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Abstract

In the present paper we construct a decomposition of a sample into a finite
number of subsamples in the case where the sample size is random and the
decomposition depends on the values of the sampling variables. We investigate
the basic properties of the subsamples and compute the first and second order
moments of their sample sums, sample means, and sample variances.

1 Introduction

In the present paper we construct a decomposition of a sample into a finite number
of subsamples in the case where the sample size is random and the decomposition
depends on the values of the sampling variables. We investigate the basic properties
of the subsamples and compute the first and second order moments of their sample
sums, sample means, and sample variances.

Throughout the paper let
– (Ω,F ,P) be a probability space,
– (M,M) be a measurable space where M is a linear space,
– H be a finite set of indices,
– {Mh}h∈H be a finite partition of M ,
– N : Ω→ N0 be a random variable with P [N ∈ N] > 0, and
– {Yi}i∈N be a sequence of random variables Ω→M

such that
– the sequence {Yi}i∈N is i.i.d.,
– the pair {N, {Yi}i∈N} is independent, and
– ηh := P [Y ∈Mh] > 0 holds for all h ∈ H (where Y denotes a random variable

having the same distribution as each Yi).

∗This is a corrected reprint of the version from February 24, 2000. The author would like to
thank Markus Hübel (München) for some helpful comments.
†Present Address: Universität Rostock, Institut für Mathematik, D–18055 Rostock, Germany
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Interpretation: The family Y1, . . . , YN is a sample with random sample size N . We
want to construct a decomposition into some random subsamples Y

(h)
1 , . . . , Y

(h)

N(h)

with random sample sizes N (h), such that Y
(h)
i ∈ Mh for each h ∈ H. The aim of

this paper is to prove some properties of these random subsamples and to calculate
the first two moments of the sample sum, the sample mean, and the sample variance.

The present paper partly generalizes the results of Franke and Macht (1995) and
of Hess, Macht, and Schmidt (1995), which are included in Schmidt (1996), in the
sense that we consider a more general structure of the sample and a decomposition
into more than two subsamples. Properties of thinned samples were also studied
by Stenger (1986). He described the procedure of thinning and called it Poisson–
sampling.

The paper is organized as follows: In Section 2 we give the results on decomposed
samples, and in Section 3 we establish the first and second order moments of the
sample sum, sample mean, and sample variance of the subsamples by reducing our
situation to the classical case (see e. g. Cramér (1946)). In Section 4 we present
some applications in insurance. Section 5 includes the proof of Theorem 2.1, which
is the main result of this paper.

2 Decomposition of samples

For the moment fix h ∈ H. First let

N (h) :=
N∑
i=1

χ{Yi∈Mh}

Then N (h) is the random sample size of group h.

Second we define recursively a sequence of stopping times

ν
(h)
0 := 0

ν
(h)
i := inf{j ∈ N | ν(h)

i−1 < j, Yj ∈Mh}

and a sequence of random variables

Y
(h)
i :=

∞∑
j=1

χ{ν(h)
i =j}Yj

for all i ∈ N. Then
{
Y

(h)
i

}
i∈N

is the sequence of sampling variables of group h and

Y
(h)
i ∈Mh.

The pair
{{
Y

(h)
i

}
i∈N

, N (h)

}
is called a random subsample of group h.

The next theorem shows the properties of random subsamples:
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2.1 Theorem.
(a) For each h ∈ H the sequence

{
Y

(h)
i

}
i∈N

is i.i.d. with

P
[
Y (h) ∈ A

]
= P(Y ∈ A|Y ∈Mh)

for all A ∈M.
(b) The family {{

Y
(h)
i

}
i∈N

}
h∈H

is independent.
(c) The pair {{{

Y
(h)
i

}
i∈N

}
h∈H

,
{
N (h)

}
h∈H

}
is independent.

(d) The conditional joint distribution of {N (h)}h∈H given N is the conditional multi-
nominal distribution with parameters N and {ηh}h∈H .

Proof. See Section 5. 2

In general the family of random sample sizes of all groups is not independent:

2.2 Corollary. The following are equivalent:
(i) The family {N (h)}h∈H is independent.
(ii) N has a non–degenerate Poisson distribution.

Proof. The assertion follows from Theorem 2.1 (d); see e. g. Hess and Schmidt
(1994). 2

Furthermore we have the following properties of the random sample sizes:

2.3 Corollary.
(a) For each h ∈ H the conditional distribution of N (h) given N is the conditional

binomial distribution with the parameters N and ηh.
(b) If E [N ] <∞, then E

[
N (h)

]
= ηhE [N ] holds for all h ∈ H.

(c) If E [N2] <∞, then cov
[
N (h), N (j)

]
= ηhηj(var [N ]−E [N ])+δhjηhE [N ] holds

for all h, j ∈ H.
(d) If N has the binomial distribution with parameters n ∈ N and ϑ ∈ (0, 1), then

{N (h)}h∈H has the multinomial distribution with parameters n and {ϑηh}h∈H
and each N (h) has the binomial distribution with parameters n and ϑηh.

(e) If N has the Poisson distribution with parameter λ ∈ (0,∞), then {N (h)}h∈H
is independent and each N (h) has the Poisson distribution with parameter ληh.

(f) If N has the negativebinomial distribution with parameters ρ ∈ (0,∞) and
ϑ ∈ (0, 1), then {N (h)}h∈H has the negativemultinomial distribution with pa-
rameters ρ and {ϑηh}h∈H and each N (h) has the negativebinomial distribution
with parameters ρ and (ϑηh)/(1− ϑ+ ϑηh).

Proof. Straightforward. Partly see Hess and Schmidt (1994) and Schmidt and
Wünsche (1998). 2
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3 Moments of sample moments

Let {gh}h∈H be a family of measurable functions gh : M → R, and define sequences
of real random variables by

X
(h)
i := gh ◦ Y (h)

i

for all i ∈ N and h ∈ H. Then Theorem 2.1 remains valid with X
(h)
i instead of Y

(h)
i

and
P
[
X(h) ∈ A

]
= P

(
Y ∈ g−1

h (A)
∣∣∣Y ∈Mh

)
for all A ∈ B(R).

Define
N := σ({N (h)}h∈H)

Because of Theorem 2.1 (c), the assertions (a) and (b) of Theorem 2.1 also hold
conditionally with respect to N .

Now we consider some sample functions and using Theorem 2.1 we can calculate
the first two moments of these sample functions.

First denote by

S(h) :=
N(h)∑
i=1

X
(h)
i

the sample sum of group h.

3.1 Theorem. Assume that E [N2] <∞ and E [X2] <∞. Then the equations

E
[
S(h)

]
= E

[
N (h)

]
E
[
X(h)

]
cov

[
S(h), S(j)

]
= cov

[
N (h), N (j)

]
E
[
X(h)

]
E
[
X(j)

]
+ δhjE

[
N (h)

]
var

[
X(h)

]
hold for all h, j ∈ H.

Proof. For h = j ∈ H the assertions follow from Wald’s equalities (see e. g.
Schmidt (1996)); for h, j ∈ H with h 6= j we get

cov
[
S(h), S(j)

]
= cov

[
E
(
S(h)

∣∣∣N) , E(S(j)
∣∣∣N)]+ E

[
cov

(
S(h), S(j)

∣∣∣N)]
= cov

[
N (h) E

(
X(h)

∣∣∣N) , N (j) E
(
X(j)

∣∣∣N)]
= cov

[
N (h) E

[
X(h)

]
, N (j) E

[
X(j)

]]
= cov

[
N (h), N (j)

]
E
[
X(h)

]
E
[
X(j)

]
and the assertion follows. 2

Next denote by

S
(h)

:=


1

N (h)

N(h)∑
i=1

X
(h)
i if N (h) ≥ 1

0 otherwise
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the sample mean of group h. The concept of the sample mean is useful only if we
have at least one observation in group h, which means that N (h) > 0. Therefore we
will consider only the conditional moments for the sample mean under the condition
that we have at least one observation. For each non–empty J ⊆ H define

AJ :=
⋂
h∈J
{N (h) > 0} ∩

⋂
h∈H\J

{N (h) = 0}

Then we have σ(AJ) ⊆ N and, by Theorem 2.1 (d), P [AJ ] > 0. Now we can
calculate the first two conditional moments of the sample mean:

3.2 Theorem. Let J ⊆ H with J 6= ∅ and assume that E [N2]<∞ and E [X2]<∞.
Then the equations

E
(
S

(h)
∣∣∣∣AJ) = E

[
X(h)

]
cov

(
S

(h)
, S

(j)
∣∣∣∣AJ) = δhjE

(
1

N (h)

∣∣∣∣AJ)var
[
X(h)

]
hold for all h, j ∈ J .

Proof. We get for all h, j ∈ J

E
(
S

(h)
∣∣∣∣AJ) = E

(
E
(
S

(h)
∣∣∣∣N)∣∣∣∣AJ)

= E
(

E
(
X(h)

∣∣∣N)∣∣∣AJ)
= E

[
X(h)

]
and

cov
(
S

(h)
, S

(j)
∣∣∣∣AJ)

= cov
(

E
(
S

(h)
∣∣∣∣N) , E(S(j)

∣∣∣∣N)∣∣∣∣AJ)+ E
(

cov
(
S

(h)
, S

(j)
∣∣∣∣N)∣∣∣∣AJ)

= cov
(

E
(
X(h)

∣∣∣N) , E(X(j)
∣∣∣N)∣∣∣AJ)+ δhjE

(
1

N (h)
var

(
X(h)

∣∣∣N)∣∣∣∣AJ)
= δhjE

(
1

N (h)

∣∣∣∣AJ)var
[
X(h)

]
which proves the assertion. 2

We conclude this section with analogous results for the sample variance, which is
defined for each group h by

V (h) :=


1

N (h) − 1

N(h)∑
i=1

(
X

(h)
i − S

(h)
)2

if N (h) ≥ 2

0 otherwise
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For the sample variance we need at least two observations. Therefore we define for
all non–empty J ⊆ H

BJ :=
⋂
h∈J
{N (h) > 1} ∩

⋂
h∈H\J

{N (h) ≤ 1}

Then we have again σ(BJ) ⊆ N and, by Theorem 2.1 (d), P [BJ ] > 0, if we assume
in addition, that P [N ≥ 2] > 0 holds. Now we can calculate the first two conditional
moments of the sample variance:

3.3 Theorem. Let J ⊆ H with J 6= ∅ and assume that P [N ≥ 2] > 0, E [N2] <∞,
and E [X4] <∞. Then the equations

E
(
V (h)

∣∣∣BJ

)
= var

[
X(h)

]
cov

(
V (h), V (j)

∣∣∣BJ

)
= δhj

(
E

(
3−N (h)

N (h)(N (h) − 1)

∣∣∣∣∣BJ

)(
var

[
X(h)

])2

+E
(

1

N (h)

∣∣∣∣BJ

)
E
[(
X(h) − E

[
X(h)

])4
] )

hold for all h, j ∈ J .

Proof. We get for all h, j ∈ J

E
(
V (h)

∣∣∣BJ

)
= E

(
E
(
V (h)

∣∣∣N)∣∣∣BJ

)
= E

(
var

(
X(h)

∣∣∣N)∣∣∣BJ

)
= var

[
X(h)

]
and

cov
(
V (h), V (j)

∣∣∣BJ

)
= cov

(
E
(
V (h)

∣∣∣N) , E(V (j)
∣∣∣N)∣∣∣BJ

)
+ E

(
cov

(
V (h), V (j)

∣∣∣N)∣∣∣BJ

)
= cov

(
var

(
X(h)

∣∣∣N) ,var
(
X(j)

∣∣∣N)∣∣∣BJ

)
+δhj

(
E

(
3−N (h)

N (h)(N (h) − 1)

(
var

(
X(h)

∣∣∣N))2
∣∣∣∣∣BJ

)

+E
(

1

N (h)
E
((
X(h) − E

(
X(h)

∣∣∣N))4
∣∣∣∣N)∣∣∣∣BJ

))

= δhj

(
E

(
3−N (h)

N (h)(N (h) − 1)

∣∣∣∣∣BJ

)(
var

[
X(h)

])2

+E
(

1

N (h)

∣∣∣∣BJ

)
E
[(
X(h) − E

[
X(h)

])4
] )

as was to be shown. 2
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4 Examples

The following example on reinsurance was considered by Hess, Macht, and Schmidt
(1995). The sampling problem in health insurance occurs in Siegel (1995).

Excess–of–Loss Reinsurance: Let (M,M) := (R,B(R)). We consider the col-
lective model of risk theory given by the random variable N which represents the
number of claims (occurring in one year) and the sequence {Yi}i∈N where Yi repre-
sents the claim amount of claim i ∈ N. It is assumed that the sequence {Yi}i∈N is
i.i.d. and independent of N . In excess of loss reinsurance, the reinsurer covers for
each individual claim that part of the claim amount which exceeds a given priority
c > 0. The aggregate claim amount of the reinsurer is then given by

S :=
N∑
i=1

(Yi − c)+

In general, the probability P [(Y − c)+ = 0] is large. It is therefore convenient to
consider the thinned sequence of all claims exceeding the priority c. We define
H := {0, 1} and M1 := (c,∞). Then

N (1) =
N∑
i=1

χ{Yi>c}

is the number of all claims exceeding the priority c. The aggregate claim amount of
the reinsurer is the sample sum

S =
N(1)∑
i=1

(Y
(1)
i − c)

where
{
Y

(1)
i

}
i∈N

is i.i.d. with P
[
Y (1) > c

]
= 1 and independent of N (1) by Theorem

2.1.

Health Insurance: We consider a portfolio of n risks, that means P [N = n] = 1.
The annual cost per head depends on the age of the insured and on the observation
year. Let X ⊆ N2

0 be the finite set consisting of the possible pairs of ages and
observation years and define (M,M) = (X ×R, 2X ⊗B(R)). Then the sequence of
random variables {Yi}i∈N is assumed to be i.i.d. with Yi = (Xi, Ti, Ki) where Xi is
the age of the insured, Ti is the observation period, and Ki is the annual cost. In
order to estimate the average cost per head for each age and each observation year,
the sample {Yi}i∈{1,...,n} has to be decomposed according to the values of the sample
{(Xi, Ti)}i∈{1,...,n}. Therefore we define H := X and Mh := {h} ×R. Then for each
(x, t) ∈ X

N (x,t) =
n∑
i=1

χ{(Xi,Ti)=(x,t)}

is the random number of insured of age x and observed in period t. The sampling
variables of group (x, t) are Y

(x,t)
i = (X

(x,t)
i , T

(x,t)
i , K

(x,t)
i ) = (x, t,K

(x,t)
i ). We are
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interested in an estimator of the average cost per head E
[
K

(x,t)
i

]
in each group. By

Theorem 3.2 the sample mean of the thinned sequence

K̂x,t :=
1

N (x,t)

N(x,t)∑
i=1

K
(x,t)
i

is an unbiased estimator of E
[
K

(x,t)
i

]
, if we have at least one observation in group

(x, t) ∈ X . For further calculations like regression the theorem gives the variance–
covariance structure of the estimators.

5 Proof of Theorem 2.1

We first prove that the sequence of the sampling variables of all groups is i.i.d.
(assertion (a)).

5.1 Theorem. For each h ∈ H the sequence
{
Y

(h)
i

}
i∈N

is i.i.d. with

P
[
Y (h) ∈ A

]
= P(Y ∈ A|Y ∈Mh)

for all A ∈M.

Proof. Let h ∈ H. For all k ∈ N, let E(k) denote the collection of all strictly
increasing sequences {mi}i∈{1,...,k} ⊆ N. For E = {mi}i∈{1,...,k} ∈ E(k), define
J(E) := {1, . . . ,mk}\E. Then the identities

k⋂
i=1

{ν(h)
i = mi} =

⋂
m∈E
{Ym ∈Mh} ∩

⋂
m∈J(E)

{Ym /∈Mh}

and hence

P

[
k⋂
i=1

{ν(h)
i = mi}

]
= ηkh(1− ηh)mk−k

hold for all k ∈ N and for all E = {mi}i∈{1,...,k} ∈ E(k).

For two distinct sequences {mi}i∈{1,...,k} ∈ E(k) and {m′i}i∈{1,...,k} ∈ E(k) we have

k⋂
i=1

{ν(h)
i = mi} ∩

k⋂
i=1

{ν(h)
i = m′i} = ∅

Furthermore we get

∑
E∈E(k)

P

[
k⋂
i=1

{ν(h)
i = mi}

]
=

∑
E∈E(k)

ηkh(1− ηh)mk−k

=
∞∑

mk=k

(
mk − 1

mk − k

)
ηkh(1− ηh)mk−k

=
∞∑
l=0

(
k + l − 1

l

)
ηkh(1− ηh)l

= 1
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For all A1, . . . , Ak ∈M and E = {mi}i∈{1,...,k} ∈ E(k) we have

P

[
k⋂
i=1

{Y (h)
i ∈ Ai} ∩

k⋂
i=1

{ν(h)
i = mi}

]

= P

[
k⋂
i=1

{Ymi
∈ Ai} ∩

k⋂
i=1

{ν(h)
i = mi}

]

= P

 k⋂
i=1

{Ymi
∈ Ai} ∩

k⋂
i=1

{Ymi
∈Mh} ∩

⋂
l∈J(E)

{Yl /∈Mh}


= P

 k⋂
i=1

({Ymi
∈ Ai} ∩ {Ymi

∈Mh}) ∩
⋂

l∈J(E)

{Yl /∈Mh}


=

k∏
i=1

P [{Ymi
∈ Ai} ∩ {Ymi

∈Mh}] ·
∏

l∈J(E)

P [Yl /∈Mh]

=
k∏
i=1

P(Ymi
∈ Ai|Ymi

∈Mh) ·
k∏
i=1

P [Ymi
∈Mh] ·

∏
l∈J(E)

P [Yl /∈Mh]

=
k∏
i=1

P(Ymi
∈ Ai|Ymi

∈Mh) ·P

 k⋂
i=1

{Ymi
∈Mh} ∩

⋂
l∈J(E)

{Yl /∈Mh}


=

k∏
i=1

P(Y ∈ Ai|Y ∈Mh) ·P
[
k⋂
i=1

{ν(h)
i = mi}

]

Summation over all sequences in E(k) yields

P

[
k⋂
i=1

{Y (h)
i ∈ Ai}

]
=

k∏
i=1

P(Y ∈ Ai|Y ∈Mh)

Using this identity we get

P
[
Y

(h)
i ∈ Ai

]
= P(Y ∈ Ai|Y ∈Mh)

for all i ∈ {1, . . . , k} and therefore

P

[
k⋂
i=1

{Y (h)
i ∈ Ai}

]
=

k∏
i=1

P
[
Y

(h)
i ∈ Ai

]
which completes the proof. 2

For the proof of the assertion (b) we need a family of sequences which generalizes
the set E(k) from the last proof.

For s ∈ N and k1, . . . , ks ∈ N0, such that max{k1, . . . , ks} ≥ 1, and for each
r ∈ {1, . . . , s} denote by D(r)(k1, . . . , ks) the collection of all s–tuples of strictly

increasing sequences {m(j)
i }i∈{1,...,lj} ⊆ N satisfying lr = kr and lj ≥ kj as well as

mlj < mlr = l1 + . . .+ ls for all j ∈ {1, . . . , s}\{r}, such that some of these sequences
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may be empty and the (disjoint) union of these sequences is {1, . . . , l1 + . . . + ls}.
Further we define

D(k1, . . . , ks) :=
s∑
r=1

D(r)(k1, . . . , ks)

Note thatD(r)(k1, . . . , ks) = ∅ if kr = 0. Furthermore there exists a bijection between
D(k, 0) and E(k) as used in the proof of Theorem 5.1. For the proof of assertion (b)
we need the following lemma.

5.2 Lemma. For all s ∈ N and k1, . . . , ks ∈ N0 with max{k1, . . . , ks} ≥ 1 the
equation

∑
D(k1,...,ks)

s∏
i=1

ϑlii = 1

holds for each ϑ1, . . . , ϑs ∈ (0, 1] with ϑ1 + . . .+ ϑs = 1.

Proof. We will prove this lemma by induction over both s and k1 + . . . + ks. If
s = 1 and k1 = 1 the assertion follows immediately.

Now we consider the case, that at least one of the kj’s is equal to zero. Without loss
of generality we assume that ks = 0. In this case we have s > 1 and hence ϑi < 1
for all i ∈ {1, . . . , s}. Thus we obtain

∑
D(k1,...,ks)

s∏
i=1

ϑlii

=
s∑
j=1

∑
(r1,...,rs−1,rs)≥(k1,...,ks−1,0)

rj=kj

#{D ∈ D(j)(k1, . . . , ks) | ∀i ∈ {1, . . . , s} : li = ri} ·
s∏
i=1

ϑlii

=
s−1∑
j=1

∑
(r1,...,rs−1,rs)≥(k1,...,ks−1,0)

rj=kj

#{D ∈ D(j)(k1, . . . , ks) | ∀i ∈ {1, . . . , s} : li = ri} ·
s∏
i=1

ϑlii

=
s−1∑
j=1

∑
(r1,...,rs−1)≥(k1,...,ks−1)

rj=kj

∞∑
rs=0

(
r1 + . . .+ rs − 1

r1 . . . rj−1 rj − 1 rj+1 . . . rs

)
·
s∏
i=1

ϑrii

=
s−1∑
j=1

∑
(r1,...,rs−1)≥(k1,...,ks−1)

rj=kj

Γ(r1 + . . .+ rs−1)

Γ(rj) · r1! . . . rj−1!rj+1! . . . rs−1!

·
∞∑
rs=0

Γ(r1 + . . .+ rs−1 + rs)

Γ(r1 + . . .+ rs−1) · rs!
ϑrss (1− ϑs)r1+...+rs−1 ·

s−1∏
i=1

(
ϑi

1− ϑs

)ri

=
s−1∑
j=1

∑
(r1,...,rs−1)≥(k1,...,ks−1)

rj=kj

(
r1 + . . .+ rs−1 − 1

r1 . . . rj−1 rj − 1 rj+1 . . . rs−1

)

·
s−1∏
i=1

(
ϑi

1− ϑs

)ri
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=
s−1∑
j=1

∑
(r1,...,rs−1)≥(k1,...,ks−1)

rj=kj

#{D ∈ D(j)(k1, . . . , ks−1) | ∀i ∈ {1, . . . , s− 1} : li = ri}

·
s−1∏
i=1

(
ϑi

1− ϑs

)ri

=
∑

D(k1,...,ks−1)

s−1∏
i=1

(
ϑi

1− ϑs

)li

If all kj > 0, then we split D(k1, . . . , ks) into s–parts:
For each r ∈ {1, . . . , s} denote by D(r)(k1, . . . , ks) the collection of all s–tuples

({m(1)
i }i={1,...,l1}, . . . , {m

(s)
i }i={1,...,ls}) ∈ D(k1, . . . , ks) satisfying m

(r)
1 = 1. Then we

have

D(k1, . . . , ks) =
s∑
r=1

D(r)(k1, . . . , ks)

Furthermore, there are obvious bijections between D(r)(k1, . . . , kr−1, kr, kr+1, . . . , ks)
and D(k1, . . . , kr−1, kr−1, kr+1, . . . , ks). Therefore the assertion follows by induction.

2

Now we are able to prove that the sequences of sample variable of different groups
are independent (assertion (b)). Furthermore, we shall prove that the family of all
these sequences is independent of the families of stopping–times and the sample size.
We will need this result for the proof of assertion (c).

5.3 Theorem. The family of the thinned sequences{{
Y

(h)
i

}
i∈N

}
h∈H

and the pair {{{
Y

(h)
i

}
i∈N

}
h∈H

,
{{{

ν
(h)
i

}
i∈N

}
h∈H

, N
}}

are independent.

Proof. For all families {kh}h∈H ⊆ N0 such that max{kh | h ∈ H} ≥ 1 and for all

{{m(h)
i }i={1,...,lh}}h∈H ∈ D({kh}h∈H) the identities

⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } =

⋂
h∈H

lh⋂
i=1

{Ymi
(h) ∈Mh}

and hence

P

 ⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i }

 =
∏
h∈H

ηlhh

11



hold. Using Lemma 5.2 we get

∑
D({kh}h∈H)

P

 ⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i }

 = 1

Let {{m(h)
i }i={1,...,lh}}h∈H ∈ D({kh}h∈H) and {{m̃(h)

i }i={1,...,lh}}h∈H ∈ D({kh}h∈H) be
two distinct families. Then we have

⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩

⋂
h∈H

lh⋂
i=1

{ν(h)
i = m̃

(h)
i } = ∅

By using Theorem 5.1 we get for all k ∈ N and A
(h)
i ∈ M (for i ∈ {1, . . . , k} and

h ∈ H), for all families {{m(h)
i }i={1,...,lh}}h∈H ∈ D({k}h∈H), and for all n ∈ N0

P

 ⋂
h∈H

k⋂
j=1

{Y (h)
j ∈ A(h)

j } ∩
⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


= P

 ⋂
h∈H

k⋂
j=1

{Ymi
(h) ∈ A(h)

j } ∩
⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


= P

 ⋂
h∈H

k⋂
j=1

{Ymi
(h) ∈ A(h)

j } ∩
⋂
h∈H

lh⋂
i=1

{Ymi
(h) ∈Mh} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
j=1

(
{Ymi

(h) ∈ A(h)
j } ∩ {Ymi

(h) ∈Mh}
)

∩
⋂
h∈H

lh⋂
i=k+1

{Ymi
(h) ∈Mh} ∩ {N = n}


=

∏
h∈H

k∏
j=1

P
[
{Ymi

(h) ∈ A(h)
j } ∩ {Ymi

(h) ∈Mh}
]

·
∏
h∈H

lh∏
i=k+1

P
[
Ymi

(h) ∈Mh

]
·P [N = n]

=
∏
h∈H

k∏
j=1

P
(
Ymi

(h) ∈ A(h)
j

∣∣∣Ymi
(h) ∈Mh

)

·
∏
h∈H

lh∏
i=1

P
[
Ymi

(h) ∈Mh

]
·P [N = n]

=
∏
h∈H

k∏
j=1

P
[
Y

(h)
j ∈ A(h)

j

]
·P

 ⋂
h∈H

lh⋂
i=1

{Ymi
(h) ∈Mh} ∩ {N = n}


=

∏
h∈H

k∏
j=1

P
[
Y

(h)
j ∈ A(h)

j

]
·P

 ⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


=

∏
h∈H

P

 k⋂
j=1

{Y (h)
j ∈ A(h)

j }

 ·P
 ⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


12



Summation over all {{m(h)
i }i={1,...,lh}}h∈H ∈ D({k}h∈H) and all n ∈ N yields

P

 ⋂
h∈H

k⋂
j=1

{Y (h)
j ∈ A(h)

j }

 =
∏
h∈H

P

 k⋂
j=1

{Y (h)
j ∈ A(h)

j }


Hence it is clear, that the sequences of sampling variables of different groups are
independent. By using the last equality we also get

P

 ⋂
h∈H

k⋂
j=1

{Y (h)
j ∈ A(h)

j } ∩
⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


= P

 ⋂
h∈H

k⋂
j=1

{Y (h)
j ∈ A(h)

j }

 ·P
 ⋂
h∈H

lh⋂
i=1

{ν(h)
i = m

(h)
i } ∩ {N = n}


It is easily seen that

P

 ⋂
h∈H1

⋂
j∈Kh

{Y (h)
j ∈ A(h)

j } ∩
⋂
h∈H2

⋂
i∈Lh

{ν(h)
i = m

(h)
i } ∩ {N = n}


= P

 ⋂
h∈H1

⋂
j∈Kh

{Y (h)
j ∈ A(h)

j }

 ·P
 ⋂
h∈H2

⋂
i∈Lh

{ν(h)
i = m

(h)
i } ∩ {N = n}


holds for all H1, H2 ⊆ H, finite Kh, Lh ⊆ N and A

(h)
j ∈M (for h ∈ H1 and j ∈ Kh),

m
(h)
i ∈ N0 (for h ∈ H2 and i ∈ Lh) and n ∈ N0, which completes the proof. 2

Next we prove that the family of the sequences of sampling variables of each group
is independent of the family of random sample sizes (assertion (c)).

5.4 Theorem. The pair{{{
Y

(h)
i

}
i∈N

}
h∈H

,
{
N (h)

}
h∈H

}
is independent.

Proof. We have for each h ∈ H and nh ∈ N0 the identity

{N (h) = nh} = {ν(h)
nh
≤ N < ν

(h)
nh+1}

For all k ∈ N, A
(h)
i ∈ M (for i ∈ {1, . . . , k} and h ∈ H), and {nh}h∈H ⊆ N0 define

n :=
∑
h∈H nh. By using Theorem 5.3 we get

P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i } ∩
⋂
h∈H
{N (h) = nh}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i } ∩
⋂
h∈H
{N (h) = nh} ∩ {N = n}


13



= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i } ∩
⋂
h∈H
{ν(h)

nh
≤ N < ν

(h)
nh+1} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i } ∩
⋂
h∈H
{ν(h)

nh
≤ n < ν

(h)
nh+1} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i }

 ·P
 ⋂
h∈H
{ν(h)

nh
≤ n < ν

(h)
nh+1} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i }

 ·P
 ⋂
h∈H
{ν(h)

nh
≤ N < ν

(h)
nh+1} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i }

 ·P
 ⋂
h∈H
{N (h) = nh} ∩ {N = n}


= P

 ⋂
h∈H

k⋂
i=1

{Y (h)
i ∈ A(h)

i }

 ·P
 ⋂
h∈H
{N (h) = nh}



and the assertion follows. 2

We finish the proof of Theorem 2.1 by showing that the joint distribution of the
random sample sizes of all groups is a conditional multinomial distribution given
the sample size (assertion (d)).

5.5 Theorem. The conditional joint distribution of {N (h)}h∈H given N is the
conditional multinominal distribution with the parameters N and {ηh}h∈H .

Proof. For all {nh}h∈H ⊆ N0 define n :=
∑
h∈H nh. If P [N = n] > 0, then we get

P

 ⋂
h∈H
{N (h) = nh}

∣∣∣∣∣∣N = n


= P

 ⋂
h∈H
{N (h) = nh} ∩ {N = n}

/ P [N = n]

= P

 ⋂
h∈H

{
N∑
i=1

χ{Yi∈Mh} = nh

}
∩ {N = n}

/ P [N = n]

= P

 ⋂
h∈H

{
n∑
i=1

χ{Yi∈Mh} = nh

}
∩ {N = n}

/ P [N = n]

= P

 ⋂
h∈H

{
n∑
i=1

χ{Yi∈Mh} = nh

}
=

∑
{Ih}h∈H⊆{1,...,n}∑

h∈H
Ih={1,...,n}

#Ih=nh,h∈H

P

 ⋂
h∈H

⋂
i∈Ih
{Yi ∈Mh}



14



=
∑

{Ih}h∈H⊆{1,...,n}∑
h∈H

Ih={1,...,n}
#Ih=nh,h∈H

∏
h∈H

∏
i∈Ih

P [Yi ∈Mh]

=
∑

{Ih}h∈H⊆{1,...,n}∑
h∈H

Ih={1,...,n}
#Ih=nh,h∈H

∏
h∈H

ηnh
h

=
n!∏

h∈H nh!

∏
h∈H

ηnh
h

The assertion now follows. 2
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