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Abstract

It is generally taken for granted that the covariance of two increasing functions
of a random variable is positive. The present paper contains an elementary
proof of this fact.

Throughout this paper, let (Ω,F , P ) be a probability space, let X : Ω → R be a
random variable, and let J ∈ B(R) be a Borel set satisfying P [{X ∈ J}] = 1.

Intuition based on the usual interpretation of the covariance of two random variables
suggests that the inequality

cov[f(X), g(X)] ≥ 0

should hold for any two increasing functions f, g : J → R. The inequality holds
indeed, but a proof is difficult to find in the literature; an exception is the book
by Schürger [1998; Aufgabe 4.22] who suggests a proof based on the independent
product of two probability spaces. In the present paper we propose an elementary
proof of the inequality.

In our proof, we shall need the following definition and the subsequent lemma:

A set C ∈ B(R) is said to be increasing if its indicator function χC is increasing.
Thus, a set C ∈ B(R) is increasing if and only if either C = R or there exists some
c ∈ R such that C = [c,∞) or C = (c,∞).

Lemma. The inequality

P [{X ∈ A ∩B}] ≥ P [{X ∈ A}] · P [{X ∈ B}]
holds for any two increasing sets A, B ∈ B(R).

Proof. Since A and B are increasing, we have A ∩ B = A or A ∩ B = B. The
assertion follows. 2

We can now prove the main result of this paper:
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Theorem. The inequality

cov[f(X), g(X)] ≥ 0

holds for any two increasing functions f, g : J → R for which f(X) and g(X) have
a finite second moment.

Proof. Assume first that f(X) and g(X) are positive. For n, k ∈ N, define

An,k := f−1((k2−n,∞))

Bn,k := g−1((k2−n,∞))

Since f and g are assumed to be increasing, each of these sets is increasing. For
n ∈ N, define fn, gn : R → R+ by letting

fn(x) := 2−n

∞∑

k=1

χAn,k
(x)

gn(x) := 2−n

∞∑

k=1

χBn,k
(x)

By the Lemma, we have

E
[
fn(X) · gn(X)

]
= E

[
2−n

∞∑

k=1

χAn,k
(X) · 2−n

∞∑

l=1

χBn,l
(X)

]

= 2−2n

∞∑

k=1

∞∑

l=1

E[χAn,k∩Bn,l
(X)]

= 2−2n

∞∑

k=1

∞∑

l=1

P [{X ∈ An,k ∩Bn,l}]

≥ 2−2n

∞∑

k=1

∞∑

l=1

P [{X ∈ An,k}] P [{X ∈ Bn,l}]

= 2−n

∞∑

k=1

P [{X ∈ An,k}] · 2−n

∞∑

l=1

P [{X ∈ Bn,l}]

= E[fn(X)] · E[gn(X)]

for all n ∈ N. Since the sequence {fn(X)}n∈N increases to f(X) and the sequence
{gn(X)}n∈N increases to g(X), the monotone convergence theorem yields

E
[
f(X) · g(X)

]
≥ E[f(X)] · E[g(X)]

Assume now that f and g are bounded below by some constant c ∈ R. Then we
have f(x)− c ≥ 0 and g(x)− c ≥ 0 for all x ∈ J , hence

E
[(

f(X)− c
)
·
(
g(X)− c

)]
≥ E

[
f(X)− c

]
· E

[
g(X)− c

]

and thus

E
[
f(X) · g(X)

]
≥ E[f(X)] · E[g(X)]
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Assume finally that f and g are arbitrary. Then we have

E
[(

f(X) ∨ (−n)
)
·
(
g(X) ∨ (−n)

)]
≥ E

[
f(X) ∨ (−n)

]
· E

[
g(X) ∨ (−n)

]

for all n∈N. Since supn∈N |h(X)∨(−n)| ≤ |h(X)| and limn→∞ h(X)∨(−n) = h(X),
the dominated convergence theorem yields

E
[
f(X) · g(X)

]
≥ E[f(X)] · E[g(X)]

This proves the assertion. 2

The construction used in the first part of the preceding proof is inspired by Milgrom
and Weber [1982]. To complete the discussion, we present an even simpler proof (of
a slightly weaker result) in the case where f is the identity function:

Theorem. Assume that J is convex and that X has a finite second moment. Then
the inequality

cov[X, g(X)] ≥ 0

holds for every increasing function g : J → R for which g(X) has a finite second
moment.

Proof. Since J is convex, we have E[X] ∈ J and hence

cov[X, g(X)] = E
[(

X − E[X]
)(

g(X)− E[g(X)]
)]

= E
[(

X − E[X]
)(

g(X)− g(E[X])
)]

+ E
[(

X − E[X]
)(

g(E[X])− E[g(X)]
)]

= E
[(

X − E[X]
)(

g(X)− g(E[X])
)]

Now the assertion follows from the assumption that g is increasing. 2

It appears, however, that this type of proof, which is taken from Schmidt [2002;
Satz 10.2.7], cannot be extended to the general case.
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