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Abstract

The present paper provides new characterizations of homogeneous Poisson
processes and of mixed Poisson processes. These characterizations are given in
terms of the multinomial property. This property is of interest since the finite–
dimensional distributions of a claim number process having the multinomial
property are completely determined by its one–dimensional distributions, and
it is also convenient for statistical purposes since it does not involve any
parameters.

1 Introduction

Homogeneous Poisson processes and mixed Poisson processes can be characterized
in various ways; see e. g. Schmidt [1996] for homogeneous Poisson processes and
Grandell [1997] for mixed Poisson processes. The present paper provides additional
characterizations of each of these classes of claim number processes. These charac-
terizations are based on the multinomial property and the binomial property.

The main results assert that a claim number process is a homogenous Poisson process
if and only if it has independent increments and the binomial property (Theorem
3.2), and that it is a mixed Poisson process if and only if it has the multinomial
property (Theorem 4.2).

The multinomial property is important since the finite–dimensional distributions of
a claim number process having the multinomial property are completely determined
by its one–dimensional distributions. It is also of interest with regard to statistical
tests since it does not involve any parameters.

2 The Multinomial Property

A stochastic process {Nt}t∈R+ on a probability space (Ω,F , P ) is said to be a claim
number process (without explosion) if there exists an event Ω0 ∈ F with P [Ω0] = 0
such that the following properties are satisfied for all ω ∈ Ω \ Ω0:
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– N0(ω) = 0,
– Nt(ω) ∈ N0 for all t ∈ (0,∞),
– Nt(ω) = infs∈(t,∞) Ns(ω) for all t ∈ R+,
– sups∈[0,t) Ns(ω) ≤ Nt(ω) ≤ sups∈[0,t) Ns(ω) + 1 for all t ∈ R+, and
– supt∈R+

Nt(ω) = ∞.
Note that the definition excludes the possibility of infinitely many claims occurring
in a finite time interval. We assume henceforth that Ω0 = ∅.

A claim number process {Nt}t∈R+ has
– the multinomial property if the identity

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
=

n!∏m
j=1 kj!

m∏
j=1

(
tj − tj−1

tm

)kj

· P [{Ntm = n}]

holds for all m ∈ N, all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < · · · < tm
and all k1, . . . , km, n ∈ N0 such that

∑m
j=1 kj = n, and it has

– the binomial property if the identity

P [{Ns = k} ∩ {Nt−Ns = n−k}] =

(
n

k

)(
s

t

)k (
1− s

t

)n−k

· P [{Nt = n}]

holds for all s, t ∈ (0,∞) such that s < t and all k, n ∈ N0 such that k ≤ n.
Of course, the idea of the multinomial property is that the conditional distribution
of the incremental claim numbers in finitely many adjacent intervals, given the
total number of claims in all of these intervals, is the multinomial distribution with
probabilities being proportional to the lengths of the intervals. In the definition of
the multinomial property (and the binomial property) we have avoided the use of
conditional probabilities since it cannot be excluded in advance that the conditioning
events have probability zero; see, however, Lemmas 3.1 and 4.1 below.

The multinomial property is important for two reasons: First, if a claim number
process has the multinomial property, then its finite–dimensional distributions are
completely determined by its one–dimensional distributions. Second, the multi-
nomial property does not involve any parameters and is thus particularly suitable
for statistical tests.

In the literature, the multinomial property has been considered only occasionally;
an exception is Schmidt [1996] who characterized homogeneous Poisson processes
in terms of the multinomial property and showed that also every mixed Poisson
process has the multinomial property. Theorem 4.2 below asserts that a claim
number process has the multinomial property if and only if it is a mixed Poisson
process.

By contrast, the binomial property has already been considered in the thesis of
Lundberg [1940] who proved that a regular claim number process has the binomial
property and the Markov property if and only if it is a mixed Poisson process.
Theorem 3.2 below asserts that a claim number process has the binomial property
and independent increments if and only if it is a homogeneous Poisson process.
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3 Homogeneous Poisson Processes

Let us first characterize homogeneous Poisson processes. We need the following
lemma:

3.1 Lemma. Assume that {Nt}t∈R+ is a claim number process. If {Nt}t∈R+ has
the binomial property, then

P [{Nt = n}] > 0

and
P [{Nt−Ns = n}] > 0

holds for all s, t ∈ (0,∞) such that s < t and all n ∈ N0.

Proof. Assume first that there exists some m ∈ N0 such that

P [{Nt = n}] = 0

holds for all t∈(0,∞) and all n∈N such that m < n. Then we have P [{Nt ≤ m}] = 1
for all t ∈ (0,∞). Since the paths of a claim number process are increasing, we obtain

P

[{
sup

t∈(0,∞)

Nt ≤ m

}]
= P

[ ⋂

t∈(0,∞)

{Nt ≤ m}
]

= inf
t∈(0,∞)

P [{Nt ≤ m}]

= 1

This contradicts our assumption since the paths of a claim number process increase
to infinity.
Consider now m ∈ N0. By the first part of this proof, there exists some t ∈ (0,∞)
and some n ∈ N such that m < n and

P [{Nt = n}] > 0

By the binomial property, we have

P [{Ns = k}] ≥ P [{Ns = k} ∩ {Nt−Ns = n−k}]

=

(
n

k

)(
s

t

)k(
t− s

t

)n−k

P [{Nt = n}]

which implies that the inequality

P [{Ns = k}] > 0

holds for all s ∈ (0, t) and all k ∈ {0, 1, . . . , n}. Furthermore, for every u ∈ (t,∞),
the identity

∑∞
p=n P [{Nu = p}|{Nt = n}] = 1 yields the existence of some p ∈ N

such that n ≤ p and

P [{Nu = p}] ≥ P [{Nu = p} ∩ {Nt = n}]
= P [{Nu = p}|{Nt = n}] · P [{Nt = n}]
> 0

3



Repeating the argument used before with u and p instead of t and n, we see that
the inequality

P [{Ns = k}] > 0

holds for all s ∈ (0,∞) and all k ∈ {0, 1, . . . , n}.
Since m ∈ N0 was arbitrary, we conclude that the inequality

P [{Ns = k}] > 0

holds for all s ∈ (0,∞) and all k ∈ N0.
Finally, using the binomial property again, it is immediately seen that

P [{Nt −Ns = k}] > 0

holds for all s, t ∈ (0,∞) such that s < t and all k ∈ N0. 2

A claim number process {Nt}t∈R+

– has independent increments if

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
=

m∏
j=1

P [{Ntj−Ntj−1
= kj}]

holds for all m ∈ N, all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < · · · < tm
and all k1, . . . , km ∈ N0, and it

– is a homogeneous Poisson process with parameter α ∈ (0,∞) if

P

[
m⋂

j=1

{Ntj = nj}
]

=
m∏

j=1

e−α(tj−tj−1) (α(tj−tj−1))
nj−nj−1

(nj−nj−1)!

holds for all m ∈ N, all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < · · · < tm
and all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ · · · ≤ nm.

It is immediate from the definition that every Poisson process has independent
increments.

We have the following result:

3.2 Theorem. Assume that {Nt}t∈R+ is a claim number process. Then the
following are equivalent:

(a) {Nt}t∈R+ is a homogeneous Poisson process.
(b) {Nt}t∈R+ has the binomial property and independent increments.
(c) {Nt}t∈R+ has the multinomial property and there exists some α ∈ (0,∞) such

that

P [{Nt = n}] = e−αt (α t)n

n!

holds for all t ∈ (0,∞) and all n ∈ N0.
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Proof. It is easy to verify that (a) and (c) are equivalent; see Schmidt [1996;
Lemma 2.3.1]. It is also easily seen that (a) implies (b).
Assume now that (b) holds and let us prove (a). Since {Nt}t∈R+ has independent
increments, it is sufficient to show that there exists some α ∈ (0,∞) such that

P [{Nt = k}] = e−αt (α t)k

k!

P [{Nt−Ns = k}] = e−α(t−s) (α (t−s))k

k!

holds for all s, t ∈ (0,∞) such that s < t and all k ∈ N0.
Since {Nt}t∈R+ has independent increments and the binomial property, we have

P [{Ns = k}] · P [{Nt−Ns = l}] =

(
k + l

k

)(
s

t

)k (
t− s

t

)l

· P [{Nt = k+l}] (∗)

for all s, t ∈ (0,∞) such that s < t and all k, l ∈ N0. This identity will be used
repeatedly.
By Lemma 3.1, we have

P [{Nt = n}] > 0

P [{Nt−Ns = n}] > 0

for all n ∈ N0. Using (∗), we obtain

P [{Ns = n+1}] · P [{Nt−Ns = 0}] =

(
s

t

)n+1

· P [{Nt = n+1}]

P [{Ns = n}] · P [{Nt−Ns = 0}] =

(
s

t

)n

· P [{Nt = n}]

and hence

n + 1

s

P [{Ns = n+1}]
P [{Ns = n}] =

n + 1

t

P [{Nt = n+1}]
P [{Nt = n}]

as well as

P [{Ns = n}] · P [{Nt−Ns = 1}] = (n+1)

(
s

t

)n
t− s

t
· P [{Nt = n+1}]

P [{Ns = n}] · P [{Nt−Ns = 0}] =

(
s

t

)n

· P [{Nt = n}]

and hence

1

t− s

P [{Nt−Ns = 1}]
P [{Nt−Ns = 0}] =

n + 1

t

P [{Nt = n+1}]
P [{Nt = n}]

This proves that

α :=
n + 1

t

P [{Nt = n+1}]
P [{Nt = n}]
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does not depend on either t or n. Therefore, we have

P [{Nt = n+1}]
P [{Nt = n}] =

α t

n + 1

which implies that Nt has the Poisson distribution with parameter αt.
Using (∗) again, it now follows by straightforward calculation that Nt −Ns has the
Poisson distribution with parameter α(t−s). 2

4 Mixed Poisson Processes

Let us now characterize mixed Poisson processes. The following lemma provides a
considerable improvement of Lemma 3.1, but it relies on a rather deep result:

4.1 Lemma. Assume that {Nt}t∈R+ is a claim number process. If {Nt}t∈R+ has
the binomial property, then there exists a probability measure Q : B(R) → [0, 1] with
Q[(0,∞)] = 1 such that

P [{Nt = n}] =

∫

(0,∞)

e−αt (α t)n

n!
dQ(α)

holds for all t ∈ (0,∞) and all n ∈ N0.

Proof. For all n ∈ N0, define a map Πn : R+ → [0, 1] by letting

Πn(t) := P [{Nt = n}]

For s ∈ (0,∞) and k ∈ N0, the binomial property yields, for all t ∈ (s,∞),

Πk(s) = P [{Ns = k}]

=
∞∑

n=k

P [{Ns = k} ∩ {Nt−Ns = n−k}]

=
∞∑

n=k

(
n

k

)(
s

t

)k(
t− s

t

)n−k

P [{Nt = n}]

=
∞∑

n=k

(
n

k

)(
s

t

)k(
t− s

t

)n−k

Πn(t)

In particular, we have

Π0(s) =
∞∑

n=0

(
t− s

t

)n

Πn(t)

The power series Π0 is absolutely convergent on the interval [0, 2t]. Differentiation
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yields

Π
(k)
0 (s) =

∞∑

n=k

k!

(
n

k

)(
t− s

t

)n−k(
−1

t

)k

Πn(t)

= k!

(
−1

s

)k ∞∑

n=k

(
n

k

)(
s

t

)k(
t− s

t

)n−k

Πn(t)

= k!

(
−1

s

)k

Πk(s)

and hence

Πk(s) = (−1)k sk

k!
Π

(k)
0 (s)

Since the previous identity is independent of t ∈ (s,∞), it follows that the inequality

(−1)k Π
(k)
0 (s) ≥ 0

holds for all s ∈ (0,∞) (which means that Π0 is completely monotone on (0,∞)).
Since the paths of a claim number process are increasing and right continuous with
N0 = 0, we also have

lim
s→0

Π0(s) = sup
s∈(0,∞)

P [{Ns = 0}]

= P

[ ⋃

s∈(0,∞)

{Ns = 0}
]

= P

[{
inf

s∈(0,∞)
Ns = 0

}]

= P [{N0 = 0}]
= 1

Now the theorem of Bernstein and Widder yields the existence of a probability
measure Q : B(R) → [0, 1] with Q[R+] = 1 such that

Π0(s) =

∫

R+

e−αs dQ(α)

holds for all s ∈ R+; see e. g. Berg, Christensen and Ressel [1984; Corollary 6.14]
or Mattner [1993]. We thus have Π0(s) = MQ(−s), where MQ denotes the moment
generating function of Q. Since MQ is finite on (−∞, 0], it follows that Π0 is infinitely
often differentiable on (0,∞) with

Π
(k)
0 (s) =

∫

R+

(−α)k e−αs dQ(α)
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for all s ∈ (0,∞) and k ∈ N; see Billingsley [1995; Section 21]. This yields

Πk(s) = (−1)k sk

k!
Π

(k)
0 (s)

= (−1)k sk

k!

∫

R+

(−α)k e−αs dQ(α)

=

∫

R+

e−αs (αs)k

k!
dQ(α)

for all s ∈ (0,∞) and all k ∈ N0.
To complete the proof, let us show that Q[{0}] = 0. Indeed, since the paths of a
claim number process increase to infinity, we have

0 = P

[{
sup

s∈(0,∞)

Ns = 0

}]

= P

[ ⋂

s∈(0,∞)

{Ns = 0}
]

= inf
s∈(0,∞)

P [{Ns = 0}]

= inf
s∈(0,∞)

Π0(s)

= inf
s∈(0,∞)

∫

R+

e−αs dQ(α)

≥ Q[{0}]
Therefore, we have

Πk(s) =

∫

(0,∞)

e−αs (αs)k

k!
dQ(α)

for all s ∈ (0,∞) and all k ∈ N0. 2

The proof of the previous lemma is inspired by Hofmann [1955].

A claim number process {Nt}t∈R+

– has the Markov property if

P

[
m+1⋂
j=1

{Ntj = nj}
]
· P [{Ntm = nm}]

= P

[
m⋂

j=1

{Ntj = nj}
]
· P [{Ntm = nm} ∩ {Ntm+1 = nm+1}]

holds for all m ∈ N, all t1, . . . , tm, tm+1 ∈ (0,∞) such that t1 < · · · < tm < tm+1

and all n1, . . . , nm, nm+1 ∈ N0 such that n1 ≤ · · · ≤ nm ≤ nm+1, and it
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– is a mixed Poisson process with mixing distribution Q : B(R) → [0, 1] if
Q[(0,∞)] = 1 and if

P

[
m⋂

j=1

{Ntj = nj}
]

=

∫

(0,∞)

m∏
j=1

e−α(tj−tj−1) (α(tj−tj−1))
nj−nj−1

(nj−nj−1)!
dQ(α)

holds for all m ∈ N, all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < · · · < tm
and all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ · · · ≤ nm.

It is easy to see that every mixed Poisson process has the Markov property.

We have the following result:

4.2 Theorem. Assume that {Nt}t∈R+ is a claim number process. Then the
following are equivalent:
(a) {Nt}t∈R+ is a mixed Poisson process.
(b) {Nt}t∈R+ has the binomial property and the Markov property.
(c) {Nt}t∈R+ has the multinomial property.

Proof. It is easy to verify that (c) and (b) are equivalent and that (a) implies (c).
Assume now that (c) holds. Then (a) follows by straightforward calculation from
the multinomial property and Lemma 4.1. 2

As a corollary of Theorem 4.2, we obtain the following well–known result:

4.3 Corollary. Assume that {Nt}t∈R+ is a claim number process. Then the
following are equivalent:
(a) {Nt}t∈R+ is a mixed Poisson process with independent increments.
(b) {Nt}t∈R+ is a homogeneous Poisson process.

5 Remarks

Under the additional assumption that the claim number process is regular in the
sense that it has (transition) intensities, the equivalence of (a) and (b) of Theorem
4.2 is due to Lundberg [1940]; see also Grandell [1997; Theorem 6.1]. Theorem 4.2,
however, does not require the claim number process has intensities.

Under the additional assumption that the claim number process has finite expec-
tations, Theorem 4.2 could also be used to give another proof of the fact that a
claim number process having the binomial property and independent increments as
well as finite expectations is a Poisson process: Since independent increments imply
the Markov property, it follows from Theorem 4.2 that the claim number process is
a mixed Poisson process. Therefore, the claim number process is a mixed Poisson
process with independent increments, and this implies that it is a Poisson process;
see e. g. Schmidt [1996; Lemma 4.2.5 and Theorem 4.2.6]. Theorem 3.2, however,
does not require that the claim number process has finite expectations.
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