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Abstract

We consider an array of random variables in which all random variables have
the same expectation, random variables of different rows are uncorrelated,
and random variables in the same row have the same variance and the same
covariance. If the number of observations varies from row to row, a uniformly
best linear unbiased estimator does not exist. For this case we calculate a
minimax estimator under vague prior information on the variance and the
covariance in the rows.

1 Introduction

We consider an array of random variables




X11 X12 . . . X1n1

X21 X22 . . . X2n2

...
...

Xm1 Xm2 . . . Xmnm




in which all random variables have the same expectation, random variables of dif-
ferent rows are uncorrelated, and random variables in the same row have the same
variance and the same covariance. The problem is to estimate the common expec-
tation µ.

This model can be interpreted as follows: There is a certain characteristic, which
we shall observe for some objects 1, . . . ,m. For object i, we have ni observations.
We assume that there is no interference of observations between different objects,
but interference between the observations of the same object is permitted. Here,
the interference is independent of the order of the observations.

Let us consider two extreme cases:
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– If all random variables Xij are i.i.d., it is well–known, that

1∑m
k=1 nk

m∑

i=1

ni∑

j=1

Xij =
m∑

i=1

ni∑m
k=1 nk


 1

ni

ni∑

j=1

Xij




is the best linear unbiased estimator of µ.
– If all random of the same row are identical, it is obvious that

1

m

m∑

i=1

Xi1 =
m∑

i=1

1

m


 1

ni

ni∑

j=1

Xij




is the best linear unbiased estimator of µ.

In both cases, the best linear unbiased estimator can be written as a weighted mean
of the sample means of the rows; however, the weights depend on the assumption
on the underlying distribution. The present paper studies the optimal choice of the
weights when vague prior information on the variance structure is available.

2 The model

Throughout this paper let (Ω,F) be a measurable space. We consider an array of
random variables Ω → R




X11 X12 . . . X1n1

X21 X22 . . . X2n2

...
...

Xm1 Xm2 . . . Xmnm




with m,n1, . . . , nm ∈ N.

We are interested in a linear estimator of the common expectation of theses random
variables. Let Π denote the set of all probability measures P : F → [0, 1] such that
(i) all random variables Xij are square–integrable,
(ii) there exists some µ ∈ R, such that

E [Xij] = µ

holds for all i ∈ {1, . . . , m} and j ∈ {1, . . . , ni},
(iii) any two random variables of different rows are uncorrelated, and
(iv) there exist {λi}i∈{1,...,m} ⊆ R and {ϕi}i∈{1,...,m} ⊆ R+ with λi + ϕi/ni > 0 such

that

cov[Xij, Xil] =

{
λi if j 6= l
λi + ϕi if j = l

holds for all i ∈ {1, . . . , m} and j, l ∈ {1, . . . , ni}.
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2.1 Remarks.
– The parameters µ, ϕi, and λi depend on the choice of P ∈ Π.
– Condition (iv) is fulfilled if the random variables of each row are exchangeable

or even conditionally i.i.d. with respect to some sub–σ–algebra of F . In the last
case, λi is the variance of the conditional expectation and ϕi is the expectation
of the conditional variance.

– Condition (iv) implies var [Xij] > 0.
– Let λ, ϕ ∈ R and n ∈ N. Since

λ




n∑

j=1

βj




2

+ ϕ
n∑

j=1

β2
j

= nϕ




1

n

n∑

j=1

β2
j −


 1

n

n∑

j=1

βj




2

 +

(
n2λ + nϕ

)

 1

n

n∑

j=1

βj




2

holds for all {βj}j∈{1,...,ni} ⊆ R, the (n, n)–matrix



λ + ϕ λ
. . .

λ λ + ϕ




is
• positive semi definite, if and only if ϕ ≥ 0 and λ + ϕ/n ≥ 0.
• positive definite, if and only if ϕ > 0 and λ + ϕ/n > 0.
This explains the restrictions on λi and ϕi in condition (iv). Corollary 2.3 will
show that the case λi + ϕi/ni = 0 does not lead to a statistical problem since the
estimator is almost surely identical with µ.

Now we study some properties of the probability measures P ∈ Π.

2.2 Lemma. For each P ∈ Π, the identity

cov




ni∑

j=1

βjXij,
ni∑

j=1

γjXij


 = λi




ni∑

j=1

βj







ni∑

j=1

γj


 + ϕi

ni∑

j=1

βjγj

holds for all i ∈ {1, . . . , m} and {βj}j∈{1,...,ni}, {γj}j∈{1,...,ni} ⊆ R.

Proof. Using the covariance structure of the rows, we obtain

cov




ni∑

j=1

βjXij,
ni∑

j=1

γjXij


 =

ni∑

j=1

ni∑

l=1

βjγl cov[Xij, Xil]

=
ni∑

j=1

(
ni∑

l=1

βjγlλi + βjγjϕi

)

= λi




ni∑

j=1

βj







ni∑

j=1

γj


 + ϕi

ni∑

j=1

βjγj

for all i ∈ {1, . . . , m}. 2
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2.3 Corollary. For each P ∈ Π, the identity

var


 1

ni

ni∑

j=1

Xij


 = λi + ϕi/ni

holds for all i ∈ {1, . . . , m}.
2.4 Corollary. For each P ∈ Π, the identity

var




m∑

i=1

ni∑

j=1

αiXij


 =

m∑

i=1

(λi + ϕi/ni) n2
i α

2
i

holds for all {αi}i∈{1,...,m} ⊆ R.

We will need Lemma 2.2 and its corollaries in the following sections.

Now we define the set ∆ of all admissible estimators for µ by letting

∆ :=





m∑

i=1

ni∑

j=1

αijXij

∣∣∣∣∣∣
{αij} i∈{1,...,m}

j∈{1,...,ni}
⊆ R,

m∑

i=1

ni∑

j=1

αij = 1





and we define a payoff function L : Π×∆ → R by letting

L(P, δ) := E
[
(δ − µ)2

]

Then (Π, ∆, L) is an abstract game, where player 1 (nature) chooses a strategy
P ∈ Π and player 2 (statistician) chooses a strategy δ ∈ ∆.

Each estimator δ ∈ ∆ is unbiased with respect to each P ∈ Π since the sum of all
αij is equal to one. Hence

L(P, δ) = var [δ]

In the sequel we need the following definitions: A probability measure P∗ ∈ Π is
least favourable if it satisfies

inf∆ L(P∗, δ) = supΠ inf∆ L(P, δ)

An estimator δ∗ ∈ ∆ is minimax if it satisfies

supΠ L(P, δ∗) = inf∆ supΠ L(P, δ)

An estimator δ∗ ∈ ∆ is Bayes with respect to P∗ ∈ Π if it satisfies

L(P∗, δ∗) = inf∆ L(P∗, δ)

A pair of strategies (P∗, δ∗) ∈ Π×∆ is a saddlepoint if it satisfies

supΠ L(P, δ∗) = inf∆ L(P∗, δ)

The connections between the definitions is given by the Sattlepoint Theorem:
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Proposition 2.5 (Saddlepoint Theorem). For P∗ ∈ Π and δ∗ ∈ ∆, the follow-
ing are equivalent :
(i) (P∗, δ∗) is a saddlepoint.
(ii) P∗ is least favourable and δ∗ is minimax and Bayes with respect to P∗.

The notation above agrees with Schmidt (2000); for applications in statistics, see
e. g. Lehmann and Casella (1998) and Witting (1985).

3 The Bayes estimator

Throughout this section let P ∈ Π be a fixed probability measure. In the present
section, we show that

δ∗ :=
m∑

i=1

ni∑

j=1

α∗i Xij

with

α∗i :=
1

ni

(λi + ϕi/ni)
−1

∑m
k=1(λk + ϕk/nk)−1

is Bayes with respect to P. For an interpretation of δ∗ it is convenient to use the
representation

δ∗ =
m∑

i=1

(λi + ϕi/ni)
−1

∑m
k=1(λk + ϕk/nk)−1


 1

ni

ni∑

j=1

Xij




This shows that the estimator is a weighted mean of the sample mean of the rows,
with weights being inversely proportional to the variance of the respective sample
mean; see Corollary 2.3.

For the proof of the main result of this section we need the following lemma:

3.1 Lemma. The identity

cov[δ, δ∗] =
1∑m

k=1(λk + ϕk/nk)−1

holds for all δ ∈ ∆.

Proof. Since condition (iii) on P and Lemma 2.2, we obtain

cov[δ, δ∗] = cov




m∑

i=1

ni∑

j=1

αijXij,
m∑

k=1

nk∑

l=1

α∗kXkl




=
m∑

i=1

α∗i (niλi + ϕi)
ni∑

j=1

αij

=
1∑m

k=1(λk + ϕk/nk)−1

m∑

i=1

ni∑

j=1

αij

=
1∑m

k=1(λk + ϕk/nk)−1

as was to be shown. 2
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3.2 Theorem. The estimator δ∗ is Bayes with respect to P and every estimator
δ ∈ ∆ which is Bayes with respect to P is P–almost surely equal to δ∗.

Proof. For all δ ∈ ∆, Lemma 3.1 yields

var [δ] = var [δ − δ∗] + var [δ∗]

and hence

var [δ∗] ≤ var [δ]

If δ ∈ ∆ is Bayes with respect to P, then var [δ] = var [δ∗]. Hence, we get

var [δ − δ∗] = 0

which is fulfilled if and only if δ is P–almost surely equal to δ∗. 2

3.3 Remarks.
– If λi = 0, then

δ∗ =
1∑m

k=1 nk

m∑

i=1

ni∑

j=1

Xij

In this case, all random variables have the same weight. The condition λi = 0 is
especially fulfilled, if all random variables are i.i.d.

– If ϕi = 0, then

δ∗ =
1

m

m∑

i=1


 1

ni

ni∑

j=1

Xij




In this case, all rows have the same weight.
– If λi = λ 6= 0 and ϕi = ϕ for admissible λ, ϕ ∈ R, then

δ∗ =
m∑

i=1

(1 + κ/ni)
−1

∑m
k=1(1 + κ/nk)−1


 1

ni

ni∑

j=1

Xij




with κ := ϕ/λ = (ϕ + λ)/λ− 1. In this case, the weights depend on the ratio of
the variance and the covariance.

– If λi = λ 6= 0 and ϕi = ϕ with admissible λ, ϕ ∈ R and if ni = n for some n ∈ N,
then

δ∗ =
1

mn

m∑

i=1

n∑

j=1

Xij

which is independent of λ and ϕ. Moreover, the case n = 1 gives the classical
result for m uncorrelated observations having the same variance.

Since δ∗ depends on λi and ϕi, δ∗ is a pseudoestimator. Its structure, as described
above, is what a statistician expects.
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4 Minimax estimators

The Bayes estimator of Theorem 3.2 depends on the parameters λi and ϕi. We
assume that λi and ϕi are unknown, but that we have vague prior information on
these parameters. For this case, we consider the minimax estimator depending on
the priori information.

For fixed τ, σ ∈ R with σ > 0 and (max{n1, . . . , nm} − 1)τ + σ2 > 0 denote by Π′

the set of all P ∈ Π with

cov[Xij, Xil] ≤ τ

var [Xij] ≤ σ2

for all i ∈ {1, . . . , m} and j, l ∈ {1, . . . , ni} with j 6= l and define

λ := min{τ, σ2}
ϕ := max{0, σ2 − τ}

The inequality on τ and σ implies λ + ϕ/ni > 0 for all i ∈ {1, . . . , m}.
4.1 Theorem. Consider the game (Π′, ∆, L). If P∗ ∈ Π′ satisfies

cov∗[Xij, Xil] = min{τ, σ2}
var∗[Xij] = σ2

for all i ∈ {1, . . . , m} and j, l ∈ {1, . . . , ni} with j 6= l then P∗ is least favourable,
the estimator δ∗ ∈ ∆ with

δ∗ =
m∑

i=1

(λ + ϕ/ni)
−1

∑m
k=1(λ + ϕ/nk)−1


 1

ni

ni∑

j=1

Xij




is minimax and Bayes with respect to P∗ and satisfies

var∗[δ∗] =
1

m∑

k=1

(λ + ϕ/nk)
−1

Proof. First note that P∗ is defined such that the identities

λ∗i = λ

ϕ∗i = ϕ

hold for all i ∈ {1, . . . , m}.
Let P ∈ Π′. In the case τ < σ2, we have

λi + ϕi/ni = λi(1− 1/ni) + (λi + ϕi)/ni

≤ τ(1− 1/ni) + σ2/ni

= τ + (σ2 − τ)/ni
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In the case τ ≥ σ2, we have λi ≤ λi + ϕi ≤ σ2 and hence

λi + ϕi/ni = λi(1− 1/ni) + (λi + ϕi)/ni

≤ σ2(1− 1/ni) + σ2/ni

= σ2

Both cases can be summarized as

λi + ϕi/ni ≤ min{τ, σ2}+ max{0, σ2 − τ}/ni

= λ + ϕ/ni

Theorem 3.2 implies that δ∗ is Bayes with respect to P∗. Hence, for arbitrary P ∈ Π′

and δ ∈ ∆, we get from Corollary 2.4

var [δ∗] =
m∑

i=1

(λi + ϕi/ni)

(
(λ + ϕ/ni)

−1

∑m
k=1(λ + ϕ/nk)−1

)2

≤
m∑

i=1

(λ + ϕ/ni)

(
(λ + ϕ/ni)

−1

∑m
k=1(λ + ϕ/nk)−1

)2

= var∗[δ∗]

≤ var∗[δ]

This implies

supΠ′ var [δ∗] = var∗[δ∗]

= inf∆ var∗[δ]

and the assertion follows from the Sattlepoint Theorem. 2

4.2 Remarks.
– In the case τ < σ2, we have

δ∗ =
m∑

i=1

ni/[(ni − 1)τ + σ2]∑m
k=1 nk/[(nk − 1)τ + σ2]


 1

ni

ni∑

j=1

Xij




– In the case σ2 ≤ τ , we have

δ∗ =
1

m

m∑

i=1


 1

ni

ni∑

j=1

Xij




In this case, we have no information on the covariance. Theorem 4.1 shows, that
in this situation the minimax estimator is the arithmetic mean of the sample
mean of the rows, whatever the number of observations in the rows may be.
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