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Overview
Central topic of this lecture is financial mathematics in continuous time. The tools to work
with the topic are mainly probability theory, martingales, stochastic analysis and partial
differential equations.
The topics covered in this lecture are

• replication/hedging and arbitrage theory in continuous time,

• local and stochastic volatility models and stochastic differential equations,

• valuation of European and American options in time-continuous models (partial dif-
ferential equations with free boundary-value condition)

• affine stochastic processes, ...

0 Repetition Stochastic Analysis
In this lecture there will always be a given probability space (Ω,F ,P) with filtration (Ft)t≥0.
Sometimes it will be useful to assume that

• the filtration is continuous from the right, i.e., Ft =
⋂
s>tFs,

• the filtration is complete, i.e., F0 contains all P-Nullsets.

Definition 0.1. A financial market modell (FMM) is a family of (d + 1) adapted
stochastic processes (S0

t , ..., S
d
t )t≥0 such that S0

t > 0 almost surely for all t ≥ 0, where

• S0 is the ’Numeraire’, which means it is a locally riskfree asset, e.g. a bank account
or an investment in bonds,

• S1, ..., Sd are assets, e.g. stocks, currencies, commodities,...

Financial market models are mostly given by stochastic differential equations, driven by a
Brownian motion (BM).

Example 0.2 (The Black-Scholes-Model). The Black-Scholes-Model is a 2-dimensional
financial market model (S0

t , ..., St) given by
S0
t = ert,

St = exp

((
µ− σ2

2

)
t+ σBt

)
,

where r ∈ R is the interest rate, µ ∈ R the drift and σ > 0 the volatility. Hence, St is a
geometric Brownian motion.
In terms of stochastic differential equations the Black-Scholes-Model is described as{

dS0
t = S0

t r dt,

dSt = St(µ dt+ σ dBt).
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0.1 The Brownian Motion

Definition 0.3. The one-dimensional Brownian motion (Bt)t≥0 is a stochastic process
such that

a) B0 = 0,

b) Bt has independent increments, i.e., for all 0 ≤ t1 ≤ ... ≤ tN it holds that

(BtN −BtN−1
), (BtN−2

−BtN−1
), ..., (Bt2 −Bt1) are independent,

c) (Bt −Bs) is normally distributed with mean 0 und variance t− s for all 0 ≤ s ≤ t, i.e.,

(Bt −Bs) ∼ N (0, t− s),

d) (Bt) is a continuous stochastic prozess, i.e.,

∃A ∈ F with P(A) = 1 such that t 7→ Bt(ω) continuous ∀ ω ∈ A.

Remark 0.4. More general an adapted stochastic process (Bt)t≥0 is a Brownian motion
with respect to a filtration (Ft)t≥0, if

• (a),(c),(d) and

(b’) (Bt −Bs) ⊥⊥ Fs ∀ 0 ≤ s ≤ t.

Proposition 0.5 (Properties of the Brownian motion).

• (Bt)t≥0 is Brownian motion with respect to (Ft)t≥0 =⇒ (Bt)t≥0 is Brownian motion.

• B is a Brownian motion =⇒ B is a Brownian motion with respect to generated
filtration Ft = σ((Bs)0≤s≤t).

• The Brownian motion is a Gaussian process, i.e., for all 0 ≤ t1 ≤ ... ≤ tN it holds
that

(Bt1 , Bt2 , ..., BtN ) is multivariate normally distributed.

The law is completely determined by E[Bt] = 0 and cov(Bt, Bs) = min(t, s).

• A Brownian motion with respect to (Ft)t≥0 is a martingale, i.e., it is adapted and

– E[|Bt|] <∞ ∀ t ≥ 0,
– E[Bt|Fs] = Bs ∀ 0 ≤ s ≤ t.

• The Brownian motion has infinite total variation, i.e.,

P- lim
|Pn|→0

∑
ti∈Pn

∣∣Bti+1
−Bti

∣∣ =∞ a.s.

for all sequences of partitions (Pn)n∈N of a given intervall [0, T ].
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• The quadratic variation of the Brownian motion exists, i.e.,

[B,B]t := P- lim
|Pn|→0

∑
ti∈Pn

(Bti+1
−Bti)

2 <∞

and
[B,B]t = t ∀ t ≥ 0. (1)

This forms the basis of Itô-calculus. Note that in Itô-terms (1) can be written as

(dBt)
2 = dt.

Definition 0.6. Let (B1, B2, ..., Bk) k be independent Brownian motions (with respect
to (Ft)t≥0). Then B = (B1, ..., Bk) is called k-dimensional (multivariate) Brownian
motion.

The quadratic covariation of the components, defined as

[Bi, Bj]t := P- lim
|Pn|→0

∑
tl∈Pn

(Bi
tl+1
−Bi

tl
)(Bj

tl+1
−Bj

tl
)

is

[Bi, Bj]t = δij · t =

{
t, if i = j,

0, if i 6= j.

In Itô-terms
(dBi

t)(dB
j
t ) = δij dt.

Proof. For i = j see (1). Let i 6= j. The idea is to polarize. Set

B̃t := (Bi
t +Bj

t )
1√
2
.

By definition B̃ is a standard Brownian motion, since

• B̃0 = 0,

• B̃ has independent increments,

• B̃ is continuous,

• B̃t ∼ N(0, t) and B̃t − B̃s ∼ N(0, t− s).

Now we have

t =
[
B̃, B̃

]
t

=
1

2
[Bi +Bj, Bi +Bj]t =

1

2

(
[Bi, Bi]t︸ ︷︷ ︸

t

+2[Bi, Bj]t + [Bj, Bj]t︸ ︷︷ ︸
t

)
which implies

t = t+ [Bi, Bj]t ∀t ≥ 0.

Hence [Bi, Bj]t = 0 for all t ≥ 0, i 6= j.
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0.2 Generation of Stochastic Processes from a Brownian Motion

There are five fundamental possibilities to generate stochastic processes from Brownian
motion.

(1) Stochastic Integration (↗Itô-integral)
For suitable integrands ϑ let (Itô-notation)

Xt :=

∫ t

0

ϑs dBs.

∣∣∣∣∣ dXt = ϑt dBt

In financial mathematics this is important for hedging strategies.

(2) Composition with a C1,2(R≥0× R)-function f(t, x),

Yt := f(t, Bt).

∣∣∣∣∣ dYt = df(t, Bt)

Y is now calculable by the Itô-formula (see Theorem 0.8).

(3) Sum of an initial value, a normal integral and an Itô-integral

Xt := X0 +

∫ t

0

µs ds+

∫ t

0

σs dBs (2)
∣∣∣∣∣ dXt = µt dt+ σt dBt

The class of these processes is called Itô-processes.

(4) Composition of an Itô-process and a C1,2-function

Zt := f(t,Xt).

∣∣∣∣∣ dZt = df(t,Xt)

(5) Stochastic integration with respect to an Itô-process

Yt =

∫ t

0

ϑs dXs.

∣∣∣∣∣ dYt = ϑt dXt

In the following will be discussed some properties of these five possibilites.
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0.2.1 Stochastic Integration

The Itô-Integral is well-defined for adapted square integrable processes, i.e., for every

ϑ ∈ H2(0,∞) :=

{
ϑ(ω, t) adapted and E

[∫ t

0

ϑ(ω, s)2 ds

]
︸ ︷︷ ︸

=‖ϑ‖2L2(dP×dt)

<∞ ∀t > 0

}
.

It is defined as L2-Limit of ’simple integrands’, whose are piecewise constant elements of
H2(0,∞). (See [1, Chapter 3] or [2, Chapter 6].)

Lemma 0.7 (Properties of the Itô-Integral). Let

Xt =

∫ t

0

ϑs dBs.

Then the following properties hold.

(i) The Itô-isometry

E[X2
t ]︸ ︷︷ ︸

=‖Xt‖L2(dP)

= E

[∫ t

0

ϑ2
s ds

]
︸ ︷︷ ︸

=‖ϑ‖2L2(dP×dt)

.

(ii) Xt is a continuous martingale, in particular

E[Xt|Fs] = Xs and E[Xt] = 0.

(iii) The Itô-integral is linear, i.e.,∫ t

0

(cϑs + ξs) dBs = c ·
∫ t

0

ϑs dBs +

∫ t

0

ξs dBs ∀c ∈ R, ϑ, ξ ∈ H2(0,∞).

(iv) The conditional Itô-isometry

E

[(∫ t

s

ϑr dBr

)2 ∣∣∣Fs] = E
[∫ t

s

ϑ2
r dr
∣∣∣Fs] ∀0 ≤ s ≤ t.

(v) For the quadratic variation it holds that

[X,X]t =

∫ t

0

ϑ2
s ds or d[X,X]t = (dXt)

2 = ϑ2
t dt.

Proof. See [1, Chapter 3].
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0.2.2 Composition with a C1,2-function

Yt can be described by Itô’s formula:

Theorem 0.8 (Itô’s formula). Let f ∈ C1,2(R≥0 × R). Then

Yt = f(t, Bt) = f(0, 0) +

∫ t

0

∂f

∂t
(s, Bs) ds+

∫ t

0

∂f

∂x
(s, Bs) dBs +

1

2

∫ t

0

∂2f

∂x2
(s, Bs) ds.

In Itô-notation and with

∂tf :=
∂f

∂t
, ∂xf :=

∂f

∂x
, ∂xxf :=

∂2f

∂x2
.

We can write Itô’s formula as

dYt = df(t, Bt) = ∂tf(t, Bt) dt+ ∂xf(t, Bt) dBt +
1

2
∂xxf(t, Bt) dt. (Itô)

Proof. For a complete proof see [1, Theorem 5.2]. Here we will do a heuristic derivation
using Taylor’s formula and Itô-calculus.
Applying Taylor’s formula to f(t, x) it holds that

f(t+ ∆t, x+ ∆x)− f(t, x) = ∂tf(t, x)∆t+ ∂xf(t, x)∆x+
1

2
∂xxf(t, x)(∆x)2

+ ’higher order terms’.

Plugging in Bt for x and passing to the limit yields

df(t, Bt) = ∂tf(t, Bt) dt+ ∂xf(t, Bt) dBt +
1

2
∂xxf(t, Bt) (dBt)

2︸ ︷︷ ︸
=dt

+ o(dt) + o(B2
t ) + ...︸ ︷︷ ︸

→0

= ∂tf(t, Bt) dt+ ∂xf(t, Bt) dBt +
1

2
∂xxf(t, Bt) dt.

Example 0.9 (Application of the Itô-formula to the Black-Scholes-Model). Let f(t, x) =

exp
((
µ− σ2

2

)
t+ σx

)
and define

St := f(t, Bt) = exp

((
µ− σ2

2

)
t+ σBt

)
.

Taking partial derivatives yields

∂tf(t, x) =

(
µ− σ2

2

)
f(t, x),

∂xf(t, x) = σf(t, x),

∂xxf(t, x) = σ2f(t, x).

From the Itô-formula (Itô) we derive the stochastic differential equation of the Black-
Scholes-Model

dSt = df(t, Bt)

((
µ−

�
��
σ

2

)
dt+ σ dBt +

�
�
��1

2
σ2 dt

)
= St(µ dt+ σ dBt)
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0.2.3 Sum of an Initial Value, a Lebesgue-Integral and an Itô-Integral

If σ ∈ H2(0,∞) and ∫ t

0

|µ(ω, s)| ds <∞

a.s. forall t ≥ 0, then Itô-process (2) is well defined.
Note the dichotomy 1 between dt- and dBt-integral:

Lemma 0.10. a) An Itô-process of the form (2) is a martingale if and only if µ = 0 a.s.

b) An Itô-process of the form (2) has finite total variation if and only if σ = 0 a.s.
Here (Ft)t≥0 is the augmented natural filtration of B, which is left- and right-continuous.

Proof. a) ’⇐:’ Follows directly from the martingale property of
∫ t

0
σ(ω, s) dBs.

’⇒’: Suppose X is martingale, then E[Xt−Xs|Fs] = 0 for all s ≤ t. On the other hand
we have

E[Xt −Xs|Fs] = E
[∫ t

s

µ(w, r) dr
∣∣∣Fs]+ E

[∫ t

s

σ(ω, r) dBr

∣∣∣Fs]︸ ︷︷ ︸
=0

.

Hence

E
[∫ t

s

µ(ω, r) dr
∣∣Fs] = 0,

which is equivalent to

E
[∫ t

s

µ(ω, r) dr · 1A
]

= 0 ∀ A ∈ Fs.

Applying Fubini’s theorem yields for all A ∈ Fs, s ≤ t

0 = E
[∫ t

s

µ(ω, r) dr · 1A
]

=

∫ t

s

E[µ(ω, r)1A] dr

Taking derivatives with respect to t leads to

E[µ(w, t)1A] = 0

forall A ∈ Fs, s ≤ t, and thus

E[µ(ω, t)|Fs] = 0 ∀ s ≤ t

Letting s ↑ t yields E[µ(ω, t)|Ft−] = 0, with Ft− =
⋃
s<tFs. Hence

E[µ(ω, t)|Ft] = 0 ⇒ µ(ω, t) = 0 ∀ t ≥ 0

almost surely.
1Structure composed of two complementary parts (like yin-yang)
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b) ’⇐’: Is clear, since X0 +
∫ t

0
µ(ω, s) ds has finite total variation.

’⇒’: This direction is based on the relation between total variation (TV) and quadratic
variation (QV).
The total variation of a function f is

TVT (f) := lim
|Pn|→0

∑
ti∈Pn, 0≤ti≤T

|f(ti+1)− f(ti)| .

If this limit exists independently of the sequence (Pn) ∀ T > 0, then f is of finite
total variation.
A stochastic process X is of finite total variation if

TVT (X(ω)) <∞ a.s. ∀T > 0.

Suppose X is continuous and of finite TV. Then∑
ti∈Pn

(Xti+1
−Xti)

2 ≤ max
ti∈Pn

∣∣Xti+1
−Xti

∣∣︸ ︷︷ ︸
→0 by continuity as |Pn|↓0

·
∑
ti∈Pn

∣∣Xti+1
−Xti

∣∣
︸ ︷︷ ︸
→TVT (X)<∞ as |Pn|↓0

→ 0.

Hence, X is of finite TV implies [X,X]t = 0 for all t ≥ 0 and vice versa if
[X,X]t > 0 for some t > 0 (with strictly positive probability) then X has infinite
total variation.
Since X is an Itô-process of finite total variation it follows that [X,X]t = 0, but
on the other hand

[X,X]t =

∫ t

0

σ2(ω, s) ds.

Thus σ(t, ω) = 0 almost surely for all t ≥ 0 and the proof is completed.

Example 0.11. In the Black-Scholes-Model it holds, that σ > 0 and S is a martingale.
Hence S has infinite total variation and µ = 0.

Lemma 0.12 (Quadratic variation of an Itô-process). Let X be an Itô-process, i.e.,

dXt = µt dt+ σt dBt.

Then

[X,X]t =

∫ t

0

σ2
s ds.

In terms of Itô-calculus

d[X,X]t = (µt dt+ σt dBt)
2 = σ2

t dt.
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Proof. Using Itô calculus it follows that

d[X,X]t = (dXt)
2 = (µt dt+ σt dBt)

2

= µ2
t (dt)2︸︷︷︸

0

+2µtσt dt dBt︸ ︷︷ ︸
0

+σ2
t (dBt)

2︸ ︷︷ ︸
dt

= σ2
t dt.

Proposition 0.13 (Covariation of two Itô-processes). Let X, Y be Itô-processes, i.e.,

dXt = µXt dt+ σXt dBt,

dYt = µYt dt+ σYt dBt.

Then
d[X, Y ]t = (dXt)(dYt) = σXt σ

Y
t dt.

Proof. By polarization it holds that

[X, Y ]t =
1

2
([X + Y,X + Y ]t − [X,X]t − [Y, Y ]t)

=
1

2

∫ t

0

(
(σXs + σYs )2 − (σXs )2 − (σYs )2

)
ds

=

∫ t

0

σXs σ
Y
s ds.

0.2.4 Composition of an Itô-Process and a C1,2-Function

Theorem 0.14 (Itô’s formula for Itô-processes). Let f ∈ C1,2(R≥0 × R) and X be an
Itô-process. Then

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂xxf(t,Xt)σ

2
t dt. (Itô’)

Proof. For a complete proof see [1, Theorem 5.6]. Again, we will do a heuristic derivation
based on the Taylor expansion and Itô-calculus. It holds that

f(t+ ∆t, x+ ∆x)− f(t, x) = ∂tf(t, x) ·∆t+ ∂xf(t, x) ·∆x+
1

2
∂xxf(t, x)(∆x)2

+ ’higher order terms’.

Since (dXt)
2 = σ2

t dt, plugging in dXt for x and passing to the limit yields the assertion

df(t,Xt) = ∂tf(t,Xt) dt+ ∂xf(t,Xt) dXt +
1

2
∂xxf(t,Xt)(dXt)

2.
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0.2.5 Stochastic Integration with Respect to an Itô-Process

The stochastic integral ∫ t

0

ϑs dXs

can be reduced to a Lebesgue- and an Itô-Integral. Hence∫ t

0

ϑs dXs :=

∫ t

0

ϑs(µs ds+ σs dBs)

=

∫ t

0

(ϑsµs) ds+

∫ t

0

(ϑsσs) dBs.

Again in Itô-terms
ϑt dXt = (ϑtµt) dt+ (ϑtσt) dBt.

It is well-defined if

•
∫ t

0
|ϑsµs| ds <∞ for all t ≥ 0 and

• ϑ · σ ∈ H2(0,∞).

0.3 The Multivariate Case

Definition 0.15. Consider a k-dimensional Brownian motion B = (B1, ..., Bk) and

µ : R≥0 × Ω→ Rd adapted,
σ : R≥0 × Ω→ Rd×k adapted

such that ∫ t

0

|µi(s)| ds <∞ ∀ t ≥ 0, i = 1, ..., d.

Define %(ω, t) := σ(ω, t)σ(ω, t)> and note that %(ω, t) is taking values in Sd 2. If %ii ∈
H2(0,∞) for all i = 1, ..., d then

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dBs, X0 ∈ Rd.

is called multivariate Itô-process. Note, the (σs dBs)-term is a matrix-vector-product.

Lemma 0.16. Consider a multivariate Itô-process as in Definition 0.15. The quadratic
covariation of two components of X, defined as

[X i, Xj]t := P- lim
|Pn|→0

∑
tm∈Pn

(
X i
tm+1 −X i

tm

)(
Xj
tm+1 −X

j
tm

)
is

[X i, Xj]t =

∫ t

0

%ij(s) ds.

2Sd = {A ∈ Rd×d : A is semidefinite}
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Proof. By Itô-calculus it holds that

(dX i
t)(dX

j
t ) =

(
µi(t) dt+

∑
m

σim(t) dBm
t

)(
µj(t) dt+

∑
l

σjl(t) dBl
t

)

=
[
(dt)2-terms, (dt)(dBm

t )-terms
]

+
k∑

m,l=1

σim(t)σjl(t) (dBm
t )(dBl

t)︸ ︷︷ ︸
=δml·dt

=
k∑

m=1

σim(t)σjm(t) dt

= %ij(t) dt.

Hence

[X i, Xj]t =

∫ t

0

%ij(s) ds.

Theorem 0.17 (Itô’s formula for the multivariate Brownian motion). Let f ∈ C1,2(R≥0×
Rk) and Xt = f(t, Bt). Then

df(t, Bt) = ∂tf(t, Bt) dt+∇f(t, Bt) dBt +
1

2
∆f(t, Bt) dt,

where
∇f =

(
∂f

∂x1

, ...,
∂f

∂xk

)
∈ Rk

is the gradient and

∆f =
∂2f

∂x2
1

+ ...+
∂2f

∂x2
k

∈ R

is the Laplace operator.

Proof. Again by using the Taylor expansion it holds that

f(t+ ∆t, x+ ∆x)− f(t, x) = ∂tf(t, x)∆t+∇f(t, x)∆x+
1

2

k∑
i,j=1

∂2f

∂xi∂xj
(t, x)∆xi∆xj

+ ’higher order terms’.

Plugging in Bt for x and passing to the limit yields

df(t, Bt) =∂tf(t, Bt) dt+∇f(t, Bt) dBt +
1

2

k∑
i,j=1

∂2f

∂xi∂xj
(t, Bt) (dBi

t)(dB
j
t )︸ ︷︷ ︸

=δij dt

.

Hence,

df(t, Bt) = ∂tf(t, Bt) dt+∇f(t, Bt) dBt +
1

2
∆f(t, Bt) dt.
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Theorem 0.18 (Itô’s formula for multivariate Itô-processes). Let f ∈ C1,2(R≥0×Rk) and
Xt a multivariate Itô-process. Then

df(t,Xt) = ∂tf(t,Xt) dt+∇f(t,Xt) dXt +
1

2

d∑
i,j=1

∂2f

∂xi∂xj
(t,Xt)%ij dt.

Proof. Again, by Taylor expansion, plugging in Xt and passing to the limit the assertion
follows directly.

An application of the multivariate Itô formula is the product rule for Itô-processes:

Theorem 0.19 (Product rule). Let (X, Y ) be an Itô-process. Then

d(XtYt) = Xt dYt + Yt dXt + d[X, Y ]t.

In addition if X or Y has finite total variation then

d(XtYt) = Xt dYt + Yt dXt.

Proof. Consider the function f(t, x, y) = x · y. Hence ∇f(x, y) = (y, x), ∂2f
∂x2

= ∂2f
∂y2

= 0

and ∂2f
∂x∂y

= 1. Applying the multivariate Itô-formula yields

d(Xt, Yt) = df(t,Xt, Yt) =Yt dXt +Xt dYt

+
1

2

(
0 · d[X,X]t + 0 · d[Y, Y ]t + 1 · d[X, Y ]t + 1 · d[Y,X]t

)
=Yt dXt +Xt dYt + d[X, Y ]t.

Since

[X, Y ]t =

∫ t

0

σXs σ
Y
s ds

the second assertion follows, because ifX has finite variation then σX = 0 almost surely.

0.4 Local Martingales (’The Ugly Truth’)

Definition 0.20. a) A stopping time τ with respect to a filtration (Ft)t≥0 is a random
variable taking values in [0,∞] with the property

{τ ≤ t} ∈ Ft ∀ t ≥ 0.

b) Let X be an adapted stochastic process. The process X stopped at τ is defined as

Xτ
t := Xt∧τ =

{
Xt, if t ≤ τ,

Xτ , if t > τ.

15



Remark 0.21. By Doob’s optional stopping theorem the martingale property is preserved
under stopping, i.e.,

X is a martingale ⇒ Xτ is a martingale.

Definition 0.22. A localizing sequence (τn)n∈N is an increasing sequence of stopping
times (τn ≤ τn+1, ...) such that

lim
n→∞

τn =∞ almost surely.

Definition 0.23. Let X be an adapted stochastic process and (τn) a localizing sequence.
If

Xτn are martingales ∀ n ∈ N (3)

then X is called local martingale.

Remark 0.24. Hence by Remark 0.21 if X is a martingale, then (3) does hold necessarily.
On the other hand (3) does not imply that X is a martingale. However Xτn converges
locally to X, i.e.,

lim
n→∞

Xτn
t = Xt.

0.4.1 Local Martingales and the Itô-Integral

Using a localizing sequence also the Itô-Integral can be generalized.

Lemma 0.25. Let

L2 :=

{
ϑ adapted:

∫ t

0

ϑ2
s ds <∞ a.s. ∀ t ≥ 0

}
.

Then H2(0,∞) ⊆ L2 and each L2-function is locally in H2, i.e.

∀ ϑ ∈ L2 ∃ a localizing sequence (τn) s.t. ϑ(t, ω)1{τ(ω)≤t} ∈ H2(0,∞).

Defining ∫ t

0

ϑs dBs := lim
n→∞

∫ t∧τn

0

ϑs dBs = lim
n→∞

∫ t

0

ϑs1{s≤τn}︸ ︷︷ ︸
∈H2(0,∞)

dBs

the Itô-integral is well-defined for all ϑ ∈ L2.

Lemma 0.26 (Properties of the Itô-Integral). Let f ∈ L2 and

Xt =

∫ t

0

f(ω, s) dBs.

Then the following properties hold.

16



(i) X is a continuous local martingale.

(ii) The Itô-integral is linear, i.e.,∫ t

0

[cf(ω, s)− g(ω, s)] dBs = c

∫ t

0

f(ω, s) dBs+

∫ t

0

g(ω, s) dBs ∀ c ∈ R, f, g ∈ L2.

(iii) For the quadratic variation it holds that

[X,X]t =

∫ t

0

f 2(ω, s) ds.

Note that the Itô-isometry does not necessarily hold!

Also the definition of an Itô-process can be generalized:

Definition 0.27. Let µ such that ∫ t

0

|µ(ω, s)| ds <∞

almost surely for all t ≥ 0 and σ ∈ L2. Then the process

Xt = X0 +

∫ t

0

µ(ω, s) ds+

∫ t

0

σ(ω, s) dBs

is called Itô-process and it is well-defined. In the multivariate case we need to require∫ t

0

%ii(ω, s) ds <∞

almost surely for all t ≥ 0, i = 1, ..., d.
Recall: % is the covariation matrix %(ω, t) = σ(ω, t)σ(ω, t)>.

Remark 0.28.

• The Itô-integral with respect to an Itô-process
∫ t

0
ϑs dXs is well-defined if

(1)
∫ t

0
|µsϑs| ds <∞ ∀ t ≥ 0 and

(2)
∫ t

0
(σsϑs)

2 ds <∞ ∀ t ≥ 0.

Hence (2) is equivalent to ϑt ∈ L2(X), where

L2(X) :=

{
ϑ adapted :

∫ t

0

ϑ2
s d[X,X]s <∞ a.s. ∀ t ≥ 0

}
.

• The class of Itô-processes is closed under

17



– stopping,

– stochastic integration,

– C1,2-transformations.

• The class of local martingales is closed under

– stopping,

– stochastic integration.

Proposition 0.29 (from local to true martingales). Let M be a local martingale.

a) If M is bounded, i.e., |Mt| ≤ c <∞ for all t ≥ 0. Then M is a true martingale.

b) If M is bounded from below, i.e., M−
t ≤ c <∞ for all t ≥ 0 then M is a supermartin-

gale.
If in addition t 7→ E[Mt] is constant, then M is a martingale.

Proof. Exercise.

1 Financial Markets in Continuous Time

1.1 Basics and Arbitrage

Definition 1.1. A financial market model (FMM) S = (S0, S) = (S0, S1, ..., Sd) is a
multivariate (d+ 1-dimensional) Itô-process of the form

dS0
t = S0

t r(t, ω) dt, S0
0 = 1,

dSit = Si
(
µi(t, ω) dt+ σi(t, ω) dBt

)
, Si0 > 0,

(FMM)

where

• r : R≥0 × Ω→ R is the interest rate (short rate),

• µi : R≥0 × Ω→ R are the drift coefficients,

• σi : R≥0 × Ω→ R are the volatility coefficients.

Note: S0 is the locally risk-free asset (’Numeraire’) and it holds that

S0
t = exp

(∫ t

0

r(s, ω) ds

)
.

Sit is the price of asset i at time t.

18



Remark 1.2. Let B be a k-dimensional Brownian motion and

Σ :=

σ1
...
σd

 ∈ Rd×k, µ :=

µ1
...
µd

 ∈ Rd, diag(S) :=


S1

S2

. . .
Sd

 .

Then the matrix-vector-notation of a financial market model is

dSt = diag(St) ·
(
µ(t, ω) dt+ Σ(t, ω) dBt

)
.

1.2 The Pricing and Hedging Problem

Consider a european derivative Φ(SiT ) or a more general claim C that is FT measurable.
Then the central questions are:

• What ist the fair price of C at time t ∈ [0, T ]?

• What strategy replicates C?

To answer these questions the following Definitions are useful.

Definition 1.3. A portfolio or strategy ϑ = (ϑ0, ϑ) = (ϑ0, ϑ1, ..., ϑd) is an Rd+1-valued
adapted process, where ϑit is the number of units of asset i in the portfolio at time t. ϑit is
real-valued and can be negative (’short position’).
The associated value process

Vt :=
d∑
i=0

ϑit · Sit = ϑt · St

is the value of the portfolio at time t.

Definition 1.4. A portfolio is called self-financing (SF) if its value process V is an
Itô-process of the form

dVt = ϑt dSt.

Remark 1.5. Definition 1.4 implies that no capital is added or withdrawn from the portfolio
after time t = 0. This is the continuous version of the discrete condition

Vt+1 − Vt︸ ︷︷ ︸
change in

portf. value

= ϑt · (St+1 − St)︸ ︷︷ ︸
trading gains

or losses

.

Passing to limit leads to the condition above.
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Definition 1.6. The discounted price process is defined as

Xt :=

(
S1
t

S0
t

, ...,
Sdt
S0
t

)
.

Analogously call

Ṽt :=
Vt
S0
t

.

the discounted value process.

Lemma 1.7. The discounted price process is an Itô-process such that

dX i
t = X i

t

(
(µ(t, ω)− r(t, ω)) dt+ σi(t, ω) dBt

)
, i ∈ 1, ..., d.

Proof. Consider the function f(x) = 1
x
. Then f ′(x) = − 1

x2
.

Applying Itô’s formula for Itô-processes to f yields

d

(
1

S0
t

)
= df(S0

t ) = − 1

(S0
t )

2
dS0

t = − 1

S0
t

r(t, ω) dt.

The product rule applied to X i
t = Sit · 1

S0
t
leads to the assertion, i.e.

dX i
t = Sit d

(
1

S0
t

)
+

1

S0
t

dSit +
��

�
��
�HHH

HHH
d

[
1

S0
, Si
]
t

= −S
i
t

S0
t

r(t, ω) dt+
Sit
S0
t

(
µ(t, ω) dt+ σ(t, ω) dBt

)
= X i

t

(
(µ(t, ω)− r(t, ω)

)
dt+ σ(t, ω) dBt.

Lemma 1.8. Let ϑ ∈ L2(X). Then ϑ = (ϑ0, ϑ) is self-financing if and only if

ϑ0
t =

∫ t

0

ϑs dXs − ϑtXt. (SF)

In this case, the discounted value process is given by

Ṽt = V0 +

∫ t

0

ϑs dXs.

Proof. Exercise.

Note that by Lemma 1.8 it is sufficient to specify ϑ, because ϑ0 is determined uniquely.

Definition 1.9. A self-financing strategy ϑ = (ϑ0, ϑ) with value process V is called arbi-
trage if there exists T > 0, such that

(i) V0 = 0,
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(ii) P(V ≥ 0) = 1,

(iii) P(V > 0) > 0.

”An arbitrage is too good to be true.”

Theorem 1.10 (’All locally riskfree portfolios grow at the same rate’). Let ϑ = (ϑ0, ϑ) be
a self-financing portfolio with locally riskfree value processes, i.e., V0 > 0 and

dVt = Vt · k(ω, t) dt.

In an arbitrage-free market it holds that

k(ω, t) = r(ω, t)

dP× dt-almost surely.

Proof. Let Ṽ ϑ be the discounted value process of ϑ. Then by Lemma 1.8

dṼ ϑ = ϑt · dXt.

On the other hand, using Itô’s formula and the product rule it follows that

dV ϑ
t = d

(
Vt
S0
t

)
= Vt d

(
1

S0
t

)
+

1

S0
t

dVt + d

[
1

S0
, V

]
t

= − Vt
S0
t

rt dt+
Vt
S0
t

kt dt+ 0

= Ṽ ϑ
t (kt − rt) dt. (#)

Setting πt := ϑt · 1{kt>rt} we form a self-financing portfolio with initial capital Ṽ π
0 = 0 and

discounted value process Ṽ π
t . Using again Lemma 1.8, (SF) and (#) yields

dṼ π
t = πt dXt = ϑt1{kt>rt} dXt = 1{kt>rt} dṼ ϑ

t = 1{kt>rt}Ṽ
ϑ
t (kt − rt) dt.

In other notation and with N = {(ω, t) : k(ω, t) > r(ω, t)} we have

Ṽ π
t =

∫ t

0

1{ks>rs}(ks − rs)Ṽ ϑ
s︸ ︷︷ ︸

≥0, and >0 for (s,ω) in N

ds.

Assuming that there is no arbitrage we conclude from Ṽ π
0 = 0 and P(Ṽ π

T ≥ 0) = 1 that
P(Ṽ π

T > 0) = 0. This implies

0 = E
[
Ṽ π
T

]
=

∫
Ω

∫ π

0

1{k(s,ω)>r(s,ω)} · (k(s, ω)− r(s, ω))Ṽ ϑ
s (ω) ds dP.

Hence N is a dP×dt-Null set and thus k(t, ω) ≤ r(t, ω) almost everywhere. Repeating the
same argument for

π′t = −ϑt1{kt<rt}
yields k(t, ω) ≥ r(t, ω) (dP× dt)-almost everywhere. Thus the proof is complete.
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1.3 Classification of One-Dimensional Market Models

Specializing to a single asset and a constant interest rate, i.e., d = 1 and r(ω, t) ≡ r we
reduce (FMM) to

dS0
t = rS0

t dt,

dSt = St
(
µ(t, ω) dt+ Σ(t, ω) dBt

)
.

The crucial parameter is now the volatility coefficient Σ(t, ω) that can be estimated from
historic data by∫ t

0

Σ2(s, ω) ds := [logS, logS]t = P- lim
|Pn|↓0

∑
ti∈Pn

(logSti+1
− logSti)

2

︸ ︷︷ ︸
’realized variance’

.

This definition is reasonable, since for [S, S]t =
∫ t

0
S2
rΣ(r, ω)2 dr and f(x) = log x3 follows

by Itô’s formula

d logSt =
1

St
dSt −

1

2S2
t

d[S, S]t

=
(
µ(t, ω) dt+ Σ(t, ω) dBt

)
− 1

2
Σ(t, ω)2 dt

=

((
µ(t, ω)− Σ2(t, ω)

2

)
dt+ Σ(t, ω) dBt

)
and thus (see Lemma 0.7 (v))

[logS, logS]t =

∫ t

0

Σ2(r, ω) dr.

Models can be classified according to Σ(t, ω), e.g. we have for

• Σ(t, ω) = σ ∈ (0,∞) the Black-Scholes model,

• Σ(t, ω) = σ(t, St), σ ∈ C1,2 a local volatility model,

• Σ(t, ω) = σ(Vt) with another stochastic process V , a stochastic volatility model.

From top to bottom the listed models become more complex but also more realistic.
3Hence, f ′(x) = 1

x and f ′′(x) = − 1
x2 .
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pricing of
puts/calls

market com-
pleteness

discrete ana-
logue

Examples

BS-
model

explicit for-
mula

complete CRR-model,
binomial tree

—–

local
volatil-
ity

1-dimensional
PDE/Monte-
Carlo

complete inhomoge-
neous tree

CEV (con-
stant elas-
ticity of
variance),
Dupire model

stoch.
volatil-
ity

2-dimensional
PDE

incomplete ’stochastic
tree’

Heston
model, SABR
model

The difference between a binomial and an inhomogeneous tree:

Binomial tree Inhomogeneous tree

2 Local Volatility Models
Definition 2.1. A financial market model of the form

dS0
t = rS0

t dt,

dSt = St
(
µ(t, ω) dt+ σ(t, St) dBt

)
.

(LV)

with σ : R≥0 × R≥0 → R is called local volatility model. σ is called local volatility
function.

Remark 2.2. Local volatility models are complete. Hence, perfect replication is possible
and derivative prices are unique.

Consider a European Claim with payoff h(ST ). The goal is to derive a replicating portfolio
(ϑ0, ϑ) for the claim. To reach this goal let Vt be a value process, such that

Vt = ϑ0S0
t + ϑSt. (4)
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Note that Vt = f(t, St) with f ∈ C1,2. The self-financing condition for Vt is

dVt = ϑ0 dS0
t + ϑ dSt

=
(
ϑ0rS0

t + ϑµ(t, ω)St
)

dt+ ϑσ(t, St)St dBt.
(5)

On the other hand, applying Itô’s formula to Vt = f(t, St) yields

dVt = df(t, St) = ∂tf dt+ ∂sf dSt +
1

2
∂ssf d[S, S]t

=

(
∂tf + ∂sfStµ(t, ω) +

1

2
∂ssfS

2
t σ(t, St)

2

)
dt+ ∂sfStσ(t, St) dBt.

(6)

Comparing coefficients of (5) and (6) leads to the following equations

dBt-terms: ϑtσ(t, St)St = ∂sfσ(t, St)St

=⇒ ϑt = ∂sf(t, St) ’Delta hedging’

dt-terms: ϑ0
t rS

0
t +���

���ϑtµ(t, ω)St = ∂tf +((((
(((∂sfStµ(t, ω) +

1

2
∂ssfS

2
t σ

2(t, St)

=⇒ ϑ0
t =

1

rS0
t

(
∂tf +

1

2
∂ssfS

2
t σ

2(t, St)

)
By plugging these results into (4) we obtain

f(t, St) = Vt =
1

r

(
∂tf +

1

2
∂ssfS

2
t σ

2(t, St) + rSt∂sf(t, St)

)
which is equivalent to

∂tf + rSt∂sf +
1

2
S2
t σ

2(t, St)∂ssf − rf = 0

for all possible points St(ω) ∈ R≥0. Replacing St(ω) by s ∈ R≥0 yields the pricing PDE

∂tf + rs∂sf +
1

2
s2σ2(t, s)∂ssf − rf = 0 (7)

with terminal condition f(T, s) = h(s). This is a parabolic PDE, related to heat equation.
We formulate this reasoning as a theorem:

Theorem 2.3. Consider a European Claim with payoff h(ST ) in a local volatility model.
Let f ∈ C1,2(R≥0 × R≥0) be a solution of the pricing PDE∂tf + rs∂sf +

σ2(t, s)

2
s2∂ssf − rf = 0,

(t, s) ∈ [0, T ]× R≥0
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with terminal condition
f(T, s) = h(s).

Then the portfolio 
ϑt = ∂sf(t, St),

ϑ0
t =

1

S0
t

(f(t, St)− St∂sf(t, St))

is a self-financing replicating portfolio for h(St) and

Πt = f(t, St)

is the price of the claim h(ST ) at time t ∈ [0, T ].

Remark 2.4.

• The Drift µ(t, ω) does not appear in the PDE.

• There is no statement on existence and uniqueness of a solution to the PDE.

Example 2.5.

• In the Black-Scholes-Model the function σ is a constant, i.e.,

σ(t, St) = σ > 0.

• Let σ(t, St) = a · Sβt with β ∈ [−1, 0]. Then the model is called constant elasticity
of variance (CEV) model. ’Constant elasticity’, because

dσ

dS
= β · σ

S
.

The CEV model is useful, because for β < 0 it models the leverage effect, i.e., that
when prices go up the volatility goes down and vice versa.

• In the Dupire model σ(t, St) is fitted to observed put and call prices.

Exercise. Derive the Black-Scholes formula for puts/calls from the pricing PDE.
Hint: Use the transformations

τ = T − t,
x = log s− rτ,

g(τ, x) = erτf(t, s)

where f(t, s) solves Black-Scholes-PDE.
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2.1 Dupire’s and Tanaka’s Formula

Reason for the Dupire model is that the mathematical point of view is a very simplified
one, i.e.,

Model &
Parameters
(given)

prices of derivatives
& hedging strategies

(derived)

pricing & hedging

The Dupire model has a more realistic point of view, i.e.

prices of
simple derivatives

(puts/calls)
(observed)

Models &
Parameters
(calibrated)

prices of
complex/exotic
derivatives,

hedging strategies
(derived)

calibration

pricing

hedging

Note that calibration is the inverse problem of pricing, which - in the context of local
volatility models - is solved by Dupire’s formula. The formula derives a local volatility
function σ(t, St) from given prices C(T,K) of European calls with maturity T ∈ [0, H] and
strikes K ∈ [0,∞).
To derive the formula there is some stochastic calculus needed:

2.1.1 Tanaka’s formula

The goal is to derive a generalization of Itô’s formula to apply it on |Bt| (or more general
on |Xt|, where X is an Itô-process). Since |·| is not differentiable in 0 the ’normal’ Itô

26



formula is not applicable. Observe that although f(x) := |x| is not differentiable in 0 it is
smooth at every other point. Furthermore

f(y)− f(x) =

∫ y

x

sign(η) dη,

sign(y)− sign(x) =

∫ y

x

2δ0(η) dη.

Thus in a distributional4 sense it holds that5

f ′(x) = sign(x),

f ′′(x) = 2δ0(x)

and the conjecture

|Xt| = |X0|+
∫ t

0

sign(Xs) dXs + ”correction at zero”

is reasonable. Tanaka’s theorem now states that the ”correction” L0
t (X) is well-defined and

called local time at zero of X.

Theorem 2.6 (Tanaka’s formula). Let X be an Itô-process. Then

|Xt| = |X0|+
∫ t

0

sign(Xs) dXs + L0
t (X),

where the local time at zero L0
t (X) is given by

L0
t (X) = lim

ε→0

1

2ε

∫ t

0

1(−ε,ε)(Xs) d[X,X]s (8)

(in L2(dP)).

Remark 2.7.

• The local time Lyt (X) at y ∈ R is defined in the same way, replacing (−ε, ε) by
(y − ε, y + ε) in (8).

• In differential notation we have

d |Xt| = sign(Xt) dXt + dLt.

4In german: Distribution, NICHT Verteilung

5sign(x) :=

{
+1, x ≥ 0,

−1, x < 0,
δ0 is the dirac function at zero.
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• Let

X+ =
1

2
(|X|+X),

X− =
1

2
(|X| −X).

Then

d(X+
t ) = 1(Xt≥0) dXt +

1

2
L0
t (X),

d(X−t ) = 1(Xt≤0) dXt +
1

2
L0
t (X).

Proof. We will only do a sketch of the proof for the case Xt = Bt. We try to smoothen
f(x) := |x| by setting

fε(x) =

{
|x| , |x| ≥ ε,
1
2

(
ε+ x2

ε

)
, |x| < ε,

x

y

−ε ε0

f(x)

f ′ε(x) =

{
sign(x), |x| ≥ ε,
x
ε
, |x| < ε,

x

y

−ε ε

1

−1

0

f ′ε(x)

f ′′ε (x) = 1(−ε,ε)(x) · 1

ε
. x

y

−ε ε

1

−1

0

f ′′ε (x)

By Itô’s formula it holds that

fε(Bt) =
ε

2
+

∫ t

0

f ′ε(Bs) dBs︸ ︷︷ ︸
=I0

+
1

2ε

∫ t

0

1(−ε,ε)(Bs) dBs. (9)
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Note that Iε 7→
∫ t

0
sign(Bs) dBs is in L2(dP), because the Itô-isometry yields

E

[(∫ t

0

f ′ε(Bs) dBs −
∫ t

0

sign(Bs) dBs

)2
]

=

∫ t

0

E

[(
Bs

ε
− sign(Bs)︸ ︷︷ ︸
|·|≤1

)2

· 1(−ε,ε)(Bs)

]
ds

≤t sup
0≤s≤t

P(Bs ∈ (−ε, ε))

≤t
3
2 [Φ(ε)− Φ(−ε)]︸ ︷︷ ︸

→0 as ε→0

.

Therefore and by (9) it follows that

L0
t (B) = lim

ε↓0

1

2ε

∫ t

0

1(−ε,ε)(Bs) ds

= lim
ε↓0

(
fε(Bt)−

ε

2
−
∫ t

0

f ′ε(Bs) dBs

)
= |Bt| −

∫ t

0

sign(Bs) dBs

in L2(dP). Note that it also follows that t 7→ L0
t (B) is continuous up to modification.

Remark 2.8. Here are some curious properties of L0
t (B).

• t 7→ L0
t (B) is almost surely increas-

ing and continuous.

• t 7→ L0
t (B) is constant on the ran-

dom set

K(ω) = {t ∈ R≥0 : Bt(ω) 6= 0}.

• K(ω) has full Lebesgue measure
with probability one, i.e.,

P
(∫ t

0

1K(ω)(s) ds = t

)
= 1.

This implies, that L0
t is almost

surely a ”singular continuous” func-
tion, i.e., a continuous function,
which is not absolutely continuous.
A deterministic example of such
a function is given by the ”devil’s
staircase”.

x

y

1
4

1
3

1
2

2
3

3
4

1

1

0

Figure 1: Devil’s staircase
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Bt

L0
t (B)

Many more
zeros are
hidden here.

Figure 2: Local time at zero of the Brownian motion

2.1.2 The Dupire Model

Theorem 2.9 (Dupire’s formula). In a local volatility model{
dS0

t = rS0
t dt,

dSt = St
(
µ(t, ω) dt+ σ(t, St) dBt

)
let C(T,K) be prices of calls with maturity T ∈ [0, H) and strike K ∈ [0,∞). Assume
C(T,K) ∈ C1,2 and ∂

∂T
C(T,K) ≥ 0, ∂2

∂K2C(T,K) > 0. Then the local volatility function
must be given by

σ2(T,K) = −2 ·
∂
∂T
C(T,K) + σK ∂

∂K
C(T,K)

K2 ∂2

∂K2C(T,K)

for all T ∈ [0, H) and K ∈ [0,∞).

Proof. We use the discounted pricing formula

C(T,K) = E
[
e−rT (S̃T −K)+

]
with

dS̃t = S̃t(r dt+ σ(t, S̃t) dBt).
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Hence, S̃t is the price process under the risk free measure. Setting St = S̃t yields

∂

∂K
C(T,K) = −E

[
e−rT1{St≥K}

]
,

∂2

∂K2
C(T,K) = − ∂

∂K
E
[
e−rT1{St≥k}

]
= − lim

ε↓0

1

2ε
E
[
e−rT1{St∈(K−ε,K+ε)}

]
.

On the other hand it holds that

d(St −K)+ = 1{St>k} dSt +
1

2
LKt (S).

Set g(t,K) := e−rT (St −K)+. From the product rule we obtain

dg(t,K) = −rg(t,K) dt+ e−rt d(St −K)+

= e−rt
(
−r(St −K)+ dt+ 1{St>K} dSt +

1

2
LKt (S)

)
= e−rt

(
r ·K1{St≥K} dt+ 1{St≥K}σ(t, St)St dBt +

1

2
LKt (S)

)
.

Now it follows that

C(T,K) =E
[
e−rT (St −K)+

]
=E

[
rK

∫ T

0

e−rt1{St≥K} dt

]
+ E

[∫ T

0

e−rT1{St≥K}σ(t, St)St dBt

]
+ E

[
1

2

∫ T

0

e−rt dLKt (S)

]
=rK

∫ T

0

E
[
e−rt1{St≥K}

]︸ ︷︷ ︸
=− ∂

∂K
C(t,K)

dt+
1

2
lim
ε↓0

1

2ε

∫ T

0

E
[
e−rt1(K−ε,K+ε)(St)

]
d[S, S]t

=rK

∫ T

0

− ∂

∂K
C(t,K) dt+

1

2

∫ T

0

lim
ε↓0

1

2ε
E
[
e−rt1(K−ε,K+ε)(S)

]
︸ ︷︷ ︸

=− ∂2

∂K2C(t,K)

·S2
t σ

2(t, St)︸ ︷︷ ︸
=K2σ2(t,K)

dt

=−
[
rK

∫ T

0

∂

∂K
C(t,K) dt+

1

2

∫ T

0

∂2

∂K2
C(t,K)K2σ2(t,K) dt

]
and with

∂

∂T
C(T,K) = −

[
rK

∂

∂K
C(T,K) +

1

2

∂2

∂K2
C(T,K)K2σ2(t,K)

]
we obtain the assertion

σ2(t,K) = −2 ·
∂
∂T
C(T,K) + rK ∂

∂K
C(T,K)

∂2

∂K2C(T,K)K2
.
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3 Stochastic Volatility Models
Definition 3.1. Let (B1, B2) be a 2-dimensional Brownian motion. Choose % ∈ [−1, 1]
and set

Wt := %B1
t +

√
1− %2B2

t .

Then d[B1,W ]t = % dt and B1 and W are called correlated Brownian motions with
correlation %.

Definition 3.2. A financial market model of the form
dS0

t = rS0
t dt,

dSt = St
(
µ(Vt, St) dt+m(Vt) dBt

)
,

dVt = a(Vt) dt+ b(Vt) dWt

with µ : R2 → R, m, a, b : R→ R and B,W correlated Brownian motions is called stochas-
tic volatility model. The volatility Vt is a non traded quantity. Examples for m are

m(Vt) =
√
Vt, m(Vt) = Vt or m(Vt) = |Vt| .

Remark 3.3.

• Volatility is a stochastic process.

• [S, S]t can not be predicted using St alone as in local volatility models.

• The volatility Vt and the stochastic prices St are usually negatively correlated, i.e.,
% ≤ 0.6

• Stochastic volatility models are generally not complete, which implies that there is
neither perfect replication nor a unique price.

However, we can make statements about price relations of various derivatives and instead
of replication we can construct a locally riskfree portfolio.

Definition 3.4. For notational simplicity we define the generator

A := a(v)∂v +
1

2
m(v)2s2∂ss + %m(v)sb(v)∂sv +

1

2
b(v)2∂vv + rs∂s.

Theorem 3.5. Consider a stochastic volatility model and N derivatives H i with payoff
Φi(ST ) and price processes of the form

πit = f i(t, St, Vt),

with f ∈ C1,2,2 and i ∈ {2, ..., N + 1}. Let the extended market (S, π2, π3, ..., πN) be
arbitrage free. Then there exists a function λ : R3 → R called market price of volatility

6Typically % ≈ −0.7.
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risk (MPVR) and we have the following pricing equations. Namly for all i ∈ {2, ..., N+1}
it holds that

∂tf
i +Af i + λ(t, s, v)b(v)∂vf

i − rf i = 0 (10)

with boundary condition

f i(T, s, v) = Φi(s) ∀ (s, v) ∈ R2
≥0, i = 2, ..., N + 1.

Remark 3.6.

• The market price of risk λ is the same for all derivatives. Therefore once λ is fixed
the prices of all derivatives are unique.

• In practice λ is obtained from the market via calibration, i.e., if some prices are
known we can determine λ to compute other arbitrage-free prices.

Proof. For notational simplicity set r = 0 and π1 = S1, i.e., S0 ≡ 1 and

π = (π1, π2, ..., πN+1) = (S1, π2, ..., πN+1).

Applying Itô’s formula to πi = f i(t, St, Vt) yields7

dπit =∂tf
i dt+ ∂sf

i dSt + ∂vf
i dVt

+
1

2
∂ssf

im(Vt)
2S2

t︸ ︷︷ ︸
=[S,S]t

dt+
1

2
∂svf

im(Vt)Stb(Vt)%︸ ︷︷ ︸
=[S,V ]t

dt+
1

2
∂vvf

i b(Vt)
2︸ ︷︷ ︸

=[V,V ]t

=αt dt+ ∂sfStm(Vt) dBt + ∂vf
ib(Vt) dWt

(11)

with

αt := ∂tf
i + Stµt∂sf

i + a(Vt)∂vf
i +

1

2
m(Vt)

2S2
t ∂ssf

i + %m(Vt)Stb(Vt)∂svf
i +

1

2
b(Vt)

2∂vvf
i.

In the next step we will construct a self-financing, locally risk-free8 portfolio

ϑt = (ϑ1
t , ..., ϑ

N+1
t ).

Comparing with (11) we need to find a strategy ϑ such that(
m(Vt) ∂sf

2m(Vt)St · · · ∂sf
N+1m(Vt)St

0 ∂vf
2b(Vt) · · · ∂vf

N+1b(Vt)

)
ϑt = 0. (12)

7Recall that

dSt = St
(
µ(Vt, St) dt+m(Vt)

)
dBt,

dVt = a(Vt) dt+ b(Vt) dWt.

8Risk-free means that dVt = VtK(t, ω) dt, i.e., that there are no (dBt)-terms.
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In this case we have
dVt =

(
ϑ1
tSt +

∑
ϑitα

i
t

)
dt

and therefore Vt is locally riskfree. Applying Theorem 1.10 yields

ϑ1
tStµt +

N+1∑
i=1

ϑitα
i
t = 0.

Hence, from (12) we obtain

Mt

 ϑ1
t

· · ·
ϑN+1
t

 = 0. (13)

where

Mt :=

Z1
t

Z2
t

Z3
t

 :=

m(Vt)St ∂sf
2m(Vt)St · · · · · · ∂sf

N+1m(Vt)St
0 ∂vf

2b(Vt) · · · · · · ∂vf
N+1b(Vt)

µt St α2
t · · · αN+1

t

 .

Obviously (12) and (13) imply that rank(Mt) ≤ 2. Thus, for all t ∈ [0, T ] there exists a
non-trivial linear combination of Z1

t , Z
2
t , Z

3
t that equals zero. That means there exists a

process λt with
− µt
m(Vt)

Z1
t + Z3

t + λtZ
2
t = 0 ∀ t ∈ [0, T ].

This implies that for all i ∈ {1, ..., N + 1}

− µtSt∂sf i + αit + λtb(Vt)∂vf
i = 0. (14)

Since all stochastic processes are of the form f(t, St, Vt), we also obtain that λ has to be
of the form λ(t, St, Vt). Inserting the explicit form of α into (14) yields the assertion.

Remark 3.7.

• The solution f(t, St, Vt) of (10) is the price at time t for an european option with
payoff Φ, given the current price St and current volatility Vt.

• The critical part in stochastic volatility models is the specification of the stochastic
volatility process using the stochastic differential equation

dVt = a(Vt) dt+ b(Vt) dWt.

From stochastic calculus it follows that if a and b are Lipschitz continuous functions
then there exists a unique solution Vt.

• The typical features of volatility are:
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– Mean-reversion, i.e., that Vt tends to a long-term mean γ, more specifically

cov(Vt − Vs, Vs) < 0

for t > s.

t

Vt reversion to
the mean

reversion to
the mean

Figure 3: Mean reversion
– Stationarity, i.e., a limit in distribution

V∞ := lim
t→0

Vt

exists. Therefore the (geometric) Brownian motion is not a good choice.

3.1 Examples of Stochastic Volatility Models

(A) The Stein-Stein model is a stochastic volatility model such that

a(Vt) = −κ(Vt − γ),

b(Vt) = η,

m(Vt) = |Vt|

and λ(Vt) = c. Hence
dVt = −κ(Vt − γ) dt+ η dWt, (OU)

which is called the Ornstein-Uhlenbeck process with parameters

• κ, the speed of mean reversion,

• γ, the long-term volatility,

• η, the volatility of the volatility.

(B) The Hull-White model is a stochastic volatility model such that

a(Vt) = a · Vt,
b(Vt) = b · Vt,
m(Vt) = Vt
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and λ(Vt) = c. Hence
dVt = Vt(a dt+ b dWt),

which is the geometric Brownian motion. The Hull-White-model has neither mean-
reversion, nor a stationary distribution, but Vt is log-normal distributed which usually
yields a good fit to the statistically observed distribution of Vt.

(C) The Heston model is a stochastic volatility model such that

a(Vt) = −κ(Vt − γ),

b(Vt) = η
√
Vt,

m(Vt) =
√
Vt

and λ(Vt) = c
√
Vt. Hence

dVt = −κ(Vt − γ) dt+ η
√
Vt dWt,

which is the Cox-Ingersoll-Ross (CIR) process with parameters as in (A).

The properties are:

• There is mean-reversion and
a stationary distribution.

• The process Vt stays positive.

• The pricing PDE can be
solved by Fourier transform. t

Vt

Vt ≥ 0 a.s.

γ

Figure 4: CIR process

(D) The stochastic alpha-beta-rho (SABR) model is a financial market model such
that

a(Vt) = 0,

b(Vt) = α · Vt,
m(St, Vt) = Sβ−1

t · Vt.

Strictly speaking it is not in the scope of our definition, because m depends on both
S and V . We have

dSt = St

(
µ(t, ω) dt+ VtS

β−1
t dBt

)
,

i.e., it is similar to the CEV model and

dVt = αVt dWt,
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which is the geometric Brownian motion without drift. In the SABR-model there
is neither mean reversion, nor a stationary distribution. On the other hand Vt is
lognormal distributed, the model extends the CEV-model and it has a closed-form
approximation of the implied volatility.

3.1.1 The Stein-Stein Model

First of all we focus on the Ornstein-Uhlenbeck process

dVt = −κ(Vt − γ) dt+ η dWt. (OU)

The goals are

• finding an explicit solution of (OU), the distribution of Vt and its limit as t→∞,

• answering the question wether there is mean reversion, i.e., wether cov(Vt−Vs, Vs) < 0
or not.

As Ansatz set
Zt := eκt(Vt − γ).

Hence Z0 = V0 − γ. From the product rule and by (OU) it follows that

dZt =κeκt(Vt − γ) dt+ eκt dVt

=eκt
(
κ(Vt − γ) dt+ dVt

)
=ηeκt dWt.

Thus it holds that

Zt = Z0 + η

∫ t

0

eκs dWs

and that

Vt = γ + e−κtZt = e−κtV0 + (1− e−κt)γ + ηe−κt
∫ t

0

eκs dWs︸ ︷︷ ︸
E[·]=0

.

We can now deduce mean and variance of Vt

E[Vt] = e−κtV0 + (1− e−κt)γ t→∞−→ γ,

var(Vt) = E
[
(Vt − E[Vt])

2
]

= η2e−2κtE

[(∫ t

0

eκs dWs

)2
]

= η2e−2κt

∫ t

0

e2κs ds

= η2e−2κt

(
e2κt − 1

2κ

)
=
η2

2κ

(
1− e−2κt

)
.
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Lemma 3.8. Let f ∈ C[0, T ] be deterministic. Then the Itô-integral

Xt =

∫ t

0

f(s) dWs

is a Gaussian process with E[Xt] = 0 and cov(Xt, Xs) =
∫ t∧s

0
f(u)2 du.

Proof. See [1, Chapter 4.2].

Using the previous Lemma it follows that

• the Ornstein-Uhlenbeck process is a Gaussian process,

• Vt ∼ N
(
e−κtV0 + (1− e−κt)γ, η2

2κ
(1− e−2κt)

)
,

• there is convergence in distribution, i.e.,

V∞ := d- lim
t→∞

Vt ∼ N

(
γ,
η2

2κ

)
.

Focussing on the covariance for s < t it holds that

cov(Vt, Vs) = E
[
(Vt − E[Vt])(Vs − E[Vs])

]
= η2e−κ(t+s) + E

[∫ t

0

eκu dWu ·
∫ s

0

eκu dWu

]
= η2e−κ(t+s)

∫ s

0

e2κu du

= η2e−κ(t+s) e
2κs − 1

2κ

=
η2

κ
e−κt sinh(κs).

Thus there is mean-reversion since

cov(Vt − Vs, Vs) = cov(Vt, Vs)− E[V 2
s ] = ... =

η2

2κ
(e2κs − 1)︸ ︷︷ ︸

>0

(e−κ(t−s) − 1)︸ ︷︷ ︸
<0

< 0.

3.2 The Heston Model and the Cox-Ingersoll-Ross Process

Recall the CIR process
dVt = −κ(Vt − γ)︸ ︷︷ ︸

a(Vt)

dt+ η
√
Vt︸ ︷︷ ︸

b(Vt)

dWt, (CIR)

where V0 = v > 0 and with parameters

• κ > 0, the rate of mean reversion,

• γ ≥ 0, the long-term mean,

• η > 0, the volatility of volatility.
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3.2.1 Properties of the Cox-Ingersoll-Ross Process

Although b(v) is not Lipschitz at v = 0 the stochastic differential equation (CIR) has a
unique solution (Vt)t≥0 and Vt ≥ 0 almost surely for t ≥ 0.

Definition 3.9. Let τ0 := {t > 0 : Vt = 0},
i.e., the first hitting time of zero.

Lemma 3.10 (Feller). It holds that τ0 =∞
almost surely if and only if Feller’s condition

2κγ ≥ η2

is satisfied. Hence if 2κγ < η2 then τ0 < ∞
almost surely.

No proof.

t

Vt

τ0

γ

Figure 5: Illustration of τ0

The following Theorem now specifies the law of Vt using the characteristic function f(u) =
E[eiuVt ] for u ∈ R.

Theorem 3.11. The characteristic function of the Cox-Ingersoll-Ross process (Vt)t≥0 is
given by

E[eiuVt ] = exp
(
pt(u) + vqt(u)︸ ︷︷ ︸

”affine in v”

)
where

qt(u) =
iue−κt

1− η2

2
uct

, pt(u) = −2γu

η2
log

(
1− η2

2
uct

)
(15)

and ct = 1
κ
(1− e−κt).

Corollary 3.12 (Properties of the CIR process). Let Vt be the solution of (CIR). Then
the following properties hold.

a) The fraction 4Vt
η2ct

has a non-central χ2-distribution9 with 2γκ
η2

degrees of freedom and
non-centrality 4e−κt

η2ct
v.

b) Vt is stationary and
Vt

d−→ V∞

as t→∞, where

E[eiuV∞ ] =

(
1− η2

2κ
u

)− 2γκ

η2

.

Thus V∞ is Gamma distributed with shape parameter 2γκ
η2

and rate parameter 2κ
η2
.

9Let Xi be independent with Xi ∼ N (µi, 1). Then
∑n
i=1X

2
i is non-central χ2-distributed, with n

degrees of freedom and non-centrality λ =
∑n
i=1 µ

2
i .
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Proof. Fix T > 0 and consider
Mt = E

[
eiuVT

∣∣Ft]
for t ≤ T . Mt then is a conditional characteristic function. Note that

• Mt is a martingale on t ∈ [0, T ],

• the terminal value satisfies MT = eiuVT ,

• M0 = E[eiuVT ] is the characteristic function of VT .

Now we use the exponential-affine Ansatz, i.e., setting

Mt = exp (pT−t(u) + Vt · qT−t(u))

where pt(u), qt(u) are deterministic C2-functions that need to be determined. Note that

Mt = f(t, Vt)

where
f(t, x) = exp

(
pT−t(u) + x · qT−t(u)

)
.

The partial derivatives of f are

∂tf(t, x) =
(
− ṗT−t(u)− x · q̇T−t(u)

)
· f(t, x),

∂xf(t, x) = qT−t(u) · f(t, x),

∂xxf(t, x) = q2
T−t(u) · f(t, x).

Applying Itô’s formula to Mt = f(t, Vt) and inserting the definition of Vt yields

dMt =
(
− ṗT−t(u)− Vtq̇T−t(u)

)
Mt dt+ qT−t(u)Mt dVt +

1

2
q2
T−t(u)Mt d[V, V ]t︸ ︷︷ ︸

=η2Vt dt

=Mt

(
−ṗT−t(u)− Vtq̇T−t(u)− κ(Vt − γ)qT−t(u) +

η2

2
Vtq

2
T−t(u)

)
dt

+MtqT−t(u)η
√
Vt dWt

where the dt-term must be 0, since Mt is a martingale. Seperating the coefficients of 1 and
Vt and setting τ = T − t we obtain the following system of ordinary differential equations.

Coefficients of 1 : ṗτ (u) = κγqτ (u), p0(u) = 0,

Coefficients of Vt : q̇τ (u) = −κqτ (u) +
η2

2
qτ (u)2, q0(u) = iu.

Here the initial conditions are derived from

eiuVT = Mt = exp
(
p0(u)︸ ︷︷ ︸

=0

+VT q0(u)︸ ︷︷ ︸
=iu

)
.
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The proof is concluded noting that the equations in (15) are the solutions of the upper
system of ODEs.10

Essentially, processes for which the exponential-affine Ansatz works are called affine pro-
cesses. To be precise:

Definition 3.13. A Rd-valued stochastic process Xt is an affine process if there exist
C1-functions pt(u), qt(u) such that

E
[
eiu
>XT

∣∣Ft] = exp
(
pT−t(u) + qT−t(u)>Xt

)
for all 0 ≤ t ≤ T, u ∈ Rd.

Examples of affine processes are

• the CIR process, the OU process,

• in the Heston model (logSt, Vt)t≥0 is an affine process,

• Lévy processes,

• Lévy-driven OU processes.

Exercise. Show that the Ornstein-Uhlenbeck process is an affine process. Use this to
rederive the results on its law.

3.2.2 Pricing in the Heston Model

Recall the stochastic differential equations in the Heston model

dS0
t = rS0

t dt,

dSt = St
√
Vt dBt,

dVt = −κ(Vt − γ) dt+ η
√
Vt dWt

with d[B,W ]t = % dt and % ∈ [−1, 1]. With r = 0 we obtain by Theorem 3.5 the pricing
PDE in the Heston model, i.e., let

πt = f(t, St, Vt)

be the fair price of an European option with payoff Φ. Then f satisfies

0 =∂tf − κ(v − γ)∂vf +
1

2
vs2∂ssf + %ηvs∂vsf +

η2

2
∂vvf

Φ(s) =f(T, s, v).
(HPDE)

10Obviously it holds that

pτ (u) = κγ

∫ τ

0

qs(u) ds.

The ODE for q is a Riccati equation.
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It will be convenient to transform to x = log s, i.e., setting

h(t, x, v) = f(t, ex, v).

Theorem 3.14 (Fourier pricing). Consider the Fourier transform of h and Φ in the Heston
model, i.e.,

ĥ(t, u, v) =

∫ ∞
−∞

eiuxh(t, x, v) dx =

∫ ∞
−∞

eiuxf(t, ex, v) dx,

Φ̂(u) =

∫ ∞
−∞

eiuxΦ(ex) dx.

Then it holds that
ĥ(t, u, v) = exp

(
pT−t(u) + vqT−t(u)

)
Φ̂(u),

where p, q solve the following ordinary differential equations
ṗτ (u) = κγ · qτ (u), p0(u) = 0,

q̇τ (u) = (iu%η − κ)qτ (u) +
η2

2
q2
τ (u)− u2

2
, q0(u) = 0.

Remark 3.15. Note that
pτ (u) = κγ

∫ τ

0

qs(u) ds

and that the equation for q is a Riccati ODE.

Proof. We will do the proof in four steps:

Step I: Rewrite (HPDE) in terms of x = log s
Consider the partial derivatives of h, i.e.,

∂xh = ex∂sf = s∂sf,

∂xxh = e2x∂sf = s2∂ssf.

Thus (HPDE) becomes∂th− κ(γ − v)∂vh+
1

2
v∂xxh+ %ηv∂vxh+

η2

2
v∂vvh = 0,

h(T, x, v) = Φ(ex).
(16)

Note that the coefficients are affine in v.

Step II: Apply the Fourier transform
Consider the Fourier transform of h

ĥ(t, u, v) = F [h](u) =

∫ ∞
−∞

eiuxh(t, x, v) dx
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and calculate the Fourier transforms of h’s partial derivatives, i.e.,

F [∂xh](u) =

∫ ∞
−∞

eiux∂xh(t, x, v) dx = iu

∫ ∞
−∞

eiuxh(t, x, v)

= iuF [h](u),

F [∂xxh](u) = −u2F [h](u),

F [∂th](u) =

∫ ∞
−∞

eiux∂th(t, x, v) dx

= ∂tF [h](u),

F [∂vh](u) = ∂vF [h](u),

F [∂vvh](u) = ∂vvF [h](u),

F [∂vxh](u) = iu∂vF [h](u).

Step III: Apply the exponential-affine Ansatz
Set

F [h](u) = ĥ(t, u, v) = exp
(
pT−t(u) + vqT−t(u)

)
Φ̂(u)

with p, q to be determined and terminal condition

ĥ(T, u, v) = Φ̂(u).

Thus p0(u) = q0(u) = 0, which is the initial condition for the Riccati ODE. For the
partial derivatives we obtain

F [∂th](u) = −
(
ṗT−t(u) + vq̇T−t(u)

)
· F [h](u),

F [∂vh](u) = qT−t(u) · F [h](u),

F [∂vxh](u) = iuqT−t(u) · F [h](u),

F [∂vvh](u) = q2
T−t(u) · F [h](u).

Step IV: Apply the Fourier transform to (16)
Setting τ = T − t yields

0 = F [(16)](u) = F [h](u) · ατ (v),

where

ατ (v) :=

(
−ṗτ (u)− vq̇τ (u)− κ(v − γ)qτ (u)− u2

2
v + %ηviuqτ (u) +

η2

2
q2
τ (u)

)
.

Note that αt is an affine function of v. Since F [h](u) 6= 0 for all (t, u, v) ∈ [0, T ]×R×
R≥0 we conclude that ατ (v) has to be equal to 0 for all (t, u, v) ∈ [0, T ] × R × R≥0.
Again, by collecting the coefficients we obtain the following equations.

Coefficients of 1 : ṗτ (u) = κγqτ (u), p0(u) = 0,

Coefficients of v : q̇τ (u) = (%ηiu− κ)qτ (u) +
η2

2
q2
τ (u)− u2

2
, q0(u) = 0.
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Remark 3.16. If we try to price put and call options by using the inverse Fourier transform

h(t, x, v) =
1

2π

∫ ∞
−∞

e−iuxĥ(t, u, v) du

we have the problem, that h must be in L1(R) ∩ L2(R) which is not true for the payoffs.
Indeed, note that

for a call: Φ(x) = (ex −K)+

logK

/∈ L1(R)

for a put: Φ(x) = (K − ex)+

logK

/∈ L1(R)
K

We solve this by ’dampening’ with an exponential function eRx and get

call: Φ̃(x) = e−Rx(ex −K)+ with R > 1,

put: Φ̃(x) = e−Rx(K − ex)+ with R < 0.

Considering the Fourier transform, we obtain

F [e−Rxg](u) =

∫ ∞
−∞

e−Rx+iuxg(x) dx =

∫ ∞
−∞

ei(u+iR)xg(x) dx

= ĝ(u+ iR)

under suitable integrability conditions. Hence

Exponential dampening in
original domain

⇐⇒ Imaginary shift in
Fourier domain
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Calculating the Fourier transform of the exponentially dampened put we obtain

F
[
e−Rx(K − ex)+

]
(u) =

∫ ∞
−∞

e(iu−R)x(K − ex)+ dx

=

∫ logK

−∞

(
Ke(iu−R)x − e(iu−R+1)x dx

= κ
e(iu−R)x

(iu−R)

∣∣∣∣logK

−∞
− e(iu−R+1)x

(iu−R + 1)

∣∣∣∣logK

−∞

= Kiu−R+1

[
1

(iu−R)
− 1

(iu−R + 1)

]
= Kiu−R+1 1

(iu−R)(iu−R + 1)
.

We summarize the above calculations in the following corollary:

Corollary 3.17. The price of a put option with maturity T and strike K in the Heston
model is given by the inverse Fourier integral

Πput
t = f(t, St, Vt) =

(
St
K

)R
2π

·K ·
∫ ∞
−∞

e−iu log(StK ) ·
exp

(
pT−t(u+ iR) + VtqT−t(u+ iR)

)
(iu−R)(iu−R + 1)

du,

(17)
R < 0. For the call the same formular holds with R > 1.

Remark 3.18. (17) can be written as a line integral in the complex plane, i.e., for

F (ξ) = exp(pT−t(iξ)) + VtqT−t(iξ))

we obtain
1

2π

∫ i∞+R

−i∞+R

e
ξ log

(
K
St

)
· F (ξ)

ξ(ξ + 1)
dξ

with ξ = iu − R. There are two poles at ξ = 0 and ξ = −1. In complex analysis it is
well-known that the value of the integral is independent under changes of R as long as no
pole is crossed.
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Re ξ

Im ξ

R1 R2

call
prices

put
prices

ξ = −1

ξ = 0

Figure 6: Call and put prices in the Heston
model

4 Risk-Neutral Pricing and Arbitrage
In discrete time the first fundamental theorem of asset pricing states that there is no
arbitrage if and only if there exists an equivalent martingale measure Q. (See [2, Theorem
2.1]) Furthermore the risk-neutral pricing formula

Πt := S0
t · EQ

[
C

S0
T

∣∣∣Ft]
determines the fair price of a claim C at time t. In order to derive the analogues in
continuous time we repeat some basic terminology from probability theory.

4.1 Change of Measure

Definition 4.1. Let (Ω,F ,P) be a probability space and let Q be another probability
measure on (Ω,F). We say that

• Q is absolutely continuous with respect to P (notation: Q� P) if

P(A) = 0 =⇒ Q(A) = 0 ∀ A ∈ F .

• Q is equivalent to P (notation: Q ∼ P) if

P(A) = 0 ⇐⇒ Q(A) = 0 ∀ A ∈ F .

• Q and P are mutually singular (notation: Q ⊥ P) if

∃ A ∈ F such that Q(A) = 1 and P(A) = 0.

Remark 4.2. There are some simple consequences of the upper definitions, namely
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• Q ∼ P if and only if (Q� P) ∧ (P� Q),

• Q ∼ P if and only if

P(A) = 1 ⇔ Q(A) = 1 ∀ A ∈ F .

Theorem 4.3 (Radon-Nikodym). The measure Q is absolutely continuous with respect to
P if and only if there exists a random variable X ∈ L(dP) such that X ≥ 0 P-almost surely,
EP[X] = 1, and ∫

A

X dP =

∫
A

dQ ∀ A ∈ F . (18)

Furthermore Q ∼ P if and only if X > 0 P-almost surely.

Remark 4.4.

• The equation (18) is equivalent to

EP[X1A] = Q(A).

• X is called Radon-Nikodym derivative or Radon-Nikodym density of Q with respect
to P. The notation is

dQ
dP

:= X.

• If Q ∼ P, then it holds that
dQ
dP

=

(
dP
dQ

)−1

.

• If R� Q� P, then it holds that

dR
dP

=
dR
dQ
· dQ

dP
.

• On a discrete probability space Ω = (ω1, ..., ωN) we have

dQ
dP

(ωi) =
Q(ωi)

P(ωi)
whenever P(ωi) > 0.

• If Q and P are probability measures on R with densities g and f , then it holds that

dQ
dP

(x) =
g(x)

f(x)
∀ x ∈ R.

Example 4.5. (a) Let P ∼ N(0, σ2) and Q ∼ N(−µ, σ2). Then it holds that

dQ
dP

=

1√
2πσ2

e−
(x+µ)2

2σ2

1√
2πσ2

e−
x2

2σ2

= exp

(
x2

2σ2
− (x+ µ)2

2σ2

)
= exp

(
−xµ
σ2
− µ2

2σ2

)
.
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(b) Consider the multivariate case, i.e., P,Q independent with P ∼ N(0, diag(σ1, ..., σd))
and Q ∼ N(µ, diag(σ1, ..., σd)). It holds that

dQ
dP

(x) = exp

(
−

d∑
i=1

xiµi
σ2
i

− 1

2

d∑
i=1

µ2
i

σ2
i

)
.

Corollary 4.6. Let Y ∈ L(dQ), then it holds that

EQ[Y ] = EP
[

dQ
dP
· Y
]
.

Proof. The result follows by approximating Y by sums of indicator functions.

Lemma 4.7 (Change of measure for conditional expectations). Let Q ∼ P, Y ∈ L(dQ)
and G ⊆ F . Then

EQ[Y |G] =
EP
[

dQ
dPY

∣∣∣G]
EP
[

dQ
dP

∣∣∣G] .
This formula is called the abstract Bayes formula.

Proof. We show that

EQ[Y |G] · EP
[

dQ
dP

∣∣∣G] = EP
[

dQ
dP

Y
∣∣∣G] .

Let A ∈ G arbitrary. The tower law and Theorem 4.3 yield∫
A

EP
[

dQ
dP

Y
∣∣∣G] dP = EP

[
EP
[

dQ
dP

Y
∣∣∣G] · 1A] = EP

[
dQ
dP

Y · 1A
]

= EQ[Y 1A].

On the other hand it holds that∫
A

EQ[Y |G] · EP
[

dQ
dP

∣∣∣G] dP = EP
[
1A · EP

[
dQ
dP
· EQ[Y |G]

∣∣∣G]]
= EP

[
dP
dQ

1A · EQ[Y |G]

]
= EQ[1AEQ[Y |G]

]
= EQ[Y 1A].

Thus ∫
A

EP
[

dQ
dP

∣∣∣G] dP =

∫
A

EQ[Y |G] · EP
[

dQ
dP

∣∣∣G] dP.

Since A was arbitrary the assertion is proven.
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4.1.1 Change of Measure on Filtered Probability Spaces

Consider the probability space (Ω,F ,P) with filtration (Ft)t≥0 ⊆ F and a probability
measure Q � P. Applying the Radon-Nikodym theorem to (Ω,Ft,P) we obtain that for
all t ≥ 0 a Radon-Nikodym derivative Xt ∈ L(Ω,FtP) such that Xt ≥ 0 P-almost
surely, EP[Xt] = 1 and

Q(A) = EP[1AXt] ∀ A ∈ Ft.
We denote

Xt =:
dQ
dP

∣∣∣∣
Ft
.

Lemma 4.8. Let Xt be as above. It holds that

Xt = EP
[

dQ
dP

∣∣∣Ft] ∀ t ≥ 0.

In particular, X := (Xt)t≥0 is a positive P-martingale such that X0 = EP
[

dQ
dP

]
= 1.

Remark 4.9. The stochastic processX is called the density process ofQ with respect to P.

Proof. Using the Radon-Nikodym theorem we obtain

EP[Xt · 1A] = Q(A) ∀ A ∈ Ft,

EP
[

dQ
dP

1A

]
= Q(A) ∀ A ∈ F .

The assertion follows immediately.

Lemma 4.10. Let X be a local P-martingale on a filtered probability space. Let Q ∼ P
with density process

Zt =
dP
dQ

∣∣∣∣
Ft
.

Then XZ = (XtZt)t≥0 is a local Q-martingale.

Proof. Let (τn) be a localizing sequence for X. Recall the local martingale property

EP[Xτn
t |Fs] = Xτn

s ∀ n ∈ N, s ≤ t.

Applying the Radon-Nikodym theorem for conditional expectations yields

EQ[Zτn
t X

τn
t |Fs]

EQ[Zτn
t |Fs]︸ ︷︷ ︸

=Zτns

= Xτn
s .

Thus
EQ[Zτn

t X
τn
t |Fs] = Zτn

s X
τn
s

which again is the local martingale property.
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4.2 Girsanov’s Theorem

Definition 4.11. Consider a filtered probability space (Ω,F , (Ft)t≥0,P) with a Brownian
motion (Bt)t≥0 where (Ft)t≥0 the Brownian standard Filtration (BSF). The Itô Process

dXt = µt dt+ dBt, X0 = 0

is called Brownian motion with drift.

Clearly if X is a Brownian motion with drift then it is not a Brownian motion, unless
µ = 0 dt × dP-almost surely. Roughly said, the Theorem of Girsanov states that under
mild conditions we can find a probability measure Q ∼ P such that X is a Brownian motion
under Q.

Theorem 4.12 (Girsanov’s theorem). Let X be a process of the form

dXt = µt dt+ dBt.

If

Mt = exp

(
−
∫ t

0

µs dBs −
1

2

∫ t

0

µ2
s ds

)
, t ∈ [0, T ]

is a martingale under P then

Q(A) := EP [1AMT ] ∀ A ∈ FT (19)

defines a probability measure Q ∼ P on (Ω,FT ) and X is a Brownian motion on (Ω,FT ,Q).

Remark 4.13. There are two claims, namely

(1) Q defines an equivalent probability measure,

(2) X is a Q-Brownian motion.

Note that MT is the Radon-Nikodym derivative of Q with respect to P on (Ω,FT ), i.e.,

MT =
dQ
dP

∣∣∣∣
FT
.

Proof. The first claim is proven easily, considering that

• Q(Ω) = EP[MT ] = M0 = 1,

• Q(A) ≥ 0 ∀A ∈ FT .

Furthermore let A ∈ FT be arbitrary and (An)n be a sequence such that Aj ∩ Ai = ∅ for
i 6= j and

⋃∞
n=0 = A. By monotone convergence it holds that

Q(A) = EP[1A ·MT ] = EP

[
∞∑
n=0

1An ·MT

]
=
∞∑
n=0

EP[1A ·MT ] =
∞∑
n=0

Q(An).

Thus Q is also σ-additive and therefore a probability measure. To proof the second claim
we need to show that
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a) X is continuous Q-almost surely,

b) (Xt2 −Xt1), ..., (Xtn −Xtn−1) are independent on (Ω,F ,Q) and

c) (Xt −Xs)
Q∼ N(0, t− s).

Since Q ∼ P the claim a) follows immediately from the continuity of X with respect to P.
To show (b) and (c) we use characteristic functions. We do the proof in two steps.

Step I: Let f be a deterministic, measurable, bounded function R→ R. We try to show

EQ
[
exp

(
i

∫ T

0

f(s) dXs

)]
= exp

(
−1

2

∫ T

0

f(s)2 ds

)
. (20)

Considering the definitions of Xs and MT we obtain

EQ
[

exp

(
i

∫ T

0

f(s) dXs

)]
=EP

[
exp

(
i

∫ T

0

f(s) dXs

)
MT

]
=EP

[
exp

(
i

∫ T

0

f(s) dXs −
∫ T

0

µs dBs −
1

2

∫ T

0

µ2
s ds

)]
= exp

(
−1

2

∫ T

0

f(s)2 ds

)
· EP

[
exp(LT )

]
,

where

LT :=

∫ T

0

(if(s)− µs) dBs −
1

2

∫ T

0

(if(s)− µs)2 ds.

Setting NT = exp(LT ) follows that (20) holds if EP[Nt] = 1. Applying Itô’s formula
to Nt yields

dNt = Nt dLt +
1

2
Nt d[L,L]t

= Nt

(
(if(t)− µt) dBt −

1

2(
((((

((((if(t)− µt)2 dt+
1

2(
((((

(((((if(t)− µ(t))2 dt

)
= Nt

(
if(s)− µs

)
dBs.

Thus Nt is a local martingale. Furthermore it holds that

|Nt| ≤ exp

(
1

2

∫ t

0

f(s)2 ds

)
·MT .

Therefore Nt is a Martingale. Let (τn) be a localizing sequence for N . Then the
theorem of dominated convergence yields

EP[NT ] = EP
[

lim
n→∞

NT∧τn

]
= lim

n→∞
EP[NT∧τn ] = N0 = 1.

and (20) follows.
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Step II: Choose a step function

f(t) =
n−1∑
k=0

ϑk · 1(tk,tk+1](t), (ϑk) ⊆ R

and insert into (20). Then it holds that

EQ

[
exp

(
i
n−1∑
k=0

ϑk(Xtk+1
−Xtk)

)]
= exp

(
−1

2

n−1∑
k=0

ϑ2
k(tk+1 − tk)

)

=
n−1∏
k=0

exp

(
−1

2
ϑ2
k(tk+1 − tk)

)
.

(21)

Hence the left hand side of (21) is the characteristic function of (Xt2−Xt1), ..., (Xtk−
Xtk−1

) under Q. The right hand side is the product of the characteristic functions of
N (0, tk+1− tk), which implies c). Furthermore this factorization yields independence
and thus b).

Corollary 4.14 (Changing the drift). Let X be an Itô-process of the form

dXt = µt dt+ σt dBt, X0 = x

and let νt ∈ L2
loc.11 Set ϑt := µt−νt

σt
. If

Mt = exp

(
−
∫ t

0

ϑs dBs −
1

2

∫ t

0

ϑ2
s ds

)
is a P-martingale, then

(a) Q(A) := EP[1A ·MT ] defines a probability measure Q ∼ P on (Ω,FT ),

(b) BQ
t := Bt +

∫ t
0
ϑs ds is a Brownian motion on (Ω,FT ,Q),

(c) X takes the form
dXt = νt dt+ σt dBQ

t , X0 = x,

where νt is the new drift and BQ
t a Q Brownian motion.

Proof. (a) and (b) follow immediately from Theorem 4.12. To proof (c) consider

dXt = µt dt+ σt dBt

= µt dt+ σt
(
dBQ

t − ϑt dt
)

=��
�µt dt+ σt dBQ

t + (νt −��µt) dt

= νt dt+ σt dBQ
t .

11L2
loc =

{
f adapted:

∫ T
0
f(s)2 ds <∞ almost surely

}
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Figure 7: Changing the drift according to Girsanov

Source: Martin Keller-Ressel - created with GNU R, from
https://upload.wikimedia.org/wikipedia/commons/b/b3/Girsanov.png

Novikov’s condition now provides a useful tool to check wether M is a martingale.

Theorem 4.15 (Novikov’s condition). Let µ ∈ L2
loc and set

Mt = exp

(
−
∫ t

0

µs dBs −
1

2

∫ t

0

µ2
s ds

)
.

If

EP
[
exp

(
1

2

∫ T

0

µ2
s ds

)]
<∞ (NOV)

then M is a martingale on [0, T ]. (NOV) is called Novikov’s condition.

Proof. See [1, Theorem 7.7].

4.3 Martingale Representation

Theorem 4.16 (Martingale representation on L2). Let X be a martingale with respect to
the Brownian standard filtration generated by a one-dimensional Brownian motion (Bt)t≥0

and assume that E[X2
T ] <∞. Then exists ϕ ∈ H2[0, T ] such that

Xt = X0 +

∫ t

0

ϕs dBs ∀ t ∈ [0, T ]. (REP)
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The integrand ϕ is unique up to dt× dP-Nullsets.

Proof. First, we show the uniqueness. Assume (REP) holds for another integrand ψ ∈
H2[0, T ]. Then ψ − ϕ ∈ H2[0, T ]. It holds that

0 =

∫ t

0

(ψs − ϕs) dBs

and thus by Itô-isometry

0 =

∫ T

0

E
[
(ϕs − ψs)2

]
ds =

∫
[0,T ]×Ω

[
ϕs(ω)− ψs(ω)

]2
(ds⊗ dP).

Therefore ψs(ω) = ϕs(ω) dt⊗ dP-almost everywhere. It is now enough to show (REP) for
t = T , because then we can take E[·|Ft] on both sides. To do so the strategy is

Step 1: Showing (REP) for a large class of X ∈ L2(FT ),

Step 2: Using a density argument.

Step 2 will be omitted here. Let 0 ≤ t0 ≤ t1 ≤ ... ≤ tN = T be a partition of [0, T ] and let
(ϑj)

N
j=1. It will be shown that the random variable

Z =
N∏
j=1

exp
(
iϑj(Btj+1 −Btj)

)︸ ︷︷ ︸
=:Zj

=
N∏
j=1

Zj

has a representation (REP). Consider Zj first. Therefore let

Xt := exp

(
iϑjBt +

ϑ2
j

2
t

)
.

Using Itô’s formula yields

dXt = Xt

(
iϑj dBt +

�
�
�@
@
@

ϑ2
j

2
dt

)
+
���

���
��XXXXXXXX

1

2
Xt(−ϑj)2 dt

= iϑjXt dBt.

Thus X is a local martingale. Since |Xt| ≤ exp
(
ϑ2j
2
t
)2

follows that X is a martingale. It
holds that

Xt+s = Xs +

∫ t+s

s

iϑjXu dBu.

Inserting the definition of X we obtain

exp

(
iϑjBt+s +

ϑ2
j

2
(t+ s)

)
= exp

(
iϑjBs +

ϑ2
j

2
s

)
+ iϑj

∫ t+s

s

exp

(
iϑjBu +

ϑ2
j

2
u

)
dBu
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and

Zj = exp
(
iϑj(Bt+s −Bs)

)
= e−

ϑ2j
2
t + iϑj

∫ t+s

s

exp

(
iϑj(Bu −Bs) +

ϑ2
j

2
(u− (t+ s))

)
dBu.

In other words

Zj = E[Zj] +

∫ T

0

ψj(s) dBs

with ψj ∈ H2[0, T ] and ψj(s) = 0 for s /∈ [tj, tj+1].
Defining now

Zj(t) := E
[
Zj
∣∣Ft] = E[Zj] +

∫ t

0

ψj(s) dBs

and using the product rule we obtain for j 6= k that

d(ZjZk)t = Zj dZk + Zk dZj + d[Zj, Zk]t

= Zjψk dBt + Zkψj dBt + ψjψk︸︷︷︸
=0

dt.

Thus

ZjZk = Zj(0)Zk(0) +

∫ t

0

(
Zj(s)ψk(s) + Zk(s)ψj(s)

)
dBs.

Iterating N times yields (REP) for Z =
∏N

j=1 Zj.

Corollary 4.17. Let X be a continuous local martingale with respect to the Brownian
standard filtration generated by a one dimensional Brownian motion (Bt)t≥0. Then exists
ϕ ∈ L2

loc[0, T ], such that

Xt = X0 +

∫ t

0

ϕs dBs ∀ t ∈ [0, T ].

Remark 4.18. Note that there is no uniqueness.

Proof. Consider the localizing sequence (τn)n∈N defined by

τn := inf
{
t ≥ 0 : |Xt| ≥ n

}
.

Obviously Xt∧τn are bounded martingales and we can apply Theorem 4.16 and obtain
(REP) with ϕn. Setting

ϕ(s) := lim
n→∞

ϕn(s)

yields the assertion.
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4.4 Risk-Neutral Valuation in Complete Market Models

We consider a financial market model with a single asset S driven by a one-dimensional
Brownian motion, i.e., {

dS0
t = S0

t rt dt,

dSt = St(µt dt+ σt dBt).

Let Ft be the Brownian standard filtration of (Bt)t≥0 and rt, µt, σt be (Ft)-adapted stochas-
tic processes. We assume that σt 6= 0 holds (dt× dP)-almost everywhere. The discounted
price process Xt = St

S0
t
satisfies

dXt = Xt

(
(µt − rt) dt+ σt dBt

)
.

Example 4.19. Examples for the upper kind of model are

• the Black-Scholes model, where σt is constant,

• local volatility models with σt = σ(St).

Stochastic volatility models are not of this kind, because σt = σ(St, Vt) is not necessarily
(FBt )-measurable, because another Brownian motion drives Vt.

Definition 4.20. The Process
λt :=

µt − rt
σt

is called market price of risk (MPR).

Definition 4.21.

a) A probability measure Q is called equivalent local martingale measure (ELMM)
if Q ∼ P and X = S

S0
is a Q-local martingale.

b) A probability measure Q is called equivalent martingale measure (EMM) if Q ∼ P
and X = S

S0 is a Q-martingale.

Theorem 4.22 (Existence and Uniqueness of E(L)MMs).

a) If the market price of risk λt = µt−rt
σt

satisfies the P-Novikov condition

E
[
exp

(
1

2

∫ T

0

λ2
t dt

)]
<∞,

then a unique equivalent local martingale measure Q exists and

dQ
dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0

λs dBs −
1

2

∫ t

0

λ2
s ds

)
.
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b) If also the Q-Novikov condition

EQ
[
exp

(
1

2

∫ T

0

σ2
s ds

)]
<∞

holds, then Q is an equivalent martingale measure.

Proof. Set

Mt = exp

(
−
∫ t

0

λs dBs −
1

2

∫ t

0

λ2
s ds

)
.

By Novikov’s condition M is a P-martingale. By Girsanov’s theorem there exists a proba-
bility measure Q such that Q ∼ P with

dQ
dP

∣∣∣∣
Ft

= Mt

and

BQ
t = Bt +

∫ t

0

λs ds

is a Q-Brownian motion. Considering X we obtain

dXt = Xt

(
(µt − rt) dt+ σt dBt

)
= Xt

(
��

���
�

(µt − rt) dt+ σt

(
(dBQ

t −
��

��
��µt − rt

σt
dt

))
= Xtσt dBQ

t .

Thus X is a Q-local martingale and therefore Q is an equivalent local martingale measure.
Note that we have proven the existence in a). Furthermore it holds that

Xt = exp

(∫ t

0

σs dBQ
s −

1

2

∫ t

0

σ2
s ds

)
.

The fact that the Q-Novikov condition is satisfied implies directly that X is a martingale
and thus that Q is an equivalent martingale measure, hence b). We still need to show the
uniqueness. Therefore let Q′ be another equivalent local martingale measure. It follows
directly that Q ∼ Q′. Hence there exists a Radon-Nikodym derivative

Z :=
dQ′

dQ

∣∣∣∣
FT

with density process
Zt := EQ[Z|Ft],

which is a Q-martingale with Z0 = EQ[Z] = 1. The martingale representation theorem
yields that there exists a γ ∈ H2[0, T ] such that

Zt = 1 +

∫ t

0

γs dBQ
s . (22)
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Since Q′ is an equivalent local martingale measure there exists a localizing sequence (τn)
such that Xτn

t is a Q′-martingale. Hence

Xτn
t = EQ′[Xτn

T |Ft
]

and therefore
Xτn
t =

1

Zτn
t

EQ[Xτn
T Z

τn
T

∣∣Ft].
Multiplying by Zτn

t we obtain

Zτn
t X

τn
t = EQ[Xτn

T Z
τn
T

∣∣Ft].
Therefore ZtXt is a Q local martingale. On the other hand we have

d(XZ)t = Xt dZt + Zt dXt + d[X,Z]t

= Xtγt dBQ
t + ZtXtσt dBQ

t +Xtσtγt dt︸ ︷︷ ︸
must be 0!

Thus σtγtXt = 0 (dt × dP)-almost everywhere. Obviously it must be γt to be zero. With
(22) we obtain that Z = 1. Hence

dQ′

dQ

∣∣∣∣
FT

= 1,

which implies that the measures are equal.

Example 4.23. By theorem 4.22 the Black-Scholes Model where µ, r, σ are constants has
an unique equivalent martingale measure.

Theorem 4.24 (risk-neutral pricing). Consider an arbitrage-free, one-dimensional, com-
plete financial market model driven by a one-dimensional Brownian motion, i.e.,{

dS0
t = rtS

0
t dt,

dSt = St(µt dt+ σt dBt),

with σt 6= 0 (dt × dP)-almost everywhere. Assume that an equivalent local martingale
measure Q exists and consider a claim C ∈ L1(Ω,FT ,Q). Then the discounted fair price
of C is given by the Q-martingale

Π̃C
t = EQ

[
C

S0
T

∣∣∣Ft] .
This is the risk-neutral-pricing-formula. Write the martingale representation of Π̃C

t as

Π̃t = EQ
[
C

S0
T

]
+

∫ t

0

ϕs dBQ
s .

Then
ϑt =

S0
Tϕt
Stσt

, ϑ0
t =

(
Π̃C
t −

ϕt
σt

)
is a replication/hedging strategy for C. In addition, Q and ΠC

t are unique.
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Remark 4.25.

⊕ The risk-neutral pricing approach is more general than the PDE-approach, because

· there is no Markovian assumption,
· C can be any (non-European) claim.

⊕ It allows the computation of ΠC
t by Monte-Carlo simulation.

	 The hedging strategy is not explicit, since ϕ is not known explicitly.

	 It only works for models driven by a single Brownian motion and therefore not for
stochastic volatility models.

Proof. Set Ỹt = EQ
[
C
S0
T

∣∣∣Ft] as a candidate for the fair price. Then Yt = S0
t Ỹt is the

undiscounted price. By the martingale representation theorem there exists ϕ ∈ H2[0, T ]
such that

Ỹt = Ỹ0 +

∫ t

0

ϕs dBQ
s .

In Itô-notation
dỸt = ϕt dBQ

t .

Thus
dYt = rtS

0
t Yt dt+ ϕt dBQ

t .

We define a strategy

ϑt =
S0
t ϕt
Stσt

ϑ0
t =

(
Ỹt −

ϕt
σt

)
and have to show that this strategy replicates the claim. Consider the value process Vt. It
holds that

V ϑ
t = ϑ0

t · S0
t + ϑtSt =

(
Yt −

�
�
�ϕtS
0
t

σt

)
+
�
�
�S0

t ϕt
σt

= Yt.

Therefore V ϑ
T = YT = C which means that the strategy replicates C. We still have to show

that the strategy is self-financing. It holds that

ϑ0
t dS0

t + ϑt dSt =

(
Ỹt −

ϕt
σt

)
rtS

0
t dt+

S0
t ϕt
Stσt

St

(
rt dt+ σt dBQ

t

)
=

(
YtrtS

0
t −
�
�
�
�ϕtrt

σt
S0
t

)
dt+

��
��
�S0

t ϕt
σt

rt dt+ S0
t ϕt dBQ

t

= YtrtS
0
t dt+ S0

t ϕt dBQ
t

= dYt,

which is the self-financing condition. By the replication principle the assertion

Π̃C
t = Ṽ ϑ

t = EQ
[
C

S0
T

∣∣∣Ft]
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is shown. For the uniqueness consider another equivalent local martingale measure Q′ ∼ Q
on (Ω,FT ) with density process

Zt =
dQ
Q′

∣∣∣∣
Ft

such that

Zt = EQ[ZT |Ft],
Z0 = 1.

By the martingale representation theorem there exists a γ ∈ H2[0, T ]

Zt = 1 +

∫ t

0

γs dBQ
s .

Since Q′ is an equivalent local martingale measure it follows that Xt = St
S0
t
is a local Q′-

martingale and from Lemma 4.10 we conclude that XZ is a local Q-martingale. On the
other hand it holds that

d(XZ)t = Xt dZt + Zt dXt + d[X,Z]t

= Xtγt dBQ
t + ZtσtXt dBQ

t + σtγtXt dt

Again, the (dt)-term must be 0 and since Xtσt 6= 0 it has to hold that γt = 0 (dt × dP)-
almost everywhere. Therefore

ZT = 1 +

∫ T

0

0 dBQ
t = 1

and thus Q′ = Q.

4.5 Fundamental Theorem of Asset Pricing I

In this section we have a multivariate setup with one numeraire, d risky assets and a k-
dimensional Brownian motion (Bt)t≥0 with the Brownian standard filtration (Ft). This
includes models for many assets as well as stochastic volatility models. In mathematical
notation we have for i = 1, ..., d{

dS0
t = rtS

0
t dt,

dSit = Sit
(
µit dt+ σit dBt

)
,

(FMM)

where

• Bt ∈ Rk×1 is a k-dimensional Brownian motion,

• µt = (µ1
t , ..., µ

d
t )
> is an Rd-valued, (Ft)-adapted process,
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• Σt = (σ1
t , ..., σ

d
t )
> is an Rd×k-valued, (Ft)-adapted process and

• I = (1, ..., 1)> ∈ Rd is a vector of ones.

There can be additional volatility processes

dV j
t = a(V j

t ) dt+ b(V j
t ) dBt, j = d+ 1, ..., d+ n,

but they only appear indirectly through (Ft)t≥0 and (Bt)t≥0. We need some basic defini-
tions.

Definition 4.26. A probability measure Q with Q ∼ P such that all discounted assets
X i = Si

S0 are local Q-martingales is called equivalent local martingale measure.

Definition 4.27. An Rk-valued, (Ft)-adapted process λ is called market price of risk
if

(µt − rtI) = Σt · λt (MPR)

holds (dt × dP)-almost surely. Hence that this is the multivariate generalization of λt =
µt−rt
σt

.

Definition 4.28. Let ϑ b an arbitrage strategy. The strategy is called admissible if its
discounted value process Ṽ ϑ

t is bounded from below, i.e.,

Ṽ ϑ
t ≥ −B

for some B > 0. Hence, B can be interpreted as some finite limit on the credit line.

We write (NA) for ”there is no arbitrage”. Then the basic statement of the first fundamental
theorem of asset pricing is essentially

(NA) ⇔ ∃ ELMM Q.

”Essentially” means that ”⇐” holds without further conditions and ”⇒” holds under mild
conditions. We will use the market price of risk λ and show that the existence of an
equivalent local martingale measure Q implies that

• there is no arbitrage,

• the existence of a market price of risk λ.

On the other hand we show that the abscence of arbitrage implies that there exists a market
price of risk λ. If this λ satisfies Novikov’s condition then there exists an equivalent local
martingale measure Q.
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∃ ELMM
Q

∃ MPR
λ

(NA)

(NOV)

Figure 8: Sketch of the first fundamental the-
orem of asset pricing

Theorem 4.29 (Fundamental theorem of asset pricing I, ”⇐”). If an equivalent local
martingale measure Q exists for (FMM), then there is no arbitrage.

Proof. We will do the proof by contradiction. Let X = S
S0 be the d-dimensional, discounted

price and T > 0 be the time horizon. Let ϑ be an Rd-valued, admissible arbitrage strategy
with discounted value process Ṽ ϑ

t . Thus

dṼ ϑ
t = ϑt · dXt.

By assumption X is a local Q-martingale and therefore also Ṽ ϑ
t is a local Q-martingale

with lower bound −B. The arbitrage property of ϑ implies that

Ṽ ϑ
0 = 0,

P(Ṽ ϑ
T ≥ 0) = 1,

P(Ṽ ϑ
T > 0) > 0.

Since Q ∼ P it also holds that

Q(Ṽ ϑ
T ≥ 0) = 1,

Q(Ṽ ϑ
T > 0) > 0.

Therefore EQ[Ṽ ϑ
T ] > 0. Now, let (τn) be a localizing sequence for Ṽ θ. By Fatou’s Lemma

it holds that

EQ[Ṽ ϑ
T ] = EQ

[
lim
n→∞

Ṽ ϑ
T∧τn

]
≤ lim

n→∞
EQ[Ṽ ϑ

T∧τn ] = lim
n→∞

Ṽ ϑ
0 = 0,

which is a contradiction. Note that the lower bound −B was needed to apply Fatou’s
lemma.
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Recall that the market price of risk λ is defined as the solution of

µt︸︷︷︸
growth
rate

− rt︸︷︷︸
interest

rate

I = Σt︸︷︷︸
volatility
matrix
d×k

λt︸︷︷︸
MPR

.

Corollary 4.30. If an equivalent local martingale measure Q exists, then (MPR) has a
solution λ.

Proof. Consider a density process Zt := dQ
dP

∣∣
Ft

for t ∈ [0, T ]. Then Zt is a martingale with
Z0 = 1. By the martingale representation theorem there exists γ ∈ H2[0, T ] such that

Zt = 1 +

∫ t

0

γ>s dBs.

Since Q is an equivalent local martingale measure it holds that every X i = Si

S0 is a local
Q-martingale. Therefore XZ is a local P-martingale. Set now λ := − γt

Zt
. It holds that

d(X iZ)t = X i
t dZt + Zt dX i

t + d[X i, Z]t

= X i
tγt dBt + ZtX

i
t

[
(µt − rt) dt+ σit dBt

]
+X i

tσ
i
tγt dt

= [· · · ] dBt + ZtX
i
t︸ ︷︷ ︸

>0

[
(µit − rt)− σitλt

]︸ ︷︷ ︸
!
=0

dt.

We conclude for all i = 1, .., d that

µit − rt = σit · λt

(dt× dP)-almost everywhere. In matrix-vector notation we obtain

µt − rt · I = Σtλt

and therefore λ is the market price of risk.

Theorem 4.31 (Fundamental theorem of asset pricing I, ”⇒”). Consider (FMM).

(a) If (FMM) is free of arbitrage, then a market price of risk λ exists.

(b) If in addition Novikov’s condition is satisfied, then an equivalent local martingale mea-
sure Q exists.

Proof. (a) We do this part of the proof by contraposition, assuming

µt − rtI = Σtλt

has no solution λt on a set A ⊆ [0, T ]×Ω of strictly positive (dt× dP)-measure. This
means that

µt(ω)− rt(ω)I /∈ Im(Σt(ω)).
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From linear algebra12 we have

Im(Σt(ω)) = ker(Σ>t (ω))⊥

and thus (
µt(ω)− rt(ω)I

)
/∈ ker(Σ>t (ω))⊥,

i.e.,
∃bt ∈ ker(Σ>t (ω)) such that b>t (µt − rt(ω)I) 6= 0 ∀ (t, ω) ∈ A.

Therefore we can split A = A+

.
∪ A− such that

b>t (µt − rtI) > 0 ∀ (t, ω) ∈ A+,

b>t (µt − rtI) < 0 ∀ (t, ω) ∈ A−.

Note that at least one of A+, A− has strictly positive measure. Now consider first the
case that A+ has strictly positive measure. Define the self-financing strategy

ϑi =
bit
X i
t

1A+ , i = 1, ..., d

and let the initial capital be 0. Then for the discounted value process it holds that

Ṽt = 0 +

∫ t

0

ϑs dXs =

∫ t

0

d∑
i=1

1A+

bit

�
�X i
t
�
�X i
t

[
(µit − rit) dt+ σit dBt

]
=

∫ t

0

1A+

[
b>t (µt − rtI) dt+ b>t Σt︸︷︷︸

=0

dBt

]
=

∫ t

0

1A+(s, ω)
(
b>s (µs − rsI)︸ ︷︷ ︸

>0

ds
)
> 0.

Thus ϑ is an arbitrage, leading to a contradiction. In case A− using

ϑi = − bit
X i
t

1A−(t, ω)

we obtain an arbitrage as well.

(b) Assume that the market price of risk λ exists and the Novikov condition holds for λ.
Then

Mt =:
dQ
dP

∣∣∣∣
Ft

defines an equivalent martingale measure Q ∼ P, where

Mt = exp

(
−
∫ t

0

λs dBs −
1

2

∫ t

0

‖λs‖2 ds

)
12Rd = Im(Σ)⊕ ker(Σ>)
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as in Girsanov’s theorem. Hence,

BQ
t = Bt +

∫ t

0

λs ds

is a k-dimensional Q-Brownian motion. For the discounted price process it holds that

dX i
t = X i

t

[
(µit − rt) dt+ σit dBt

]
= X i

t

[
���

���(µit − rt) dt+ σit(dB
Q
t −���λt dt)

]
= X i

tσ
i
t dBQ

t

and thus the X i
t are Q-local martingales. Therefore Q is an equivalent local martingale

measure.

4.6 Fundamental Theorem of Asset Pricing II

Definition 4.32. A claim C is called attainable if there exist a (self-financing) replica-
tion/hedging strategy for C.

Definition 4.33. A financial market model is called complete if every claim C with
bounded discounted payoff C

S0
T
is attainable.

Theorem 4.34 (Fundamental theorem of asset pricing II). Consider a financial market
model with an equivalent local martigale measure Q. Then the following are equivalent.

a) The financial market model is complete.

b) The equivalet local martingale measure Q is unique.

c) There is a unique market price of risk λt.

Proof. ”a)⇒b)”: Set C := S0
T ·1A with A ∈ FT . By completeness there exists a replication

stragtegy ϑ with a discounted value process Ṽ ϑ
t , i.e.,

Ṽ ϑ
t = V ϑ

0 +

∫ t

0

ϑs dXs.

Since X is a local Q-martingale it follows that Ṽ ϑ
t is Q-martingale an thus

Ṽ ϑ
t = EQ[Ṽ ϑ

T |Ft] = EQ[1A|Ft].

In particular for t = 0 it holds that

Ṽ ϑ
0 = Q(A).
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Assume now that there exists another equivalent local martingale measure Q′ 6= Q.
It holds that

Ṽ ϑ
t = EQ′ [1A|Ft]

and therefore
Q(A)Ṽ ϑ

0 = Q′(A) ∀ A ∈ FT .

Thus Q = Q′ on (Ω,FT ).

”b)⇒c)”: We show this part by proving ”¬c) ⇒ ¬b)”. Assume that λ and λ′ are two
different solutions of (MPR), i.e.,

(µt − rtI) = Σtλt = Σtλ
′
t.

Then it holds that
Σt(λt − λ′t) = 0.

Setting γt =
λt−λ′t
‖λt−λ′t‖

we obtain Σtγt = 0, but γt 6= 0 with strictly positive (dt× dP)-
measure. Hence γ is bounded. Define Q′ by

dQ′

dQ

∣∣∣∣
Ft

= exp

(
−
∫ t

0

γs dBQ
s −

1

2

∫ t

0

‖γs‖2 ds

)
.

Hence

BQ′
t = BQ

t +

∫ t

0

γs ds

is a Q′-Brownian motion and it holds that

dX i
t = X i

tσ
i
t dBQ

t = X i
tσ

i
t(dB

Q′
t − γt dt)

= X i
tσ

i
tB

Q′
t −Xt σ

i
tγt︸︷︷︸
=0

dt

= X i
tσ

i
t dBQ′

t .

Therefore X i is a local Q′-martingale. It follows that both Q and Q′ are equivalent
local martingale measures. But, Q′ 6= Q and thus Q is not unique.

”c)⇒b)”: Again we show the claim by contraposition, proving that ”¬b) ⇒ ¬c)”. Let

Zt :=
dQ
dP

∣∣∣∣
Ft

and Z ′t :=
dQ′

dP

∣∣∣∣
Ft
.

By the martingale representation theorem there exist γ, γ′ ∈ H2(0, T ) such that

Zt = 1 +

∫ t

0

γs dBs, Z ′t = 1 +

∫ t

0

γ′s dBs.
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Set
λt := − γt

Zt
, λ′t := − γ

′
t

Z ′t
.

Analogously to the proof of Corollary 4.30 we obtain that λ and λ′ are both solutions
of (MPR).

”b)⇒a)”: We will omit this step here.

4.7 Summary

Some summarizing remarks:

• In order to avoid arbitrage, every claim C has to be priced by

ΠC
t = S0

tEQ
[
C

S0
T

∣∣∣Ft]
where Q is an equivalent local martingale measure.

• Since

dS0
t = rtS

0
t dt =⇒ S0

t = exp

(∫ t

0

rs ds

)
we get the equation

ΠC
t = EQ

[
exp

(
−
∫ T

t

rs ds

)
C
∣∣∣Ft] .

• Different choices of Q lead to different prices ΠC
t . However if C is attainable then all

choices of Q lead to the same price and

ΠC
t = V ϑ

t

where V ϑ is the value process of the replication strategy.

Who chooses the equivalent local martingale measure Q? The market!
How can we find Q? Calibration!

5 American Options and Optimal Stopping
Recall the definition of an American put or call option. It is the right to sell or buy
one unit of an underlying asset S at any time τ ∈ [0, T ] for a fixed price K. Thus the
mathematical approach is an optimal stopping problem, i.e., to find the right τ to exercise
optimally. The optimal time τ has to be modelled as a stopping time. Hence, the decision
to stop can only be based on past observations.
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5.1 The Optimal Stopping Problem

The setup is the following.

• We have a filtered probability space (Ω,F , (Ft)t≥0,P) and

• a Reward process (Zt)t∈[0,T ], that is continuous and adapted such that

sup
0≤τ≤T

E[|Zτ |] <∞.

Definition 5.1. The maximization problem

max
{
E[Zτ ] : τ stopping time, 0 ≤ τ ≤ T

}
(OSP)

is called optimal stopping problem for Z. A stopping time τ̂ is called optimal for
(OSP) if

E[Zτ̂ ] = sup
0≤τ≤T

E[Zτ ].

Example 5.2. If Z is a

• martingale, then any stopping time 0 ≤ τ ≤ T is optimal,

• supermartingale, then τ = 0 is optimal,

• submartingale, then τ = T is optimal.

Remark 5.3. A solution η of (OSP) is called minimal if η ≤ τ̂ for any other solution τ̂ of
(OSP).

Definition 5.4. To (OSP) we associate the value process

Vt := sup
t≤τ≤T

E[Zτ |Ft],

which is the expected reward behaving optimally after t. Any stopping time τ̂t attaining
the supremum is called optimal after t.

Definition 5.5. The Snell envelope of Z is the smallest, right-continuous supermartin-
gale, which dominates Z.

Remark 5.6. A process Y is called modification of X if

P(Xt = Yt) = 1 ∀ t ≥ 0.

Theorem 5.7.

a) The value process V is a modification of the Snell envelope of Z.

b) A stopping time t ≤ τt ≤ T is optimal after t, if and only if
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(i) Vτt = Zτt almost surely and

(ii) the stopped value process (Vs∧τt)t≤s≤T is a martingale

Proof.

a) Consider the value process
Vt = sup

t≤τ≤T
E[Zτ |Ft].

Then it holds that

• VT = ZT ,

• Vt ≥ Zt almost surely for all t ∈ [0, T ], (V dominates Z.)

• for all t ∈ [0, T ]
Vt ≥ E[ZT |Ft] = E[VT |Ft].

(V is a supermartingale.)

From stochastic calculus we know that the above implies that V has a right-continuous
modification V ∗. We show that V ∗ is the Snell envelope. Therefore let D be another
right-continuous supermartingale dominating Z. Since D dominates Z and because of
the supermartingale property we obtain

E[Zτ |Ft] ≤ E[Dτ |Ft] ≤ Dt

for all stopping times t ≤ τ ≤ T . Thus also

sup
t≤τ≤T

E[Zτ |Ft]︸ ︷︷ ︸
=Vt=V ∗t

≤ Dt.

Obviously V ∗t ≤ D holds for all t ≥ 0. Since D was an abitrary supermartingale we
have shown that V ∗ is the Snell envelope.

b) ”⇒”: Let τ̂t be optimal after t for (OSP). Then

Vt = sup
t≤τ≤T

E[Zτ |Ft] = E[Zτ̂t |Ft]. (23)

In addition, by stopping the supermartingale V , we obtain

Vt ≤ E[Vτ̂t∧σ|Ft] (24)

for any stopping time t ≤ σ ≤ T . We try to prove (i) setting σ = t. By (23) and
(24) it holds that

E[Zτ̂t |Ft] ≥ E[Vτ̂t |Ft]
and thus

E[Zτ̂t ] ≥ E[Vτ̂t ].
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But since V dominates Z, i.e., Vs ≥ Zs for all s ∈ [0, T ], this can only happen if
they are equal almost surely. Hence

Zτ̂t = Vτ̂t .

For (ii) we obtain by (23), (24) and (i) that

E[Zτ̂t |Ft] ≥ E[Vτ̂t∧σ|Ft] ≥ E
[
E[Vτ̂t |Fσ∧τ̂t ]

∣∣Ft]
= E[Vτ̂t|Ft]
= E[Zτ̂t |Ft].

Therefore it holds that
E[Vτ̂t∧σ|Ft] = E[Vτ̂t |Ft]

for all t ≥ 0 such that t ≤ σ ≤ T . From the converse to Doob’s theorem we get
that Vτ̂t∧s is a martingale.

”⇐”: By (i), (ii) and since τ̂t ≤ T it holds that

Vt = Vt∧τ̂t = E[VT∧τ̂t |Ft] = E[Vτ̂t |Ft] = E[Zτ̂t |Ft].

Thus τ̂t is optimal after t.

Proposition 5.8. Let E
[
sup0≤τ≤T |Zτ |

]
< ∞. Then an optimal solution τ̂t for (OSP)

exists for all t ∈ [0, T ].

Proof. See e.g. Karatzas, I., Shreve, S., Brownian Motion and Stochastic Calculus, Spring-
er, 1991.

Theorem 5.9. Under the assumptions of Proposition 5.8 the stopping time

ηt := inf{s > t : Vs = Zs} (25)

is optimal for (OSP) after t. Hence ηt is the first time that V and Z coincide after t. Any
other solution τ̂t satisfies

ηt ≤ τ̂t almost surely, (26)

i.e., ηt is the minimal solution.

Proof. We have to proof minimality and optimality. For the minimality let ηt be given by
(25) and let τ̂t be optimal. Suppose that τ̂t(ω) < ηt(ω) for ω ∈ B with P(B) > 0. Then it
holds that

Zτ̂t(ω) 6= Vτ̂t(ω) for ω ∈ B.

Thus, by Theorem 5.7 τ̂t is not optimal, which is a contradiction. Therefore (26) holds.
For the optimality consider

Vt = sup
t≤τ≤T

E[Zτ |Ft] ≥ E[Zηt |Ft].
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By (25), (26) and because V is a supermartingale we conclude from Theorem 5.7 b) (ii)
that

E[Zηt |Ft] = E[Vηt |Ft] ≥ E[Vτ̂t|Ft] = Vt.

Therefore it holds that
E[Zηt|Ft] = sup

t≤τ≤T
E[Zτ |Ft]

and thus ηt is optimal.

5.2 Pricing of American Options in Continuous Time

Consider the model {
dSt = St

(
µ(t, St) dt+ σ(t, St) dBt

)
,

S0
t ≡ 1.

(AM-FMM)

with σ(t, St) 6= 0 (dt × dP)-almost surely. Note that the interest rate is zero here. By
definition of the model we know that an unique equivalent local martingale measure Q
exists, hence that the market is complete. Now we consider an American option with
payoff Φ(τ, Sτ ) at τ ∈ [0, T ], e.g. Φ(t, x) = (K − x)+ for a put option. The value, when
exercised at τ is

ΠAM
t (τ) = EQ[Φ(τ, Sτ )|Ft].

The value when exercised optimally is

ΠAM
t := sup

t≤τ≤T
EQ[Φ(τ, Sτ )|Ft],

which is exactly the value process of (OSP) with reward Zt = Φ(t, St). The dynamics of
(AM-FMM) under the equivalent local martingale measure Q is

dSt = Stσ(t, St) dBQ
t .

Note that the solution St is a Markov process, which means the law of (Sr)r∈[t,T ] condi-
tionally on Ft only depends on (t, St). Set

J(t, x, τ) := EQ[Φ(τ, Sτ )|St = x],

f(t, x) := sup
t≤τ≤T

J(t, x, τ). (27)

Note that (27) is equivalent to (OSP) under the Markov property. Now it follows that

ΠAM
t = f(t, St).

Obviously

• f(t, St) is the value process of (OSP),

• Φ(t, St) is the reward process of (OSP).
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Definition 5.10. The set

C := {(t, x) ∈ [0, T ]× R≥0 : f(t, x) > Φ(t, x)} ⊆ [0, T ]× R≥0

is called continuation region.

From Theorem 5.9 we know that the following stopping time is optimal after t

η̂t := inf{r > t : Vr = Zr}
= inf{r > t : f(t, St) = Φ(t, St)}
= inf{r > t : (t, St) /∈ C}

Note that η̂t is the first exit time of C.

t

x

Tτ

C

f(t, x) > Φ(t, x)

Figure 9: Illustration of the continuation re-
gion

Assume f ∈ C1,2 and write

A =
x2

2
σ(t, x)2 ∂

2

∂x2
,

which is the differential operator, generator of S under Q. Applying Itô’s formula to f
yields

f(t+ h, St+h) = f(t, St)+

∫ t+h

t

(
∂

∂t
f(r, Sr) +

S2
r

2
σ(r, Sr)

2 ∂
2

∂x2
f(r, Sr)

)
dr

+

∫ t+h

t

Srσ(r, Sr)
∂

∂x
f(r, Sr) dBQ

r︸ ︷︷ ︸
(local) martingale under Q

.

We take E[·|F ] on both sides and obtain

E[f(t+ h, St+h|Ft] = f(t, St) + EQ
[∫ t+h

t

(
∂

∂t
+A

)
f(r, Sr) dr

∣∣∣Ft] . (28)

Now we have to distinguish two cases.

a) Let (t, St) ∈ C. Since C is open we have that (t + h, St+h) ∈ C for h small enough.
Therefore

τ̂t > t+ h
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and we have not stopped yet. By Theorem 5.7 the value process Vr = f(r, Sr) is a
martingale for r ∈ [t, t+ h]. From (28) we obtain that

EQ
[∫ t+h

t

(
∂

∂t
+A

)
f(r, Sr) dr

∣∣∣Ft]︸ ︷︷ ︸
=:Mt,h

= 0 for h small.

Thus it holds that
lim
h→0

1

h
Mt,h = 0,

which implies (
∂

∂t
+A

)
f(t, St) = 0 whenever (t, St) ∈ C.

Therefore the assertion (
∂

∂t
+A

)
f(t, x) = 0 ∀ (t, x) ∈ C

holds.

b) Let (t, St) /∈ C. We stop immediately, i.e., τ̂t = t and obtain

f(t, St) = Φ(t, St).

Moreover by Theorem 5.7 it holds that Vr = f(r, Sr) is a supermartingale. From (28)
we know

EQ
[∫ t+h

t

(
∂

∂t
+A

)
f(r, Sr) dr

∣∣∣Ft] ≤ 0.

Thus (
∂

∂t
+A

)
f(t, x) ≤ 0 ∀ (t, x) /∈ C.

Summarizing now the above stated we have

(t, x) ∈ C f(t, x) > Φ(t, x)
(
∂
∂t

+A
)
f(t, x) = 0

(t, x) /∈ C f(t, x) = Φ(t, x)
(
∂
∂t

+A
)
f(t, x) ≤ 0

with terminal condition f(T,X) = Φ(T, x). We can formulate this as a free boundary
problem, i.e., given Φ try to find the solutions f, C for

f(T, x) = Φ(T, x),(
∂

∂t
+A

)
f(t, x) = 0 ∀ (t, x) ∈ C,

f(t, x) = Φ(t, x) ∀ (t, x) ∈ δC.
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t

x δC

T

C
f(t, x) > Φ(t, x)

f = Φ

Figure 10: Illustration of the exercise region

We can also formulate it as a variational problem, i.e., given Φ find a solution f for

f(T, x) = Φ(T, x),(
∂

∂t

)
f(t, x) ≤ 0 ∀ (t, x),

max

{
Φ(t, x)− f(t, x),

(
∂

∂t
+A

)
f(t, x)

}
= 0 ∀ (t, x),

f(t, x) ≥ Φ(t, x) ∀ (t, x).

Remark 5.11. All the results remain valid for a non-zero interest rate r ∈ R, when A is
replaced by

A = rx
∂

∂x
+
x2

2
σ2(t, x)

∂2

∂x2
− r.

Corollary 5.12. It holds that{
(t, x) :

(
∂

∂t
+A

)
Φ(t, x) > 0

}
⊆ C,

i.e., it is never optimal to stop if(
∂

∂t
+A

)
Φ(t, St) > 0.

Proof. Suppose (t, St) /∈ C and
(
∂
∂t

+A
)

Φ(t, St) > 0. Then for small h ≥ 0 it holds that(
∂

∂t
+A

)
f(t+ h, St+h) > 0.

Therefore

E
[∫ t+h

t

(
∂

∂t
+A

)
(r, Sr) dr

∣∣∣Ft] > 0.

Thus the value process Vr is not a supermartingale on [t, t+h] which is a contradiction.
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Remark 5.13. As in discrete time, it is

• never optimal to exercise the American call option early if r ≥ 0,

• sometimes optimal to exercise the American put option early if r < 0.

6 Numerical Methods in Mathematical Finance
The motivation for the usage of numerical methods is to find a solution to the pricing
problem for a claim C:

Π0 = EQ
[
C

S0
T

]
,

where Q is an equivalent local martingale measure. Examples for claims are

(a) the European call
C = (ST −K)+,

(b) the Asian call option (e.g. in commodity markets)

C =

(
1

T

∫ T

0

St dt−K
)

+

,

(c) the look-back option

C =

(
ST − min

0≤t≤T
St

)
,

(d) the basket option

C =

(
N∑
i=1

wiS
i
t −K

)
+

,

where S1, ..., SN is a basket of assets and wi are weights.

Note that b) and c) have a path dependent payoff and d) has a high-dimensional payoff.
Here are some methods to determine the fair price.

• In the Black-Scholes Model we have explicit prices for European put/call options.

• The PDE-method is used for

– European options in local/stochastic volatility models,

– American options in local/stochastic volatility models as free boundary problem.

• The Fourier method is used for European options in special models like the Heston
model.
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• Monte-Carlo simulation methods apply in very general circumstances.

Lets have a closer look on the basic idea of the Monte-Carlo simulation. We use the law
of large numbers, i.e., for X ∈ L1 it holds that

1

M

M∑
i=1

Xi −→
M→∞

E[X]

P-almost surely, where Xi are iid copies of X. This methods has also many other applica-
tions e.g. in particle physics, molecular dynamics, computational biology or chemisty.
The main questions answerend in this chapter are:

• How do we generate a random sample with an arbitrary distribution?

• What is the convergence rate of Monte-Carlo simulation?

• How to improve convergence of Monte-Carlo simulation?

Furthermore, X may be given only as solution of a SDE, thus:

• How can we approximate this solution?

6.1 Generation of Random Samples

6.1.1 Uniform Random Number Generation

First of all there are no truly random numbers generated on a computer. Therefore we
have the following definition.

Definition 6.1. Numbers generated by a computer are called pseudorandom numbers
if they are generated by deterministic algorithm but statistically indistinguishable from
truly random numbers in feasible time.

Note that the set of floating point numbers on a given computer is finite, e.g. 236 for single
precision or 272 for double precision. Thus the problem reduces to generating a uniform
distribution on a finite set {0, ...,m− 1}.

Definition 6.2. A random number generation (RNG) constists of a finite set X
which is called the state space, an element x0 ∈ X called the seed, a transition function
T : X → X and a functionG : X → {0, ...,m−1}. Pseudorandom numbers ik are calculated
by

xk+1 = T (xk),

ik = G(xk).
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Corollary 6.3. There is a finite period p ∈ N such that

xp+k = xk ∀ k ∈ N

and therefore ik+p = ik for all k ∈ N.
Desirable properties of a random number generator are

• statistical uniformity,

• speed,

• large period length,

• reproducibility and

• the possibility of ’jumping ahead’, i.e., going quickly from xk to xk+n.

Definition 6.4. The typical implementation of a random number generator is the linear
congruential generator defined by

xk+1 = (axk + c) mod m. (LCG)

Proposition 6.5. The linear congruential generator has full period lenght p = m if the
following three conditions are satisfied.

• c and a are relatively prime, i.e., they have no common prime divisors.

• Every prime dividing m also divides a− 1.

• If m is divisible by 4, so is a− 1.

Proof. See number theory.

6.1.2 Non-Uniform Random Number Generation

Theorem 6.6. Let F be a cumulative distribution function. Then

F−1(u) := inf{x : F (x) > u}

is called the generalized inverse/quantile function. If U ∼ Unif[0, 1], then X :=
F−1(U) has distribution F .

x

u

x2x1

u∗

F (x)

u

x

u∗

x1

x2

F−1(u)

Figure 11: Illustration of F−1(u).
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Proof. First we show that
F (x) ≥ u ⇔ F−1(u) ≤ x.

”⇒”: Follows directly by definition.

”⇐”: F−1(u) ≤ x implies that it exists a sequence xn ↓ x such that F (xn) ≥ u. By the
right-continuity it holds that

F (x) = lim
n→∞

F (xn) ≥ u.

Using now the proven equivalence we obtain

P(X ≤ x) = P(F−1(U) ≤ x) = P(u ≤ F (x)) = F (x).

Example 6.7. Consider the exponential distribution, i.e.,

F (x) = 1− e−λx.

We obtain the inverse function

F−1(u) = −1

λ
log(1− u).

Therefore if U ∼ Unif[0, 1] then X = − 1
λ

log(1− U) is again Exp(λ) distributed.

6.1.3 The Acceptance-Rejection Method

Let f and g be density functions on Rd, where g is the function from which we can sample
efficiently and f is the target density on Rd, from which we want to sample. The
Acceptence-Rejection method can be applied if there exists a c > 1 such that

f(x) ≤ cg(x) ∀x ∈ Rd.

x
cg(x)

f(x)

Figure 12: Illustration of the Acceptance-Rejection condition

Algorithm 6.8.

78



a) Generate a sample X from g and U ∼ Unif[0, 1], U ⊥⊥ X.

b) If U ≤ f(X)
cg(X)

return X, else goto a).

Theorem 6.9. Let Y be the output of the Acceptance-Rejection method. Then

a) Y has distribution given by f ,

b) the loop in (ARM) is repeated c times on average.

Proof. By construction Y has distribution of X, conditioned on the set{
u ≤ f(x)

g(x)

}
,

i.e., for all A ∈ B(Rd)

P(Y ∈ A) = P
(
X ∈ A

∣∣∣u ≤ f(x)

cg(x)

)

=
P
(
X ∈ A ∧ u ≤ f(x)

cg(x)

)
P
(
u ≤ f(x)

cg(x)

)
Moreover it holds that

P
(
X ∈ A ∧ U ≤ f(x)

cg(x)

)
=

∫
A

P
(
u ≤ f(x)

cg(x)

)
g(x) dx

=

∫
A

f(x)

cg(x)
g(x) dx

=
1

c

∫
A

f(x) dx.

Choosing A = Rd

P
(
u ≤ f(x)

cg(x)

)
A=Rd

=
1

c

is probability of accepting X or exiting the loop. It holds that

P(Y ∈ A) =

∫
A

f(x) dx

for all A ∈ B(Rd) and therefore Y has density f . The geometric distribution is averaging
the waiting time until acceptance c.

Remark 6.10. The smaller c is, the more efficient is the Acceptance-Rejection method.
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Example 6.11. We try to sample a standard normal distribution from a double exponen-
tial distribution, i.e.,

g(x) =
1

2
e−|x|

and
f(x) = ϕ(x) =

1√
2π
e−

x2

2 .

We obtain
f(x)

g(x)
=

2√
π
e−

x2

2
+|x| ≤

√
2e

π
≈ 1.315 =: c.

Thus the Acceptance-Rejection method is efficient.

6.2 Monte-Carlo Simulation

6.2.1 Basics

The goal of the Monte-Carlo simulation is computing

I(f,X) := E[f(X)]

using the law of large numbers, i.e.,

I(f,X) = lim
M→∞

1

M

M∑
i=1

f(Xi)︸ ︷︷ ︸
=:IM (f,X)

where (Xi)i∈1,...,M are iid copies of X. IM(f,X) is called Monte-Carlo estimate.

Definition 6.12. The Monte-Carlo error is defined as

εM := εM(f,X) = I(f,X)− IM(f,X).

Note that the Monte-Carlo estimate is unbiased, i.e.,

E[IM(f,X)] = I(f,X) or E[εM(f,X)] = 0.

The mean-square error (MSE) is

var(εM(f,X))

and the root mean-square error (RMSE) is√
var(εM(f,X)).
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Theorem 6.13. Let σ2 := var(f(X)) <∞. Then the root mean-square error satisfies√
var(εM(f,X)) =

σ√
M
.

This means it has order 1
2
.13 Moreover

√
M · εM(f,X) is asymptotically normal with

standard deviation σ, i.e.,

lim
M→∞

P
(
aσ√
M

< εM <
bσ√
M

)
= Φ(b)− Φ(a) ∀ a < b.

Proof. It holds that

var(εM(f,X)) = var

(
1

M

M∑
i=1

f(Xi)

)
=

1

M2
M · var(f(X)) =

1

M
· var(f(X))︸ ︷︷ ︸

=σ2

.

The asymptotic normality follows from the central limit theorem.

Remark 6.14.

(a) There is no deterministic error bound, but we can bound the probability of large errors.

(b) The ’typical error’ (RMSE) decreases like 1√
M
, i.e., order 1

2
.

(c) Suppose that we want to control the error like in

P(|εM(f,X)| > ε) ≤ δ

for some ε > 0, δ > 0. Let ε′ =
√
M
σ
ε. It holds that

P(|εM | > ε) = 1− P
(
− ε′σ√

M
< εM <

ε′σ√
M

)
≈ 1− (Φ(ε′)− Φ(−ε′) = 2− 2Φ(ε′) =: δ.

Thus

Φ

(√
M

σ
ε

)
=

1

2
(1− δ)

Converting the formula yields
√
M =

σ

ε
Φ−1

(
1

2
(1− δ)

)
M =

σ2

ε2

(
Φ−1

(
1

2
(1− δ)

))2

.

Hence M is proportional to 1
ε2
.

(d) In practice, also σ2 = var(f(X)) is unknown.
13Because

√
· = · 12 .
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6.2.2 Comparison with deterministic integration

Suppose X to be uniformly distributed on [0, 1]d. Then

E[f(X)] =

∫
[0,1]d

f(x) dx.

We discretize [0, 1]d on uniform grid points {X1, ..., XN}d with spacing 1
N

and use a deter-
ministic integration method of order k. Thus

error = c ·
(

1

N

)k
where the number of evaluations of f is Nd. Therefore

error

#evaluations
= c ·N−

k
d ,

where N−
k
d deteriorates with d. This is called the curse of dimensionality. The Monte-

Carlo method has order 1
2
independently of the dimension d.

6.2.3 Variance Reduction

We cannot reduce the order of convergence of the Monte-Carlo simulation, but we can try
to reduce the variance σ2. Therefore we try to find a random variable Y and a function g
such that

E[g(Y )] = E[f(X)],

but var(g(Y )) < var(f(X)).

Antithetic Variables

To motivate this method we start with an example.

Example 6.15.

• Let U ∼ Unif[0, 1]. Then 1− U ∼ Unif[0, 1] aswell. Therefore

E[f(U)] = E[f(1− U)].

• Let B ∼ N(0, Id). Then −B ∼ N(0, Id) aswell. Therefore

E[f(B)] = E[f(−B)].
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The general approach is taking a simple transformation X̃ of the random variable X such
that X̃ d

= X. The antithetic Monte-Carlo estimate is then defined as

IAM(f,X) =
1

M

M∑
i=1

f(Xi) + f(X̃i)

2

with a computing time of o(2M). We compare IAM(f,X) with I2M(f,X) = 1
2M

∑2M
i=1 f(Xi).

The antithetic Monte-Carlo estimate is more efficient, if

var

(
1

M

M∑
i=1

f(Xi) + f(X̃i)

2

)
< var

(
1

2M

2∑
i=1

Mf(Xi)

)
︸ ︷︷ ︸

= 1
2M

var(f(X))

.

It holds that

var

(
1

M

M∑
i=1

f(Xi) + f(X̃i)

2

)
=

1

M2

M

4
· var(f(X) + f(X̃))

=
1

4M

[
2 var(f(X)) + 2 cov(f(X), f(X̃)

]
=

1

2M
var(f(X)) +

1

2M
cov(f(X), f(X̃).

Thus the antithetic simulation is more efficient if

cov(f(X), f(X̃)) < 0.

Example 6.16.

• In the Black-Scholes model let

ST = S0 · exp

(
−σ

2T

2
+ σBT

)
,

S̃T = S0 exp

(
−σ

2T

2
− σBT

)
.

Then ST and S̃T are antithetic random variables.

• Consider the Brownian motion and replace ∆Bti = Bti+1
−Bti by

∆̃Bti = −∆Bti .

Then we obtain an antithetic copy of B.
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Control Variates

Assume that there exists a random variable Y and function g, such that

I(g, Y ) = E[g(Y )]

is exactly known without Monte-Carlo simulation. Then g(Y ) can be used as control
variate to compute

I(f,X) = E[f(X)− λ · (g(Y )− I(g, Y ))]

with the Monte-Carlo estimate

Iλ,CM (f,X) =
1

M

M∑
i=1

(
f(Xi)− λ[g(Yi)− I(g, y)]

)
,

where (Xi, Yi) are iid copies of (X, Y ). The variance of the Monte-Carlo error is propor-
tional to

var(f(Xi)− λg(Yi)) = var(f(X))− 2λ cov(f(X), g(Y )) + λ2 var(g(Y )).

This formula is minimized by

λ∗ =
cov(f(X), g(Y ))

var(g(Y ))
.

Inserting yields

var(f(Xi)− λ∗g(Yi)) = var(f(X))− cov(f(X), g(Y ))2

var(g(Y ))

= var(f(X))(1− %2
XY ),

where % := Corr(f(X), g(Y )). Thus the error reduction is proportional to %2
XY and the

control variate g(Y ) should be strongly correlated (positively or negatively) to g(X).

Example 6.17. Consider a discretized Asian option with payoff(
1

N

N∑
i=1

Sti −K

)
+

(AA)

in the BS-Model. Replacing the arithmetic average by a geometric average we obtain( N∏
i=1

Sti

) 1
N

−K


+

. (GA)

Note that (
N∏
i=1

Sti

) 1
N

= exp

(
1

N

N∑
i=1

logSti

)
is normally distributed. Thus we have the explicit price for the geometric Asian option in
the Black-Scholes model. The payoffs (GA) and (AA) are strongly correlated and therefore
(GA) is an efficient control variate for (AA).
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Importance Sampling

Importance sampling is related to the Acceptance-Rejection Sampling, i.e., we sample more
often in regions where variance is high. We assume that

• X has density p : Rd → R, the target density,

• Y has density q : Rd → R, the auxilliary density.

It holds that

I(f,X) = E[f(X)]

=

∫
Rd
f(x)p(x) dx

=

∫
Rd
f(x)

p(x)

q(x)
q(x) dx

= E
[
f(Y )

p(Y )

q(Y )

]
= I

(
f · p

q
, Y

)
.

This can be interpreted as change of measure with Radon-Nikodym derivative

dP
dQ

=
p(x)

q(x)
.

The Monte-Carlo estimate is now

IM

(
f
p

q
, Y

)
=

1

M

M∑
i=1

f(Yi)
p(Yi)

q(Yi)
,

where Yi are iid copies of Y . The speed-up is governed by the variance

var

(
f(Y )

p(Y )

q(Y )

)
.

Thus it would be Ideal to choose

q(x) = p(x)f(x),

where the variance of a constant c is zero. But since q is a density it holds that

1 =

∫
q(x) dx =

1

c

∫
p(x)f(x) dx.

Therefore c = E[f(X)], which is unknown. The guideline is to choose q approximately
proportional to p · f , i.e., choose

• q high where p · f is high,
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• q low where p · f is low.

Example 6.18. Consider a call option (ST−K)+ in the Black-Scholes model with K � S0

e.g. K = 150, S0 = 100. Let

ST = S0 exp

(
−σ

2T

2
+ σBT

)
,

f(x) =

(
S0 exp

(
−σ

2T

2
+ x

)
−K

)
+

,

and X ∼ N(0, σ2T ). Then E[f(X)] is the price of the call option. Let

p(x) =
1√

2πσ2T
exp

(
− x2

2σ
√
T

)
,

q(x) =
1√

2πσ2T
exp

(
−(x− xT )2

2σ
√
T

)
.

Let x∗ = log
(
K
S0

)
+ σ2T

2
and Y ∼ N(x∗, σ

2T ). It holds that

p(x)

q(x)
= exp

(
− 1

2σ
√
T

(x2 − (x− x∗)2)

)
= exp

(
− 1

2σ
√
T

2xx∗ − x2
∗)

)
Thus the improved Monte-Carlo estimate is

1

M

M∑
i=1

f(Yi)
p(Yi)

q(Yi)
.

p(x)
q(x)

f(x) ... payoff

x

u

x∗0

useless

samples

useful

samples

Figure 13: Illustration of importance sampling
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6.3 Numerical Methods for SDEs

We try to find a numerical approximation to the solution of the stochastic differential
equation

dXt = a(Xt) dt+ b(Xt) dBt, X0 = x0 (SDE)

e.g. to a local volatility model. The methods that will be discussed can be extended to

• time-dependent coefficients a(t,Xt), b(t,Xt),

• the multivariate case, i.e.

X... Rk-valued,
B... Rd-valued.

The approximation XD of X will be given on a time grid

D := {0 = t0 < t1 < ...tN = T},

with mesh of D
|D| := max

0≤i≤N−1
|ti+1 − ti| .

The central question we are asking is the convergence of XD to X as |D| → 0.

Definition 6.19. A numerical scheme is a method, which given x0, a, b and grid D
returns an approximation XD for X.

The notation is

∆ti :=ti+1 − ti,
∆Yi :=Yti+1

− Yti for any stoch. process Y,

X
D
i :=X

D
ti

for the approximation along the grid,
btc for the largest gridpoint ≤ t.

Definition 6.20.

a) A scheme converges strongly to X if

lim
|D|→0

E
[∣∣∣XDT −XT

∣∣∣] = 0.

b) The scheme has strong order γ > 0 if

E
[∣∣∣XDT −XT

∣∣∣] ≤ C |D|γ ,

where C may depend on x0, a, b and T .
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Definition 6.21. a) Given a family G of functions f : R → R, we say X
D converges

weakly to X with respect to G) if∣∣∣E [f (XDT )]− E[f(XT )]
∣∣∣ = 0 ∀ f ∈ G.

b) We say XD is of weak order γ > 0, if∣∣∣E [f (XDT )]− E[f(XT )]
∣∣∣ ≤ C · |D|γ ∀ f ∈ G,

where C may depend on x0, a, b and T .

Remark 6.22.

• Most approximation problems in mathematical finance are of weak type, e.g. option
pricing.

• The family G should reflect the relevant application, e.g. it should contain all option
payoffs.

Lemma 6.23. Suppose all functions in G are Lipschitz with a uniform constant L. Then
strong convergence of order γ implies weak convergence of order γ.

Proof. The Lipschitz continuity and the strong convergence yield∣∣∣E [f (XDT )]− E[f(XT )]
∣∣∣ ≤ E

[∣∣∣f (XDT )− f(XT )
∣∣∣]

≤ L · E
[∣∣∣XDT −XT

∣∣∣]
≤ L · C |D|γ .

6.3.1 The Euler-Maruyama Scheme

The Euler-Maryama scheme is the simplest scheme. It is analogous to the Euler scheme
for ODEs. The idea is replacing dt and dBt in (SDE) by discrete forward increments ∆ti
and ∆Bi. Thus we consider

X i+1 = X i + a(X i)∆ti + b(X i)∆Bi, X0 = x0. (EM)

Obviously the random variables (∆Bi) are iid normally distributed. (EM) can be extended
between gridpoints by setting

X t = Xbtc + a
(
Xbtc

)
(t− btc) + b

(
Xbtc

) (
Bt −Bbtc

)
(EM’)

= Xbtc +

∫ t

btc
a
(
Xbtc

)
du+

∫ t

btc
b
(
Xbtc

)
dBu.
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Thus

X t = X0 +

∫ t

0

a
(
Xbuc

)
du+

∫ t

0

b
(
Xbuc

)
dBu. (I-EM)

We need the following assumptions on a and b.

Lipschitz continuity: |a(x)− a(y)| ≤ L · |x− y| ,
|b(x)− b(y)| ≤ L · |x− y| ,

Linear growth: |a(x)| ≤ C(1 + |x|),
|b(X)| ≤ C(1 + |x|).

(L)

Theorem 6.24. Suppose that the coefficients a, b satisfy the assumptions (L). Then the
Euler-Maruyama scheme has strong order 1

2
.

To prepare the proof we need the following inequalities.

(i) From Jensen’s inequality it follows that

(a1, ..., an)2 ≤ n · (a2
1 + ...+ a2

n)

for any ai ∈ R.

(ii) [Doob’s L2-inequality] For any martingale M it holds that

E
[

sup
0≤s≤t

M2
s

]
≤ 4 · E[M2

t ].

(iii) [Hölder’s inequality] Let 1
p

+ 1
q

= 1. Then it holds that

‖X · Y ‖1 ≤ ‖X‖p · ‖Y ‖q .

(iv) [Gronwall’s inequality] Let f ∈ C([a, b]) and f ≥ 0 with

f(t) ≤ C +D

∫ t

a

f(u) du ∀ t ∈ [a, b],

for C,D > 0. Then it holds that

f(t) ≤ Ce(t−a)D ∀ t ∈ [a, b].

Lemma 6.25. Let X be the solution of (SDE), where a and b satisfy (L). Then

E
[

sup
0≤s≤t

X2
s

]
≤ C(1 +X2

0 ) <∞ ∀ t ∈ [0, T ],

where C may depent on a, b, T .
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Proof. Set δt := E
[
sup0≤s≤tX

2
s

]
. Then by the Definition of (SDE) and (i) it holds that

δt = E

[
sup

0≤s≤t

(
X0 +

∫ s

0

a(Xu) du+

∫ s

0

b(Xu) dBu

)2
]

≤ C1

(
X2

0 + E

[
sup

0≤s≤t

(∫ s

0

a(Xu) du

)2
]

︸ ︷︷ ︸
=:αt

+E

[
sup

0≤s≤t

(∫ s

0

b(Xu) dBu

)2
]

︸ ︷︷ ︸
=:βt

)

for some C1 > 0. By (ii), (L) and the Itô-isometry it holds that

βt ≤ C2 · E

[(∫ t

0

b(Xu) dBu

)2
]

= C2

∫ t

0

E[b(Xu)
2] du

≤ C3 ·
∫ t

0

(1 + E[X2
u]) du

≤ C4 ·
∫ t

0

δu du

for some constants C2, C3, C4 > 0. For αt we get a similar estimate using Hölder instead
of Doob and Itô. Thus for C5 > 0 it holds that

δt ≤ C1X
2
0 + C5 ·

∫ t

0

δs ds.

Now we are able to apply Gronwall’s inequality and obtain

δt ≤ C1(1 +X2
0 ) exp(tC5)

≤ C(1 +X2
0 )

for some constant C := C1 exp(TC5) > 0.

Proof of Theorem 6.24. Set

εt := E
[

sup
0≤s≤t

(Xs −X
D
s )2

]
.

Using (I-EM) and (SDE) we obtain

Xs −Xs =

∫ s

0

(
a(Xu)− a(Xbuc)

)
du+

∫ s

0

(
b(Xu)− b(Xbuc)

)
dBu

= αs + α̃s + βs + β̃s,
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where

βs =

∫ s

0

(
b(Xu)− b(Xbuc)

)
dBu is the discretization error of exact solution,

β̃s =

∫ s

0

(
b(Xbuc)− b(Xbuc)

)
dBu is the exact solution-approximation on gridpoints

and similarily for α, α̃. We try now to derive an estimate for β̃. By Doob’s inequality, the
Itô-isometry and (L) it holds that

E
[

sup
0≤s≤t

β̃2
s

]
≤ C · E[β̃2

t ]

= C ·
∫ t

0

E
[(
b(Xbuc)− b(Xbuc)

)2
]

du

≤ C ·
∫ t

0

E
[(
Xbuc −Xbuc

)2
]

du

≤ C ·
∫ t

0

εu du.

Again we obtain a similar estimate for α̃. Looking at an estimate for β we obtain as above

E
[

sup
0≤s≤t

β2
s

]
≤ C ·

∫ t

0

E
[(
Xu −Xbuc

)2
]

du

= C ·
∫ t

0

E

[(∫ u

buc
a(Xs) ds+

∫ u

buc
b(Xs) dBs

)2
]

≤ C · E
[

sup
0≤s≤t

X2
s

]
·
∫ t

0

(u− buc) du.

By Lemma 6.25 it holds that

E
[

sup
0≤s≤t

β2
s

]
≤ C(1 +X2

0 ) · T · |D|

≤ C · (1 +X2
0 ) |D| .

Inserting the estimates yields

εt ≤ C(1 +X2
0 ) |D|+D

∫ t

0

εs ds.

Again Gronwall’s inequality is applicable and we obtain

εt ≤ C(1 +X2
0 ) |D| .

Therefore and by Hölder’s inequality we obtain order 1
2
, because

E
[∣∣∣XT −X

D
T

∣∣∣] ≤√E
[(
XT −X

D
T

)2
]
≤
√
εT ≤ C · |D|

1
2 .
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Theorem 6.26. Assume all f ∈ G and the coefficients a, b are C4 with polynomially
bounded derivatives. Then the Euler-Maruyama scheme has weak order 1.

No proof.

6.3.2 The Milstein Scheme

To improve order of convergence, we focus on the (b(Xt) dBt)-term in (SDE). The Euler-
Maruyama scheme approximates

b(Xt) dBt ≈ b(Xt)(Bt+h −Bt)

on the time increment [t, t+ h]. As integral we write∫ t+h

t

b(Xs) dBs ≈ b(Xt)(Bt+h −Bt). (EM)

For the Milstein scheme we will need the iterated Itô-integral∫ t

0

Bs dBs.

Note that by Itô’s formula it holds that

B2
t = 2 ·

∫ t

0

Bs dBs + t,

which implies ∫ t

0

Bs dBs =
1

2
(B2

t − t).

Applying Itô’s formula to b(Xs) yields

b(Xs) = b(Xt) +

∫ s

t

b′(Xu) dXu +
1

2

∫ s

t

b′′(Xu) d[X,X]u

= b(Xt) +

∫ s

t

(...) du+

∫ s

t

b′(Xu)b(Xu) dBu.

Neglecting the (du)-terms we obtain

b(Xs) ≈ b(Xt) + b′(Xt)b(Xt)(Bs −Bt).

We plug this into (EM) and have∫ t+h

t

b(Xs) dBs ≈ b(Xt)(Bt+h −Bt) + b′(Xt)b(Xt)

∫ t+h

t

(Bs −Bt) dBs.
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If we apply the formula for the iterated integral it follows that∫ t+h

t

(Bs −Bt) dBs =
1

2
(B2

t+h −B2
t )−

h

2
−Bt(Bt+h −Bt) =

1

2
(Bt+h −Bt)

2 − h

2
.

Putting all together we obtain∫ t+h

t

b(Xs) dBs ≈ Xt(Bt+h −Bt)︸ ︷︷ ︸
EM-scheme

+
1

2
b′(Xt)b(Xt)

(
(Bt+h −Bt)

2 − h

2

)
︸ ︷︷ ︸

Milstein correction

.

Finally the Milstein scheme is given by

X i+1 = X i + a(X i)∆ti + b(X i)∆Bi +
1

2
b′(X i)b(X i)

(
∆B2

i −∆ti
)
. (Milstein)

Theorem 6.27. Suppose a and b satisfy (L). Moreover let a ∈ C1 and b ∈ C2. Then the
Milstein scheme has strong order 1.

No proof.

Remark 6.28. There are systematic ways to generate higher order schemes, e.g. stochastic
Taylor schemes. In these schemes iterated Itô-integrals In appear. Iterated Itô-integrals
are defined as

I0
t = 1,

I1
t =

∫ t

0

1 dBs = Bt,

I2
t =

∫ t

0

Bs dBs =
1

2
(B2

t − 1),

...

Ikt =

∫ t

0

I(k−1)
s dBs.

 Hermite Polynomials

In reality we have to do Monte-Carlo simulation and the schemes.

6.3.3 The Optimal Ratio of Computations

Consider the stochastic differential equation

dXt = a(Xt) dt+ b(Xt) dBt.
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We try to compute E[f(Xt)] by a numerical approximation of the SDE and Monte-Carlo
simulation. There are some choices to be made, namely
• for the numerical approximation

of SDE:

– Choosing the scheme γ and

– choosing the number of time
steps N .

• for the Monte-Carlo simulation:

– choosing the number of iter-
ations M .

t
T

(XT (ω1))

(XT (ω2))

Figure 14: Illustration of the simulation

Now let XD be an approximation of X and IM(f,X
D

) be the Monte-Carlo estimate. Then
the combined error is∣∣∣IM(f,X

D
T )− E[f(XT )]

∣∣∣ ≤ ∣∣∣IM(f,X
D
T )− E[f(X

D
T )]
∣∣∣︸ ︷︷ ︸

Monte-Carlo error

+
∣∣∣E[f(X

D
T )]− E[f(XT )]

∣∣∣︸ ︷︷ ︸
weak error of num. scheme

≤ C1 ·M− 1
2 + C2 ·N−γ.

Thus the total computational workload is M ·N . Given an error tolerance ε > 0 we try to
minimize the workload, i.e.,

min{M ·N : C1M
− 1

2 + C2 ·N−γ ≤ ε},

which is a constrained minimization problem. The Lagrangian is given by

L(M,N, λ) = M ·N + λ(C1M
− 1

2 + C2N
−γ − ε), λ > 0.

We solve the problem:

∂L
∂M

= N + λC1

(
−1

2
M− 3

2

)
=⇒ N ∼ λM− 3

2 (∗)

∂L
∂N

= M + λC2(−γ)N−(γ+1) =⇒ M ∼ λN−(γ+1) = λ−γM
3(γ+1)

2

=⇒ λγ ∼M
3γ
2

+ 1
2 .

=⇒ λ ∼M
3
2

+ 1
2γ .

Inserting this into (∗) yields

N ∼M
1
2γ ⇔ M ∼ N2γ.

Therefore it is optimal to choose the number of Monte-Carlo iterations M proportional to
(#timesteps)2γ. The computational cost in this case is

N (2γ+1) ∼ ε−(2+ 1
γ ).
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This means in terms of the error bound that

ε ∼ N−γ =⇒ N ∼ ε−
1
γ .

weak order γ

comp. cost

ε−2

numerical scheme

Monte-Carlo

Figure 15: Illustration of the computational cost with respect to the weak order

Concluding we can say that there is no point of using schemes of order > 1 and therefore
the Euler-Maruyama scheme and Milstein scheme are good enough.

6.3.4 Multilevel Monte-Carlo (Giles [2008])

Assume that we have a scheme of weak order γ = 1. Then the combined Euler-Monte-
Carlo cost is o(ε−3). The goal is now to reduce the cost.
The idea is to partition [0, T ] into several grids D with uniform time-steps h and

• choosing h1 > h2 > ... > hL,

• estimating f(X
h1

), E[f(X
h1

)] by a Euler-Monte-Carlo crude estimate,

• using f(X
h1

) as a control variate for the next Euler-Monte-Carlo simulation of
f(X

h2
), E[f(X

h2
)],

• repeating this, up to the final grid DhL .

Note that f(X
h1

) and f(X
h2

) are highly correlated if the same Brownian motion is used.
Therefore we have an efficient variance reduction.

Theorem 6.29 (Giles 2008). Consider a stochastic differential equation with a numerical
scheme of weak order 1 and strong order 1

2
. Fix the error tolerance ε > 0. Let

L =
log
(

1
ε

)
log(N)

.

Then there exists a multilevel Monte-Carlo scheme that respects the error tolerance ε at a
computational cost of

o
(
ε−2 · log(ε)2

)
.

No proof.
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