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3.2 P. Lèvy Characterization of Brownian Motion . . . . . . . . . . . . . . . . 42
3.3 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Stochastic integral of elementary processes . . . . . . . . . . . . . 46
3.3.2 Extension of the stochastic integral . . . . . . . . . . . . . . . . . . 48

3.4 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Stochastic integral as a process . . . . . . . . . . . . . . . . . . . . 54
3.4.2 A further extension of the stochastic integral . . . . . . . . . . . . 55
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CHAPTER 1

Preliminaries

In this chapter we collect some of the results of measure theory needed for this lecture
notes. In the appendix we summarize well-known result of measure and integration
theory, which are assumed to be known to the reader.

1.1 Uniform integrability

Let (Ω,F ,P) a Probability space and L1 = L1(P) := L1(Ω,F ,P).

1.1.1 Exercise. X ∈ L1 if and only if limN→∞
∫
{|X|≥N} |X|dP = 0.

Exercise 1.1.1 justifies the following definition:

1.1.2 Definition. (i) We say that a family K ⊆ L1 is uniformly integrable if

supX∈K E[|X|1{|X|≥N}] −→ 0 as N → +∞.

(ii) A sequence (Xn)n∈N ⊆ L1 is uniformly integrable if K := {X1, . . .} is uniformly
integrable.

If K is dominated in L1, i.e., there exists Y ∈ L1 such that |X| ≤ Y , for every
X ∈ K , then K is uniformly integrable. Clearly, any finite family of integrable random
variables is uniformly integrable. However, if a family K is uniformly integrable, this
does not mean that it is also dominated in L1. Therefore the following results, for which
we refer to Dellacherie & Meyer (1978), Theorem II.21, is a generalization of Lebesgue
theorem on dominated convergence (cf. Theorem 1.A.3).

1.1.3 Theorem. Let (Xn)n∈N be a sequence of random variables in L1 converging almost
surely (or only in probability) to a random variable X. Then the following assertions
are equivalent:

(i) X belongs to L1 and (Xn)n∈N converges in L1 to X.
(ii) The family K := (Xn)n∈N is uniformly integrable.
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1.1.4 Corollary. Let (Xn)n∈N ⊆ L1 be uniformly integrable and converge to X a. s.
Then X ∈ L1 and E[Xn] converges to E[X], whenever n→ +∞.

Proof. Exercise.

The following result, known as La Vallée–Poussin’s Theorem (cf. Dellacherie & Meyer
(1978), Theorem II.22), is a characterisation of the uniform integrability

1.1.5 Theorem. A family K of integrable random variables is uniformly integrable
if and only if there exists a positive, convex and increasing function G on [0,+∞] into

[0,+∞) such that: (i) G(x)
x converges to +∞ as x→ +∞; (ii) supX∈K E[G(|X|)] < +∞.

Because of La Vallée–Poussin’s Theorem, we can conclude that a family of random
variables is uniformly integrable if it is q-integrable and bounded in Lq(P), q > 1.

1.2 Monotone class theorems

Monotone class theorems are of different kinds and they are present in the literature in
several formulations. We consider only one formulation for sets and one for functions.
We refer to Sharpe (1988) and He, Wang & Yan (1992). We start with a monotone
class theorem for systems of sets in the same form as He, Wang & Yan (1992), Theorem
1.2. We say that a class K of subsets of Ω is a monotone class if for every monotone
sequence (An)n∈N ⊆ K such that An ↑ A or An ↓ A as n→ +∞, A ∈ K .

1.2.1 Theorem (Monotone class theorem for sets). Let F be an algebra and K a
monotone class of sets of Ω such that F ⊆ K . Then σ(F ) ⊆ K .

For the formulation of the monotone class theorem for classes of functions we refer
to Sharpe (1988), Appendix A0. Let (Ω,F ) be a measurable space. We denote by
B := B(Ω,R) the set of bounded measurable functions on (Ω,F ) into (R,B(R)). If K
is a linear subspace of B we say that it is a monotone vector space if 1 = 1Ω ∈ K and
if it is monotonically closed, that is, if (fn)n∈N ⊆ K is such that 0 ≤ fn ≤ fn+1, for
all n ∈ N and f ∈ B is such that f = limn→+∞ fn, then f ∈ K . We observe that the
limit f belongs to B if and only if (fn)n∈N is uniformly bounded. A set C ⊆ B is called
a multiplicative class if it is closed with respect to the multiplication of two elements,
meaning that if h and g belong to C , then also their product hg does.

1.2.2 Theorem (Monotone class theorem for functions). Let K be a monotone vector
space and C a multiplicative class such that C ⊆ K and σ(C ) = F . Then K = B.

Let (Ω,F ) be a measurable space and µ a measure on it. Given a system T of
numerical functions on (Ω,F ), we denote by Span(T ) its linear hull. Now we fix q in

[1,+∞). If T ⊆ Lq(µ) we denote by T
(Lq(µ),‖·‖q)

the closure of T in (Lq(µ), ‖ · ‖q).
A system T ⊆ Lq(µ) of functions is called total in (Lq(µ), ‖ · ‖q) if its linear hull is

dense, that is, Span(T )
(Lq(µ),‖·‖q)

= Lq(µ). If µ is a finite measure, then the inclusions
Lq(µ) ⊆ Lp(µ), q ≥ p, hold and Lq(µ) is a total system in (Lp, ‖ · ‖p). In particular,
L∞(µ) is an example of total system in Lq(µ), for every q ∈ [1,+∞). As an application
of Theorem 1.2.2, we want to establish a general lemma stating sufficient conditions for
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a system T ⊆ Lq(µ) of bounded functions to be total in Lq(µ), for q ∈ [1,+∞). We
recall that we use the notation B := B(Ω,R) to denote the space of bounded measurable
functions on (Ω,F ) into (R,B(R)).

1.2.3 Lemma. Let T ⊆ Lq(µ) be a subset of B. Then T is total in Lq(µ) if the
following conditions are satisfied:

(i) T is stable under multiplication;
(ii) σ(T ) = F ;
(iii) There exists a sequence (hn)n∈N ⊆ Span(T ) such that hn ≥ 0 and hn ↑ 1 pointwise

as n→ +∞.

Proof. First, we consider the case in which µ is a finite measure. In this case B ⊆ Lq(µ)

and it is dense in (Lq(µ), ‖ · ‖q). We define H := Span(T )
(Lq(µ),‖·‖q)

and then K :=
H ∩ B. Clearly, K is a closed linear space and T ⊆ K . By assumption, hn ↑ 1
pointwise as n → +∞ and by the finiteness of µ, 1 ∈ Lq(µ). From the theorem of
Lebesgue on dominated convergence (cf. Theorem 1.A.3) hn converges to 1 in Lq(µ) and
so 1 ∈ K . Moreover, K is closed under monotone convergence of uniformly bounded
nonnegative functions, as a consequence of the finiteness of µ and of Theorem 1.A.3.
Consequently, K is a monotone class and by Theorem 1.2.2, we get K = B. Hence
B ⊆H and since B is dense and H is closed, this yields Lq(µ) = H . Now we consider
the case of a general measure µ. For f ∈ Lq(µ) we put dµn := |hn|q dµ, n ≥ 1, where
(hn)n∈N is as in the assumptions of the lemma. Obviously, µn is a finite measure for
every n. Moreover, with notation in (A.1) below, µn(|f |q) = µ(|fhn|q) ≤ µ(|f |q) < +∞
and hence f ∈ Lq(µn). We choose a sequence (εn)n∈N such that εn > 0 and εn ↓ 0 as
n→ +∞. By the previous step, there exists a sequence (gn)n∈N ⊆ Span(T ) such that∫

Ω
|f hn − gn hn|q dµ =

∫
Ω
|f − gn|q|hn|q dµ < εn , n ≥ 1.

The system T is stable under multiplication so gnhn ∈ Span(T ). On the other side,
‖f − fhn‖Lq(µ) = ‖|f |q|1 − hn|q‖L1(µ) −→ 0, as n → +∞. Indeed, |1 − hn|q ↓ 0 as
n→ +∞ and |f |q|1−hn|q ≤ |f |q ∈ L1(µ). Theorem 1.A.3 yields the result. Hence gnhn
converges to f in Lq(µ) as n→ +∞.

Notice that the measure µ in the Lemma must be finite.

1.3 Conditional expectation and probability

For this part we refer to Shiryaev (1996), II§7. Let (Ω,F ,P) be a probability space, G
a sub-σ-algebra of F and X ∈ L1 := L1(Ω,F ,P).

1.3.1 Definition. A random variable Y ∈ L1 is a version of the conditional expectation
of X under the condition (or given) G if

(i) Y is G -measurable;
(ii)

∫
B Y dP =

∫
BXdP, B ∈ G .

It is well known (cf. Bauer (1996)§15) that a version of the conditional expectation of
X given G always exists and it is a. s. unique (the proof is based on Radon–Nykodim’s
theorem). If Y is a version of the conditional expectation of X given G we denote it by
E[X|G ].
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1.3.2 Exercise. (i) Let X ∈ L1. Show that

K := {E[X|G ], G ⊂ F , G sub-σ-algebra} ⊆ L1

is uniformly integrable.
(ii) Let Y be G -measurable. Show that Y = E[X|G ] if and only if E[XW ] = E[YW ],

for every W ≥ 0 bounded and G -measurable.

Conditional probability. For a given measurable sets A,B such that P[B] 6= 0, we
have P[A|B] := P[A ∩B]/P[B].

1.3.3 Definition. We call the the function P[·|G ] : F × Ω −→ [0, 1] defined by
P[A|G ](ω) := E[1A|G ](ω), A ∈ F , conditional probability.

Notice that for A ∈ F , P[A|G ] is a. s. defined and is a G -measurable random variable.
It furthermore fulfils∫

B
P[A|G ]dP =

∫
B

1AdP = P[A ∩B], B ∈ G .

There is an important question connected with the conditional probability. P[A|G ] is

an equivalence class: can we choose a representing element P̃[A|G ] from each equivalence

class in such a way that the set function A −→ P̃[A|G ](ω), is a probability measure on
(Ω,F ), for every fixed ω? Let (An)n∈N ⊆ F be a sequence of pairwise disjoint sets.
Then because of the property of the conditional expectation we get

P

[ ∞⋃
n=1

An|G

]
=

∞∑
n=1

P[An|G ]

in the sense of the equivalence classes. However we cannot hope that this will also holds

for the representing element P̃[A|G ](ω), for each ω ∈ Ω if we are not able to chose this
representing element in a very special way.

1.3.4 Definition. A regular version of the conditional probability P[·|G ] is a mapping
PG on F × Ω such that:

(i) A −→ PG (A,ω) is a probability measure on (Ω,F ) a. s.;
(ii) ω −→ PG (A,ω) is G -measurable and belongs to the equivalence class of P[A|G ],

for every A ∈ F .

Of course, if PG is a regular version of the conditional probability P[·|G ], then

PG (A, ·) = E[1A|G ].

In particular this yields that

E[X|G ] =

∫
Ω
X(ω′)PG (dω′, ·),

that is we can compute the conditional expectation ofX given G “as the non-conditional”
expectation.

For a probability space (Ω,F ,P) we can always consider the conditional probability
P[·|G ]. Therefore it is natural to ask the question if it is also always possible to find a
regular version PG of the conditional probability. As the short discussion before Defin-
ition 1.3.4 explains, this is in general not true. However, as we shall see in the next
sections, there exist special situations in which this is indeed the case.
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Appendix 1.A Measure and integration theory

We consider an arbitrary nonempty set Ω. If A ⊆ Ω we denote by Ac the complement
of A in Ω. Let (An)n≥1 be a sequence of subsets of Ω and A ⊆ Ω. If An ⊆ An+1, n ≥ 1,
and A = ∪∞n=1An, we write An ↑ A. If An+1 ⊆ An, n ≥ 1, and A = ∩∞n=1An, we write
An ↓ A.

A system R of subsets of Ω is called a semiring of subsets of Ω if it possesses the
following properties: The empty set belongs to R; if A and B belong to R, then their
intersection A∩B does; if A and B belong to R and A ⊆ B, then the set-difference B\A
can be written as finite union of pairwise disjoint elements of R. A system R of subsets
of Ω with the following properties is called a ring : The empty set belongs to R; if A and
B belong to R, then their union A ∪B and their set-difference A \B do. Notice that a
ring contains also the intersection of two of its elements because A ∩ B = A \ (A \ B).
Obviously a ring is also a semiring.

1.A.1 Definition. A system F of subsets of Ω is called an algebra (in Ω) if it has the
following properties:

(i) Ω ∈ F ;
(ii) if A ∈ F , then Ac ∈ F ;
(iii) if A,B ∈ F , then A ∪B ∈ F .

If (iii) is replaced by
(iii′) if (An)n∈N ⊆ F , then ∪n∈NAn ∈ F ,

then F is denominated a σ-algebra (in Ω).

We notice that an algebra is a ring that in addition contains Ω. If C ⊆ Ω is a system
of sets, the σ-algebra generated by C is denoted by σ(C ) and is defined as the smallest
σ-algebra containing C . If C ⊆ F is such that σ(C ) = F we say that C generates F
and call it a generator of F . If C is a generator of F which is stable under intersection
of two sets, we call it an ∩-stable generator. If the σ-algebra F can be generated by a
countable system C , we say that it is a separable σ-algebra. Let (C )i∈I be a family of
systems of subsets in Ω, where I is an arbitrary set of indexes. By

∨
i∈I Ci we denote the

σ-algebra generated by the union of all the Cis, that is,
∨
i∈I Ci := σ(

⋃
i∈I Ci). Let Ω be

a topological space. We denote by B(Ω) the Borel σ-algebra on Ω, i.e., the σ-algebra
generated in Ω by the open sets in the topology of Ω. If, for example, Ω = R, then B(R)
is separable.

For any σ-algebra F of Ω, we call the couple (Ω,F ) a measurable space and we
say that the subsets of Ω which belong to F are F -measurable or simply measurable.
We consider two measurable spaces (Ω,F ) and (Ω′,F ′) and a function f from Ω into
Ω′. We say that f is (F ,F ′)-measurable or simply measurable, if for any A′ ∈ F ′ the
set f−1(A′) := {a ∈ Ω : f(a) ∈ A′} is F -measurable. We call the set f−1(A′) the
inverse image of A′ by f . If f is a function on (Ω,F ) into (Ω′,F ′) the system of sets
f−1(F ′) := {f−1(A′) : A′ ∈ F ′} is a σ-algebra in Ω. Let {(Ωi,Fi) : i ∈ I} be a family of
measurable spaces and {fi : i ∈ I} be a family of functions on Ω such that fi takes values
in Ωi, for every i ∈ I. The σ-algebra in Ω generated by

⋃
i∈I f

−1
i (Fi) is the smallest

σ-algebra F ′ with respect to which every fi is (F ′,Fi)-measurable. We designate this
σ-algebra by σ(fi : i ∈ I), that is, σ(fi : i ∈ I) :=

∨
i∈I f

−1
i (Fi) and we call it the

σ-algebra generated by {fi : i ∈ I}.
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Let (Ω,F ) be a measurable space. A set-function µ on F into [0,+∞] such that
µ(∅) = 0 and that µ(

⋃
n∈NAn) =

∑∞
n=1 µ(An), for any sequence (An)n∈N ⊆ F of

pairwise-disjoint sets, is called a measure on (Ω,F ). If µ takes values in [−∞,+∞],
then it is called a signed measure. If µ is a measure on (Ω,F ), we say that (Ω,F , µ)
is a measure space. A measure µ such that µ(Ω) < +∞ is called a finite measure. A
probability measure is a finite measure µ such that µ(Ω) = 1. If there exists an increasing
sequence (An)n∈N ⊆ F such that µ(An) < +∞ for every n ∈ N and

⋃
n∈NAn = Ω, then

the measure µ is called σ-finite. If Ω is a Hausdorff space with σ-algebra B(Ω), we say
that µ is locally finite if every point of Ω has an open neighbourhood of finite measure
µ. The following result holds for σ-finite measures and it is well-known in the literature
as uniqueness theorem (cf., e.g., Bauer (2001), Theorem I.5.4).

1.A.2 Theorem (Uniqueness theorem). Let (Ω,F ) be a measurable space, C ⊆ F an
∩-stable generator of F and (An)n∈N ⊆ C satisfying the property

⋃
n∈NAn = Ω. We

suppose that µ1 and µ2 are σ-finite measures on F such that
(i) µ1(A) = µ2(A), for every A ∈ C ;
(ii) µ1(An) = µ2(An) < +∞, for every n ∈ N.

Then µ1 and µ2 are identical on F .

For a measure µ on the measurable space (Ω,F ), it is well understood how to define the
integral of a measurable function with values in (R,B(R)). We introduce the notation

f ∗ µ :=

∫
Ω
f dµ :=

∫
Ω
f(x)µ(dx) (A.1)

if the integral on the right-hand side exists. In particular, µ(f) is well defined if f is
nonnegative. We say that a measurable function f of arbitrary sign is µ-integrable or
simply integrable if |f |∗µ < +∞. We do not go into details and we refer to Bauer (2001),
Chapter II. By functions, if not otherwise specified, we mean functions with values in
(R,B(R)), that is numerical functions. Let f be a measurable function. By ‖f‖q we
denote the following norm

‖f‖q :=


(|f |q ∗ µ)

1
q , q ∈ [1,+∞),

ess supx∈Ω |f(x)| , q = +∞ ,

and we put
Lq(µ) := {f measurable : ‖f‖q < +∞} , q ∈ [1,+∞].

We recall that f ∈ Lq(µ) is uniquely determined up to equivalence classes µ-a.e. Some-
times, we write Lq(Ω,F , µ) to stress the measure space and ‖ · ‖Lq(µ) to stress the space
Lq(µ). The space (Lq(µ), ‖ ·‖q) is a Banach space. The space L2(µ) is especially import-
ant because it is a Hilbert space with respect to the scalar product (f, g)L2(µ) := (fg)∗µ.
If f, g ∈ L2(ν) are such that (f, g)L2(µ) = 0, we say that they are orthogonal (in L2(µ))
and denote it by f⊥g. If G is a subset of functions in L2(ν) and f ∈ L2(ν) is such that
f⊥g for every g ∈ G , we say that f is orthogonal (in L2(µ)) to G and we denote it by
f⊥G . For a finite measure µ, the inclusions Lq(µ) ⊆ Lp(µ), 1 ≤ p ≤ q, hold. In partic-
ular, L∞(µ) is contained in every Lq(µ), for q ∈ [1,+∞). However, these inclusions are
not valid for a general measure µ.
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A function f belonging to L1(µ) is called integrable, while it is called square integrable
if it belongs to L2(µ). In general, we say that f is q-integrable if it belongs to Lq(µ),
q ∈ [1,+∞). Let (fn)n≥1 be a sequence of measurable functions on the measure space
(Ω,F , µ). We say that (fn)n≥1 converges (µ-a.e.) pointwise to the measurable function
f if

lim
n→+∞

|fn(x)− f(x)| = 0

for (µ-almost all) x ∈ Ω. We write fn −→ f pointwise to mean that the sequence
(fn)n≥1 converges pointwise to f . If the sequence (fn)n≥1 is monotonically increasing
(resp., decreasing), i.e., fn ≤ fn+1 (resp., fn ≥ fn+1), we write fn ↑ f (resp., fn ↓ f) to
mean that it converges pointwise to f . If (fn)n≥1 ⊆ Lq(µ) and f ∈ Lq(µ), we say that
(fn)n≥1 converges to f in Lq(µ) if

lim
n→+∞

‖fn − f‖q = 0.

It is important to establish under which conditions a sequence (fn)n≥1 ⊆ Lq(µ) con-
verging a.e. to a measurable function f converges in fact to f in Lq(µ). Now we state
two classical theorems which answer this question: The theorem of Lebesgue on dom-
inated convergence and the theorem of B. Levi on monotone convergence. We refer to
Bauer (2001) II§.11 and II§.15. The following is the theorem of Lebesgue on dominated
convergence.

1.A.3 Theorem. We fix q ∈ [1,+∞) and consider a sequence (fn)n∈N ⊆ Lq(µ) such
that fn −→ f µ-a.e. pointwise as n → +∞. If there exists a function g ≥ 0 in Lq(µ)
such that |fn| ≤ g, for every n ∈ N, then f ∈ Lq(µ) and the convergence takes place also
in Lq(µ).

Now we state the theorem of B. Levi on monotone convergence.

1.A.4 Theorem. Let (fn)n∈N be a monotone sequence of nonnegative functions such
that fn ↑ f pointwise as n→ +∞. Then f is measurable and fn ∗µ ↑ f ∗µ as n→ +∞.

Let (Ω, F̃ ) be a measurable space and let P be a probability measure on it. We call
the measure space (Ω, F̃ ,P) a probability space. By N (P) we denote the null sets of P,
i.e., N (P) := {A ⊆ Ω : ∃B ∈ F̃ , A ⊆ B, P(B) = 0}. If N (P) is not contained in
F̃ we enlarge the σ-algebra by setting F := F̃ ∨N (P). We call F the completion of
F̃ (in itself ) with respect to P or simply P-completion of F̃ and we say that (Ω,F ,P)
is a complete probability space. If not otherwise specified, we assume a probability
space to be complete. In the remaining of this chapter we assume that a complete
probability space (Ω,F ,P) is fixed. A measurable mapping X on (Ω,F ) into (R,B(R))
is called a random variable. We denote by E the expectation with respect to P. If G is
a sub-σ-algebra of F , we denote by E[·|G ] the conditional expectation with respect to
G . Sometimes we write EP or EP[·|G ] to emphasize the dependence on the probability
measure P.



CHAPTER 2

Introduction to the general theory of stochastic processes

We start this chapter with the general definition of stochastic process and study the
relation between stochastic processes and finite dimensional distribution of a stochastic
process. In particular, we present a very important and deep result of Kolmogorov
known as Kolmogorov Extension Theorem. Then we discuss some properties of paths of
stochastic processes, we introduce the notion of filtration, stopping times and martin-
gales. We then consider Markov processes and show their existence as an application
of the Kolmogorov Extension Theorem. We conclude the chapter with a section about
processes with independent increments with respect to a filtration and, in particular, we
present them as a subclass of Markov processes.

2.1 Kolmogorov extension theorem

For this part we refer to Gihman & Skorohod (1974). Let (Ω,F ,P) be a probability
space. A parameter set T 6= ∅ and a measurable space (E,E ), called state space or value
space, are given.

Examples of the parameter set T : T = [0,+∞) =: R+; T = [0, τ ], τ > 0; T = N;
T = Z; T ⊆ R; T ⊆ Rd, d ∈ N.

Examples of the state space (E,E ): (R,B(R)); (Rd,B(Rd)), d ∈ N; E = C([0, 1]),
that is the Banach space of continuous functions (‖z‖ = supt∈[0,1] |z(t)|) and E := B(E).

2.1.1 Definition. (i) A stochastic process X with state space (E,E ) and parameter
set T , is an application on Ω× T into E such that the mapping ω 7→ X(ω, t) is (F ,E )-
measurable. We use the notation Xt(ω) := X(ω, t) and, we often suppress the depend-
ence on ω, that is write Xt := Xt(ω). We also sometimes write X = (Xt)t∈T .

(ii) Let (T,T ) be a measurable space. We say that the process X is measurable, if
X : Ω× T −→ E is (F ⊗T ,E )-measurable.

We observe that, if X is a stochastic process with state space E, then Xt is a random
variable with values in E, for every t ∈ T , and the notation X = (Xt)t∈T exhibits the
stochastic process X as a collection of random variables indexed on T .
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If E n denotes the n-fold Cartesian product of E with itself and E n :=
⊗n

i=1 E ,
then the mapping ω 7→ (Xt1(ω), . . . , Xtn(ω)), t1, . . . , tn ∈ T , is (F ,E n)-measurable,
ω 7→ X(ω, t) being (F ,E )-measurable.

2.1.2 Definition. Let X be a stochastic process.
(i) For n ∈ N and t1, . . . , tn ∈ T , by µt1,...,tn we denote the distribution of the random

vector (Xt1 , . . . , Xtn).
(ii) The family µ := {µt1,...,tn , t1, . . . , tn ∈ T ; n ∈ N} is called system of the finite-

dimensional distributions of the stochastic process X.

For a given stochastic process X, the corresponding family µ of the finite-dimensional
distributions satisfies some “consistency” conditions. More precisely, we notice that, for
a choice of n ∈ N and t1, . . . , tn ∈ T , because of the definition of µt1,...,tn , we have

µt1,...,tn(B) = P
[
(Xt1 , . . . , Xtn) ∈ B

]
, B ∈ E n.

Therefore, for B ∈ E n and t1, . . . , tn, tn+1, . . . , tn+m ∈ T , n,m ∈ N, we have

µt1,...,tn,tn+1,...,tn+m(B×
m-times︷ ︸︸ ︷

E × . . .× E )

= P
[
{(Xt1 , . . . , Xtn) ∈ B} ∩ {(Xtn+1 , . . . , Xtn+m) ∈ Em}

]
= P

[
{(Xt1 , . . . , Xtn) ∈ B}

]
,

where we used {(Xtn+1 , . . . , Xtn+m) ∈ Em} = Ω, E being the state space of X. The
previous computation shows that, for every B ∈ E n and t1, . . . , tn, tn+1, . . . , tn+m ∈ T ,
n,m ∈ N, the family of the finite dimensional distributions of a stochastic process X
satisfies the relation

µt1,...,tn,tn+1,...,tn+m(B ×
m-times︷ ︸︸ ︷

E × . . .× E ) = µt1,...,tn(B) . (2.1)

Moreover, if B ∈ E n has the form B = B1 × . . . × Bn and t1, . . . , tn ∈ T , for any
permutation π of {1, · · · , n}, we have

µtπ(1),...,tπ(n)(Bπ(1) × . . .×Bπ(n))

= P
[
Xπ(1) ∈ Bπ(1), . . . , Xπ(n) ∈ Bπ(n)

]
= P

[
X1 ∈ B1, . . . , Xn ∈ Bn

]
that is, for every rectangle B ∈ E n, every t1, . . . , tn ∈ T and every permutation π of
{1, · · · , n},

µtπ(1),...,tπ(n)(Bπ(1) × . . .×Bπ(n)) = µt1,...,tn(B1 × . . .×Bn) . (2.2)

Because of the previous discussion, we can state the following definition and theorem.

2.1.3 Definition. Let n ∈ N and assume that with each t1, . . . , tn ∈ T we can associate
a probability measure νt1,...,tn on (E n,E n).

(i) The family of probabilities ν := {νt1,...,tn , t1, . . . , tn ∈ T ; n ∈ N} is called a system
of finite dimensional distributions (not necessarily of a stochastic process)

(ii) A system ν of finite dimensional distributions is consistent if it satisfies (2.1) and
(2.2), called consistency conditions.
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Notice that in Definition 2.1.2 we started with a stochastic process X and we defined
the system of finite dimensional distributions of X. In Definition 2.1.3 we have no
stochastic process coming into play but only a by T -parametrized family of probability
measures, called system of finite dimensional distributions. At this point it is important
to note the difference between “system of finite dimensional distributions of a process”
and “system of finite dimensional distributions”.

2.1.4 Theorem. Let X be a stochastic process with state space (E,E ) and let µ be the
family of the finite dimensional distributions of X. Then the family µ is consistent.

Kolmogorov Extension Theorem is in a certain sense the converse of Theorem 2.1.4.
The question is the following. Let T be an index set, (E,E ) a measurable space and
ν := {νt1,...,tn , t1, . . . , tn ∈ T ; n ∈ N} a given family of probability measures, such that
νt1,...,tn is a probability measure on (E n,E n), for every t1, . . . , tn ∈ T , n ∈ N. There
exists a probability space (Ω,F ,P) and a stochastic process X on it having (E,E ) as
state space and such that the family µ of the finite dimensional distributions (with
respect to P!!!) of X is equal to ν, that is, such that

µt1,...,tn(B) = P
[
(Xt1 , . . . , Xtn) ∈ B

] !!!
= νt1,...,tn(B)

for every B ∈ E n and every t1, . . . , tn ∈ T , n ∈ N? Clearly, this question is to general
to be well formulated: If ν has to be the family of the finite dimensional distributions
of a stochastic process, according to Theorem 2.1.4, it has to be, at least, consist-
ent. Kolmogorov Extension Theorem claims that, if the state space (E,E ) is “regular”
enough, then the consistency conditions (2.1) and (2.2) are necessary and sufficient for
ν to be the system of finite dimensional distributions of X.

The proof of Kologorov Extension Theorem is constructive: the existence of the prob-
ability space (Ω,F ,P) and of the process X is proven constructing a measurable space
(Ω,F ) and then defining on it a probability measure. On this space a stochastic pro-
cess X is explicitly constructed and then it is proven that the family µ of the finite
dimensional distributions of X are equal to the given consistent system of probabilities
ν.

Before we formulate and sketch the proof of Kolmogormov Extension Theorem, we
need some preparation.

By E T we denote the set of the mappings f on T into E, that is f ∈ ET if and only
if f : T −→ E.

2.1.5 Definition. (i) Let τ := (t1, . . . , tn) be an element of T n and B of E n. The set of
functions f ∈ E T such that f(τ) := (f(t1), . . . , f(tn)) belongs to B is called cylindrical
set (in E T with basis B over the coordinates τ) and it is denoted by Cn(τ,B), that is,

Cn(τ,B) :=
{
f ∈ E T : (f(t1), . . . , f(tn)) ∈ B

}
.

(ii) By A we denote the family of cylindrical sets, that is

A := {Cn(τ,B), B ∈ E n; τ ∈ T n; n ∈ N} .

(iii) By E T we denote the σ-algebra generated by the cylindrical sets E T := σ(A ).
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According to Gihman & Skorohod (1974), I.I.§4, Theorem 1 we have

2.1.6 Theorem. The family A of cylindrical sets forms an algebra of subsets of E T .

Proof. For B ∈ E n and τ ∈ T n the identity Cn(τ,B)c = Cn(τ,Bc) and clearly ET =
Cn(τ, E n) is a cylindrical set. The last property to prove is that A is ∩-stable. We do
not show this part in details but only give an example: Let us consider the cylindrical
sets {f : f(t1) ∈ B1} and {f : f(t2) ∈ B2}. Then setting τ := (t1, t2), we get {f : f(t1) ∈
B1} ∩ {f : f(t2) ∈ B2} = C2(τ,B1 ×B2).

We furthermore observe that if B ∈ E n, τ := (t1, . . . , tn) ∈ T n and σ := (s1, . . . , sm) ∈
T m, setting τ |σ := (t1, . . . , tn, s1, . . . , sm), then

Cn+m(τ |σ,B × Em) = Cn(τ,B) . (2.3)

Formula (2.3) shows that different coordinates and basis can generate the same cyl-
indrical set.

Now we are ready to formulate an give a sketch of the proof of the following theorem
(cf. Gihman & Skorohod (1974), I.I.§4, Theorem 2).

2.1.7 Theorem (Kolmogorov Extension Theorem). Let T be a parameter set and (E,E )
a measurable space. Let µ := {µt1,...,tn , t1, . . . , tn ∈ T ; n ∈ N} be a system of finite
dimensional distributions. Assume that

(i) E is a separable complete metric space and E = B(E) is the Borel σ-algebra of E
(with respect to the topology of the metric);

(ii) the system µ of finite dimensional distributions satisfies the consistency conditions
(2.1) and (2.2).

Then there exists a probability space (Ω,F ,P) and a stochastic process X = (Xt)t∈T
on this probability space and with state space (E,E ) admitting µ as associated system of
finite dimensional distribution with respect to P, that is, such that for every B ∈ E n,
t1, . . . , tn ∈ T , and n ∈ N,

P[(Xt1 , . . . , Xtn) ∈ B] = µt1,...,tn(B) (2.4)

holds. Furthermore the probability measure P on (Ω,F ) is uniquely determined by (2.4).

Sketch of the proof. In the proof of the theorem the probability space and the process
are concretely constructed.
Step 1: Definition of Ω and of P on A . We define set Ω := E T . Let A be the algebra
of the cylindrical sets of Ω (cf. Theorem 2.1.6). For τ = (t1, . . . , tn) ∈ T n and B ∈ E n

we consider C = Cn(τ,B) and set

P ′(C) := µt1,...,tn(B). (2.5)

Because of the consistency conditions (2.1) and (2.2), (2.5) uniquely defines P ′ over A
(cf. (2.3)), that is (2.5) does not depend on the special representation of the cylindrical
set C.

Step 2: Construction of F and construction of P. Because of the σ-additivity of
µt1,...,tn on E n, P ′ is finitely additive on the algebra A of cylindrical sets. In other
words, according to Bauer (2001), Definition 3.1, P ′ is a content on the algebra A (a



2.1 Kolmogorov extension theorem 16

content ν is a nonnegative finitely additive set function on a ring such that ν(∅) = 0).
The main point of this step is to show that P ′ is a premeasure (that is a σ-additive
content) on A . To prove this, one has to use the topological properties of (E,E ).
Notice that (2.5) ensures the finiteness of P ′. We can therefore apply the following
result: Every σ-finite premeasures µ̃ on a ring R can be extended in a unique way to
a measure µ on σ(R) (cf. Bauer (2001), Theorem 5.6). Let P be the extension of P ′

to E T := σ(A ). We set F := E T and denote by P the unique measure obtained as
extension of P ′ to F . From (2.5) we immediately deduce that P is a probability measure
on (Ω,F ) (P ′(Ω) := µt1,...,tn(En) = 1).

Step 3: Construction of the process X. Let ω be an element of Ω, that is a function

on T into E (recall that by construction Ω = E T ) and define

Xt(ω) := ω(t) . (2.6)

The mapping X : Ω×T −→ E defined by (2.6) is clearly a stochastic process on (Ω,F ,P)
with state space (E,E ) and for each B ∈ E n, τ = (t1, . . . , tn) ∈ T n, n ∈ N,

P[(Xt1 , . . . , Xtn) ∈ B]

= P[(ω(t1), . . . , ω(tn)) ∈ B] = P[Cn(τ,B)]

= P ′[Cn(τ,B)] = µt1,...,tn(B)

meaning that µ is the system of finite dimensional distributions of the process X and
the proof is complete.

We observe that if we take T = [0,+∞) and E = Rd, d ≥ 1, then the consistency con-
ditions (2.1) and (2.2) for the system of finite dimensional probabilities can be simplified
to

µt1,...,tn(B1 × . . .×Bk−1 × E ×Bk+1 . . .×Bn) =

µt1,...,tk−1,tk+1,...,tn(B1 × . . .×Bk−1 ×Bk+1 . . .×Bn)
(2.7)

and the following theorem (cf. Shiryaev (1996), II.§9, Theorem 1) holds

2.1.8 Theorem. Let µ := {µt1,...,tn , t1 < . . . < tn} be a system of finite dimen-
sional distributions such that µt1,...,tn , t1 < . . . < tn, is a probability measure on(
(R d)n,B(R d)n

)
, and satisfying (2.7). Then there exists a probability space (Ω,F ,P)

and a stochastic process with state space
(
R d,B(R d)

)
such that its associated system of

finite dimensional distributions is given by µ.

We conclude this section fixing some notations: In the remaining chapter of these
notes, we shall consider (E,E ) equal to (R,B(R)

)
or (R d,B(R d)

)
and T equal to R+

or to [0, T ], T > 0 (little abuse of notation!).

Existence of a regular version of the conditional probability. At this point we
can give an answer to the question about the existence of a regular version of the con-
ditional probability, at least in the case of the conditional distribution of a stochastic
process X.

Let (Ω,F ,P) be a probability space, G ⊆ F a sub-σ-algebra of F and X a stochastic
process with state space (E,E ) := (Rd,B(Rd)). For the following theorem see Shiryaev
(1996), corollary to Theorem 5 in Chapter II, §7.
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2.1.9 Theorem. Let P[Xt ∈ B|G ] be the conditional distribution of X given G . Then
there exists a regular version of the conditional probability, which we denote by P[Xt ∈
B|G ]. Furthermore, for every bounded real-valued positive function f , the following
formula holds

E[f(Xt)|G ] =

∫
E
f(y)P[Xt ∈ d y|G ] .

2.2 Paths of stochastic processes

In this section we denote (E,E ) := (R,B(R)
)
. This will be the state space of all

stochastic processes we are going to consider. A probability space (Ω,F ,P) is given.
Let X be a stochastic process.

2.2.1 Definition. Let X be a stochastic process with values in (E,E ).
(i) The mapping t 7→ Xt(ω) is called path or trajectory of the process X.
(ii) The process X is said to be (a.s.) continuous if (almost) all its trajectories are

continuous.
(iii) The process X is said to be (a.s.) càdlàg if (almost) all its trajectories are càdlàg.
(iv) The process X is said to be stochastically continuous (or continuous in probability)

if
lim
s→t

P[|Xt −Xs| > ε] = 0, for every t ≥ 0 and ε > 0.

2.2.2 Remark. We remark that the word càdlàg is the abbreviation of French “continue
à droite, limité à gauche”. This means that the paths of the process X are right-
continuous and admit finite left-limit in everye point, that is

lim
s↓t

Xs = Xt , lim
s↑t

Xs exists and is finite for every t > 0.

2.2.3 Definition. Let X be a càdlàg process.
(i) We define the random variable Xt− for every t > 0 as Xt− := lims↑tXs, which

is finite, and X0− := X0. By X− = (Xt−)t≥0 we denote the left-hand-limit process
associated with X.

(ii) The jump process ∆X := (∆Xt)t≥0 of X is defined by ∆Xt := Xt −Xt−, t ≥ 0.
(iii) If, for a fixed t > 0, ∆Xt 6= 0 we say that the process X has a fixed discontinuity

at fixed time t > 0.

Notice that for any càdlàg process X, ∆X0 = 0. Furthermore, if X is a continuous
stochastic process, then X− = X and ∆X = 0. For two stochastic processes X and Y ,
there exist different concepts of equality:

2.2.4 Definition. Let X and Y be stochastic processes. Then X and Y are
(i) equivalent if they have the same finite dimensional distributions
(ii) modifications if P[Xt = Yt] = 1, for every t ≥ 0.
(iii) indistinguishable if P[Xt = Yt, for every t ≥ 0] = 1.
(iv) (a.s.) equal if Xt(ω) = Yt(ω) for every t ≥ 0 and for (almost) every ω ∈ Ω.
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If X is a càdlàg and stochastically continuous process, then X has no fixed dis-
continuities a.s. This means that, the random variable ∆Xt is equal to zero a.s., for
every fixed t > 0. This is a delicate point: If X is stochastically continuous then
the process ∆X is a modification of the process identically equal to zero. However,
these two processes are not indistinguishable.

2.2.5 Exercise. (?) (i) Prove that the implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) holds
in Definition 2.2.4. Do the implications in the converse direction hold? If no, give an
example of two processes which are modifications of each other but not indistinguishable.
Prove that if t ∈ N, then (ii) ⇔ (iii). Show that the same holds for right continuous
processes which are modifications of each other.

(ii) Let X be stochastic continuous and ϕt(u) := E[exp(iuXt)], u ∈ R, t ≥ 0. Then
the mapping t 7→ ϕt(u) is continuous.

The importance of the càdlàg property for stochastic processes will be made clear in
the following chapters. We notice here that this property was used to define the process
X− and hence the jump process ∆X. Furthermore the following result, for which we
refer to Appelbaum (2009), Lemma 2.9.1, holds.

2.2.6 Theorem. Let X be a càdlàg process. Then
(i) For any ε > 0, the set Sε := {t > 0 : |∆Xt| > ε} is finite.
(ii) The set S := {t > 0 : ∆Xt 6= 0} is at most countable.

Theorem 2.2.6, (i) asserts that a càdlàg process has only finitely many fixed discon-
tinuities bigger in absolute value of a given positive number, while Theorem 2.2.6, (ii)
claims that fixed discontinuities of a càdlàg process are at most countable.

Observe that one important consequence of Theorem 2.2.6 is that for any càdlàg
process, the infinite sum∑

0≤s≤t
|∆Xs| =

∑
0≤s≤t

|∆Xs|1{∆Xs 6=0}, t ≥ 0

consists at most of countably many terms. Therefore it is a well-defined random variable
taking values in [0,+∞].

We conclude this section with the well-known Continuity Theorem of Kolmogorov,
ensuring sufficient conditions for the existence of a (Hölder-)continuous modification of
a given stochastic process. We refer to Revuz & Yor (1999), Chapter I, Theorem 1.8.

2.2.7 Theorem. Let X be a stochastic process with state space (E,E ) such that there
exist three real numbers α, β, c > 0 such that for every s, t ∈ R+ the estimate

E
[
|Xt −Xs|β

]
≤ c|t− s|1+α

holds. Then there exists a continuous modification Y of X. Furthermore the paths of Y
are Hölder-continuous with parameter γ < α/β.
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2.3 Filtrations, stopping times and martingales

In this section we denote (E,E ) :=
(
R,B(R)

)
. Let (Ω, F̃ ,P) be a probability space. By

N (P) we denote the null sets of P, i.e., N (P) := {A ⊆ Ω : ∃B ∈ F̃ , A ⊆ B, P(B) = 0}.
If N (P) is not contained in F̃ we enlarge the σ-algebra by setting F := F̃ ∨N (P). We
call F the completion of F̃ (in itself ) with respect to P or simply P-completion of F̃
and we say that (Ω,F ,P) is a complete probability space. If not otherwise specified, we
assume a probability space to be complete. In the remaining of this chapter we assume
that a complete probability space (Ω,F ,P) is fixed.

2.3.1 Definition. (i) A family F = (Ft)t≥0 of sub-σ-algebras of F which is increasing
is called a filtration, that is, Ft ⊆ F is a σ-algebra, t ≥ 0, and Fs ⊆ Ft, 0 ≤ s ≤ t.

(ii) A filtration F is called complete if N (P) ⊆ Ft for every t ≥ 0.
(iii) With a filtration F = (Ft)t≥0 we associate the filtration F+ = (Ft+)t≥0 by

Ft+ := ∩ε>0Ft+ε. The filtration F is called right-continuous if F = F+, that is, if
Ft+ = Ft, t ≥ 0. Note that F0+ = F0.

(iv) A filtration F which is complete and right-continuous is said to satisfy the usual
conditions.

Notice that if a filtration F̃ is not complete we can introduce the complete filtration
F = (Ft)t≥0 by setting Ft := F̃t ∨ N (P), t ≥ 0, and we call the filtration F the
P-completion of F̃ (in F ).

Given a filtration F̃ we can always associate to it a filtration F satisfying the usual
conditions by setting Ft := F̃t+ ∨N (P), t ≥ 0. In the following of this work, if not
otherwise specified, we shall always consider filtrations satisfying the usual conditions.

The mathematical concept of a filtration F has the following interpretation: The
events B ∈ Ft are known at time t ≥ 0. That is F models the flow of information which
increases in time.

We set
F := F∞ := σ

(⋃
t≥0 Ft

)
. (2.8)

2.3.2 Example. With a stochastic process X, we associate the σ-algebra F̃X
t :=

σ(Xs, 0 ≤ s ≤ t). We call the filtration F̃X = (F̃X
t )t≥0 the filtration generated by X.

Let FX
t := F̃X

t ∨N (P) denote the P-completion of F̃X
t . The filtration FX := (FX

t )t≥0

is the P-completion of F̃X (in F ). By F̃X+ = (F̃X
t+)t≥0 we denote the smallest right-

continuous filtration containing the filtration generated by X, i.e., F̃X
t+ ⊇ F̃X

t , t ≥ 0. In
the sequel, the most relevant filtration associated with the stochastic process X will be
FX+ , i.e., the P-completion in F of F̃X+ . The filtration FX+ satisfies the usual conditions
and we call it the natural filtration of X.

A stochastic process X is always adapted to its generated filtration F̃X . Moreover, it
is adapted to a filtration F if and only if F̃X ⊆ F.

2.3.3 Definition. (i) A process X is adapted to a filtration F if Xt is Ft-measurable,
for every t ≥ 0.

(ii) A process X is called progressively measurable if, for every u ≥ 0 the mapping
(ω, t) 7→ X(ω, t), t ≤ u, from Ω× [0, u] to E is (Fu ⊗B([0, u]),E )-measurable.
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2.3.4 Exercise. (?) Show the following claim: Let X be an F-adapted process and
assume that the filtration is complete. Then every modification Y of X is adapted.

Observe that any progressively measurable process is measurable and adapted. The
converse claim is, in general, not true. However, the following result holds (cf. Dellacherie
(1972), Theorem 11 in Chapter III).

2.3.5 Theorem. Let X be a stochastic process.
(i) If X is right-continuous or left-continuous, then it measurable.
(ii) If furthermore X is adapted, then it is progressively measurable.

Now we come to the important notion of stopping time.

2.3.6 Definition. Let F be a given filtration.
(i) A mapping τ on Ω into [0,+∞] is called a stopping time (with respect to F) if the

set {τ ≤ t} := {ω ∈ Ω : τ(ω) ≤ t} is Ft-measurable, for every t ≥ 0.
(ii) Let τ be a stopping time. We define Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0}.

We now enumerate some (assumed to be known to the reader) properties of stopping
times:

(i) τ ≡ t is a stopping time, t ≥ 0.
(ii) For a stopping time τ , Fτ is a σ-algebra.
(iii) Maximum, minimum and sum of stopping times are stopping times.
(iv) Fσ ⊆ Fτ for any stopping times σ and τ with σ ≤ τ .
(v) τ is a F+-stopping time if and only if {τ < t} is Ft-measurable, for every t > 0.

Let X be a process and τ a finite-valued nonnegative random variable. We denote by
Xτ the mapping ω 7→ X(ω, τ(ω)) on Ω into E. It is clear that, if X is a measurable
process, then Xτ is a random variable. Indeed, Xτ is the composition of the measurable
mappings ω 7→ (ω, τ(ω)) of Ω into Ω×R+ and of (ω, t) 7→ X(ω, t) of Ω×R+ into E. In
particular, if τ is a finite-valued stopping time, Xτ is a random variable. If furthermore,
X is progressively measurable, Xτ is Fτ -measurable (cf. Dellacherie (1972), Chapter III,
Theorem 20 or Revuz & Yor (1999), Chapter I, Proposition 4.9).

2.3.7 Definition. Let X be a measurable F-adapted process and τ a stopping time.
The process X τ = (X τ

t )t≥0 defined by X τ
t := Xτ∧t is called stopped process (at time τ).

If X is an F-adapted stochastic process and B ∈ E is a measurable sets, we define the
random variable

τB := inf{t ≥ 0 : Xt ∈ B}, (2.9)

with the convention inf ∅ := +∞. The relevant question is if this random variable is
an F-stopping time. We summarise in the next theorem some results concerning this
problem

2.3.8 Theorem. (i) Let X and F be right-continuous and B be an open set. Then τB
is a stopping time.

(ii) Let X be continuous, F right-continuous and B closed. Then τB is a stopping
time.

(iii) Let X be progressively measurable and assume that F satisfies the usual conditions.
Then τB is a stopping time for every B ∈ E .
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Proof. We only verify (i) and (ii). To prove claim (iii) a very deep result, called “debut
theorem”, whose proof is demanding, is needed. We refer Dellacherie (1972), Chapter
III, Theorem 23.

We start proving (i). Clearly {τB < t} =
⋃
s<t{Xs ∈ B} holds. Because B is open and

X is right-continuous,
⋃
s<t{Xs ∈ B} =

⋃
s<t,s∈Q{Xs ∈ B}. Therefore

⋃
s<t{Xs ∈ B}

is Ft-measurable, as a countable union of Ft-measurable sets. Hence, {τB < t} is Ft-
measurable, which is equivalent to {τB ≤ t} is Ft-measurable, F being right continuous
and the proof of (i) is complete. We now show (ii). Let d(·, ·) denote the Euclidean
distance in (E,E ) and let Un := {x ∈ E : d(x,B) < 1/n}. Then Un is an open
set, its closure is Un = {x ∈ E : d(x,B) ≤ 1/n}. Because of (i), τUn is a stopping
time and τUn ≤ τUn+1 , n ≥ 1. Let σ := limn→∞ τUn . Then σ is a stopping time and
because τUn ≤ τB, we also have σ ≤ τB. We now show σ = τB and for this σ ≥ τB is
sufficient. Notice that if σ(ω) = +∞, then τB(ω) = +∞ and therefore σ(ω) = τB(ω)
on {σ = ∞}. We now consider the case σ < +∞. Because of the continuity of X,
Xσ(ω)(ω) = limn→+∞Xτn(ω)(ω) and Xτn(ω)(ω) ∈ Un ⊆ Um, for every n ≥ m. Hence

Xσ(ω)(ω) ∈ Um, m ≥ 1 and therefore Xσ(ω)(ω) ∈
⋂∞
m=1 Um = B, which implies τB ≤ σ.

The proof of the theorem is now complete.

Now we introduce martingales.

2.3.9 Definition. Let F be a filtration and X an F-adapted stochastic process. Then
X is a non-càdlàg martingale (resp. submartingale, resp. supermartingale) (with respect
to F) if

(i) Xt ∈ L1(P), for every t ≥ 0;
(ii) E[Xt|Fs] = Xs (resp. E[Xt|Fs] ≥ Xs, resp. E[Xt|Fs] ≤ Xs), for every 0 ≤ s ≤ t.
If X is furthermore càdlàg , we call it simply a martingale.

The next theorem ensure the existence of a càdlàg modification of a martingale. For
the proof see He, Wang & Yan (1992), Theorem 2.44.

2.3.10 Theorem. Let X be a non-càdlàg martingale with respect to a filtration F satisfy-
ing the usual conditions. Then there exists a modification of X which is an F-martingale
(that is càdlàg ).

We will always assume that the filtration F satisfies the usual conditions. In this case
we always consider martingales (if we have a non-càdlàg martingale we pass to the càdlàg
modification, according to Theorem 2.3.10).

2.3.11 Lemma. Let (X n)n∈N be a sequence of F-martingale such that Xn
t converges to

Xt in L 1(P) as n −→ +∞, for every t ≥ 0. Then X is adapted and satisfies (i) and (ii)
of Definition 2.3.9.

2.3.12 Exercise. (?) (i) Show Lemma 2.3.11.
(ii) Is X càdlàg ?

2.3.13 Theorem. Let τ be a bounded stopping time (|τ | ≤M , M ≥ 0, a.s.) and let X
be a martingale. Then the stopped process X τ is again a martingale. Furthermore, for
every bounded stopping time σ the relation E[Xτ |Fσ] = Xσ holds on {σ ≤ τ}.



2.3 Filtrations, stopping times and martingales 22

2.3.14 Remark. The claim of Theorem 2.3.13 still holds if τ and σ are general stopping
times (also not finite) and X is a uniformly integrable martingale. This is in particular
true if Xt is dominated in L1 by a random variable Y (cf. Jacod & Shiryaev (2000),
Chapter 1, Theorem 1.39).

Let X be a martingale and T > 0. The following estimate is the well-known Doob’s
inequality :

E
[

supt∈[0,T ] |Xt| p
]
≤ p

p−1 E
[
|XT | p

]
, p > 1 . (2.10)

2.3.15 Definition. Let X be a martingale over [0, T ], T > 0. We say that it is square
integrable if XT (and hence each Xt, t ≤ T ) is square integrable.

2.3.16 Exercise. If X is a square integrable martingale with time set [0, T ], is it uni-
formly integrable? What is the definition of a square integrable martingale if the time
set is R+?

We conclude this section with the important procedure of localization.

2.3.17 Definition. Let C be a class of stochastic process. We denote by Cloc the
localized class of C defined as such: A process X belongs to Cloc, if there exists a
sequence of stopping times (τn)n∈N such that τn ↑ +∞, n → +∞, such that X τn ∈ C .
The sequence (τn)n∈N is called a localizing sequence for X (relative to C ).

2.3.18 Exercise. (?) (i) Give the definition of a local martingale.
(ii) Show that any local martingale which is bounded in L 1 is a true martingale. Is a

local martingale integrable, in general?
(iii) Define the class of locally bounded processes.
(iv) Let F satisfies the usual conditions. Show that any continuous adapted process is

locally bounded.

Solution. (i) An F-adapted stochastic Process X is called a local martingale if there
exists a sequence of stopping times (τn)n∈N such that τn ↑ +∞, n → +∞, such that
X τn is a martingale.

(ii) We assume that X is a local martingale such that |Xt| ≤ Y ∈ L1(P). Then, if
(τn)n≥1 is a sequence of stopping times localizing X, applying Lebesgue’s theorem on
dominated convergence we get, for every 0 ≤ s ≤ t,

Xs = lim
n→+∞

Xτn
s = lim

n→+∞
E[Xτn

t |Fs] = E[ lim
n→+∞

Xτn
t |Fs] = E[Xt|Fs],

meaning that X is a true martingale.
(iii) A locally bounded adapted process X is a stochastic process such that there exists

a sequence of stopping times (τn)n∈N such that τn ↑ +∞, n → +∞, such that X τn is
bounded. If X has continuous paths and starts at zero, then τn := inf{t > 0 : |Xt| > n}
is a stopping time by Theorem 2.3.8. By continuity of X, (τn)n≥1 is an increasing
sequence of stopping times and, again by continuity, Xτn is a bounded process.

We notice that if X is a càdlàg process starting at zero, then the left-limit process is
locally bounded. Indeed, τn := inf{t ≥ 0 : |Xt| > n} is a localizing sequence: If t < τn,
then |Xt| ≤ n. It could happen, that X has a jump in τn, therefore this is not a localizing
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sequence for X but, because Xt− is the left limit of Xt, this never happens. Notice that
if X is a continuous process, then the sequence (τn)n∈N is always a localizing sequence.
If X0 6= 0, then (τn)n∈N is a localizing sequence for 1(0,+∞)X−, in case X is càdlàg, or
for 1(0,+∞)X if X is moreover continuous.

2.4 Markov processes

Let as usual (E,E ) denote (R,B(R)
)
. We consider a stochastic process X on a (com-

plete) probability space (Ω,F ,P) with values in (E,E ) and denote by F̃X the filtration
generated by X (cf. Example 2.3.2). The filtration F̃X models the flow of information
generated by X. Therefore, F̃X

t := σ(Xs, s ≤ t) is the history of the process X up
to time t ≥ 0. Let s ≤ t and assume that at this point (“the present”) we want to
make a prediction about the future of X (that is about Xt), knowing all the history
of X up to time s ≥ 0 (that is F̃X

s ). If we compare σ(Xs) with F̃X
s , then clearly the

second σ-algebra is, in general, bigger than the first one. Therefore, one could think that
making a prediction on Xt at time s ≤ t using F̃X

s , would issue a “better” result than
using only σ(Xs). A Markov process is a process for which in the procedure described
above, the use of F̃X

s is not more effective than the one of σ(Xs). That is, for Markov
processes the conditional distribution of Xt given F̃X

s , is a measurable function of Xs:

P[Xt ∈ A|F̃X
s ] = gA(Xs), A ∈ E

where gA is a measurable function. In the remaining of this section we try to formalize
the intuitive definition of a Markov process given above. Then we shall show the exist-
ence of Markov processes as a nice application of Kolmogorov Extension Theorem (cf.
Theorem 2.1.7). For this section we refer to Revuz & Yor (1999), Chapter III.

2.4.1 Definition. A kernel N on (E,E ) is a mapping on E × E into R+ ∪ {+∞} such
that

(i) A 7→ N(x,A) is a positive measure on E , for every x ∈ E.
(ii) x 7→ N(x,A) is E -measurable, for every A ∈ E .
If furthermore the kernel N is such that N(x,E) = 1, for every x ∈ E, then N is

called a transition probability.

Let N and M be kernels on (E,E ), f ≥ 0 a E -measurable function and A ∈ E . We
define the mappings x 7→ Nf(x) and (x,A) 7→MN(x,A) by

Nf(x) :=

∫
E
N(x, d y)f(y), MN(x,A) :=

∫
E
M(x, d y)N(y,A). (2.11)

2.4.2 Exercise. (i) Show that the mapping x 7→ Nf(x) in (2.11) is measurable and
nonnegative. (Hint: Use Theorem 1.2.2 for f bounded...)

(ii) Show that MN in (2.11) is a kernel on (E,E ).

2.4.3 Definition. (i) A transition function on (E,E ) is a family P = (Ps,t)0≤s<t∈R+ of
transition probabilities on (E,E ) such that for every A ∈ E , s < t < v and x ∈ E the
relation

Ps,v(x,A) =

∫
E
Ps,t(x,d y)Pt,v(y,A) (CK)
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holds.
(ii) A transition function P is called homogeneous if Ps,t depends on s an t only

through their difference t− s. In this case we write Pt := P0,t and (CK) reads

Ps+t(x,A) =

∫
E
Ps(x,d y)Pt(y,A), (CKH)

for every s and t. In other words, P = (Pt)t≥0 forms a semi-group.

The equations (CK) and (CKH) are called respectively, Chapman–Kolmogormov and
homogeneous Chapman–Kolmogormov equation.

2.4.4 Definition. Let (Ω,F ,P) be a probability space and let F be a filtration of events
of F . Let a probability measure µ be given and X be an adapted stochastic process with
value space (E,E ) and initial distribution µ (that is, X0 ∼ µ). Let P be a transition
function on (E,E ).

(i) We say that X is a Markov process (relative to F) with transition function P if,
for every f ≥ 0, 0 ≤ s ≤ t, we have

E[f(Xt)|Fs] = Ps,tf(Xs), a.s. (2.12)

(ii) If furthermore the transition function is homogeneous, then X is a homogeneous
Markov process (relative to F) and (2.12) reads

E[f(Xt)|Fs] = Pt−sf(Xs), a.s. (2.13)

Notice that, if (2.12) and (2.13) hold for measurable nonnegative bounded functions,
then they also hold for every measurable bounded function.

As we mentioned in the introduction of this section, for a Markov process with re-
spect to a filtration F, we expect that the conditional distribution of Xt given Fs is a
measurable function of Xs. We say that an F-adapted process X possesses the Markov
property if

P[Xt ∈ B|Fs] = P[Xt ∈ B|Xs], 0 ≤ s ≤ t , B ∈ E . (MP)

2.4.5 Theorem. Let X be a Markov process relative to F with transition probability P .
Then X possesses the Markov property (MP).

Proof. Let f ≥ 0 be a measurable function, then Ps,tf(Xs) is σ(Xs)-measurable. Taking
now B ∈ E and f = 1B, yields Ps,tf(x) = Ps,t(x,B). Therefore, using the property of
the conditional expectation, X being a Markov process,

P[Xt ∈ B|Xs] = E[E[1B(Xt)|Fs]|Xs] = E[Ps,t(Xs, B)|Xs] = Ps,t(Xs, B) = P[Xt ∈ B|Fs]

and the proof is complete.

For Markov processes it is easy to determine the family of the finite dimensional
distributions, as the following theorem and the subsequent corollary show.
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2.4.6 Theorem. Let X be a Markov process relative to F with initial distribution and
associated transition function µ and P respectively. Then, for every f1, . . . , fn measur-
able, bounded and nonnegative functions, and every 0 = t0 < t1 < . . . < tn, n ∈ N, we
have

E

[
n∏
i=0

fi(Xti)

]
=

∫
E
µ(dx0)f0(x0)

∫
E
P0,t1(x0,dx1)f1(x1) · · ·

∫
E
Ptn−1,tn(xn−1, dxn)fn(xn).

(2.14)

Proof. The proof is given by induction. For n = 1, using the properties of the conditional
expectation and then the definition of a Markov process, we get

E[f0(X0)f1(Xt1)] = E[f0(X0)E[f1(Xt1)|F0]] = E[f0(X0)P0,t1f1(X0)]

=

∫
E
µ(dx0)f0(x0)P0,t1f1(x0)

=

∫
E
µ(dx0)f0(x0)

∫
E
P0,t1(x0,dx1)f1(x1).

We now assume that the claim of the theorem holds for m = n − 1 and show it for
m = n. Using the properties of the conditional expectation and then the definition of a
Markov process, issues

E

[
n∏
i=0

fi(Xti)

]
=E

[
n−1∏
i=0

fi(Xti)E[fn(Xtn)|Ftn−1 ]

]

=E

[
n−1∏
i=0

fi(Xti)Ptn−1,tnfn(Xtn−1)

]

=E

[
n−2∏
i=0

fi(Xti)f̃n−1(Xtn−1)

]
,

where f̃n−1(x) := fn−1(x)Ptn−1,tnfn(x). Clearly (why?) f̃n−1 is bounded and nonnegat-
ive. Therefore we can apply the induction assumption to conclude the proof.

2.4.7 Corollary. Under the assumptions of Theorem 2.4.6,

P[X0 ∈ B0, . . . , Xtn ∈ Bn] =

∫
B0

µ(dx0)

∫
B1

P0,t1(x0, dx1)

∫
B2

· · ·
∫
Bn

Ptn−1,tn(xn−1, dxn)

for every B0, . . . , Bn ∈ E and every 0 = t0 < t1 < . . . < tn, n ∈ N.

Proof. Let fi(x) = 1Bi(x), i = 0, . . . , n and apply Theorem 2.4.6.

Theorem 2.4.6 shows that the transition probability P and the initial distribution µ
of a Markov process X, completely determine the finite dimensional distribution of X,
which are given in Corollary 2.4.7.
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Existence of Markov processes. As a next step we want to show the existence of
Markov processes. More precisely, let P be a transition function and µ a distribution
both on (E,E ), we prove the existence of a probability space (Ω,F ,P), of a stochastic
process X on it such X is a Markov process with transition function P and initial
distribution µ with respect to F̃X (see Example 2.3.2). We apply Kolmogorov Extension
Theorem (Theorem 2.1.7 and Theorem 2.1.8).

As a first step we associate with a transition function P and an initial distribution µ
on (E,E ) a system of finite dimensional distribution. This will be the system of finite
dimensional distribution associated with a Markov process X. According to Corollary
2.4.7, the unique possible definition is the following: For every B0, . . . , Bn ∈ E and every
0 = t0 < t1 < . . . < tn, n ∈ N, we define

P µ
t1,...,tn

(B0 ×B1 × · · · ×Bn) :=∫
B0

µ(dx0)

∫
B1

P0,t1(x0, dx1)

∫
B2

. . .

∫
Bn

Ptn−1,tn(xn−1,dxn).
(2.15)

The system Pµ := {P µ
t1,...,tn

, 0 = t0 < t1 < . . . < tn, n ∈ N} is the system of finite
dimensional distributions generated by P . The aim is to associate with Pµ a Markov
process.

2.4.8 Remark. (i) At this point P and µ are only a transition function and a probability
distribution on (E,E ): They are not yet related with a Markov process.

(ii) For every 0 = t0 < t1 < . . . < tn, P µ
t1,...,tn

is a probability measure on (En+1,E n+1):
For Bi = E, i = 0, . . . , n, then P µ

t1,...,tn
(En+1) = 1.

(iii) Let f be a measurable bounded function. Then∫
En+1

Pµt1,...,tn(dx0, . . . ,dxn)f(x0, . . . , xn) =∫
En+1

µ(dx0)P0,t1(x0, dx1) · · ·Ptn−1,tn(xn−1,dxn)f(x0, . . . , xn).

(2.16)

To see (2.16), consider fi = 1Bi , Bi ∈ E , i = 0, . . . , n and f(x0, . . . , xn) =
∏n
i=0 fi(xi).

In this special case (2.16) clearly follows from (2.15). The system of bounded measurable
functions C := {1B0×···×Bn , Bi ∈ E , i = 0, . . . , n, n ∈ N} is a multiplicative class which
generates E n+1. Using dominated convergence, it is easy to show that the family of
functions K := {f measurable and bounded : (2.16) holds} is a monotone vector space.
Furthermore K contains C . An application of Theorem 1.2.2 yields (2.16) for every f
measurable and bounded function. In particular, if f(x0, . . . , xn) =

∏n
i=0 fi(xi), with

fi ≥ 0 measurable and bounded, i = 0, . . . , n, then (2.16) becomes∫
En+1

Pµt1,...,tn(dx0, . . . ,dxn)

n∏
i=0

fi(xi) =∫
E
µ(dx0)f0(x0)

∫
E
P0,t1(x0, dx1)f1(x1)

∫
E
. . .

∫
E
Ptn−1,tn(xn−1,dxn)fn(xn).

(2.17)

2.4.9 Lemma. The system P µ of finite dimensional distributions in (2.15), is consist-
ent, that is, it satisfies condition (2.7).
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Proof. We know that P µ
t1,...,tn

is a probability measure on (E n+1,E n+1), for every 0 =
t0 < t1 < . . . < tn, n ∈ N. We now show that it fulfils (2.7). Let B0, . . . , Bn ∈ E and
0 = t0 < t1 < . . . < tn, n ∈ N. Then

P µ
t1,...,tk−1,tk,tk+1,...,tn

(B0 ×B1 × · · · ×Bk−1 × E ×Bk+1 × · · · ×Bn) =∫
B0

µ(dx0)

∫
B1

P0,t1(x0,dx1) · · ·
∫
Bk−1

Ptk−2,tk−1
(xk−2,dxk−1)

×
∫
E
Ptk−1,tk(xk−1, dxk)

∫
Bk+1

Ptk,tk+1
(xk, dxk+1) · · ·

×
∫
Bn

Ptn−1,tn(xn−1,dxn).

(2.18)

Applying Fubini’s theorem, we deduce the relation∫
E
Ptk−1,tk(xk−1,dxk)

∫
Bk+1

Ptk,tk+1
(xk,dxk+1) =∫

Bk+1

∫
E
Ptk−1,tk(xk−1,dxk)Ptk,tk+1

(xk, dxk+1) =∫
Bk+1

Ptk−1,tk+1
(xk−1, dxk+1)

where in the last equality we used Chapman–Kolmogorov equation (CK). Inserting the
latter computation in (2.18), yields

P µ
t1,...,tk−1,tk,tk+1,...,tn

(B0 ×B1 × · · · ×Bk−1 × E ×Bk+1 × · · · ×Bn) =

P µ
t1,...,tk−1,tk+1,...,tn

(B0 ×B1 × · · · ×Bk−1 ×Bk+1 × · · · ×Bn)

which is the consistency condition (2.7) and the proof is concluded.

Now we are ready to formulate the theorem about the existence of Markov processes.
We recall that we use the notation (E,E ) := (R,B(R)).

2.4.10 Theorem. Let P be a transition function and µ a distribution on (E,E ).
(i) Then there exists a probability space (Ω,F ,P) and a stochastic process X on

(Ω,F ,P) with state space (E,E ) such that X0 is µ-distributed and P µ given by (2.15)
is the system of the finite dimensional distribution associated with X.

(ii) Furthermore the process X is a Markov process with respect to the filtration F̃X .

Proof. The measurable space (E,E ) (with the Euclidean norm) is clearly a Polish space.
Therefore it fulfils the assumptions of Theorem 2.1.8. Because of Lemma 2.4.9 Pµ is a
consistent system of finite dimensional distributions. Hence (i) follows from Theorem
2.1.8. (Exercise: give the explicit definition of (Ω,F ,P) and of X). We have to prove
claim (ii). Because of (i), P µ = {P µ

t1,...,tn
, 0 = t0 < t1 < . . . < tn} is the system

of finite dimensional distribution associated with X. Therefore, for every measurable
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nonnegative bounded fi, i = 0, . . . , n, we have

E

[
n∏
i=0

fi(Xti)

]
=

∫
En+1

Pµt1,...,tn(dx0, . . . ,dxn)
n∏
i=0

fi(xi)

=

∫
E
µ(dx0)f0(x0)

∫
E
P0,t1(x0, dx1)f1(x1)

∫
E
· · ·
∫
E
Ptn−1,tn(xn−1, dxn)fn(xn)

as we have seen in Remark 2.4.8 (iii). To conclude, we apply Lemma 2.4.11 below.

2.4.11 Lemma. Let X be a stochastic process on a probability space (Ω,F ,P) with
value space (E,E ). If (2.14) holds for every measurable nonnegative bounded function
fi, i = 0, . . . , n, 0 = t0 < . . . < tn, n ∈ N, then X is a Markov process with respect to
the filtration F̃X .

Proof. Let 0 = t0 < . . . < tn ≤ s < t and let g ≥ 0 be a measurable nonnegative
bounded function. Let fi, i = 0, . . . , n, be measurable nonnegative bounded functions
and fn+1 := g. Then, because of (2.14),

E

[
n∏
i=0

fi(Xti)g(Xt)

]
= E

[
n+1∏
i=0

fi(Xti)

]
=∫

E
µ(dx0)f0(x0)

∫
E
· · ·
∫
E
Ptn−1,tn(xn−1, dxn)fn(xn)

∫
E
Ptn,t(xn,dy)g(y).

(2.19)

On the other side

E

[
n∏
i=0

fi(Xti)Ps,tg(Xs)

]
=∫

E
µ(dx0)f0(x0)

∫
E
· · ·
∫
E
Ptn−1,tn(xn−1, dxn)fn(xn)

∫
E
Ptn,s(xn,dz)

∫
E
Ps,t(z,dy)g(y).

(2.20)

Applying Fubini theorem and Chapman–Kolmogorov equation yields∫
E
Ptn,s(xn,dz)

∫
E
Ps,t(z,dy)g(y) =

∫
E
Ptn,t(xn,dy)g(y),

that is (2.19) and (2.20) are equal for every bounded fi, i = 0, . . . , n. In particular,

E[1B0×...×Bn(X0, . . . , Xtn)g(Xt)] = E[1B0×...×Bn(X0, . . . , Xtn)Ps,tg(Xs)],

for every Bi ∈ E , i = 0, . . . , n, 0 = t0 < t1 < · · · < tn ≤ s. These functions clearly build
a multiplicative class C which generates F̃X

s . From Theorem 1.2.2 it follows

E[Wg(Xt)] = E[WPs,tg(Xs)]

for every bounded F̃X
s -measurable random variable W . But this means

E
[
g(Xt)|F̃X

s

]
= Ps,tg(Xs), 0 ≤ s < t,

for every measurable bounded nonnegative g and the proof is complete.



2.4 Markov processes 29

Markov property and Markov processes. We complete this section about Markov
processes discussing the converse of Theorem 2.4.5. More precisely, we have seen that
any Markov process X possesses the Markov property (MP). We now consider a pro-
cess X satisfying the Markov property (MP) and ask if it is a Markov process with
respect to some filtration F. The problem is here that one need to construct a transition
probability starting from (MP). We shall see that this problem is strictly connected
with the existence of a regular version of the conditional probabilities P[Xt ∈ B|Xs] and
P[Xt ∈ B|Fs].

We first give a result concerning the existence of a regular version of the conditional
distribution P[Xt ∈ B|Xs] which involves transition probabilities. We refer to Kallenberg
(1997), Theorem 5.3.

2.4.12 Theorem. Let X be a stochastic process with state space (E,E ) satisfying the
Markov property with respect to the filtration F. Then there exists a transition probability
P on E × E , such that

Ps,t(Xs, B) = P[Xt ∈ B|Xs], B ∈ E , 0 ≤ s ≤ t

PXs-a.s.

Because of Markov property we have

P[Xt ∈ B|Fs] = P[Xt ∈ B|Xs] = Ps,t(Xs, B),

where P is the transition probability of Theorem 2.4.12. Notice that the previous equal-
ities hold a.s. At this point it is important to use the structure of (E,E ): Because this
is a Borel space, we can choose a common exceptional set for every B ∈ E .

Let g be a measurable nonnegative bounded function and 0 ≤ s < t. From Theorem
2.1.9, we have

E[g(Xt)|Fs] =

∫
E
P[Xs ∈ d y|Fs]g(y) =

∫
E
P[Xs ∈ d y|Xs]g(y)

=

∫
E
Ps,t(Xs,d y)g(y) = Ps,tg(Xs) ,

(2.21)

where in the second equality we used (MP). The previous relation shows that, if P
is a transition function, then X is a Markov process in the sense of Definition 2.4.4.
Therefore we have to show that P satisfies (CK). Let 0 ≤ r ≤ s ≤ t and B ∈ E . Then

Pr,t(Xr, B) = P[Xt ∈ B|Xr]
(MP)
= P[Xt ∈ B|Fr] = E[P[Xt ∈ B|Fs]|Fr]

= E[P[Xt ∈ B|Xs]|Fr] = E[Ps,t(Xs, B)|Fr].

where in the last but one equality we used (2.21). Setting g(Xs) := Ps,t(Xs, B) in the
previous formula, we deduce from (2.21)

Pr,t(Xr, B) = E[g(Xt)|Fr] = Pr,tg(Xr) =

∫
E
Pr,s(Xr,dy)Ps,t(y,B)

which is (CK). We summarize the previous discussion in the following theorem:

2.4.13 Theorem. Let X be an F-adapted process with values in (E,E ) fulfilling (MP).
Then X is a Markov process with respect to the filtration F with transition probability P
given by Ps,t(x,B) := P[Xt ∈ B|Xs = x], for every B ∈ E , 0 ≤ s ≤ t.
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2.5 Processes with independent increments

Let (Ω,F ,P) be a complete probability space and let X = (Xt)t≥0 be a stochastic
process. The random variable Xt −Xs, 0 ≤ s ≤ t, is called an increment of the process
X over [s, t]. We furthermore consider a filtration F = (Ft)t≥0 to which the process X
is adapted.

2.5.1 Definition. (i) We say that X has independent increments if the random vector
(Xt0 , Xt1 −Xt0 , . . . Xtn −Xtn−1) is independent, for every 0 ≤ t0 < t1 < . . . < tn, n ∈ N.

(ii) If there exists n ∈ N such that the random vector (Xt0 , Xt1 − Xt0 , . . . Xtk −
Xtk−1

) is distributed as the random vector (Xt0 , Xt1−t0 , . . . , Xtk−tk−1
), for every 0 ≤

t0 < t1 < . . . < tk, k = 0, . . . , n then we say that X has homogeneous n-dimensional
increments. We say that X has homogeneous increments if it has homogeneous n-
dimensional increments for every n ∈ N.

(iii) If X is F-adapted and Xt −Xs is independent of Fs, 0 ≤ s ≤ t, then we say that
X has independent increments with respect to F (or F-independent increments).

2.5.2 Exercise. Let X be a process with independent and 1-dimensional homogeneous
increments. Then it has homogeneous increments.

The next theorem establishes the relation between property (i) and (ii) in Definition
2.5.1. The proof of the theorem is left as an exercise. It can be found in Bauer (1996),
§45, or in WTHM, Satz 11.3.

2.5.3 Theorem. (i) If X has independent increments with respect to F, then it has
independent increments.

(ii) If F = F̃X , then a process with independent increments has also independent F-
independent increments.

Processes with independent increments are a special case of processes possessing the
Markov property (MP). To see it, we need the following lemma.

2.5.4 Lemma. Let (Ω,F ,P) be a probability space and (E,E ) a measurable space. Let
G and H independent sub-σ-algebras of F . Let ϕ : (E × Ω,E ⊗H ) −→ (R,B(R)) a
bounded measurable function. If X : (Ω,G ) −→ (E,E ) is a (G ,E )-measurable random
variable, then

E[ϕ(X, ·)|G ] =
(
E[ϕ(x, ·)]

)∣∣∣
x=X

Proof. First we deduce the result for the simple case of ϕ with separated variables,
that is ϕ(x, ω) = ϕ1(x)ϕ2(ω) with ϕ1, ϕ2 bounded, ϕ1 (E ,B(R))-measurable and
φ2 (H ,B(R))-measurable. In this special case, the claim follows using first the G -
measurability of X and then the G -independence of ϕ2:

E[ϕ1(X)ϕ2(·)|G ] = ϕ1(X)E[ϕ2(·)|G ] = ϕ1(X)E[ϕ2(·)]

=
(
ϕ1(x)E[ϕ2(·)]

)∣∣∣
x=X

=
(
E[ϕ(x, ·)]

)∣∣∣
x=X

.

As a next step, we consider the general case. Let K be the class of the functions ϕ as
in the assumptions of the lemma, such that the claim holds. Then K clearly contains
the multiplicative class C of functions with separated variables, which generates E ⊗H .
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Because of the monotone convergence theorem, we can conclude that K is a monotone
vector space and from Theorem 1.2.2, we deduce that K contains all bounded functions
ϕ(·, ·) and the proof is complete.

We remark that the notation (E[ϕ(x, ·)])
∣∣∣
x=X

is a computation rule and it says: First

fix the G -measurable part of the random variable ϕ(X, ·) and then integrate the inde-
pendent part. After this integration, replace the fixed x with X, to get a G -measurable
quantity.

2.5.5 Theorem. Let X be a process with F-independent increments. (i) Then it pos-
sesses the Markov property (MP). In particular, every process with independent incre-
ments possesses the Markov property with respect to F̃X .

(ii) X is a Markov process with respect to F. In particular, every process with inde-
pendent increments is a Markov process with respect to F̃X .

Proof. We start proving (i). We define H := σ(Xt+s − Xt) and G := Ft. Because
of the F-independence of the increments of X, these two σ-algebras are independent.
Because of the adaptedness of X, is Xt Ft-measurable. If we show that E[ψ(Xt+s)|Ft]
is σ(Xt)-measurable, then follows

E[ψ(Xt+s)|Ft] = E[ψ(Xt+s)|Xt]

because of the properties of the conditional expectation. Let

ϕ(x, ω) := ψ(Xt+s(ω)−Xt(ω) + x).

Then ϕ is E ⊗H -measurable and hence an application of Lemma 2.5.4 yields

E[ψ(Xt+s)|Ft]E[ϕ(Xt, ·)|Ft] =
(
E[ϕ(x, ·)]

)∣∣∣
x=Xt

which is clearly σ(Xt)-measurable. If now F = F̃X , the claim follows from Theorem
2.5.3. Now (ii) follows from (i) and Theorem 2.4.13.

It is easy to check if a process with independent increments is a martingale.

2.5.6 Lemma. Let X be an adapted process with F-independent increments such that
X0 = 0. Then X is a martingale (not necessarily càdlàg) if and only if the random
variable Xt is integrable and E[Xt] = 0, for every t ≥ 0.

Proof. If X is a process with F-independent increments such that X0 = 0 and a (not
necessarily càdlàg) martingale then E[Xt] = E[X0] = 0, t ≥ 0. Conversely, if X is a
process with F-independent increments such that X0 = 0 and that E[Xt] = 0, t ≥ 0, we
get

E[Xt|Fs] = E[Xt −Xs|Fs] +Xs = E[Xt −Xs] +Xs = Xs,

proving that X is an F-martingale.

The F-independence of the increments and the homogeneity of the one-dimensional
increments are stable under convergence in probability, as the following lemma shows.
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2.5.7 Lemma. Let X be an F-adapted process. If (Xn)n≥1 is a sequence of processes
with F-independent increments (resp., homogeneous one-dimensional increments) such
that Xn

t converges to Xt in probability, for every t ≥ 0, as n → +∞, then X has
F-independent increments (resp., homogeneous one-dimensional increments).

Proof. We assume that the sequence (Xn)n≥1 has F-independent increments (resp., ho-
mogeneous one-dimensional increments). For every 0 ≤ s ≤ t, we have

E[eiu(Xn
t −Xn

s )|Fs] = E[eiu(Xn
t −Xn

s )] (resp., E[eiu(Xn
t −Xn

s )] = E[eiuX
n
t−s ]), u ∈ R.

Letting n converge to +∞ in the previous formula and applying the theorem of Lebesgue
on dominated convergence we get

E[eiu(Xt−Xs)|Fs] = E[eiu(Xt−Xs)], ( resp., E[eiu(Xt−Xs)] = E[eiuXt−s ]), u ∈ R,

which concludes the proof.

We only consider processesX with F-independent increments which are also stochastic-
ally continuous (cf. Definition 2.2.1 (iv)). In this special case we speak of additive pro-
cesses.

2.5.8 Definition. Let X be an adapted and stochastically continuous process such that
X0 = 0.

(i) We say that X is an additive process in law if it has independent increments.
(ii) If X is a càdlàg additive process in law, we simply call it an additive process.
(iii) We say that X is an additive process in law relative to the filtration F if it has

F-independent increments. If X is also càdlàg, we simply call it an additive process
relative to F.

The notation (X,F) emphasizes the filtration relative to which X is an additive process
(resp., an additive process in law) and sometimes we simply say that (X,F) is an additive
process (resp., an additive process in law) to mean that X is an additive process (resp.,
an additive process in law) relative to the filtration F.

2.5.9 Proposition. Let X be an adapted stochastically continuous process such that
X0 = 0.

(i) If (X,F) is an additive process in law, then X is an additive process in law.
(ii) The following statements are equivalent:

(a) X is an additive process in law.
(b) (X, F̃X) is an additive process in law.
(c) (X, F̃X+ ) is an additive process in law.
(d) (X,FX) is an additive process in law.
(e) (X,FX+ ) is an additive process in law.

Proof. The statement (i) follows from Theorem 2.5.3 (i). Now we come to the equi-
valences in (iii). The statements (a) and (b) are equivalent from Theorem 2.5.3 (ii).
Furthermore (b) and (d) are equivalent because F̃X

t and FX
t differs on null sets: In

general if Y is a random variable which is independent of a sub-σ-algebra G , then Y
is also independent of G := G ∨ N (P). Indeed, if A ∈ G , then A = A′ ∪ N , with
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A′ ∈ G and N ∈ N (P). This implies that the disjoint union A∆A′ = N ∩ (A′)c is
also a null set (recall: B∆C := B \ C ∪ C \ B). Hence A \ A′ ⊆ A∆A is a null set.
Because the probability space is complete, then all these null sets are measurable and
hence P[A] = P[A \ A′] + P[A ∩ A′] = P[A′]. More generally, for every F ∈ G , we have
P[A ∩ F ] = P[A′ ∩ F ]. If we now take F := {Y ∈ B}, B ∈ E , we get

P[A,F ] = P[A′, F ] = P[A′]P[F ] = P[A]P[F ]

for every A ∈ G , meaning that G and Y are independent. This explains (b)=⇒(d).
The converse implication follows because FX

t ⊇ F̃X
t , for every t ≥ 0. In the same

way one proofs the equivalence between (c) and (e). We have to show that (b) and
(c) are equivalent. It is clear that from (c) follows (b). We now show the converse
implication. Let A ∈ F̃X

t+ and ξ := 1A. Because of the definition of F̃X
t+, ξ is F̃X

t+ 1
n

-

measurable, for every n. Furthermore, since the F̃X -independence of the increments of
X, ξ is independent of ηn := Xt+ 1

n
+s−Xt+ 1

n
. The joint characteristic function of ξ and

ηn, say ϕηn,ξ(u, v), equals ϕηn(u)ϕξ(v), where ϕηn and ϕξ are the characteristic functions
of ηn and ξ respectively. Let now η := Xt+s −Xt. Because of the stochastic continuity
of X, ηn converges to η in law, as n→ +∞. Hence

ϕη(u)ϕξ(v) = lim
n→∞

ϕηn(u)ϕξ(v) = lim
n→∞

ϕηn,ξ(u, v) = ϕη,ξ(u, v)

which implies the independence of η of F̃X
t+ 1

n

, for every n ∈ N. The prove is now complete

because F̃X
t+ 1

n

⊇ F̃X
t+, for every n ∈ N.

We remark that Wang (1981) proved that for an additive process X, the filtration FX
coincides with FX+ .

2.5.10 Lemma. Let X be a stochastic process with one-dimensional homogeneous in-
crements such that X0 = 0 a.s. and that Xt −→ 0 in probability as t ↓ 0. Then X is
stochastically continuous. In particular, any càdlàg process with one-dimensional homo-
geneous increments which starts at zero is stochastically continuous.

2.5.11 Exercise. Prove Lemma 2.5.10.

For the next result we refer to He, Wang & Yan (1992), Theorem 2.68.

2.5.12 Theorem. If F is a filtration satisfying the usual conditions and (X,F) is an
additive process in law, then there exists a modification, again denoted by X, such that
(X,F) is an additive process.

We shall always assume that the filtration F with respect to which we consider an
additive process X satisfies the usual conditions and therefore we always consider the
càdlàg version of X. In other words, the notation (X,F) has to be understood as: X
is an additive process with respect to the filtration F satisfying the usual conditions.
Notice that in Proposition 2.5.9 (ii), if we remove (a), the chain of equivalences holds
also if we replace F̃X with a general filtration F̃. This means that, if F̃ does not satisfies
the usual conditions, then we can consider F+, that is the smallest filtration satisfying
the usual conditions and containing F̃. Then (X,F+) is an additive process and we can
pass to one of its càdlàg versions, which is again an additive process with respect to F+.
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Strong Markov property. Let (X,F) be an additive process. For any u ∈ R, 0 ≤ s < t,
we introduce

ϕs,t(u) := E
[

exp(iu(Xt −Xs))
]

(2.22)

that is, ϕs,t is the characteristic function of the random variable Xt − Xs. The F-
independence of the increments implies

ϕs,t(u) = ϕs,r(u)ϕr,t(u), 0 ≤ s < v < t. (2.23)

Because of the stochastic continuity of X, Xr converges to Xv in probability, as r → v.
This implies that Xr converges to Xv in law, as u → v (this means that PXr weakly
converges to PXv , u → v). We can therefore conclude that ϕ·,·(·) is continuous is all
its arguments (a characteristic function is always continuous in u). Furthermore, the
following lemma holds:

2.5.13 Lemma. Let (X,F) be an additive process. Then, for all u ∈ R and all 0 ≤ s < t,
we have ϕs,t(u) 6= 0.

Proof. Let t0 := inf{t ≥ s : ϕs,t(u) = 0}. Since ϕs,s(u) = 1, then t0 > s. Let us assume
t0 < +∞. By definition of t0, it holds ϕs,t0(u) = 0. Let us take t ∈ (s, t0). From (2.23),
we have 0 = ϕs,t0(u) = ϕs,t(u)ϕt,t0(u). But ϕs,t(u) 6= 0, hence it must be ϕt,t0(u) = 0.
Letting t ↑ t0, by continuity of the characteristic function of an additive process, we
deduce function ϕt0,t0(u) = limt↑t0 ϕt,t0(u) = 0. But this is a contradiction, because
ϕt0,t0(u) = 1 by definition. Therefore t0 = +∞ and the proof is concluded.

For an additive process relative to F we can introduce

Zs,t(u) :=
1

ϕs,t(u)
exp(iu(Xt −Xs)) . (2.24)

2.5.14 Proposition. The process (Zs,t(u))t≥s defined by (2.24) is a martingale with
respect to (Ft)t≥s, for every u ∈ R.

Proof. Let 0 ≤ s ≤ r < t. Because of the F-independence of the increments and (2.23),
we get

E[Zs,t(u)|Fr] =
1

ϕs,t(u)
exp(iu(Xr −Xs))E[exp(iu(Xt −Xr))|Fr]

=
ϕr,t(u)

ϕs,t(u)
exp(iu(Xr −Xs)) = Zs,r(u) .

We shall write Zt := Z0,t(u) and ϕt := ϕ0,t. The next theorem shows that for an
additive process the strong Markov property holds:

2.5.15 Theorem (Strong Markov property). Let (X,F) be an additive process and τ
be a finite valued stopping time. Let Y = (Yt)t≥0 be defined by Yt := Xτ+t −Xτ , t ≥ 0.
Then

(i) Yt is independent of Fτ ;
(ii) (Yt)t≥0 has (Ft+τ )t≥0 independent increments;
(iii) Y is independent of Fτ .
If furthermore X has homogeneous 1-dimensional increments, then Yt has the same

law of Xt.
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Proof. Let us first assume that τ is a bounded stopping time. Then because Z =
(Zt)t≥0 defined is an F-martingale, from Theorem 2.3.13 we deduce E[Zτ+t|Fτ ] = Zτ ,
a.s. Therefore

E[exp(iu(Xτ+t −Xτ ))|Fτ ] =
ϕτ+t(u)

ϕτ (u)
= ϕτ,τ+t(u), (2.25)

meaning that Xτ+t − Xτ is independent of Fτ . If furthermore, X has homogeneous
one dimensional increments, then ϕτ,τ+t = ϕt. We now assume that τ is an a.s. finite
stopping time. Then τn := τ ∧ n is a bounded stopping time and for every A ∈ Fτ , we
have A ∩ {τ ≤ n} ∈ Fτn(= Fτ ∩Fn). Because of the first step we get

E[exp(iv1A∩{τ≤n} + iu(Xτn+t −Xτn))] = E[exp(iv1A∩{τ≤n})]E[exp(iu(Xτn+t −Xτn))]

and dominated convergence yields

E[exp(iv1A + iu(Xτ+t −Xτ ))] = E[exp(iv1A)]E[exp(iu(Xτ+t −Xτ ))]

meaning that Yt is independent of Fτ . We now see (ii). Clearly for 0 ≤ s < t, setting
u := t−s and σ := τ+s, for every a.s. finite stopping time τ , we have Yt−Ys = Xσ+u−Xσ

which is independent of Fσ = Fτ+s. We have to prove that Y is (Fτ+t)t≥0-adapted. To
see it, because X is adapted and càdlàg, then it is a progressively measurable process
and hence Xζ is an Fζ-measurable random variable, for every a.s. finite valued stopping
time ζ (cf. Definition 2.3.3, Theorem 2.3.5 and the discussion after Definition 2.3.6).
Therefore, Xτ and Xτ+t are respectively Fτ and Fτ+t-measurable. We can now conclude
that Yt is Fτ+tmeasurable because Fτ ⊆ Fτ+t. To see (iii) it is enough to show that
for every t1 < . . . < tn, the vector (Yt1 , . . . , Ytn) is independent of Fτ . But this is clear
because Yt1 is independent of Fτ by (i) and we can proceed by induction over n.

If we now assume that X has homogeneous 1-dimensional increments, for a bounded
stopping time τ , (2.25) yields

E[exp(iu(Xτ+t −Xτ ))] = ϕt(u),

meaning that Yt is distributed as Xt in this special case. To pass to the general case
in which τ is an a.s. finite valued stopping time, we use dominated convergence as in
the proof of (i) starting from this latter relation. The proof of the theorem is now
complete.

We remark that, because of Theorem 2.5.15, for every a.s. finite valued stopping time
τ and for an additive process (X,F), from Lemma 2.5.4, we have, for every B ∈ E ,

P[Xτ+t ∈ B|Fτ ] = P[Xτ+t −Xτ +Xτ ∈ B|Fτ ] =
(
P[Xτ+t −Xτ + x ∈ B]

)∣∣∣
x=Xτ

and the right-hand side is σ(Xτ )-measurable. Therefore, we have

P[Xτ+t ∈ B|Fτ ] = P[Xτ+t ∈ B|Xτ ]

and this justifies why we called Theorem 2.5.15 strong Markov property.
A relevant subclass of additive processes, which we are going to introduce, are Lévy

processes.
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2.5.16 Definition. (i) We say that an additive process (resp., an additive process in law)
is a Lévy process (resp., a Lévy process in law) if it has also homogeneous increments.

(ii) We say that an additive process (resp., an additive process in law) relative to F
is a Lévy process (resp., a Lévy process in law) relative to F if it has also homogeneous
increments.

Let X be a Lévy process (resp., a Lévy process in law) relative to F. The notation
(X,F) emphasizes the filtration with respect to which X is a Lévy process (resp., a Lévy
process in law) and sometimes we simply say that (X,F) is a Lévy process (resp., a Lévy
process in law) to mean that X is a Lévy process (resp., a Lévy process in law) relative
to F. As for additive processes, we shall always consider the càdlàg version of a Lévy
process.

A Lévy process with bounded jumps has a finite moment of every order, as the fol-
lowing proposition states.

2.5.17 Theorem. Let (X,F) be a Lévy process with bounded jumps, i.e., such that
|∆Xt| ≤ c, for every t ≥ 0, a.s. Then for every t ≥ 0, the random variable Xm

t belongs
to L1(P), for every m ∈ N, thus,

E[|Xt|m] < +∞, t ≥ 0, m ∈ N.

Proof. We define the sequence of stopping times (τn)n≥0 by setting τ0 := 0 and then for
n ≥ 1, τn+1 := inf{t > τn : |Xt −Xτn | > c}. Then it is clear that (τn)n≥0 is increasing
by definition and that |∆Xτn | ≤ c. We have τ0 < τ1 < . . . < τn < . . .. Without loss
of generality, we can assume that each τn is an a.s. finite-valued stopping time. Indeed,
if τn = +∞, by definition, this means that the process X will never exceed the level c
after τn−1. In other words, this means that the process is bounded because there exist
a level which will be never crossed (notice that if τn = +∞, then τm = +∞ for every
m ≥ n) and in this case the theorem clearly holds. We notice that

sup
0<s<+∞

|Xs∧τn | ≤ 2cn. (2.26)

This can be easily proven by induction. Indeed, if n = 0, there is nothing to prove.
Assuming (2.26) for n = k we have, by the induction hypothesis,

sup
0<s<+∞

|Xs∧τk+1
| = sup

0<s<τk

|Xs∧τk | ∨ sup
τk<s<+∞

|Xs∧τk | ≤ 2kc ∨ sup
τk<s<+∞

|Xs∧τk |.

But then, again by the induction hypothesis we deduce

sup
τk<s<+∞

|Xs∧τk | ≤ sup
0<u<τk+1−τk

|Xτk+u −Xτk |+ |Xτk |

≤ sup
0<u<τk+1−τk

|Xτk+u −Xτk |+ 2kc

and we have to estimate the first summand on the right-hand side in the previous
inequality. We have two possibilities: τk+1(ω) = +∞ or τk+1(ω) < +∞. The first
possibility can be excluded because in this case sup0<u<τk+1−τk |Xτk+u − Xτk | ≤ c and
the prove is finished. In the second case we have

sup
0<u<τk+1−τk

|Xτk+u −Xτk | = |Xτk+1
−Xτk | ≤ |∆Xτk |+ |Xτk+1− −Xτk |



2.5 Processes with independent increments 37

and the first term on the right-hand side of this inequality satisfies |∆Xτk | ≤ c by the
assumptions on X, while |Xτk+1−−Xτk | ≤ c because, by definition of τk, |Xt−Xτk | ≤ c
on [τk, τk+1) (notice that Xτk+1− denotes the process X− evaluated at τk+1). Therefore,
we deduce supτk<s<+∞ |Xs∧τk | ≤ 2(k + 1)c and the claim holds. We now apply the
strong Markov property for Lèvy processes, that is Theorem 2.5.15. The time gap
between τn and τn+1 is the smallest time t > 0 such that |Xτn+t − Xτn | > c, that is
τn+1 − τn = inf{t > 0 : |Xτn+t −Xτn | > c}. By Theorem 2.5.15, τn+1 − τn is therefore
independent of Fτn and is distributed as τ1− τ0 = τ1. Hence (τk+1− τk)k=0,...,n is an iid
sequence of random variables. Because of P[τ1 > 0] = 1, E[e−τ1 ] =: a ∈ (0, 1) holds. Let
us compute

E[e−τn ] = E[e−(τn−τn−1)e−τn−1 ] = E[e−(τn−τn−1)]E[e−τn−1 ] = aE[e−τn−1 ] = . . . = an .

We now are ready to show that the process has finite moments of every order. Let m ∈ N
be arbitrarily fixed.

E[|Xt|m] =

∞∑
n=0

E
[
|Xt|m1{2nc<|Xt|≤2(n+1)c}

]
≤
∞∑
n=0

(2(n+ 1)c)mP [|Xt| > 2nc] . (2.27)

Because of (2.26), we have that if |Xt(ω)| > 2nc, then τn(ω) < t. Therefore {|Xt| >
2nc} ⊆ {τn < t}. Using Chebychev inequality we can estimate

P[τn < t] = P
[
e−τn > e−t

]
≤ 1

e−t
E[e−τn ] = etan.

With this latter estimation, we can estimate in (2.27)

E[|Xt|m] ≤
∞∑
n=0

(2(n+ 1)c)mP [|Xt| > 2nc]

≤
∞∑
n=0

(2(n+ 1)c)mP [τn < t]

≤ etcm2m
∞∑
n=0

(n+ 1)man < +∞

because (n+2)m

(n+1)m a −→ a < 1 as n→∞ and the proof is complete.



CHAPTER 3

Brownian Motion and stochastic integration

In this chapter we are going to introduce Brownian motion and stochastic integration
with respect to it. We shall see that the pats of the Brownian motion are not of finite
variation. Therefore, it is not possible to give a pathwise definition of the integral with
respect to the Brownian motion.

We use the notation (E,E ) := (R,B(R)).

3.1 Definition, existence and continuity

Let (Ω,F ,P) be a complete probability space and let F be a filtration of events of F
which satisfies the usual conditions.

3.1.1 Definition of the Brownian motion

3.1.1 Definition. Let B = (Bt)t≥0 be a process taking values in (E,E ).
(i) B is a Brownian motion if

(a) B0 = 0 a.s.
(b) For 0 ≤ s ≤, the distribution of the increment Bt−Bs is a central normal with

variance t− s, in symbols Bt −Bs ∼ N (0, t− s).
(c) B has independent increments.

(ii) B is a Brownian motion with respect to F if (c) is replaced by: “B has F-
independent increments”. In this case we say that (B,F) is a Brownian motion.

(iii) We say that B is a continuous Brownian motion (resp., a continuous Brownian
motion with respect to F) if the paths are continuous.

Clearly, if (B,F) is a Brownian motion, then B is a Brownian motion. Furthermore,
if B is a Brownian motion, then (B, F̃B) and (B,FB) are also Brownian motions. If
furthermore B is continuous, then (B, F̃B+) and hence (B,FB+) are Brownian motions (cf.
Proposition 2.5.9).

We recall that a one-dimensional stochastic process is called a Gaussian process if
for every n ≥ 0 and 0 = t0 < t1 < . . . < tn the vector (Xt0 , . . . , Xtn) is normal
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distributed with mean bt0,...,tn and variance Σt0,...,tn . In other words, a Gaussian process
X is such that the family µ := {µt1,...,tn , 0 = t0 < t1 < . . . < tn, n ≥ 1} of the
finite-dimensional distributions of X is such that µt0,...,tn is an n-dimensional normal
distribution on (En,E n).

From WTHM it is known that a Brownian motion is a special case of Gaussian process,
as the next theorem shows. For the proof we refer to WTHM, Theorem 10.6 and Theorem
10.7. The proof is left as an exercise.

3.1.2 Theorem. Let 0 ≤ t1 < . . . < tn and n ∈ N.
(i) If B is a Brownian motion, then the distribution of the random vector (Bt1 , . . . , Btn)

is a n-dimensional central normal with covariance matrix (Σt1,...,tn)ij = ti ∧ tj, i, j =
1, . . . , n.

(ii) Let X be a Gaussian process such that X0 = 0 a.s. and the distribution of
(Xt1 , . . . , Xtn) is an n-dimensional central normal with covariance matrix (Σt1,...,tn)ij =
ti ∧ tj, i, j = 1, . . . , n, n ∈ N. Then X is a Brownian motion.

Let µ := {µt1,...,tn , 0 ≥< t1 < . . . < tn, n ≥ 1} be the family of the finite dimensional
distributions of a Brownian motion. From Theorem 3.1.2, we know that

µt1,...,tn = N
(
0, (ti ∧ tj)i,j=1,...,n

)
.

Let now Y = (Y1, . . . , Yn) be a n-dimensional Gaussian vector with mean b and variance
Σ. Because of the uniqueness of the characteristic function, this means that (cf. WTHM,
Appendix to Chapter 9), that the characteristic function of Y is

E
[

exp(i〈ξ, Y 〉)
]

= exp
(

i〈ξ, b〉 − 1
2 ξ
>Σξ

)
, ξ ∈ Rn,

where 〈·, ·〉 denotes the scalar product in Rn. If Σ is non-degenerate, we can associate
to this distribution a density which is

fY (x) :=
1√

(2π)n det(Σ)
exp

(
− 1

2 (x− b)>Σ−1(x− b)
)
, x ∈ Rn. (3.1)

Coming back to the Brownian motion B, we want to apply these general results to
determine the density of µt1,...,tn , for every 0 = t0 < t1 < . . . < tn, n ≥ 1, of the system
of finite dimensional distributions of B.

For 0 = t0 < t1 < . . . < tn, we define

Γ := (Bt1 , . . . , Btn)>; ∆ := (Bt1−Bt0 , . . . , Btn−Btn−1)>; D := diag(t1−t0, . . . , tn−tn−1).
(3.2)

Then, because of the property of B, ∆ ∼ N (0, D). Let now M be a lower diagonal
matrix in Rn×n with entries equal to one on and below the diagonal. Then we clearly
have Γ = M∆. We now set for simplicity Σ := Σt1,...,tn . Applying the properties of the
characteristic function we deduce

exp
(
− 1

2 〈ξ,Σξ〉
)

= E
[

exp(i〈ξ,Γ〉)
]

= E
[

exp(i〈ξ,M∆〉)
]

= E
[

exp(i〈M>ξ,∆〉)
]

= exp
(
− 1

2 〈M
>ξ,DM>ξ〉

)
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meaning that Σ = MDM> hence Σ−1 = (M>)−1D−1M−1. Since M−1 is a two-band
matrix with entries equal to 1 on the first diagonal and equal to −1 on the first sub-
diagonal, we see

〈x,Σ−1x〉 = 〈M−1x,D−1M−1x〉 =

n∑
j=1

(xj − xj−1)2

tj − tj−1

and det(Σ) =
∏n
j=1(tj − tj−1). From (3.1), setting x0 := 0, we can now conclude that

µt1,...,tn has a density given by

pt1,...,tn(x1, . . . , xn) :=
1√

(2π)n
∏n
j=1(tj − tj−1)

exp

−1

2

n∑
j=1

(xj − xj−1)2

tj − tj−1

 . (3.3)

3.1.2 Existence of a Brownian motion

Let now µ = {µt1,...,tn , 0 ≤ t1 < . . . < tn, n ∈ N} be the system of finite dimensional
distributions given by

µt1,...,tn(B1 × · · · ×Bn) :=

∫
B1×···×Bn

pt1,...,tn(x1, . . . , xn)dxn · · · dx1, t1 > 0 , (3.4)

µ0,t2,...,tn(B1 × · · · ×Bn) := δ0(B1)

∫
B2×···×Bn

pt2,...,tn(x2, . . . , xn)dxn · · · dx2, (3.5)

with pt1,...,tn as in (3.3). It is clear that this family satisfies the consistency conditions
(2.1) and (2.2). Therefore, Theorem 2.1.7 ensures the existence of a probability space
(Ω,F ,P) and of a stochastic process X having µ as associated system of finite dimen-
sional distributions. So µt1,...,tn is an n-variate normal distribution, because pt1,...,tn are
Gaussian densities. We can then claim that X is a Gaussian process. Furthermore,
from the special form of these densities, we get that the covariance matrix of µt1,...,tn is
(ti ∧ tj)i,j=1,...n. Since Theorem 3.1.2 (ii), we can conclude that the process X must be
a Brownian motion.

3.1.3 Existence of a continuous modification

With the help of Kolmogorov Extension Theorem we were able to prove the existence
of a Brownian motion. However, the process constructed in this way need not be con-
tinuous. The question then arise if it is possible at least to find a continuous version
of a Brownian motion. The positive answer to this question can be given thanks to
Kolmogorov Continuity Theorem (cf. Theorem 2.2.7). The proof is left as an exercise.

3.1.3 Theorem. Let B be a Brownian motion. Then there exists a version X of B
which is a Brownian motion and such that the paths of X are α-Hölder continuous,
for every α ∈ (0, 1

2), that is for every T > 0 and α ∈ (0, 1
2), there exists a function

CT,α : Ω −→ (0,+∞) such that

|Xt(ω)−Xs(ω)| ≤ CT,α|t− s|α , t, s ∈ [0, T ], ∀ω ∈ Ω .
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Proof. Let B be a Brownian motion. Then Z := Bt − Bs/
√
t− s is a standard normal

random variable. Hence, for n > 2, there exists cn > 0 such that 0 < E[|Z|n] = cn < +∞,
which yields

E[|Bt −Bs|n] = cn(t− s)
n
2 = cn(t− s)1+n−2

2 .

Because of Theorem 2.2.7, there exist a version X of B which is α-Hölder continuous
with β = n, α = n−2

2 and c = cn. Clearly, X satisfies all the properties of the definition
of the Brownian motion. In particular (Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1) has the same
distribution (hence characteristic function) of (Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1) (cf. Ex-
ercise 2.2.5). Notice that to ensure that X is again a stochastic process (see Definition
2.1.1), we need the completeness of the probability space.

3.1.4 Exercise. (?) Prove Theorem 3.1.3.

In the sequel we shall always consider the continuous version of the Brownian motion:
For us a Brownian motion will always be a continuous Brownian motion. Notice that,
if we work with a Brownian motion with respect to a filtration, we need to require that
the filtration is complete to get that the continuous version is still an adapted process
and hence a Brownian motion with respect to the same filtration.

3.1.4 (Ir)Regularity of paths

In Theorem 3.1.3 we have seen that we can always choose a version of the Brownian
motion which is Hölder-continuous. It is then natural to investigate if it is possible to
get better regularity of the paths of the Brownian motion. For example, it is of interest
to understand if the paths of a Brownian motion are differentiable. However, this is not
the case because the paths of a Brownian motion are not of finite variation.

3.1.5 Definition. Let f : R −→ R be a function and [a, b] ⊆ R be an interval.
(i) The quantity

V a
b f := sup

π∈Π

n∑
i=1

|f(xi)− f(xi−1)|,

where π is a partition of [a, b] with a = x0 < . . . < xn = b and Π is the set of all partition
of [a, b] as a such, is called total variation of f over [a, b].

(ii) A function f is of finite (total) variation if V a
b f < +∞, for every a, b ∈ R.

Let now B be a Brownian motion. In WTHM, Theorem 12.1 in Chapter 10, we gave
a proof of the following result:

3.1.6 Theorem. Let π := {t0, . . . , tm} be a partition of [s, t] with s = t0 < . . . < tm = t,
set |π| := max0≤k≤m−1 |tk+1 − tk| and

Sπ :=

m−1∑
k=0

(Btk+1
−Btk)2 .

Then Sπ converges to t− s in L2(P), as |π| → 0+.

3.1.7 Exercise. Prove Theorem 3.1.6.
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As a consequence of Theorem 3.1.6 we deduce

3.1.8 Corollary. The paths of a Brownian motion B are almost surely of infinite total
variation.

Proof. Let Sπ be defined as in Theorem 3.1.6. Then

0 ≤ Sπ ≤ max
0≤k≤m−1

|Btk+1
−Btk |

m−1∑
k=0

|Btk+1
−Btk |. (3.6)

Since the paths of B are continuous, max0≤k≤m−1 |Btk+1
−Btk | goes to zero as |π| → 0+.

If we now assume that the paths of B are of finite variation over a set A ∈ F with
P[A] > 0, we deduce from (3.6), Sπ(ω) −→ 0, as |π| → 0+ for ω ∈ A and this is a
contradiction to Theorem 3.1.6.

3.2 P. Lèvy Characterization of Brownian Motion

Theorem 3.1.2 is a characterization of the Brownian motion among Gaussian processes.
The aim of this section is to characterize the Brownian motion as a continuous martin-
gale. This characterization is due to Paul Lèvy (1948). We refer to Schilling & Partsch
(2014), §9.4.

We start with two lemmas: The first one characterize the Brownian motion in term
of characteristic functions and the second one is a statement about the existence of the
fourth moment for some continuous local martingales.

3.1 Lemma. Let X be an F-adapted (continuous) stochastic process starting at zero.
Then it is a (continuous) Brownian motion with respect to F if and only if

E
[

exp
(
iu(Xt −Xs)

)∣∣∣Fs

]
= exp

(
−1

2
u2(t− s)

)
, 0 ≤ s ≤ t (3.7)

for every u ∈ R.

Proof. It is clear that, if (X,F) is a Brownian motion, then (3.7) holds. We now assume
that if (3.7) holds, then X is a Brownian motion. Let 0 = t0 < . . . < tn; X−1 := 0.
Let Γ, ∆, D and M be defined as in (3.2) and the following lines starting from X. It is
enough to show that

E
[

exp(i〈ξ,∆〉)
]

= exp
(
− 1

2 ξ
>Dξ

)
, ξ ∈ Rn, (3.8)

which means ∆ ∼ N (0, D). Indeed, because Γ = M∆, we have

E
[

exp(i〈ξ,Γ〉)
]

= exp
(
− 1

2 ξ
>MDM>ξ

)
, ξ ∈ Rn,

and (MDM>)ij = ti ∧ tj , i, j = 1, . . . , n, which from Theorem 3.1.2 (ii), implies that X
is a Brownian motion. To show (3.8) we use induction. For n = 1 there is nothing to
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prove. Now we assume (3.8) for 1 ≤ m ≤ n− 1 and prove it for n.

E
[

exp(i〈ξ,∆〉)
]

= E

[
exp

(
i
n∑
j=0

ξj(Xtj −Xtj−1)

)]

= E

[
exp

(
i
n−1∑
j=1

ξj(Xtj −Xtj−1)

)
E
[

exp
(
i ξn(Xtn −Xtn−1)

)∣∣∣Ftn−1

]]

= exp

(
−1

2
ξ2
n(tn − tn−1)

)
exp

−1

2

n−1∑
j=1

ξ2
j (tj − tj−1)


= exp

−1

2

n∑
j=1

ξ2
j (tj − tj−1)


where in the last but one equality we used the induction hypothesis and (3.7).

The proof of the next result can be found in Schilling & Partsch (2014), Lemma 9.10.
We omit the proof and only stress that the proof given in Schilling & Partsch (2014)
does not use stochastic integration.

3.2 Lemma. Let X be an F-continuous martingale such that (X2
t − t)t≥0 is an F-

martingale. Then E[X4
t ] < +∞ and, for every 0 ≤ s ≤ t, the estimate

E[(Xt −Xs)
4|Fs] ≤ 4(t− s)2

holds.

We are now ready to state and prove the P. Lèvy-characterization of the Brownian
motion.

3.2.1 Theorem (P. Lèvy 1948). Let X be a continuous F-martingale starting at zero.
Then (X,F) is a Brownian motion if and only if (X2

t − t)t≥0 is an F-martingale.

Proof. Clearly, if (X,F) is a continuous Brownian motion then X and (X2
t − t)t≥0 are

continuous F-martingale. Conversely, let X be a continuous F-martingale such that
(X2

t − t)t≥0 is an F-martingale as well. We are going to show that (X,F) is a Brownian
motion. Because of Lemma 3.7, it suffices to verify (3.7). We set Y := Xt − Xs and
h := t − s. We consider the Taylor expansion of exp(i ξY ) in ξ around zero up to the
second order with a remainder of the third order and get

exp(iξY ) = 1 + i ξY − ξ2

2
Y 2 − i

ξ3

6
(ηY )3

where η = η(ω) is a complex valued random variable such that |η| ∈ (0, 1). The Taylor
expansion of exp(−1

2ξh) up to the fifth order with a remainder of the sixth order is

exp(−1

2
ξh) = 1− ξ2

2
h+

ξ4

8
h2 − ξ6

48
(θh)3
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where θ ∈ (0, 1). Subtracting these two expressions we deduce:

exp(i ξY )− exp(−1

2
ξh) = iξY +

ξ2

2
h− ξ2

2
Y 2 − ξ4

8
h2 − i

ξ3

6
(ηY )3 +

ξ6

48
(θh)3.

Using that E[Y |Fs] = 0 because X is a martingale starting at zero, that E[Y 2|Fs] = h
because (X2

t −t)t≥0 is an F-martingale and taking conditional expectation in the previous
expression, yields

E
[

exp(i ξY )− exp(−1

2
ξh)|Fs

]
= −ξ

4

8
h2 +

ξ6

48
(θh)3 − iE[(ηY )3|Fs].

We now estimate E[(ηY )3|Fs]. By Hölder inequality with p = 4/3 and q = 4 we get

|E[(ηY )3|Fs]| ≤ E[|Y |3|Fs] ≤ E[|Y |4|Fs]
4/3 ≤ 44/3h3/2,

where in the last estimate we used Lemma 3.2. This means that for every s < t with
h = t− s < 1 there exists a constant cξ such that for every ξ in a neighbourhood of zero
the estimate∣∣∣E[ exp

(
iξ(Xt −Xs)

)
− exp

(
− 1

2
ξ2(t− s)

)
|Fs

]∣∣∣ ≤ cξ(t− s)3/2.

We now have to remove the restriction t − s < 1. Let s < t be fixed and set tj :=
s+ (t− s)j/n, j = 0, . . . , n, n ≥ 1. Then

exp
(
i ξ(Xt−Xs)

)
=

n∏
j=1

exp
(
i ξ(Xtj−Xtj−1)

)
, exp

(
−1

2ξ
2(t−s)

)
=

n∏
j=1

exp
(
−1

2ξ(tj−tj−1)
)
.

Using the estimate

|E[aA− bB]| ≤ E[|a− b||A||Fs] + |E[b(A−B)|Fs]|

with a = E[exp
(
i ξ(Xt−Xtn−1)

)
|Ftn−1 ], b = exp

(
− 1

2ξ(t− tn−1)
)
, A = exp

(
i ξ(Xtn−1 −

Xs)
)
, B = exp

(
− 1

2ξ(tn−1 − s)
)
, we get∣∣∣E[ exp

(
iξ(Xt −Xs)

)
− exp

(
− 1

2ξ
2(t− s)

)∣∣∣Fs

]∣∣∣ ≤
E
[∣∣E[ exp

(
i ξ(Xt −Xtn−1)

)
− exp

(
− 1

2ξ(t− tn−1)
)∣∣∣Ftn−1

]∣∣∣∣∣Fs

]
+

+
∣∣∣E[ exp

(
i ξ(Xtn−1 −Xs)

)
− exp

(
− 1

2ξ(tn−1 − s)
)]∣∣∣

≤ . . . ≤
n∑
j=1

E
[∣∣E[ exp

(
i ξ(Xtj −Xtj−1)

)
− exp

(
− 1

2ξ(tj − tj−1)
)∣∣∣Ftj−1

]∣∣∣∣∣Fs

]
.

Let now n ≥ 1 be big enough, so that tj − tj−1 < 1. Because of the first step we get∣∣∣E[ exp
(
i ξ(Xt −Xs)

)
− exp

(
− 1

2ξ
2(t− s)

)∣∣∣Fs

]∣∣∣ ≤ cξ n∑
j=1

(tj − tj−1)3/2

= cξ

n∑
j=1

(
(t− s)
n

)3/2

= cξ

(
(t− s)√

n

)3/2

which converges to zero as n→ +∞ and the proof is complete.



3.3 Stochastic integration 45

3.3 Stochastic integration

We start this section recalling Riemann–Stiltjes integration.
Let f be a function over an interval [a, b], and π := {x0, . . . , xn}, a = x0 < . . . < xn = b

a partition of [a, b], setting |π| := max1≤i≤n |xi − xi−1|, we define

Fπ :=

n∑
i=1

f(ξi)(xi − xi−1), ξi ∈ [xi−1, xi].

If f is continuous then there exists A ∈ R such that A = lim|π|→0 Fπ. Furthermore A
does not depend on the choice of π and ξi. In this case A is called Riemann integral of
f over [a, b] and A =:

∫ b
a f(x)dx.

Riemann–Stiltjes integration is a generalization of Riemann integration: For an in-
creasing function g we set

F gπ :=

n∑
i=1

f(ξi)(g(xi)− g(xi−1)), ξi ∈ [xi−1, xi].

If f is a continuous function then there exists A ∈ R such that A = lim|π|→0 F
g
π . Fur-

thermore A does not depend on the choice of π and ξi. In this case A is called Riemann–
Stiltjes integral of f over [a, b] and A =:

∫ b
a f(x)g(dx).

A first generalization of Riemann–Stiltjes integral can be given if the function g is of
finite variation. Indeed, in this case there exists two increasing functions h and k such
that g = k − h and V a

x g = k(x) + h(x). If f is a continuous function we then set∫ b

a
f(x)g(dx) =

∫ b

a
f(x)k(dx)−

∫ b

a
f(x)h(dx).

The question is if it is possible to generalize the definition of the Riemann–Stiltjes
integral to integrators which are not of finite variation. The negative answer to this
question is given by the following theorem:

3.3.1 Theorem. Let g : [0, T ] −→ R be a finite-valued function of infinite total variation
over [0, T ]. Then there exist a continuous bounded function f over [0, T ] such that the
Riemann–Stiltjes integral of f with respect to g on [0, T ] does not exists.

To prove Theorem 3.3.1, we need Banach–Steinhaus theorem:

3.3.2 Theorem. Let X be a Banach space and Y a normed linear space. Let (Tα)α∈I
be a family of continuous linear (and hence bounded) operators on X in Y . If for every
x ∈ X, (Tαx)α∈I is bounded (that is supα ‖Tαx‖Y < +∞), then (‖Tα‖)α∈I is bounded
(that is supα ‖Tα‖ < +∞), where ‖Tα‖ := supx∈X ‖Tαx‖Y /‖x‖X .

Proof of Theorem 3.3.1. Set (X, ‖ · ‖X) = (C([0, T ]), ‖ · ‖∞), where C([0, T ]) is the space
of continuous functions over [0, T ] and ‖ ·‖∞ the uniform norm, and (Y, ‖ ·‖Y ) = (R, | · |).
Let πn be a sequence of partitions of [0, T ] such that |πn| −→ 0 as n→ +∞. For every
partition π of [0, T ] with N points,

Tπf :=

N−1∑
i=0

f(ti)(g(ti+1)− g(ti)), f ∈ X
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is a linear bounded (hence continuous) operator on (X, ‖ · ‖X) into (Y, ‖ · ‖Y ). For
every partition π, we can chose a function f∗π ∈ X such that ‖f∗π‖X = 1 and that
f∗π(ti) = sign(g(ti+1)− g(ti)). Then

Tπf
∗ :=

N−1∑
i=0

|g(ti+1)− g(ti)|, f ∈ X.

The function g is of unbounded total variation over [0, T ] and therefore (‖Tπn‖)n∈N is
unbounded. Because of Banach–Steinhaus’s Theorem (cf. Theorem 3.3.2) there exists a
function f ∈ X such that (|Tπnf |)n∈N is unbounded. Therefore limn→+∞ Fπn cannot be

finite, meaning that
∫ T

0 f(t)g(dt) does not exist.

We now apply these results to the Brownian motion. Let (Ω,F ,P) be a complete
probability space and F a filtration of events of F satisfying the usual conditions. Let
T > 0 be a fixed time horizon. All stochastic processes in this section are meant to be
(R,B(R))-valued. Let B be an F-Brownian motion. The aim of this section is to give
sense to the random variable ∫ T

0
HtdBt.

A n̈ıve (and WRONG!!!) way to define the integral with respect to the Brownian motion
is to set (∫ T

0
HtdBt

)
(ω) :=

∫ T

0
Ht(ω)dBt(ω) , ω ∈ Ω

for every measurable and bounded continuous process H. However, we know that t →
Bt(ω) is a function of unbounded variation over [0, T ] (cf. §3.1.4) and, from Theorem
3.3.1, a pathwise definition of the integral with respect to the Brownian motion is not
possible.

Our unique hope to give sense to
∫ T

0 HtdBt is to put into play the probability measure
P: If a pathwise definition of the integral is not possible, it may be possible to give a
definition of the integral in mean. This intuition is due to Itô, who developed the theory
of stochastic integration which we are going to present.

3.3.1 Stochastic integral of elementary processes

As a firs step we define the stochastic integral for elementary processes. We want to
define the integral in such a way that it fulfils some elementary properties, that is it
should be linear and boundeb continuous functions have to be integrable.

3.3.3 Definition. Let H be a stochastic process with time parameter set [a, b] ⊆ R+

and values in R. We say that it is an elementary process if there exist a partition
a = t0 < t1 < . . . < tn = b of [a, b] and a sequence e0, . . . , en−1 of random variable such
that ei is Fti-measurable and the decomposition

Ht =

n−1∑
i=0

ei1[ti,ti+1)(t) , t ∈ [a, b] (3.9)

holds.
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3.3.4 Exercise. (i) Show that αH + βK is an elementary process, whenever H and K
are elementary and α, β ∈ R.

(ii) Show that if H is an elementary process with representation (3.9), then Ht is
square integrable if and only if e0, . . . , en−1 are square integrable.

(iii) Let H be an elementary process. Is it adapted? Is it progressively measurable?

3.3.5 Definition. Let H be an elementary process with representation (3.9). The
elementary stochastic integral (over [a, b]) of H with respect to B is defined by∫ b

a
HsdBs :=

n−1∑
i=0

ei(Bti+1 −Bti) . (3.10)

We also use the notation Iba(H) :=
∫ b
a HsdBs.

Let us see some first properties of the elementary stochastic integral.

3.3.6 Proposition. Let H and K be two elementary processes.
(i) The elementary stochastic integral is linear.
(ii) The random variable Iba(H) is Fb-measurable.
(iii) The mapping t 7→ It0(H) is continuous and adapted.
(iv) For a ≤ c ≤ b the identity Iba(H) = Ica(H) + Ibc (H) holds.

Proof. (i) is clear, (ii) follows because of the definition of Iba(H) and B is adapted. The
adaptedness in (iii) follows from (ii) whenever a = 0 and b = t. For the continuity we
observe that, for t ∈ [tk, tk+1)

It0(H) =
k−1∑
i=0

ei(Bti+1 −Bti) + ek(Bt −Btk)

and t 7→ Bt is continuous. Property (iv) is left as an exercise.

We now come to some important properties of the elementary stochastic integral.

3.3.7 Theorem. Let H be an elementary process such that E[H2
t ] < +∞, for every

t ≥ 0. Then the following relation holds
(i) Iba(H) ∈ L2(P);
(ii) E

[
Iba(H)|Fa

]
= 0;

(iii) E
[(
Iba(H)

)2]
=
∫ b
a E
[
H2
t

]
d t.

Proof. We show (i). Because of Proposition 3.3.6, the stochastic integral Iba(H) is Fb-
measurable. Furthermore,

∑n−1
i=0 ei(Bti+1 − Bti) is square integrable because ei and

(Bti+1 − Bti) are square integrable and independent, for i = 1, . . . , n. To see (iii) we
notice that

(
Iba(H)

)2
=

(
n−1∑
i=0

ei(Bti+1 −Bti)

)2

=
n−1∑
i=0

e2
i (Bti+1 −Bti)2+

2

n−1∑
i,j=0
i>j

eiej(Btj+1 −Btj )(Bti+1 −Bti) .
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For i > j, eiej(Btj+1 − Btj ) is independent of (Bti+1 − Bti). Furthermore, because
ei(Bti+1 − Bti) and ej(Btj+1 − Btj ) are square integrable, the right-hand side in the
previous equality is integrable. We can then compute the expectation, which yields

E
[(
Iba(H)

)2]
=

n−1∑
i=0

E
[
e2
i (Bti+1 −Bti)2

]
+ 2

n−1∑
i,j=0
i>j

E
[
eiej(Btj+1 −Btj )(Bti+1 −Bti)

]

=
n−1∑
i=0

E
[
e2
i

]
E
[
(Bti+1 −Bti)2

]
+ 2

n−1∑
i,j=0
i>j

E
[
eiej(Btj+1 −Btj )

]
E
[
(Bti+1 −Bti)

]

=
n−1∑
i=0

E
[
e2
i

]
(ti+1 − ti) =

∫ b

a
E[H2

t ]d t ,

where in the second line of the previous computation we used the independence of
eiej(Btj+1 −Btj ) and (Bti+1 −Bti) for i > 0 and the properties of the Brownian motion
to set the second sum equal to zero. We now show (ii). We have Fa ⊆ Fti , i = 1, . . . , n.
Hence

E
[
Iba(H)

∣∣Fa

]
=

n−1∑
i=0

E
[
ei(Bti+1 −Bti)

∣∣∣Fa

]
=

n−1∑
i=0

E
[
E
[
ei(Bti+1 −Bti)|Fti

]∣∣∣Fa

]
=

n−1∑
i=0

E
[
eiE
[
(Bti+1 −Bti)

]∣∣∣Fa

]
= 0 .

3.3.8 Exercise. Let H be a square integrable elementary process. Show that the defin-
ition of the stochastic integral is well posed.

3.3.2 Extension of the stochastic integral

In §3.3.1 we defined the stochastic integral for elementary integrand and called it element-
ary stochastic integral. Aim of this section is to extend the definition of the stochastic
integral to more general integrands. The idea is to define a certain space of stochastic
processes containing the square integrable elementary processes and in which they are
dense. By approximation, we will then extend the definition of the stochastic integral
to random variables which are limit of sequences elementary iterated integrals. The
main point here is to prove that if we approximate consider the limit of a sequence of
square integrable elementary integrands, then the corresponding sequence of elementary
integrals converge. At this point property (iii) in Theorem 3.3.7 will play a crucial role.

We anticipate that we are going to develop an L2-theory: that is, the limit of square in-
tegrable elementary process will be taken in some L2-sense. Therefore, the processes for
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which we shall define the stochastic integral will be progressively measurable processes,
the probability space (Ω,F ,P) being complete and the elementary processes being pro-
gressively measurable (they are adapted and right-continuous, cf. Theorem 2.3.5).

Let [0, T ], T > 0, be the time horizon and S 2
T the space of elementary processes H

over [0, T ] which are square integrable, that is such that E[H2
t ] < +∞, t ∈ [0, T ]. Notice

that, because of the definition of elementary process, if H is square integrable, we have∫ T

0
E
[
H2
t

]
d t < +∞

which, applying the theorem of Fubini becomes

E
[∫ T

0
H2
t d t

]
< +∞

meaning that H ∈ L2([0, T ] × Ω,B([0, T ]) ⊗F , λ ⊗ P, ‖ · ‖λ⊗P) =: L2
T (λ ⊗ P), where λ

denotes the Lebesgue measure on [0, T ] and ‖ · ‖λ⊗P the norm of the scalar product, that
is

‖X‖2λ⊗P := E
[∫ T

0
X2
t d t

]
,

for every measurable process X. More precisely ‖ · ‖λ⊗P is only a semi norm, to get
a norm we have to identify, as we do, measurable processes which are equivalent with
respect to the following equivalence relation

X ∼ Y ⇐⇒ P
[∫ T

0
|Xt − Yt|d t = 0

]
= 1.

We want now to define a space of progressively measurable processes containing S 2
T .

Because we want to develop an L2-theory, the unique possible choice is

L2(B) :=
{
H progressively measurable, H ∈ L2

T (λ⊗ P)
}
. (3.11)

The space L2(B) in (3.11) will be the space of the integrands for the Brownian motion,
that is, it is the space of processes for which we are going to define the stochastic integral
with respect to B. Obviously the inclusions

S 2
T ⊆ L2(B) ⊆ L2

T (λ⊗ P)

hold. We define
I(H) := IT0 (H) , H ∈ S 2

T . (3.12)

If we now regard the elementary stochastic integral I(H) as a mapping on S 2
T , Theorem

3.3.7 (i) shows that it maps S 2
T to L2(P), that is I : S 2

T −→ L2(P). Since Theorem
3.3.7 (iii), I is an isometry on S 2

T ⊆ L2
T (λ⊗ P) into L2(P):

‖I(H)‖L2(P) = ‖H‖λ⊗P. (3.13)

The isometry relation (3.13) is known as Itô isometry.
Let now Hn be a sequence in L2(B) converging in L2

T (λ ⊗ P) to H. Because our
probability space is complete and F satisfies the usual condition, this yields that also H
is a progressive process. In other words, L2(B) is a closed subspace of L2

T (λ ⊗ P) and
hence it is an Hilbert space with respect to the scalar product of L2

T (λ⊗ P).
We now summarize the situation:
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1. We defined the mapping I, that is the stochastic integral for elements in S 2
T .

2. We introduced the subspace L2(B) of L2
T (λ⊗ P) of progressively measurable pro-

cesses and we have the inclusion S 2
T ⊆ L2(B).

3. I : S 2
T −→ L2(P) is an isometry of L2

T (λ⊗ P) into L2(P).

Our aim is to extend the isometry I to processes in L2(B). For this we shall proceed
as follow: We first show that we can approximate elements in L2(B) with elements in
S 2
T in L2

T (λ ⊗ P). We then show that, if H ∈ L2(B) and Hn ∈ S 2
T is the sequence

of elementary integrands approximating H, the sequence of the elementary stochastic
integrals associated to Hn converges in L2(P) to a random variable X. Then we show
that the limit X does not depend on the approximating sequence but only on H. Hence
we are allowed to call X the stochastic integral of H with respect to B.

We start with the following proposition, about the possibility of approximating ele-
ments of L2(B) with elementary integrands.

3.3.9 Proposition. Let H ∈ L2(B). Then there exists a sequence (Hn)n∈N ⊆ S 2
T such

that ‖H −Hn‖λ⊗P −→ 0, as n→ +∞.

To prove Proposition 3.3.9 we need two lemmas, the first of which is a purely determ-
inistic one. The prove is elementary but a little bit technical. Therefore we postpone it
to the end of this section.

3.3.10 Lemma. Let (Hn)n∈N ⊆ S 2
T converge to H in L2(B). Then the sequence I(Hn)

is a Cauchy sequence in L2(P).

Proof. This is an exercise.

3.3.11 Theorem. There exists a unique linear and isometric mapping J on L2(B) into
L2(P) such that J(H) = I(H), for H ∈ S 2

T .

Proof. For H ∈ S 2
T , we set J(H) := I(H), where I has been defined in (3.12). Then,

J is a linear isometric mapping on S 2
T into L2(P) (cf. Proposition 3.3.6 and Theorem

3.3.7). We are going to extend this isometry to elements in L2(B). Let H ∈ L2(B).
Then, from Proposition 3.3.9, there exists (Hn)n∈N ⊆ S 2

T converging to H in L2(B).
Because of Lemma 3.3.10, the sequence I(Hn) of the elementary iterated integrals is
then a Cauchy sequence in L2(P), which is an Hilbert space. Therefore, there exists
X ∈ L2(P) such that

X = L2(P)- lim
n→+∞

I(Hn). (3.14)

So, for H ∈ L2(B), we define
J(H) := X. (3.15)

We have to show that this definition is well-posed, that is it does not depend on the
approximating sequence (Hn)n∈N ⊆ S 2

T . Let (H̃n)n∈N ⊆ S 2
T be another approximating

sequence for H in L2(B). Then, because of the linearity of the elementary stochastic
integral (cf. Proposition 3.3.6 (i)) and Itô isometry (3.13) we get

‖I(Hn)− I(H̃n)‖L2(P) = ‖Hn − H̃n‖λ⊗P −→ 0, as n→ +∞,
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showing that (3.15) is a well-posed definition. We now show that J is an isometry. Let
H ∈ L 2(B) and (Hn)n∈N ⊆ S 2

T an approximating sequence for H in L 2(B). Then,
using the continuity of the norm and Itô isometry for elementary integrals, yields

‖J(H)‖L2(P) = lim
n→+∞

‖J(Hn)‖L2(P) = lim
n→+∞

‖Hn‖λ⊗P = ‖H‖λ⊗P

which is the extension of Itô isometry to elements of L2(B). We now show that J is
linear: Let K ∈ L2(B) and (Kn)n∈N ⊆ S 2

T an approximating sequence for K in L 2(B).
Then, for every a, b ∈ R

J(aH+bK) = lim
n→+∞

J(aHn+bKn) = a lim
n→+∞

J(Hn)+b lim
n→+∞

J(Kn) = aJ(H)+bJ(K).

To see the uniqueness of the linear isometric mapping J , we assume that there exists
another linear isometric mapping J̃ on L2(B) into L2(P) such that J̃(H) = I(H) for
every H ∈ S 2

T . Then, for every H ∈ L2(B) and for every (Hn)n∈N ⊆ S 2
T converging to

H in L2
T (λ⊗ P), we have

‖J̃(H)− J̃(Hn)‖L2(P) = ‖J̃(H −Hn)‖L2(P) = ‖H −Hn‖λ⊗P −→ 0, as n→ +∞.

Therefore,

‖J̃(H)− J(H)‖L2(P) = ‖J̃(H)− J̃(Hn) + J(Hn)− J(H)‖L2(P)

≤ ‖J̃(H)− J̃(Hn)‖L2(P) + ‖J(Hn)− J(H)‖L2(P)

and the right hand side converges to zero as n→ +∞. So J̃(H) = J(H) a.s., for every
H ∈ L2(B) and the proof is complete.

3.3.12 Definition. Let H ∈ L2(B). Then the unique linear and isometric mapping J
of Theorem 3.3.11 is called the stochastic integral of H with respect to B. We use the
notation

J(H) =:

∫ T

0
HtdBt =: H ·BT .

3.3.13 Exercise. (i) Let B be a Brownian motion. Show that the following processes
belong to L2(B): B, Bn, eλB,

∫ ·
0 |Bt|

pdt, p > 1, sups∈[0,·]Bs. Does eB
3

belong to L2(B)?
(ii) Compute B ·BT .

3.3.14 Exercise. Let B be a Brownian motion over R+. Show that it is a martingale.
Is it a uniformly integrable martingale?

We conclude this chapter stating some properties of the stochastic integral. The proof
is an exercise.

3.3.15 Proposition (Moments). Let H,K ∈ L2(B), f ∈ L2([0, T ]). Then
(i) E[H ·BT ] = 0;

(ii) Var[H ·BT ] =
∫ T

0 E[H2
t ]d t;

(iii) Cov[H ·BT ,K ·BT ] =
∫ T

0 E[HtKt]d t;

(iv) H ·BT = K ·BT a.s. if and only if
∫ T

0 E[(Ht −Kt)
2]d t = 0;

(v) f ·BT is a Gaussian random variable.
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Proof of Proposition 3.3.9. Let L2([0, T ]) := L2([0, T ],B([0, T ]), λ). By ‖ · ‖2 we
denote the norm of the scalar product in L2([0, T ]). Let Pn : L2([0, T ]) −→ L2([0, T ]) be
the linear mapping defined by

Pnf :=

bnT c−1∑
n=1

cn,i(f)1[ i
n
, i+1
n

)(t), cn,i(f) :=
1

( 1
n)

∫ i
n

i−1
n

f(s)d s . (3.16)

Notice that cn,i(f) < +∞, because f ∈ L2([0, T ]). The mapping Pn is defined in such
a way to associate to f an approximating sequence Pnf which is a step function over
interval of length 1

n . The value of Pnf over each of these intervals, is given by the mean
of f over the preceding interval. The function Pnf is right continuous.

3.3.16 Lemma. Let f ∈ L2([0, T ]) and Pn be the mapping defined in (3.16). Then
(i) ‖Pnf‖2 ≤ ‖f‖2;
(ii) ‖Pnf − f‖2 −→ 0, as n→ +∞.

Proof. We start proving (i). Because of Jensen’s inequality applied to the probability
measure nλ over an interval of length 1

n , we get

(cn,i(f))2 ≤ 1

( 1
n)

∫ i
n

i−1
n

f(s) 2ds

which yields

‖Pnf‖22 =

∫ T

0
(Pnf)(s) 2ds =

bnT c−1∑
n=1

cn,i(f)2 1

n

≤
bnT c−1∑
n=1

∫ i
n

i−1
n

f(s) 2d s ≤
∫ T

0
f(s) 2d s = ‖f‖22

which proves (i). To see (ii) we first consider a continuous function g ∈ L2([0, T ]). Notice
that in this case Png(t) converges to g(t), a.e. as n → +∞. Indeed, by continuity of g,
for every ε > 0, there exists δ = δ(ε) such that g(t) − ε < g(s) < g(t) + ε, for every
s ∈ (t − δ, t + δ), for every fixed t ∈ [0, T ]. For a fixed t, there exists a unique i∗ such
that t ∈ [ i

∗

n ,
i∗+1
n ). Therefore,

Png(t) = n

∫ i∗
n

i∗−1
n

g(s)ds.

Hence for n > 1/δ, ( i
∗−1
n , i

∗

n ) ⊆ (t− δ, t+ δ) and therefore

|Png(t)− g(t)| ≤ n
∫ i∗

n

i∗−1
n

|g(s)− g(t)|ds < ε

which shows that Png(t) converges to g(t), a.e. as n→ +∞ for a continuous function g.
By dominated convergence, because of

sup
t∈[0,T ]

|Png(t)| ≤
bnT c−1∑
n=1

n

∫ i
n

i−1
n

|g(s)|d s ≤
∫ T

0
|g(s)|ds < +∞,
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we also get Png −→ g in L2([0, T ]) as n → +∞. For the general case, we proceed by
approximation: Continuous functions are dense in L2([0, T ]). Hence, if f ∈ L2([0, T ]),
for every ε > 0, then there exists a continuous g such that ‖f − g‖2 ≤ ε/3, which yields
‖Pnf − Png‖2 ≤ ε/3 because of step (i). We know that Png −→ g in L2([0, T ]), as
n → +∞. Therefore, we can fix n0 ≥ 0 such that ‖Png − g‖2 ≤ ε/3 for n ≥ n0. Using
triangular inequality we get

‖Pnf − f‖2 ≤ ‖Pnf − Png‖2 + ‖Png − g‖2 + ‖f − g‖2 ≤ ε

and the proof is complete.

We now want to approximate processes. Let H ∈ L2(B). We denote by H·(ω) the
mapping u 7→ Xu(ω). Then, from the definition of L2(B), the mapping H·(ω) be-
longs to L2([0, T ]) for almost all ω ∈ Ω. This means that we can define the mapping
P̂n : L2(B) −→ L2(B) setting (P̂nH)t(ω) := 0, if H·(ω) /∈ L2([0, T ]), (P̂nH)t(ω) :=
(PnH·(ω))(t) otherwise. Observe that (P̂nH) ∈ S 2

T . Indeed,

(P̂nH)t :=

bnT c−1∑
n=1

Cn,i1[ i
n
, i+1
n

)(t), Cn,i :=
1

( 1
n)

∫ i
n

i−1
n

Xsd s .

Then P̂nX is an elementary process as in Definition 3.3.3, (the F i
n

-measurability of Ci,n

follows because X is progressively measurable). Furthermore

E[C2
n,i] ≤

1

( 1
n)

∫ i
n

i−1
n

E[H2
s ]d s ≤ n‖H‖λ⊗P < +∞

and hence (P̂nH) ∈ S 2
T .

The proof of Proposition 3.3.9 is completed by the following lemma.

3.3.17 Lemma. Let H ∈ L2(B). Then P̂nH converges to H in L2(B) as n→ +∞.

Proof. First we set

An(ω) :=

∫ T

0
|(P̂nH)t(ω)−H·(ω)|2dt = ‖PnH·(ω)−H·(ω)‖22,

‖ · ‖2 denoting the norm in L2([0, T ]). So with this notation we are going to show

lim
n→+∞

‖P̂nH −H‖2λ⊗P = lim
n→+∞

E[An(ω)] = 0. (3.17)

Because of Lemma 3.3.16 (ii), we know that PnH·(ω) converges to H·(ω) in L2([0, T ])
for almost all ω ∈ Ω. This means An(ω) −→ 0 a.s. as n → +∞. To conclude we apply
the theorem of Lebesgue on dominated convergence: Because ‖a− b‖22 ≤ 2(‖a‖22 + ‖b‖22),
from Lemma 3.3.16 (i)

An(ω) ≤ 2
(
‖PnH·(ω)‖22 + ‖H·(ω)‖22

)
≤ 4‖H·(ω)‖22

and the last term in the previous inequalities is integrable because

E[‖H·(ω)‖22] = ‖H‖2λ⊗P < +∞

since H ∈ L2(B). We can therefore apply the theorem on dominated convergence to
deduce An(ω) −→ 0 in L2(P), as n→ +∞ and the proof is complete.
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3.4 Miscellanea

In this section we collect some important properties and consequences of the stochastic
integral which we cannot develop in this lecture notes.

3.4.1 Stochastic integral as a process

First of all we discuss some properties of the stochastic integral as a function with respect
to the integration extremes. In other words, for every t ∈ [0, T ] and H ∈ L2

t (B) =
{H = (Hs)s∈[0,t] progressively measurable: E[

∫ t
0 H

2
sds] < +∞}, we consider the random

variable

Xt :=

∫ t

0
HsdBs, t ∈ [0, T ] (3.18)

and then the stochastic process X = (Xt)t∈[0,T ]. Notice that Xt is a random variable for
every t ∈ [0, T ] (the definition can be given starting from S 2

t exactly as we have done
before). Therefore X is a stochastic process. However, from the construction, we cannot
conclude that it is a measurable process.

3.4.1 Theorem. Let (B,F) be a Brownian motion. The stochastic-integral process
X defined in (3.18) is a square integrable F-martingale. Furthermore there exists a
continuous modification of X, which is in particular a measurable process.

Proof. First we show that X is adapted and has the martingale property, that is X is
a non-càdlàg martingale. Let Hn ∈ S 2

t be a sequence converging to H = (Hs)s∈[0,t]

in L2
t (B). Then Hn · Bt converges to Xt in L2(P) as n → +∞. Therefore, because of

the Ft-measurability of Hn · Bt (cf. Proposition 3.3.6 (ii)) and the completeness of the
probability space, Xt is Ft-measurable and hence X is adapted. Because of

Hn ·Bt −Hn ·Bs =

∫ t

s
HudBu

for s = tn0 < . . . < tnk = t, we get

E
[ ∫ t

s
Hn
udBu

∣∣∣∣Fs

]
=

k−1∑
j=0

E
[
enj (Btnj+1

−Btnj )
∣∣∣Fs

]
=

k−1∑
j=0

E
[
enj E

[
(Btnj+1

−Btnj )
∣∣Ftnj

]∣∣∣Fs

]
= 0.

Therefore, (Hn · Bt)t∈[0,T ] is a sequence of F-martingales converging in L2(P) to Xt.
Because of Lemma 2.3.11, X is a non-càdlàg martingale. Now we show the existence of
a continuous modification of X. We can assume, passing if necessary to a subsequence,
that ‖Hn−H‖λ⊗P ≤ 1

2
1
n3 . This implies, by triangular inequality, ‖Hn−Hn+1‖λ⊗P ≤ 1

n3 .
By Doob’s maximal inequality and Itô’s isometry we get

P
[

sup
t∈[0,T ]

∣∣Hn ·Bt −Hn+1 ·Bt
∣∣ ≥ 1

n2

]
= P

[
sup
t∈[0,T ]

∣∣Hn ·Bt −Hn+1 ·Bt
∣∣2 ≥ 1

n4

]
≤ n4‖Hn −Hn+1‖2λ⊗P ≤

1

n2
.
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Because
∑ 1

n2 < +∞. by Borel–Cantelli Lemma we deduce the existence of a measurable
set A of probability one and of n0 = n0(ω) such that

sup
t∈[0,T ]

∣∣Hn ·Bt(ω)−Hn+1 ·Bt(ω)
∣∣ ≤ 1

n2
,

for every n ≥ n0 and ω ∈ A. But then, by triangular inequality

sup
t∈[0,T ]

∣∣Hn ·Bt(ω)−Hm(ω)·Bt
∣∣ ≤ m−1∑

k=n

sup
t∈[0,T ]

∣∣Hk ·Bt(ω)−Hk+1 ·Bt(ω)
∣∣ ≤ ∞∑

k=n

1

k2
=

const

n

that is Hn · Bt(ω) is uniformly Cauchy for every ω ∈ A, P[A] = 1. Therefore, we can
define the random variable X∞t (ω) as the uniform limit of Hn · Bt(ω) for ω ∈ A and
zero else. By Proposition 3.3.6 (iii), t → Hn · Bt(ω) is a continuous mapping. Hence
t → X∞t (ω) is continuous for ω ∈ A, that is t → X∞t (ω) is continuous for every ω ∈ Ω.
We now have to show that X∞ is a modification of X. We know that Hn · Bt(ω)
converges to X∞t a.s. and Hn · Bt converges to Xt in L2(P). Therefore there exists a
subsequence Hnk ·Bt(ω) converging a.s. to Xt(ω). By uniqueness of the a.s. limit we get
Xt(ω) = X∞t (ω) a.s. for every t ∈ [0, T ] and the proof is complete.

3.4.2 A further extension of the stochastic integral

We now introduce the set

L2
loc(B) :=

{
H progressively measurable:

∫ T
0 H2

t dt < +∞ a.s.
}
.

We notice that the inclusion L2(B) ⊆ L2
loc(B) holds. We are going to introduce the

stochastic integral with respect to the Brownian motion B for processes in L2
loc(B).

Notice that every locally bounded progressively measurable process, and in particular
any continuous adapted process, belongs to L2

loc(B). Therefore, if f is a continuous
function, then f(B) = (f(Bt))t∈[0,T ] ∈ L2

loc(B). These assertions are not true for L2(B).
Let H ∈ L2

loc(B) and define

τn := inf
{
t ≥ 0 :

∫ t
0 H

2
sds ≥ n

}
.

Then (τn)n≥1 is an increasing sequence of stopping times. Indeed, by the progressive
measurability of H, the process t →

∫ t
0 H

2
sds is adapted (cf. He, Wang & Yan (1992),

Theorem 3.46). Furthermore this is a continuous process. Hence, by Theorem 2.3.5, it is
progressively measurable. By Theorem 2.3.8 (iii), τn is a stopping time for every n ≥ 1.
It is an increasing sequence because of the continuity of t→

∫ t
0 H

2
sds.

We define the stochastic interval

[0, τn] := {(ω, t) ∈ Ω⊗ [0, T ] : 0 ≤ t ≤ τn(ω)}

and the stochastic process 1[0,τn]. Notice that 1[0,τn](ω, t) = 1 on τn(ω) ≥ t and {τn ≥ t}
is Ft-measurable, because τn is a stopping time. Hence 1[0,τn] is adapted and left-
continuous. By Theorem 2.3.5 it is a progressively measurable process and the process
Hn := 1[0,τn]H belongs to L2(B). Indeed

E
[ ∫ T

0
1[0,τn](t)H

2
t

]
≤ E

[ ∫ τn

0
H2
t dt

]
≤ n.
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3.4.2 Theorem. Let H ∈ L2
loc(B) and Hn := H1[0,τn]. Then there exists a continuous

adapted stochastic process X such that

P
[
Xt = lim

n→+∞
Hn ·Bt, t ∈ [0, T ]

]
= 1.

Furthermore X is a (locally bounded) local martingale.

The stochastic process X of Theorem 3.4.2 is again called stochastic integral of H ∈
L2

loc(B) with respect to B. The notation is again

X =:

∫ ·
0
HsdBs = H ·B.

We stress that the space L2
loc(B) is not a subspace of L2

T (λ ⊗ P) and for H ∈ L2
loc(B),

H ·BT is not, in general, a square integrable random variable. In particular Itô’s isometry
does not extend to all stochatic integrals H · B for H ∈ L2

loc(B). For a more detailed
discussion of this topic we refer to Schilling & Partsch (2014), §16.

3.4.3 Itô’s formula

In this subsection we state Itô’s formula in its simpler formulation. For a complete
presentation of this topic we refer to Schilling & Partsch (2014), §17.

Itô’s formula extends the well known chain-rule for the derivative of the composition
f ◦ g of two differentiable functions f and g, that is [f(g(t))]′ = f ′(g(t))g′(t), which in
integral form becomes

f(g(t))− f(g(0)) =

∫ t

0
f ′(g(s))g′(s)ds =

∫ t

0
f ′(g(s))dg(s).

We know that the Brownian motion is a process of unbounded variation. However,
if we look back to Theorem 3.1.6, we immediately see that the quadratic variation of
the Brownian motion is finite, converges in L2(P) and is equal to the increasing process
At = t. By Itô’s formula we can compute the differential of f(B), where f is a twice
continuously differentiable function and (B,F) a Brownian motion. However, the chain
rule has a correction term involving an integral of the second derivative of f with respect
to the quadratic variation of the Brownian motion.

Let H ∈ L2
loc(B) and let K be a progressively measurable process such that K(ω, ·) ∈

L1([0, T ]) for every ω ∈ Ω. Then we say that X is an Itô’s process if

Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdBs, t ∈ [0, T ]

which, in differential, form becomes

dXt = Ktdt+HtdBt, t ∈ [0, T ].

Let now f be a twice continuously differentiable function on R into itself. Then Itô’s
formula is

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)H

2
sds
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that is

f(Xt) = f(X0) +

∫ t

0

(
f ′(Xs)Ks +

1

2
f ′′(Xs)H

2
s

)
ds+

∫ t

0
f ′(Xs)dBs.

We notice that to write f(Xt) we have to consider Taylor’s expansion of f up to the
second order:

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2.

To determine (dXt)
2, we use the computational rule given by the so-called Itô’s table:

× dt dBt
dt 0 0

dBt 0 dt

Hence

(dXt)
2 =

(
Ktdt+HtdBt

)2
= K2

t (dt)2 +H2
t (dBt)

2 + 2KtHtdtdBt = H2
t dt.

This show that Itô’s calculus is differs from usual differential calculus. On can say that
stochastic calculus is a differential calculus of “second order”.

3.4.3 Exercise. (i) Let λ ∈ R. Determine the stochastic differential of Y = exp(λB).
Is Y a martingale? If not, define a process Z such that X = ZY is a martingale.

(ii) Let f ∈ L2([0, T ]). Show that f · BT is a centred normal random variable and
compute explicitely its variance.



CHAPTER 4

Poisson Process

In this chapter we introduce the Poisson process and give its characterization among
processes of finite variation. To this end, it is necessary to introduce processes of finite
variation and stochastic integration with respect such processes. We notice that in this
case, we can define the integral pathwise. We shall also discuss some problem concerning
with the independence of Poisson processes.

4.1 Processes of finite variation and stochastic integration

Let (Ω,F ,P) be a complete probability space and T > 0 a fixed time horizon. We
consider a filtration F = (Ft)t∈[0,T ] which satisfies the usual conditions. We shal only
consider processes with values in (E,E ) := (R,B(R)).

4.1.1 Definition. (i) Let A be a stochastic process. By Var(A) := (Var(A)t)t∈[0,T ],
we denote the variation process of A defined as a such: Var(A)t(ω) is the variation of
u 7→ Au(ω) over the interval [0, t], t ≤ T .

(ii) We say that A is of finite variation if Var(A)t < +∞, for every t ≤ T .
(iii) We denote by V the set of processes of finite variation which are F-adapted,

càdlàg and starts at zero.
(iv) We say that A is an increasing process if its paths are increasing. We denote by

V + the subspace of V consisting of increasing processes.

4.1.2 Proposition. Let A ∈ V . Then Var(A) is adapted and there exists a unique pair
of processes B,C ∈ V + such that A = B − C and Var(A) = B + C.

Proof. Set B := (A + Var(A))/2 and C := B − A. Clearly the paths of Var(A) are
increasing, hence B and C are increasing. Furthermore we have

Var(A)t(ω) := lim
n→+∞

n∑
k=1

|Atk/n(ω)−At(k−1)/n(ω)|
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implying that Var(A) is adapted. Hence B and C are adapted and so they are in V +.
The uniqueness of the pair B,C is clear.

For the next theorem we refer to Appelbaum (2009), Theorem 2.3.14.

4.1.3 Theorem. Let A ∈ V . Then∑
0≤s≤t

|∆As| ≤ Var(A)t < +∞

for every t ≥ 0.

Notice that the process Ad :=
∑

0≤s≤·∆As is adapted: Indeed A is càdlàg and there-
fore the sum on the right-hand side consists of at most countably many addends. The
process Ac := A − Ad is therefore adapted. Furthermore it is continuous, because we
deleted from A all its jumps. Hence we see that every process of finite variation A can
be decomposed in its continuous and purely discontinuous part:

A = Ac +Ad. (4.1)

We stress that for this decomposition, it is important to know that A is of finite variation,
otherwise the process Ad is, in general, not finite-valued.

LetA ∈ V +. We want now define the stochastic integral for this processes. Clearly t 7→
At(ω) is a measure generating function (it is right-continuous and increasing). Therefore
(cf. Bauer (2001), Theorem 6.5), there exists a unique measure µωA over ([0, T ],B([0, T ]))
such that

µωA((s, t]) := At(ω)−As(ω), 0 ≤ s ≤ t ≤ T. (4.2)

Notice that µωA is a finite measure on [0, T ]. The stochastic integral with respect to
A ∈ V + of a measurable process H is defined as a Stiltjes–Lebesgue integral, i.e., by
fixing ω ∈ Ω and defining the integral pathwise with respect to the trajectory t 7→ At(ω).

4.1.4 Definition. Let A ∈ V +.
(i) We say that a measurable process H is integrable with respect to A if∫ t

0
|Hs(ω)|µAω (ds) < +∞

for every t ≥ 0 and for every ω ∈ Ω.
(ii) If H is integrable with respect to A by∫ t

0
Hs(ω) dAs(ω) :=

∫ t

0
Hs(ω)µAω (ds), t ≥ 0,

we denote the integral of H with respect to A up to time t. We introduce the integral
process H ·A = (H ·At)t≥0 by

H ·At(ω) :=


∫ t

0 Hs(ω) dAs(ω), if
∫ t

0 |Hs(ω)| dAs(ω) < +∞

+∞, otherwise.
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We now consider the general case A ∈ V . The stochastic integral with respect to
A of a measurable process H can be introduced in a similar way. Indeed, because of
Proposition 4.1.2 there exist a unique pair of processes B,C ∈ V + such that A = B−C
and Var(A) = B + C.

4.1.5 Definition. Let A ∈ V .
(i) We say that a measurable process H is integrable with respect to A if it is integrable

with respect to Var(A).
(ii) If H is integrable with respect to A, we introduce the integral process H · A =

(H ·At)t≥0 by

H ·At(ω) :=


∫ t

0 Hs(ω) dAs(ω), if
∫ t

0 |Hs(ω)|dVar(A)s(ω) < +∞

+∞, otherwise.

Notice that now the process A induces a signed measure: If B and C is the unique
pair given in Proposition 4.1.2, then µωA := µωB − µωC , where µωB and µωC are defined in
(4.2). If H is integrable with respect to A, then by definition,∫ t

0
|Hs|dVar(A)s < +∞

and the formula
Var(H ·A) = |A| ·Var(A) (4.3)

holds.
The next lemma gives a class of measurable processes which are integrable with respect

to processes in V .

4.1.6 Lemma. Let H be a locally bounded measurable processes. Then H is integrable
with respect to A ∈ V .

Proof. If H is a locally bounded measurable process and (τn)n∈N is a localizing sequence,
say such that |Hτ | ≤ cn, we have, for every n ≥ 1 and every fixed t ≥ 0, |HTn |·Var(A)t ≤
cnVar(A)t < +∞. On the other side, τ ↑ +∞. Hence, for every fixed t ≥ 0, there exists
n(t) ∈ N such that τn ≥ t for every n ≥ n(t) and so |H| · Var(A)t ≤ cnVar(A)t < +∞,
n ≥ n(t).

From (4.3), we know that if a process H is integrable with respect to A, then H · A
is a process of finite variation. Furthermore, the following result, for which we refer to
He, Wang & Yan (1992), Theorem 3.46.

4.1.7 Proposition. Let A ∈ V and H be a measurable process which is integrable with
respect to A. If H is progressively measurable, then H ·A is F-adapted.

We can now state a result of partial integration for processes in V . For the proof, we
refer to Lipster & Shiryaev (2001), Lemma 18.7.

4.1.8 Theorem. Let A,B ∈ V . Then

AtBt = A− ·Bt +B− ·At +
∑

0≤s≤t
∆As∆Bs t ∈ [0, T ]. (4.4)
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The formula of integration by part given in Theorem 4.1.8 is well defined. Indeed,
A− and B− are locally bounded processes, as we remarked after the solution of Exercise
2.3.18, and hence the two integrals on the right-hand side of (4.4) make sense because
of Lemma 4.1.6. Furthermore, the sum appearing in (4.4) is finite valued because of
Theorem 4.1.3.

If A ∈ V +, it may non be integrable. This leads to the next definition.

4.1.9 Definition. (i) A process A ∈ V + is called integrable if E[AT ] < +∞. We denote
by A + the set of integrable processes.

(ii) A process A ∈ V is called of integrable variation if Var(A) ∈ A +. We denote by
A the set of processes of integrable variation.

We now want to investigate the situation in which a process A ∈ V is a martingale
and to see under which conditions the integral H · A is a gain a martingale. Before we
consider this problem, we need to introduce stochastic intervals and the σ-algebra of
predictable sets.

4.1.10 Definition. (i) Let τ be a stopping time. The subset [0, τ ] ⊆ Ω× [0, T ] defined
by [0, τ ] := {(ω, t) ∈ Ω× [0, T ] : 0 ≤ t ≤ τ(ω)} is called stochastic interval.

(ii) Let C ∗ := {[0, τ ], τ stopping time}. Then the σ-algebra P := σ(C ∗) is called
predictable σ-algebra.

(iii) A stochastic process X : Ω × [0, T ] −→ R is called predictable, if it is (P,E )
measurable.

(iv) Let B ∈ FT ⊗B([0, T ]). Then we say that B is a progressively measurable set
if {B ∩ [0, t] × Ω} belongs to Ft ⊗B([0, t]), for every t ∈ [0, T ]. We denote by D the
σ-algebra generated by progressively measurable sets and call it progressive σ-algebra.

The next theorem explains the relation between the σ-algebras P and D introduced
in Definition 4.1.10.

4.1.11 Theorem. (i) A stochastic process X is progressively measurable if and only if
the mapping X : Ω× [0, T ] −→ R is measurable with respect to D .

(ii) Let τ be a stopping time. Then the stochastic interval [0, τ ] is a progressively meas-
urable set. In particular, P ⊆ D and predictable processes are adapted and measurable.

(iii) Let C ′ be the system of all adapted processes which are left-continuous. Then
σ(C ′) = P.

Proof. We start proving (i). If X is D-measurable, then it is clear that it is progressively
measurable. Let now X be progressively measurable. If Xt(ω) = 1B(ω, t), with B ⊆ Ω×
[0, T ], thenX is progressively measurable if and only if B ∈ D . If we now denote by C the
class of all these progressively measurable processes and by K the class of all bounded
and progressively measurable processes which are D-measurable, then C ⊆ K and K
is a monotone class. Because of Theorem 1.2.2, we can conclude that every bounded
progressively measurable process is D-measurable. If now X is positive Xn := X ∧ n is
bounded and converges pointwise to X, therefore we get the statement for progressively
measurable and nonnegative processes. For a general progressively measurable process,
X = X+ −X− and the prove of (i) is complete. We now show (ii). Let τ be a stopping
time. Then 1[0,τ ] is left-continuous and adapted. By Theorem 2.3.5, 1[0,τ ] is progressively
measurable and, by (i) it is D-measurable. Hence [0, τ ] is D-measurable. To see (iii),
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we mention that Dellacherie (1972), Theorem IV.22, it is proven that left-continuous
adapted processes are predictable, hence σ(C ′) ⊆ P. On the other side, 1[0,τ ] is left-
continuous and adapted, for every stopping time τ . This proves the converse inclusion
and the proof of the theorem is complete.

The next lemma, explain the way in which the stopping procedure acts on the integral
with respect to processes in V .

4.1.12 Lemma. Let τ be a stopping time and H a measurable process which is integrable
with respect to A. Then (H ·A)τ = (1[0,τ ]H) ·A.

Proof. The proof is given as an application of the monotone class theorem (cf. Theorem
1.2.2): First take H = 1(u,v]×B, where B ∈ FT . For this class of processes the claim
holds and they are stable under multiplication and generate FT ⊗B([0, T ]). Therefore,
we get the claim for bounded H and then, by approximation for nonnegative and hence
for integrable and measurable H.

More generally the following result holds:

4.1.13 Lemma. Let A ∈ A and K,H be locally bounded measurable processes. Then
K ·A and H · (K ·A) are of finite variation and

H · (K ·A) = HK ·A

Proof. The proof is also consequence of the monotone class theorem. First we consider
H bounded and K = 1(u,v]×B, with B ∈ F . The the statement clearly hold and
an application of the monotone class theorem yields the result for every bounded and
measurable H and K. To pass to the general case it is enough to observe that, if H
and K are locally bounded and (τn)n≥0 and (σn)n≥0 are localizing sequences for H and
K respectively, then (ρn)n≥0, ρn := τn ∧ σn, is a localizing sequence for HK and use
Lemma 4.1.12.

Let X be a martingale. X is of finite variation if X ∈ V ; X is of integrable variation
if X ∈ A .

It is clear that increasing martingales must be evanescent: this is a consequence of the
monotonicity of the conditional expectation. Furthermore the following result holds (cf.
Revuz & Yor (1999), Proposition IV.1.2).

4.1.14 Proposition. Let X be a martingale in V . If furthermore X is continuous, then
it is constant.

In the next theorem, we now give sufficient conditions for H ·X to be a martingale,
if X is a martingale in A .

4.1.15 Theorem. Let H be a predictable and bounded process and X ∈ A be a mar-
tingale. Then H ·X ∈ A is a martingale.

Proof. Let τ be a stopping time taking values in [0, T ] and H = 1[0,τ ]. Then, because
of Lemma 4.1.12 Xτ = H ·X and, from Doob Stopping Theorem (cf. Theorem 2.3.13),
Xτ is a martingale. From (4.3) and Lemma 4.1.12 we get

Var(Xτ )T = Var(H ·X)T = H ·Var(X)T = Var(X)τT ≤ Var(X)T ∈ L1(P)
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meaning that H · X is a martingale in A . Let C be the class of all such processes.
Then, by the definition of predictable σ-algebra, C generates P. We now denote by K
the class of bounded predictable processes H such that H · X is a martingale. Then,
K is a linear space containing 1 and C ⊆ K . We now show that K is a monotone
vector space. Let (Hn)n ⊆ K be a uniformly bounded nonnegative and increasing
sequence converging pointwise to H. An application of Lebesgue theorem on dominated
convergence yields Hn ·Var(X)t −→ H ·Var(X)t ω-wise as n→ +∞. Furthermore, Hn

is uniformly bounded. Let c > 0 be such that Hn ≤ c. Then Hn · Var(X)t ≤ cVar(X)T
and we can conclude that Hn ·Var(X)t −→ H ·Var(X)t in L1(P) as n→ +∞. But then,
because H −Hn ≥ 0

E
[
|H ·Xt −Hn ·Xt|

]
≤ E

[
(H −Hn) ·Var(X)T

]
−→ 0 as n→ +∞.

Because of Lemma 2.3.11, H ·X is a martingale. An application of Theorem 1.2.2, yields
the claim for all bounded predictable H. Notice that H ·X ∈ A , H being bounded.

4.2 Poisson Process: definition and characterization

In this part we want to discuss an important example of increasing process: Poisson
process. As a first step, we introduce simple point processes.

4.2.1 Definition. Let N ∈ V + (hence, in particular, adapted). We say that it is a
simple point process relative to F if

(i) N takes values in N a.s.;
(ii) ∆N takes values in {0, 1} a.s.

Let N be a simple point process and introduce the increasing sequence of stopping
times (τn)n≥0 setting τ0 := 0 and τn+1 := inf{t > τn : Nt = n + 1}. Then N is equal
to zero on [0, τ1). In τ1 it makes a jump of size one and stays constant over [τ1, τ2). In
τ2 it makes a jump of size one, its value becomes two and it stays constant over [τ2, τ3)
and so on. In conclusion, the paths of N are a right-continuous increasing step functions
taking values 0, 1, . . . and the values of N changes only because of its jumps. Therefore
the continuous part N c in the decomposition (4.1) of N is identically equal to zero.

4.2.2 Definition. Let N be a simple point process relative to F. We say that it is a
Poisson process relative to F if:

(i) E[Nt] < +∞, for every t ∈ R+;
(ii) The function a(t) := E[Nt], called intensity function of N , is continuous;
(iii) Nt −Ns is independent of Fs, for every 0 ≤ s < t.

If N is a Poisson process relative to F with intensity function a(·) of the form a(t) = γ t,
t ≥ 0, γ > 0, we say that N is a homogeneous Poisson process (with parameter γ)
relative to F .

We notice that a Poisson process N is stochastically continuous. Indeed, by definition
it is a càdlàg process end hence it is right-continuous. To show that it is stochastically
continuous it is enough to prove that it is stochastically continuous from the left. But
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this is an immediate consequence of Markov’s inequality: For any ε > 0 and 0 ≤ s ≤ t
we have Nt ≥ Ns and

lim
s↑t

P[(Nt −Ns) ≥ ε] ≤
1

ε
lim
s↑t

E[Nt −Ns] =
1

ε
lim
s↑t

(a(t)− a(s)) = 0,

where in the first passage we applied Markov’s inequality and in the last equality we
used the continuity of the intensity function a(·).

We now give the characterization of the Poisson process.

4.2.3 Theorem. Let N be a simple point process with respect to F. Then N is a
Poisson process with respect to F if and only if there exists a continuous increasing
function t→ a(t) such that N − a(·) is an F-local martingale. In this case, the function
a(·) is the intensity function of N and N − a(·) is a true F-martingale.

Proof. If N is a Poisson process with intensity a(·), then (N−a(·),F) is a centred process
with independent increments. Hence, because of Lemma 2.5.6, it is an F-martingale. We
now prove the converse implication, that is, we assume that N is a simple point process
such that there exists a continuous increasing function a(·) such that N − a(·) is an
F-local martingale. Then we show that N − a(·) is an F martingale and that N is a
Poisson process. Let N−a(·) be an F-local martingale and (τn)n≥1 a localizing sequence
for it. Then (N − a(·))τn is a martingale starting at zero and therefore

E
[
N τn
T

]
= E

[
a(T )τn

]
.

Furthermore applying B. Levi’s theorem on monotone convergence we get

E
[
NT

]
= E

[
lim

n→+∞
NT∧τn

]
= lim

n→+∞
E
[
NT∧τn

]
= lim

n→+∞
E
[
a(T ∧ τn)

]
=

E
[

lim
n→+∞

a(T ∧ τn)
]

= a(T ) < +∞.

Hence NT ∈ L1(P). Furthermore, the estimate supt∈[0,T ] |Nt−a(t)| ≤ NT+a(T ) holds, N

and a(·) being increasing. Hence, N−a(·) is a local martingale which is bounded in L1(P)
and therefore it is a true martingale (cf. Exercise 2.3.18 (ii)). Furthermore, Var(N −
a(·))T ≤ NT + a(T ), hence N − a(·) ∈ A . We now show that N is a Poisson process
with respect to F. We only need to verify that (N,F) is a process with independent
increments. We consider the (complex-valued) process Y = (eiuNt)t∈[0,T ], u ∈ R, which
changes only because of its jumps. Therefore, we can write

eiuNt = 1 +
∑

0≤s≤t
∆eiuNs = 1 +

∑
0≤s≤t

(
eiuNs − eiuNs−

)
= 1 +

∑
0≤s≤t

eiuNs−
(

eiu∆Ns − 1
)

= 1 +
∑

0≤s≤t
eiuNs−

(
eiu − 1

)
∆Ns = 1 +

(
eiu − 1

) ∑
0≤s≤t

eiuNs−∆Ns

= 1 +
(

eiu − 1
)∫ t

0
eiuNs−dNs

(4.5)

where in the last passage we used the definition of Stiltjes–Lebesgue integral with respect
to N . We now introduce the process Z = Y e−a(·)(eiu−1) = eiuN−a(·)(eiu−1). By partial
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integration (Theorem 4.1.8), we get

Zt = 1 +

∫ t

0
e−a(s)(eiu−1)dYs +

∫ t

0
Ys−de−a(s)(eiu−1)+

+
∑

0≤s≤t
∆Ys∆e−a(s)(eiu−1)

but the last summand on the right-hand side is equal to zero because a(·) is continuous.
Therefore, by (4.5), we deduce

Zt = 1 +
(

eiu − 1
)∫ t

0
e−a(s)(eiu−1)eiuNs−dNs −

(
eiu − 1

)∫ t

0
e−a(s)(eiu−1)eiuNs−da(s)

= 1 +
(

eiu − 1
)∫ t

0
e−a(s)(eiu−1)eiuNs−d(Ns − a(s))

= 1 +
(

eiu − 1
)∫ t

0
Zs−d(Ns − a(s))

(4.6)

where in the firs passage we used the chain rule for the Stiltjes–Lebesgue integral to
compute de−a(s)(eiu−1), in the last-but-one passage the linearity of the Stiltjes–Lebesgue
integral with respect to the integrator and in the last passage the definition of Z. By
Theorem 4.1.11 (iii), the process Z− is predictable. Furthermore, because of the defin-
ition of Z and the continuity of a(·), |Z−| is bounded. Hence, we can apply Theorem
4.1.15, to conclude that Z is a martingale. This in particular yields

E
[

exp
(
iu(Nt −Ns)

)∣∣∣Fs

]
= exp

(
(a(t)− a(s))(eiu − 1)

)
, 0 ≤ s ≤ t (4.7)

and hence (N,F) is an integrable simple point process with independent increments and
continuous intensity function, that is a Poisson process with respect to F.

Notice, if N is a Poisson process with respect to F, then (4.7) holds. Choosing s = 0
and taking the expectation in (4.7) yields

E
[

exp
(
iuNt

)]
= exp

(
a(t)(eiu − 1)

)
, t ∈ [0, T ], (4.8)

meaning that Nt is Poisson distributed with parameter a(t), for every t ∈ [0, T ].

4.3 Independence of Poisson processes

Let N1, . . . , Nm be Poisson processes with respect to the same filtration F and let
a1(·), . . . , am(·) be the respective intensity function. Because (N j ,F) is a process with
independent increments, from (4.8) and Proposition 2.5.14, we know that the process
Zj = (Zjt )t∈[0,T ],

Zjt := exp
(
iujN j

t − aj(t)(eiu − 1)
)
, t ∈ [0, T ] (4.9)
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is an F-martingale, for every j = 1, . . .m and uj ∈ R. We define the process Z = (Zt)t≥0

by

Z :=
m∏
j=1

Zj . (4.10)

The following theorem give sufficient conditions for the process Z to be an F-martingale.

4.3.1 Theorem. Let N1, . . . , Nm be Poisson processes relative to F with intensity func-
tion a1(·), . . . , am(·), respectively. If ∆N j∆Nk = 0, j, k = 1, . . . ,m, k 6= j, then Z
defined in (4.10) is an F-martingale with Z0 = 1.

To prove Theorem 4.3.1 we need two preliminary lemmas, the first of which is a purely
algebraic result.

Let x1, . . . , xm and x1−, . . . , xm− be two sequence of real numbers. We define

∆xj := xj − xj−, j = 1, . . . ,m; ∆
∏m
j=1 xj :=

∏m
j=1 xj −

∏m
j=1 xj−.

4.3.2 Lemma. For any two sequences x1, . . . , xm and x1−, . . . , xm− of real numbers
such that ∆xj∆xk = 0, j, k = 1, . . . ,m, j 6= k, it follows:

∆
m∏
j=1

xj =
m∑
j=1

( m∏
k 6=j

xk−

)
∆xj . (4.11)

Proof. We proceed by induction on m ∈ N. If m = 1 there is nothing to show. Now we
assume (4.11) for m = n and show it for m = n+ 1.

∆
∏n+1
j=1 xj =

∏n+1
j=1 xj −

∏n+1
j=1 xj−

= xn+1
∏n
j=1 xj − x(n+1)−

∏n
j=1 xj + x(n+1)−

∏n
j=1 xj − x(n+1)−

∏n
j=1 xj−

= ∆xn+1

(∏n
j=1 xj− +

∏n
j=1 xj −

∏n
j=1 xj−

)
+ x(n+1)−

(∏n
j=1 xj −

∏n
j=1 xj−

)
= ∆xn+1

(∏n
j=1 xj− +

∑n
j=1

(∏
k 6=j xj−

)
∆xj

)
+ x(n+1)−

∑n
j=1

(∏
k 6=j xk−

)
∆xj

=
∑n+1

j=1

(∏
k 6=j xk−

)
∆xj ,

where in the last but one equality we used the induction hypothesis.

4.3.3 Lemma. Let N1, . . . , Nm be Poisson processes relative to F. For the martingales
Z1, . . . , Zm associated with N1, . . . , Nm it follows that ∆Zj∆Zk = 0, j, k = 1, . . . ,m,
k 6= j, if and only if ∆N j∆Nk = 0, j, k = 1, . . . ,m, k 6= j.

Proof. By the definition of Zj and Zk, for every t ≥ 0 a.s., for j 6= k, we get

|∆Zjt∆Zkt | = | exp(iuj∆N j
t )− 1|| exp(iuk∆Nk

t )− 1|×

× | exp(−aj(t)(eiuj − 1)|| exp(−ak(t)(eiuk − 1)|.

The second factor on the right-hand side of the previous formula is different from zero,
for every t ∈ [0, T ] and uj , uk ∈ R. Therefore |∆Zjt∆Zkt | = 0 for every t ∈ [0, T ] a.s.,
for every uj , uk ∈ R, if and only if | exp(iuj∆N j

t ) − 1|| exp(iuk∆Nk
t ) − 1| = 0 for every

t ∈ [0, T ] a.s., for every uj , uk ∈ R, which is verified if and only if ∆N j∆Nk = 0,
k 6= j.
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Proof of Theorem 4.3.1. We consider the function F (x1, . . . , xm) :=
∏m
j=1 x

j . Then

Z = F (Z1, . . . , Zm).

We write
F (Z1, . . . , Zm)t := F (Z1

t , . . . , Z
m
t ), t ∈ [0, T ].

By induction, we show the identity

Zt = 1 +

m∑
r=1

∂

∂xr
F (Z1, . . . , Zm)− · Zrt . (4.12)

Let Fm := Fm(x1, . . . , xm) :=
∏m
j=1 x

j and Z(m) :=
∏m
j=1 Z

j . With this notation,

Z(m)t = Fm(Z1, . . . , Zm)t. For m = 2, partial integration (cf. Theorem 4.1.8 for
complex-valued processes) yields

Z(2)t = Z1
t Z

2
t = 1 + Z1

− · Z2
t + Z2

− · Z1
t +

∑
0≤s≤t

∆Z1
s∆Z2

s

and the last summand vanishes because of Lemma 4.3.3. Hence

Z(2)t = 1 + Z1
− · Z2

t + Z2
− · Z1

t = 1 +
2∑
r=1

∂

∂xr
F (Z1, . . . , Zm)− · Zrt .

We now assume (4.12) for m− 1 and prove it for m. By partial integration, we have

Z(m)t = Zmt Z(m− 1)t

= 1 + Zm− · Z(m− 1)t + Z(m− 1)− · Zmt +
∑

0≤s≤t
∆Zms ∆Z(m− 1)s.

Because of Lemma 4.3.2

∆Z(m− 1) = ∆
m−1∏
j=1

Zj =
m−1∑
j=1

(m−1∏
k 6=j

Zk−

)
∆Zj .

Hence, because of Lemma 4.3.3,

∑
0≤s≤t

∆Zms ∆Z(m− 1)s =
m−1∑
j=1

(m−1∏
k 6=j

Zks−

)
∆Zjs∆Z

m
s = 0.

So, by induction and Lemma 4.1.13,

Z(m)t = 1 + Zm− · Z(m− 1)t + Z(m− 1)− · Zmt

= 1 + Z(m− 1)− · Zmt +
m−1∑
r=1

∂

∂xr
Fm−1(Z1, . . . , Zm−1)−Z

m
− · Zrt

= 1 + Z(m− 1)− · Zmt +

m∑
r=1,r 6=m

∂

∂xr
Fm(Z1, . . . , Zm)− · Zrt

= 1 +
m∑
r=1

∂

∂xr
F (Z1, . . . , Zm)− · Zrt
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and formula (4.12) is proven. From (4.12) and (4.6), we deduce

Z = 1 +
m∑
r=1

∂

∂xr
F (Z1, . . . , Zm)−

(
eiur − 1

)
Zr− · (N r − ar(·))t

= 1 +

m∑
r=1

(
eiur − 1

)(
Z− · (N r − ar(·))t

)
.

But by definition |Z−| is predictable and bounded, as a product of bounded processes
(|Zj−| is bounded over [0, T ] by continuity of aj(·)) and (N r − ar(·)) ∈ A . Therefore,
from Theorem 4.1.15, Z is a martingale and the proof is complete.

We are now able to proof the following result:

4.3.4 Theorem. Let N1, . . . , Nm be Poisson processes relative to F. If

∆N j∆Nk = 0, j, k = 1, . . . ,m; j 6= k,

then the random vector (N1
t − N1

s , . . . , N
m
t − Nm

s ) is independent and independent of
Fs, for every 0 ≤ s ≤ t. In particular the vector (N1, . . . , Nm) has F-independent
increments.

Proof. Let Zj be the martingale associated with N j , j = 1, . . . ,m. By Theorem 4.3.1
the process Z :=

∏m
j=1 Z

j is an F-martingale: for every 0 ≤ s ≤ t, E[Zt|Fs] = Zs. Hence

E
[
exp

(
i
m∑
j=1

uj(N j
t −N j

s )

)∣∣∣∣Fs

]
= exp

( m∑
j=1

(
eiuj − 1

)
(aj(t)− aj(s))

)
, (4.13)

for every 0 ≤ s ≤ and uj ∈ R, which implies, in particular, that (N1
t −N1

s , . . . , N
m
t −Nm

s )
is independent of Fs. Clearly, the identities

exp

 m∑
j=1

(
eiuj − 1

) (
aj(t)− aj(s)

) =
m∏
j=1

exp
((

eiuj − 1
)
(aj(t)− aj(s))

)

=
m∏
j=1

E
[
exp

(
iuj(N j

t −N j
s )
)] (4.14)

holds. Taking now the expectation in (4.13) and using (4.14), we deduce

E

exp

i m∑
j=1

uj(N j
t −N j

s )

 =
m∏
j=1

exp
((

eiuj − 1
)
(aj(t)− aj(s))

)

=

m∏
j=1

E
[
exp

(
iuj(N j

t −N j
s )
)]

meaning that the vector (N1
t − N1

s , . . . , N
m
t − Nm

s ) is independent. The proof is now
complete.
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As a consequence of Theorem 4.13, we get the following result about the independence
of Poisson processes.

4.3.5 Theorem. Let N1, . . . , Nm be Poisson processes. If

∆N j∆Nk = 0, j, k = 1, . . . ,m; j 6= k,

then the vector (N1, . . . , Nm) is independent.

Proof. To keep notation simpler, we only prove the result for m = 2. We show that for
every n ∈ N and 0 = t0 < t1 < . . . tn the formula

E

[
exp

(
i

n∑
j=1

uj(N1
tj −N

1
tj−1

) + i
n∑
j=1

vj(N2
tj −N

2
tj−1

)

)]

= E

exp

i

n∑
j=1

uj(N1
tj −N

1
tj−1

)

E

exp

i

n∑
j=1

vj(N2
tj −N

2
tj−1

)

 , (4.15)

for every uj , vj ∈ R, j = 1, . . . , n. Notice that, because of the independence of the
increments, we have

E

[
exp

(
i

n∑
j=1

uj(N1
tj −N

1
tj−1

)

)]
E

[
exp

(
i

n∑
j=1

vj(N2
tj −N

2
tj−1

)

)]

=

n∏
j=1

E
[
exp

(
iuj(N1

tj −N
1
tj−1

)
)] n∏

j=1

E
[
exp

(
i vj(N2

tj −N
2
tj−1

)
)]
.

(4.16)

Because of Theorem 4.13, (N1
t −N1

s , N
2
t −N2

s ) is an independent vector which is inde-
pendent of Fs, 0 ≤ s ≤ t. Assuming that the vector

A := ((N1
t1 −N

1
t0 , N

2
t1 −N

2
t0), . . . , (N1

tn−1
−N1

tn−2
, N2

tn−1
−N2

tn−2
))

is independent, we get that the vector

B := ((N1
t1 −N

1
t0 , N

2
t1 −N

2
t0), . . . , (N1

tn −N
1
tn−1

, N2
tn −N

2
tn−1

))

is independent. Indeed, A is Ftn−1-measurable and (N1
tn − N

1
tn−1

, N2
tn − N

2
tn−1

)) is an
independent vector which is independent of Ftn−1 . Therefore, by induction, we get that,
for every n ∈ N, the vector

B := ((N1
t1 −N

1
t0 , N

2
t1 −N

2
t0), . . . , (N1

tn −N
1
tn−1

, N2
tn −N

2
tn−1

))

is independent. Hence, setting

(uj , vj)(N1
tj −N

1
tj−1

, N2
tj −N

2
tj−1

) = uj(N1
tj −N

1
tj−1

) + vj(N2
tj −N

2
tj−1

),
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E

[
exp

(
i

n∑
j=1

uj(N1
tj −N

1
tj−1

) + i
n∑
j=1

vj(N2
tj −N

2
tj−1

)

)]

= E

[
exp

(
i(u1, v1)(N1

t1 −N
1
t0 , N

2
t1 −N

2
t0) + . . .

+ i(un, vn)(N1
tn −N

1
tn−1

, N2
tn −N

2
tn−1

)

)]

=

n∏
j=1

E

[
exp

(
i(uj , vj)(N1

tj −N
1
tj−1

, N2
tj −N

2
tj−1

)

)]

=

n∏
j=1

E

[
exp

(
iuj(N1

tj −N
1
tj−1

)

)]
E

[
exp

(
ivj(N2

tj −N
2
tj−1

)

)]

=

n∏
j=1

E

[
exp

(
iuj(N1

tj −N
1
tj−1

)

)] n∏
j=1

E

[
exp

(
ivj(N2

tj −N
2
tj−1

)

)]
,

where, to get the second equality, we used the independence of the vector B for every
n ∈ N. For the third equality we applied Theorem 4.13, which ensures the independence
of (N1

tj−N
1
tj−1

, N2
tj−N

2
tj−1

). Therefore, (4.15) holds, because of (4.16). This means that

the vectors (N1
t1−N

1
t0 , . . . , N

1
tn−N

1
tn−1

) and (N2
t1−N

2
t0 , . . . , N

2
tn−N

2
tn−1

) are independent,

for every 0 = t0 < t1 < . . . < tn. Hence, the vectors (N1
t1 , . . . , N

1
tn) and (N2

t1 , . . . , N
2
tn)

are independent because they can be obtained as linear combination of the previous two
vectors respectively. Therefore (N1, N2) is an independent vector of processes and the
proof is complete.

The proof of the following theorem is very instructive for the understanding of the
developed theory. However, it will not be part of the exam (contrarily, the formulation
of the theorem will).

4.3.6 Theorem. Let N1 and N2 be independent Poisson processes with respect to the
same filtration F. Then ∆N1∆N2 = 0.

Proof. We first prove that the process (N1 − a1(·))(N2 − a2(·)) is a martingale with
respect to F. Because of the independence of the factors, the random variable (N1

t −
a1(t))(N2

t − a2(t)) is integrable and. Furthermore, setting N
j

:= (N j − aj(·)), j = 1, 2,
we get

E
[
(N

1
t −N

1
s)(N

2
t −N

2
s)
∣∣Fs

]
= E

[
(N

1
t −N

1
s)E
[
(N

2
t −N

2
s)
∣∣Fs ∨ σ(N

1
t −N

1
s)
]∣∣Fs

]
= 0,

where in the last passage we used that (N
2
t −N

2
s) is independent of Fs ∨ σ(N

1
t −N

1
s)

and centred. Therefore, N
1
N

2
is an F-martingale. By partial integration and continuity

of a1(·) and a1(·), we get

(N1
t − a1(t))(N2

t − a2(t)) =

(N1
− − a1(·)) · (N2 − a2(·))t + (N2

− − a2(·)) · (N1 − a1(·))t+

+
∑

0≤s≤t
∆N1

s∆N2
s ,
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Because (N1 − a1(·))(N2 − a2(·)) is a martingale and (N j
− − aj(·)) · (Nk − ak(·)), is a

local martingale j, k = 1, 2, j 6= k, (cf. Theorem 4.1.15), both starting at zero, we deduce
that the process

∑
0≤s≤·∆N

1
s∆N2

s is a local martingale which starts at zero. Let now
(τn)n≥1 be a localizing sequence. Then

E

 ∑
0≤s≤τn∧t

∆N1
s∆N2

s

 = 0

which implies
∑

0≤s≤τn∧t ∆N1
s∆N2

s = 0, t ∈ [0, T ] a.s., because
∑

0≤s≤·∆N
1
s∆N2

s is a
nonnegative process. Furthermore, for every t ∈ [0, T ] a.s. holds

0 = ∆
∑

0≤s≤τn∧t
∆N1

s∆N2
s =

∑
0≤s≤τn∧t

∆N1
s∆N2

s −
∑

0≤s<τn∧t
∆N1

s∆N2
s = ∆N1

τn∧t∆N
2
τn∧t

hence
∆N1

t ∆N2
t = lim

n→+∞
∆N1

τn∧t∆N
2
τn∧t = 0, t ∈ [0, T ], a.s.

and the proof is complete.

The next result states that for a family of Poisson processes, independence of the
family and pairwise independence are equivalent properties.

4.3.7 Corollary. Let N1, . . . , Nm be Poisson processes relative to the same filtration F.
Then (N1, . . . , Nm) is independent if and only if (N j , Nk), j, k = 1, . . . ,m, j 6= k, are
independent.

Proof. It is enough to show that the independence of (N j , Nk), j, k = 1, . . . ,m, j 6= k
implies the independence of (N1, . . . , Nm). The converse implication is clear. Be-
cause of Theorem 4.3.6, the independence of (N j , Nk), j, k = 1, . . . ,m, j 6= k implies
∆N j∆Nk = 0, j, k = 1, . . . ,m, j 6= k. Hence by Theorem 4.13 we get the independence
of (N1, . . . , Nm).



CHAPTER 5

Poisson random measures

5.1 Random measures

We devote this section to Poisson random measures relative to a filtration. We do not
consider general Poisson random measures. Rather we restrict our attention to random
measures associated with the jumps of adapted càdlàg processes and consider only the
homogeneous case. Before we need to introduce the notion of random measure and of
integer-valued random measure. Of particular interest will be the part concerning the
definition of the stochastic integral of deterministic functions with respect to a Poisson
random measure and with respect to a compensated Poisson random measure. We fix
a complete probability space (Ω,F ,P), a time horizon [0, T ], T > 0 and a filtration
F = (Ft)t∈[0,T ] satisfying the usual conditions. Then we assume F = FT . For the sake
of simplicity, we introduce the following notation:

(E,B(E)) := ([0, T ]× R,B([0, T ])⊗B(R)). (5.1)

All needed notions of measure theory (definition of ring, semiring...) are summarized in
the appendix to Chapter 1.

The jump jeasure of a càdlàg process

5.1.1 Definition. A random measure µ on (E,B(E)) is a mapping on Ω ×B(E) in
[0,+∞] such that:

(i) µ(·, A) is a random variable for every A ∈ B(E).
(ii) µ(ω, ·) is a measure on (E,B(E)) such that µ(ω; {0} × R) = 0, ω ∈ Ω.

If µ is a random measure on (E,B(E)), we write

µ(A) := µ(ω,A), A ∈ B(E).

For any measurable set A, µ(A) is a nonnegative random variable on (Ω,F ,P). We can
therefore introduce the expectation of µ(A) (note that, by definition, µ(A) ≥ 0). We
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call intensity measure of µ the mapping m on B(E) in [0,+∞] defined by

m(A) := E[µ(A)]. (5.2)

The intensity measure m is a (deterministic) measure on (E,B(E)). Indeed, m(∅) = 0
because µ(ω, ∅) = 0, for every ω, µ(ω, ·) being a measure. The σ-additivity of m follows
from the theorem of B. Levi on monotone convergence (cf. Theorem 1.A.4).

5.1.2 Definition. We say that a random measure µ on (E,B(E)) is an integer-valued
random measure if µ(A) takes values in N ∪ {+∞}, for every A ∈ B(E).

Integer-valued random measures are of special importance because of the relation that
they have with càdlàg adapted processes. Let X be a càdlàg adapted process. For every
A ∈ B(E) we define on (E,B(E)) the random measure µ by

µ(ω;A) =
∑
s≥0

1{∆Xs(ω)6=0}1A(s,∆Xs(ω)), ω ∈ Ω, A ∈ B(E). (5.3)

5.1.3 Proposition. Let X be an adapted càdlàg process with values in R. Then the
random measure µ defined on (E,B(E)) by (5.3) is an integer-valued random measure.

Proof. We show that (5.3) defines an integer-valued random measure. The process X is
adapted and càdlàg . Therefore it is progressively measurable (cf. Theorem 2.3.5) and
the set {t > 0 : ∆Xt 6= 0} is at most countable (cf. Theorem 2.2.6). Therefore, from
this latter property, if (5.3) defines a random measure, it is an integer-valued random
measure. It is clear that for every ω ∈ Ω µ(ω, ·) is a measure on (E,B(E)). We have to
show that µ(·, A) is a random variable, for every A ∈ B(E). This is consequence of the
provgressive measurability of X. Indeed, X is a measurable process, being progressively
measurable and adapted. Therefore ω → 1{∆Xt(ω)6=0}1A(t,∆Xt(ω)) is F -measurable for
every t ∈ [0, T ]. Therefore ω → µ(ω,A) is a random variable for every A ∈ B(E), as a
countable sum of random variables.

5.1.4 Definition. We call the integer-valued random measure µ defined in (5.3) the
jump measure of X.

We shall only consider integer-valued random measures which are jump measure of
some adapted càdlàg process.

Let X be an F-adapted càdlàg process and let µ be its jump measure. It is easy to
see that µ({t} × R) ∈ {0, 1}. Indeed, from the definition of µ, we get

µ({t} × R) =
∑

s≥0 1{∆Xs 6=0}1{t}×R(s,∆Xs)

= 1{∆Xt 6=0}1{t}×R(t,∆Xt)

= 1{∆Xt 6=0} ∈ {0, 1}.

If A ∈ B(E), we define the process NA = (NA
t )t≥0 by

NA
t := µ(A ∩ [0, t]× R). (5.4)

5.1.5 Lemma. Let X be an F-adapted càdlàg process and let µ be its jump measure
with intensity measure m. If A ∈ B(E) is such that µ(A ∩ [0, t] × R) < +∞ for every
t ≥ 0, then the process NA introduced in (5.4) is a simple point process.
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Proof. By definition, the process NA is increasing. Proposition 5.1.3 implies that µ
is an integer-valued random measure and so NA

t ∈ N, t ≥ 0. Furthermore, we have
µ(A ∩ [0, t] × R) < +∞ for every t ≥ 0 which yields µ(A ∩ [0, t + 1

n ] × R) < +∞ for
every n ≥ 1 and µ(A ∩ [0, t + 1

n ] × R) ↓ µ(A ∩ [0, t] × R) as n → +∞. Therefore NA is
right-continuous. The left-limit of NA

t is given by µ(A ∩ [0, t)×R) < +∞. Thus, NA is
a càdlàg increasing process. For every t ≥ 0, NA

t− = µ(A ∩ [0, t)× R) and from this it it
follows that

∆NA
t = µ(A ∩ {t} × R) ≤ µ({t} × R) ∈ {0, 1}.

We know that µ(A ∩ {t} × R) ∈ N, because µ is integer-valued and so the previous
formula yields ∆NA ∈ {0, 1}. It remains to prove that NA is an F-adapted pro-
cess. But this easily follow from the progressive measurability of X. Indeed, ω →
1{∆Xs(ω)6=0}1A(s,∆Xs(ω)) is Ft-measurable, for every s ≤ t and hence NA

t is Ft-
measurable, as a countable sum of Ft-measurable random variables.

The assumption of Lemma 5.1.5 can be weakened requiring that µ(A∩[0, t]×R) < +∞
a.s. for every t ≥ 0. In this case the process NA introduced in (5.4) is defined only a.s.
and therefore the statement of Lemma 5.1.5 holds a.s. To extend the definition of NA

everywhere we can set NA
t (ω) = 0 on the exceptional set on which it is not defined by

(5.4). The filtration F satisfies the usual conditions and this version of the process NA is
adapted and càdlàg. We denote this process again by NA and obviously the statement
of Lemma 5.1.5 holds also for such a modification.

5.2 Definition of Poisson random measure

We consider an F-adapted càdlàg process X with jump measure µ. Let m be the intensity
measure of µ. Thanks to Proposition 5.1.3, we know that the random measure µ is an
integer-valued random measure. Now we are going to discuss the case in which the jump
measure of X is an homogeneous Poisson random measure relative to the filtration F.
The definition of Poisson random measure relative to a filtration can be given in full
generality, without relating it to the jump measure of an adapted càdlàg process. Such
a general definition requires some technical preparation which would exceed the purpose
of these notes. For complete treatment of the topic we refer to Jacod & Shiryaev (2000),
Chapter II.

5.2.1 Definition. Let X be an F-adapted process and let µ be its jump measure with
intensity measure m (cf. (5.3) and (5.2), respectively). We say that µ is a Poisson
random measure relative to the filtration F if:

(i) The intensity measure m is of the form m = λ+ ⊗ ρ, where λ+ is the Lebesgue
measure on ([0, T ],B([0, T ])) and ρ is a σ-finite measure on (R,B(R)).

(ii) For every fixed s ∈ (0, T ] and every A ∈ B(E) such that A ⊆ (s, T ]× R, m(A) <
+∞, the random variable µ(A) is independent of Fs.

We remark that if X is a càdlàg process and its jump measure µ is a Poisson random
measure relative to F, then the process X as no fixed-time discontinuities a.s. Indeed,
we have m({t} × R) = λ+({t})ρ(R). Because ρ is σ-finite, this implies m({t} × R) = 0.
Therefore E[µ({t} × R)] = 0 and so µ({t} × R) = 0 a.s., t ≥ 0.
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We now show that if µ is a Poisson random measure relative to F and A ∈ B(E) is
such that m(A) < +∞, then the process NA introduced in (5.4) is a Poisson process
relative to F (cf. Definition 4.2.2).

5.2.2 Lemma. Let µ be the jump measure of a càdlàg adapted process X with intensity
measure m. If µ is a Poisson random measure relative to F, then for every set A ∈ B(E)
such that m(A ∩ [0, t] × R) < +∞, t ≥ 0, the process NA introduced in (5.4) is an
F-adapted Poisson process relative to the filtration F with intensity function aA(·) :=
m(A ∩ [0, ·]× R).

Proof. We are going to prove that under the stated assumptions the process NA fulfils
all the properties of Definition 4.2.2. Because of m(A∩ [0, t]×R) < +∞ for every t ≥ 0,
it follows that µ(A ∩ [0, t] × R) < +∞ a.s. for every t ≥ 0. From Lemma 5.1.5 and the
comment following it, the process NA is an F-adapted simple point process. Moreover,
m(A ∩ [0, t]× R) < +∞, t ≥ 0, yields NA

t ∈ L1(P), t ≥ 0. Thus,

aA(t) := E[NA
t ] = m(A ∩ [0, t]×R+) = (λ+ ⊗ µ)(A ∩ [0, t]×R+) < +∞, t ≥ 0. (5.5)

The previous equalities imply that aA(·) is a continuous function because λ+ is the
Lebesgue measure on [0, T ]. It remains to prove that NA has F-independent increments.
But this is immediate from the properties of µ. Indeed,

NA
t −NA

s = µ(A ∩ (s, t]× R), 0 ≤ s ≤ t,

and A ∩ (s, t]× R ⊆ (s, T ]× R. Because µ is a Poisson random measure relative to the
filtration F, it follows that NA

t −NA
s is independent of Fs, 0 ≤ s ≤ t. Therefore (NA,F)

is a Poisson process relative to F with intensity function aA(·).

We now state some properties of Poisson random measures relative to a filtration.

5.2.3 Theorem. Let µ be the jump measure of an F-adapted càdlàg process X with
intensity measure m. If µ is a Poisson random measure relative to the filtration F, then
it has the following properties:

(i) For every A ∈ B(E) such that m(A) < +∞, the random variable µ(A) is Poisson
distributed with parameter m(A).

(ii) If A1, . . . , Am, m ≥ 1, are B(E)-measurable pairwise disjoint subsets such that
m(Aj) < +∞, j = 1, . . . ,m, then the vector (µ(A1), · · · , µ(Am)) of random variable is
independent.

(iii) If A1, . . . , Am, m ≥ 1, are B(E)-measurable subsets such that m(Aj) < +∞ and
that Aj ⊆ (s, T ] × R, s > 0, j = 1, . . . ,m, then (µ(A1), · · · , µ(Am)) is a random vector
independent of Fs.

Proof. Let A ∈ B(E) be such that m(A) < +∞. We show that µ(A) is Poisson distrib-
uted with parameter m(A). By Lemma 5.2.2, the process (NA,F) is a Poisson process
with intensity function a(·) = m(A ∩ [0, ·]× R) and therefore, by (4.8)

E
[
eiuµ(A)

]
= E

[
eiuN

A
T
]

= exp
(
(eiu − 1)m(A)

)
.
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In particular, this implies that M(A) is Poisson distributed with parameter m(A) and
(i) is proven. Let A1, . . . , Am ∈ B(E) be pairwise disjoint and such that m(Aj) < +∞.
By Lemma 5.2.2, we know that the process (NAj ,F) is a Poisson process. Furthermore,

∆NAj∆NAk
t = µ(Aj ∩ {t} × R)µ(Ak ∩ {t} × R) = 1{∆Xt 6=0}1Aj∩Ak(t,∆Xt) = 0, (5.6)

for every j, k = 1, . . . ,m, j 6= k.
Now we discuss (ii). If A1, . . . , Am are pairwise disjoint subsets of E such that m(Aj) <

+∞, because of (5.6) and Theorem 4.3.5, the vector (NA1 , . . . NAm) is an independent
vector of Poisson processes and therefore (µ(A1), . . . , µ(Am)) = (NA1

T , . . . , NAm
T ) is an

independent vector of random variables. To see (iii) it is sufficient to prove it for pairwise
disjoint sets. Indeed, we can always reduce the general situation to this particular case by
considering an appropriate partition of the union of the Ajs. If A1, . . . , Am are pairwise
disjoint subsets of E such that m(Aj) < +∞ and that Aj ⊆ (s,+∞)× R, j = 1, . . . ,m,
because of (5.6) and of Theorem 4.3.4, the vector (NA1

t − NA1
s , . . . , NAm

t − NAm
s ) is

independent of Fs, 0 ≤ s ≤ t. On the other side, Aj ⊆ (s,+∞) × R implies N
Aj
s = 0,

j = 1, . . . ,m. This yields the vector (NA1
t , . . . , NAm

t ) is independent of Fs, t ≥ 0.
Therefore (µ(A1), . . . , µ(Am)) = (NA1

T , . . . , NAm
T ) is independent of Fs.

5.3 Stochastic integration for Poisson random measures

Let X be an F-adapted càdlàg process. We assume that that jump measure of X is a
Poisson random measure relative to the filtration F with intensity measure m = λ+⊗ ρ.
In this section we define the integral of deterministic measurable functions with respect
to µ. To simplify the terminology, in this section we call a Poisson random measure
relative to a filtration simply a Poisson random measure. We recall that the definition
of (E,B(E)) was given in (5.1). For a deterministic numerical function f which is
B(E)-measurable we have introduce the notation

f ∗m :=

∫
E
f(t, x) m(dt,dx)

if the integral on the right-hand side exists. In particular f ∗ m is well defined if f is
nonnegative. We define the integral of f with respect to µ ω-wise in an analogous way,
because µ(ω, ·) is a (nonnegative) measure on (E,B(E)) for every ω ∈ Ω. If f is a non-
negative measurable function, then the integral

∫
E f(t, x)µ(ω,dt,dx) always exists. We

shall use the notation f ∗µ for this random variable with values in [0,+∞]. This defini-
tion extends to functions f of arbitrary sign. More precisely, for any measurable function
f on (E,B(E)), by Ωf we denote the set of all ω ∈ Ω such that

∫
E f(t, x)µ(ω,dt,dx)

exists and is finite a.s. Obviously Ωf ∈ F . We say that the integral of f with respect to
µ exists and is finite a.s. if P[Ωf ] = 1. In this case the random variable f ∗ µ defined by

f ∗ µ(ω) :=


∫
E f(t, x)µ(ω,dt,dx), if ω ∈ Ωf ;

0, otherwise;

(5.7)

is called the stochastic integral of f with respect to the Poisson random measure µ. Note
that the stochastic integral f ∗ µ exists and is finite a.s. if and only if |f | ∗ µ < +∞ a.s.
We now state the so-called exponential formula (cf. Kallenberg (1997), Lemma 10.2).
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5.3.1 Lemma (Exponential Formula). Let f be a function on (E,B(E)). If f ≥ 0,
then

E[e−f∗µ] = exp((e−f − 1) ∗m). (5.8)

Proof. First we take f ≥ 0 of the form f = u1A, where u ≥ 0 and A ∈ (E,B(E)) is such
that m(A) < +∞. From Theorem 5.2.3 (i), we know that µ(A) is Poisson distributed
with parameter m(A). This implies

E[e−f∗µ] = E[e−uµ(A)] = exp((e−u − 1)m(A)) = exp((e−f − 1) ∗m).

Let now f be a simple function of the form f =
∑m

j=1 cj1Aj where cj ≥ 0 for every j =
1, . . . ,m and A1, . . . , Am ∈ (E,B(E)) are pairwise disjoint sets such that m(Aj) < +∞,
for every j = 1, . . . ,m. From Theorem 5.2.3 (ii), the random vector (µ(A1), . . . , µ(Am))
is independent and so, from the previous step, we get

E[e−f∗µ] = E
[
exp

(
−
∑m

j=1 cjµ(Aj)

)]
=
∏m
j=1 exp((e−cj − 1)m(Aj))

= exp

(
−
∑m

j=1(e−cj − 1)m(Aj)

)
= exp((e−f − 1) ∗m).

If f is an arbitrary nonnegative function, it can be approximated by an increasing
sequence (fn)n∈N of simple functions and from the previous step formula (5.8) is satisfied
for every n ∈ N. We conclude the proof passing to the limit and applying the theorem
of B. Levi on monotone convergence (cf. Theorem 1.A.4).

Now we characterize, in terms of the intensity measure m, under which conditions
the integral of a deterministic function f with respect to µ exists and is a.s. finite (cf.
Kallenberg (1997), Lemma 10.2).

5.3.2 Proposition. Let µ be a Poisson random measure on (E,B(E)) with intensity
measure m. Then f ∗ µ exists and is finite a.s. if and only if (|f | ∧ 1) ∗m < +∞.

Proof. If f ∗ µ exists and is finite a.s., then, by definition, |f | ∗ µ < +∞ a.s. Applying
Lemma 5.3.1 to |f | and using the estimate (x ∧ 1) ≤ c(1− e−x) for some constant c > 0
and x > 0, we deduce (|f | ∧ 1) ∗m < +∞. Indeed, because of |f | ∗ µ < +∞, we have

0 < E[e−f∗µ] = exp((e−f − 1) ∗m),

meaning (1− e−f ) ∗m < +∞. Hence (|f | ∧ 1) ∗m ≤ c(1− e−|f |) ∗ µ < +∞. Conversely,
we now assume that (|f | ∧ 1) ∗m < +∞. We apply Lemma 5.3.1 to c|f |, where c > 0:

E[e−c|f |∗µ] = exp((e−c|f | − 1) ∗m). (5.9)

Letting c converge to zero on the left-hand side of (5.9) and using dominated convergence,
we get E[e−c|f |∗µ] −→ P[|f | ∗ µ < +∞]. For the right-hand side of (5.9) we observe that
the inequality

|e−c|f | − 1| ≤ c|f | ∧ 2
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holds. Because of c ↓ 0, we can assume c ∈ (0, 2] and so we get |e−c|f |−1| ≤ 2(|f |∧1). We
apply again the theorem of Lebesgue on dominated convergence to get (|e−c|f |−1|)∗m −→
0. In conclusion we have

P[|f | ∗ µ < +∞] = 1.

The following lemma can be shown in a similar way.

5.3.3 Lemma. Let f be a function on (E,B(E)). If (|f | ∧ 1) ∗m < +∞, then

E[e−if∗µ] = exp((e−if − 1) ∗m). (5.10)

We now show how to compute the expectation of the random variable f ∗ µ, where f
is a function which belongs to L1(m).

5.3.4 Lemma. Let f ∈ L1(m). Then

E[f ∗ µ] = f ∗m. (5.11)

Moreover, the stochastic integral with respect to µ is a continuous operator on L1(m)
into L1(P).

Proof. For every nonnegative function f ∈ L1(m) formula (5.11) holds. Indeed, this
is true for indicator functions of the form 1A, A ∈ B(E), m(A) < +∞, and hence
for nonnegative simple functions f . For an arbitrary nonnegative function f we can
find a sequence (fn)n≥1 of nonnegative simple functions such that fn ↑ f pointwise as
n→ +∞. The result follows by monotone convergence. Clearly, formula (5.11) extends
to functions f such that |f | ∗m < +∞. The statement on the continuity follows from

E[|f ∗ µ|] ≤ E[|f | ∗ µ] = |f | ∗m < +∞.

5.4 Compensated Poisson random measures

Let µ be the jump measure of a càdlàg adapted process and a Poisson random measure
relative to F with intensity measure m = λ+ ⊗ ρ, where λ+ is the Lebesgue measure
on (R+,B(R+)) and ρ a σ-finite measure on (R,B(R)). In this section we define the
compensated Poisson random measure and, using the theory of orthogonal measures
developed in Gihman & Skorohod (1974), we introduce the stochastic integral of de-
terministic functions with respect to a compensated Poisson random measure. First, we
introduce the following ring of sets of E:

A := {A ∈ B(E) : m(A) < +∞}. (5.12)

To each set A ∈ A we associate the random variable µ(A) by

µ(A) := µ(A)−m(A), A ∈ A . (5.13)

We remark that µ is not defined on B(E) but only on A . Indeed, on B(E) expressions
of the type “ +∞ − ∞” could appear. Notice that µ defines a mapping on Ω × A
into (−∞,+∞] and that E[µ(A)] = 0 for every A ∈ A . Now we recall the notion of
orthogonal measures (cf. Gihman & Skorohod (1974), IV§4).
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5.4.1 Definition. Let K be a semiring of sets of E. We assume that to each A ∈ K
there corresponds a real-valued random variable ζ(A) with the following properties.

(i) ζ(A) ∈ L2(P) and ζ(∅) = 0.
(ii) ζ(A ∪B) = ζ(A) + ζ(B) a.s. for disjoint A and B in K .
(iii) E[ζ(A)ζ(B)] = α(A ∩B), where α is a set function on K .

The family ζ := {ζ(A), A ∈ K } of random variables satisfying the previous three
conditions is called an orthogonal random measure and α(·) is called structural function
(of ζ).

5.4.2 Lemma. The family µ := {µ(A), A ∈ A } of random variables defined by (5.13)
is an orthogonal random measure on the ring A with structural function m.

Proof. It is clear that µ(∅) = 0 and that µ(A ∪B) = µ(A) + µ(B) for disjoint A and B
in A . Because of Theorem 5.2.3, the random variable µ(A) is Poisson distributed with
parameter m(A), for every A in A . Therefore, E[µ(A)2] is the variance of a Poisson-
distributed random variable with parameter m(A), i.e.,

E[µ(A)2] = E[µ(A)] = m(A), A ∈ A . (5.14)

Because of m(A) < +∞ and of (5.14), we obtain µ(A) ∈ L2(P), A ∈ A . It remains to
show that m is the structural function of µ. For this aim, we notice that the relation

µ(A)µ(B) = [µ(A ∩B) + µ(A \B)]× [µ(A ∩B) + µ(B \A)], A,B ∈ A ,

holds. This and (5.14), together with the fact that µ(C) and µ(D) are independent if C
and D are pairwise disjoint sets in A (cf. Theorem 5.2.3), yield

E[µ(A)µ(B)] = E[µ(A ∩B)2] + E[µ(A ∩B)µ(A \B)]

+ E[µ(A ∩B)µ(B \A)] + E[µ(A \B)µ(B \A)]

= E[µ(A ∩B)2] = m(A ∩B), A,B ∈ A ,

and the proof is concluded.

We call the orthogonal random measure µ defined by (5.13) on the ring A the com-
pensated Poisson random measure associated to the random measure µ or simply com-
pensated Poisson random measure.

5.4.1 Stochastic integration for compensated Poisson random measures

We are going to define the stochastic integral with respect to µ for functions in L2(m).
We start defining the stochastic integral for functions belonging to the set D ⊆ L2(m)
of simple functions:

D :=

{
f =

m∑
k=1

ak1Ak , (ak)
m
k=1 ⊆ R; (Ak)

m
k=1 ⊆ A pairwise disjoint

}
. (5.15)

For A ∈ A , we define
1A ∗ µ = µ(A) .
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Notice that E[(1A ∗ µ)2] = 1A ∗m, that is the stochastic integral with respect to µ is an
isometry from {1A, A ∈ A } into L2(P). Therefore, the integral with respect to µ can
be uniquely extended to a linear isometry on D into L2(P): If f ∈ D , the elementary
stochastic integral with respect to µ is again denoted by µ and

f ∗ µ :=

m∑
k=1

ak µ(Ak), f ∈ D . (5.16)

Moreover,
E[(f ∗ µ)(g ∗ µ)] = (fg) ∗m, f, g ∈ D . (5.17)

Now we extend the definition of elementary stochastic integral to every function f ∈
L2(m) (cf. Gihman & Skorohod (1974), IV.§4 Theorem 1).

5.4.3 Lemma. The system D of simple functions is dense in L2(m).

Proof. We only need to verify that D satisfies the conditions of Lemma 1.2.3. The set of
simple functions is clearly such that σ(D) = B(E) (notice that m is a σ-finite measure
on E). Because A is a ring, D is ∩-stable and so D is stable under multiplication.
The measure m is σ-finite on E, hence there exists a sequence (An)n∈N ⊆ A such that
An ↑ E as n → +∞. Therefore, we can construct a sequence (hn)n∈N ⊆ D converging
pointwise to 1.

5.4.4 Theorem. There exists a unique (continuous) isometric mapping on L2(m) into
L2(P), again denoted by µ, such that

1A ∗ µ = µ(A), A ∈ A . (5.18)

Proof. For a function f ∈ D , we have defined the elementary stochastic integral and
we know that it is an isometric mapping on D into L2(P). Moreover, by definition,
the elementary stochastic integral satisfies relation (5.18). The linear space D is dense
in L2(m), hence the elementary stochastic integral with respect to µ, regarded as a
mapping from D into L2(P), has a unique isometric extension on L2(m). We denote this
extension again by µ. We need to show the uniqueness of µ satisfying (5.18). But for
this it is enough to observe that any isometric mapping between two Hilbert spaces is
continuous. Relation (5.18) defines µ uniquely on D and, by the density of D in L2(m)
and by continuity, uniquely on L2(m).

Let µ be the unique isometric mapping of Theorem 5.4.4 and f ∈ L2(m). We call f ∗µ
the stochastic integral of f with respect to the compensated Poisson random measure µ.
We can extend the definition of the stochastic integral with respect to µ also to functions
in L1(m): Let f ∈ L1(m). We define the stochastic integral of f with respect to µ by

f ∗ µ := f ∗ µ− f ∗m. (5.19)

Of course, from Proposition 5.3.2, the right-hand side of (5.19) is well-defined and finite-
valued a.s. It remains to show that it is consistent with the definition of the stochastic
integral with respect to µ.
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5.4.5 Proposition. If f ∈ L1(m) ∩ L2(m), then f ∗ µ and f ∗ µ are both well-defined
and

f ∗ µ = f ∗ µ− f ∗m a.s. (5.20)

Proof. By Proposition 5.3.2 and Theorem 5.4.4, the stochastic integrals f ∗µ and f ∗µ are
both well-defined and finite-valued a.s. for any f ∈ L1(m)∩L2(m). For proving (5.20), in
a first step we assume that f ∈ L1(m)∩L2(m) is such that m({f 6= 0}) < +∞. Because
D ⊆ L2(m) is a dense set, there exists a sequence (fn)n≥1 ⊆ D converging to f in L2(m).
Replacing, if necessary, fn with fn 1{f 6=0}, without loss of generality we can assume that
fn vanishes outside of {f 6= 0}. This implies that (fn)n≥1 converges in L1(m) as well.
Relation (5.20), being obviously true for every fn, now extends to f by the L2(m)-
continuity of µ and the L1(m)-continuity of µ and m. (cf. Theorem 5.4.4 and Lemma
5.3.4). In case that f ∈ L1(m)∩L2(m) is chosen arbitrarily, we define fn := f 1Bn where
Bn ∈ A is such that Bn ↑ E (such a sequence exists because m is a σ-finite measure on
(E,B(E))). Using the theorem of Lebesgue on dominated convergence, we observe that
(fn)n≥1 converges to f in L1(m) and L2(m). Since m({fn 6= 0}) < +∞, we can apply
the first step and obtain (5.20) for every fn. Again by the continuity property of µ, µ
and m, we conclude that (5.20) remains valid for f .

We conclude this section by giving necessary and sufficient conditions for a B(E)-
measurable function f to be integrable with respect to µ, i.e., to be such that f ∗ µ is
well-defined and finite-valued a.s.

5.4.6 Theorem. Let f be a measurable function on (E,B(E)). The integral f ∗µ exists
and is a.s. finite if and only if (f2 ∧ |f |) ∗m < +∞.

Proof. We first assume that (f2 ∧ |f |) ∗m < +∞. We have

f = f1{|f |≤1} + f1{|f |>1}

with f1{|f |≤1} ∈ L2(m) and f1{|f |>1} ∈ L1(m). By Theorem 5.4.4, (f1{|f |≤1}) ∗ µ exists
and is a.s. finite. By Proposition 5.3.2 and Proposition 5.4.5, (f1{|f |>1}) ∗ µ exists, is
a.s. finite and consistent. By linearity we put

f ∗ µ := (f1{|f |≤1}) ∗ µ+ (f1{|f |>1}) ∗ µ.

Hence, f ∗µ exists, is a.s. finite and consistent. We do not verify the converse implication
and refer to Kallenberg (1997), Theorem 10.15 for a complete proof.

5.5 Construction of Lévy processes

In §5.3 and §5.4 we have introduced the stochastic integral of deterministic functions
with respect to a Poisson random measure and the associated compensated Poisson
random measure, respectively. Now we want to apply the developed theory to construct
Lévy processes by integration of deterministic functions. We consider a càdlàg F-adapted
process X with jump measure µ. We assume that µ is a Poisson random measure relative
to the filtration F. The intensity measure of µ is m = λ+ ⊗ ν, where λ+ is the Lebesgue
measure on ([0, T ],B([0, T ])), while ν is a σ-finite measure on (R,B(R)). We stress
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that this assumption implies that the process X has no fixed time discontinuities a.s.
Furthermore, we require that ν is a Lévy measure, i.e., ν({0}) = 0 and (x2 ∧ 1) ∈ L1(ν).
If A ∈ E is of the form A = [0, 1]×B, then

E[µ(A)] = ν(B)

that is the Lévy measure describes the mean of the jumps of X with size in B over a
time interval [0, 1]. Clearly

E[µ([0, t]×B)] = tν(B), t ∈ [0, T ],

meaning that the expected values of the number of jumps in B does not depend on
time t. If B = {|x| > 1}, we know that X will only have finitely many jumps in B (cf.
Theorem 2.2.6) and, because of the integrability conditions on the Lévy measure, we also
get ν(B) < +∞. Notice that also the stronger integrability condition |x| ∧ 1 ∈ L1(ν)
yields ν(B) < +∞. However, this condition also yields ν({|x| ≤ 1}) < +∞, which does
not correspond to the property of a càdlàg process X: From Theorem 2.2.6 we only
know that the “big jumps” of X are finitely many over compact time interval. However,
small jumps could be countably many. This is related with the fact that for any càdlàg
process the sum

∑
0≤s≤t(∆Xs)

2 is always finite, while the sum
∑

0≤s≤t |∆Xs| is finite if
and only if X is a càdlàg process of finite variation. In conclusion, one can see that, if
X is a càdlàg process with jump measure µ which is a Poisson random measure of the
form λ+ ⊗ ρ, then ρ is necessarily a Lévy measure.

Notice that the function h defined by h(t, x) := 1[0,t]f(x) belongs to Lq(λ+⊗ ν) if and
only if the function f belongs to Lq(ν), q ≥ 1. We recall that, because F satisfies the
usual conditions, every adapted Lévy process in law relative to F has an adapted càdlàg
modification which is a Lévy process relative to F (cf. Theorem 2.5.12). In the sequel
we do not distinguish a Lévy process in law from such a càdlàg modification.

We introduce the system of simple functions in Lq(ν), q ≥ 1, by

D :=

{
f =

∑m
j=1 aj 1Cj , aj ∈ R; Cj ∈ B(R) p.d., ν(Cj) < +∞

}
, (5.21)

where the acronym p.d. stands for pairwise disjoint.

5.5.1 Lemma. Let X be a càdlàg adapted process with jump measure µ. If µ is a
Poisson random measure relative to the filtration F with intensity measure λ+ ⊗ ν, then
for every f ∈ D the process (1[0,·]f) ∗ µ = ((1[0,t]f) ∗ µ)t≥0 is a Lévy process relative to
F.

Proof. Let f ∈ D have the representation f =
∑m

j=1 aj 1Cj . We put Aj := [0, T ] × Cj .
For every t ≥ 0 we have µ(Aj ∩ [0, t] × R) < +∞ a.s. because m(Aj ∩ [0, t] × R) =
m([0, t]× Cj) = tν(Cj) < +∞ and the identity µ(Aj ∩ [0, t]× R) = µ([0, t]× Cj), t ≥ 0,
holds. Lemma 5.2.2 ensures that the process NAj = (µ([0, t]× Cj))t≥0 is a Poisson
process relative to F. Therefore the process µ(1[0,·]f) is càdlàg and adapted because

µ(1[0,t]f) =

m∑
j=1

ajµ([0, t]× Cj).
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Furthermore, µ(1{0}f) = 0. For 0 ≤ s ≤ t, the function 1(s,t]f belongs to L1(λ+ ⊗ ν)
and we can apply Lemma 5.3.3 to get

E
[
exp
(
iu((1[0,t]f) ∗ µ− (1[0,s]f) ∗ µ)

)]
= E

[
exp
(
iu(1(s,t]f) ∗ µ

)]
= exp((t−s)(eiuf−1)∗ν).

This means, in particular, that (1[0,·]f)∗µ has homogeneous one-dimensional increments.
We show the F-independence of the increments. Obviously,

(1[0,t]f) ∗ µ− (1[0,s]f) ∗ µ = (1(s,t]f) ∗ µ =

m∑
j=1

ajµ((s, t]× Cj).

The sets (s, t] × C1, . . . , (s, t] × Cm are pairwise disjoint because C1, . . . , Cm are. Fur-
thermore, (s, t] × Cj ⊆ (s, T ] × R for every j = 1, . . . ,m. Hence, the vector (µ((s, t] ×
B1), . . . , µ((s, t] × Bm)) is an independent random vector independent of Fs (cf. The-
orem 5.2.3) and so (1(s,t]f) ∗ µ is independent of Fs. We have that (1[0,·]f) ∗ µ starts at
zero, is càdlàg and has homogeneous increments. This is sufficient to assert that it is a
stochastically continuous process. Therefore (1[0,·]f) ∗ µ is a Lévy process relative to F
for every f ∈ D .

As a consequence of Lemma 1.2.3, the system D introduced in (5.21) is total in Lq(ν),
q ≥ 1. This allows to extend Lemma 5.5.1.

5.5.2 Proposition. Let X be a càdlàg adapted process with jump measure µ. If µ is a
Poisson random measure relative to the filtration F with intensity measure λ+ ⊗ ν, then
for every f such that |f | ∧ 1 ∈ L1(ν) the process (1[0,·]f) ∗ µ = ((1[0,t]f) ∗ µ)t≥0 is a Lévy
process relative to F.

Proof. First we assume f ∈ L1(ν). The system D is dense in L1(ν) and so there exists
a sequence (fn)n∈N ⊆ D such that fn −→ f in L1(ν) as n→ +∞. By Lemma 5.5.1, the
sequence (1[0,·]fn) ∗ µ is a sequence of Lévy processes relative to F. From the linearity
of the stochastic integral and Lemma 5.3.4 we get

0 ≤ E[|(1[0,t]fn) ∗ µ− (1[0,t]f) ∗ µ|] ≤ E[(1[0,t]|fn − f |) ∗ µ]

= t(|fn − f |) ∗ ν −→ 0, n→ +∞.

So we can conclude that (1[0,t]fn) ∗ µ converges to (1[0,t]f) ∗ µ in L1(P). Because the
filtration F satisfies the usual conditions, this implies that the process (1[0,·]f) ∗ µ is
F-adapted. Furthermore, the L1(P)-convergence of (1[0,t]fn) ∗ µ to (1[0,t]f) ∗ µ implies
convergence in probability. By Lemma 2.5.7, (1[0,·]f)∗µ is a process with F-independent
and homogeneous increments. Obviously, (1[0,t]f) ∗ µ −→ 0 a.s. as t ↓ 0 and from the
homogeneity of the increments, we can assert that (1[0,·]f)∗µ is stochastically continuous
(cf. Lemma 2.5.10). In conclusion, ((1[0,·]f) ∗ µ,F) is a Lévy process in law. Because
the filtration F satisfies the usual conditions, we can find a version of (1[0,·]f) ∗ µ which
is in fact a Lévy process relative to F, i.e., also càdlàg. We do not distinguish these
two processes and denote the càdlàg version again by ((1[0,·]f) ∗ µ,F). Hence, for every
f ∈ L1(P), the process ((1[0,·]f) ∗ µ,F) is a Lévy process.

The remain of the proof is not part of the exam:
We now weaken the assumptions and consider f such that |f | ∧ 1 ∈ L1(ν). Because

of Proposition 5.3.2, the stochastic integral µ(1[0,t]f) exists and is finite a.s. for every
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t ≥ 0. Denoting by f+ and f− the positive and the negative part of f , respectively, we
have f± ≤ |f | so that f± ∧ 1 ∈ L1(ν) and the stochastic integrals µ(1[0,t]f

±) are well
defined and the relation µ(1[0,t]f) = µ(1[0,t]f

+)− µ(1[0,t]f
−) holds a.s. Let us introduce

the functions f±n := f±1{|f±|<n} and fn := f+
n − f−n , n ≥ 1. Then f±n ≥ 0 and f±n ↑ f±

pointwise as n→ +∞. Furthermore, f±n ∈ L1(ν) because f±n ≤ (f± ∧ n) ≤ n(f± ∧ 1) ∈
L1(ν). Therefore we also have fn ∈ L1(ν). Hence µ(1[0,t]f

±
n ) < +∞ a.s. t ≥ 0, n ≥ 1, and

the theorem of B. Levi on monotone convergence implies that µ(1[0,t]f
±
n ) ↑ µ(1[0,t]f

±)
a.s. as n → +∞, t ≥ 0. Because of the previous step ((µ(1[0,t]fn))t≥0,F) is a Lévy
process for every n ≥ 1. Moreover,

lim
n→+∞

µ(1[0,t]fn) = lim
n→+∞

µ(1[0,t]f
+
n )− lim

n→+∞
µ(1[0,t]f

−
n )

= µ(1[0,t]f
+)− µ(1[0,t]f

+)

= µ(1[0,t]f), t ≥ 0.

The previous convergence takes place a.s. and so µ(1[0,·]f) is F-adapted (the filtra-
tion satisfies the usual conditions). Furthermore, Lemma 2.5.7 yields µ(1[0,·]f) has
F-independent and homogeneous increments. Clearly, µ(1[0,t]f) converges to 0 a.s. as
t ↓ 0 and we know that this fact, together with the homogeneity of the increments im-
plies that µ(1[0,·]f) is stochastically continuous. Therefore (µ(1[0,·]f),F) is a Lévy process
in law. We do not distinguish such process from its càdlàg modification and so we assert
that (µ(1[0,·]f),F) is a Lévy process.

Let now µ be the compensated Poisson random measure of L. From Theorem 5.4.4,
every deterministic function in L2(λ+⊗ ν) can be integrated with respect to µ. For any

f ∈ L2(ν) we introduce the process X(f) = (X
(f)
t )t≥0 by

X
(f)
t = (1[0,t]f) ∗ µ, t ≥ 0. (5.22)

5.5.3 Theorem. Let X be a càdlàg adapted process with jump measure µ. If µ is a
Poisson random measure relative to the filtration F with intensity measure λ+ ⊗ ν and
µ is the associated compensated Poisson random measure, then for every f ∈ L2(ν) the
process X(f) defined by (5.22) has the following properties:

(i) E[(X
(f)
t )2] = t (f2 ∗ ν) and, in particular, the random variable X

(f)
t is square

integrable, t ≥ 0;
(ii) (X(f),F) is a Lévy process;
(iii) X(f) is a square integrable martingale;
(iv) ∆X(f) = f(∆X)1{∆X 6=0} a.s.

Proof. (i) is consequence of the isometry of the stochastic integral with respect to µ for
functions in L2(ν). We show (ii) and (iii) together. If f ∈ L2(ν), then the sequence
fn := f1{|f |> 1

n
} belongs to L1(ν) ∩ L2(ν) and converges to f in L2(ν) as n → +∞.

Indeed, f2
n ≤ f2 and

|fn| ≤ f21{|f |>1} + |f |1{ 1
n
<|f |≤1} ≤ f

21{|f |>1} + nf21{ 1
n
<|f |≤1} ≤ (1 + n)f2 ∈ L1(ν) .

For every n ≥ 1, Proposition 5.4.5 yields

X
(fn)
t = (1[0,t]fn) ∗µ− t(fn ∗ ν) =

∑
0<s≤t fn(∆Xs)1{∆Xs 6=0}− t(fn ∗ ν), t ≥ 0. (5.23)
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From Proposition 5.5.2 we know that (X(fn),F) is a Lévy process for every n ≥ 1.

Moreover, from (5.23) and Lemma 5.3.4 it follows that E[X
(fn)
t ] = 0, t ≥ 0. Lemma 2.5.6

yields X(fn) is an F-martingale. We can apply the linearity of the stochastic integral
with respect to µ and its isometry property for functions in L2(λ+ ⊗ ν) to obtain

E[(X
(fn)
t −X(f)

t )2] = E[(X
(fn−f)
t )2] = t((fn − f)2 ∗ ν) −→ 0 as n→ +∞. (5.24)

Therefore X
(fn)
t converges to X

(f)
t in L2(P), hence in probability, as n → +∞. By

Lemma 2.5.7 we obtain that X(f) has F-independent and homogeneous increments. The
process X(fn) is F-adapted because it is a Lévy process relative to F, so (5.24) shows
that also X(f) is F-adapted, because the filtration F satisfies the usual conditions. The
stochastic continuity of X(f) is clear. Indeed, because of the isometry of the stochastic
integral with respect to µ for functions in L2(ν), for every t ∈ [0, T ] and ε > 0, by
Chebyschev inequality,

P[|X(f)
t −X(f)

s | > ε] ≤ 1

ε2
E[(X

(f)
t −X(f)

s )2] =
1

ε2
(t− s)(f2 ∗ ν) −→ 0, as s→ t.

Formula (5.24) implies that X
(fn)
t converges in L1(P) to X

(f)
t and thanks to Lemma

2.3.11 we can conclude that X(f) is an F-martingale. The process (X(f),F) is a Lévy
process in law and we consider a version of X(f) which is also càdlàg, i.e., which is in
fact a Lévy process relative to F. We denote this modification again by X(f): (X(f),F)
is a Lévy process and an F-martingale. Because of (i), the martingale X(f) is square
integrable and this concludes the proof of (ii) and (iii). By (5.23) we have

∆X
(fn)
t = fn(∆Xt)1{∆Xt 6=0}, t ≥ 0, a.s. (5.25)

Because X(f) is càdlàg we can define the process ∆X(f) and because

lim
n→+∞

∆X
(fn)
t = ∆X

(f)
t , t ≤ T, a.s.

we can conclude that ∆X(f) = f(∆X)1{∆X 6=0} a.s. because T > 0 was chosen arbitrarily.
The proof of the theorem is now complete.

5.6 The jump measure of a Lévy processes

In this section we prove that the jump measure of a Lévy process (X,F) is a Poisson
random measure relative to the filtration F.

Because the filtration F satisfies the usual conditions, we can assume that a Lévy
process (X,F) is a càdlàg process. For this reason, the jump measure µ of X, given on
(E,B(E)) (cf. (5.1)) by (5.3), i.e.,

µ(ω,A) :=
∑
s≥0

1{∆X(ω)s 6=0}1A(s,∆Xs(ω)), A ∈ B(E),

is an integer-valued random measure (cf. Proposition 5.1.3). In this section we show
that the jump measure of a Lévy process (X,F) is a Poisson random measure relative to
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the filtration F with intensity measure m := λ+ ⊗ ν, where λ+ is the Lebesgue measure
on ([0, T ],B([0, T ])) and ν is a Lévy measure on (R,B(R)), i.e., ν is σ-finite, such that
ν({0}) = 0 and (x2 ∧ 1) ∈ L1(ν). For any Borel subset B of R contained in {|x| > ε},
where ε > 0 is arbitrary but fixed, we introduce the process ξB = (ξBt )t≥0 by

ξBt := µ([0, t]×B), t ≥ 0. (5.26)

Notice that ξB can be obtained from (5.4) by choosing A = [0, T ] × B. Because of
B ⊆ {|x| > ε} and of the càdlàg property of the paths of X, we have that for every
t ≥ 0, µ([0, t]×B) < +∞. Therefore, from Lemma 5.1.5, ξB is an F-adapted simple point
process. We are going to show that the process ξB is a homogeneous Poisson process
relative to F. Now the situation is different from the one of Lemma 5.2.2 because we
only know that µ is the jump measure of a Lévy process and not (yet) that it is a Poisson
random measure relative to F.

With the Lévy process (X,F) we associate the process tX by

tXs := Xt+s −Xt, s ≥ 0. (5.27)

Because of the Strong Markov Property (Theorem 2.5.15) the process tX is independent
of Ft. If we can show that the increment ξBt+s − ξBt is a measurable time-homogeneous
functional of tX, then we can conclude that ξBt+s − ξBt is independent of Ft and has the
same distribution of ξBs , that is (ξB,F) has homogeneous and independent increments.
However, we have to explain what we mean with “measurable functional”.

In general, if Y is a random variable taking values in some general measurable space
(Z,Z ) and it is independent of a σ-algebra G , then F (Y ) is also independent of G , if
F : Z −→ R is a (Z ,B(R))-measurable functional. To apply this result to our case we
have to understand a Lévy process X as a random variable in some measurable space.

We observe that for every ω ∈ Ω, the mapping ω → {Xt(ω)}t∈[0,T ] is a càdlàg function.
This suggest that we can look regard a càdlàg process X as a random variable taking
value in the space of the paths. More precisely, we introduce the set

D := {z : [0, T ] 7−→ R such that the mapping t 7→ z(t) is càdlàg} (5.28)

of càdlàg functions on [0, T ] into R is called the Skorohod space over R. We consider
the application Zt : D 7−→ R such that Zt(z) := z(t), called coordinate projection. The
σ-algebra FD := σ(Zt, t ≥ 0) is called the Skorohod σ-algebra on D.

One can see that ω → {Xt(ω)}t∈[0,T ] is (F ,FD)-measurable and therefore it is possible
to understand X as a random variable taking values on the Skorohod space (D,FD).

Notice that, if P is a probability measure on (Ω,F ), then we can consider the law of
the process X (as a random variable with values in the Skorohod space) PX by setting

PX [A] := P[ω ∈ Ω : X(ω) ∈ A], A ∈ FD.

Notice that, if for example X is a càdlàg Gaussian process and A is a cylindrical set,
then PX [A] is a more-dimensional normal distribution.

In the same spirit we can consider a Brownian motion as a random variable taking
values in the measurable space C([0, T ]) of continuous functions endowed with Skorohod
σ-algebra generated by continuous functions.
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We now show that the increment ξBt+s− ξBt can be represented as a time-homogeneous
(FD,B(R))-measurable functional of the process tX. From this it follows, in particular,
that ξB has F-independent and homogeneous increments.

5.6.1 Lemma. Let B ∈ B(R) be such that B ⊆ {|x| > ε}, where ε > 0 is arbitrary but
fixed. We consider the process ξB introduced by (5.26). For any s ≥ 0 there exists an
(FQ

D ,B(R))-measurable functional Fs,B such that

ξBt+s − ξBt = Fs,B(tX) a.s., t ≥ 0.

Moreover, there exists a constant, say νB ≥ 0, such that

aB(t) := E[ξBt ] = tνB. (5.29)

In particular, (ξB,F) is a homogeneous Poisson process.

Proof. We define the functional Gs,B by

Gs,B(z) :=
∑

0<u≤s
1{∆Zu(z)6=0}1B(∆Zu(z)), z ∈ D,

and the sequence (τk)k≥0 by

τ0 := 0, τk+1(z) := inf{t > τk(z) : ∆Zt(z) ∈ B}, k ≥ 1.

Let Q be a probability measure on (D,FD) and FQ
D the Q-completion of FD. Let

G = (Gt)t∈[0,T ] be the right-continuous and complete filtration defined by Gt := FQ
D ,

t ∈ [0, T ]. Then (Zt)t∈[0,T ] is a càdlàg G-adapted process. Therefore from Theorem
2.3.5 it is progressively measurable. Since G satisfies the usual conditions, we can apply
Theorem 2.3.8 (iii) to deduce that τk are stopping times with respect to G. In particular
τk is (FQ

D ,B(R+))-measurable, because they are random variables on (D,FQ
D ,Q) taking

values in [0,+∞].
The functional Gs,B is integer valued and because

{z : Gs,B(z) = k} = {z : τk(z) ≤ t < τk+1(z)}

and {τk ≤ t < τk+1} is FQ
D -measurable, the functional Gs,B is (FQ

D ,B(R))-measurable,
for every probability measure Q on (D,FD). Furthermore,

ξBt+s − ξBt =
∑

t<u≤t+s 1{∆Xu 6=0}1B(∆Xu)

=
∑

0<u≤s 1{∆tXu 6=0}1B(∆tXu) = Gs,B(tX), t, s ≥ 0.

If we now choose Q := PL = PtL we find Fs,B on (D,FD) such that Fs,B = Gs,B PL-
a.s. (where PL denotes the law of L) and because under PL Fs,B(tX) is distributed as
Fs,B(X) = ξBs − ξB0 , we can conclude that ξBt+s − ξBt is distributed as ξBs . From Lemma
5.1.5, we know that ξB is a simple point process relative to F. We can assert that ξB

is a simple point process with F-independent and homogeneous increments. Because
ξB is càdlàg and starts at 0, the homogeneity of the increments implies that ξB is also
stochastically continuous (Lemma 2.5.10), i.e., (ξB,F) is a Lévy process with bounded
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jumps. Because of Theorem 2.5.17, the process ξB has a finite moment of every order.

We can introduce the process ξ
B

= (ξ
B
t )t≥0 by ξ

B
t := ξBt − E[ξBt ]. Because of Lemma

2.5.6, ξ
B

is an F-martingale square integrable martingale. By Doob’s inequality, we get
that supt∈[0,T ] |ξt| belongs to L2(P), hence to L1(P). Therefore

sup
t∈[0,T ]

|ξBt |2 ≤ sup
t∈[0,T ]

|ξt|2 + E[(ξBT )2].

Therefore, by monotone convergence, because ξBs converges to ξBt in probability (con-
vergence in probability is here enough, cf. Theorem 1.1.3), we can conclude that the
function t 7→ E[ξBt ] is continuous. Let a(t) := E[ξBt ]. Then because of the homogeneity
of the increments we get

aB(t+ s) = E[ξBt+s − ξBt ] + E[ξBt ] = aB(s) + aB(t), t, s ≥ 0,

which is the Cauchy functional equality. This relation together with the continuity,
implies that the function aB(·) is linear and therefore that there exists a νB ≥ 0 such
that aB(t) = tνB. In conclusion ξB is a stochastically continuous simple point process
with F-independent and homogeneous increments such that E[ξBt ] = tνB, t ≥ 0, νB ≥ 0,
i.e., (ξB,F) is a homogeneous Poisson process (cf. Definition 4.2.2) and the proof of the
lemma is complete.

Thanks to Lemma 5.6.1, we can compute the explicit form of the intensity measure of
the random measure µ. For any C ∈ B(R), we put

ν(C) := E[µ([0, 1]× C)]. (5.30)

Clearly, (5.30) defines a measure on the space (R,B(R)). From the definition of µ, we
have that ν({0}) = 0. Moreover, ν({|x| > ε}) < +∞, for every ε > 0. Indeed, because
of Lemma 5.6.1, the process (ξB,F), where B := {|x| > ε}, is a homogeneous Poisson
process and therefore

ν(B) = E[µ([0, 1]×B)] = E[ξB1 ] = νB < +∞,

where the constant νB ≥ 0 was introduced in (5.29). This implies that ν is a σ-finite
measure on (R,B(R)) because the sequence (Bn)n≥1 defined by Bn := {|x| > 1

n}, n ≥ 1,
is such that Bn ↑ R \ {0} as n→ +∞ and ν(R) = ν(R \ {0}). It can be proven that the
function (x2 ∧ 1) is integrable with respect to ν. We do not verify this property and we
refer to, e.g., Kallenberg (1997), Theorem 13.4. In conclusion, ν is a Lévy measure. We
call ν the Lévy measure of the process X.

5.6.2 Lemma. Let µ be the jump measure of the Lévy process (X,F) with intensity
measure m. Then m = λ+ ⊗ ν, where λ+ is the Lebesgue measure on ([0, T ],B([0, T ]))
and ν is the Lévy measure of X.

Proof. Because of Lemma 5.6.1, we have that m(A) = (λ+⊗ ν)(A) if A ∈ E is such that
A = [0, u] × {|x| > ε}, ε > 0, u ≥ 0. To obtain that m = λ+ ⊗ ν is now a standard
procedure with the help of the uniqueness theorem for measures (cf. Theorem 1.A.2).
We introduce the system of sets

C := {{0} × C, C ∈ B(R) : ν(C) < +∞}∪
∪ {(r, v]× C : 0 ≤ r ≤ v, C ∈ B(R) : ν(C) < +∞}
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which generates B(E) and is stable under intersections. If A = (r, v]×B with 0 < r < v
and B ∈ B(R) is such that B ⊆ {|x| > ε}, ε > 0, then A ∈ C and µ(A) = µ([0, v] ×
B)−µ([0, r]×B) = ξBv − ξBr . From the previous step, this yields m(A) = m([0, v]×B)−
m([0, r] × B) = (v − r)ν(B) = (λ+ ⊗ ν)(A). The sets An := [0, T ] ×

(
{|x| > 1

n} ∪ {0}
)
,

n ≥ 1, belong to C and are such that ∪∞n=1An = E. Hence (An)n≥1 is a sequence of sets
of finite measure with respect to both m and λ+ ⊗ ν. An application of the uniqueness
theorem for measures (cf. Theorem 1.A.2) shows that m = λ+ ⊗ ν on B(E).

Now we show that, for every A ∈ B(E) such that m(A) < +∞, the process (NA,F)
defined by (5.4) is a Poisson process.

5.6.3 Proposition. Let µ be the jump measure of a Lévy process (X,F) with intensity
measure m = λ+ ⊗ ν and let A ∈ B(E) be such that (λ+ ⊗ ν)(A) < +∞. Then the
process NA := (NA

t )t≥0 defined by NA
t := µ(A ∩ [0, t] × R), t ≥ 0, is a Poisson process

relative to F and aA(·) := (λ+ ⊗ ν)(A ∩ [0, ·]× R) is its intensity function.

Proof. We know that NA is a simple point process for every A ∈ B(E) be such that
(λ+ ⊗ ν)(A) < +∞. For the claim of the proposition it is sufficient to show that
(NA − aA(·),FL) is a local martingale and then to apply Theorem 4.2.3. First we
consider the case A = (r, v] × B with B ⊆ {|x| > ε}, ε > 0. Then, for every t ≥ 0, we
have

NA
t − (λ+ ⊗ ν)(A ∩ [0, t]× R) = (ξBt − tν(B))v − (ξBt − tν(B))r,

where the superscripts v and r denote the stopping operation at the deterministic times
v and r, respectively. By Lemma 5.6.1, (ξB,F) is a Poisson process with intensity
a(t) = tν(B). Therefore, by Doob’s Stopping Theorem (cf. Theorem 2.3.13) NA

t − (λ+⊗
ν)(A ∩ [0, t]× R) is a martingale as a difference of martingales.

Now we consider ε > 0 arbitrarily fixed and let A be the algebra of measurable
subsets A of (0, T ]×{|x| > ε} of the form A =

⋃n
j=1Aj with pairwise disjoint rectangles

Aj := (rj , vj ]× Cj , 0 ≤ rj ≤ vj ≤ T , Cj ∈ B(R) and Cj ⊆ {|x| > ε}. We notice that A
generates the σ-field B((0, T ])⊗B({|x| > ε}). For any A ∈ A it follows

NA − (λ+ ⊗ ν)(A ∩ [0, ·]× R) =
n∑
j=1

(
NAj − (λ+ ⊗ ν)(Aj ∩ [0, ·]× R)

)
and hence (NA − (λ+ ⊗ ν)(A∩ [0, ·]×R),FL) is a martingale by the previous step. The
class C ⊆ B(E) of all A ⊆ (0, T ]× {|x| > ε} such that the process (NA − (λ+ ⊗ ν)(A ∩
[0, ·]×R),FL) is a martingale is a monotone class of subsets of (0, T ]×{|x| > ε} (cf. §1.2).
Indeed, if An ∈ C monotonically converges to a subset A of (0, T ]× {|x| > ε} then it is
easy to see that NAn

t − (λ+⊗ν)(An∩ [0, t]×R) converges to NA
t − (λ+⊗ν)(A∩ [0, t]×R)

in L1(Q), t ≥ 0, and hence the process (NA − (λ+ ⊗ ν)(A ∩ [0, ·] × R),FL) is again a
martingale (cf. Lemma 2.3.11). Because of the above-stated, we have A ⊆ C and by
the monotone class theorem for sets (cf. Theorem 1.2.1), C = B((0, T ])⊗B({|x| > ε}).
Let now A be an arbitrary Borel subset of [0, T ] × R such that (λ+ ⊗ ν)(A) < +∞.
The sequence (An)n≥1 defined by An := A ∩ (0, T ] × {|x| > 1

n}, n ≥ 1, converges to

A \ (0,+∞)×{0} increasingly. From this it follows that NAn
t − (λ+⊗ ν)(An ∩ [0, t]×R)

converges to NA
t − (λ+ ⊗ ν)(A ∩ [0, t]× R) in L1(P) for every t ≥ 0. From the previous

step we know that (NAn − (λ+ ⊗ ν)(An ∩ [0, ·] × R),FX) are martingales and hence
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(NA− (λ+⊗ ν)(A∩ [0, ·]×R),FX) is a martingale, too. This completes the proof of the
proposition.

It is now immediate to see that if µ is the jump measure of a Lévy process (X,F), then
it is a Poisson random measure relative to the filtration F. Indeed, if we fix s > 0 and we
consider a Borel subset A of (s, T ] × R such that m(A) < +∞, because of Proposition
5.6.3, the process (NA,F) is a Poisson process. Notice that NA

s = 0. Therefore

µ(A) = NA
T = NA

T −NA
s ,

which is independent of Fs. Lemma 5.6.2 implies that the intensity measure m of µ is
equal to λ+ ⊗ ν. In conclusion we have shown the following result:

5.6.4 Theorem. Let (X,F) be a Lévy process and let µ be its jump measure. Then µ is
a Poisson random measure relative to the filtration F and its intensity measure is given
by m = λ+⊗ν, where λ+ is the Lebesgue measure on ([0, T ],B([0, T ])) and ν is the Lévy
measure of the process X.

5.7 Lévy–Itô and Lévy–Khintchine decomposition

In this section we are going to establish two important decompositions which are valid
for Lévy processes: Lévy–Itô Decomposition and Lévy–Khintchine Decomposition. The
first one give as informations about the structure of a Lévy process and more precisely
it states that each Lévy process (X,F) can be decomposed as the sum of a deterministic
drift, a Brownian motion and the sum of its jumps which can be decomposed as big
jumps and small jumps. These terms in the decomposition are independent. Lévy–
Khintchine decomposition, which thanks to the independence of the therms of the Lévy–
Itô decomposition can be easily obtained by the latter one, gives informations about
the distribution of a Lévy process (X,F), that is, it explicitely gives the form of the
characteristic function of Xt, for every t ∈ [0, T ].

In §5.5, we have shown that if X is a càdlàg adapted process whose jump measure
µ is a Poisson random measure with respect to the filtration F with intensity measure
λ+ ⊗ ν, where λ+ is the Lebesgue measure on ([0, T ],B([0, T ])) and ν a Lévy measure
on (R,B(R)), then for every f such that |f | ∧ 1 ∈ L1(ν), the process (µ(1[0,·]f),F) is a
Lévy process.

We now assume that (X,F) is a Lévy process. Therefore, from Theorem 5.6.4, the
jump measure µ of X is a Poisson random measure relative to the filtration F with
intensity measure λ+ ⊗ ν, where ν is the Lévy measure of the process X.

To prove the Lévy–Itô decomposition, we need to show that the increments of the
process µ(1[0,·]f), where f is such that |f | ∧ 1 ∈ L1(ν), can be represented as a time-
homogeneous (FD,B(R))-measurable functional of the process tX. In other words, our
aim is to extend Lemma 5.6.1 to any deterministic function f such that |f | ∧ 1 ∈ L1(ν).

We recall that tX we denotes the process defined by

tXs := Xt+s −Xt, s, t ≥ 0 (5.31)
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while (D,FD) denotes the Skorohod space (cf. §sec:gen.lev.pr). By D we disign as usual
the system of simple functions in Lq(ν), for q ∈ [1,+∞], that is,

D :=

{
f =

m∑
j=1

aj1Cj , aj ∈ R, Cj ∈ B(R) : ν(Cj) < +∞
}
. (5.32)

5.7.1 Lemma. Let f ∈ D , f ≥ 0. Then the increments of the process Y f , Y f
t :=

(1[0,t]f) ∗ µ, can be represented as

Y f
t+s − Y

f
t = Fs,f (tX), a.s., t, s ≥ 0,

where Fs,f is an (FD,B(R))-measurable functional.

Proof. Let f ∈ D , f ≥ 0, with representation f =
∑m

j=1 aj 1Cj , where aj ≥ 0 for
every j = 1, . . . ,m. For each Cj appearing in the representation of f , we introduce the
sequence Bn

j := Cj ∩ {|x| > 1
n} and the function

fn :=

m∑
j=1

aj 1Bnj , n ≥ 1.

The process ξB
n
j is given in (5.26). Because of Lemma 5.6.1, for every n ≥ 1, we have

µ(1(t,t+s]fn) =
m∑
j=1

aj(ξ
Bnj
t+s − ξ

Bnj
t ) =

m∑
j=1

ajFs,Bnj (tL), a.s., t, s ≥ 0,

where Fs,Bnj (·) is an (FD,B(R))-measurable functional. For every t ≥ 0, µ(1[0,t]fn)
increasingly converges to µ(1[0,t]f) pointwise in ω as n→ +∞. Therefore, if we put

Fs,f (tX) := lim inf
n→+∞

m∑
j=1

ajFs,Bnj (tX),

we have Y f
t+s − Y

f
t = (1(t,t+s]f) ∗ µ = Fs,f (tX) a.s. for every t, s ≥ 0, f ∈ D , f ≥ 0.

We observe that, from Lemma 1.2.3, the system D ⊆ Lq(ν) of simple functions is
dense in Lq(ν). As a consequence of this fact we can extend Lemma 5.7.1.

5.7.2 Proposition. Let f be such that |f | ∧ 1 ∈ L1(ν). The increments of the process

Y f , Y f
t := (1[0,t]f) ∗ µ can be represented, as

Y f
t+s − Y

f
t = Fs,f (tL), a.s., t, s ≥ 0,

where Fs,f is an (FD,B(R))-measurable functional.

Proof. First we consider the case f ∈ L1(ν), f ≥ 0. The set D of simple functions is
dense in L1(ν) and so there exists a sequence (fn)n∈N ⊆ D such that fn ≥ 0, n ≥ 1, and
fn ↑ f in L1(ν) as n→ +∞. By monotone convergence, µ(1[0,t]fn) ↑ µ(1[0,t]f) pointwise
in ω as n→ +∞. By Lemma 5.7.1, we have

µ(1(t,t+s]fn) = Fs,fn(tX), a.s., s, t ≥ 0, n ≥ 1,
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where Fs,fn is a (FD,B(R))-measurable functional. If we put

Fs,f (tX) := lim inf
n→+∞

Fs,fn(tX)

we obtain, Y f
t+s−Y

f
t = (1(t,t+s]f)∗µ = Fs,fn(tX) and Fs,f is an (FD,B(R))-measurable

functional.
The remaing of this proof is non relevant for the exam. We now weaken the

assumptions and consider f such that |f | ∧ 1 ∈ L1(ν). Because of Proposition 5.3.2,
the stochastic integral (1[0,t]f) ∗ µ exists and it is finite a.s. for every t ≥ 0. If f+

and f− are the positive and the negative part of f , respectively, we have f± ≤ |f | so
that f± ∧ 1 ∈ L1(ν) and the stochastic integrals (1[0,t]f

±) ∗ µ are well defined and the
relation (1[0,t]f) ∗ µ = (1[0,t]f

+) ∗ µ− (1[0,t]f
−) ∗ µ holds. Let us introduce the functions

f±n := f±1{|f±|<n} and fn := f+
n − f−n . Then f±n ↑ f± and f±n ≥ 0. By monotone

convergence we get (1[0,t]f
±
n )∗µ ↑ (1[0,t]f

±)∗µ pointwise in ω as n→ +∞. Furthermore,
f±n ∈ L1(ν), indeed f±n ≤ (f± ∧n) ≤ n(f± ∧ 1) ∈ L1(ν), for every n ≥ 1. Because of the
previous step, (1(t,t+s]f

±
n )∗µ = Fs,f±n (tX) a.s., where Fs,f±n is an (FD,B(R))-measurable

functional. We can put
Fs,f±(tX) := lim inf

n→+∞
Fs,fn(tX±),

which is an (FD,B(R))-measurable functional. Hence it follows that µ(1(t,t+s]f
±) =

Fs,f±(tX) a.s. and from (1[0,t]f) ∗ µ = (1[0,t]f
+) ∗ µ− (1[0,t]f

−) ∗ µ we have

Y f
t+s − Y

f
t = µ(1(t,t+s]f) = Fs,f+(tL)− Fs,f−(tX) =: Fs,f (tX), a.s., s, t ≥ 0.

which is an (FD,B(R))-measurable functional and the proof is complete.

Let (X,F) be a Lévy process and let µ be its jump measure. From Theorem 5.6.4, we
know that µ is a Poisson random measure relative to F and that its intensity measure is
λ+ ⊗ ν, where λ+ is the Lebesgue measure on [0, T ] and ν the Lévy measure of X. We
define f(x) := 1{|x|>1}x. The function f is such that |f |∧1 ∈ L1(ν). Clearly this implies
that the function h(t, x) := 1[0,t]f is such that |h| ∧ 1 ∈ L1(λ+ ⊗ ν). From Proposition
5.3.2, we can consider the stochastic integral of h with respect to µ. We introduce the
process L2 = (L2

t )t≥0 by

X2
t := (1[0,t]f) ∗ µ := (1[0,t]×{|x|>1}x) ∗ µ, t ≥ 0. (5.33)

By Proposition 5.5.2, we know that (X2,F) is a Lévy process and furthermore, from
Proposition 5.7.2, that its increments can be written as it follows:

X2
t+s −X2

t = Fs,f (tX), a.s., t, s ≥ 0,

where F·,f (tL) is an (FD,B(R))-measurable homogeneous functional of the process tL.
Let now Y = (Yt)t≥0 be the process defined by

Yt := Xt −X2
t , t ≥ 0. (5.34)

Clearly, (Y,F) is a càdlàg process starting at 0 and its increments are F-independent
and homogeneous, because Yt+s − Yt = tLs − Fs,f (tX) a.s., s, t ≥ 0, which is clearly
an (FD,B(R))-measurable homogeneous functional of tX. These properties imply that
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Y is also stochastically continuous and therefore (Y,F) is a Lévy process (cf. Lemma
2.5.10).

We stress that to claim that (Y,F) is a Lévy process, it is not sufficient that (X,F) and
(X2,F) are Lévy process: For the F-independence of the increments of Y we need that
the two dimensional process (X,X2) has F-independent increments. This is ensured by
Proposition 5.34.

Notice that the relation

X2
t =

∑
0<s≤t

1{|∆Xs|>1}∆Xs, t ≥ 0, a.s.,

holds. Therefore X2
t is the sum of all the jumps of the process X up to time t which are

bigger than one. This implies that the process Y has only jumps of size smaller than or
equal to one. Consequently, (Y,F) is a Lévy process with bounded jumps and, because
of Theorem 2.5.17, it has finite moments of every order. In particular, E[Y 2

t ] < +∞ for
every t ≥ 0. Hence the Lévy process Y = (Y t)t≥0 defined by

Y t := Yt − E[Yt], t ≥ 0, (5.35)

is a square-integrable F-martingale (cf. Lemma 2.5.6). Because of the square integrability
of Y t, ≥ 0, an application of Doob’s inequality shows that the process (Y )0≤t≤T is
uniformly integrable. Consequently, the process (Y )0≤t≤T is uniformly integrable. An
application of the generalization of theorem of Lebesgue on dominated convergence to
uniformly integrable families of random variables (cf. Theorem 1.1.3) shows that the
mapping t 7→ E[Yt] is continuous (see the proof of Lemma 5.6.1). We now define a(t) :=
E[Yt], t ≥ 0. Because of the homogeneity of the increments we have

a(t+ s) = E[Yt+s − Yt] + E[Yt] = a(t) + a(s), s, t ≥ 0,

which is a Cauchy functional equation. We know that a(·) is continuous and from the
previous relation it follows that a(·) is a linear function. Therefore there exists β ∈ R
such that

a(t) = βt, t ≥ 0. (5.36)

Now we are ready to prove the Itô–Lévy decomposition.

5.7.3 Theorem (Itô–Lévy decomposition). Let L be a càdlàg adapted process with jump
measure µ. Then (X,F) is a Lévy process if and only if µ is a Poisson random measure
relative to F with intensity function λ+ ⊗ ν, where λ+ is the Lebesgue measure on [0, T ]
and ν a Lévy measure, and there exists a Wiener process (Wσ,F) with variance function
σ2(t) = σ2t, σ2 ≥ 0, called Gaussian part of L, such that the following decomposition
holds

Xt = βt+ Wσ
t + (1[0,t]×{|x|>1} x) ∗ µ+ (1[0,t]×{|x|≤1} x) ∗ µ, t ≥ 0, a.s., (5.37)

where β ∈ R.

Proof. We assume first that (X,F) is a Lévy process. From Theorem 5.6.4 we know
that µ is a Poisson random measure relative to F and that its intensity measure is
λ+ ⊗ ν, where λ+ is the Lebesgue measure on [0, T ] and ν the Lévy measure of X.
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We introduce the function g(x) := 1{|x|≤1}x and the sequence gn := 1{ 1
n
<|x|≤1}x. The

function g belongs to L2(ν), while gn ∈ L1(ν) ∩ L2(ν), n ≥ 1, and gn −→ g in L2(ν) as
n → +∞, by dominated convergence. We now define the processes X3 = (X3

t )t≥0 and
L3,n = (X3,n

t )t≥0 by

X3
t := (1[0,t]g) ∗ µ; X3,n

t := (1[0,t]g
n) ∗ µ, t ≥ 0, n ≥ 1. (5.38)

Because of Theorem 5.5.3, we have L3,n
t −→ X3

t in L2(P) as n → +∞, for every t ≥ 0
and the process L3 is an F-square integrable martingale. Moreover, (X3,F) is a Lévy
process. The same statements holds for the process (X3,n,F). Furthermore, from Pro-
position 5.7.2, we know that the increments of X3,n can be represented by a homogeneous
(FD,B(R))-measurable functional of the process tX (cf. (5.31)). We denote such a func-
tional by G·,gn . We now introduce the processes X̃1 = (X̃1

t )t≥0 and X̃1,n = (X̃1,n
t )t≥0

by

X̃1 := X −X2 −X3 = Y −X3, X̃1,n := X −X2 −X3,n = Y −X3,n, (5.39)

respectively, where the processes X2 and Y were introduced by (5.33) and (5.34), re-
spectively. The process X̃1,n has F-independent and homogeneous increments because

X̃1,n
t+s − X̃1,n

s = tXs − Fs,f (tX)−Gs,gn(tX), s, t ≥ 0.

Furthermore, X̃1,n
t converges in probability to X̃1

t , for every t ≥ 0, as n→ +∞, because
X3,n
t converges in L2(P), and hence in probability, to X3

t , as n→ +∞, for every t ≥ 0.
Hence Lemma 2.5.7 yields that X̃1 has F-independent and homogeneous increments.
From Theorem 5.5.3.(iv), we know that the process X3 has the following jumps:

∆X3 = 1{∆X 6=0}1{|∆X|≤1}∆X a. s.

Therefore the process (X2 +X3) has the same jumps of the process X a. s. But then we
can claim that the process X̃1 is continuous a.s. The filtration F satisfies the unusual
conditions and so we can find an adapted version of the process X̃1 which is in fact
continuous and has F-independent and homogeneous increments. We denote again by
X̃1 such a modification. Then the process (X̃1,F) is a continuous Lévy process. The
process Y introduced by (5.34) is such that Yt is square integrable, for every t ≥ 0 and
the same holds for X3. Moreover, E[X3

t ] = 0. This implies that X̃1
t is square integrable

and that E[X̃1
t ] = E[Yt], for every t ≥ 0. We have seen that E[Yt] = βt, t ≥ 0, where

β ∈ R. We introduce the process X1 = (X1
t )t≥0 by

X1
t = X̃1

t − βt, t ≥ 0. (5.40)

Clearly (X1,F) is a continuous Lévy process and because of E[X1
t ] = 0, Lemma 2.5.6

implies that it is an F-martingale. Moreover, X1
t is square integrable, for every t ≥ 0 (its

jumps are bounded by zero!) We can assert that X1 is a continuous square integrable
martingale. By Doob’s inequality, we get that the family ((X1

t )2)0≤t≤T is uniformly
integrable. As a consequence of Theorem 1.1.3, the mapping t 7→ E[(X1

t )2] is continuous.
We put σ2(t) := E[(X1

t )2], t ≥ 0. This is a continuous function and moreover, because
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of the homogeneity and the F-independence of the increments of X1 and of E[X1
t ] = 0,

t ≥ 0, we get

σ2(t+s) = E[(X1
t+s−X1

t +X1
t )2] = E[(X1

t+s−X1
t )2]+E[(X1

t )2] = σ2(t)+σ2(s), t, s ≥ 0.

This relation and the continuity of σ2(·), imply that σ2(·) is a linear function, i.e., there
exists σ2 ≥ 0 such that σ2(t) = σ2t, for every t ≥ 0. In conclusion, we have shown that
(X1,F) is a continuous Lévy process and a square integrable martingale with a linear
variance function. We now discuss two cases.

The first case is σ2 = 0. In this case X1
t = 0 a. s. for every t and by continuity

we deduce that X1 is indistinguishable from the zero-process. By (5.40) we the obtain
X̃1
t = βt and from (5.39)

Xt = βt+X2
t +X3

t = βt+ (1[0,t]1{|x|>1}x) ∗ µ+ (1[0,t]1{|x|≤1}x) ∗ µ

which is the Lévy–Itô decomposition in this special case.
We now consider the case σ2 > 0 and introduce the process W = (Wt)t∈[0,T ] by setting

Wt :=
1

σ
X1
t , t ∈ [0, T ].

Clearly, W is an F-square integrable continuous martingale and for every t ≥ s

E[W 2
t − t|Fs] =

1

σ2
E[(X1

t )2− t|Fs] =
1

σ2
E[(X1

t )2− (X1
s )2|Fs] +

1

σ2
(X1

s )2− t = W 2
s − s,

where in the last passage we used the independence of the increments, the definition of
W and the linearity of the variance-function of X1. The previous computation shows
that (W 2

t − t)t∈[0,T ] is a martingale. Hence, an application of P. Lévy characterization
of the Brownian motion (cf. Theorem 3.2.1) yields that (W,F) is a Brownian motion.
Hence, by X1 = σW and the definition of X1 (cf. (5.40)), we deduce

Xt = βt+ σWt +X2
t +X3

t = βt+ σWt + (1[0,t]1{|x|>1}x) ∗ µ+ (1[0,t]1{|x|≤1}x) ∗ µ.

Conversely, we now assume that X is a càdlàg process with jump measure µ, which
is a Poisson random measure with intensity λ+ ⊗ ν, where ν is a Lévy measure. We
assume that (W,F) is a Brownian motion and σ2 ≥ 0, such that (5.37) holds. We verify
that X is a Lévy process. We put

(X1, X2, X3) := (σW, (1[0,·]×{|x|>1} x) ∗ µ, (1[0,·]×{|x|≤1} x) ∗ µ).

By assumption W is a Brownain motion process. Moreover by Proposition 5.5.2 (X2,F)
is a Lévy process. Analogously we know that (X3,F) is a Lévy process and an F-
martingale. The processes X2 and X3 do not have common jumps. Because of the
continuity of X1, we have that ∆X1∆Xj = 0, j = 1, 2. From these properties one can
deduce that the vector (X1, X2, X3) is independent and has F-independent increments
(see Remark 5.7.4 below). Because of (5.37), we can assert that also the process X has
F-independent increments. Moreover, from (5.37) and the independence of the vector
(X1, X2, X3) we have

E
[
eiu(Xt−Xs)] = eiuβ(t−s)∏3

j=1 E
[
eiu(Xj

t−X
j
s )
]

= eiuβ(t−s)∏3
j=1 E

[
eiuX

j
t−s
]

= E
[
eiuXt−s

]
, 0 ≤ s ≤ t, u ∈ R,
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where in the last but one equality we used that Xj has homogeneous increments,
j = 1, 2, 3. Then X is a càdlàg adapted process with homogeneous and F-independent
increments such that X0 = 0. Hence X is also stochastically continuous. In conclusion
(X,F) is a Lévy process and ν is its Lévy measure. This completes the proof of the
theorem.

5.7.4 Remark. In the last part of the proof of Theorem 5.7.3, we used that the
vector-process (σW, (1[0,·]×{|x|>1} x) ∗ µ, (1[0,·]×{|x|≤1} x) ∗ µ) is independent and has F-
independent increments. We do not show this statement but we try now to justify it.

We know that (1[0,·]×{|x|>1} x) ∗ µ and (1[0,·]×{|x|≤1} x) ∗ µ can be approximated by
linear combinations of Poisson processes and of compensated Poisson Processes, respect-
ively. Hence it is enough to show that if W is a Brownain motion and N1, . . . , Nn are
Poisson processes with respect to F such that ∆Y j∆Y k = 0, j 6= k, then the vector
(W,Y 1, . . . , Y n) is independent and has F-independent increments. To this aim it is
sufficient to prove that the process Z̃ = (Z̃t)t∈[0,T ],

Z̃t := exp

(
iuWt −

u2

2
t

)
Zt,

is a martingale, where Z = (Zt)t∈[0,T ] is the martingale of Theorem 4.3.1. For this goal
we need a general Itô-formula (or partial integration), which is outside of the scope of
this notes (also its formulation). The interested reader can find something about this
problem in He, Wang & Yan (1992), Theorem 11.43.

An immediate but important consequence of the Lévy–Itô decomposition is the Lévy–
Kintchine decomposition of the characteristic function of a Lévy process. We formulate
the Lévy–Kintchine decomposition as a corollary of Theorem 5.7.3. However it is also
possible to deduce Lévy–Itô decomposition from Lévy–Kintchine decomposition.

Before we give the following definition:

5.7.5 Definition. Let (X,F) be a Lévy process. The triplet (β, σ2, ν) of Theorem 5.7.3
(β is the coefficient of the drift, σ2 is the variance-parameter of W and ν is the Lévy
measure of X) is called characteristic triplet of the Lévy process. If σ2 = 0, we say that
X is a purely non-Gaussian Lévy process.

Notice that the Lévy processes which we constructed via stochastic integration with
respect to a Poisson random measure and a compensated Poisson random measure in
§5.5 are all purely non-Gaussian Lévy process.

5.7.6 Corollary. Let X be a Lévy process with characteristics (β, σ2, ν). Then for every
u ∈ R and for every t ≥ 0 we have

E[eiuXt ] = exp

((
iuβ − 1

2
u2σ2 +

∫
R

(eiux − 1− iux1{|x|≤1}) ν(dx)

)
t

)
. (5.41)

Proof. We put ϕXt (u) := E[eiuXt ], t ≥ 0, u ∈ R. We put

(X1, X2, X3) := (Wσ, µ(1[0,·]×{|x|>1} x), µ(1[0,·]×{|x|≤1} x)).
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From Remark 5.5, the vector (X1, X2, X3) is independent and has F-independent incre-
ments. Therefore

ϕXt (u) = eiuβtϕX
1

t (u)ϕX
2

t (u)ϕX
3

t (u), u ∈ R, t ≥ 0. (5.42)

We know that ϕX
1

t (u) = exp
(
−1

2 u
2σ2t

)
. Moreover, Lemma 5.3.3 implies that

ϕL
2

t (u) = exp

(
t

∫
{|x|>1}

(eiux − 1) ν(dx)

)
.

To compute ϕL
3
(u) we have to proceed by approximation. If we define fn(x) :=

1{ 1
n
<|x|≤1} x, then we have fn ∈ L1(ν)∩L2(ν) and fn −→ 1{|x|≤1}x in L2(ν) as n→ +∞.

By Proposition 5.4.5 and Lemma 5.3.3, we have

E
[
eiu(1[0,t]fn)∗µ

]
= exp

(
iut

∫
{ 1
n
<|x|≤1}

x ν(dx)

)
exp

(
t

∫
{ 1
n
<|x|≤1}

(eiux − 1) ν(dx)

)
.

Passing to the limit as n→ +∞, it follows

ϕL
3

t (u) = exp

(
t

∫
{|x|≤1}

(eiux − 1− iux) ν(dx)

)
and (5.42) implies (5.41).
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