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Deutschsprachige Kurzfassung

Das Thema dieser Dissertation ist die Klasse der affinen Prozesse. Von Duffie,

Filipovic und Schachermayer [2003] eingeführt, besteht diese Klasse aus allen

Markov-Prozessen in stetiger Zeit und mit Wertebereich Rm>0 ×Rn, deren logarith-

mierte charakteristische Funktion auf affine Weise vom anfänglichen Zustandsvek-

tor des Prozesses abhängt. Im ersten Teil der Dissertation, welcher der Theorie der

affinen Prozesse gewidmet ist, zeigen wir erstmals, daß jeder (stochastisch stetige)

affine Prozess auch ein Feller-Prozess ist. Wir stellen einen alternativen Beweis

für das Hauptresultat von Duffie et al. [2003] vor: Unter einer zusätzlichen Reg-

ularitätsvoraussetzung kann die Klasse der affinen Prozesse komplett über den in-

finitesimalen Generator charakterisiert werden, und die charakteristische Funktion

des Prozesses erfüllt eine gewöhnliche Differentialgleichung vom verallgemeinerten

Riccati-Typ. Anschließend schlagen wir zwei hinreichende Bedingungen für die

Regularität eines affinen Prozesses vor. Die zweite dieser Bedingungen definiert

die Unterklasse der ‘analytischen affinen Prozesse’. Diese Prozesse haben interes-

sante zusätzliche Eigenschaften: Die verallgemeinerten Riccati-Gleichungen können

durch analytische Fortsetzung erweitert werden, und beschreiben dann die zeitliche

Entwicklung der Momente und Kumulanten des Prozesses. Schließlich zeigen wir,

daß Integration in der Zeit, Exponentielle Maßwechsel, sowie Subordination eines

unabhängigen Lévy-Prozesses die affine Eigenschaft erhalten.

Im zweiten Teil der Dissertation wenden wir uns den Anwendungen affiner Prozesse

zur Modellierung von stochastischer Volatilität zu. Wir definieren die Klasse der

‘affinen stochastischen Volatilitätsmodelle’ (ASVM), welche eine Vielzahl von sto-

chastischen Volatilitätsmodellen einschließt, die in der Fachliteratur vorgeschlagen

wurden: Darunter das Modell von Heston, die Modelle von Bates [1996, 2000]

und das Barndorff-Nielsen-Shephard-Modell. Wir leiten Resultate über das Lang-

zeitverhalten des Preis- und des stochastischen Varianzprozesses in ASVMs her,

und untersuchen Momentenexplosionen (Momente, welche innerhalb endlicher Zeit

unendliche Werte annehmen) des Preisprozesses. Mögliche Anwendungen dieser

Resultate, beispielsweise auf die Asymptotik der impliziten Volatilitätsfläche, wer-

den diskutiert. Wir schließen mit einigen expliziten Berechnungen für stochastische

Volatilitätsmodelle, welche die Anwendung unserer Ergebnisse erlauben.
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Abstract

This thesis is devoted to the study of affine processes. The class of affine pro-

cesses has been introduced by Duffie, Filipovic, and Schachermayer [2003], and

consists of all continuous-time Markov processes taking values in Rm>0 ×Rn, whose

log-characteristic function depends in an affine way on the initial state vector of

the process. In the first part of the thesis, which is concerned with the theory

of affine processes, we show for the first time that any (stochastically continuous)

affine process is also a Feller process. We give an alternative proof for the main

result of Duffie et al. [2003] – under an additional regularity condition, the class

of affine processes can be completely characterized in terms of the infinitesimal

generator, and the characteristic function of the process satisfies an ODE of the

generalized Riccati type. Subsequently we introduce two sufficient conditions for

regularity. The second of these conditions defines a subclass of affine processes,

that we call ‘analytic affine’. Not only are these processes automatically regular,

but they have other interesting properties: The generalized Riccati equations can

be analytically extended to a subset of the real numbers, where they describe the

time-evolution of moments and cumulants of the process. Finally we collect sev-

eral results on ‘elementary transformations’ of affine processes: We show that the

operations of time-integration, exponential change of measure, subordination of an

independent Lévy process, and under suitable condition also projection, preserve

the affine property.

In the second part of the thesis we turn towards applications of affine processes

to the modelling of stochastic volatility. We define the class of ‘affine stochastic

volatility models’ (ASVMs), which includes a variety of stochastic volatility models

that have been proposed in the literature, including the Heston model, the models

of Bates [1996, 2000] and the Barndorff-Nielsen-Shephard model. We derive results

on the long-term behavior of the price and the stochastic variance process in an

ASVM, and study moment explosions (moments becoming infinite in finite time)

of the price process. Possible applications of these results are discussed, for exam-

ple to large-strike asymptotics of the implied volatility surface. We conclude with

explicit calculations for several models to which the results apply.
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Introduction

This thesis is devoted to the study of ‘affine processes’, which are continuous-

time Markov processes characterized by the fact that their log-characteristic func-

tion depends in an affine way on the initial state vector of the process. One of

the first articles to discuss such a process was Kawazu and Watanabe [1971], which

studies processes arising as continuous-time limit of Galton-Watson branching pro-

cesses with immigration. The resulting class of processes is called CBI (continuously

branching with immigration), and exhibits the mentioned ‘affine property’. More re-

cently, affine processes have attracted renewed interest, due to applications in math-

ematical finance. Based on the realization, that the classical bond pricing models of

Vasicek and Cox-Ingersoll-Ross, as well as the stochastic volatility model of Heston,

all exhibit the affine property, Duffie, Pan, and Singleton [2000] introduced the class

of ‘affine jump-diffusions’. This class consists of all jump-diffusion processes, whose

drift vector, instantaneous covariance matrix and arrival rate of jumps all depend in

an affine way on the state vector. Duffie, Filipovic, and Schachermayer [2003] sub-

sequently extended this class of affine jump-diffusions and combined the strands of

research started by Kawazu and Watanabe [1971] and Duffie et al. [2000], defining

an affine process as a continuous-time Markov process with state space Rm>0 × Rn

and with the mentioned affine property of the log-characteristic function. It turns

out that this class coincides for a large part with the class of affine jump-diffusions,

but also allows for infinite activity of jumps and for killing or explosions of the

process. Duffie, Filipovic, and Schachermayer aimed to give a rigorous mathemat-

ical foundation to the theory of affine processes, covering many aspects, such as

the characterization of an affine process in terms of the ‘admissible parameters’

(comparable to the characteristic triplet of a Lévy process) and properties of the

ordinary differential equations (‘generalized Riccati equations’) that are implied by

the process. To do so, however, they impose a regularity condition on the process,

which essentially corresponds to the time-differentiability of the characteristic func-

tion of the given process.

The attractiveness of affine processes for finance stems from several reasons: First,

a variety of models that have been proposed in the literature, and that are used

by practitioners, fall into the class of affine models. As mentioned, in the realm
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2 Affine Processes

of interest rate models, the classical models of Vasiček [1977] and Cox, Ingersoll,

and Ross [1985], as well as multivariate extensions proposed by Dai and Singleton

[2000] are all affine; these models have also found applications in intensity-based

credit risk modelling (cf. Duffie [2005]). In the area of asset price modelling, the

Black-Scholes model, all exponential-Lévy models (cf. Cont and Tankov [2004]),

the model of Heston [1993], extensions of the Heston model, such as Bates [1996]

and Bates [2000], the model of Barndorff-Nielsen and Shephard [2001] and many

time-change models such as Carr and Wu [2004] are based on affine processes.

Second, affine processes exhibit a high degree of analytic tractability. The Kol-

mogorov PDE can be reduced to a system of ODEs (the generalized Riccati equa-

tions) by using a ‘basis’ of exponential functions. In many cases these generalized

Riccati equations allow for explicit solutions. European-style contingent claims can

be priced, and sensitivities to risk factors (‘Greeks’) can be calculated, in a com-

putationally highly efficient way by using Fourier methods (see Carr and Madan

[1999]).

Third, the general theory for affine processes that is at hand, allows for an inte-

grated treatment of many different models within one theoretical framework. In

particular, from the viewpoint of affine processes, there is no big difference between

pure diffusion models, and models with jumps. Let us mention here that affine

models allow for quite sophisticated behavior of jumps, going beyond the ‘jump-

diffusion’1 paradigm usually encountered in finance: As in general Lévy models,

the jumps may arrive with finite, but also with infinite intensity, and even infinite

total variation. An affine process can have simultaneous jumps in multiple com-

ponents (think of volatility and price jumping at the same time in a stochastic

volatility model), and the arrival rate of jumps need not be constant: It may de-

pend in an affine way on the state of any (non-negative) component, allowing for

cross-excitement and self-excitement effects between factors.

The first part of this thesis, which deals with the theoretical side of affine pro-

cesses, has been motivated to a great extent by the article of Duffie et al. [2003],

that was mentioned above. It was our intention to take up loose ends from this

article, and to tackle some of the little questions it has left open: One such ‘loose

end’ was to consider affine processes without imposing the condition of regularity:

In the main results of Section 1, we were successful in showing that every affine

process is a Feller process, even without assuming regularity. Section 2 then deals

with regular affine processes, and contains an alternative proof of the main result

of Duffie et al. [2003] – the characterization of an affine process in terms of its

1By ‘jump-diffusion’ we understand a pure diffusion model, to which an independent jump process
of finite activity has been added.
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infinitesimal generator. Different from Duffie et al. [2003], our proof makes use of

existing and well-known results on infinitely divisible distribution, allowing us to

simplify some of the arguments. The idea behind Section 3, was to find convenient

sufficient conditions for regularity of an affine process. The sufficiency of certain

moment conditions has already been observed in Dawson and Li [2006]; we give a

more general condition (‘Condition A’ ) that allows to mix moment conditions with

positivity and space-homogeneity conditions. The rest of Section 3 is concerned

with a subclass of affine processes, that we call ‘analytic affine’. These processes

are characterized by the fact that their moment generating function exists on a

non-vanishing open subset of Rd, and satisfies a uniform boundedness condition.

Not only are these processes automatically regular, but they have other interesting

properties: The generalized Riccati equations can be analytically extended to a

subset of the real numbers, where they describe the time-evolution of moments and

cumulants of the process. This interpretation is of great interest for applications,

and is further explored in the second part of the thesis. In Section 4 we collect

several results on what we call ‘elementary transformations’ of affine processes:

We show that the operations of projection, time-integration, exponential change of

measure, and subordination of an independent Lévy process all preserve the affine

property, and can be represented in terms of simple transformations of the char-

acteristics of the process. Similar results (e.g. on exponential measure change for

affine processes) have recently been obtained by Kallsen and Muhle-Karbe [2008]

using semi-martingale calculus. While the results are similar, our approach to

prove them is entirely different and makes use only of ‘elementary’ methods, such

as Markov theory and ODE methods, but no semi-martingale calculus.

In the second part of the thesis we turn towards applications of affine processes

to the modelling of stochastic volatility. With minor modifications, this part of

the thesis has been successfully submitted to the Journal of Mathematical Finance

under the title ‘Moment Explosions and Long-Term Behavior of Affine Stochastic

Volatility Models’. We define an ‘affine stochastic volatility model’ as given by a

log-price process (Xt)t≥0 and a stochastic variance process (Vt)t≥0, such that the

joint process (Xt, Vt)t≥0 is an affine. As mentioned, the class of affine processes

includes a variety of stochastic volatility models, that have been proposed in the

literature: The models of Heston [1993], Bates [1996, 2000] and Barndorff-Nielsen

and Shephard [2001] all fall into the scope of our definition2. In Section 5 we derive

necessary and sufficient conditions for the process to be conservative and for the

martingale property of the discounted price process St = exp(Xt). In Section 6 we

2Several other stochastic volatility models are also based on affine processes, but may require a
state space of more than 2 dimensions to be defined.



4 Affine Processes

derive our central results on long-term properties of an affine stochastic volatility

model. These results are formulated as asymptotic results for the cumulant gener-

ating function of the stock price, as time goes to infinity. Asymptotics of this type

have been used by Lewis [2000] to obtain large-time-to-maturity results for the

implied volatility smile of stochastic volatility models via a saddlepoint expansion.

We also provide conditions for the existence of an invariant distribution of the sto-

chastic variance process, and characterize this distribution in terms of its cumulant

generating function. Both results are obtained by applying qualitative ODE theory

to the generalized Riccati equations of the underlying affine process. In Section 7

we study moment explosions (moments becoming infinite in finite time) of the price

process, an issue that has recently received much attention, due to the articles of

Andersen and Piterbarg [2007] and Lions and Musiela [2007]. Moment explosions

are intimately connected to large-strike asymptotics of the implied volatility smile

via results of Lee [2004], that have later been expanded by Benaim and Friz [2006].

In Section 8 we briefly discuss these results, and other possible applications to

forward-starting options. We conclude in Section 9 with explicit calculations for

several models to which the results apply, such as the Heston model, a Heston model

with added jumps, a model of Bates, and the Barndorff-Nielsen-Shephard model.

Let us remark, that our treatment of affine stochastic volatility models makes no

claim to be a complete discussion of such models. Many important aspects such as

hedging, market completeness, and the relationship between physical measure and

pricing measure are not discussed, but are usually highly non-trivial in jump-based

models.



Part 1

Contributions to the theory of

affine processes



1. Affine processes

1.1. Definition of an affine process. In simple words, an affine process can

be described as a Markov process, whose log-characteristic function is an affine

function of its initial state vector. With a view towards applications in finance we

will consider only processes defined on the state space D = Rm>0 × Rn. This covers

the typical case where economic factors with natural positivity constraints, such

as volatility, interest rates or default intensities, are modelled together with factors

that are unconstrained. We denote the total dimension of D by d = m + n. For

convenient notation we define

I = {1, . . . ,m} , the index set of the R>0-valued components,

J = {m+ 1, . . . ,m+ n} , the index set of the R-valued components,

and M = I ∪ J = {1, . . . , d}. If x is a d-dimensional vector, then xI = (xi)i∈I

denotes its projection on the components with index in I, and similarly for other

index sets. Also, if S is a subset of Rd or Cd, then SI denotes its projection

onto the components given by I. Inequalities involving vectors are interpreted

componentwise, i.e. x ≤ 0 means that xi ≤ 0 for all i ∈ M , and x < 0 means that

xi < 0 for all i ∈ M . As usual (ei)i∈M denote the unit vectors in Rd. For vectors

x, y in Rd or Cd we define 〈x, y〉 :=
∑d
i=1 xiyi; note that there is no conjugation in

the complex case. We will often write

fu(x) := exp (〈u, x〉)

for the exponential function with u ∈ Cd and x ∈ D. A special role will be played

by the set

(1.1) U :=
{
u ∈ Cd : ReuI ≤ 0, ReuJ = 0

}
,

note that U is precisely the set of all u ∈ Cd, for which x 7→ fu(x) is a bounded

function on D. We also define

(1.2) U◦ :=
{
u ∈ Cd : ReuI < 0, ReuJ = 0

}
.

Finally iRd denotes the purely imaginary numbers in Cd, i.e.
{
u ∈ Cd : Reu = 0

}
.

Note that iRd ⊆ U . We are now prepared to give a definition of an affine process:

Definition 1.1 (Affine process). An affine process is a stochastically contin-

uous3, time-homogeneous Markov process (Xt,P
x)t≥0,x∈D with state space D =

Rm>0 × Rn, whose characteristic function is an exponentially-affine function of the

state vector. This means that on iRd there exist functions φ : R>0 × iRd → C and

3Note that stochastic continuity is part of our definition, while in Duffie et al. [2003] it is introduced
at a later stage, as a property of a regular affine process.
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ψ : R>0 × iRd → Cd such that

(1.3) Ex
[
e〈Xt,u〉

]
= exp (φ(t, u) + 〈x, ψ(t, u)〉) ,

for all x ∈ D, and for all (t, u) ∈ R>0 × iRd.

It is worth to remember here that a process is called stochastically continuous,

if for any sequence tn → t in R>0, the random variables Xtn converge to Xt in

probability (with respect to all (Px)x∈D). Note also, that the existence of a filtered

space (Ω,F), where the process (Xt)t≥0 is defined, is already implicit in the notion

of a Markov process (we largely follow Rogers and Williams [1994, Chapter III] in

our notation and precise definition of a Markov process). If we do not mention

specific assumptions on the filtration, it will be sufficient to take F as the natural

filtration generated by (Xt)t≥0. Recall also that Px represents the law of the Markov

process (Xt)t≥0, started at x, i.e. we have that X0 = x, Px-almost surely. As is

well-known we can associate to each (time-homogeneous) Markov process (Xt)t≥0

a semigroup (Pt)t≥0 of operators acting on the bounded Borel functions bB(D), by

setting

Pt f(x) = Ex [f(Xt)] , for all x ∈ D, t ≥ 0, f ∈ bB(D) .

It is clear that the left side of (1.3) is defined for all u ∈ U . We could have made

life easier by requiring in Definition 1.1 that (1.3) holds for all u ∈ U and not just

in iRd. Though, as we will see, this is not necessary, and the exponentially-affine

form of (1.3) extends automatically to a ‘large enough’ subset of U . Some care has

to be taken regarding points in U where Ptfu(x) is 0, and thus its logarithm not

defined:

Lemma 1.2. Let (Xt)t≥0 be an affine process. Then

(1.4) O = {(t, u) ∈ R>0 × U : Psfu(0) 6= 0 ∀ s ∈ [0, t]} ,

is open in R>0 × U and there exists a unique continuous extension of φ(t, u) and

ψ(t, u) to O, such that (1.3) holds for all (t, u) ∈ O.

For a proof of the Lemma we refer to Duffie et al. [2003, Lemma 3.1]. Note

that in Duffie et al. [2003] the Lemma is shown for a regular affine process, but

the only assumption used in the proof is the stochastic continuity of (Xt)t≥0. In

Section 3 we show the related extension result Lemma 3.12 by a similar proof.

Proposition 1.3. The functions φ and ψ have the following properties:

(i) φ maps O to C−, where C− := {u ∈ C : Reu ≤ 0}.
(ii) ψ maps O to U .

(iii) φ(0, u) = 0 and ψ(0, u) = u for all u ∈ U .
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(iv) φ and ψ enjoy the ‘semi-flow property’:

φ(t+ s, u) = φ(t, u) + φ(s, ψ(t, u)),

ψ(t+ s, u) = ψ(s, ψ(t, u)),
(1.5)

for all t, s ≥ 0 with (t+ s, u) ∈ O.

(v) φ and ψ are jointly continuous on O.

(vi) With the remaining arguments fixed, uI 7→ φ(t, u) and uI 7→ ψ(t, u) are ana-

lytic functions in {uI : ReuI < 0; (t, u) ∈ O}.
(vii) Let (t, u), (t, w) ∈ O with Reu ≤ Rew. Then

Reφ(t, u) ≤ φ(t,Rew),

Reψ(t, u) ≤ ψ(t,Rew).
(1.6)

It is obvious that φ(t, .) and ψ(t, .) map real numbers to real numbers – hence

the inequalities (1.6) make sense. Let us also remark that the condition (t+s, u) ∈ O
in item (iv) above, guarantees by definition of O that also (t, u) ∈ O, and via the

Markov property, that (s, ψ(s, u)) ∈ O.

Proof. Let (t, u) ∈ O. Since Pt is a contractive semigroup we have ‖Ptfu‖∞ ≤
‖fu‖∞ = 1. On the other hand

Ptfu(x) = eφ(t,u)fψ(t,u)(x)

by the affine property (1.3) and Lemma 1.2. Since ‖fu‖∞ ≤ 1 if and only if u ∈ U ,

we conclude that φ(t, u) ∈ C− and ψ(t, u) ∈ U for all (t, u) ∈ O and have shown

(i) and (ii). Assertion (iii) follows immediately from P0fu(x) = fu(x). For (iv) we

apply the semi-group property:

Pt+sfu(x) = PtPsfu(x) = eφ(s,u)Ptfψ(s,u)(x) =

= eφ(s,u)+φ(t,ψ(s,u))fψ(t,ψ(s,u))(x), for all (t+ s, u) ∈ O, x ∈ D .

Since also

Pt+sfu(x) = eφ(t+s,u)fψ(t+s,u)(x)

the assertion follows. We show (v): Let (tn, un) → (t, u) in O. Since (Xt)t≥0 is

stochastically continuous Xtn → Xt in probability and thus also in distribution. It

follows that also exp (〈Xtn , un〉) converges to exp (〈Xt, u〉) in distribution as n→ ∞.

By dominated convergence we conclude that

Ptnfun
(x) = Ex [exp (〈Xtn , un〉)] → Ex [exp (〈Xt, u〉)] = Ptfu(x)

for all (t, u) ∈ O and x ∈ D. It follows that φ(t, u) and ψ(t, u) are continuous

on O. Assertion (vi) follows from analyticity properties of the extended moment
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generating function Ex [fu(Xt)] (see Proposition B.4). Finally for (vii) note that
∣∣∣Ex

[
e〈u,Xt〉

]∣∣∣ ≤ Ex
[∣∣∣e〈u,Xt〉

∣∣∣
]

= Ex
[
e〈Reu,Xt〉

]
≤ Ex

[
e〈Rew,Xt〉

]
,

for all x ∈ D. If (t, u) and (t, w) are in O, we deduce from the affine property (1.3)

that

Reφ(t, u) + 〈x,Reψ(t, u)〉 ≤ φ(t,Rew) + 〈x, ψ(t,Rew)〉 .
Inserting first x = 0 and then Cei with C > 0 arbitrarily large yields assertion

(vii). �

1.2. More about the semi-flow property. One of the most interesting

properties of φ and ψ is – at least in the author’s opinion – the semi-flow property

(1.5). ‘Flows’, that is functional equations of the type

(1.7) f(t+ s, u) = f(t, f(s, u))

have been studied in several contexts, some of them quite abstract. We mention

here the areas of differential equations (see e.g. Hartman [1982]), dynamical systems

(see e.g. Katok and Hasselblatt [1999]), and the study of topological transformation

groups by Montgomery and Zippin [1955].

By (1.5) the function ψ(t, u) of any affine process has the semi-flow property

ψ(t+ s, u) = ψ(t, ψ(s, u))

for all (t+ s, u) ∈ O, and we simply call ψ the semi-flow of (Xt)t≥0. The function

φ(t, u) satisfies the more involved functional equation

φ(t+ s, u) = φ(t, u) + φ(s, ψ(t, u)) .

A function of this type is usually called a (additive) cocycle of the semi-flow ψ (cf.

Katok and Hasselblatt [1999]). It is often convenient to combine the semi-flow ψ

and its cocycle φ into a ‘big semi-flow’ Υ(t, u), using the following technique: We

extend O by one dimension and define Ô = O × C, and similarly Û = U × C. The

big semi-flow Υ now maps Ô to Û and is given by

(1.8) Υ(t, u1, . . . , ud, ud+1) =

(
ψ(t, (u1, . . . , ud))

φ(t, (u1, . . . , ud)) + ud+1

)
.

It is easy to see that Υ satisfies

(i) Υ(0, u) = u for all u ∈ Û ,

(ii) Υ(t+ s, u) = Υ(t,Υ(s, u)) for all (t+ s, u) ∈ Ô,

and thus again constitutes a semi-flow on Ô.

Regularity properties of the semi-flow Υ are of great importance in the study

of affine processes. In fact the main results of Duffie et al. [2003] that we will
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present in Section 2 are based on the assumption that Υ(t, u) is differentiable in

the time parameter t. As discussed in Montgomery and Zippin [1955], and later

generalized to semi-flows by Filipović and Teichmann [2003], flows on topological

spaces have the property of transferring regularity from their state variable (‘u’) to

their (semi-)group parameter (‘t’). In case of an affine process, where φ and ψ have

an interpretation as (parts of the) characteristic function of a stochastic process,

differentiability in u is equivalent to the existence of moments for (Xt)t≥0. Conse-

quently the semi-flow of an affine process (Xt)t≥0 that possesses bounded moments

should exhibit some regularity also in the time parameter t. This is precisely the

idea that we will pursue in Section 3.

We give now some first examples of affine processes and illustrate the interplay

between the semi-flow Υ(t, u) and the process (Xt)t≥0:

Example 1.4 (Lévy Process). Suppose that (Xt)t≥0 is a conservative affine

process with stationary semi-flow ψ, i.e. ψ(t, u) = u for all (t, u) ∈ O, and thus in

particular for all (t, u) ∈ R>0 × iRd. Then the functional equation for the cocycle

φ becomes

φ(t+ s, u) = φ(t, u) + φ(s, u), t, s ∈ R>0, u ∈ iRd .

This is Cauchy’s first functional equation. Since φ is continuous and satisfies

φ(0, u) = 0, it is a linear function of t, i.e. of the form φ(t, u) = tm(u). On

the other hand we have that

E0
[
e〈Xt,u〉

]
= etm(u)

such that etm(u) is a characteristic function for every t > 0. We conclude that it

is an infinitely divisible characteristic function (cf. Section C), and thus that m(u)

has to be of Lévy-Khintchine form. It follows that (Xt)t≥0 is a Lévy process.

Example 1.5 (Ornstein-Uhlenbeck-type process). Let (Xt)t≥0 be a conserva-

tive affine process on D = R. Then, as we show in Proposition 1.9, ψ(t, u) is neces-

sarily of the form etβu for some β ∈ R. Consider now the Ornstein-Uhlenbeck-type

process, which is defined by Sato [1999] as the unique solution of the SDE

dXt = βXt dt+ dLt, X0 = x ∈ R .

where Lt is a Lévy process with characteristic exponent κ(u) and β ∈ R. It can be

shown that the characteristic function of (Xt)t≥0 is given by

Ex
[
e〈Xt,u〉

]
= exp

(∫ t

0

κ
(
esβu

)
ds+

〈
x, etβu

〉)
.
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It is clear that (Xt)t≥0 is an affine process with

(1.9) φ(t, u) =

∫ t

0

κ
(
esβu

)
ds, ψ(t, u) = etβu ,

and thus of the type described above. Can we conclude that every affine process

on D = R is an OU-type process? No, because it remains to show that φ(t, u) is

necessarily of the form (1.9). Even though it looks similar, this problem seems to

be harder than the characterization of a Lévy process in Example 1.4, and is to our

knowledge still open.

The next example describes an affine process with an even more interesting and

beautiful semi-flow structure:

Example 1.6 (Squared Bessel process). Consider the SDE

dZt = 2
√
Zt dWt + δ Z0 = z ≥ 0 .

By Revuz and Yor [1999], there exists a unique solution, which is non-negative and

has the (extended) moment generating function

Ez
[
euZt

]
= exp

(
δ

2
log(1 − 2ut) + z

u

1 − 2ut

)
,

defined for all u ∈ C with Reu < 1
2t . The process (Zt)t≥0 is called squared Bessel

process of dimension δ; from its moment generating function we see that it is an

affine process on D = R>0 with

φ(t, u) =
δ

2
log(1 − 2ut), ψ(t, u) =

u

1 − 2ut
.

For every t ≥ 0, ψ(t, u) is a Möbius transformation, i.e. a bijective conformal map

of the (extended) complex plane to itself. It is easily derived that u 7→ ψ(t, u) has

the single fixed point 0, and that the ‘left half plane’ U is mapped to the interior

of a circle, passing through 0 and − 1
2t , and which is symmetric with respect to the

real axis; see Figure 1 for an illustration.

Figure 1. Illustration of the semi-flow ψ(t, u) of a Squared Bessel
process. Plots correspond to t = 0, 0.5, 1, 1.5, 2 from left to right.
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1.3. The Feller property. We proceed to show that every affine process is a

Feller process. Along the way, we obtain some additional results on the properties

of the semi-flow ψ. In Duffie et al. [2003] the Feller property is shown under the

condition that (Xt)t≥0 is a regular4 affine process; we give a proof that does not

use any regularity assumption. We start with a simple Lemma on positive definite

functions:

Lemma 1.7. Let Φ be a positive definite function on Rd with Φ(0) = 1 Then

|Φ(y + z) − Φ(y)Φ(z)|2 ≤
(
1 − |Φ(y)|2

) (
1 − |Φ(z)|2

)
≤ 1

for all y, z ∈ Rd.

Proof. The result follows from considering the matrix

MΦ(y, z) :=




Φ(0) Φ(y) Φ(z)

Φ(y) Φ(0) Φ(y + z)

Φ(z) Φ(y + z) Φ(0)


 , y, z ∈ Rd, y 6= z ,

which is positive semi-definite by definition of Φ. The inequality is then derived

from the fact that detMΦ(y, z) ≥ 0. See Jacob [2001, Lemma 3.5.10] for details �

The next Lemma might seem unwieldy, but it is an elaboration of the following

idea: If, for arbitrarily small t, ψ(t, .) maps iRd to iRd, then ψ(t, u) must be a linear

function of u.

Lemma 1.8. Let K ⊆ M , k ∈ M , and let (tn)n∈N be a sequence such that

tn ↓ 0. Define ΩK :=
{
y ∈ Rd : yM\K = 0

}
, and suppose that

Reψk(tn, iy) = 0 for all y ∈ ΩK and n ∈ N .

Then there exists ζ(tn) ∈ R|K| and an increasing sequence of positive numbers Rn

such that Rn ↑ ∞ and

ψk(tn, iy) = 〈ζ(tn), iyK〉 ,
for all y ∈ ΩK with |y| < Rn.

Proof. As the characteristic function of the (possibly defective) random vari-

able Xtn under Px, the function y 7→ Ptnfiy(x) is positive definite for any x ∈
D,n ∈ N. We define now for every y ∈ ΩK , c > 0, and n ∈ N, the function

Φ(y;n, c) := e−φ(tn,0)Ptnfiy(c · ek) = exp
(
φ(tn, y) − φ(tn, 0) + c · ψk(tn, y)

)
.

Clearly, as a function of y ∈ ΩK , also Φ(y;n, c) is positive definite. In addition

it satisfies Φ(0;n, c) = exp (c · ψk(tn, 0)) = 1, since ψk(tn, 0) = 0 by assumption.

4The notion of a regular affine process is discussed in detail in Section 2.
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Thus we may apply Lemma 1.7 to Φ, and it holds for any y, z ∈ ΩK , c > 0 and

n ∈ N that

(1.10) |Φ(y + z;n, c) − Φ(y;n, c) · Φ(z;n, c)|2 ≤ 1 .

For compact notation we define the abbreviations

C(y, z, t) :=Re
(
φ(t, i(y + z)) + φ(t, iy) + φ(t, iz)

)
− 3φ(t, 0)

Γ(y, z, t, c) :=Im
(
φ(t, i(y + z)) − φ(t, iy) − φ(t, iz)

)
+

+c · Im (ψk(t, i(y + z)) − ψk(t, iy) − ψk(t, iz)) .

Note that (at least along the sequence tn) C(y, z, t) does not depend on c – this is

where the assumption Reψk(tn, iy) = 0 enters. For arbitrary real numbers a, b, α, β

it holds that

2ea+b (1 − cos(α− β)) ≤ e2a + e2b − 2ea+b cos(α− β) =
∣∣ea+iα − eb+iβ

∣∣2 ,

which lets us rewrite inequality (1.10) as

(1.11) eC(y,z,tn) (1 − cos Γ(y, z, tn, c)) ≤
1

2
.

Define now for each n ∈ N

Rn := sup

{
r ≥ 0 : eC(y,z,tn) >

1

2
for all y, z ∈ ΩK with |y| ≤ r, |z| ≤ r

}
.

First note that Rn > 0: This follows from the fact that eC(0,0,t) = 1 and C(y, z, t) is

continuous. Second, it holds that Rn ↑ ∞: Use that eC(y,z,0) = 1 for all y, z ∈ ΩK ,

and the continuity of C(y, z, t).

Suppose that

ψk(tn, i(y + z)) − ψk(tn, iy) − ψk(tn, iz) 6= 0

for any n ∈ N and y, z ∈ ΩK with |y| < Rn, |z| < Rn. Then by definition of

Γ(y, z, tn, c) there exists an c > 0 such that cos Γ(y, z, tn, c) = −1. Inserting into

(1.11) we obtain

1

2
· 2 < eC(y,z,tn) (1 − cos Γ(y, z, tn, c)) ≤

1

2
,

a contradiction. We conclude that

ψk(tn, i(y + z)) − ψk(tn, iy) − ψk(tn, iz) = 0 ,

for all y, z ∈ ΩK with |y| < Rn, |z| < Rn. Since ψ(t, .) is continuous, the first

Cauchy functional equation implies that ψk is a linear function of yK , i.e. there

exists some vector ζ(t), such that

(1.12) ψk(tn, iy) = 〈ζ(tn), iyK〉 .
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for all y ∈ ΩK with |y| < Rn. Since Reψ(tn, iy) = 0 it is clear that ζ(t) is real-

valued. �

Using the above Lemma, we show two propositions, that will be instrumental

in proving the Feller property of an affine process.

Proposition 1.9. Let (Xt)t≥0 be an affine process on D = Rm>0 × Rn and

denote by J its real-valued components. Then there exists a real n × n-matrix β

such that ψJ(t, u) = etβuJ for all (t, u) ∈ O.

Proof. Consider the definition of U in (1.1). Since ψ(t, u) takes by Proposi-

tion 1.3 values in U it is clear that ReψJ(t, iy) = 0 for any (t, y) ∈ R>0 × Rd. Fix

some t∗ > 0 and define tn := t∗/n for all n ∈ N. We can apply Lemma 1.8 with

K = M = {1, . . . , d} and any choice of k ∈ J , to obtain a sequence Rn ↑ ∞, such

that

(1.13) ψJ(tn, iy) = ζ(tn) · iy ,

for all y ∈ Rd with |y| < Rn. Note that ζ(.) now denotes a real n× d-matrix.

Let i ∈ I, n ∈ N, and consider the function

hn : Ωn := {ω ∈ C : −Rn < Reω ≤ 0} → Cn : ω 7→ ψJ(tn, ωei) − ζ(t) · ωei .

By Prop B.4 this is an analytic function on Ω◦
n and continuous on Ωn. According

to the Schwarz reflection principle hn can be extended to an analytic function on an

open superset of Ωn. But (1.13) implies that the function hn takes the value 0 on a

subset with an accumulation point in C. We conclude that hn is zero everywhere.

In particular we have that

0 = ReψJ(tn, ωei) − ζ(tn) · Reωei = ζ(tn) · Reωei ,

for all ω ∈ Ω. This can only hold true, if the i-th column of ζ(tn) is zero. Since

i ∈ I arbitrary we have reduced (1.13) to

(1.14) ψJ(tn, u) = ζ̃(tn) · uJ ,

for all (tn, u) ∈ O, such that |uJ | < Rn. Here ζ̃(tn) denotes the n× n-submatrix of

ζ(tn) that results from dropping the zero-columns.

Fix an arbitrary u∗ ∈ U with (t∗, u∗) ∈ O and let R := sup {|ψK(t, u∗)| : t ∈ [0, t∗]}.
Since ψ(t, u) is continuous, R is finite. Choose N such that Rn > R for all n ≥ N .

Using the semi-flow equation we can write ψJ(t∗, u∗) as

(1.15) ψJ(t∗, u∗) = ψJ
(
tn, ψ(t∗

n−1
n , u∗)

)
=

= ζ̃(tn) · ψJ(t∗
n−1
n , u∗) = · · · = ζ̃(tn)

n · u∗ ;
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for any n ≥ N . Thus, the functional equation ψ(t, u) = ζ̃(t) · uJ actually holds for

all (t, u) ∈ O. Another application of the semi-flow property yields then, that

ζ̃(t+ s) = ζ̃(t)ζ̃(s), for all t, s ≥ 0 .

Since ζ̃(0) = 1, ζ̃ is continuous and satisfies the second Cauchy functional equation,

it follows that ζ̃(t) = eβt for some real n× n-matrix β. �

The following Proposition will be crucial in proving the Feller property of

(Xt)t≥0. It shows that the semi-flow ψ(t, u) maps the interior of U to the inte-

rior:

Proposition 1.10. Suppose that (t, u) ∈ O. If u ∈ U◦, then ψ(t, u) ∈ U◦.

Proof. For a contradiction, assume there exists (t, u) ∈ O such that u ∈ U◦,

but ψ(t, u) 6∈ U◦. This implies that there exists k ∈ I, such that Reψk(t, u) = 0. Let

Ot,k = {ω ∈ C : Reω ≤ 0, (t, ωek) ∈ O}. From the inequalities Proposition 1.3.(vii)

we deduce that

(1.16) 0 = Reψk(t, u) ≤ ψk(t,Reω · ek) ≤ 0 ,

and thus that ψk(t,Reω · ek) = 0 for all ω ∈ Ot,k, such that Reuk ≤ Reω. By

Proposition 1.3.(vi), ψk(t, ωek) is an analytic function of ω. Since it takes the value

zero on a set with accumulation point, it is zero everywhere, i.e. ψk(t, ωek) = 0 for

all ω ∈ Ot,k. We now show that the same statement holds with t replaced by t/2:

Set λ := Reψk(t/2, u). If λ = 0, we can proceed exactly as above, only with t/2

instead of t. If λ < 0, then we have, by another application of Proposition 1.3.(vii),

that

(1.17)

0 = Reψk(t, u) = Reψk(t/2, ψ(t/2, u)) ≤ ψk(t/2, λek) ≤ ψk(t/2,Reωek) ≤ 0 ,

for all ω ∈ Ot/2,k such that λ ≤ Reω. Again we can use that an analytic function

that takes the value zero on a set with accumulation point, is zero everywhere, and

obtain that ψk(t/2, ωek) = 0 for all ω ∈ Ot/2,k. Repeating this argument, we finally

obtain a sequence tn ↓ 0, such that

Reψk(tn, ωek) = 0 for all ω ∈ Otn,k.

We can now apply Lemma 1.8 with K = {k}, which implies that ψk is of the linear

form

ψk(tn, ωek) = ζk(tn) · ω, for all ω ∈ Otn,k with |ω| ≤ Rn,

where ζk(tn) are real numbers, and Rn ↑ ∞. Note that since ζk(tn) → 1 as tn → 0,

we have that ζk(tn) > 0 for n large enough. Choosing now some ω∗ with Reω∗ < 0
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it follows that Reψk(tn, ω∗ek) < 0 – with strict inequality. This is a contradiction

to (1.17), and the assertion is shown. �

Theorem 1.11. An affine process is a Feller process.

Proof. By stochastic continuity of (Xt)t≥0 and dominated convergence, it

follows immediately that Ptf(x) = Ex [f(Xt)] → f(x) as t → 0 for all f ∈ C0(D)

and x ∈ D. To prove the Feller property of (Xt)t≥0 it remains to show that

PtC0(D) ⊆ C0(D):

Consider the following set of functions:

(1.18) Θ :=

{
h(uI ,g)(x) = e〈uI ,xI〉

∫

Rn

fiz(xJ )g(z) dz : uI ∈ U◦
I , g ∈ C∞

c (Rn)

}
,

and denote by L(Θ) the set of (complex) linear combinations of functions in Θ.

From the Riemann-Lebesgue-Lemma it follows that
∫

Rn fiz(xJ )g(z) dz vanishes at

infinity, and thus that L(Θ) ⊂ C0(D). It is easy to see that L(Θ) is a subalgebra

of C0(D), that is in addition closed under complex conjugation. It is easy to check

that it is also point separating and vanishes nowhere (i.e. there is no x0 ∈ D such

that h(x0) = 0 for all h ∈ L(Θ)). Using a suitable version of the Stone-Weierstrass

theorem (e.g. Semadeni [1971, Corollary 7.3.9]), it follows that L(Θ) is dense in

C0(D).

Fix some t ∈ R>0 and let h(x) ∈ Θ. By Proposition 1.9 we know that ψJ(t, u) =

eβtuJ . By Lemma 1.2 it holds that Ex [fu(Xt)] = exp (φ(t, u) + 〈x, ψ(t, u)〉) when-

ever (t, u) ∈ O, and Ex[f(uI ,iz)(Xt)] = 0 whenever (t, u) 6∈ O. Thus we have

Pth(x) = Ex
[∫

Rn

f(uI ,iz)(Xt)g(z) dz

]
=

∫

Rn

Ex[f(uI ,iz)(Xt)]g(z) dz =

(1.19)

=

∫

{u∈U :(t,u)∈O}
Ptf(uI ,iz)(x) · g(z) dz =

=

∫

{u∈U :(t,u)∈O}
exp

(
φ(t, uI , iz) + 〈xI , ψI(t, uI , iz)〉 +

〈
xJ , e

tβiz
〉)
g(z) dz .

Since (uI , iz) ∈ U◦ it follows by Proposition 1.10 that also ReψI(t, uI , iz) < 0

for any z ∈ Rn. This shows that Pth(x) → 0 as |xI | → ∞. In addition (1.19),

as a function of xJ (1.19) can be interpreted as the Fourier transformation of a

compactly supported density. The Riemann-Lebesgue-Lemma then implies that

Pth(x) → 0 as |xJ | → ∞, and we conclude that Pth ∈ C0(D). The assertion

extends by linearity to every h ∈ L(Θ), and finally by the density of L(Θ) to every

h ∈ C0(D). This proves that the semi-group (Pt)t≥0 maps C0(D) into C0(D), and

hence that (Xt)t≥0 is a Feller process. �
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The following Corollary follows from standard results on Feller processes (see

Kallenberg [1997]).

Corollary 1.12. Any affine process (Xt)t≥0 has a cadlag version5 on D∪{∆},
where ∆ is an absorbing state for Xt. If it is conservative it has a cadlag version on

D. (Xt)t≥0 has the strong Markov property, and is characterized by its generator

A, a closed operator defined on a dense subset of C0(D).

5In this context, Yt is a version of Xt, if Px [Xt = Yt] = 1 for all t ≥ 0 and for all x ∈ D.
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2. Regular Affine processes

Following Duffie et al. [2003] we impose a regularity assumption on the affine

process. Under this assumption we are able to fully characterize the process in

terms of its infinitesimal generator, and to obtain other crucial results.

Definition 2.1 (Regularity). An affine process is called regular, if the deriva-

tives

(2.1) F (u) :=
∂φ

∂t
(t, u)

∣∣∣∣
t=0+

, R(u) :=
∂ψ

∂t
(t, u)

∣∣∣∣
t=0+

exist for all u ∈ U , and are continuous at u = 0.

Remark 2.2. Since F (u) and R(u), as we will see, completely characterize the

process (Xt)t≥0, we shall also call them functional characteristics of (Xt)t≥0.

Note that like φ, the function F is scalar-valued (mapping U to C), and like ψ,

R is vector valued (mapping U to Cd). If (Xt)t≥0 is a regular affine process, we can

differentiate the semi-flow equations (1.5) with respect to s and evaluate at s = 0,

to obtain the following differential equations for φ and ψ, valid for (t, u) ∈ O:

∂

∂t
φ(t, u) = F (ψ(t, u)), φ(0, u) = 0(2.2a)

∂

∂t
ψ(t, u) = R(ψ(t, u)), ψ(0, u) = u .(2.2b)

For reasons that will become apparent later, these ODEs are called generalized Ric-

cati equations. They are autonomous equations, and the variable u enters as an

initial condition.

Let us remark the following detail on the derivation of the generalized Riccati equa-

tions: F and R are defined (only) as the right-sided derivative of φ and ψ, such that

we should also have right-sided derivatives in (2.2). However, as we will see later,

F and R are continuous functions, not just at u = 0, but for all u ∈ U . It follows

by Proposition 1.3 that the right hand sides of (2.2) are continuous functions of

t. But a function with a one-sided derivative that is continuous, is continuously

differentiable in the ordinary (both-sided) sense (see Yosida [1995, Section IX.3]).

The main goal that we pursue now, is to show that F and R are of a spe-

cific form, namely that they are – in case of R component-by-component – log-

characteristic functions of sub-stochastic infinitely divisible measures6, satisfying

some additional admissibility conditions. As is well-known from the theory of Lévy-

processes, the characteristic function of an infinitely divisible probability measure

can be described by three parameters, the so-called Lévy-triplet (a, b,m), where a is

6See Appendix for an explanation of the terminology.
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a positive definite matrix (also called diffusion matrix), b a vector (also called drift

vector) and a (σ-finite Borel) measure m(dξ), satisfying the integrability condition∫
(1∧|ξ|2)m(dξ) <∞, which is called a Lévy measure. In the case of sub-stochastic

infinitely divisible measures, a fourth parameter c ∈ R>0 is added: It corresponds

to the ‘defect’ of the measure µ, and is given by c = − log µ(D) (i.e. for a proba-

bility measure c = 0).

Since F is scalar-valued, and R d-dimensional vector-valued we end up with (d+1)×
4 parameters that characterize F and R. We group them into the Lévy-quadruplet

(a, b, c,m) describing F and the quadruplets (αi, βi, γi, µi)i∈{1,...,d} describing the

components Ri(u) respectively. As mentioned above, the parameters necessarily

satisfy certain admissibility conditions, which are summarized in the following def-

inition:

Definition 2.3 (Admissibility Conditions). A parameter set for an affine

process is given by positive semi-definite real d × d-matrices a, α1, . . . , αd; by Rd-

valued vectors b, β1, . . . , βd; by non-negative numbers c, γ1, . . . , γd and by Lévy

measures m,µ1, . . . µd on Rd.

Such a parameter set is called admissible for an affine process with state space D

if

akl = 0 if k ∈ I or l ∈ I ,(2.3a)

αj = 0 for all j ∈ J ,(2.3b)

αikl = 0 if k ∈ I \ {i} or l ∈ I \ {i} ,(2.3c)

b ∈ D(2.3d)

βik ≥ 0 for all i ∈ I and k ∈ I \ {i} ,(2.3e)

βjk = 0 for all j ∈ J and k ∈ I ,(2.3f)

γj = 0 for all j ∈ J ,(2.3g)

suppm ⊆ D and

∫

D\{0}

{(
|xI | + |xJ |2

)
∧ 1
}
m(dx) <∞(2.3h)

µj = 0 for all j ∈ J ,(2.3i)

suppµi ⊆ D for all i ∈ I, and(2.3j)
∫

D\{0}

{(
|xI\{i}| + |xJ∪{i}|2

)
∧ 1
}
µi(dx) <∞ for all i ∈ I.(2.3k)

The admissibility conditions certainly look unwelcoming at first sight. Note

however that if J = ∅ or I = ∅ – i.e. if we have state space Rd>0 or Rd – the

conditions simplify considerably. Even in the case that |I| = 1 some conditions are

trivially valid, because I \ {i} = ∅. The admissibility conditions for the matrices

a, αi and the vectors b, βi are visualized in Table 1. Note that in particular the
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possible structure of RJ(u) is strongly constrained by the admissibility conditions:

It can only take the form RJ(u) = βJuJ , where βJ is the n × n matrix consisting

of the elements (βjk)j,k∈J .

In addition to the admissible parameters we will need the following definition:

Definition 2.4 (Truncation functions). Define functions h, χ1, . . . , χm from

Rd → [−1, 1]d coordinate-wise by

hk(ξ) :=





0 k ∈ I

ξk

1+ξ2k
k ∈ J

for all ξ ∈ Rd ,(2.4)

and

χik(ξ) :=





0 k ∈ I \ {i}
ξk

1+ξ2k
k ∈ J ∪ {i}

for all ξ ∈ Rd, i ∈ I .(2.5)

Remark 2.5. The term ξk

1+ξ2k
can be replaced by ω(ξk), where ω(ξk) is any

bounded continuous function from R to R, that behaves like ξk in a neighborhood

of 0. It will also be seen that the definition of h and χi is directly related to the

integrability properties (2.3h) and (2.3k) of the Lévy measures m and µi.

We are now prepared to state the main result of this section, the characteriza-

tion of an affine process in terms of admissible parameters. The result can also be

found in Duffie et al. [2003] as Theorem 2.7.

Theorem 2.6 (Generator of an affine process). Let (Xt)t≥0 be a regular affine

process with state space D. Then there exist a set of admissible parameters

(a, αi, b, βi, c, γi,m, µi)i∈{1,...d} such that

(a) the functions F and R defined in (2.1) are of the Lévy-Khintchine form

F (u) =
1

2
〈u, au〉 + 〈b, u〉 − c+

∫

Rd\{0}

(
e〈ξ,u〉 − 1 − 〈h(ξ), u〉

)
m(dξ) ,

Ri(u) =
1

2

〈
u, αiu

〉
+
〈
βi, u

〉
− γi +

∫

Rd\{0}

(
e〈ξ,u〉 − 1 −

〈
χi(ξ), u

〉)
µi(dξ) ;

(2.6)

and
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a =


 0 0

0 ≥

 αi

(i ∈ I)
=




0
...
0

0 · · · 0 αiii 0 · · · 0 ⋆ · · · ⋆
0
...
0
⋆
... ≥
⋆




where αiii ≥ 0 αj

(j ∈ J)
= 0

b =




≥
...
≥
⋆
...
⋆




βi

(i ∈ I)
=




≥
...
≥
βii
≥
...
≥
⋆
...
⋆




where βii ∈ R βj

(j ∈ J)
=




0
...
0
⋆
...
⋆




Table 1. Structure of a, αi, b and βi. Stars denote arbitrary real numbers; the small ≥-signs denote non-negative
real numbers and the big ≥-signs positive semi-definite matrices. A big 0 stands for a zero-matrix, and also empty
regions in a matrix denote all-zero elements. The dotted lines indicate the boundary between the first m and the last
n coordinates.
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(b) the generator A of (Xt)t≥0 is given by

Af(x) =
1

2

d∑

k,l=1

(
akl +

m∑

i=1

αiklxi

)
∂2f(x)

∂xk∂xl
+(2.7)

+ 〈b+

d∑

i=1

βixi,∇f(x)〉 −
(
c+

m∑

i=1

γixi

)
f(x)+

+

∫

D\{0}
(f(x+ ξ) − f(x) − 〈h(ξ),∇f(x)〉) m(dξ)+

+

m∑

i=1

∫

D\{0}

(
f(x+ ξ) − f(x) −

〈
χi(ξ),∇f(x)

〉)
xiµ

i(dξ)

for all f ∈ C2
0 (D) and x ∈ D.

We start by proving part (a) of the Theorem. Our proof is new, and an al-

ternative to the proof given in Duffie et al. [2003]. The proof will make use of

elementary (and well-known) results on infinitely divisible measures, that can be

found in Appendix C.

Proof of Theorem 2.6, part (a). Let (Xt)t≥0 be a regular affine process.

By regularity, the functions F and R, given by

(2.8) F (u) =
∂φ

∂t
(t, u)

∣∣∣∣
t=0+

, R(u) =
∂ψ

∂t
(t, u)

∣∣∣∣
t=0+

exist, and are continuous at u = 0. Thus, for u ∈ U and x ∈ D,

lim
t↓0

Ptfu(x) − fu(x)

t
= lim

t↓0

exp(φ(t, u) + 〈x, ψ(t, u)〉) − exp(〈x, u〉)
t

=(2.9)

=
(
F (u) + 〈x,R(u)〉

)
fu(x) .

Since the above limit exists, the functions {fu : u ∈ U} are in the domain of A, the

generator of the Markov process (Xt)t≥0, and we obtain

(2.10)
Afu(x)
fu(x)

= F (u) + 〈x,R(u)〉 .

Denote now by pt(x, dξ) the transition kernel of (Xt)t≥0, i.e. pt(x,A) := Pt1{A}(x)

for a Borel set A ⊆ B(D). We can also write (2.10) as

Afu(x)
fu(x)

= lim
t↓0

1

t

{∫

D

e〈ξ−x,u〉 pt(x, dξ) − 1

}
=

= lim
t↓0

{
1

t

∫

D

(
e〈ξ−x,u〉 − 1

)
pt(x, dξ) +

pt(x,D) − 1

t

}
=

= lim
t↓0

{
1

t

∫

D−x

(
e〈ξ,u〉 − 1

)
p̃t(x, dξ)

}
+ lim

t↓0

pt(x,D) − 1

t
,(2.11)



Affine Processes 23

where we denote by p̃t(x, dξ) := pt(x, dξ+x) the ‘shifted’ transition kernel. Insert-

ing u = 0 into (2.11) and (2.10), shows that the last term limt↓0(pt(x,D) − 1)/t

converges to F (0)+ 〈x,R(0)〉. Define c := F (0) and γi := Ri(0) for all i ∈ K. From

the contraction property of Pt it follows that c+ 〈x, γ〉 ≤ 0 for all x ∈ D. Inserting

x = ±ej (ej denotes the j-th unit vector in Rd) shows that γj = 0 for j ∈ J , and

thus (2.3g).

We write F̃ (u) = F (u)− c and R̃(u) = R(u)− γ, and focus on the integral term in

the last line of (2.11). This term can be interpreted as a limit of log-characteristic

functions of compound Poisson distributions with intensity 1/t and compounding

measure p̃t(x, dξ) (See Definition C.6). We have already established by (2.10) that

the limit exists, and is given by a function continuous at 0. By Lévy’s continuity

theorem, this implies that the compound Poisson distributions converge weakly to

a limit distribution. Since any compound Poisson distribution is infinitely divisible,

and the class of infinitely divisible distributions is closed under weak convergence,

F̃ (u)+
〈
x, R̃(u)

〉
must then be the log-characteristic function of some infinitely di-

visible random variable K(x) for each x ∈ D. Together with the Lévy-Khintchine

representation (cf. Theorem C.4) this shows the decomposition (2.6) of F and R.

To derive the admissibility conditions, consider first K(0). It is an infinitely

divisible random variable with log-characteristic function F̃ (u), which by the Lévy-

Khintchine formula is of the form

(2.12) F̃ (u) =
1

2
〈u, au〉 + 〈b, u〉 +

∫

Rd\{0}

(
e〈ξ,u〉 − 1 −

〈
h̃(ξ), u

〉)
m(dξ) ,

for some parameters (a, b,m) and a truncation function h̃. The support of the

transition kernel p̃t(0, .) is contained in D, because p̃t(0, dξ) = pt(0, dξ). We are

interested in the subspace where the support is restricted to the positive orthant.

Denote by TI the projection onto the coordinates with indices in I. It holds that

TI (supp p̃t(0, .)) ⊆ Rm>0 .

The same must hold for the support of the compound Poisson distributions, and

thus also of their limit K(0), i.e. we have

TI (suppK(0)) ⊆ Rm>0 .

In other words, the projection of K(0) onto the coordinates (xi)i∈I is a non-negative

random variable. Applying Lemma C.8 on linear transformations of infinitely di-

visible random variables and Theorem C.5, the Lévy-Khintchine representation for



24 Affine Processes

non-negative random variables, we get

TIaT
∗
I = 0(2.13)

TIb+

∫

D

TI ◦ h̃(ξ)m(dξ) ∈ Rm>0(2.14)

∫

Rm
>0

(|y| ∧ 1)m(T−1
I (dy)) <∞ .(2.15)

The last equation implies (2.3h) and thus that
(
e〈ξ,u〉 − 1 − 〈h(ξ), u〉

)
is integrable

with respect to m(dξ). Consequently we can replace h̃ by h in (2.12) and (2.14).

Note that TI ◦ h ≡ 0 by definition of h, such that the second equation directly

implies (2.3d). Finally the first equation implies that akl = 0 if k, l ∈ I. By the

Cauchy-Schwarz inequality we have that |akl| ≤
√
akkall and it follows that akl = 0

if k ∈ I or l ∈ I, which is precisely (2.3a).

Define now for each i ∈ I the random variable

Ki := lim
n→∞

K(nei)
∗ 1

n ,

where ∗ 1
n denotes the 1/n-th convolution power, and the limit is understood as a

limit in distribution. Note first that the 1/n-th convolution power is well-defined,

because K(nei) is infinitely divisible. Second, we have that the log-characteristic

function of Kn(nei)
∗ 1

n is given by 1
n F̃ (u) + R̃i(u). For n → ∞ this sequence

converges to R̃i(u), which is continuous at the origin. Together this shows that the

limit Ki exists and is an infinitely divisible random variable with log-characteristic

function R̃i(u). We conclude that

(2.16) R̃i(u) =
1

2

〈
u, αiu

〉
+
〈
βi, u

〉
+

∫

Rd\{0}

(
e〈ξ,u〉 − 1 −

〈
χ̃i(ξ), u

〉)
µi(dξ) ,

for some appropriate truncation function χ̃i. Again we are interested in conditions

on the support of Ki: We have that

TI\{i} (supp p̃t(nei, .)) ⊆ R
(m−1)
>0 .

The crucial observation here is that in the projection TI\{i} the i-th component

has to be excluded from I. The reason for this is the shift in direction ei that has

been applied in (2.11) to the transition kernel pt(x, dξ), and which has changed its

support. As before, we conclude, that also

TI\{i} (suppK(nei)) ⊆ R
(m−1)
>0 ,

and the same must hold for the convolution power K(nei)
∗ 1

n , and finally for the

limit Ki. Again we apply Lemma C.8 and the characterization of non-negative
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infinitely divisible random variables (Theorem C.5) and obtain

TI\{i}α
iT ∗
I\{i} = 0(2.17)

TI\{i}β
i +

∫

D

TI\{i} ◦ χ̃i(ξ)µi(dξ) ∈ R
(m−1)
>0(2.18)

∫

R
(m−1)
>0

(|y| ∧ 1)µi(T−1
I\{i}(dy)) <∞ ,(2.19)

The last equation implies (2.3k) and shows that we can replace χ̃i by χi in (2.16)

and (2.18). By definition of χi we have that TI\{i} ◦ χi ≡ 0, such that (2.3e) fol-

lows directly from (2.18). Finally (2.17) yields that αikl = 0 if k, l ∈ I \ {i}. The

Cauchy-Schwartz inequality gives |αikl| ≤
√
αikkα

i
ll such that we obtain (2.3c).

Consider next the random variables defined by

Kj
+ := lim

n→∞
K(nej)

∗ 1
n , and Kj

− := lim
n→∞

K(−nej)∗
1
n ,

where j ∈ J and, as before, the limits are understood as limits in distribution. Again

we obtain that Kj
+ and Kj

− are infinitely divisible; Kj
+ has the log-characteristic

function R̃j(u) which must be of the Lévy-Khintchine form (2.16), and Kj
− has

log-characteristic function −R̃j(u). Since αj and −αj cannot be both positive

semi-definite, unless αj = 0, we conclude (2.3b). A similar argument for the Lévy

measures leads to (2.3i). It is now clear that no truncation functions χj for j ∈ J

are necessary and R̃j(u) are simply of the form R̃j(u) =
〈
βj , u

〉
, i.e. Kj

+ = βj a.s.

and Kj
− = −βj a.s. As above we can deduce from TI(supp p̃t(nej , .)) ⊆ Rm>0 that

{
TIβ

j
}

= TI

(
suppKj

+

)
⊆ Rm>0 and

{
−TIβj

}
= TI

(
suppKj

−

)
⊆ Rm>0

which leads to (2.3f).

It remains to show (2.3j). By Sato [1999, Theorem 8.7] convergence in law

of infinitely divisible random variables Xt to a limit X, implies that for the cor-

responding Lévy measures,
∫
f dmn →

∫
f dm holds for all functions f ∈ Cb(R

d)

that vanish in a neighborhood of zero. Applying this to the compound Poisson

approximation of K(ei/n) (n ∈ N and i ∈ I), we can choose a function gn that is

zero on [−1/n,∞)m × Rn, and have
∫

Rd

gn(ξ) p̃t(ei/n, dξ) →
1

n

∫

Rd

gn(ξ)µ
i(dξ) +

∫

Rd

gn(ξ)m(dξ)

as t → 0. However, considering the support of p̃t(ei/n, dξ), the left side is 0 for

all n ∈ N. The integral with respect to m(dξ) is zero too – condition (2.3h) has

already been shown – such that also the µi(dξ)-integral must be zero for all n ∈ N.
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We conclude that the support of µi is a subset of D for all i ∈ I and have shown

part (a) of Theorem 2.6. �

We prepare to prove the second part of Theorem 2.6, i.e. the form of the

generator. The following Lemma is not crucial, but convenient for the proof of the

second part:

Lemma 2.7. The set O, defined in (1.4), equals R>0 ×U . In particular φ(t, u)

and ψ(t, u) are defined on all of R>0 × U .

We give only a sketch; for the full proof we refer to Duffie et al. [2003, Prop. 6.4].

Up to now φ(t, u) and ψ(t, u) are only defined on O, i.e. up to the point where

Ptfu(0) = 0. Since φ(t, u) is continuous inside O, it is clear that for (T, u) ∈ O
it must hold that limt→T |φ(t, u)| = +∞. According to Theorem 2.6.a, we already

know that φ(t, u) and ψ(t, u) must satisfy the generalized Riccati equations 2.2,

with F and R given by (2.6), subject to the admissibility conditions. A comparison

result for the generalized Riccati equations then shows that the solutions remain

finite for all times and thus that limt→T |φ(t, u)| = +∞ can not happen for any

finite time T and u ∈ U . It follows that O = R>0 × U .

By (2.10) we now know the action of the generator on the exponential func-

tions. The idea is to extend this property to functions in C2
c (D) by applying some

techniques from functional analysis. This part of the proof is essentially taken from

Duffie et al. [2003], but we add explanations where we deem it appropriate.

The following function spaces will be needed:

• C0(D), the space of continuous functions on D, that vanish at infinity, i.e.

for every ǫ > 0 there exists a compact set K ⊂ D, such that |f(x)| < ǫ

for all x ∈ D \ K. This space is endowed with the norm ‖.‖∞, which

generates the topology of uniform convergence on C0(D).

• C2
c (D), the space of functions with compact support that are twice con-

tinuously differentiable. We endow it with the norm

‖f‖D,2 := sup
x∈D

(1 + |x|)



∑

|α|≤2

∣∣∣∣
∂|α|

∂xα
f(x)

∣∣∣∣


 ,

where α denotes a multi-index of length d.

Proof of Theorem 2.6, part (b). We define the operator A♯, mapping C2
c (D)

into C0(D), as the integro-differential operator given by the right hand side of (2.7).
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It will be convenient to split A♯ into a differential operator part and a integral op-

erator part, i.e. A♯ = A♯
diff + A♯

int, where

A♯
difff(x) :=

1

2

d∑

k,l=1

(
akl +

m∑

i=1

αiklxi

)
∂2f(x)

∂xk∂xl
+

+ 〈b+
d∑

i=1

βixi,∇f(x)〉 −
(
c+

m∑

i=1

γixi

)
f(x)

A♯
intf(x) :=

∫

D\{0}
(f(x+ ξ) − f(x) − 〈h(ξ),∇f(x)〉) m(dξ)+

+

m∑

i=1

∫

D\{0}

(
f(x+ ξ) − f(x) −

〈
χi(ξ),∇f(x)

〉)
xiµ

i(dξ) .

Similarly to the proof of Proposition 1.11, we define the set

(2.20) Θ :=

{
h(uI ,g)(x) = e〈uI ,xI〉

∫

Rn

fiz(xJ)g(z) dz : ReuI < 0, g ∈ C∞
c (Rn)

}
,

and denote by L(Θ) the set of complex linear combinations of elements of Θ.

The proof consists of the following steps:

(A) Show that each function in C2
c (D) can be approximated in ‖.‖2,D-norm by

functions in L(Θ).

(B) Show that A♯ is continuous from C2
c (D) to C0(D), i.e. ‖gn − g‖2,D → 0 implies

that
∥∥A♯gn −A♯g

∥∥
∞ → 0.

(C) Show that L(Θ) ⊂ D(A) and that A♯gn = Agn for all gn ∈ L(Θ).

In the proof of Proposition 1.11 we have shown that L(Θ) is dense in C0(D) with

respect to the ‖.‖∞-norm. Since C2
c (D) ⊂ C0(D), it follows that C2

c (D)-functions

can be approximated in ‖.‖∞-norm by L(Θ)-functions. For point (A), however, a

stronger assertion is needed: We have to approximate with respect to ‖.‖2,D. The

proof is somewhat technical, and we refer to Duffie et al. [2003, Lemma 8.4].

Step (B): Since A♯ is linear, it suffices to show an estimate of the type

(2.21)
∥∥A♯g

∥∥
∞ ≤ C ‖g‖2,D for all g ∈ C2

c (D) .

The estimate is obvious for the differential-part A♯
diff. For the integral part, note

that by a Taylor expansion it holds for any g ∈ C2
c (D), x, ξ ∈ D, and truncation

function h, that

(2.22) |g(x+ ξ) − g(x) − 〈∇g(x), h(ξ)〉| = |〈∇g(x), (ξ − h(ξ))〉 +M(x, g, ξ)| ≤
|∇g(x)||ξ − h(ξ)| +M(x, g, ξ) ,
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where

‖M(., g, ξ)‖∞ ≤ ‖g‖2,D |ξ|2 .
Denoting the unit ball in Rd by B1(0), we can thus estimate for every i ∈ I

∥∥∥∥x
∫

D

(g(x+ ξ) − g(x) − 〈∇g(x), h(ξ)〉) µi(dξ)
∥∥∥∥
∞

≤

≤ C1 ‖g‖2,D µ
i(D \B1(0)) + C2 ‖g‖2,D

∫

B1(0)∩D

(∣∣ξ − χi(ξ)ξ
∣∣+ |ξ|2

)
µi(dξ) .

By the integrability condition (2.3k) for µi the latter integral is finite. For the Lévy

measure m(dξ) a similar estimate holds, such that (2.21) with some appropriate

constant C follows, and we have completed step (B).

Step (C): Let h(uI ,g) ∈ Θ. Using the notation u(z) := (uI , iz) we can write

h(uI ,g) as

h(uI ,g)(x) =

∫

Rn

fu(z)(x)g(z) dz .

On the exponential functions we know that A♯fu = Afu, and we would like to

justify the formal calculation

A♯h(uI ,g) =

∫

Rn

A♯fu(z)(x)g(z) dz =

∫

Rn

Afu(z)(x)g(z) dz = Ah(uI ,g) .

For the differential part A♯
diff, it follows from well-known properties of the Fourier

transform, that

(2.23)

A♯
diff

∫

Rn

fu(z)(x)g(z) dz =

∫

Rn

(
1

2
〈iz, a u(z)〉 + 〈b, u(z)〉 − c

)
fu(z)(x)g(z) dz+

+

d∑

i=1

xi

∫

Rn

(
1

2

〈
u(z), αi u(z)

〉
+
〈
βi, u(z)

〉
− γi

)
fu(z)(x)g(z) dz .
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For the integral part we calculate

(2.24) A♯
int

∫

Rn

fu(z)(x)g(z) dz =

=

∫

D\{0}

∫

Rn

(
fu(z)(x+ ξ) − fu(z)(x) −

〈
h(ξ), u(z)fu(z)(x)

〉 )
g(z) dz m(dξ)+

+

d∑

i=1

∫

D\{0}

∫

Rn

(
fu(z)(x+ ξ) − fu(z)(x) −

〈
χi(ξ), u(z)fu(z)(x)

〉 )
g(z) dz µi(dξ) =

=

∫

Rn

∫

D\{0}

(
e〈ξ,u(z)〉 − 1 − 〈h(ξ), u(z)〉

)
fu(z)(x)m(dξ) g(z) dz+

+

d∑

i=1

∫

Rn

∫

D\{0}

(
e〈ξ,u(z)〉 − 1 −

〈
χi(ξ), u(z)

〉)
fu(z)(x)µ

i(dξ) g(z) dz ,

where the interchange of integrals is justified by Fubini’s theorem in combina-

tion with the estimate (2.22). Combining (2.23) and (2.24) we obtain that for

all h(uI ,g) ∈ Θ and x ∈ D

A♯h(uI ,g)(x) = A♯

∫

Rn

fu(z)(x)g(z) dz =

∫

Rn

(F (u(z)) + 〈x,R(u(z))〉) fu(z)(x)g(z) dz

=

∫

Rn

∂

∂t

∣∣∣∣
t=0

Ptfu(z)(x)g(z) dz =
∂

∂t

∣∣∣∣
t=0

Pt h(uI ,g)(x) .(2.25)

By linearity the equality clearly holds for all h ∈ L(Θ). According to Sato [1999,

Lemma 31.7], this pointwise equality for all x ∈ D is enough to conclude that

L(Θ) ⊂ D(A) and A♯ h = Ah for all h ∈ L(Θ). Since we can approximate

each C2
c (D)-function in ‖.‖2,D-norm by functions in L(Θ), there exists a sequence

(gn)n∈N in L(Θ) such that ‖gn − g‖2,D → 0 and also ‖gn − g‖∞ → 0. But A♯ is

continuous from C2
c (D) to C0(D), such that we have

∥∥Agn −A♯g
∥∥
∞ =

∥∥A♯gn −A♯g
∥∥
∞ → 0 .

By Proposition 1.11 (Xt)t≥0 is a Feller process. It is well known that this implies

that its generator A is a closed operator on C0(D). But for a closed operator

Agn → A♯g and gn → g in C0(D) imply that g ∈ D(A) and that Ag = A♯g,

yielding the claim of Theorem 2.6. �
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3. Conditions for regularity and analyticity of affine processes

3.1. A condition for regularity.

Definition 3.1. We say that an affine process satisfies Condition A, if the

index set J of its real-valued components can be partitioned into J = K ∪ L, and

(i) for any x ∈ D, (t, u) ∈ R>0 × U

Ex
[
e〈Xt,u〉

]
= e〈xL,uL〉 · E(xM\L,0)

[
e〈Xt,u〉

]
,

(ii) and there exists ǫ > 0 and τ > 0, such that

Ex
[
|(Xt)K |1+ǫ

]
<∞, for all t ∈ [0, τ ], x ∈ D.

Remark 3.2. We will refer to condition (i) as space-homogeneity in the L-

components, since it is equivalent to the statement that the law of Xt + yL under

Px equals the law of Xt under P(x+yL), for any yL ∈
{
yL ∈ Rd : yM\L = 0

}
. Note

also, that together with the affine property of (Xt)t≥0, it implies that ψL(t, u) = uL

for all (t, u) ∈ R>0 × U . Condition (ii) can be described as existence of a moment

of absolute order greater than one in the K-components.

Thus, an affine process Xt satisfies Condition A, if each of its components is either

non-negative, space-homogeneous, or possesses a moment of absolute order greater

one.

The motivation to introduce Condition A is the following Theorem. We post-

pone a discussion until after the proof.

Theorem 3.3. Suppose an affine process satisfies Condition A. Then it is a

regular affine process.

We will need the following Lemma:

Lemma 3.4. Suppose that the affine process (Xt)t≥0 satisfies Condition A. Then

for all i ∈ I ∪K the derivatives

∂

∂ui
φ(t, u),

∂

∂ui
ψ(t, u)

exist and are continuous for (t, u) ∈ ([0, τ ] × U◦) ∩ O.

Remark 3.5. The set ([0, τ ] × U◦)∩O looks complicated, but its only property

that will be used is the following: For any u ∈ U◦, we can find τ(u) > 0, such that

[0, τ(u)) × {u} is contained in ([0, τ ] × U◦) ∩ O.

Proof. Let i, j ∈ I ∪K. It holds that

(3.1)

∣∣∣∣
∂

∂ui
exp (〈u,Xt〉)

∣∣∣∣ =
∣∣Xi

t

∣∣ · exp (〈Reu,Xt〉) .
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If i ∈ I, then the right hand side is uniformly bounded for all t ∈ R>0, u ∈ U◦,

and thus in particular uniformly integrable. If i ∈ K, then the right hand side is

by assumption 3.1.ii and by a well-known result (cf. Protter [2004, Theorem 11])

also uniformly integrable for all t ∈ [0, τ ], u ∈ U . In any case we may conclude

that ∂
∂ui

Ex
[
e〈Xt,u〉

]
exists and is a continuous function of (t, u) ∈ [0, τ ] × U◦ for

any x ∈ D. If in addition (t, u) ∈ O, then Lemma 1.2 states that Ex
[
e〈Xt,u〉

]
=

exp (φ(t, u) + 〈x, ψ(t, u)〉), from which the claim follows. �

Proof of Theorem 3.3. To simplify calculations we combine φ(t, u) and

ψ(t, u) into the ‘big semi-flow’ Υ(t, u) as described in Section 1.2. That is we

set Ô := O × C and define

(3.2) Υ : Ô → Cd+1, (t, u1, . . . ud, ud+1) 7→
(

ψ(t, (u1, . . . , ud))

φ(t, (u1, . . . , ud)) + ud+1

)
.

Note that all vectors u have now a (d+1)-th component added; this component will

be assigned to Î := I ∪{d+ 1}. The semi-flow property is preserved by Υ(t, u), i.e.

Υ(t+ s, u) = Υ(t,Υ(s, u)) for all (t+ s, u) ∈ Ô. The space-homogeneity condition

for the components L implies that ΥL(t, u) = uL for all (t, u) ∈ O. Clearly, the

derivative ∂
∂tΥL(t, u)

∣∣
t=0

exists and is 0, for all u ∈ U . In the rest of the proof we

thus concentrate on the remaining (not space-homogeneous) components, whose

indices we denote by Γ := Î ∪ K. Let u ∈ Û◦ := U◦ × C be fixed and assume

that t, s ∈ R>0 are small enough such that in particular φ(t+ s, u), ψ(t+ s, u) and

their u-derivatives are always well-defined (cf. Lemma 3.4). Denote by ∂ΥΓ

∂uΓ
(t, u)

the Jacobian of ΥΓ with respect to uΓ. Using a Taylor expansion we have that

(3.3)∫ s

0

ΥΓ(r,Υ(t, u)) dr −
∫ s

0

ΥΓ(t, u) dr =

∫ s

0

∂ΥΓ

∂uΓ
(r, u) dr · (ΥΓ(t, u) − uΓ) +

+ o (‖ΥΓ(t, u) − uΓ‖)

On the other side, using the semi-flow property of Υ we can write the left hand

side of (3.3) as

∫ s

0

ΥΓ(r,Υ(t, u)) dr −
∫ s

0

ΥΓ(r, u) dr =

∫ s

0

ΥΓ(r + t, u) dr −
∫ s

0

ΥΓ(r, u) dr =

=

∫ s+t

t

ΥΓ(r, u) dr −
∫ s

0

ΥΓ(r, u) dr =

∫ s+t

s

ΥΓ(r, u) dr −
∫ t

0

ΥΓ(r, u) dr =

=

∫ t

0

ΥΓ(r + s, u) dr −
∫ t

0

ΥΓ(r, u) dr .

(3.4)
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Denoting the last expression by I(s, t) and combining (3.3) with (3.4) we obtain

lim
t↓0

∥∥ 1
sI(s, t)

∥∥
‖ΥΓ(t, u) − uΓ‖

=

∥∥∥∥
1

s

∫ s

0

∂ΥΓ

∂uΓ
(r, u) dr

∥∥∥∥ .

Define M(s, u) := 1
s

∫ s
0
∂ΥΓ

∂uΓ
(r, u) dr. Note that as s → 0, it holds that M(s, u) →

∂ΥΓ

∂uΓ
(0, u) = IΓ (the identity matrix). Thus for s small enough ‖M(s, u)‖ 6= 0, and

we conclude that

(3.5) lim
t↓0

1

t
‖ΥΓ(t, u) − uΓ‖ =

=

∥∥∥∥limt↓
I(s, t)

st

∥∥∥∥ · ‖M(s, u)‖−1
=

∥∥∥∥
ΥΓ(s, u) − uΓ

s

∥∥∥∥ · ‖M(s, u)‖−1
.

The right hand side of (3.5) is well-defined and finite, implying that also the limit

on the left hand side is. Thus, combining (3.3) and (3.4), dividing by st and taking

the limit t ↓ 0 we obtain

lim
t↓0

ΥΓ(t, u) − uΓ

t
=

ΥΓ(s, u) − uΓ

s
·M(s, u)−1 .

Again we may choose s small enough, such that M(s, u) is invertible, and the right

hand side of the above expression is well-defined. The existence and finiteness of

the right hand side then implies the existence of the limit on the left. In addition

the right hand side is a continuous function of u ∈ Û◦, such that also the left hand

side is. Adding back the components L, for which a time derivative trivially exists

(ψL(t, u) = uL for all t ≥ 0), we obtain that

(3.6) R(u) := lim
t↓0

Υ(t, u) − u

t
=

∂

∂t
Υ(t, u)

∣∣∣∣
t=0

exists and is a continuous function of u ∈ Û◦. Denoting the first d components of

R(u) by R(u) and the d + 1-th component by F (u) we can ‘disentangle’ the big

semi-flow Υ, drop the (d+ 1)-th component of u, and see that

(3.7) F (u) :=
∂

∂t
φ(t, u)

∣∣∣∣
t=0

and R(u) :=
∂

∂t
ψ(t, u)

∣∣∣∣
t=0

are likewise well-defined and continuous on U◦. To show that (Xt)t≥0 is regular

affine (cf. (2.1)) it remains to show that (3.7) extends continuously to U :

To this end let tn ↓ 0, x ∈ D, u ∈ U◦, and rewrite (3.7), as in the proof of

Theorem 2.6, as

(3.8) F (u) + 〈x,R(u)〉 = lim
n→∞

exp (φ(tn, u) + 〈x, ψ(tn, u) − u〉) − 1

tn
=

= lim
n→∞

f−u(x)Ptnfu(x) − 1

tn
= lim
n→∞

1

tn

{∫

D−x
e〈x,u〉 p̃t(x, dξ) − 1

}
,
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where p̃t(x, dξ) is the ‘shifted transition kernel’ of the Markov process (Xt)t≥0 (see

Page 22f for details). The right hand side of (3.8) can be regarded as a limit of

log-characteristic functions of (infinitely divisible) sub-stochastic measures7. That

is, there exist infinitely divisible measures µn(x, dξ), such that

exp (F (u) + 〈x,R(u)〉) = lim
n→∞

∫

Rd

e〈u,ξ〉 µn(x, dξ), for all u ∈ U◦.

Let now θ ∈ Rd with θI < 0 and θJ = 0 (note that θ ∈ U◦) and consider the ex-

ponentially tilted measures e〈θ,ξ〉 µn(x, dξ). Their characteristic functions converge

to exp (F (u+ θ) + 〈x,R(u+ θ)〉). Thus, by Lévy’s continuity theorem, there ex-

ists µ∗(x, dξ) such that e〈θ,ξ〉 µn(x, dξ) → µ∗(x, dξ) weakly. On the other hand, by

Helly’s selection theorem, µn(x, dξ) has a vaguely convergent subsequence, which

converges to some measure µ(x, dξ). By uniqueness of the weak limit we conclude

that µ(x, dξ) = e〈−θ,ξ〉µ∗(x, dξ). Thus we have that for all x ∈ D and u ∈ U◦ with

Reu in a neighborhood B(θ) of θ,

(3.9) exp (F (u) + 〈x,R(u)〉) = lim
n→∞

∫

Rd

e〈u,ξ〉 µn(d, dξ) =

= lim
n→∞

∫

Rd

e〈u−θ,ξ〉 e〈θ,ξ〉µn(x, dξ) =

∫

Rd

e〈u−θ,ξ〉 µ∗(x, dξ) =

∫

Rd

e〈u,ξ〉 µ(x, dξ) .

But the choice of θ was arbitrary, such that (3.9) extends to all u ∈ U◦. Applying

dominated convergence to the last term of (3.9) shows that both F and R have a

continuous extension to all of U , which we also denote by F and R respectively. It

remains to show that (3.7) remains valid on U :

Let u ∈ U and (un)n∈N ∈ U◦ such that un → u. Remember that by Proposition 1.10

un ∈ U◦ implies that also ψ(t, un) ∈ U◦ for any t ≥ 0. Thus we have

(3.10)

∫ t

0

R(ψ(s, u)) ds =

∫ t

0

lim
un→u

R(ψ(s, un)) ds = lim
un→u

∫ t

0

R(ψ(s, un)) ds =

= lim
un→u

∫ t

0

lim
r↓0

ψ(r, ψ(s, un)) − ψ(s, un)

r
ds = lim

un→u

∫ t

0

lim
r↓0

ψ(r + s, un) − ψ(s, un)

r
ds

= lim
un→u

∫ t

0

∂

∂t
ψ(s, un) ds = lim

un→u
ψ(t, un) − un = ψ(t, u) − u .

Since the left hand side of (3.10) is t-differentiable, also the right hand side is, and

we obtain R(u) = ∂
∂tψ(t, u)

∣∣
t=0

for all u ∈ U . A similar calculation as above can

be made upon replacing R with F , resulting in F (u) = ∂
∂tφ(t, u)

∣∣
t=0

for all u ∈ U ,

and thus showing that the affine process (Xt)t≥0 is regular. �

We discuss the following special cases of Theorem 3.3:

7More precisely as log-characteristic functions of compound Poisson distributions with intensity
1/tn and kernel ept(x, .); see also Definition C.6
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(i) An affine process on D = Rd>0 is regular.

(ii) A space-homogeneous affine process, or equivalently an affine process with

ψ(t, u) = u, is regular.

(iii) An affine process that possesses an absolute moment of order greater one is

regular.

Non-negative affine processes as in (i) have been studied as so-called continu-

ously branching processes with immigration (CBI-processes) in the seventies. See

e.g. Kawazu and Watanabe [1971], where the one-dimensional case (D = R>0) is

discussed, and regularity of this process is shown (using, however, a rather different

approach). Is is not hard to see that a space-homogeneous affine process as in (ii)

is necessarily a Lévy process (see also Example 1.4). Also in this case regularity

follows by a very simple argument based on the Cauchy functional equation. The

case (iii) has been studied before, for example by Dawson and Li [2006].

The contribution of our proof given above, is to provide a unified treatment of the

different approaches, and – more importantly – to show that all the mentioned con-

ditions can be mixed component-by-component. This is relevant, since a number of

models in mathematical finance naturally satisfy such a ‘mixed’ condition of type

A. We give an example:

Example 3.6. Let (Xt, V
1
t , . . . , V

m
t )t≥0 be an affine process. The process

St = eXt represents the price of a risky asset, while (V 1
t , . . . , V

m
t ) are some latent

factors describing market activity (such as stochastic variance, intensity of jumps,

or ‘business time’) By construction, Xt will be R-valued, while Vt is Rm>0-valued. In

addition the following homogeneity assumption is often made: The distribution of

returns St+∆t/St shall depend only on the current state of (V 1
t , . . . , V

m
t ), but not

of St. Such a model automatically fulfills Condition A, is thus regular affine, and

can be characterized by the results obtained in section 2.

3.2. ‘Analytic’ affine processes. We introduce now another condition im-

plying regularity, the notion of an analytic affine process. Essentially, this is an

affine process, whose moment generating function exists on a set with non-empty

interior, and satisfies a uniform boundedness condition with respect to time t.

Definition 3.7 (Analytic Affine Process). Let (Xt)t≥0 be an affine process.

For each t ≥ 0, define

Dt =

{
y ∈ Rd : sup

0≤s≤t
Ex [exp (〈Xs, y〉)] <∞ for all x ∈ D

}
;

Dt+ :=
⋃

s>t

Ds and D = (D0+)
◦ ∪ {0} .

We call D the real domain of (Xt)t≥0. If D has non-empty interior, we call (Xt)t≥0

an analytic affine process.
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It follows immediately from Proposition B.2 and the positivity of XI
t , that

(a) for each t ∈ R>0 the sets Dt,Dt+ are convex and contain [−∞, 0]m × {0}n,
(b) D is convex and contains [−∞, 0]m × {0}n, and

(c) t ≤ s implies that Dt ⊇ Ds and Dt+ ⊇ Ds+.

Let us at this point introduce the following useful notation: Suppose that S is a

subset of Rd. Then the tube domain SC associated to S is given by

(3.11) SC :=
{
u ∈ Cd : Reu ∈ S

}
.

Sometimes we shall also consider sets S′ ⊂ R>0 × Rd, i.e. containing points (t, y),

where the first coordinate represents time. In this case the ’tubification’ is only

applied to the last d coordinates, that is S′
C :=

{
(t, u) ∈ R>0 × Cd : (t,Reu) ∈ S′}.

For example, setting

E :=
{
(t, y) ∈ R>0 × Rd : y ∈ Dt+

}
,

it follows from
∣∣e〈Xt,u〉

∣∣ = e〈Xt,Reu〉 that sup0≤s≤t
∣∣Ex

[
e〈Xs,u〉

]∣∣ < ∞ for all (t, u)

in the tube-domain EC. Defining also E◦ =
{
(t, y) ∈ R>0 × Rd : y ∈ D◦

t+

}
we will

subsequently show that:

• The functions φ(t, u) and ψ(t, u), characterizing the affine process (Xt)t≥0

have unique extensions to analytic functions8 on E◦
C. Hence the name

analytic affine.

• Every analytic affine process is a regular affine process, and also the func-

tions F and R defined in (2.1) have extensions to analytic functions on

D◦
C.

We give some examples of processes that are analytic affine:

Example 3.8. Every affine process on Rm>0 has (−∞, 0]d a subset of its real

domain, and is thus analytic affine. This follows immediately from Definition 3.7

and the positivity of Xt.

Example 3.9. Consider an affine process (Xt, V
1
t , . . . , V

m
t )t≥0 with state space

R × Rm>0 as introduced in Example 3.6. Suppose that St = eXt models a risky

asset, and that – for any x ∈ D – Px is a martingale measure for St. Then

sup0≤s≤t Ex
[
eXs
]

= ex < ∞ for all t ∈ R>0. It is straightforward to derive that

(Xt, Vt)t≥0 has a real domain including the set [0, 1]×(−∞, 0]m, and thus is analytic

affine.

8‘extension to analytic functions’ may sound awkward, and the reader may wonder why we do
not simply write ‘analytic extension’. The reason is that a function is analytically extended from

within its domain of analyticity, whereas here the function might be extended from the boundary

– and hence from outside – of its domain of analyticity. See Proposition 3.11 for details.
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Example 3.10. It might seem at first sight that Definition 3.7 is a strictly

stronger requirement than Condition A introduced in Definition 3.1, and that every

affine process satisfying Condition A, is also analytic affine. However, this is not

the case: Consider the OU-type process (Yt)t≥0 defined by

dYt = −λYt dt+ dLt, Y0 = y ∈ R ,

where λ > 0 and Lt is a Lévy process with Lévy measure m(dξ) = 1{ξ>0}
ξ−3/2

2
√
π

+

1{−1≤ξ<0}. As pointed out in Example 1.5 this process is a regular affine process

with

φ(t, u) =

∫ t

0

κ(e−λsu) ds, ψ(t, u) = e−λtu ,

where

κ(u) =

∫

R\{0}

(
eξu − 1 − u

ξ

1 + ξ2
m(dξ)

)
=

= −
√
−u+

1 − e−u

u
+ u

(
log(2)

2
+

√
2π

4

)
− 1 ,

defined for all u ∈ (−∞, 0)C and for u = 0. The process Yt is neither non-

negative, nor space-homogeneous. It is also not of finite expectation, since Ex [Xt] =

tκ′(0−)+xe−λt = +∞. Thus it does not satisfy Condition A. It is however analytic

affine, since sup0≤s≤t Ex
[
eyXs

]
<∞ for all t ≥ 0, and y ≤ 0.

The following result will be needed for the extension of φ(t, u) and ψ(t, u):

Proposition 3.11 (Extension Principle for moment generating functions).

Let f : iRd → C be a continuous function defined on the purely imaginary numbers,

and let S ⊆ Rd be a convex set containing 0. Suppose there exists a function

f̃ : SC → C, that can be represented as

f̃(u) =

∫

Rd

e〈u,ξ〉 µ(dξ), u ∈ SC ;

for some Borel measure µ(dξ), and satisfies f = f̃
∣∣∣
iRd

. Then f̃ is the unique

function with these properties.

Proof. Suppose there exist functions f̃(u), and f̂(u), both satisfying the prop-

erties given above. Let y ∈ S and define Ω := {ω ∈ C : Reω ∈ R, Imω ∈ [0, 1]}.
Consider the function

h : Ω → C : ω 7→ f̃(−iωy) − f̂(−iωy) .

By Proposition B.4, h has the following properties: It is continuous on Ω, analytic

on Ω◦, and moreover real-valued for real ω. By the Schwarz reflection principle, it

thus has an analytic extension to Ω∗ := Ω∪Ω. However for any ω ∈ R the function
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h takes the value zero. We conclude that (the analytic extension of) h is zero on

all of Ω∗. It follows that f̃(u) = f̂(u) for all u with Reu = y. Since y was arbitrary

in S, f̃ = f̂ on all of SC. �

Lemma 3.12. (a) The function (t, u) 7→ Ptfu(x) is continuous on E◦
C for every

x ∈ D.

(b) Let (Xt)t≥0 be an analytic affine process, and let

Q := {(t, u) ∈ EC : |Psfu(0)| 6= 0∀ s ∈ [0, t)} .

Then Q is open in EC, and there exist a unique extension of φ(t, u), ψ(t, u) to

Q, such that

(3.12) Ex
[
e〈u,Xt〉

]
= exp (φ(t, u) + 〈x, ψ(t, u)〉)

for all x ∈ D, and (t, u) in Q.

Remark 3.13. By (1.3), it is clear that R>0 × iRd ⊆ Q. Also, from the

continuity of Ptfu(0) ∈ E◦
C, and the fact that P0fu(0) = fu(0) = 1, it follows that

{0} × DC ⊆ Q. We will eventually show in Lemma 3.19, that actually Q = EC, i.e.

(3.12) holds for all (t, u) ∈ EC.

Proof. To show (a) we establish first that for all t ≥ 0,

(3.13) D◦
t+ =

⋃

s>t

D◦
s .

The inclusion ‘⊇’ should be clear from Definition 3.7. To show equality, let y ∈ D◦
t+.

There exists an open neighborhoodNy of y, such thatNy ⊆ Dt+. The neighborhood

Ny contains a polytope P , i.e. the convex hull of finitely many points {a1, . . . , aM},
such that y ∈ P ◦ (one could choose e.g. P as a L1-ball around y). Since Ds1 ⊆ Ds2 ,
whenever s1 ≥ s2, there exists an ǫ > 0, such that {a1, . . . , aM} ⊆ Ds for all

t < s ≤ t+ ǫ. Because each Ds is convex, it follows that P ⊆ Ds, and thus y ∈ D◦
s

for all t < s ≤ t+ ǫ, which implies (3.13).

Fix now x ∈ D and let (tn, yn)n∈N be a sequence converging to (t∗, y∗) ∈ E◦. By

definition of E◦, we have that y∗ ∈ D◦
t∗+, and by (3.13) there exists an ǫ > 0

such that y∗ ∈ D◦
t∗+ǫ. Clearly we can truncate the sequence (tn, yn)n∈N, such that

tn ≤ t+ ǫ and yn ∈ D◦
t∗+ǫ for all n ∈ N. Now for arbitrary y ∈ D◦

t∗+ǫ, it holds that

sup
tn

Ex
[
e〈y,Xtn 〉1{|Xtn |>r}

]
≤ sup

0≤s≤t+ǫ
Ex
[
e〈y,Xs〉

]
Px (|Xtn | > r) .

The right hand side goes to 0 as r → ∞, due to the stochastic continuity of Xt.

Thus e〈y,Xtn 〉 is uniformly integrable and Ex
[
e〈y,Xtn 〉] → Ex

[
e〈y,Xtn 〉], pointwise

for each y ∈ D◦
t∗+ǫ. On the other hand, y 7→ log Ex

[
e〈y,Xtn 〉] is, for each n ∈ N a

closed convex function on D◦
t∗+ǫ by Proposition B.2. A sequence of closed convex

functions, that converges pointwise on an open set, converges uniformly on each of
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its compact subsets (cf. Appendix A). Thus also Ex
[
e〈yn,Xtn 〉] → Ex

[
e〈y∗,Xt∗ 〉

]

and we have shown that (t, y) 7→ Ptfy(x) is continuous in E◦. The extension to

complex arguments (t, u) ∈ E◦
C follows by dominated convergence and the fact that

Ex
[∣∣e〈u,Xt〉

∣∣] ≤ Ex
[
e〈Reu,Xt〉

]
.

We turn towards assertion (b). To show that Q is open in EC write the com-

plement Qc := EC \ Q of Q as

Qc = {(t, u) ∈ E◦
C : |Psfu(0)| = 0 for some s ∈ [0, t)} .

Note that EC = E◦
C ∪ iRd, but iRd ⊆ Q by the affine property (1.3). Thus Qc ⊆ E◦

C.

But Ptfu(0) is a continuous function for (t, u) ∈ E◦
C. It follows that Qc is a closed

subset of EC, and thus its complement Q open in EC.

For all t ∈ R>0, x, ξ ∈ D, define now the functions

f1(u; t, x, ξ) = Pt fu(x) · Pt fu(ξ) and f2(u; t, x, ξ) = Pt fu(0) · Pt fu(x+ ξ) .

By the affine property (1.3) f1(u; t, x, ξ) = f2(u; t, x, ξ) whenever Reu = 0. More-

over, both functions can be represented as moment generating functions, defined on

(Dt)C. Thus we can apply the extension principle of Proposition 3.11 with S = Dt,
and conclude that f1(u; t, x, ξ) = f2(u; t, x, ξ) for all (t, u) ∈ EC, x, ξ ∈ D.

Suppose now that (t, u) ∈ Q, such that |Ptfu(0)| 6= 0. Then there exists a unique

φ(t, u) such that Ptfu(0) = eφ(t,u). We can define g(x, t, u) = e−φ(t,u)Ptfu(x),

which by the equality of f1(u) and f2(u), the function g(x, t, u) must satisfy the

Cauchy functional equation

g(x, t, u)g(ξ, t, u) = g(x+ ξ, t, u)

for all (t, u) ∈ Q, x, ξ ∈ D. It follows that there exists a unique ψ(t, u) such that

g(x, t, u) = e〈x,ψ(t,u)〉, and we have shown that the decomposition (3.12) holds for

all (t, u) ∈ Q. �

We make the following definition:

Definition 3.14. Let S be a convex subset of Rd, that includes (−∞, 0]m ×
{0}n. A function f : S → R, y 7→ f(y), is said to have Property C9, if for any

yJ ∈ Rd such that (0, yJ ) ∈ S, the function

f∗ : (−∞, 0]m × [0, 1] → R : (yI , λ) 7→ f((yI , λyJ ))

is continuous.

Note that the above definition is indirectly tied to the structure of the state

space D, through the definitions of I and J (cf. Section 1.1). Property C should be

9‘C’ as in continuity
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regarded as a weaker form of continuity: While the dependency of f on the first m

components is truly continuous, the dependency on the last n components is only

‘continuous along line segments’ emanating from the origin.

Lemma 3.15. (a) Let µ(dξ) be a sub-stochastic measure with support D. Define

f(y) =
∫
D
e〈y,ξ〉µ(dξ), and S :=

{
y ∈ Rd : f(y) <∞

}
. Then f : S → R has

property C.

(b) Let µ(dξ) be a sub-stochastic infinitely divisible measure with support Rd, and

with Lévy measure ν. Suppose that ν has support D.

Define f(y) =
∫

Rd e
〈y,ξ〉µ(dξ), and S :=

{
y ∈ Rd : f(y) <∞

}
. Then f : S → R

has property C.

Proof. Define S∗ := (−∞, 0]m × [0, 1]. For assertion (a), we have to show

that for any yJ ∈ Rd such that (0, yJ ) ∈ S, the function

f∗ : S∗ → R, (yI , λ) 7→
∫

exp (〈yI , ξI〉 + λ 〈yJ , ξJ 〉) µ(dξ)

is continuous. But for (yI , λ) ∈ S∗, we can bound the integrand by eλ〈yJ ,ξJ〉.

By Proposition B.4, the function λ 7→
∫

Rd e
λ〈yJ ,ξJ〉 µ(dξ) is continuous on [0, 1];

dominated convergence implies that also f∗ is.

To show assertion (b), note that by the Lévy-Khintchine formula f(y) is of the form

(3.14) f(y) := exp

{
1

2
〈y, ay〉 + 〈b, y〉 − γ +

∫

D

(
e〈ξ,y〉 − 1 − 〈h(ξ), y〉

)
m(dξ)

}
.

Suppose, without loss of generality, that the truncation function h(ξ) is of the form

ξ1{|ξ|≤1}. We can decompose f(y) into the product f(y) = f1(y)f2(y), where

f1(y) = exp

{
1

2
〈y, ay〉 + 〈b, y〉 − γ +

∫

D∩{|ξ|≤1}

(
e〈ξ,y〉 − 1 − 〈h(ξ), y〉

)
m(dξ)

}
,

and

f2(y) = exp

(∫

D∩{|ξ|>1}

(
e〈ξ,y〉 − 1

)
m(dξ)

)
.

By Sato [1999][Lemma 25.6], f1(y) can be extended to an entire function on Cd,

and is thus in particular continuous for y ∈ S. Thus, if f2(y) has property C, also

f(y) has property C. But restricted to {|ξ| > 1}, the Lévy measure m(dξ) is a finite

Borel measure, and we can argue as in case (a) that it has property C. Thus also

f(y) has property C, and assertion (b) is shown. �

The following results parallels Proposition 1.3 from Section 1:

Proposition 3.16. The functions φ and ψ have the following properties:

(i) φ(0, u) = 0 and ψ(0, u) = u for all u ∈ Cd.
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(ii) φ and ψ enjoy the ‘semi-flow property’:

φ(t+ s, u) = φ(s, u) + φ(t, ψ(s, u)),

ψ(t+ s, u) = ψ(t, ψ(s, u)),
(3.15)

for all t, s > 0 with (t+ s, u) ∈ Q.

(iii) φ and ψ are jointly continuous on E◦
C ∩Q.

(iv) Let t ≥ 0. Then the function ψ(t, .) : Dt → R : y → ψ(t, y) has property C

(cf. Definition 3.14).

Proof. Assertion (i) is trivial. For assertion (ii) apply the law of iterated

expectation and the Markov property of (Xt)t≥0:

(3.16) Ex [fu(Xt+s)] = Ex [Ex [fu(Xt+s)| Ft]] = Ex
[
EXt [fu(Xs)]

]
,

where all expectations are finite, since (t+ s, u) ∈ EC. If, in addition (t+ s, u) ∈ Q,

we can use Lemma 3.12 and rewrite (3.16) as

exp (φ(t+ s, u) + 〈x, ψ(t+ s, u)〉) = Ex [exp (φ(s, u) + 〈Xt, ψ(s, u)〉)] =

= exp (φ(s, u) + φ(t, ψ(s, u)) + 〈x, ψ(t, ψ(s, u))〉) ,

yielding equations (3.15). Assertion (iii) follows by combining Lemma 3.12.a and

3.12.b. For assertion (iv) consider the function f : Dt → R : y 7→ Ptfy(x). We can

write f(y) as Ex
[
e〈y,Xt〉

]
=
∫
D
e〈y,ξ〉 µ(x, dξ), where µ(x, dξ) is the transition kernel

of the Markov process (Xt)t≥0. By Lemma 3.15, f(y) has property C. It follows

immediately from the exponentially-affine form (3.12) of f(y) that also ψ(t, .) has

property C. �

The next Lemma establishes the differentiability of φ(t, u) and ψ(t, u) in u:

Lemma 3.17. For all i ∈ {1, . . . , d} the derivatives

∂

∂ui
φ(t, u),

∂

∂ui
ψ(t, u)

exist and are continuous for (t, u) ∈ E◦
C ∩Q.

Proof. Let [0, T ]×KC be a compact subset of E◦
C. By definition of E , clearly

K ⊆ D◦
T . Choose an ǫ > 0 small enough such that an ǫ-enlargement of K is still in

D◦
T . For any x ∈ R and ǫ > 0 it holds that

ǫ|x| ≤ eǫx + e−ǫx

2
,
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such that

(3.17)

∣∣∣∣
∂

∂ui
exp (〈u,Xt〉)

∣∣∣∣ =
∣∣Xi

t

∣∣ · exp (〈Reu,Xt〉) ≤

≤ 1

2ǫ

{
exp

(
〈Reu+ ǫei,Xt〉

)
+ exp

(
〈Reu− ǫei,Xt〉

)}
.

Taking expectations, the right side equals f(y, z) := 1
2ǫ

(
Ex
[
e〈y,Xt〉

]
+ Ex

[
e〈z,Xt〉

])
,

evaluated at y = Reu + ǫei and z = Reu + ǫei. But f(y, z) is by Proposition B.4

continuous on D◦
T , and thus bounded on any compact subset. For (t, u) in [0, T ]×KC

it follows that Xi
t exp(〈u,Xt〉 is uniformly integrable , and thus that the derivative

∂
∂ui

Ex
[
e〈u,Xt〉

]
exists and is jointly continuous. Since T and K were arbitrary the

result extends to E◦
C. If in addition (t, u) ∈ Q, then the exponentially-affine form

of Ex
[
e〈u,Xt〉

]
yields the claim for φ(t, u) and ψ(t, u). �

Following an idea from Montgomery and Zippin [1955], that has later been

adapted to semi-flows by Filipović and Teichmann [2003], we can now use the semi-

flow property of ψ(t, u) to transfer the differentiability in the state parameter u to

the semi-group parameter t:

Theorem 3.18. Let (Xt)t≥0 be an analytic affine process. Then (Xt)t≥0 is

regular, the derivatives

F (u) =
∂

∂t
φ(t, u)

∣∣∣∣
t=0+

and R(u) =
∂

∂t
ψ(t, u)

∣∣∣∣
t=0+

exist for all u ∈ DC, and are analytic on D◦
C. Moreover, if (t∗, u) ∈ EC, then for all

t ∈ [0, t∗], φ(t, u) and ψ(t, u) solve the generalized Riccati equations

∂

∂t
φ(t, u) = F (ψ(t, u)), φ(0, u) = 0(3.18a)

∂

∂t
ψ(t, u) = R(ψ(t, u)), ψ(0, u) = u .(3.18b)

If the solution ψ(t, u) stays in D◦
C, it is unique.

Proof of Theorem 3.18, part 1. To show regularity , we can repeat the

proof of Theorem 3.3 almost literally: Again we combine φ(t, u) and ψ(t, u) into

the ‘big semi-flow’ Υ(t, u): We introduce Q̂ := Q × C, D̂ := D × R, and define

Υ : Q̂ → Cd+1 by

(3.19) (t, u1, . . . ud, ud+1) 7→
(

ψ(t, (u1, . . . , ud))

φ(t, (u1, . . . , ud)) + ud+1

)
.

Υ satisfies the semi-flow property Υ(t+s, u) = Υ(t,Υ(s, u)) for all (t+s, u) ∈ Q̂,

and Υ(0, u) = u for all u ∈ D̂C. Moreover, by Lemma 3.17 the Jacobian ∂Υ
∂u (t, u)

exists and is continuous for (t, u) in Ê◦
C ∩ Q̂. Using exactly the same calculations as
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in the proof of Theorem 3.3 we arrive at the equality

(3.20) lim
t↓0

Υ(t, u) − u

t
=

Υ(s, u) − u

s
·M(s, u)−1 ,

valid for all u ∈ D̂◦
C and small enough s, and with M(s, u) := 1

s

∫ s
0
∂Υ
∂u (r, u) dr. As

before, the non-singularity ofM(s, u) is guaranteed by the fact that lims→0M(s, u) =

I (the identity matrix). Moreover, by Lemma 3.17, M(s, u) is continuous on Ê◦
C∩Q̂,

such that also the left hand side of (3.20) is. But s can be chosen arbitrarily small,

and it follows that the derivatives

(3.21) F (u) :=
∂

∂t
φ(t, u)

∣∣∣∣
t=0

, R(u) :=
∂

∂t
ψ(t, u)

∣∣∣∣
t=0

exist for all u ∈ D◦
C and are continuous functions there. It remains to show that

(3.21) is also valid for all u ∈ DC. Let u ∈ D◦
C, tn ↓ 0, x ∈ D, and rewrite (3.21) as

(3.22) F (u) + 〈x,R(u)〉 = lim
n→∞

exp (φ(tn, u) + 〈x, ψ(tn, u) − u〉) − 1

tn
=

= lim
n→∞

f−u(x)Ptnfy(x) − 1

tn
= lim
n→∞

1

tn

{∫

D−x
e〈x,u〉 p̃t(x, dξ) − 1

}
,

where p̃t(x, dξ) is the ‘shifted transition kernel’ of the Markov process (Xt)t≥0 (see

Page 22f for details). The right hand side of (3.22) can be regarded as a limit

of (extended) cumulant generating functions of (infinitely divisible) sub-stochastic

measures. That is, there exist infinitely divisible measures µn(x, dξ), with Lévy

measures νn(x, dξ) supported on D − x, such that

(3.23) exp (F (u) + 〈x,R(u)〉) = lim
n→∞

∫

Rd

e〈u,ξ〉 µn(x, dξ), for all u ∈ D◦
C.

Let now θ ∈ D◦, and consider the exponentially tilted measures µ̃n(x, dξ) =

e〈θ,ξ〉 µn(x, dξ). They are also infinitely divisible, and their characteristic func-

tions converge to exp (F (u+ θ) + 〈x,R(u+ θ)〉), a function that is continuous in

a neighborhood of 0. Thus, by Lévy’s continuity theorem and Sato [1999, Theo-

rem 8.7], there exists an infinitely divisible sub-stochastic measure µ̃(x, dξ) with

Lévy measure supported on D − x, such that µ̃n(x, dξ) → µ̃(x, dξ) weakly. On the

other hand, µn(x, dξ) has a vaguely convergent subsequence, which converges to

some measure µ(x, dξ) on D. By the uniqueness of the weak limit we conclude that

µ(x, dξ) = e〈−θ,ξ〉µ̃(x, dξ). Again, also µ(x, dξ) must be infinitely divisible, with

Lévy measure supported on D−x. Summing up, we have shown that we can write

for any x ∈ D, and u ∈ D◦
C,

(3.24) exp (F (u) + 〈x,R(u)〉) =

∫

Rd

e〈u,ξ〉 µ(x, dξ) ,

where µ(x, dξ) is an infinitely divisible measure, with Lévy measure supported on

D − x. Clearly, the right hand side of (3.24) makes also sense for u ∈ DC, such
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that we can use (3.24) to extend the functions F (u) and R(u) from D◦
C to DC.

We have to show, however, that (3.21) remains valid, for the extended functions

F and R. Note that it follows from (3.24) and Lemma 3.15 that the extended

functions F (y) and R(y), as functions of a real parameter y ∈ D, satisfy Property

C (cf. Definition 3.14). Let now yJ ∈ Rn be fixed, such that (0, yJ ) ∈ D, let

(ykI )k∈N ∈ (−∞, 0)m be a sequence converging to 0, and let λk → 0 be a sequence

with values in [0, 1]. Writing yk = (ykI , λkyJ), it holds that

(3.25)

∫ t

0

R(ψ(s, 0)) ds =

∫ t

0

R( lim
k→∞

ψ(s, yk)) ds =

=

∫ t

0

R
(

lim
k→∞

(ψI(s, y
k), λke

βsyJ)
)
ds = lim

k→∞

∫ t

0

R
(
ψI(s, y

k), λke
βsyJ

)
ds =

= lim
k→∞

∫ t

0

∂

∂s
ψ(s, yk) ds = lim

k→∞
ψ(t, yk) = ψ(t, 0) ,

where we have used the continuity of R(y) along the sequence (ψI(t, y
k), λke

βtyJ).

Differentiating (3.25) on both sides with respect to t shows now that ∂
∂tψ(t, 0)

∣∣
t=0

is well-defined and equals R(0). A similar argument applied to φ, shows that also
∂
∂tφ(t, 0)

∣∣
t=0

exists and equals F (0). Thus (3.21) holds also at u = 0. Running

through the chain of equations (3.22) then shows that (3.23) remains valid for u = 0,

and thus that the measures µn(x, dξ) converge weakly to µ(x, dξ). Dominated

convergence then allows us to extend (3.23) to all u ∈ U , showing that (Xt)t≥0 is

regular. �

Lemma 3.19. It holds that Q = E. In particular the decomposition (3.12) is

valid for all (t, u) ∈ E.

Proof. By Duffie et al. [2003, Section 7] the law of a regular affine process

is infinitely divisible for every t ∈ R>0 under all Px (x ∈ D). But the extended

moment generating function of an infinitely divisible distribution has no zeroes by

Lemma C.3. It follows that Ptfu(0) 6= 0 for all (t, u) ∈ E and thus that Q = E . �

Having obtained the differentiability of φ(t, u) and ψ(t, u) at zero, we can extend

the generalized Riccati equations to E :

Proof of Theorem 3.18, part 2. Using Lemma 3.19, the Riccati equations

can be derived by differentiating the semi-flow equations (3.15). The representation

(3.24), together with Proposition B.4, shows that F (u) and R(u) are analytic in

D◦
0 . Standard results for complex ODEs (cf. Walter [1996]) then yield the assertion

on uniqueness of the Riccati solutions. �

Proposition 3.20. Suppose (Xt)t≥0 is analytic affine with real domain D.

(a) If 0 ∈ D◦ and F (0) = R(0) = 0, then (Xt)t≥0 is conservative.
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(b) Let i ∈ {1, . . . , d} and suppose that (Xt)t≥0 is conservative. If ei ∈ D◦, and

F (ei) = R(ei) = 0, then (exp(Xi
t))t≥0 is a Px-martingale for all x ∈ D.

Proof. Since 0 ∈ D◦ and F (0) = R(0) = 0, the generalized Riccati equations

(3.18) evaluated for u = 0 have the unique solutions φ(t, 0) = ψ(t, 0) = 0. Thus

Px [Xt ∈ D] = Ex
[
e〈0,Xt〉

]
= exp (φ(t, 0) + 〈x, ψ(t, 0)〉) = 1 ,

for all t ≥ 0, showing that (Xt)t≥0 is conservative.

Similarly, for ei ∈ D◦ and F (ei) = R(ei) = 0, the generalized Riccati equations

(3.18) evaluated for u = ei have the unique solutions φ(t, ei) = 0, ψ(t, ei) = ei.

Thus, for t, h ≥ 0

Ex
[
exp

(
Xi
t+h

)∣∣Ft
]

= exp (φ(h, ei) + 〈Xt, ψ(h, ei)〉) = exp(Xi
t) ,

showing that (exp(Xi
t))t≥0 is a Px-martingale for all x ∈ D. �
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4. Elementary operations on affine processes

The goal of this section is to develop a ‘calculus for affine processes’, by which we

understand a collection of theorems that turn operations on regular affine processes

into simple transformations of its functional characteristics F (u) and R(u). Many

of the presented results could be derived as special cases of theorems that hold in

a more general setting (e.g. for semi-martingales). However, concentrating on the

class of affine processes we are able to give considerably simpler, and in many cases

truly ‘elementary’ proofs of the results. Contrary to the preceding sections, where

the filtration on the underlying space Ω played only a minor role, it will appear more

prominently in the subsequent results, and may in particular be different from the

natural filtration. We will also relax the notational conventions from the preceding

chapters in the following way:

(1) We do not require anymore that the state space D of an affine process is

of the canonical form Rm>0 × Rn, but rather it can be any permutation of

components such as for example R>0 × Rn × R
(m−1)
>0 .

(2) We will sometimes use superscripts instead of subscripts to denote pro-

jection (e.g. XK
t instead of (Xt)K).

4.1. Preliminary Results. The following proposition is a slight modification

of Definition 1.1. The crucial part is that the Markov property of (Xt)t≥0 is not

assumed, but rather a consequence of the other assumptions that are made:

Proposition 4.1. Let (Xt)t≥0 be an adapted process on a filtered space (Ω,Ft),
taking values in D = Rm>0 × Rn. Let (Px)x∈D be a family of probability measures

on Ω, and suppose that (Xt)t≥0 is Px-stochastically continuous10 for all x ∈ D.

Suppose furthermore that there exist functions φ(t, u) and ψ(t, u), such that for

each (t, u) ∈ R>0 × U◦, h ≥ 0 and x ∈ D

(4.1) Ex
[
e〈u,Xt+h〉

∣∣∣Ft
]

= exp(φ(h, u) + 〈Xt, ψ(h, u)〉 .

Then (Xt)t≥0 is an affine process.

Proof. Comparing the above proposition with the definition of an affine pro-

cess, we see that we have to show that (Xt,P
x)t≥0,x∈D is a Markov process, and

that (4.1) can be extended from u ∈ U◦ to U . Consider first (4.1), with t = 0. By

dominated convergence, the left hand side is well-defined and continuous on u ∈ U
for every x ∈ D, h > 0. Thus also the functions φ(h, u) and ψ(h, u) have continuous

extensions from U◦ to U , such that (4.1) holds. Let us denote these extensions also

by φ and ψ respectively.

10Of course we also assume that X0 = x, Px-almost surely, for all x ∈ D.
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Clearly, (4.1) is equivalent to

(4.2) Ex [fu(Xt+h)| Ft] = EXt [fu(Xh)] ,

for all u ∈ U , which in turn is equivalent to

(4.3) Ex [fu(Xt+h)1A] = Ex
[
EXt [fu(Xh)]1A

]
,

for all u ∈ U and A ∈ Ft. To show the Markov property of (Xt)t≥0, it suffices to

show that (4.3) holds with fu replaced by any bounded, Borel-function f .

We will need that for any r′ > 0 it holds that

(4.4) lim
r→∞

sup
|x|≤r′

Ex [|Xh| > r] = 0 .

Denoting the law of Xh under Px by µh,x(dξ) this assertion is equivalent to the

tightness of the family (µh,x(dξ))|x|≤r′ . By Kallenberg [1997, Lemma 5.2], a fam-

ily of measures is tight if and only if the family of their characteristic functions

is equi-continuous at zero. But obviously sup|x|≤r′ exp (φ(h, u) + 〈x, ψ(h, u)〉) is a

continuous function for u ∈ U , and thus the family (µt,x(dξ))|x|≤r′ is tight.

We continue with a standard approximation argument taken from Kallenberg [1997,

Theorem 5.3]: Define Θ := {fu : u ∈ U}, and let L(Θ) be the set of all (complex)

linear combinations of elements of Θ. Let g be a continuous function on D, bounded

by ‖g‖∞ = m. Hold h, t ≥ 0 and x ∈ D fixed and let ǫ > 0. Choose r′ such that

Px (|Xt| > r′) < ǫ and Px (|Xt+h| > r′) < ǫ. By (4.4) we can also find r > 0 such

that sup|x|<r′ Px (|Xh| > r) < ǫ, and assume without loss of generality that r ≥ r′.

Denote by gr the restriction of g to {x ∈ D : |x| ≤ r}, and extend gr to a continu-

ous function g̃ on D with ‖g‖∞ ≤ m and period 2πr in each coordinate. The set

L(Θ) contains in particular all linear combinations of the functions sin(kx/r) and

cos(kx/r) with k ∈ Z. As a well-known consequence of the Weierstrass approxima-

tion theorem these functions approximate g̃ uniformly, i.e. we can find h ∈ L(Θ)

such that ‖g̃ − h‖∞ ≤ ǫ. Thus we have that

∣∣Ex [g(Xt+h)1A] − Ex
[
EXt [g(Xh)]1A

]∣∣ ≤
≤ Ex [|g(Xt+h) − h(Xt+h)|1A] + Ex

[
EXt [|g(Xh) − h(Xh)|]1A

]
≤

≤ Px [|Xt+h| > r] 2m+ ǫ+ Px [|Xt| > r] 2m+ sup
|x|≤r

Px [|Xh| > r] 2m+ ǫ ≤

≤ (6m+ 2)ǫ .

Since ǫ was arbitrary, this shows that (4.3) holds with fu replaced by any bounded

continuous function g. Pointwise monotone approximation extends the assertion to

all bounded Borel functions. �
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We present some basic results on the generalized Riccati equations that will

be needed. The first three results can be found, along with their proofs, in Duffie

et al. [2003, Section 6].

Lemma 4.2. Let ψ(t, u) be a solution of the generalized Riccati equation (2.2b),

and let i ∈ I. Then there exists a constant Ci, independent of (t, u), such that

Reψi(t, u) ≤ gi(t, u), for all t ≥ 0,

where gi(t, u) is the solution of

(4.5)
∂

∂t
gi(t, u) = Ci

(
g2
i − gi

)
, gi(0, u) = Reui .

Lemma 4.3. Let ψ(t, u) be a solution of the generalized Riccati equation (2.2b).

Then there exists a constant C, such that

(4.6)

|ψI(t, u)|2 ≤
(
|uI |2 + C

∫ t

0

(
1 +

∣∣eβsuJ
∣∣2
)
ds

)
· exp

(
C

∫ t

0

(
1 +

∣∣eβsuJ
∣∣2
)
ds

)
.

Lemma 4.4. For each u ∈ U◦, there exists a unique solution (φ(t, u), ψ(t, u))

of the generalized Riccati equation (2.2).

Definition 4.5. A function f : S ⊆ Rm → Rm is called quasimonotone

increasing, if

y, z ∈ S; y ≤ z; and yi = zi implies fi(y) ≤ fi(z) .

Lemma 4.6. Let (Xt)t≥0 be analytic affine with real domain D. For yJ fixed, the

function yI 7→ RI(yI , yj) is quasimonotone increasing on {yI ∈ Rm : (yI , yJ ) ∈ D}.

Proof. Taking into account the admissibility conditions, we can writeRi(yI , yJ )

– with i ∈ I – as

Ri(yI , yJ ) =
1

2
y2
i α

i
ii + yi

〈
αiiJ , yJ

〉
+

1

2

〈
yJ , α

i
JJyJ

〉
+

+ yiβ
i
i +

〈
βiI\{i}, yI\{i}

〉
− γi+

+

∫

D


e〈ξ,y〉 − 1 −

∑

k∈J∪{i}

ξk
1 + ξ2k

yk


 µi(dξ) .

Assume now that y ≤ z with yi = zi. It follows that

Ri(zI , yJ ) −Ri(yI , yJ ) =
〈
βiI\{i},

(
zI\{i} − yI\{i}

)〉
+

+

∫

D

e〈ξ,y〉
(
exp

(〈
ξI\{i}, zI\{i} − yI\{i}

〉)
− 1
)
µi(dξ) .

Since βiI\{i} ≥ 0 it follows that yI 7→ RI(yI , yJ ) is quasimonotone increasing. �
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4.2. Projection and independent products. A very simple operation is

to form the cartesian product of two independent affine processes. It is not too sur-

prising that the resulting process is again an affine process, and also that regularity

is preserved:

Proposition 4.7. Let (Xt,P
x)(t≥0,x∈DX) and (Yt,P

y)(t≥0,y∈DY ) be two inde-

pendent affine processes with state spaces DX and DY respectively, defined on a

(common) filtered space (Ω,Ft). Setting P(x,y) := Px⊗Py, it holds that (Xt, Yt)t≥0

is an affine process on (Ω,Ft) taking values in D := DX ×DY , with respect to the

probability measures
(
P(x,y)

)
(x,y)∈D.

If (Xt)t≥0 and (Yt)t≥0 are regular with functional characteristics (FX(u), RX(u))

and (FY (w), RY (w)) respectively, then also (Xt, Yt)t≥0 is regular, with functional

characteristics

(4.7) F̃ (u,w) = FX(u) + FY (w), R̃(u,w) =

(
RX(u)

RY (w)

)
.

If DX and DY are the real domains of (Xt)t≥0 and (Yt)t≥0 respectively, then DX ×
DY is the real domain of the combined process.

Proof. For all (u,w) ∈ UX × UY and t, h ∈ R>0, it holds that

(4.8) E(x,y)
[
f(u,w)(Xt+h, Yt+h)

∣∣Ft
]

= E(x,y) [fu(Xt+h) · fw(Yt+h)| Ft] =

= Ex [fu(Xt+h)| Ft] · Ey [fw(Yt+h)| Ft] =

= exp (φX(h, u) + φY (h,w) + 〈Xt, ψX(h, u)〉 + 〈Yt, ψY (h, u)〉) .

By proposition 4.1 we conclude that (Xt, Yt)t≥0 is an affine process on DX ×DY

with respect to P(x,y). Clearly regularity of Xt and Yt is preserved, and (4.7) follows

by differentiation of (4.8). The real domain DX ×DY of the combined process, can

be derived directly from definition 3.7, using the independence of Xt and Yt. �

Another simple operation on an affine process is to restrict and project it onto

a subspace of its state-space. We will only be interested in the case where the

resulting process is again an affine process (and in particular Markovian in its own

filtration). We are given an affine process (Xt,P
x)t≥0,x∈D with state space D,

and some subset of components K ⊂ {1, . . . , d}. We set PxK = P(xK ,0) and call

(XK
t ,P

xK )t≥0,xK∈DK
the projection of (Xt)t≥0 onto K. The following results

gives conditions under which the affine property is preserved:

Proposition 4.8. Let (Xt,P
x)t≥0,x∈D be an affine process and K ⊆M . Sup-

pose that either

(a) ψM\K(t, uK , 0) = 0 for all t ≥ 0, uK ∈ U◦
K ,

(b) (Xt)t≥0 is regular, I ⊆ K and RM\K(uK , 0) = 0 for all uK ∈ U◦
K , or
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(c) (Xt)t≥0 is analytic affine, (yK , 0) ∈ D◦, and RM\K(yK , 0) = 0 for all yK ∈ R.

Then (XK
t ,P

xK )t≥0,xK∈DK
is an affine process in its own filtration. If (Xt)t≥0 is

regular with functional characteristics (F (u), R(u)), then also (XK
t )t≥0 is regular,

with functional characteristics given by

F̃ (uK) = F (uK , 0), R̃(u) = RK(uK , 0) .

If (Xt)t≥0 is analytic affine, so is (XK
t )t≥0; its real domain is given by DK ={

yk ∈ R|K| : (yK , 0) ∈ D
}
.

Proof. Let FK be the filtration generated by (XK
t )t≥0. The tower law and

the affine property of (Xt)t≥0 yield

ExK

[
exp

(〈
uK ,X

K
t+h

〉)∣∣∣FK
t

]
= ExK

[
E(xK ,0)

[
exp

(〈
uK ,X

K
t+h

〉)∣∣Ft
]∣∣∣FK

t

]
=

Ex
[
exp

(
φ(h, uK , 0) +

〈
XK
t , ψK(h, uK , 0)

〉
+
〈
X
M\K
t , ψM\K(h, uK , 0)

〉)∣∣∣FK
t

]
,

for all t, h ≥ 0 and u ∈ U◦. Consider first case (a): By assumption ψM\K(h, uK , 0) =

0, such that the above equals

Ex
[
exp

(
φ(h, uK , 0) +

〈
XK
t , ψK(h, uK , 0)

〉)∣∣FK
t

]
=

= exp
(
φ(h, uK , 0) +

〈
XK
t , ψK(h, uK , 0)

〉)
,

showing via Proposition 4.1 that XK
t is an affine process in its own filtration.

To show (b), suppose that I ⊆ K, and RM\K(uK , 0) = 0 for all uK ∈ U◦
K . Then

the generalized Riccati equation

∂

∂t
ψM\K(t, uK , 0) = R

(
ψK(t, uK , 0), ψM\K(t, uK , 0)

)
, ψM\K(0, uK , 0) = 0

is solved by the zero-solution ψ̃(M\K)(t, uK , 0) ≡ 0. The condition I ⊆ K guaran-

tees that (uK , 0) ∈ U◦, such that the solution is unique. Thus ψ = ψ̃ = 0 and the

assertion follows as in case (a).

Case (c) can be shown as case (b); only the uniqueness result for the Riccati equa-

tion has to be substituted by Theorem 3.18. The real domain of (XK
t )t≥0 can be

calculated directly from Definition 3.7, using the sets

DK
t =

{
yK ∈ R|K| : Ex

[
e〈XK

t ,yK〉
]
<∞ ∀x ∈ D

}
=
{
yK ∈ R|K| : (yK , 0) ∈ Dt

}
.

�

Corollary 4.9 (‘Embedded CBI-process’). Let (Xt)t≥0 be an affine process.

Then its non-negative component (XI
t )t≥0 is a regular affine process (equivalently,

a CBI-process) in its own filtration.

Proof. We apply Proposition 4.8.a with K = I (implying that M \ I = J).

From Proposition 1.9, we know that ψJ(t, uI , 0) = eβt ·0 = 0 for any uI ∈ UI . Thus
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(XI
t ,P

xI )t≥0 is a non-negative process in its own filtration. By Theorem 3.3 it is

also regular affine. A non-negative regular affine process is also called a CBI-process

(continuously branching with immigration, cf. Kawazu and Watanabe [1971]). �

4.3. Time-integration and the Feynman-Kac formula. It is more inter-

esting to extend the state space by adding components that are not independent of

the original process. In some important cases the resulting process will still be an

affine process. The first such method is to take an affine process (Xt)t≥0 and to

form its time integral Yt :=
∫ t
0
Xs ds. Note that the integral is well-defined path-

by-path, if we work with a cadlag version of the process (Xt)t≥0 (which exists by

Corollary 1.12). We now consider the joint process (Xt, Yt)t≥0 under the family of

measures P(x,0) = Px, and extend to P(x,y) in the following way: For each y ∈ D,

let θy be the ‘space-shift’ operator, that maps a stochastic process Yt to its shifted

version y + Yt. We define P(x,y) = Px ◦ θ−1
y .

Theorem 4.10. Let (Xt,P
x)t≥0,x∈D be a cadlag version of a regular affine

process on D with functional characteristics (F,R). Define Yt =
∫ t
0
Xs ds, and

P(x,y) = Px ◦ θ−1
y . Then (Xt, Yt)t≥0 is a regular affine process on D2 under P(x,y).

Its functional characteristics (F̃ , R̃) are given by

F̃ (uX , uY ) = F (uX), R̃(uX , uY ) =

(
R(uX) + uY

0

)
.

The real domain of (Xt, Yt)t≥0 is given by D × Rd; if (Xt)t≥0 is analytic affine,

then so is (Xt, Yt)t≥0.

It would likely be possible to approach this result through general semigroup

theory and to use Trotter’s product formula (see e.g. Ethier and Kurtz [1986,

Corollary 6.7]) which characterizes the semigroup arising from adding the gener-

ators of two strongly continuous contraction semigroups. In the case of a regular

affine process, however, there is an elementary and more direct proof of the above

Theorem, which we state below:

Proof. We want to calculate the conditional moment generating function

(4.9) E(x,y) [ exp (uXt+s + wYt+s)| Ft] =

= exp

(
w

(
y +

∫ t

0

Xr dr

))
Ex
[
exp

(
uXt+s + w

∫ t+s

t

Xr dr

)∣∣∣∣Ft
]
,

for (u,w) ∈ (U◦)2. For each N ∈ N and k ∈ {0, . . . , N}, define sNk = k
N s, such that

sN0 , . . . , s
N
N , is an equispaced partition of [0, s] into intervals of length h := s/N . In

the following we simplify notation in the following way: sk stands for sNk and wY

denotes 〈w, Y 〉. By writing the time-integral as a limit of Riemann sums, and using
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dominated convergence we have that

Ex
[
exp

(
uXt+s + w

∫ t+s

t

Xr dr

)∣∣∣∣Ft
]

= lim
N→∞

Ex

[
exp

(
uXt+s + wh

N∑

k=0

Xt+sk

)∣∣∣∣∣Ft
]
.

With the shorthand ΣN :=
∑N
k=0Xt+sk

, and using the tower law as well as the

affine property of (Xt)t≥0, the expectation on the right side can be written as

(4.10) Ex [ exp(uXt+s + whΣN )| Ft] =

Ex
[

exp (whΣN−1) · Ex
[
exp (uXt+s + whXt+s)| Ft+sN−1

]∣∣∣Ft
]

=

exp (φ(h, u+ wh)) Ex
[
exp(whΣN−1 + ψ(h, u+ wh)Xt+sN−1

)
∣∣Ft
]
.

Applying the tower law (N − 1)-times in this manner (and conditioning on

Ft+sN−1
,Ft+sN−1

, . . . ,Ft+s1 respectively) we arrive at the equation

Ex

[
exp

(
uXt+s + wh

N∑

k=0

Xt+sk

)∣∣∣∣∣Ft
]

= exp (p̂N (s, u, w) + 〈Xt, q̂N (s, u, w)〉) ,

where the quantities p̂N (s, u, w) and q̂N (s, u, w) are defined through the following

recursion:

p̂0(s, u, w) = 0, p̂k+1(s, u, w) = φ(h, q̂k(s, u, w)) + p̂k(s, u, w) ,(4.11a)

q̂0(s, u, w) = u, q̂k+1(s, u, w) = ψ(h, q̂k(s, u, w)) + wh ,(4.11b)

for all k ∈ {0, . . . , N − 1}. We claim that this recursion is in fact an Euler-like

approximation scheme, which – as N tends to infinity – converges to the solutions

p(s, u, w) and q(s, u, w) of the generalized Riccati equations

∂

∂t
p(t, u, w) = F (q(t, u, w)) p(0, u, w) = 0 ,(4.12a)

∂

∂t
q(t, u, w) = R (q(t, u, w)) + w q(0, u, w) = u .(4.12b)

First, note that φ(t, u) and ψ(t, u) are, by regularity of (Xt)t≥0 differentiable in t,

with the derivatives at t = 0 given by F (u) and R(u) respectively. Thus φ and ψ

admit the expansions

φ(h, u) = h · F (u) + o(h) and ψ(h, u) = u+ h ·R(u) + o(h) .

Inserting into the recursion (4.11), we obtain

p̂k+1(s, u, w) = p̂k + h · F (qk) + o(h)(4.13a)

q̂k+1(s, u, w) = q̂k + h · (R(q̂k) + w) + o(h) .(4.13b)

At first sight, this is an Euler-type approximation to the ODE (4.12). However,

standard proofs of convergence can not be directly applied, since F and R are not
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globally Lipschitz, and thus there is no obvious way to control the o(h) terms uni-

formly for all k ∈ {0, . . . , N}. Nevertheless, we shall show convergence by a more

elaborate argument. We modify notation a bit and subsequently write q̂(k) for

q̂k(s, u, w). This allows us to use subscripts to denote components, i.e. q̂(k) de-

composes into (q̂I(k), q̂J (k)) corresponding to the non-negative and the real-valued

part of the state space respectively. By the admissibility conditions (cf. Defini-

tion 2.3) we know that RJ(u) is of the form RJ(u) = βuJ , where β is a real n× n

matrix. The function RJ(u) satisfies a global Lipschitz condition on U◦, such that

the convergence of q̂J (N) to qJ(s, u, w) as N → ∞ follows by standard results

(see e.g. Hairer, Nørsett, and Wanner [1987]). We thus turn our attention to the

more delicate case of q̂I . In showing convergence we follow approach (a) outlined in

Hairer et al. [1987, Section II.3]: First estimate the ‘local error’, i.e. the difference

between approximation and exact solution incurred in a single step of the recursion

(4.11). Then estimate the ‘transported error’, i.e. the local error transported along

the exact solution of (4.12) to the terminal time s. Finally the global error of the

approximation will be bounded by the transported errors summed up over all time

steps.

We start with some estimates that make sure that all ‘relevant quantities’,

remain inside some compact subset K of U◦. Apart from the approximations q̂(k),

these relevant quantities also include the terms q(N−k, q̂(k), w), i.e. exact solutions

of (4.12), started at an intermediate approximation q̂(k); such terms are needed to

estimate the transported errors. On any compact subset K of U◦, F and R are in

fact Lipschitz, say with Lipschitz constant LK . Let i ∈ I. By Lemma 4.2 we can

find a function gi(t, ui) such that Reψi(t, u) ≤ gi(t,Reui) for all u ∈ U◦ and t ≥ 0.

Thus

(4.14) Re q̂i(k + 1) ≤ gi(h,Re q̂i(k)) + hRew ≤ gi(h,Re q̂i(k)) .

By Lemma 4.2 gi(t+ s, ui) = gi(t, gi(s, ui)); applying (4.14) recursively, we obtain

(4.15) Re q̂i(k) ≤ gi(kh,Reui) < 0 .

From the differential equation (4.12) we also obtain that Re qi(t, u, w) ≤ Reψi(t, u) ≤
gi(t,Reui), and thus

(4.16) Re qi

(
(N − k)h, q̂(k), w

)
≤ gi(s,Reui) < 0 .

Next we derive an upper bound for |q̂I(k)|2: First note that |q̂J(k)|2 remains uni-

formly bounded for all k ∈ N, say by a constant K ≥ 0, since q̂J is a convergent ap-

proximation of the continuous function ψJ(s, u). WritingMh := C
∫ h
0

(
1 + eβsK ds

)
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we obtain from Lemma 4.3 the estimate

|q̂I(k)|2 ≤
(
|q̂I(k − 1)|2 +Mh

)
eMh + |w|2h2 .

Applying the estimate recursively, we end up with

(4.17) |q̂I(k)|2 ≤
(
|uI |2 + kMh

)
ekMh + |w|2h2 e

kMh − 1

eMh − 1
.

Letting h → 0 we have that NMh → (1 + K). Similarly de L’Hospital’s rule

implies that h
eMh−1

→ 1
1+K , and thus that (4.17) can be bounded by a constant.

We may now conclude from (4.16) and (4.17) that the quantities q̂(k), as well as

q
(
(N − k)h, q̂(k), w

)
remain for all k ∈ {1, . . . , N} inside some compact subset K

of U◦.

We can now estimate the local error incurred in the j-th step of (4.11), using a

Taylor expansion in h:

(4.18) |e(k)| = |q̂I(k) − q(h, q̂(k − 1), w)| ≤ hD(h, q̂(k − 1))

where

(4.19) D(h, q̂(k − 1)) = sup
ξ∈(0,h)

|RI(ψ(ξ, q̂(k − 1))) −RI(q(ξ, q̂(k − 1), w))| .

Writing q̃(k) := q(h, q̂(k − 1), w), and using a standard ODE estimate (cf. Hairer

et al. [1987, Thm I.10.2]) the transported error E(k) can be bounded by

(4.20)

|E(k)| =
∣∣∣q
(
(N − k)h, q̃(k), w

)
− q
(
(N − k)h, q̂(k), w

)∣∣∣ ≤ e(N−k)hLK |e(k)| ,

where LK is the Lipschitz constant of R on K. Finally the global error E satisfies

|E| ≤
N∑

k=1

|E(k)| ≤ esLh

N∑

k=1

D(h, q̂(k − 1), w) ≤ hNesL sup
u∈K

D(h, u) .

which converges to

sesL lim
h→0

sup
u∈K

D(h, u) as N → ∞ .

To show that E → 0 as h→ 0, we conclude with a compactness argument: D(h, u) is

by Proposition 1.3 a jointly continuous function on R>0×U , that satisfies D(0, u) =

0. Thus for each ǫ > 0 and u ∈ K there exists hu > 0 and a neighborhood

Nu of u such that D(ξ, w) < ǫ for all (ξ, w) ∈ [0, hu] × Nu. But K is compact

such that the open cover (Nu)u∈K has a finite subcover Nu1
, . . . , NuM

. Setting

h∗ := min {hu1
, . . . , huM

} it holds that supu∈K D(ξ, u) < ǫ for all ξ < h∗. Since ǫ

was arbitrary, the global error E goes to 0 as N → ∞. �

By combining Theorems 3.18 and 4.10, we obtain the following Corollary:



54 Affine Processes

Corollary 4.11 (Feynman-Kac formula for affine processes). Let (Xt)t≥0 be

an analytic affine process with real domain D. Let t, h ∈ R>0, and u,w ∈ C with

Reu ∈ D. Suppose that there exist unique solutions, up to time h, to the generalized

Riccati equations

∂

∂t
φ̃(t, u, w) = F (ψ̃(t, u, w)), φ̃(0, u, w) = 0

∂

∂t
ψ̃(t, u, w) = R(ψ̃(t, u, w)) + w, ψ̃(0, u, w) = u .

Then

Ex

[
exp

(
〈u,Xt+h〉 +

〈
w,

∫ t+h

t

Xs ds

〉)∣∣∣∣∣Ft
]

= exp
(
φ̃(h, u, w) +

〈
Xt, ψ̃(h, u, w)

〉)
.

Remark 4.12. If Reu ∈ D◦, then uniqueness does not have to be required;

rather it follows from Theorem 3.18.

Remark 4.13. The above result is stronger than the general Feynman-Kac

formula for Feller processes (cf. Rogers and Williams [1994, III.19]), since there is

no requirement on
〈
w,
∫ t+h
t

Xs ds
〉

being bounded from below.

4.4. Exponential Tilting.

Theorem 4.14. Let (Xt,P
x)t≥0,x∈D be an analytic affine process with func-

tional characteristics (F (u), R(u)), defined on the filtered space (Ω,F), where Ω =

D(R>0,D) is the space of cadlag paths equipped with the Skorohod topology, and F
is a right-continuous, (Px)x∈D-complete filtration11.

Let θ be in D◦. Then there exist measures Qx ∼ Px, for each x ∈ D, such that

(Xt,Q
x)t≥0,x∈D is an analytic affine process with characteristics

F̃ (u) = F (u+ θ) − F (θ), R̃(u) = R(u+ θ) −R(θ) ,

and real domain D − θ. Moreover for every t ∈ R>0, x ∈ D, and A ∈ Ft, it holds

that

EQx [A] = EPx [AMx
t ] , where

Mx
t = exp

(
〈θ,Xt − x〉 − tF (θ) −

〈
R(θ),

∫ t

0

Xs ds

〉)
,

and Mx
t is a Px-martingale.

Following Palmowski and Rolski [2000], an exponential change of measure of

the type seen above can be achieved for a general Markov process Xt with generator

11Note that by Corollary 1.12, every affine process has a version with cadlag paths, such that this

assumption is not a big restriction. For completing a filtration with respect to the family (Px)x∈D

of probability measures, see Revuz and Yor [1999, Section III.2].
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A, by setting

Mt =
h(Xt)

h(X0)
exp

(
−
∫ t

0

(Ah)(Xs)

h(Xs)
ds

)
,

for some non-vanishing function h in the domain of A. Our theorem thus can be

seen as the special case that (Xt)t≥0 is regular affine, and h = fθ. Similar results

for affine processes have also been obtained by Kallsen and Muhle-Karbe [2008],

using semi-martingale methods. Our proof is original, in the sense that it does not

use semi-martingale theory, and follows without much additional effort from the

time-integration result Theorem 4.10.

Proof. We start by showing that Mx
t is a Px-martingale. Let Yt =

∫ t
0
Xs ds.

By Theorem 4.10, we know that (Xt, Yt) is an affine process, and we have that

(4.21) EPx [ exp (〈θ,Xt+h〉 + 〈w, Yt+h〉)| Ft] =

= exp (p(h, θ, w) + 〈Xt, q(h, θ, w)〉 + 〈Yt, w〉) ,

where p, q satisfy the generalized Riccati equations

∂

∂t
p(t, θ, w) = F (q(t, θ, w)), p(0, θ, w) = 0(4.22a)

∂

∂t
q(t, θ, w) = R(q(t, θ, w)) + w, q(0, θ, w) = θ(4.22b)

The key to create a martingale out of the process (Xt, Yt) is to find a w, such that the

second Riccati equation has a constant solution. The obvious choice is w = −R(θ),

for which we obtain the solutions q(t, θ,−R(θ)) = θ and p(t, θ,−R(θ)) = tF (θ).

Since θ ∈ U◦ the solution is unique. Inserting into (4.21), and multiplying both

sides by e−(t+h)F (θ)−〈θ,x〉, we see that

EPx [ exp (〈θ,Xt+h − x〉 − (t+ h)F (θ) − 〈R(θ), Yt+h〉)| Ft] =

= exp (〈θ,Xt − x〉 − tF (θ) − 〈R(θ), Yt〉) .

But the left hand side is just E[Mx
t+h|Ft] and the right hand side Mx

t , such that

Mx
t is a martingale.

The martingale property of Mx
t , together with the fact that EPx

[Mx
t ] = 1, and

Mx
t > 0 (Px-a.s.) allows us to apply an extension of Kolmogorov’s Existence The-

orem12 (see Kallenberg [1997, Lemma 18.18]), which guarantees the existence of

measures Qx ∼ Px with the property that EQx [A] = EPx [AMx
t ] for all A ∈ Ft. It

remains to show that (Xt,Q
x)t≥0,x∈D is an affine process with the characteristics

F̃ (u) = F (u+ θ) − F (θ) and R̃(u) = R(u+ θ) −R(θ):

12At this point the assumption that (Xt)t≥0 is defined on Skorohod space equipped with a right-
continuous, complete filtration is needed.
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Similar as in (4.21), we have that

EQx

[
e〈u,Xt+h〉

∣∣∣Ft
]

= EPx

[
e〈u,Xt+h〉M

x
t+h

Mx
t

∣∣∣∣Ft
]

= EPx

[
e〈u,Xt+h〉Mx

t+h

∣∣∣Ft
] 1

Mx
t

= EPx [ exp (〈θ + u,Xt+h〉 − 〈θ, x〉 − (t+ h)F (θ) − 〈R(θ), Yt+h〉)| Ft]
1

Mx
t

=

= EPx [ exp (〈θ + u,Xt+h〉 − 〈R(θ), Yt+h − Yt〉)| Ft] exp (−hF (θ) − 〈θ,Xt〉) =

= exp (p(h, θ + u,−R(θ)) − hF (θ) + 〈q(t, θ + u,−R(θ)) − θ,Xt〉) =

= exp
(
φ̃(t, u) +

〈
ψ̃(t, u),Xt

〉)
,

where we have set φ̃(t, u) = p(t, θ + u,−R(θ)) − hF (θ) and ψ̃(t, u) = q(t, θ +

u,−R(θ)) − θ. Comparing with (4.22), we see that φ̃(t, u) and ψ̃(t, u) satisfy

∂

∂t
φ̃(t, u) = F (ψ̃(t, u) + θ) − F (θ), φ̃(0, u) = 0(4.23a)

∂

∂t
ψ̃(t, u) = R(ψ̃(t, u) + θ) −R(θ), φ̃(0, u) = u ,(4.23b)

and the proof is completed. �

4.5. Subordination. The last operation we consider is the subordination of

a Lévy process (Lt)t≥0 by a component of an independent affine process (Xt)t≥0.

For better readability we write the Lévy process as L(t)t≥0. The component Xi
t of

the affine process acts as a time-change for the Lévy process, and the subordinated

process is defined as L(Xi
t)t≥0. For this operation to make sense, the component

Xi
t of the affine process has to be non-decreasing almost surely. We give a sufficient

condition:

Proposition 4.15. Let (Xt)t≥0 be a regular affine process and let i ∈ I. If

RI(−cei) ≤ 0 for all c > 0, then the (Xi
t)t≥0 is Px-almost surely non-decreasing for

all x ∈ D.

Proof. Let t, h ≥ 0. It holds that

Ex
[
e−c(X

i
t+h−Xi

t)
∣∣∣Ft
]

= exp (φ(h,−cei) + 〈Xt, ψ(h,−cei) + cei〉)

For any R-valued random variable Y we have that limc→∞ E
[
e−cY

]
= +∞·P(X <

0) + P(X = 0). Thus, if we can show that

(4.24) φ(h,−cei) + 〈x, ψ(h,−cei) + cei〉 ≤ 0 ,

for all c > 0 and x ∈ D, it holds that Xi
t+h − Xi

t ≥ 0 Px-a.s. for all t, h ≥ 0,

and thus that Xi
t is non-decreasing. Since ψJ(h,−cei) = 0 by Proposition 1.9, and

φ(h,−cei) ≤ 0 by Proposition 1.3, it is clear that

ψI(h,−cei) ≤ −cei, for all c ≥ 0
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already implies (4.24). But ψI(h,−cei) is the unique solution of the Riccati equation

∂

∂h
ψI(h,−cei) = RI(ψI(h,−cei), 0), ψI(0,−cei) = −cei .

By a comparison principle for quasi-monotonic differential equations (see Volkmann

[1972, Satz 2]) RI(−cei) ≤ 0 implies that also ψI(h,−cei) ≤ −cei, and the assertion

is shown. �

Again, the affine property will be preserved by the operation of subordination,

if we adjoin an additional component to the process Xt. As in Theorem 4.10 we

denote by θy the space-shift operator, that maps each stochastic process Yt to its

shifted version y + Yt.

Theorem 4.16. Let (Xt)t≥0 be an affine process taking values in D, and let

(L(t))t≥0 be an independent Lévy process under all (Px)x∈D. Let i ∈ I, and suppose

that the i-th component of Xt is non-decreasing Px-almost surely for all x ∈ D. De-

fine the subordinated process Yt = L(Xi
t), and for each y ∈ R, let P(x,y) := Px ◦θ−1

y .

Then
(
(Xt, Yt),P

(x,y)
)
t≥0,(x,y)∈D×R

is an affine process on D × R in its own fil-

tration. Suppose that in addition (Xt)t≥0 is regular with functional characteristics

(F (u), R(u)), and let m(w) be the Lévy exponent13 of Lt. Then also (Xt, Yt)t≥0 is

regular affine, with functional characteristics given by

F̃ (u,w) = F (u+ eim(w)), R̃X(u,w) = R(u+ eim(w)), R̃Y (u,w) = 0 .

Proof. Let F ′ denote the natural filtration of (Xt, Yt)t≥0. To simplify nota-

tion we write uX for 〈u,X〉. We have that

(4.25) E(x,y) [ exp (uXt+h + wYt+h)| F ′
t] =

= ew(y+Yt)Ex
[
exp

(
uXt+h + w

(
L(Xi

t+h) − L(Xi
t)
))∣∣F ′

t

]
=

= ew(y+Yt)Ex
[
exp

(
uXt+h + wL

(
Xi
t+h −Xi

t

))∣∣F ′
t

]
,

where we have used that Xi
t is non-decreasing and the increments of a Lévy process

are stationary. Using the Markov property of (Xt)t≥0, we can write the right hand

side as

(4.26) ew(y+Yt)EXt
[
exp

(
uXh + wL(Xi

h)
)]

=

= ew(y+Yt)EXt

[
EXt

[
exp

(
uXh + wL(Xi

h)
)∣∣σ(Xs)0≤s≤h

]]
=

= ew(y+Yt)EXt
[
exp

(
uXh +Xi

h ·m(w)
)]

=

= exp
(
φ
(
t, u+ eim(w)

)
+
〈
Xh, ψ

(
t, u+ eim(w)

)〉
+ (y + Yt)w

)
.

13The Lévy exponent of (Lt)t≥0 is defined by Ex
ˆ
e〈u,Lt〉

˜
= etm(u).
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By Proposition 4.1, this shows that (Xt, Yt)t≥0 is an affine process in its own fil-

tration with respect to
(
P (x,y)

)
(x,y)∈D×R

. The rest of the Theorem follows directly

by differentiation of (4.26). �



Operation Input Assumptions Result

Independent Product
(Prop. 4.7)

(Xt)t≥0, (Yt)t≥0 reg. affine with
func. char. (FX(u), RX(u)), and ;
(FY (u), RY (u)) respectively.

–

(Xt, Yt)t≥0 reg. affine
w.r.t P(x, y) := Px ⊗ Py;

F̃ (uX , uY ) = FX(uX) + FY (uY ),

R̃(uX , uY ) = (RX(uX), RY (uY )).

Projection
(Prop. 4.8)

(Xt)t≥0 reg. affine with
func. char. (F (u), R(u));
K ⊆M : components to project onto.

ψM\K(t, uK , 0) = 0; or
I ⊆ K and RM\K(uK , 0) = 0; or
(yK , 0) ∈ D◦ and RM\K(yK , 0) = 0.

XK
t reg. affine with func. char.

F̃ (uK) = F (uK , 0) and

R̃(uK) = RK(uK , 0).

Time-Integration
(Thm 4.10)

(Xt)t≥0 reg. affine with
diff.char. (F (u), R(u)).

–
(Xt, Yt =

∫ t
0
Xsds) reg. affine with

F̃ (u) = F (u), RX(u) = R(u) + w,
and RY (u) = 0.

Exponential
Tilting

(Thm. 4.14)

(Xt,P
x)t≥0,x∈D analyt. affine;

func. char. (F (u), R(u))
defined on Skorohod space of cadlag paths,
with right-cont., complete filtration.

θ ∈ D◦

∃ Qx ∼ Px, such that
(Xt, Q

x)t≥0,x∈D analyt. affine;

F̃ (u) = F (u+ θ) − F (θ),

R̃(u) = R(u+ θ) −R(θ).

Subordination
(Thm. 4.16)

(Xt)t≥0 reg. affine w. (F (u), R(u));
L(t) independent Lévy process with
char. exponent m(u).

i ∈ I; component Xi
t

non-decreasing increasing a.s.;

(Xt, Yt = L(Xi
t)) reg. affine with

F̃ (u,w) = F (u+ eim(w)),

R̃X(u,w) = R(u+ eim(w)),
RY (u,w) = 0.

Table 2. This table summarizes the results of Section 4





Part 2

Applications to stochastic

volatility modelling



5. Affine Stochastic Volatility Models (ASVMs)

5.1. Definition and the generalized Riccati equations. We consider an

asset-pricing model of the following kind: The interest rate r is non-negative and

constant, and the asset price (St)t≥0 is given by

St = exp(rt+Xt) t ≥ 0 ,

such that (Xt)t≥0 is the discounted log-price process starting at X0 ∈ R a.s. The

discounted price process is simply exp(Xt), such that we will assume in the remain-

der that r = 0, and that (St)t≥0 is already discounted. Denote by (Vt)t≥0 another

process, starting at V0 > 0 a.s., which can be interpreted as stochastic variance

process of (Xt)t≥0, but may also control the arrival rate of jumps. The following

assumptions are made on the joint process (Xt, Vt)t≥0:

A1: (Xt, Vt)t≥0 is a stochastically continuous, time-homogeneous Markov

process.

A2: The cumulant generating function Φt(u,w) of (Xt, Vt) is of a particular

affine form: We assume that there exist functions φ(t, u, w) and ψ(t, u, w)

such that

Φt(u,w) := log E [ exp(uXt + wVt)|X0, V0] = φ(t, u, w) + V0ψ(t, u, w) +X0u

for all (t, u, w) ∈ R>0 × C2, where the expectation exists.

By convention, the logarithm above denotes the principal branch of the complex

logarithm. Assumptions A1 and A2 make (Xt, Vt)t≥0 an affine process in the sense

of Duffie et al. [2003]. The term X0u in the cumulant generating function Φt(u,w)

corresponds to a reasonable homogeneity assumption on the model: If the starting

value X0 of the price process is shifted by x, also Xt is simply shifted by x for any

t ≥ 0. Note that Assumption A2 also implies that the variance process (Vt)t≥0 is a

Markov process in its own right. We do not yet make the assumption that (St)t≥0

is conservative (i.e. without explosions or killing) or even a martingale. Instead it

will be our first goal in Section 5.2 to obtain necessary and sufficient conditions for

these properties.

Applying the law of iterated expectations to Φt(u,w) yields the following ‘semi-flow

equations’ for φ and ψ: (see also Duffie et al. [2003, Eq. (3.8)–(3.9)])

φ(t+ s, u, w) = φ(t, u, w) + φ(s, u, ψ(t, u, w)),

ψ(t+ s, u, w) = ψ(s, u, ψ(t, u, w)),
(5.1)

for all t, s ≥ 0 where the left hand side is defined. The following result will be

crucial:
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Theorem 5.1. Suppose that |φ(τ, u, η)| < ∞ and |ψ(τ, u, η)| < ∞ for some

(τ, u, η) ∈ R>0 × C2. Then, for all t ∈ [0, τ ] and w ∈ C with Rew ≤ Re η

|φ(t, u, w)| <∞, |φ(t, u, w)| <∞,

and the derivatives

(5.2) F (u,w) :=
∂

∂t
φ(t, u, w)

∣∣∣∣
t=0+

, R(u,w) :=
∂

∂t
ψ(t, u, w)

∣∣∣∣
t=0+

exist. Moreover, for t ∈ [0, τ), φ and ψ satisfy the generalized Riccati equations

∂tφ(t, u, w) = F (u, ψ(t, u, w)), φ(0, u, w) = 0(5.3a)

∂tψ(t, u, w) = R(u, ψ(t, u, w)), ψ(0, u, w) = w .(5.3b)

The above theorem is ‘essentially’ proven in Duffie et al. [2003], but under

slightly different conditions14. Note that the differential equations (5.3) follow im-

mediately from the semi-flow equations (5.1) by taking the derivative with respect

to s, and evaluating at s = 0. They are called generalized Riccati equations since

they degenerate into (classical) Riccati equations with quadratic functions F and

R, if (Xt, Vt)t≥0 is a pure diffusion process.

Note that the first Riccati equation is just an integral in disguise, and φ may be

written explicitly as

(5.4) φ(t, u, w) =

∫ t

0

F (u, ψ(s, u, w)) ds .

Also the solution ψ of the second Riccati equation can be represented at least

implicitly in the following way: Suppose that ψ(t, u, w) is a non-stationary local

solution on [0, δ) of (5.3b). Then R(u, ψ(t, u, w)) 6= 0 for all t ∈ [0, δ), and ψ(t, u, w)

is a strictly monotone function of t; dividing both sides of (5.3b) by R(u, ψ(t, u, w)),

integrating from 0 to t < δ, and substituting η = ψ(s, u, w) yields

(5.5)

∫ ψ(t,u,w)

w

dη

R(u, η)
ds = t .

14Duffie et al. assume differentiability of φ and ψ with respect to t (’regularity’) a priori, while
in our case we can deduce it directly from Assumption A2. A proof is given in the appendix.
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Another important result that can be found in Duffie et al. [2003] states that

F and R must be of Lévy-Khintchine form, i.e.

F (u,w) = (u,w) · a
2
·
(
u

w

)
+ b ·

(
u

w

)
− c(5.6a)

+

∫

D\{0}

(
exu+yw − 1 − ωF (x, y) ·

(
u

w

))
m(dx, dy) ,

R(u,w) = (u,w) · α
2
·
(
u

w

)
+ β ·

(
u

w

)
− γ(5.6b)

+

∫

D\{0}

(
exu+yw − 1 − ωR(x, y) ·

(
u

w

))
µ(dx, dy)

where D = R × R>0, and ωF , ωR are suitable truncation functions, which we fix

by defining

ωF (x, y) =

(
x

1+x2

0

)
and ωR(x, y) =

(
x

1+x2

y
1+y2

)
.

Moreover the parameters (a, α, b, β, c, γ,m, µ) satisfy the following admissibility

conditions:

• a, α are positive semi-definite 2 × 2-matrices, and a12 = a21 = a22 = 0.

• b ∈ D and β ∈ R2.

• c, γ ∈ R>0

• m and µ are Lévy measures on D, and
∫
D\{0}

(
(x2 + y) ∧ 1

)
m(dx, dy) <

∞.

The affine form of the cumulant generating function, the generalized Riccati

equations and finally the Lévy-Khintchine decomposition (5.6) lead to the following

interpretation of F and R: F characterizes the state-independent dynamic of the

process (Xt, Vt) while R characterizes its state-dependent dynamic. Both F and

R decompose into a diffusion part, a drift part, a jump part and an instantaneous

killing rate. Hence a+ αVt can be regarded as instantaneous covariance matrix of

(Xt, Vt)t≥0, b + Vtβ as the instantaneous drift, m(dx, dy) + Vtµ(dx, dy) as instan-

taneous arrival rate of jumps with jump heights in (dx× dy), and finally c+ γVt as

the instantaneous killing rate.

The following Lemma establishes some important properties of F and R as

functions of real-valued arguments. A proof is given in the appendix.

Lemma 5.2. (a) F and R are proper closed convex functions on R2.

(b) F and R are analytic in the interior of their effective domain.
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(c) Let U be a one-dimensional affine subspace of R2. Then F |U is either a strictly

convex or an affine function. The same holds for R|U .

(d) If (u,w) ∈ dom F , then also (u, η) ∈ dom F for all η ≤ w. The same holds for

R.

Remark 5.3. As usual in convex analysis, we regard F and R as functions de-

fined on all of R2, that may attain values in R∪{+∞}. The set {(u,w) : F (u,w) <∞}
is called effective domain of F , and denoted by dom F .

We define a function χ(u), that will appear in several conditions throughout

this article. Corollary 6.5 gives an interpretation of χ as a rate of convergence for

the asymptotic behavior of the cumulant generating function of (Xt)t≥0.

Definition 5.4. For each u ∈ R where R(u, 0) <∞, define χ(u) as

χ(u) :=
∂R

∂w
(u,w)

∣∣∣∣
w=0

.

χ(u) is well-defined at least as a limit as w ↑ 0, possibly taking the value +∞;

it can be written explicitly as

χ(u) = α12u+ β1 +

∫

D\{0}
y

(
exu − 1

1 + y2

)
µ(dx, dy) .

Note that also χ(u) is a convex function.

5.2. Explosions and the martingale property. We are interested in condi-

tions under which St = exp(Xt) is conservative and a martingale. If such conditions

are satisfied, (St)t≥0 may serve as the price process under the risk-neutral measure

in an arbitrage-free asset pricing model. The following theorem gives sufficient and

necessary conditions:

Theorem 5.5. Suppose (Xt, Vt) satisfies Assumptions A1 and A2. Then the

following holds:

(a) (St)t≥0 is conservative if and only if F (0, 0) = R(0, 0) = 0 and either

(5.7) χ(0) <∞ or

(
χ(0) = ∞ ∧

∫

0−

dη

R(0, η)
= −∞

)
.

(b) (St)t≥0 is a martingale if and only if it is conservative, F (1, 0) = R(1, 0) = 0

and either

(5.8) χ(1) <∞ or

(
χ(1) = ∞ ∧

∫

0−

dη

R(1, η)
= −∞

)
.

Remark 5.6. The notation
∫
0− denotes an integral over an arbitrarily small

left neighborhood of 0.
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By (5.6) the condition F (0, 0) = R(0, 0) = 0 is equivalent to c = γ = 0, i.e.

obviously the killing rate has to be zero for the process to be conservative. As will be

seen in the proof, the integral conditions (5.7) and (5.8) are related to a uniqueness

condition for non-Lipschitz ODEs, which has been discovered by Osgood [1898].

From Theorem 5.5 we derive the following easy-to-check sufficient conditions:

Corollary 5.7. Suppose (Xt, Vt) satisfies Assumptions A1 and A2.

(a) If F (0, 0) = R(0, 0) = 0 and χ(0) <∞ then (St)t≥0 is conservative.

(b) If (St)t≥0 is conservative, F (1, 0) = R(1, 0) = 0 and χ(1) <∞, then (St)t≥0 is

a martingale.

Proof. For a proof of 5.5a we refer to [Filipović, 2001, Th. 4.11]. Statement

5.5b can be shown in a similar way:

Since (Xt, Vt) is Markovian, we have for all 0 ≤ s ≤ t, that

E[St|Fs] = Ss exp (φ(t− s, 1, 0) + Vsψ(t− s, 1, 0)) .

We have assumed that V0 > 0 a.s., such that (St)t≥0 is a martingale if and only if

(Xt)t≥0 is conservative and ψ(t, 1, 0) = φ(t, 1, 0) ≡ 0 for all t ∈ R>0.

We show Corollary 5.7 and the first implication of 5.5b: Suppose that (St)t≥0 is

conservative and that F (1, 0) = R(1, 0) = 0. By Theorem 5.1 ψ(t, 1, w) solves the

differential equation

∂

∂t
ψ(t, 1, w) = R(1, ψ(t, 1, w)), ψ(0, 1, w) = w(5.9)

for all w ≤ 0. Since R(1, 0) = 0 it is clear that ψ̃(t, 1, 0) ≡ 0 satisfies this ODE for

the initial value w = 0. To deduce that ψ̃(t, 1, 0) = ψ(t, 1, 0) however, we need to

know whether the solution is unique. Since R(1, w) is continuously differentiable

for w < 0, it satisfies a Lipschitz condition on (−∞, 0). If χ(1) <∞, the Lipschitz

condition can be extended to (−∞, 0], and ψ(t, 1, 0) ≡ 0 is the unique solution.

If χ(1) = ∞, we substitute Lipschitz’ condition by Osgood’s condition15: Suppose

that (5.8) holds, and there exists a non-zero solution ψ̃ such that ψ̃(t1, 1, 0) < 0 for

some t1 > 0. Then for all t < t1 such that ψ remains non-zero on [t, t1] we have

(similarly to (5.5)) that

(5.10)

∫ eψ(t,1,0)

eψ(t1,1,0)

dη

R(1, η)
= t− t1 .

Let t0 = sup
{
t < t1 : ψ̃(t, 1, w) = 0

}
. Taking the limit t ↓ t0, the left side of (5.10)

tends to −∞, whereas the right side remains bounded, leading to a contradiction.

We conclude that ψ(t, 1, 0) ≡ 0 is the unique solution of (5.9). Finally equation

(5.4) together with F (1, 0) = 0 yields that also φ(t, 1, 0) ≡ 0 for all t ∈ R>0 and we

15See Osgood [1898]
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have shown that (St)t≥0 is a martingale.

For the other direction of 5.5b note that (St)t≥0 being a martingale implies that

φ = ψ ≡ 0 solve the generalized Riccati equations and thus that F (1, 0) = R(1, 0) =

0. It remains to show (5.8). If χ(1) < ∞, nothing is to show. For a contradiction

we thus assume that χ(1) = ∞, but
∫
0−

dη
R(1,η) > −∞. Then, for each t > 0, (5.10)

with t1 = 0 implicitly defines a solution ψ̃(t, 1, 0) of the generalized Riccati equation

(5.9), satisfying ψ̃(t, 1, 0) < 0 for all t > 0. By uniqueness of the solution ψ(t, 1, w)

for w < 0 and the semi-flow property (5.1), we have ψ̃(t+s, 1, 0) = ψ(t, 1, ψ̃(s, 1, 0))

for t, s small enough. Letting s ↓ 0 we obtain ψ(t, 1, 0) = ψ̃(t, 1, 0) < 0, which is a

contradiction to ψ ≡ 0. �

We add now two assumptions to A1 and A2 and complete our definition of an

affine stochastic volatility model:

A3: The discounted price process St = eXt is a martingale.

A4: There exists some u ∈ R, such that R(u, 0) 6= 0.

Assumption A4 excludes models where the distribution of (Xt)t≥0 does not

depend at all on the volatility state V0. In such a case we can not speak of a true

stochastic volatility model, and it will be beneficial to avoid these degenerate cases.

We are now ready to give our definition of an affine stochastic volatility model:

Definition 5.8. The process (Xt, Vt)t≥0 is called an affine stochastic volatility

model, if it satisfies assumptions A1 – A4.

A simple consequence of this definition, that will often be used is the following:

Lemma 5.9. Let (Xt, Vt)t≥0 be an affine stochastic volatility model. Then u 7→
R(u, 0) is a strictly convex function, satisfying R(0, 0) = R(1, 0) = 0.

Proof. From assumption A3 and Theorem 5.5 it follows thatR(0, 0) = R(1, 0) =

0. Lemma 5.2 implies that R(u, 0) is either strictly convex or an affine function.

Assume it is affine. Then R(u, 0) = 0 for all u ∈ R. This contradicts A4, such that

we conclude that R(u, 0) is a strictly convex function. �

6. Long-term asymptotics for ASVMs

In this section we study the behavior of an affine stochastic volatility model

as t → ∞. We focus first on the stochastic variance process (Vt)t≥0. Under mild

assumptions this process will converge in law to its invariant distribution:

6.1. Stationarity of the variance process.



68 Affine Processes

Proposition 6.1. Suppose that A1 and A2 hold, that χ(0) < 0 and the Lévy

measure m satisfies the logarithmic moment condition
∫

y>1

(log y) m(dx, dy) <∞.

Then (Vt)t≥0 converges in law to its unique invariant distribution L, which has the

cumulant generating function

(6.1) l(w) =

∫ 0

w

F (0, η)

R(0, η)
dη (w ≤ 0) .

Keller-Ressel and Steiner [2008] show that under the given conditions the pro-

cess (Vt)t≥0 converges in law to a limit distribution L, whose cumulant generating

function can be represented by (6.1). A short argument at the end of this para-

graph shows that the limit distribution is also the unique invariant distribution

of (Vt)t≥0. First we make the following definition: Given some affine stochastic

volatility model (Xt, Vt)t≥0, we introduce the process (X̃t, Ṽt)t≥0, defined as the

Markov process with the same transition probabilities as (Xt, Vt)t≥0, but started

with X0 = 0 and V0 distributed according to L. We will refer to (X̃t, Ṽt)t≥0 as the

stochastic volatility model (Xt, Vt)t≥0 ‘in the stationary variance regime’. We also

define the associated price process S̃t := exp(rt + X̃t). As we discuss in Section 8

the process (X̃t, Ṽt)t≥0 can be related to the pricing of forward-starting options,

when the time until the start of the contract is large.

The cumulant generating function of (X̃t, Ṽt) is given by

(6.2)

log E[eu
eXt+weVt ] = log E

[
exp

(
φ(t, u, w) + Ṽ0ψ(t, u, w)

)]
= φ(t, u, w)+l(ψ(t, u, w)) .

We verify now that L is indeed an invariant distribution of (Vt)t≥0:

(6.3) E

[
exp

(
wṼt

)]
= exp (φ(t, 0, w) + l(ψ(t, 0, w))) =

= exp

(∫ t

0

F (0, ψ(s, 0, w))ds+

∫ 0

ψ(t,0,w)

F (0, η)

R(0, η)
dη

)
=

= exp

(∫ ψ(t,0,w)

w

F (0, η)

R(0, η)
dη +

∫ 0

ψ(t,0,w)

F (0, η)

R(0, η)
dη

)
= exp(l(w)) ,

where we have used that under the conditions of the Proposition above, ψ(t, 0, w)

is a strictly monotone function converging to 0 as t → ∞. (cf. Keller-Ressel and

Steiner [2008]). To see that L is unique, assume that there exists another invariant

distribution L′, and let (V ′
t )t≥0 be the variance process started with V ′

0 distributed

according to L′. Again we use that φ(t, u, w) → l(w) and ψ(t, 0, w) → 0 as t → ∞
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(see Keller-Ressel and Steiner [2008]), and get that

lim
t→∞

E [exp(wV ′
t )] = E

[
lim
t→∞

exp (φ(t, 0, w) + V ′
0ψ(t, 0, w))

]
= E[exp(l(w))] = el(w) ,

for all w ≤ 0, in contradiction to the invariance of L′.

6.2. Long-term behavior of the log-price process. We have seen that

under certain conditions (Vt)t≥0 converges to a limit distribution, but we can not

expect the same for the log-price process (Xt)t≥0. Nevertheless, it can be shown

that the rescaled cumulant generating function 1
t log E

[
eXtu

]
converges under suit-

able conditions to a limit h(u), that is again the cumulant generating function of

some infinitely divisible random variable. This result can be interpreted such, that

for large t the marginal distributions of (Xt)t≥0 are ‘close’ to the marginal distribu-

tions of a Lévy process with characteristic exponent h(u). Furthermore, h(u) can

be directly obtained from the functions F and R, without knowledge of the explicit

forms of φ and ψ. We start with a preparatory Lemma:

Lemma 6.2. Let (Xt, Vt)t≥0 be an affine stochastic volatility model and suppose

that χ(0) < 0 and χ(1) < 0. Then there exist a maximal interval I and a unique

function w ∈ C(I) ∩ C1(I◦), such that

(6.4) R(u,w(u)) = 0 for all u ∈ I

and w(0) = w(1) = 0.

Moreover it holds that [0, 1] ⊆ I, w(u) < 0 for all u ∈ (0, 1); w(u) > 0 for all

u ∈ I \ [0, 1]; and

(6.5)
∂R

∂w
(u,w(u)) < 0

for all u ∈ I◦.

We show Lemma 6.2 together with the next result, which makes the connection

to the qualitative properties of the generalized Riccati equations.

Lemma 6.3. (a) For each u ∈ I◦, w(u) is an asymptotically stable equilibrium

point of the generalized Riccati equation (5.3b).

(b) For u ∈ I◦, there exists at most one other equilibrium point w̃(u) 6= w(u), and

if it exists, it is necessarily unstable and satisfies w̃(u) > max(0, w(u)).

(c) For u ∈ R \ I, no equilibrium point exists.

Proof. Define L = {(u,w) : R(u,w) ≤ 0}. As the level set of the closed con-

vex function R, it is a closed and convex set. For all u ∈ R, define w(u) =

inf {w : (u,w) ∈ L}, and I = {u ∈ R : w(u) <∞}. Clearly w(u) is a continuous

convex function, and I a subinterval of R. We will now show that w(u) and I

satisfy all properties stated in Lemma 6.2. By assumption A3 and Theorem 5.5,
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R(0, 0) = R(1, 0) = 0; together with Lemma 5.2 it follows that the set [0, 1]×(−∞, 0]

is contained in dom R. Since R(u, 0) is by Lemma 5.9 strictly convex, and also

χ(u) is convex, we deduce that R(u, 0) < 0 and ∂R
∂w (u, 0) = χ(u) < 0 for all

u ∈ (0, 1). In addition R(u,w), as a function of w, is either affine or strictly convex,

such that there exists a unique point w(u), where R(u,w(u)) = 0, and necessarily
∂R
∂w (u,w(u)) < 0. It is clear that for u ∈ (0, 1) w(u) coincides with the function

defined by (6.4), and that w(u) < 0. At u = 0 we have that R(0, 0) = 0 and

χ(0) < 0, implying that w(0) = 0. A symmetrical argument at u = 1 shows that

w(1) = 0, and thus that [0, 1] ⊆ I.

We show next that w(u) ∈ C1(I◦): Define u+ = sup I, and w+ = limu↑u+
w(u);

u−, w− are defined symmetrically at the left boundary of I. Note that u± and w±

can take infinite values. Define the open set

K := {(λu− + (1 − λ)u+, w) : λ ∈ (0, 1), w < λw− + (1 − λ)w+} .

Lemma 5.2 implies that K is contained in the interior of dom R. On the other

hand, the graph of w, restricted to I◦, i.e. the set {(u,w(u)) : u ∈ I◦}, is clearly

contained in K. Since R is by Lemma 5.2 an analytic function in the interior of

its effective domain, the implicit function theorem implies that w(u) ∈ C1(I◦).

In addition it follows that ∂R
∂w (u,w(u)) 6= 0 for all u ∈ I◦, such that the asser-

tion ∂R
∂w (u,w(u)) < 0, which we have shown above for u ∈ (0, 1), can be extended

to all of I◦. The claim that w(u) > 0 for u ∈ I \ [0, 1] can easily be derived from

the convexity of w(u), and the fact that w(u) < 0 inside (0, 1) and w(0) = w(1) = 0.

We have now proved most part of Lemma 6.2 (except for the uniqueness), and

turn towards Lemma 6.3: Since R(u,w(u)) = 0 and ∂R
∂w (u,w(u)) < 0 for all u ∈ I◦,

w(u) must be an asymptotically stable equilibrium point of the generalized Riccati

equation 5.3b, showing 6.3a. Assume now that for some u ∈ I◦ there exists a point

w̃(u) 6= w(u) such that R(u, w̃(u)) = 0. By Lemma 5.2, R(u,w) is, as a function

of w, either strictly convex or affine. If it is affine, it has a unique root, and w̃(u)

cannot exist. If it is strictly convex, there can exist a single point w̃(u) other than

w(u), such that R(u, w̃(u)) = 0. Necessarily w̃(u) > w(u) and ∂R
∂w (u, w̃(u)) > 0.

This shows that w̃(u) is an unstable equilibrium point of the generalized Riccati

equation for ψ. In addition w̃(u) > w(u), and in particular the fact that w̃(0) > 0

and w̃(1) > 0 shows the uniqueness of w(u) in the sense of Lemma 6.2. To see that

w̃(u) > max(0, w(u)), note that we only have to show that w̃(u) > 0, whenever

w(u) < 0. This is the case only for u ∈ (0, 1). Assume that w̃(u) ≤ 0 for u ∈ (0, 1).

Then the convexity of R and ∂R
∂w (u, w̃(u)) > 0 would imply that R(u, 0) ≥ 0 for

some u ∈ (0, 1). This is impossible by Lemma 5.9, and we have shown 6.3b. Finally
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6.3c follows directly from the definition of w(u) as w(u) = inf {w : (u,w) ∈ L} and

I as the effective domain of w(u). �

We are now ready to show our main result on the long-term properties of the

log-price process (Xt)t≥0.

Theorem 6.4. Let (Xt, Vt)t≥0 be an affine stochastic volatility model and sup-

pose that χ(0) < 0 and χ(1) < 0. Let w(u) be given by Lemma 3.2 and define

h(u) = F (u,w(u)), J = {u ∈ I : F (u,w(u)) <∞} .

Then [0, 1] ⊆ J ⊆ I; w(u) and h(u) are cumulant generating functions of infinitely

divisible random variables and

lim
t→∞

ψ(t, u, 0) = w(u) for all u ∈ I ;(6.6a)

lim
t→∞

1

t
φ(t, u, 0) = h(u) for all u ∈ J .(6.6b)

Corollary 6.5. Under the conditions of Theorem 6.4, the following holds:

sup
u∈[0,1]

|ψ(t, u, 0) − w(u)| ≤ C exp(−X · T ) ;(6.7a)

sup
u∈[0,1]

∣∣∣∣
1

t
φ(t, u, 0) − h(u)

∣∣∣∣ ≤ ΩC exp(−X · T ) ;(6.7b)

for some constant C, and with

X = inf
u∈[0,1]

|χ(u)| and Ω = sup
u∈[0,1]

∂

∂w
F (u,w)

∣∣∣∣
w=0

Proof. Let u ∈ [0, 1]. By Lemma 6.2 (u,w(u)) ∈ [0, 1] × (−∞, 0]. By The-

orem 5.5 F (0, 0) = F (1, 0) = 0, such that Lemma 5.2 guarantees that [0, 1] ×
(−∞, 0] ⊆ dom F . It follows that [0, 1] ⊆ J . Define

z(t, u) = ψ(t, u, 0) − w(u) .

Inserting into the generalized Riccati equation 5.3b,

∂

∂t
z(t, u) = R(u, ψ(t, u, 0)) = R(u, ψ(t, u, 0)) −R(u,w(u)), and z(0, u) = w(u) .

If ψ(t, u, 0) ≤ 0 we can bound the right hand side by

R(u, ψ(t, u, 0)) −R(u,w(u)) ≤ z(t, u)
∂R

∂w
(u, 0) = z(t, u)χ(u),

using convexity of R. By Gronwall’s inequality

z(t, u) ≤ |w(u)| exp (χ(u)t) .
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Since χ is convex, χ(0) < 0 and χ(1) < 0, we have shown (6.7a). The estimate

|φ(t, u) − h(u)| =

=

∣∣∣∣
1

t

∫ t

0

(F (u, φ(s, u)) − F (u,w(u))) ds

∣∣∣∣ ≤
∣∣∣∣
∂F

∂w
(u, 0)

∣∣∣∣ · |ψ(t, u) − w(u)|

yields (6.7b) and we have shown Corollary 6.5.

Let now u ∈ I◦ \ [0, 1]. Combining Lemma 5.9 and Lemma 6.3 we have that

R(u,w) > 0 for all w ∈ [0, w(u)), and R(u,w(u)) = 0. It follows that the initial

value ψ(0, u, 0) = 0 is in the basin of attraction of the stable equilibrium point w(u)

and thus that ψ(t, u, 0) is strictly increasing and converging to w(u). An additional

argument may be needed at the boundary of I: Let u+ = sup I and assume that

u+ ∈ I (i.e. I is right-closed). Since (u+, w) ∈ dom R for all w ≤ w(u+), we

can define ∂R
∂w (u+, w(u+)) at least as a limit for w ↑ w(u+). By Lemma 6.2 either

∂R
∂w (u+, w(u+)) < 0 or ∂R

∂w (u+, w(u+)) = 0. In the first case we can argue as in the

interior of I that w(u+) is an asymptotically stable equilibrium point. In the second

case we use once more that by Lemma 5.2 R(u+, w) is, as a function of w, either

strictly convex or affine. If it is affine, it must be equal to 0, and thus R(u+, 0) = 0,

in contradiction to Lemma 5.9. Hence it is strictly convex, and attains its minimum

at w(u+). This implies that R(u+, w) > 0 for all w ∈ [0, w(u+)) and we conclude

that ψ(t, u+, 0) converges to w(u+).16 For u− = inf I, a symmetrical argument

applies.

Assertion (6.6b) follows immediately from the representation (5.4), and

lim
t→∞

1

t
φ(t, u, 0) = lim

t→∞
1

t

∫ t

0

F (u, ψ(s, u, 0)) ds = F (u,w(u))

for all u ∈ J .

We have shown that the sequence of infinitely divisible cumulant generating func-

tions ψ(t, u, 0) converges on I to a function w(u) that is continuous in a right

neighborhood of 0. This is sufficient to imply that w(u) is again the cumulant gen-

erating function of an infinitely divisible random variable (See Feller [1971, VIII.1,

Example (e)] for the convergence part, and Sato [1999, Lemma 7.8] for the infinite

divisibility.). The same argument can be applied to φ and h(u), and we have shown

Theorem 6.4. �

16Even though ψ(t, u+, 0) converges to w(u+), note that w(u+) is not a stable equilibrium point

in the usual sense. This is due to the fact that solutions from a right-neighborhood N∩(w(u+),∞)
will diverge from w(u+) to +∞.
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7. Moment explosions in ASVMs

In this section we continue to study the time evolution of moments E[Sut ] =

E[eXtu] of the price process in an affine stochastic volatility model. We are inter-

ested in the phenomenon that in a stochastic volatility model, moments of the price

process can explode (become infinite) in finite time. For stochastic volatility models

of the CEV-type – a class including the Heston model, but no models with jumps –

moment explosions have been studied by Andersen and Piterbarg [2007] and Lions

and Musiela [2007]. In the context of option pricing, an interesting result of Lee

[2004] connects the existence of moments of the stock price process to the steepness

of the smile for deep in-the-money or out-of-the-money options. Our first result

shows that in an affine stochastic volatility model a simple explicit expression for

the time of moment explosion can be given:

7.1. Moment explosions. By definition, the u-th moment of St, i.e. E[Sut ]

is given by Su0 exp (φ(t, u, 0) + V0ψ(t, u, 0)). We define the time of moment ex-

plosion for the moment of order u by

T∗(u) = sup {t : E[Sut ] <∞} .

It is obvious from the Markov property that E[Sut ] is finite for all t < T∗(u) and

infinite for all t > T∗(u). As in the previous section, the main result follows from a

qualitative analysis of the generalized Riccati equations (5.3).

Theorem 7.1. Suppose the conditions of Theorem 6.4 hold. Define

J := {u ∈ I : F (u,w(u)) <∞} ,

f+(u) := sup {w ≥ 0 : F (u,w) <∞} ,

r+(u) := sup {w ≥ 0 : R(u,w) <∞} ,

and suppose that F (u, 0) <∞, R(u, 0) <∞ and χ(u) <∞.

(a) If u ∈ J , then

T∗(u) = +∞ .

(b) If u ∈ R \ J , then

T∗(u) =

∫ min(f+(u),r+(u))

0

dη

R(u, η)
.

If F (u, 0) = ∞, R(u, 0) = ∞ or χ(u) = ∞ then

(c)

T∗(u) = 0 .
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Proof. Suppose that u ∈ J . Then Theorem 6.4 implies that both ψ(t, u, 0)

and φ(t, u, 0) are finite for all t ≥ 0. This proves (a). Let now u ∈ R\J , F (u, 0) <∞,

R(u, 0) < ∞ and χ(u) < ∞. To prove (b) we start by analyzing the maximal

lifetime of solutions to the generalized Riccati equation

(7.1)
∂

∂t
ψ(t, u, 0) = R(u, ψ(t, u, 0)), ψ(0, u, 0) = 0 .

Define M = [0, r+(u)) and note that R(u, .) ∈ C(M). Since u 6∈ [0, 1], Lemma 5.9

implies that R(u, 0) > 0. It is clear, that at least a local solution ψ(t, u, 0) to the

ODE exists, which satisfies 0 ≤ ψ(t, u, 0) ≤ r+(u) and is an increasing function of t

as long as it can be continued. Using a standard extension theorem (e.g. Hartman

[1982, Lem. I.3.1]) the local solution ψ(t, u, 0) has a maximal extension to an interval

[0, T (u)), such that one of the following holds:

(i) T (u) = ∞, or

(ii) T (u) <∞ and ψ(t, u, 0) comes arbitrarily close to the boundary of M , i.e.

lim sup
t→T (u)

ψ(t, u, 0) = r+(u) .

Consider case (i). Since ψ is increasing, its limit for t → ∞ exists, but can be

infinite. Suppose limt→∞ ψ(t) = α < ∞. Then α must be a stationary point, i.e.

R(u, α) = 0, but this is impossible by Lemma 6.3. The case that α = ∞ is only

possible if r+(u) = ∞, such that in this case limt→T (u) ψ(t, u, 0) = r+(u). Consider

case (ii). Since ψ is increasing the limes superior can be replaced by an ordinary

limit and we get limt→T (u) ψ(t, u, 0) = r+(u) as before.

Let now Tn be a sequence such that Tn ↑ T (u). By (5.5) it holds that

(7.2)

∫ ψ(Tn,u,0)

0

dη

R(u, η)
ds = Tn .

Letting n→ ∞ we obtain that T (u) =
∫ r+(u)

0
dη

R(u,η)ds.

We can write the time of moment explosion T∗(u) as the maximum joint lifetime

of φ(t, u, 0) and ψ(t, u, 0), i.e. T∗(u) = sup {t ≥ 0 : φ(t, u, 0) <∞∧ ψ(t, u, 0) <∞}.
By the integral representation (5.4) it is clear that if f+(u) ≥ r+(u), φ(t, u, 0)

is finite whenever ψ(t, u, 0) is finite and T∗(u) = T (u). If f+(u) < r+(u) then

ψ(T∗(u), u, 0) = f+(u). Inserting into the representation (7.2) yields (b).

For assertion (c), let F (u, 0) = ∞, R(u, 0) = ∞, or χ(u) = ∞. In the first case,

φ(t, u, 0) does not exist beyond t = 0. In the other cases no local solution to the
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generalized Riccati equation (7.1) exists, such that ψ(t, u, 0) explodes immediately.

�

7.2. Moment explosions in the stationary variance regime. In Sec-

tion 6.1 we have introduced (X̃t, Ṽt)t≥0 as the model in the stationary variance

regime. The moment explosions of this process can be analyzed in a similar man-

ner as above. We define the time of moment explosion in the stationary variance

regime by

TS∗ (u) := sup
{
T ≥ 0 : E[S̃uT ] <∞

}
;

the superscript ‘S’ stands for ‘stationary’.

The analogue to Theorem 7.1 is the following result:

Theorem 7.2. Suppose the conditions of Theorem 6.4 hold. Define f+(u), r+(u)

as in Theorem 7.1, and in addition

l+ := sup {w > 0 : l(w) <∞} .

Suppose that F (u, 0) <∞, R(u, 0) <∞ and χ(0) <∞.

(a) If u ∈ J and w(u) ≤ l+, then

TS∗ (u) = +∞ .

(b) If u ∈ R \ J or w(u) > l+, then

TS∗ (u) =

∫ min(f+(u),r+(u),l+)

0

dη

R(u, η)
.

If F (u, 0) = ∞, R(u, 0) = ∞ or χ(0) = ∞, then

(c)

TS∗ (u) = 0 .

Corollary 7.3. Under the conditions of Theorem 7.2,

TS∗ (u) ≤ T∗(u), for all u ∈ R

Proof. By equation (6.2), the moment E[S̃ut ] is given by

E[S̃ut ] = exp (φ(t, u, 0) + l(ψ(t, u, 0))) .

This expression is finite, if φ(t, u, 0) and ψ(t, u, 0) are finite, and if ψ(t, u, 0) < l+.

It is infinite if φ(t, u, 0) or ψ(t, u, 0) are infinite, or if ψ(t, u, 0) > l+. The rest of

the proof can be carried out as for Theorem 7.1. Note, that now even for u ∈ J ,

the moment can explode, if l+ is reached by ψ(t, u, 0) before the stationary point

w(u). Corollary 7.3 follows easily by comparing the range of integration and the

conditions for case (a) and (b) between Theorem 7.1 and Theorem 7.2. �
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8. Applications to the implied volatility smile

8.1. Smile behavior at extreme strikes. In the preceding section, we have

kept u fixed, and looked at the first time T∗(u) that the moment E[Sut ] becomes

infinite. It will now be more convenient to reverse the roles of T and u, and for a

given time t to define the upper critical moment by

u+(t) = sup {u ≥ 1 : E[Sut ] <∞} = sup {u ≥ 1 : T∗(u) < t} ,

and the lower critical moment by

u−(t) = inf {u ≤ 0 : E[Sut ] <∞} = inf {u ≤ 0 : T∗(u) < t} .

It is seen that u−(T ) and u+(T ) can be defined as the generalized inverse of

T∗(u) on (−∞, 0] and [1,∞) respectively. In addition it is easily derived from

Jensen’s inequality, that

E[Sut ] <∞ for all u ∈ (u−(t), u+(t)), and

E[Sut ] =∞ for all u ∈ R \ [u−(t), u+(t)] .

The results of Lee [2004] relate the explosion of moments to the ’wing behavior’

of the implied volatility smile, i.e. the shape of the smile for strikes that are deep

in-the-money or out-of-the-money. To give a precise statement, let ξ be the log-

moneyness, which for a European option with time-to-maturity T and strike K is

given by ξ = log
(

K
erTS0

)
.

Proposition 8.1 (Lee’s moment formula). Let V (T, ξ) be the implied Black-

Scholes-Variance of a European call with time-to-maturity T and log-moneyness ξ.

Then

lim sup
ξ→−∞

V (T, ξ)

|ξ| =
ς(−u−(T ))

T

and

lim sup
ξ→∞

V (T, ξ)

|ξ| =
ς(u+(T ) − 1)

T

where ς(x) = 2 − 4
(√
x2 + x− x

)
and u±(T ) are the critical moment functions.

The function ς is strictly decreasing on R>0, mapping 0 to 2, and ∞ to 0. Thus

for fixed time-to-maturity T , the steepness of the smile is decreasing as |u±(T )|
increases. A finite critical moment u±(T ) implies asymptotically linear behavior of

V (T, ξ) in ξ, and an infinite critical moment implies sublinear behavior of V (T, ξ).

It is also evident that u−(T ) determines the ’left’ side of the volatility smile, also

known as small-strike, in-the-money-call or out-of-the-money-put side; u+(T ) de-

termines the ’right’ side, or large-strike, out-of-the-money-call, in-the-money-put

side. Finally we mention that Lee’s result has been extended and strengthened by
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Benaim and Friz [2006] from a ‘lim sup’ to a genuine limit under conditions related

to regular variation of the underlying distribution function.

8.2. Forward-smile behavior. The forward smile is derived from the prices

of forward-start options. For a forward-start call option – all options we consider

are European – a start date τ , a strike date T + τ and a moneyness ratio M are

agreed upon today (at time t = 0). The option then yields at time T + τ a payoff

of
(
ST+τ

Sτ
−M

)

+
, i.e. the relative return over the time period from τ to τ + T ,

reduced by M and floored at 0. Under the pricing measure the value of such an

option at t = 0 is given by

(8.1) e−r(T+τ)E

[(
ST+τ

Sτ
−M

)

+

]
= e−τrE

[(
eXT+τ−Xτ − eξ

)
+

]
,

where we define the log-moneyness ξ of a forward-start option as ξ = logM + rT .

Forward-start options are not just interesting in their own right, but are used as

building blocks of more complex derivatives, such as Cliquet options (see Gatheral

[2006, Chapter 10]).

Analogously to plain vanilla options, we can define the implied forward volatility

σ(τ, T, ξ), by comparing the forward option price to the price of an option with

identical payoff in the Black-Scholes model. Note that the implied forward volatility

depends also on τ , the starting time of the contract. For τ = 0, the implied volatility

of a plain vanilla option is retrieved. More interesting is the behavior for τ > 0.

Intuitively, we expect the implied volatility (and the option price) to increase with

τ in a stochastic volatility model, since the uncertainty of the variance Vτ at the

starting date of the option has to be priced in. In an affine stochastic volatility

model, it will be seen that under mild conditions, the implied forward volatilities

σ(τ, T, ξ) actually converge to a limit as τ → ∞. Not surprisingly, this behavior

is related to the convergence of (Vt)t≥0 to its invariant distribution. In the limit

τ → ∞, the pricing of a forward-start option is equivalent to the pricing of a plain

vanilla option in the stationary variance regime (cf. Section 6.1).

Proposition 8.2. Let (Xt, Vt)t≥0 be an affine stochastic volatility model, satis-

fying the conditions of Proposition 6.1. Let σ(τ, T, ξ) be the implied forward volatil-

ity in this model. Then

lim
τ→∞

σ(τ, T, ξ) = σ̃(T, ξ) ,

where σ̃(T, ξ) is the implied volatility of a European call with payoff
(
e

eXT − eξ
)

+
,

and X̃T is the log-price process of the model in the stationary variance regime.

Proof. We can write the price of a forward-start call as

C(τ, T, ξ) = e−τrE
[(
eXT+τ−Xτ − eξ

)
+

]
= e−rτE

[
E(0,Vτ )

[(
eXT − eξ

)
+

]]
.
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Denote by CBS(T, ξ, σ) the (plain vanilla) call price in a Black-Scholes model with

volatility σ and the normalization S0 = 1. It is easy to see that the price of a

forward-start option in the Black-Scholes model is just the discounted plain vanilla

price, i.e. CBS(τ, T, ξ, σ) = e−rτCBS(T, ξ, σ). By definition, the implied forward

volatility of the call C(τ, T, ξ) satisfies

CBS(T, ξ, σ(τ, T, ξ)) = erτC(τ, T, ξ) = E

[
E(0,Vτ )

[(
eXT − eξ

)
+

]]
.

Taking the limit τ → ∞ on both sides we obtain

CBS(T, ξ, lim
τ→∞

σ(τ, T, ξ)) = E

[
lim
τ→∞

E(0,Vτ )
[(
eXT − eξ

)
+

]]
= E

[(
e

eXT − eξ
)

+

]
,

using dominated convergence. It is well known that the above equation allows a

unique solution in terms of the Black-Scholes implied volatility, and we get σ̃(T, ξ) =

limτ→∞ σ(τ, T, ξ). �

Combining Lee’s moment formula with our results on moment explosions under

the stationary variance regime (Theorem 7.2), asymptotics of σ̃(T, ξ) for ξ → ±∞
can be derived.

9. Examples

9.1. The Heston model with and without jumps. In the model of Heston

[1993], the log-price (Xt)t≥0 and the corresponding variance process (Vt)t≥0 are

given under the risk-neutral measure by the SDE

dXt = −Vt
2
dt+

√
Vt dW

1
t

dVt = −λ(Vt − θ) dt+ ζ
√
Vt dW

2
t

where W 1
t ,W

2
t are Brownian motions with correlation parameter ρ, and ζ, λ, θ > 0.

In affine form, the model is written as

F (u,w) = λθw(9.1a)

R(u,w) =
1

2
(u2 − u) +

ζ2

2
w2 − λw + uwρζ .(9.1b)

It is easily calculated that χ is given by χ(u) = ρζu − λ. We will first analyze

the long term behavior of (Xt)t≥0, with the help of Theorem 6.4. To satisfy the

condition χ(1) < 0 we need λ > ζρ. Note that this condition is always satisfied if

ρ ≤ 0, the case that is typical for applications. Solving a quadratic equation we

find that

w(u) =
(λ− uρζ) −

√
(λ− uρζ)2 − ζ2(u2 − u)

ζ2
, and h(u) = λθw(u) .
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Figure 2. This plot shows the stable and unstable equilibria of the gen-

eralized Riccati equation of a Heston model with parameters ρ = −0.7165,

ζ = 0.3877, λ = 1.3253 and θ = 0.0354 (taken from Gatheral [2006, Ta-

ble 3.2]). It can be seen how the solutions ψ(t, u) converge to the stable

equilibrium points, which form the lower boundary of an ellipse in the (u,w)-

plane.

Denoting the term under the square root by ∆(u), we see that w(u) and h(u) are

both defined on J = I = {u : ∆(u) ≥ 0}. Since R is a second order polynomial in

the Heston model, the equilibrium points of the generalized Riccati equation for ψ

form an ellipse in the (u,w)-plane, and w(u) is given by its lower part – see Fig-

ure 2 for an illustration. Interestingly, w(u), and also h(u), are cumulant generating

functions of a Normal Inverse Gaussian distribution (cf. Barndorff-Nielsen [1997,

Eq. (2.4)]). Thus, for large t, the price process of the Heston model is, in terms

of its marginal distributions, close to a Normal-Inverse-Gaussian exponential-Lévy

model.

Next we consider moment explosions in the Heston model. As mentioned above,

moment explosions in the Heston model (and other models) have already been

studied by Andersen and Piterbarg [2007]. Nevertheless this will provide a first

test of Theorem 7.1: In the case of the Heston model it is easily determined from

(9.1) that f+(u) = r+(u) = ∞. Calculating the integral in case (b) of Theorem 7.1,
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we obtain

(9.2) T∗(u) =





+∞ ∆(u) ≥ 0

2√
−∆(u)

(
arctan

√
−∆(u)

χ(u) + π1{χ(u)<0}

)
∆(u) < 0 .

In Figure 3 a plot of this function for typical parameter values is shown. Note that

Andersen and Piterbarg [2007] distinguish an additional case where χ(u) < 0, but

∆(u) > 0. A little calculation shows that this can only happen if χ(1) ≥ 0, a case

that is precluded by our assumptions in Theorem 6.4, and never occurs when ρ ≤ 0.

We will now study the effect of adding jumps to the Heston model. The simplest

case is the addition of an independent jump component with constant activity: Let

(Jt)t≥0 be a pure-jump Lévy process, independent of (W 1,2
t )t≥0 and define the

Heston-with-jumps model by

dXt =

(
δ − Vt

2

)
dt+

√
Vt dW

1
t + dJt

dVt = −λ(Vt − θ) dt+ ζ
√
Vt dW

2
t .

The drift δ is determined by the martingale condition for (St)t≥0. To make the

example simple, we assume that (Jt)t≥0 jumps only downwards. This is equivalent

to saying that the Lévy measure m(dx) of (Jt)t≥0 is supported on (−∞, 0). The

affine form of the model is

F (u,w) = λθw + κ̃(u)(9.3)

R(u,w) =
1

2
(u2 − u) +

ζ2

2
w2 − λw + uwρζ ,(9.4)

where κ̃(u) is the compensated cumulant generating function of the jump part, i.e.

κ̃(u) =

∫

(−∞,0)

(exu − 1 − u (ex − 1)) m(dx) .

Let κ− < 0 be the number such that κ̃(u) is finite on (κ−,∞) and infinite on

(−∞, κ−). For example, if the absolute jump heights are exponentially distributed

with an expected jump size of 1/α, then κ− = −α.

To analyze the explosion times of this model, note that R, and thus χ(u), w(u), I

and r+(u) have not changed compared to the Heston model. As long as u > κ−,

the explosion time T∗(u) is the same as in the Heston model. However, if u ≤ κ−,

F (u, 0) = ∞ and by Theorem 7.1, T∗(u) = 0. Thus, the addition of jumps to

the Heston model has the effect of truncating the explosion time to zero, whenever

u ≤ κ−.

From the viewpoint of the critical moment functions, u+(t) does not change com-

pared to the Heston model, but u−(t) does; in the model with jumps it is given
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by

uJump
− (t) = uHeston

− (t) ∨ κ− .

Since u− is increasing with t, it makes sense to define a cutoff time T♯ by

(9.5) T♯ = sup
{
t ≥ 0 : uHeston

− (t) = κ−
}

= T∗(κ−) ,

such that

uHeston
− (t) < uJump

− (t), if t < T♯

uHeston
− (t) = uJump

− (t), if t ≥ T♯ .
(9.6)

In Figure 3 a comparison of the critical moment functions in the Heston model with

and without jumps can be seen. By Lee’s moment formula, the critical moment

u−(t) moving closer to 0 will cause the left side of the implied volatility smile to

become steeper. Thus the net effect of adding the jump component (Jt)t≥0 to the

Heston model is a steepening of the left side of the smile for maturities smaller

than T♯. For times larger than T♯, the asymptotic behavior of the smile (in the

sense of Lee’s formula) is exactly the same as in the Heston model without jumps.

This corresponds well to the frequently made observation (see e.g. Gatheral [2006,

Chapter 5]) that a Heston model with jumps can be fitted well by first fitting a

(jump-free) Heston model to long maturities, and then calibrating only the ad-

ditional parameters to the full smile. In fact Gatheral proposes (on heuristical

grounds) the concept of a ‘critical time’ T , after which the influence of an indepen-

dent jump component on the implied volatility smile can be neglected. Equations

(9.5) and (9.6) now provide a rigorous argument that this role can be attributed to

the cutoff time T♯. The analysis of the Heston model with jumps is of course easily

extended to the case that (Jt)t≥0 is not one-sided. In that case the effects discussed

above will be seen to affect also the right side of the implied volatility smile.

9.2. A model of Bates. We consider now the model given by

dXt =

(
δ − Vt

2

)
dt+

√
Vt dW

1
t +

∫

R

x Ñ(Vt, dt, dx)

dVt = −λ(Vt − θ) dt+ ζ
√
Vt dW

2
t .

where as before λ, θ, ζ > 0 and the Brownian motions are correlated with correla-

tion ρ. The jump component is given by Ñ(Vt, dt, dx) = N(Vt, dt, dx)−n(Vt, dt, dx),

whereN(Vt, dt, dx) is a Poisson random measure, and its intensity measure n(Vt, dt, dx)

is of the state-dependent form Vtµ(dx)dt, with µ(dx) the Lévy measure given in

(5.6). A model of this kind has been proposed by Bates [2000] to explain the time-

variation of jump-risk implicit in observed option prices. Bates also proposes a

second variance factor, which we omit in this example, in order to remain in the

scope of Definition 5.8. It would however not be difficult to extend our approach to
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the two-factor Bates model, since the two proposed variance-factors are mutually

independent, causing the corresponding generalized Riccati equations to decouple.

Since it is affine, the above model can be characterized in terms of the functions F

and R:

F (u,w) = λθw(9.7)

R(u,w) =
1

2
(u2 − u) +

ζ2

2
w2 − λw + uwρζ + κ̃(u) .(9.8)

where κ̃(u) =
∫
(−∞,0)

(exu − 1 − u (ex − 1)) µ(dx) is the compensated cumulant

generating function of the Lévy measure µ. As in the Heston model we can obtain

w(u) and h(u) explicitly, and get

h(u) =
−χ(u) −

√
∆(u)

ζ2
, and h(u) = λθw(u) ,

where χ(u) = ρζu−λ and ∆(u) = χ(u)2 − ζ2(u2 −u+2κ̃(u)). Both w(u) and h(u)

are defined on I = J = {u : ∆(u) ≥ 0}. The time of moment explosion can again

be calculated explicitly, and is given by

(9.9) T∗(u) =





+∞ ∆(u) > 0

2√
−∆(u)

(
arctan

√
−∆(u)

χ(u) + π1{χ(u)<0}

)
−∞ < ∆(u) < 0

0 ∆(u) = −∞ .

9.3. The Barndorff-Nielsen-Shephard model. The Barndorff-Nielsen-

Shephard (BNS) model was introduced by Barndorff-Nielsen and Shephard [2001]

as a model for asset pricing. In SDE form it is given in the risk-neutral case by

dXt = (δ − 1

2
Vt)dt+

√
Vt dWt + ρ dJλt

dVt = −λVt dt+ dJλt

where λ > 0, ρ < 0 and (Jt)t≥0 is a Lévy subordinator, i.e. a pure jump Lévy

process that increases a.s. The drift δ is determined by the martingale condition

for (St)t≥0. The time-scaling Jλt is introduced by Barndorff-Nielsen and Shephard

to make the invariant distribution of the variance process independent of λ. The

distinctive features of the BNS model are that the variance process has no diffusion

component, i.e. moves purely by jumps and that the negative correlation between

variance and price movements is achieved by simultaneous jumps in (Vt)t≥0 and

(Xt)t≥0. The BNS model is an affine stochastic volatility model, and F and R are
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given by

F (u,w) = λκ(w + ρu) − uλκ(ρ)(9.10)

R(u,w) =
1

2
(u2 − u) − λw(9.11)

where κ(u) is the cumulant generating function of (Jt)t≥0.

We simply have χ(u) = −λ and w(u) from Lemma 6.2 is given by

w(u) =
1

2λ
(u2 − u) .

It follows that

h(u) = λκ

(
u2

2λ
+ u

(
ρ− 1

2λ

))
− uλκ(ρ) .

This expression can be interpreted as cumulant generating function of a Brownian

motion with variance 1
λ and drift ρ− 1

2λ , subordinated by the Lévy process Jλt and

then mean-corrected to satisfy the martingale condition.

To analyze moment explosions in the BNS model, let κ+ := sup {u > 0 : κ(u) <∞}.
It is easy to see that f+ is given by f+ = max(κ+ − ρu, 0), and that r+ = ∞.

Calculating the integral
∫ f+
0

dη
R(u,η) and applying Theorem 7.1, we see that the

explosion time for the moment of order u is given by

T∗(u) = − 1

λ
log max

(
0, 1 − 2λ(max(κ+ − ρu, 0))

u(u− 1)

)
.

The critical moment functions u±(T ) can be obtained explicitly by solving a qua-

dratic equation, and are given by

u±(t) =
1

2
− ρλ

1 − e−λt
±
√

1

4
+

(2κ+ − ρ)λ

1 − e−λt
+

ρ2λ2

(1 − e−λt)
2 .

The large-strike asymptotics for the implied volatility smile in the sense of Lee can

be explicitly calculated by inserting u± into Proposition 8.1.

9.4. The Heston model in the stationary variance regime. In the Hes-

ton model the limit distribution of the variance process (Vt)t≥0 is a Gamma distri-

bution with parameters (2λθ
ζ2 ,

2λ
ζ2 ). This is well-known, but can also be obtained by

applying Proposition 6.1. The cumulant generating function l(w) is thus given by

l(w) = −2λθ

ζ2
log

(
1 − ζ2

2λ
w

)
,

defined on (−∞, 2λ
ζ2 ), such that l+ = 2λ

ζ2 . As before we have that χ(u) = ρζu−λ, and

we assume that χ(1) < 0. In addition we define χ+(u) = ρζu+λ. By Theorem 7.2,
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Figure 3. This plot shows the critical moment functions u±(t) for a Heston

model with the same parameters as in Figure 2. Also shown are uS
±(t) for

the model in the stationary variance regime, and uJump
± (t) for the Heston

model with an independent jump component, whose negative jump heights are

exponentially distributed with mean α = −0.1. Note that uJump
± (t) coincides

with u±(t) everywhere except in the lower left corner of the plot.

the explosion time in the stationary regime is given by

(9.12) TS∗ (u) =

∫ 2λ/ζ2

0

dη

R(u, η)
=

=





∞
√

∆(u) > −χ+(u),

1√
∆

log
∣∣∣χ

+χ+2λ
√

∆−∆

χ+χ−2λ
√

∆−∆

∣∣∣ 0 <
√

∆(u) < −χ+(u),

2√
−∆

arctan
(

2λ
√
−∆

(χ+χ)−∆ + π1{χ+χ<∆}
)

∆(u) < 0 .

In Figure 3 TS∗ (u) is plotted together with T∗(u) for the Heston model.

9.5. The BNS model in the stationary variance regime. In the BNS

model, the cumulant generating function of the limit distribution L of the variance

process is given by Proposition 6.1 by

l(w) =

∫ w

0

κ(η)

η
dη ,
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provided the log-moment condition
∫
y>1

(log y)µ(dy) <∞ holds for the Lévy mea-

sure of (Jt)t≥0. The above integral is finite as long as w ∈ (−∞, κ+), and infinite

outside. Thus l+ = κ+. In Section 9.3 we obtained that f+(u) = κ+ − ρu, such

that the time of moment explosion under stationary variance is given by

TS∗ (u) = − 1

λ
log max

(
0, 1 − 2λk(u)

u(u− 1)

)
,

where k(u) = κ+ for u ≥ 1 and k(u) = max(κ+ − ρu, 0) for u ≤ 0. Again, this

expression can be inverted to give the critical moment functions in the stationary

variance case. By definition ρ ≤ 0, such that we obtain

uS−(T ) =
1

2
− ρλ

1 − e−λT
−
√

1

4
+

(2κ+ − ρ)λ

1 − e−λT
+

ρ2λ2

(1 − e−λT )
2

uS+(T ) =
1

2
+

√
1

4
+

2κ+λ

1 − e−λT
.

10. Additional proofs for Part 2

Proof of Theorem 5.1. Let t ≤ τ . By the semi-flow equation we can write

φ(τ, u, η) = φ(t, u, η) + φ(τ − t, u, ψ(t, u, η))

ψ(τ, u, η) = ψ(τ − t, u, ψ(t, u, η)) .

Since the left sides are finite by assumption, it follows that also φ(t, u, η) and

ψ(t, u, η) are. Vt is non-negative, such that

|E [exp (uXt + wVt)]| ≤ |E [exp (uXt + ηVt)]| ,

whenever Rew ≤ Re η. Thus φ(t, u, w) and ψ(t, u, w) exist for all w ∈ C with

Rew ≤ Re η. As a particular case we can conclude that φ(t, u, w) and ψ(t, u, w)

exist for all (u,w) in U :=
{
(u,w) ∈ C2 : Reu = 0,Rew ≤ 0

}
.

We also define U◦ :=
{
(u,w) ∈ C2 : Reu = 0,Rew < 0

}
, and show next that

φ(t, u, w) and ψ(t, u, w) are (right-)differentiable at t = 0 for all (u,w) ∈ U◦. The

key idea of our proof is originally due to Montgomery and Zippin [1955], and has

also been presented in Filipović and Teichmann [2003] and Dawson and Li [2006].

First note that the identity

E
[
wVte

uXt+wVt
]

=

(
∂

∂w
φ(t, u, w) + V0

∂

∂w
ψ(t, u, w)

)
·

· exp (φ(t, u, w) + V0ψ(t, u, w) +X0u)
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shows that ∂
∂wφ(t, u, w) and ∂

∂wψ(t, u, w) exist, and are continuous for all t ≤ τ and

(u,w) ∈ U◦. By Taylor expansion it holds that
∫ s

0

ψ(r, u, ψ(t, u, w)) dr −
∫ s

0

ψ(r, u, w) dr =

∫ s

0

∂

∂w
ψ(r, u, w) dr (ψ(t, u, w) − w)

+ o
(
|ψ(t, u, w) − w|

)
.(10.1)

On the other side, using the semi-flow property, we calculate
∫ s

0

ψ(r, u, ψ(t, u, w)) dr −
∫ s

0

ψ(r, u, w) dr =

∫ s

0

ψ(r + t, u, w) dr −
∫ s

0

ψ(r, u, w) dr =

=

∫ s+t

t

ψ(r, u, w) dr −
∫ s

0

ψ(r, u, w) dr =

∫ t

0

ψ(r + s, u, w) dr −
∫ t

0

ψ(r, u, w) dr .

(10.2)

Denoting the last expression by I(s, t), and putting (10.1) and (10.2) together, we

obtain

lim
t→0

∣∣ 1
sI(s, t)

∣∣
|ψ(t, u, w) − w| =

∣∣∣∣
1

s

∫ s

0

∂

∂w
ψ(t, u, w) dr

∣∣∣∣ .

Thus, writing Ms = 1
s

∫ s
0

∂
∂wψ(t, u, w) dr, we have

lim
t→0

1

t
|ψ(t, u, w) − w| =

∣∣∣∣limt→0

I(s, t)

st

∣∣∣∣ · |Ms|−1
=

∣∣∣∣
ψ(s, u, w) − w

s

∣∣∣∣ |Ms|−1
.

But Ms is a continuous function of s, and lims→0Ms = ∂
∂wψ(0, u, w) = 1, such that

for s small enough Ms 6= 0. We conclude that the left hand side is finite, and using

(10.1) we obtain that

lim
t→0

ψ(t, u, w) − w

t
=

(
ψ(s, u, w) − w

s

)
·
(

1

s

∫ s

0

∂

∂w
ψ(r, u, w) dr

)−1

.

The finiteness of the right hand side implies the existence of the limit on the left.

In addition the right hand side is continuous for (u,w) ∈ U◦, showing that also the

left hand side is. A similar calculation for φ(t, u, w) shows that

lim
t→0

φ(t, u, w)

t
=
φ(s, u, w)

s
− lim
t→0

(
ψ(t, u, w) − w

t

)
·
(

1

s

∫ s

0

∂

∂w
φ(r, u, w) dr

)
,

allowing the same conclusions for φ(t, u, w). We have thus shown that the time-

derivatives of φ(t, u, w) and ψ(t, u, w) at t = 0 exist, and are continuous in U◦.

Combining Duffie et al. [2003, Proposition 7.2] and Duffie et al. [2003, Proposi-

tion 6.4] the differentiability can be extended from U◦ to U , and we have shown

that (Xt, Vt)t≥0 is a regular affine process. The rest of Theorem 5.1 follows now as

in Duffie et al. [2003, Theorem 2.7] �

Proof of Lemma 5.2. We prove the assertions of Lemma 5.2 for F ; they

follow analogously for R. By the Lévy-Khintchine representation (5.6), F (u,w)+ c

is the cumulant generating functions of some infinitely divisible random variables,
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say X. Writing z = (u,w) ∈ R2, and using Hölder’s inequality it holds for any

λ ∈ [0, 1] that

(10.3) F (λz1 + (1 − λ)z2) = log E

[
eλ〈z1,X〉e(1−λ)〈z2,X〉

]
− c ≤

≤ λ log E

[
e〈z1,X〉

]
+ (1 − λ)E

[
e〈z2,X〉

]
− c = λF (z1) + (1 − λ)F (z2) ,

showing convexity of F . In addition equality in (10.3) holds if and only if ke〈z1,X〉 =

e〈z2,X〉 a.s. for some k > 0. This in turn is equivalent to 〈z1 − z2,X〉 being constant

a.s. Choosing now z1 and z2 6= z1 from some one-dimensional affine subspace

U = {p+ 〈q, x〉 : x ∈ R} of R2, we see that either 〈q,X〉 is constant a.s. in which

case F |U is affine, or it is not constant, in which case strict inequality holds in

(10.3) for all z1, z2 ∈ U , showing (c).

Let Lα = {z : F (z) ≤ α} be a level set of F , and zn ∈ Lα a sequence converging to

z. Then by Fatou’s Lemma

log E[e〈z,X〉] − c ≤ lim inf
n→∞

log E[e〈zn,X〉] − c ≤ α ,

showing that z ∈ Lα and thus that F is a closed convex function. Finally F is

proper, because F (0, 0) = c > −∞, showing (a).

Next we show analyticity: Consider the random variables Xn := X1{|X|≤n}. Since

they are bounded, their Laplace transforms, and hence also their cumulant gener-

ating functions are entire functions on C2, and thus analytic on R2. As a uniform

limit of analytic functions F (u,w) is analytic in the interior of dom F , showing (b).

Assertion (d) follows directly from Theorem 5.1. �





Appendix



A. Convex Analysis

A non-empty set C ⊂ Rd, is convex, if for any two points y, y′ ∈ C, it also

contains the line segment connecting y and y′, that is for any λ ∈ (0, 1)

λy + (1 − λ)y′ ∈ C .

A function f : Rd → R∪ {+∞}, not identically +∞, is called a convex function,

if for all y, y′ ∈ Rd and λ ∈ (0, 1), it holds that

(A.1) f(λx+ (1 − λ)x′) ≤ λf(x) + (1 − λ)f(x′) .

The function f is called strictly convex if (A.1) holds with strict inequality when-

ever y 6= y′. For a convex function, we define its effective domain, often simply

called ‘domain’, as the set where is takes finite values:

dom f =
{
y ∈ Rd : f(y) < +∞

}
.

It is easy to see that the domain of a convex function is also a convex set. A

convex function that is lower semicontinuous on all of Rd, is called closed convex.

Closed convex functions have stronger regularity properties than convex functions

and occur in probability theory as cumulant generating functions (see below).

We list some important results on convex functions, the proofs of which can all be

found in Hiriart-Urruty and Lemaréchal [1993]:

Lemma A.1. Any convex function on Rd is locally Lipschitz, and in particular

continuous, on the interior of its domain17.

Lemma A.2. Any convex function on R is upper semicontinuous on its domain.

It follows that a closed convex function on R is continuous not just in the interior,

but also on the boundary of its domain. Moreover, any closed convex function on

Rd is continuous along any line segment contained in its domain.

Lemma A.3. Let fn be a sequence of convex functions on Rd, converging point-

wise to f . Then f is convex, and the convergence is uniform on every compact

subset of the interior of dom f .

B. (Extended) cumulant and moment generating functions

Definition B.1 (sub-stochastic measure). A (Borel) measure µ on Rd is called

sub-stochastic measure, if 0 < µ(Rd) ≤ 1.

17This and most other results can be generalized from the interior of the domain to the so-called
relative interior ; see Hiriart-Urruty and Lemaréchal [1993] for details.
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For any sub-stochastic measure µ on Rd we introduce the following integral

transforms:

Φ(y) : Rd → R ∪ {+∞} , y 7→
∫

Rd

e〈y,ξ〉 dξ

is called the moment generating function of µ, and

κ(y) : Rd → R ∪ {+∞} , y 7→ log

∫

Rd

e〈y,ξ〉 dξ

is called its cumulant generating function.

Proposition B.2. (1) The moment generating function Φ(y) is a strictly

positive, lower semi-continuous, log-convex function.

(2) The cumulant generating function κ(y) is a closed convex function with

κ(0) ≤ 0.

(3) Let y ∈ Rd. Then the function R ∋ s 7→ κ(sy) is either strictly convex or

linear.

Proof. Let yn → y. Then e〈yn,ξ〉 is a sequence of positive functions, such that

by Fatou’s Lemma

lim inf
yn→y

Φ(y) = lim inf
yn→y

∫

Rd

e〈y,ξ〉 dξ ≥
∫

Rd

lim inf
yn→y

e〈y,ξ〉 dξ = Φ(y)

showing lower semi-continuity of Φ. The positivity of the exponential function

implies that also Φ(y) is positive. Consider now κ(y). By Hölder’s inequality

κ (λy + (1 − λ)y′) = log

∫

Rd

eλ〈y,ξ〉e(1−λ)〈y′,ξ〉 dξ ≤

≤ λ log

∫

Rd

e〈y,ξ〉 dξ + (1 − λ) log

∫

Rd

e〈y′,ξ〉 dξ = λκ(y) + (1 − λ)κ(y′)

for all y, y′ ∈ Rd and λ ∈ (0, 1). since κ(0) = log ν(Rd) ∈ (−∞, 0] we conclude that

κ(y) is convex and Φ(y) is log-convex. As a lower semicontinuous convex function

κ is closed convex.

Consider now the function R ∋ s 7→ κ(sy) for some fixed y ∈ Rd. Clearly this is a

convex function. Applying Hölder’s inequality to κ((λs+(1−λ)s′)y) with s 6= s′, we

see that equality holds if and only if there exists k ∈ R such that kes〈y,ξ〉 = es
′〈y,ξ〉

for µ-almost every ξ ∈ Rd. This is equivalent to the function ξ 7→ 〈y, ξ〉 being

constant (:= C) almost everywhere. In this case

κ(sy) = log

∫

Rd

es〈y,ξ〉 = log(Csµ(Rd)) = s logC + log(µ(Rd)) ,

which is a linear function of s. In any other case strict inequality holds in Hölder’s

inequality, such that s 7→ κ(sy) is strictly convex. �
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Definition B.3. Let DC =
{
u ∈ Cd : Φ(Reu) <∞

}
. Then we can define the

extended moment generating function

Φ(u) : DC → C : u→
∫

Rd

e〈u,ξ〉 µ(dξ) .

If µ is infinitely divisible18, then by Lemma C.3 Φ(u) cannot have zeroes in Cn,

and we can take the logarithm to define the extended cumulant generating

function

Φ(u) : DC → C : u→ log

∫

Rd

e〈u,ξ〉 µ(dξ) .

Proposition B.4. (i) The extended moment generating function and the ex-

tended cumulant generating functions are analytic on D◦
C.

(ii) Let y ∈ Rd such that Φ(y) <∞, and set Ω = {z ∈ C : Re z ∈ R, Im z ∈ [0, 1]}.
Then h : Ω → C : z 7→ Φ(izy) is analytic on Ω◦ and continuous on Ω.

Proof. Define µn(dξ) := 1{|ξ|≤n}µ(dξ). It holds that
∣∣e〈u,ξ〉

∣∣ = e〈Reu,ξ〉, such

that dominated convergence allows us to conclude

Φn(u) :=

∫

Rd

e〈u,ξ〉 µn(dξ) →
∫

Rd

e〈u,ξ〉 µ(dξ) = Φ(u)

pointwise for each u ∈ D◦
C as n→ ∞. We show now that the convergence is uniform

on every compact subset K of u ∈ D◦
C:

(B.1)

∣∣∣∣
∫

Rd

e〈u,ξ〉 µ(dξ) −
∫

Rd

e〈u,ξ〉 µn(dξ)

∣∣∣∣ =
∣∣∣∣
∫

Rd

e〈u,ξ〉 (µ− µn) (dξ)

∣∣∣∣ ≤

≤
∫

Rd

e〈Reu,ξ〉 (µ− µn) = Φ(Reu) − Φn(Reu).

Since the exponential function is locally Lipschitz, we can estimate the last term

on the compact set K by

sup
u∈K

|Φ(Reu) − Φn(Reu)| ≤ LK sup
u∈K

|κ(Reu) − κn(Reu)| .

The right hand side is the difference of two convex functions converging point-

wise. But pointwise convergence of convex functions implies uniform convergence on

compact subset of the interior of their domains (cf.Hiriart-Urruty and Lemaréchal

[1993].) We conclude that also Φn converges uniformly on compact subsets of D◦
C

to Φ. On the other hand, Φn is – as the Fourier-Laplace transform of a measure

with bounded support – an entire function by the Paley-Wiener-Schwartz theorem.

In particular Φn(u) is analytic on D◦
C, and since analyticity is preserved by uniform

convergence on compacts, so is Φ(u).

Regarding claim (ii), it is clear that h is analytic on Ω◦, as the composition of

18See Section C.
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analytic maps. To show continuity note that

(B.2) |Φ(izy)| =

∣∣∣∣
∫

Rd

eiz〈y,ξ〉 µ(dξ)

∣∣∣∣ ≤
∫

Rd

eIm z〈y,ξ〉 µ(dξ) = Φ(Im z · y) .

Taking the logarithm on the right side we know that s 7→ log Φ(su) is a finite closed

convex function on [0, 1]. By Lemma (A.2), it is therefore continuous, taking a

maximum at some point in [0, 1]. This means that the right hand side of (B.2) can

be bounded uniformly for Im z ∈ [0, 1]. Dominated convergence then proves the

continuity of h on Ω. �

C. Infinite Divisibility and related notions

Definition C.1. An Rd-valued random variable X is called infinitely divisible,

if for any n ∈ N there exist iid random variables X1, . . . ,Xn, independent of X,

such that

X = X1 + · · · +Xn

The term ‘truncation function’ has no consistent definition throughout the lit-

erature on infinitely divisible distributions. We will use a more refined terminology

than most texts and define the following:

Definition C.2. (1) Let ν be a Lévy measure on Rd. We say that a

function h : Rd → Rd is a truncation function for ν, if it is bounded,

continuous, and satisfies
∫

Rd

(|h(ξ) − ξ| ∧ 1) ν(dξ) <∞ .

(2) We say that h : Rd → Rd is a (universal) truncation function, if it is

a truncation function for any Lévy measure on Rd, or equivalently, if h is

bounded, continuous, and satisfies

h(ξ) = ξ + O(|ξ|2) .

Frequently used truncation functions are

h(ξ) = 1{|ξ|≤1}ξ and h(ξ) =
ξ

1 + |ξ|2 .

Note that the latter one is in C∞(Rd).

Lemma C.3. The extended moment generating function Φ(u) : DC → C of an

infinitely divisible sub-stochastic measure has no zeroes.

Proof. Define Φ̃(y) = Φ(u)
Φ(0) . The function Φ̃ is the extended moment gener-

ating function of the infinitely divisible probability measure µ(dξ)/µ(Rd). Clearly

Φ̃ has the same zeroes as Φ. Let Ξ(u) := limn→∞ Φ̃(u)1/n. By infinite divisibility,

Φ̃(u)1/n is a well-defined moment generating function of some probability measures
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for each n. By continuity of the moment generating function there exists a neigh-

borhood N of 0 such that Φ̃(y) 6= 0 in N . It follows that Ξ(u) = 1 in N , and

thus that also Ξ(u) is a moment generating function. But a moment generating

function that takes the value 1 on a set with an accumulation point, must equal

1 everywhere. It follows that Φ̃(y) can have no zeros, and the same must hold for

Φ(y). �

Theorem C.4 (Lévy-Khintchine formula). Let X be an infinitely divisible ran-

dom variable on Rd, then

E[e〈u,X〉] = exp

[
1

2
〈u,Au〉 + 〈b, u〉 +

∫

Rd

(
e〈x,u〉 − 1 − 〈h(x), u〉

)
m(dx)

]

for all u ∈ iRd, where A is a symmetric nonnegative definite d× d-matrix, b ∈ Rd,

and m is a Borel measure on Rd satisfying

m({0}) = 0 and

∫

Rd

(
|x|2 ∧ 1

)
m(dx) <∞ .

Proof. Sato [1999, Theorem 8.1]. �

Theorem C.5. Let X be an infinitely divisible random variable on Rd>0, then

E[e〈u,X〉] = exp

[
〈γ, u〉 +

∫

Rd
>0

(
e〈x,u〉 − 1

)
m(dx)

]

for all u ∈ Cd−, where γ ∈ Rd>0, and m is a Borel measure on Rd>0 satisfying

m({0}) = 0 and

∫

Rd
>0

(|x| ∧ 1) m(dx) <∞ .

Proof. Sato [1999, Chapter 24]. �

Definition C.6. Let λ > 0 and p a probability measure on Rd. A distribu-

tion is called compound Poisson distribution with intensity λ and kernel p if its

characteristic function is given by

φ(u) = exp

(
λ

∫

Rd

(
e〈ξ,u〉 − 1

)
p(dξ)

)

Proof. Sato [1999, Corollary 8.8]. �

Proposition C.7. (a) A compound Poisson distribution is infinitely divisible

with triplet (0, 0, λp).

(b) A distribution is infinitely divisible if and only if it is the limit of compound

Poisson distributions.

Lemma C.8 (Linear Transformation Lemma). Let T be a linear map from Rd

to Rk (in particular T could be a projection), let h and h′ be truncation functions

on Rd and Rk respectively, and let K be a infinitely divisible random variable on Rd
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with Lévy triplet (A,B,M)h. Then T ·K is a infinitely divisible random variable

on Rk with Lévy triplet (A′, B′,M ′)h′ , where

A′ = TAT ∗(C.1a)

B′ = TB +

∫

Rd

(T ◦ h− h′ ◦ T ) (ξ)m(dξ)(C.1b)

M ′(dξ) = M(T−1dξ)(C.1c)

Proof. Sato [1999, Prop. 11.10]. �





Bibliography

Leif B. G. Andersen and Vladimir V. Piterbarg. Moment explosions in stochastic

volatility models. Finance and Stochastics, 11:29–50, 2007.

Ole E. Barndorff-Nielsen. Processes of normal inverse Gaussian type. Finance and

Stochastics, 2:41 – 68, 1997.

Ole E. Barndorff-Nielsen and Neil Shephard. Non-Gaussian Ornstein–Uhlenbeck-

based models and some of their uses in financial economics. Journal of the Royal

Statistical Society B, 63:167–241, 2001.

David S. Bates. Jump and stochastic volatility: exchange rate processes implicit in

Deutsche Mark options. The Review of Financial Studies, 9:69–107, 1996.

David S. Bates. Post-’87 crash fears in the S&P 500 futures option market. Journal

of Econometrics, 94:181–238, 2000.

Shalom Benaim and Peter Friz. Regular variation and smile asymptotics.

arXiv:math/0603146v2, to appear in Mathematical Finance, 2006.

P. Carr and D. B. Madan. Option valuation using the fast fourier transform. Journal

of Computational Finance, 2(4), 1999.

Peter Carr and Liuren Wu. Time-changed Lévy processes and option pricing. Jour-
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