

Let X1, . . . , Xm be additive processes relative to F and Z1, . . . , Zm be the associ-
ated martingales (cf. (A.2)). We define the process Z = (Zt)t≥0 by

Z :=

m∏
j=1

Zj . (A.6)

We now state a lemma which gives sufficient conditions for the process Z to be a
martingale.
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A.1.5 Lemma. Let X1, . . . , Xm be semimartingales and additive processes relative
to F. If [Xj , Xk] = 0, j, k = 1, . . . ,m, k 6= j, then Z defined in (A.6) is an F-
martingale with Z0 = 1.

Proof. We consider the function F (x1, . . . , xm) :=
∏m
j=1 x

j . Then

Z = F (Z1, . . . , Zm).

Applying Itô’s formula, we get

Zt = 1 +
m∑
r=1

∂

∂xr
F (Z1

−, . . . , Z
m
− ) · Zrt

+

m∑
r,q=1,
q 6=r

∂2

∂xr∂xq
F (Z1, . . . , Zm) · 〈(Zr)c, (Zq)c〉t

+
∑

0<s≤t

{
∆F (Z1

s , . . . , Z
m
s )−

m∑
r=1

∂

∂xr
F (Z1

s−, . . . , Z
m
s−)∆Zrs

}
.

Because of Lemma A.1.4, the process [Zj , Zk] vanishes, for every j 6= k. This implies
that ∆Zj∆Zk and 〈(Zj)c, (Zk)c〉 are evanescent, for all j 6= k. Therefore the second
sum on the right-hand side of the previous formula vanishes. Moreover, thanks to
Lemma A.1.3 we can conclude that also the last sum vanishes. Hence

Zt = 1 +

m∑
r=1

∂

∂xr
F (Z1, . . . , Zm)− · Zrt

which implies, in particular, that Z is a local martingale. Indeed, ∂
∂xr

F (Z1
−, . . . , Z

m
− )

is locally bounded and predictable and so it belongs to L2
loc(Z

r) (cf. (1.26)), for every
r = 1, . . . ,m. On the other side, we have

|Zjt | = |ϕ
j
t (uj)

−1|, t ≥ 0,

and t 7→ ϕjt (uj)
−1 is a continuous function, therefore it is bounded on every compact

interval. In conclusion Z is bounded on every compact interval and from this it
follows that Z must be a true martingale.

Now we are ready to prove Theorem A.1.2.

Proof of Theorem A.1.2. Let Zj be the martingale associated with Xj (cf. (A.2)).
By Lemma A.1.5 the process Z :=

∏m
j=1 Z

j is an F-martingale and hence, for every

0 ≤ s ≤ t, E[Zt|Fs] = Zs. Because of the definition of Zj , this yields, for every
0 ≤ s ≤ and uj ∈ R,

E
[
exp

(
i
∑m

j=1 u
jXj

t

) ∣∣∣Fs

]
∏m
j=1 ϕ

j
t (u

j)
=

exp
(
i
∑m

j=1 u
jXj

s

)
∏m
j=1 ϕ

j
s(uj)

.



A.1 Independence of Additive Processes 125

Hence

E
[
exp

(
i

m∑
j=1

uj(Xj
t −Xj

s )

)∣∣∣∣Fs

]
=

m∏
j=1

ϕjt (u
j)

ϕjs(uj)
=

m∏
j=1

E[eiu
j(Xj

t−X
j
s )], (A.7)

for every 0 ≤ s ≤ and uj ∈ R. The previous formula implies, in particular, that
(X1

t −X1
s , . . . , X

m
t −Xm

s ) is independent of Fs and the proof is finished.

We now are going to verify that under the assumptions of Theorem A.1.2, the vec-
tor (X1, . . . , Xm) is an independent vector of additive processes. We obtain Theorem
A.1.1 as a corollary to Theorem A.1.2. To see this fact we need a preliminary lemma.

A.1.6 Lemma. Let (X,F) be an additive process. For any 0 = t0 < t1 < . . . < tn

the process X(n) = (X
(n)
t )t≥0 defined by

X
(n)
t :=

n∑
j=1

uj(Xt∧tj −Xt∧tj−1), t ≥ 0, uj ∈ R, j = 1, . . . , n, (A.8)

is an additive process relative to F. Moreover, if X is a semimartingale, then X(n)

is a semimartingale.

Proof. Clearly, X(n) is adapted, càdlàg and stochastically continuous. It is obvious
that if X is a semimartingale, then also X(n) is a semimartingale. Indeed, the
process X(n) is linear combination of elements of the form Xv, where the superscript
v denotes the operation of stopping at the deterministic time v ∈ R+. The relevant
property to establish is the F-independence of the increments. To compute the
explicit form of the increments of X(n), several cases should be considered. We
do not show this tedious computations. However, it is not difficult to see that the

increment X
(n)
t −X(n)

s , 0 ≤ s < t, is a linear transformation of a vector of the form
(Xq1 −Xs, . . . , Xqn −Xs), s < q1 < . . . < qn. Therefore it is enough to show that,
for every fixed s < q1 < . . . < qn, such a vector is independent of Fs. We consider
the vector (Xq1 −Xs, Xq2 −Xq1 , . . . , Xqn −Xqn−1), s < q1 < . . . < qn, and we show
that it is independent of Fs for every n ∈ N. We proceed by induction. If n = 1,
there is nothing to prove. We assume the statement for n and we show it for n+ 1.
For every B1, . . . , Bn+1 ∈ B(R), by the properties of the conditional expectation,
we have

E
[
1{Xq1−Xs∈B1,...,Xqn−Xqn−1∈Bn,Xqn+1−Xqn∈Bn+1}

∣∣Fs

]
= E

[
1{Xq1−Xs∈B1,...,Xqn−Xqn−1∈Bn}E

[
1{Xqn+1−Xqn∈Bn+1}

∣∣Fqn

]∣∣Fs

]
= E

[
1{Xq1−Xs∈B1,...,Xqn−Xqn−1∈Bn}E

[
1{Xqn+1−Xqn∈Bn+1}

]∣∣Fs

]
= E

[
1{Xq1−Xs∈B1}

]∏n+1
i=2 E

[
1{Xqi−Xqi−1∈Bi}

]
,

where, in the second passage, we used that the process X has F-independent incre-
ments and in the last passage the induction hypothesis. Then we can conclude that
the vector (Xq1−Xs, Xq2−Xq1 , . . . , Xqn−Xqn−1), s < q1 < . . . < qn, is independent
of Fs for every n ∈ N. The vector (Xq1 −Xs, . . . , Xqn −Xs), s < q1 < . . . < qn is a
linear transformation of (Xq1−Xs, Xq2−Xq1 , . . . , Xqn−Xqn−1) and hence it is inde-
pendent of Fs. From this it easily follows that X(n) has F-independent increments,
for every n ≥ 1, and the proof is finished.
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We observe that Lemma A.1.6 does not hold for a Lévy process. Indeed, if L is
a Lévy process, then the process X(n) defined in (A.8) is, in general, not a Lévy
process because the homogeneity of increments is lost. Nevertheless, X(n) is an
additive process. Now we show Theorem A.1.1.

Proof of Theorem A.1.1. Let (tj)j=0,1,...,n be a sequence of deterministic times such
that 0 = t0 < t1 < . . . < tn. We define the process X(j,n) by

X
(j,n)
t :=

n∑
k=1

ujk(X
j
t∧tk −X

j
t∧tk−1

), t ≥ 0.

Because of Lemma A.1.6, X(1,n), . . . , X(m,n) are additive processes relative to F and
semimartingales. Moreover, they are such that the process [X(j,n), X(k,n)] vanishes
for every j, k = 1, . . . ,m, j 6= k. Indeed, [X(j,n), X(k,n)] is linear combination of
elements of the form [Xj , Xk]v, where the superscript v denotes the operation of
stopping at the deterministic time v ∈ R+, and, by assumption [Xj , Xk] = 0,

j 6= k. From Theorem A.1.2, the vector (X
(1,n)
t − X(1,n)

s , . . . , X
(m,n)
t − X(m,n)

s ) is
independent of Fs, for every 0 ≤ s ≤ t. In particular, writing (A.7) for the vector

(X
(1,n)
t −X(1,n)

s , . . . , X
(m,n)
t −X(m,n)

s ), setting s = 0 and taking the expectation, we
deduce that, for every t ≥ 0 and ujk ∈ R, j = 1, . . . ,m, k = 1, . . . , n, it follows

E
[

exp

(
i
m∑
j=1

n∑
k=1

ujk(X
j
t∧tk −X

j
t∧tk−1

)

)]
=

m∏
j=1

E
[

exp

(
i
n∑
k=1

ujk(X
j
t∧tk −X

j
t∧tk−1

)

)]
.

For t > tn and for every ujk ∈ R, j = 1, . . . ,m, k = 1, . . . , n, the previous formula
becomes

E
[
exp

(
i
m∑
j=1

n∑
k=1

ujk(X
j
tk
−Xj

tk−1
)

)]
=

m∏
j=1

E
[
exp

(
i
n∑
k=1

ujk(X
j
tk
−Xj

tk−1
)

)]
,

and this implies that the family {(Xj
t1
, Xj

t2
− Xj

t1
, . . . , Xj

tn − X
j
tn−1

), j = 1, . . .m}
is independent. For any fixed 1 ≤ j ≤ m the vector (Xj

t1
, . . . , Xj

tn) is a linear

transformation of (Xj
t1
, Xj

t2
−Xj

t1
, . . . , Xj

tn −X
j
tn−1

). Hence we can assert that the

family {(Xj
t1
, . . . , Xj

tn), j = 1, . . . ,m} is independent for every sequence (tj)j=0,1,...,n,
i.e., that the vector (X1, . . . , Xm) of stochastic processes is independent.

Now we come to the proof of the converse of Theorem A.1.1, i.e., of the fact that
if X1, . . . , Xm are semimartingales and additive processes relative to F such that the
vector (X1, . . . , Xm) is independent, then [Xj , Xk] = 0 for every j, k = 1, . . . ,m,
j 6= k. The proof which we know makes use of the generalization of the Itô–Lévy
decomposition to additive processes but in Chapter 2 we have introduced the Itô–
Lévy decomposition only for Lévy processes. To avoid technical complications, we
do not show the converse of Theorem A.1.1 in the general case of additive processes.
Rather, we restrict our attention to the simpler case of Lévy processes. The ideas
of the proof are exactly the same in both the cases of Lévy processes and additive
processes. We are going to verify the following theorem.
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A.1.7 Theorem. Let L1, L2 be Lévy processes relative to F. If the vector (L1, L2)
is independent, then [L1, L2] = 0.

We need a general lemma for which we refer to Revuz & Yor (1999), Chapter
IV§1.

A.1.8 Lemma. Let M be a continuous local martingale with respect to F and G,
where G is another filtration satisfying the usual conditions. Then

〈M,M〉F = 〈M,M〉G,

where 〈M,M〉F and 〈M,M〉G denote the point brackets of M as an F-martingale
and as a G-martingale, respectively.

Now we show that two continuous local martingale which are independent are also
orthogonal.

A.1.9 Lemma. Let M,N ∈M c
loc,0 be independent. Then 〈M,N〉 = 0.

Proof. To show 〈M,N〉 = 0 is equivalent to verify that MN ∈Mloc. Let FM,N be
the smallest filtration satisfying the usual conditions and containing the filtration
generated by M and N . Then M and N are also FM,N -continuous local martingales
and because of Lemma A.1.8 we have 〈M,N〉 = 0 if and only if 〈M,N〉FM,N = 0,
where 〈M,N〉 denotes the point brackets of M and N as F-local martingales while

〈M,N〉FM,N denotes the point brackets of M and N as FM,N -local martingales, re-
spectively. This means that we can restrict our attention to the filtration FM,N . We
assume in a first step that M and N are uniformly integrable continuous martin-
gales, that is, M,N ∈M c

0 (FM,N ). First of all we observe that the independence of
M and N implies that the random variable MtNt is integrable, for every t ≥ 0. We
show that MN is a martingale as an application of the theorem on Dynkin systems
(cf. Bauer (2001), Chapter I§2). We introduce the system D by

D := {A ∈ FM,N
s : E[1AMtNt] = E[1AMsNs]}

and we show that it is a Dynkin system. By the independence of M and N , we have
that Mt and Nt are independent for every t and so

E[MtNt] = E[Mt]E[Nt] = E[Ms]E[Ns] = E[MsNs],

meaning that Ω ∈ D . If A ∈ D , then Ac ∈ D . Indeed,

E[MtNt1Ac ] = E[MtNt(1− 1A)] = E[MtNt]− E[MtNt1A]

= E[MsNs]− E[MsNs1A] = E[MsNs(1− 1A)]

= E[MsNs1Ac ].

It is easy to verify that if (Dn)n≥1 ⊆ D is a sequence of pairwise-disjoint subsets,
then ∪∞n=1Dn ∈ D . Therefore D is a Dynkin system. The system C defined by

C := {A ∩B : A ∈ FM
s , B ∈ FN

s }
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generates FM,N
s and moreover

E[MtNt1A∩B] = E[(Mt1A)(Nt1B)] = E[Mt1A]E[Nt1B]

= E[Ms1A]E[Ns1B] = E[MsNs1A∩B].

This shows C ⊆ D . An application of the theorem on Dynkin systems yields D =
FM,N . Therefore MN is an FM,N -continuous martingale and hence 〈M,N〉FM,N = 0
(cf. §1.2.5). By Lemma A.1.8 we get 〈M,N〉 = 0. We now consider the general
case of continuous local martingales. Observe that if Y belongs to M c

loc,0, then

the sequence (T Yn )n≥1 of stopping times defined by T Yn := inf{t > 0 : |Yt| > n}
localizes Y to M c

0 . Indeed, Y TYn is a bounded local martingale and hence a uniformly

integrable martingale. Moreover, the process Y TYn is FY -adapted, because T Yn is also
an FY stopping time, for every n ≥ 1. Then introducing the stopping times TMn and

TNn , we have that the uniformly integrable martingales MTMn and NTNn are again
independent. From the previous step they are orthogonal. Hence

〈M,N〉 = lim
n→∞

〈M,N〉TMn ∧TNn = lim
n→∞

〈MTMn , NTNn 〉 = 0.

Let L1 and L2 be two Lévy processes relative to the filtration F and let M1 and
M2 denote the Poisson random measure of L1 and L2, respectively. The random
measure Mj is a measurable functional (on the Skorohod space) of the Lévy process
Lj and therefore, if L1 is independent of L2, we also have that M1 is independent of
M2.

A.1.10 Lemma. Let (L1,F) and (L2,F) be independent Lévy processes with Lévy
measure ν1 and ν2, respectively. Then the Lévy processes M1(1[0,·]×{|x|> 1

n
}x) and

M2(1[0,·]×{|x|> 1
n
}x) have no common jumps.

Proof. The process Mj(1[0,·]×{|x|> 1
n
}x) is FMj

-adapted (cf. Proposition 2.3.10), there-

fore we obtain that M1(1[0,·]×{|x|> 1
n
}x) and M2(1[0,·]×{|x|> 1

n
}x) are independent Lévy

processes. Moreover, they are both compound Poisson processes. Let T j1 be the first

jump-time of Mj(1[0,·]×{|x|> 1
n
}x), i.e., T j1 := inf{t > 0 : |∆Mj(1[0,t]×{|x|> 1

n
}x)| > 0}.

We define recursively the sequence of the jump times of Mj(1[0,·]×{|x|> 1
n
}x) by

T jq+1 := inf{t > T jq : |∆Mj(1[0,t]×{|x|> 1
n
}x)| > 0}, q ∈ N.

The processes Mj(1[0,·]×{|x|> 1
n
}x) are stochastically continuous and so, for every fixed

t ≥ 0, we have that the set {∆Mj(1[0,t]×{|x|> 1
n
}x)| > 0} is a null set. Therefore every

event of the kind {T jq = s} ⊆ {∆Mj(1[0,t]×{|x|> 1
n
}x)| > 0}, s > 0, has probability

equal to zero. Hence

P[T 1
q = T 2

p ] =

∫ +∞

0
P[T 1

q = T 2
p |T 2

p = s] dPT 2
p

=

∫ +∞

0
P[T 1

q = s] dPT 2
p

= 0,
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where by PT 2
p

we denoted the law of T 2
p and we used the independence to get the

second equality and the stochastic continuity to get the third one. This means that
the two processes M1(1[0,·]×{|x|> 1

n
}x) and M2(1[0,·]×{|x|> 1

n
}x) have no common jumps

and the proof is concluded.

We are now ready to prove Theorem A.1.7.

Proof of Theorem A.1.7. In a first step we assume that L1 and L2 are purely non-
Gaussian Lévy processes with no drift part. Then for Lj we have the following
Itô–Lévy decomposition

Lj = Mj(1[0,·]×{|x|>1}x) + M
j
(1[0,·]×{|x|≤1}x), t ≥ 0, j = 1, 2.

The processes Lj,n, j = 1, 2, defined by

Lj,nt :=
∑

0<s≤t
1{ 1

n
<|∆Ljs|≤1}∆L

j
s − t

∫
{ 1
n
<|x|≤1}

x dνj , t ≥ 0, j = 1, 2,

are martingales and Lévy processes. Moreover, L1,n and L2,n are independent and
of finite variation. From Lemma A.1.10, we get

∆L1,n∆L2,n = 0, t ≥ 0, a.s., n ≥ 1.

Because of Doob’s inequality and the isometry, for every T > 0, we get

E[supt≤T (M
j
(1[0,t]×{|x|≤1}x)− Lj,nt )2] ≤ 4E[(M

j
(1[0,T ]×{|x|≤1}x)− Lj,nT )2]

= 4T‖(1{|x|≤1} − 1{ 1
n
<|x|≤1})‖

2
L2(νj) −→ 0 as n→ +∞.

Therefore, for every t ≤ T and a.s., it follows

∆M
1
(1[0,t]×{|x|≤1}x)∆M

2
(1[0,t]×{|x|≤1}x) = lim

n→∞
∆L1,n∆L2,n = 0

and because of the arbitrariness of T > 0,

∆M
1
(1[0,·]×{|x|≤1}x)∆M

2
(1[0,·]×{|x|≤1}x) = 0

Similarly, one obtains ∆Mj(1[0,·]×{|x|>1}x)∆M
k
(1[0,·]×{|x|≤1}x) = 0 for j, k = 1, 2,

j 6= k. We now consider the general case. We have

Ljt = βjt+ Wσj

t + Mj(1[0,t]×{|x|>1}x) + M
j
(1[0,t]×{|x|≤1}x), t ≥ 0, j = 1, 2.

By the independence of L1 and L2 we have that (L1,M1) is independent of (L2,M2).

Hence the vector (L1,M1(1[0,·]×{|x|>1}x),M
1
(1[0,·]×{|x|≤1}x)) is independent of the

vector (L2,M2(1[0,·]×{|x|>1}x),M
2
(1[0,·]×{|x|≤1}x)). Because of the Itô–Lévy decom-

position we can conclude that Wσ1
is independent of Wσ2

. Applying Lemma A.1.9,
we have 〈Wσ1

,Wσ2〉 = 0. If we introduce the process Y j by Y j
t := Ljt − β

j
t −Wσj ,
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j = 1, 2, by the previous step we have that Y 1 and Y 2 do not have common jumps,
i.e., ∆Y 1∆Y 2 = 0. On the other side, (Lj)c = Wσj and so

[L1, L2] = 〈(L1)c, (L2)c〉+
∑

0<s≤·
∆L1

s∆L
2
s

= 〈Wσ1
,Wσ2〉+

∑
0<s≤·

∆Y 1
s ∆Y 2

s = 0.

We conclude with an interesting corollary to Theorem A.1.7.

A.1.11 Corollary. Let L1, . . . , Lm be Lévy processes relative to F.

(i) The vector of stochastic processes (L1, . . . , Lm) is independent if and only if
the vectors (Lj , Lk) are independent, for every j, k = 1, . . . ,m, j 6= k.

(ii) If the vectors (Lj , Lk) are independent, for every j, k = 1, . . . ,m, j 6= k, then
the vector of stochastic processes (L1, . . . , Lm) has F-independent increments.

Proof. (i) It is clear that if the vector (L1, . . . , Lm) is independent, then we have also
pairwise independence. On the contrary, if (Lj , Lk) are independent, j, k = 1, . . . ,m,
j 6= k, because of Theorem A.1.7, we also have that [Lj , Lk] = 0, j, k = 1, . . . , n,
j 6= k. Applying Theorem A.1.1 we get that (L1, . . . , Lm) is jointly independent.

(ii) If the vectors (Lj , Lk) are independent, for every j, k = 1, . . . ,m, j 6= k,
Theorem A.1.7 implies that [Lj , Lk] = 0, j, k = 1, . . . ,m, j 6= k. But then, from
Theorem A.1.2, we get that the vector (L1, . . . , Lm) has F-independent increments,
and the proof is finished.

An analogue of Corollary A.1.11 can be formulated also for processes which are
semimartingales and additive processes relative to the filtration F, provided that
Theorem A.1.7 has been generalized to this case.

A.2. Itô–Lévy Decomposition

We shall prove in this appendix the Itô–Lévy decomposition. We are going to state
this result for Lévy processes relative to a filtration. We need some preparation.

In §2.2.5, we have shown that if X is a càdlàg adapted process whose jump meas-
ure M is a Poisson random measure with respect to the filtration F with intensity
measure λ+ ⊗ ν, where λ+ is the Lebesgue measure on (R+,B(R+)) and ν a Lévy
measure on (R,B(R)), then for every f such that |f | ∧ 1 ∈ L1(ν), the process
(M(1[0,·]f),F) is a Lévy process.

Now we assume that (L,F) is a Lévy process. Under this assumption, we know
that the jump measure M of L is a Poisson random measure relative to the filtration
F with intensity measure λ+ ⊗ ν, where ν is the Lévy measure of the process L (cf.
Theorem 2.3.4). We recall that we denoted by (D ,FD) the Skorohod space over R.
We are going to show that the increments of the process M(1[0,·]f), where f is such
that |f |∧1 ∈ L1(ν), can be represented as a time-homogeneous (D ,FD)-measurable
of the increments of L. In other words, our aim is to extend Lemma 2.3.1 to any
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deterministic function f such that |f | ∧ 1 ∈ L1(ν). By tL we denoted the process
defined by

tLs := Lt+s − Lt, s, t ≥ 0. (A.9)

while D denotes the system of simple functions in Lq(ν), for q ∈ [1,+∞], that is,

D :=

{
f =

m∑
j=1

aj1Cj , aj ∈ R, Cj ∈ B(R) : ν(Cj) < +∞
}
. (A.10)

A.2.1 Lemma. Let f ∈ D , f ≥ 0. Then the increments of the process M(1[0,·]f) =
(M(1[0,t]f))t≥0 can be represented as

M(1(t,t+s]f) = Fs,f (tL), a.s., t, s ≥ 0,

where Fs,f is a measurable functional on the Skorohod space (D,FD) and tL is the
process defined in (A.9).

Proof. Let f ∈ D , f ≥ 0, with representation f =
∑m

j=1 aj 1Cj , where aj ≥ 0 for
every j = 1, . . . ,m. For each Cj appearing in the representation of f , we introduce
the sequence Bn

j := Cj ∩ {|x| > 1
n} and consequently the function

fn :=

m∑
j=1

aj 1Bnj , n ≥ 1.

The process ξB
n
j is given in (2.30). Because of Lemma 2.3.1, we have

M(1(t,t+s]fn) =
m∑
j=1

aj(ξ
Bnj
t+s − ξ

Bnj
t ) =

m∑
j=1

ajFs,Bnj (tL), a.s., t, s ≥ 0, n ≥ 1,

where Fs,Bnj (·) is a measurable functional on the Skorohod space (D,FD) and tL
is the process defined in (A.9). For every t ≥ 0 we have M(1[0,t]fn) ↑ M(1[0,t]f)
pointwise in ω as n→ +∞. Therefore, if we put

Fs,f (tL) := lim inf
n→+∞

m∑
j=1

ajFs,Bnj (tL),

we have M(1(t,t+s]f) = Fs,f (tL) a.s. for every t, s ≥ 0, f ∈ D , f ≥ 0.

We observe that, from Lemma 1.1.8, the system D ⊆ Lq(ν) of simple functions is
dense in Lq(ν). As a consequence of this fact we can extend Lemma A.2.1.

A.2.2 Proposition. Let f be such that |f | ∧ 1 ∈ L1(ν). The increments of the
process M(1[0,·]f) = (M(1[0,t]f))t≥0 can be represented as

M(1(t,t+s]f) = Fs,f (tL), a.s., t, s ≥ 0,

where Fs,f is a measurable functional on the Skorohod space (D,FD) and tL is the
process defined in (A.9).
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Proof. First we consider the case f ∈ L1(ν), f ≥ 0. The set D of simple functions is
dense in L1(ν) and so there exists a sequence (fn)n∈N ⊆ D such that fn ≥ 0, n ≥ 1,
and fn ↑ f in L1(ν) as n→ +∞. By monotone convergence, M(1[0,t]fn) ↑ M(1[0,t]f)
pointwise in ω as n→ +∞. By Lemma A.2.1, we have

M(1(t,t+s]fn) = Fs,fn(tL), a.s., s, t ≥ 0, n ≥ 1,

where Fs,fn is a measurable functional on the Skorohod space (D,FD). If we put

Fs,f (tL) := lim inf
n→+∞

Fs,fn(tL)

we obtain, M(1(t,t+s]f) = Fs,fn(tL) and Fs,f is a measurable functional on the Skoro-
hod space (D,FD). We now weaken the assumptions and consider f such that
|f | ∧ 1 ∈ L1(ν). Because of Proposition 2.2.7, the stochastic integral M(1[0,t]f) ex-
ists and it is finite a.s. for every t ≥ 0. If f+ and f− are the positive and the
negative part of f , respectively, we have f± ≤ |f | so that f± ∧ 1 ∈ L1(ν) and
the stochastic integrals M(1[0,t]f

±) are well defined and the relation M(1[0,t]f) =
M(1[0,t]f

+) −M(1[0,t]f
−) holds. Let us introduce the functions f±n := f±1{|f±|<n}

and fn := f+
n − f−n . Then f±n ↑ f± and f±n ≥ 0. By monotone convergence we get

M(1[0,t]f
±
n ) ↑ M(1[0,t]f

±) pointwise in ω as n → +∞. Furthermore, f±n ∈ L1(ν),
indeed f±n ≤ (f±∧n) ≤ n(f±∧1) ∈ L1(ν), for every n ≥ 1. Because of the previous
step, M(1(t,t+s]f

±
n ) = Fs,fn(tL±) a.s., where Fs,f±n is a measurable functional on the

Skorohod space (D,FD). We can put

Fs,f±(tL) := lim inf
n→+∞

Fs,fn(tL±),

which is a measurable functional on the Skorohod space (D,FD). Hence it follows
that M(1(t,t+s]f

±) = Fs,f±(tL) a.s. and from M(1[0,t]f) = M(1[0,t]f
+) −M(1[0,t]f

−)
we have

M(1(t,t+s]f) = Fs,f+(tL)− Fs,f−(tL) =: Fs,f (tL), a.s., s, t ≥ 0.

In conclusion, we have shown that for every function f such that |f | ∧ 1 ∈ L1(ν) the
increments of the process M(1[0,·]f) can be represented as a homogeneous functional
of tL which is measurable on the Skorohod space (D,FD).

Let (L,F) be a Lévy process and let M be its jump measure. From §2.3.1, we know
that M is a Poisson random measure relative to F and that its intensity measure is
λ+⊗ ν, where λ+ is the Lebesgue measure on R+ and ν the Lévy measure of L. We
define f(x) := 1{|x|>1}x. The function f is such that |f | ∧ 1 ∈ L1(ν). Clearly this
implies that the function h(t, x) := 1[0,t]f is such that |h| ∧ 1 ∈ L1(λ+ ⊗ ν). From
Proposition 2.2.7, we can consider the stochastic integral of h with respect to M.
We introduce the process L2 = (L2

t )t≥0 by

L2
t := M(1[0,t]f) := M(1[0,t]×{|x|>1}x), t ≥ 0. (A.11)

By Proposition 2.2.15, we know that (L2,F) is a Lévy process and furthermore, from
Proposition A.2.2, that its increments can be written as it follows:

L2
t+s − L2

t = Fs,f (tL), a.s., t, s ≥ 0,
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where F·,f (tL) is an (D,FD)-measurable homogeneous functional of the process tL.
Let now Y = (Yt)t≥0 be the process defined by

Yt := Lt − L2
t , t ≥ 0. (A.12)

Clearly, (Y,F) is a càdlàg process starting at 0 and its increments are F-independent
and homogeneous, because Yt+s − Yt = tLs − Fs,f (tL) a.s., s, t ≥ 0, which is clearly
a measurable functional on the Skorohod space of the increment Lt+s − Ls. These
properties imply that Y is also stochastically continuous and therefore (Y,F) is a
Lévy process. Notice that the relation

L2
t =

∑
0<s≤t

1{|∆Ls|>1}∆Ls, t ≥ 0, a.s.,

holds. Therefore L2
t is the sum of all the jumps of the process L up to time t which

are bigger than one. This implies that the process Y has only jumps of size smaller
or equal than one. Consequently, (Y,F) is a Lévy process with bounded jumps and,
because of Proposition 2.1.6, it has a finite moment of every order. In particular,
E[Y 2

t ] < +∞ for every t ≥ 0. Hence the Lévy process Y = (Y t)t≥0 defined by

Y t := Yt − E[Yt], t ≥ 0, (A.13)

is an F-martingale (cf. Lemma 2.1.1). Because of the square integrability of Y t, ≥ 0,
an application of Doob’s inequality shows that, for every arbitrary but fixed T > 0,
the process (Y )0≤t≤T is uniformly integrable. Consequently, the process (Y )0≤t≤T
is uniformly integrable. An application of the generalization of theorem of Lebesgue
on dominated convergence to uniformly integrable families of random variables (cf.
Meyer (1966), Theorem II.21) shows that the mapping t 7→ E[Yt] is continuous. We
now define a(t) := E[Yt], t ≥ 0. Because of the homogeneity of the increments we
have

a(t+ s) = E[Yt+s − Yt] + E[Yt] = a(t) + a(s), s, t ≥ 0.

We know that a(·) is continuous and from the previous relation it follows that a(·)
is a linear function. Therefore there exists β ∈ R such that

a(t) = βt, t ≥ 0. (A.14)

Now we are ready to prove the Itô–Lévy decomposition.

A.2.3 Theorem (Itô–Lévy decomposition). Let L be a càdlàg adapted process with
jump measure M. Then (L,F) is a Lévy process if and only if M is a Poisson random
measure relative to F with intensity function λ+ ⊗ ν, where λ+ is the Lebesgue
measure on R+ and ν a Lévy measure, and there exists a Wiener process (Wσ,F)
with variance function σ2(t) = σ2t, σ2 ≥ 0, called Gaussian part of L, such that the
following decomposition holds

Lt = βt+ Wσ
t + M(1[0,t]×{|x|>1} x) + M(1[0,t]×{|x|≤1} x), t ≥ 0, a.s., (A.15)

where β ∈ R.
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Proof. We assume first that (L,F) is a Lévy process. From §2.3.1 we know that M
is a Poisson random measure relative to F and that its intensity measure is λ+ ⊗ ν,
where λ+ is the Lebesgue measure on R+ and ν the Lévy measure of L. We introduce
the function g(x) := 1{|x|≤1}x and the sequence gn := 1{ 1

n
<|x|≤1}x. The function

g belongs to L2(ν), while gn ∈ L1(ν) ∩ L2(ν), n ≥ 1, and gn −→ g in L2(ν) as
n→ +∞. We now define the processes L3 = (L3

t )t≥0 and L3,n = (L3,n
t )t≥0 by

L3
t := M(1[0,t]g); L3,n

t := M(1[0,t]g
n), t ≥ 0, n ≥ 1. (A.16)

Because of the isometry of the stochastic integral, we have L3,n
t −→ L3

t in L2(P) as
n→ +∞, for every t ≥ 0. By Theorem 2.2.16, the process L3 is an F-locally square
integrable martingale such that L3

t is square integrable, for every t ≥ 0. Moreover,
(L3,F) is a Lévy process. The same statements holds for the process (L3,n,F).
Furthermore, from Proposition A.2.2, we know that the increments of L3,n can be
represented by a homogeneous (D,FD)-measurable functional of the process tL (cf.
(A.9)). We denote such a functional by G·,gn . We now introduce the processes

L̃1 = (L̃1
t )t≥0 and L̃1,n = (L̃1,n

t )t≥0 by

L̃1 := L− L2 − L3 = Y − L3, L̃1,n := L− L2 − L3,n = Y − L3,n, (A.17)

respectively, where the processes L2 and Y were introduced by (A.11) and (A.12),
respectively. The process L̃1,n has F-independent and homogeneous increments be-
cause

L̃1,n
t+s − L̃1,n

s = tLs − Fs,f (tL)−Gs,gn(tL), s, t ≥ 0.

Furthermore, L̃1,n
t converges in probability to L̃1

t , for every t ≥ 0, as n → +∞,
because L3,n

t converges in L2(P), and hence in probability, to L3
t , as n → +∞, for

every t ≥ 0. Hence Lemma 2.1.2 yields that L̃1 has F-independent and homogeneous
increments. From Theorem 2.2.16.(iv), we know that the process L3 has the following
jumps:

∆L3 = 1{∆L6=0}1{|∆L|≤1}∆L a.s.

Therefore the process (L2 + L3) has the same jumps of the process L a.s. But then
we can claim that the process L̃1 is continuous a.s. The filtration F satisfies the
unusual conditions and so we can find an adapted version of the process L̃1 which is
in fact continuous and has F-independent and homogeneous increments. We denote
again by L̃1 such a modification. Then the process (L̃1,F) is a continuous Lévy
process. The process Y introduced by (A.12) is such that Yt is square integrable,
for every t ≥ 0 and the same holds for L3. Moreover, E[L3

t ] = 0. This implies that
L̃1
t is square integrable and that E[L̃1

t ] = E[Yt], for every t ≥ 0. We have seen that
E[Yt] = βt, t ≥ 0, where β ∈ R. We introduce the process L1 = (L1

t )t≥0 by

L1
t = L̃1

t − βt, t ≥ 0. (A.18)

Clearly (L1,F) is a continuous Lévy process and because of E[L1
t ] = 0, Lemma

2.1.1 implies that it is an F-martingale. Moreover, L1
t is square integrable, for every

t ≥ 0. We can assert that L1 is a continuous locally square integrable martingale.
By Doob’s inequality, we get that for every arbitrary but fixed T > 0 the family
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((L1
t )

2)0≤t≤T is uniformly integrable. As a consequence of Meyer (1966), Theorem
II.21, the mapping t 7→ E[(L1

t )
2] is continuous. We put σ2(t) := E[(L1

t )
2], t ≥ 0.

This is a continuous function and moreover, because of the homogeneity and the
(F-)independence of the increments of L1 and of E[L1

t ] = 0, t ≥ 0, we get

σ2(t+s) = E[(L1
t+s−L1

t+L
1
t )

2] = E[(L1
t+s−L1

t )
2]+E[(L1

t )
2] = σ2(t)+σ2(s), t, s ≥ 0.

This relation and the continuity of σ2(·), imply that σ2(·) is a linear function, i.e.,
there exists σ2 ≥ 0 such that σ2(t) = σ2t, for every t ≥ 0. In conclusion, we
have shown that (L1,F) is a continuous Lévy process and a locally square integrable
martingale with a linear variance function. We can claim that (L1,F) is a Wiener
process with variance function σ2 (cf. Definition 1.2.8). We put Wσ := L1 and so
from (A.18), we have

Wσ
t := L̃1

t − βt, t ≥ 0.

Using the definition of L̃1 (cf. (A.17)), we obtain

Wσ
t = Lt − L2

t − L3
t − βt.

Recalling (A.11) and (A.16) this yields (A.15) and this concludes the first part
of the proof. Conversely, we now assume that L is a càdlàg process with jump
measure M, which is a Poisson random measure with intensity λ+ ⊗ ν, where ν is a
Lévy measure. We assume that (Wσ,F) is a Wiener process with variance function
σ2(t) = σ2t, σ2 ≥ 0, such that (A.15) holds. We verify that L is a Lévy process. We
put

(L1, L2, L3) := (Wσ,M(1[0,·]×{|x|>1} x),M(1[0,·]×{|x|≤1} x)).

By assumption Wσ is a Wiener process. Moreover by Proposition 2.2.15 (L2,F) is a
Lévy process and a semimartingale. Analogously we know that (L3,F) is a Lévy pro-
cess and an F-martingale. The processes L2 and L3 are purely non-Gaussian Lévy
processes and they do not have common jumps. Therefore [L2, L3] = 0. Because of
the continuity of L1, we have that [L1, Lj ] = 0, j = 1, 2. From Theorem 2.1.8 we
have that the vector (L1, L2, L3) is independent and has F-independent increments.
Because of (A.15), we can assert that also the process L has F-independent incre-
ments. Moreover, from (A.15) and the independence of the vector (L1, L2, L3) we
have

E
[
eiu(Lt−Ls)] = eiuβ(t−s)∏3

j=1 E
[
eiu(Ljt−L

j
s)
]

= eiuβ(t−s)∏3
j=1 E

[
eiuL

j
t−s
]

= E
[
eiuLt−s

]
, 0 ≤ s ≤ t, u ∈ R,

where in the last but one equality we used that Lj has homogeneous increments,
j = 1, 2, 3. Then L is a càdlàg adapted process with homogeneous and F-independent
increments such that L0 = 0. Hence L is also stochastically continuous. In conclu-
sion (L,F) is a Lévy process and ν is its Lévy measure. This completes the proof of
the theorem.

An immediate but important consequence of the Itô–Lévy decomposition is the
Lévy–Kintchine decomposition of the characteristic function of a Lévy process. We
formulate the Lévy–Kintchine decomposition as a corollary of Theorem A.2.3.
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A.2.4 Corollary. Let L be a Lévy process with characteristics (β, σ2, ν). Then for
every u ∈ R and for every t ≥ 0 we have

E[eiuLt ] = exp

((
iuβ − 1

2
u2σ2 +

∫
R

(eiux − 1− iux1{|x|≤1}) dν

)
t

)
(A.19)

In particular, L is a semimartingale and (2.35) is a semimartingale decomposition
of L.

Proof. We put ϕLt (u) := E[eiuLt ], t ≥ 0, u ∈ R. If (A.19) holds, then the mapping
t 7→ ϕLt (u) is of finite variation for every u ∈ R. Therefore, from Theorem 2.1.7, L
is a semimartingale. Now we show (A.19). We put

(L1, L2, L3) := (Wσ,M(1[0,·]×{|x|>1} x),M(1[0,·]×{|x|≤1} x)).

The vector (L1, L2, L3) is independent because [Lj , Lk] = 0, j, k = 1, 2, 3, k 6= j, (cf.
Theorem 2.1.8), and so we have

ϕLt (u) = eiuβtϕL
1

t (u)ϕL
2

t (u)ϕL
3

t (u), u ∈ R, t ≥ 0. (A.20)

From (1.8) we have ϕL
1

t (u) = exp
(
−1

2 u
2σ2t

)
. Moreover, Lemma 2.2.8 implies that

ϕL
2

t (u) = exp

(
t

∫
{|x|>1}

(eiux − 1) dν

)
.

To compute ϕL
3
(u) we have to proceed by approximation. If we define fn(x) :=

1{ 1
n
<|x|≤1} x, then we have fn ∈ L1(ν) ∩ L2(ν) and fn −→ 1{|x|≤1}x in L2(ν) as

n→ +∞. By Proposition 2.2.12 and Lemma 2.2.8, we have

E
[
eiuM(1[0,t]fn)

]
= exp

(
iut

∫
{ 1
n
<|x|≤1}

x dν

)
exp

(
t

∫
{ 1
n
<|x|≤1}

(eiux − 1) du

)
.

Passing to the limit as n→ +∞, it follows

ϕL
3

t (u) = exp

(
t

∫
{|x|≤1}

(eiux − 1− iux1{|x|≤1}) dν

)
and (A.20) implies (A.19).



APPENDIX B

Denseness of Polynomials

Let Z = (Zα)α∈I be a family of random variables, where I denotes an arbitrary
set of indexes. By FZ we designate the σ-algebra generated by Z = (Zα)α∈I . We
consider the probability space (Ω,FZ ,P) and the Hilbert space L2(Ω,FZ ,P). By
K we denote the system

K := {
∏m
i=1 Zαi , α1, . . . , αm ∈ I, m ∈ N ∪ {0}} (B.1)

of monomials in Z = (Zα)α∈I . In this appendix we show that under some assump-
tions on the family Z, the system K is a total system in L2(Ω,FZ ,P). We require
the following property for the family Z.

B.1 Assumption. For every Zα ∈ Z there exists a constant cα > 0 such that

E[exp(cα|Zα|)] < +∞. (B.2)

In other words, we require that every Zα admits a finite exponential moment.

We analyze the problem of the totality of the system K only for a probability
measure P. It is clear that the result stated below also holds for an arbitrary finite
measure µ. By C we denote the linear hull of cosine functions obtained from Z,
that is,

C := Span
({

cos
(∑m

i=1 uiZαi
)
, αi,∈ I, ui,∈ R, i = 1, . . . ,m ; m ∈ N

})
. (B.3)

B.2 Lemma. The system C introduced in (B.3) is dense in L2(Ω,FZ ,P).

Proof. Clearly, C is a linear system of bounded functions containing the function
1 = 1Ω (take m = 1 and u = 0). Moreover, C is stable under multiplication. Indeed,
for every u, v ∈ R and every Zα, Zβ ∈ Z, with α, β ∈ I, the following relation holds:

cos(uZα) cos(vZβ) =
1

2
(cos(uZα + vZβ) + cos(uZα − vZβ)).
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To apply Lemma 1.1.8 and conclude that C is dense in L2(Ω,FZ ,P), we only
need to show that C generates FZ . The system of functions {cos(ux), x ∈ R} is
separating points, meaning that cos(ux) = cos(uy) for every u ∈ R implies x = y.
To see it we proceed by contraposition. We assume that x 6= y under the condition
cos(ux) = cos(uy) for every u ∈ R. It follows, ux = uy + kπ and so, because x 6= y,

we get u = kπ
x−y . But, every u belonging to ( kπ

x−y ,
(k+1)π
x−y ) yields cos(ux) 6= cos(uy),

which is a contradiction. Let E0 be the σ-algebra generated by {cos(ux), x ∈ R}.
Then E0 is separable. Indeed, σ({cosux, x ∈ R}) = σ({cosux, x ∈ Q}). The
space (R,B(R)) is a Blackwell space (cf. Dellacherie & Meyer (1976) (Definition
3.24)) and therefore if E is a separable sub-σ-algebra of B(R), then B(R) = E if
and only if E contains all the sets of the form {x}, x ∈ R (cf. Dellacherie & Meyer
(1976), Theorem 3.26). But {cos(ux), x ∈ R} separates points and then we have
{x} =

⋂
u∈Q{y : cos(uy) = cos(ux)} ∈ E0 so that E0 = B(R). This implies that

σ(C ) = FZ and we can conclude that C is dense in L2(Ω,FZ ,P).

In a first step we consider the particular case in which the family Z is composed
by a unique element that we denote again Z. The general case will be obtained as
a consequence of this one. The family of monomials in the random variable Z is
K1 := {Zn, n ≥ 0} and Assumption B.1 can be rephrased saying that there exists
c > 0 such that E[exp(c|Z|)] < +∞. We put P1 := Span(K1) and let P1 be the
closure of P1 in L2(Ω,FZ ,P). We are going to prove that the system K1 is total
in L2(Ω,FZ ,P). We begin with a preliminary result.

B.3 Lemma. Let Z be a random variable and c > 0 such that E[ec|Z|] < +∞. If
|u| ≤ c

4 , then Z l cos(uZ) belongs to P1, for every l ∈ N ∪ {0}.

Proof. First we recall the series expansion of the cosine function:

lim
m→+∞

m∑
n=0

(−1)n
(uZ)2n

(2n)!
= cos(uZ).

On the other side, we have(
Z l cos(uZ)− Z l

m∑
n=0

(−1)n
(uZ)2n

(2n)!

)2

= Z2l

( ∞∑
n=m+1

(−1)n
(uZ)2n

(2n)!

)2

≤ Z2l

( ∞∑
n=m+1

|u|2n|Z|2n

(2n)!

)2

≤ Z2l

( ∞∑
n=m+1

(
| c4 |

2n|Z|2n

(2n)!

)2

≤ Z2l(e
c
4
|Z|)2 = Z2le

c
2
|Z|.

By Hölder’s inequality we get

E
[
Z2le

c
2
|Z|] ≤ (E[Z4l

]) 1
2
(
E
[
ec|Z|

]) 1
2

and because of E[ec|Z|] < +∞, the right-hand side in the previous expression is
finite. Hence, applying the theorem of Lebesgue on dominated convergence, we can

conclude that the polynomials Z l
∑m

n=0(−1)n (uZ)2n

(2n)! converges in L2(Ω,FZ ,P) to

Z l cos(uZ) and therefore Z l cos(uZ) ∈P1.
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Now we are ready to state and prove the following theorem:

B.4 Theorem. Let Z be a random variable and c > 0 such that E[ec|Z|] < +∞.
The system K1 is total in L2(Ω,FZ ,P).

Proof. From Lemma B.2, we know that the system C introduced in (B.3) is dense
in L2(Ω,FZ ,P). To conclude the proof it is enough to show that C ⊆ P1 and for
this it is sufficient to verify that cos(uZ) belongs to P1, for any u ∈ R. Because
of Lemma B.3, we have that Z l cos(uZ) belongs to P1 for every l ∈ N ∪ {0} and
|u| ≤ c

4 . We now assume that Z l cos(uZ) belongs to P1 for every l ∈ N ∪ {0} and

for every u such that |u| ≤ k c4 and we prove that Z l cos(uZ) belongs to P1 for every
l ∈ N ∪ {0} and for every u such that |u| ≤ (k + 1) c4 . We verify it for u ≥ 0. The
case u < 0 is analogous. Let u ∈ (vk, vk+1], with the notation vj = j c4 , j ∈ N. We
consider v := u− vk. Then we get

Z l cos(vZ) cos(vkZ) =
1

2
Z l (cos((v + vk)Z) + cos((v − vk)Z))

and hence

Z l cos(uZ) = 2Z l cos(vZ) cos(vkZ)− Z l cos((v − vk)Z).

Obviously, 0 ≥ v − vk ≥ −vk, so |v − vk| ≤ vk. By the induction hypothesis, this
yields Z l cos((v− vk)Z) ∈P1. Thus, to verify that Z l cos(uZ) ∈P1, it is sufficient
to prove that Z l cos(vZ) cos(vkZ) ∈P1. We have the pointwise convergence

Z l cos(vZ) cos(vkZ) = lim
m→∞

m∑
n=0

(−1)n
(vZ)2n

(2n)!
Z l cos(vkZ).

Using the induction hypothesis, we obtain Z2n+l cos(vkZ) ∈P1 and hence

m∑
n=0

(−1)n
(vZ)2n

(2n)!
Z l cos(vkZ) ∈P1.

It remains to show the L2-convergence of this series to Z l cos(vZ) cos(vkZ). We
estimate (

Z l cos(vZ) cos(vkZ)−
m∑
n=0

(−1)n
(vZ)2n

(2n)!
Z l cos(vkZ)

)2

≤
( ∞∑
n=m+1

(vZ)2n

(2n)!

)2

Z2l(cos(vkZ))2 ≤ Z2le
c
2
|Z|

and
E[Z2le

c
2
|Z|] ≤ (E[Z4l])

1
2 (E[e

c
2
|Z|])

1
2 < +∞.

Therefore we can apply the theorem of Lebesgue on dominated convergence and
obtain Z l cos(vZ) cos(vkZ) ∈P1. This completes the proof of the theorem.

We now generalize the above result to the case of a family Z = (Zα)α∈I , where I
is an arbitrary set of indexes. Let P be the linear hull of K , where K has been
introduced in (B.1), and let P be the closure of P in L2(Ω,FZ ,P).
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B.5 Theorem. Let Z = (Zα)α∈I be an arbitrary family of random variable satisfy-
ing Assumption B.1. The system K of monomials is total in L2(Ω,FZ ,P).

Proof. By Lemma B.2, we know that the system C introduced in (B.3) is dense in
L2(Ω,FZ ,P). It is sufficient to verify that

cos(u1Zα1 + . . .+ umZαm) ∈P, αi,∈ I, ui,∈ R, i = 1, . . . ,m, m ∈ N.

We put X := u1Zα1 + . . .+ umZαm . We have to show the existence of a c > 0 such
that E[ec|X|] < +∞. We have

E
[

exp(c|X|)
]
≤ E

[ m∏
i=1

ec|ui||Zαi |
]
≤ E

[ m∏
i=1

exp

(
c

(
max

i=1,...,m
|ui|
)
|Zαi |

)]

and so the choice of c > 0 as c :=
mini=1,...,m cαi
maxi=1,...,m |ui| c

′, where cαi > 0 is such that Zαi
satisfies (B.2), yields

E[ec|X|] ≤ E
[ m∏
i=1

exp

(
c′
(

min
i=1,...,m

cαi

)
|Zαi |

)]
≤ E

[ m∏
i=1

exp

(
c′cαi |Zαi |

)]
. (B.4)

It is well-known that if y1, . . . , yn are positive real number, then their geometric
average can be estimated as it follows: (

∏n
i=1 yi)

n ≤
∑n

i=1 yi. Using this fact in
(B.4), we get

E[ec|X|] ≤ E
[ m∏
i=1

exp

(
c′cαi |Zαi |

)]
= E

[( m∏
i=1

exp

(
mc′cαi |Zαi |

)) 1
m
]

≤
m∑
i=1

E
[

exp

(
mc′cαi |Zαi |

)]
.

This shows that if we choose c′ := 1
m we obtain E[ec|X|] < +∞ with c > 0 given by

c :=
mini=1,...,m cαi

mmaxi=1,...,m |ui|
.

Then we can apply Theorem B.4 to conclude that cos(X) ∈ P1(X), where now
P1(X) denotes the set of polynomials in X. But obviously, P1(X) ⊆P and so the
claim is proven.
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