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By Carsten Pröhl and Klaus D. Schmidt

Lehrstuhl für Versicherungsmathematik
Technische Universität Dresden

Abstract

In the present paper we propose a multivariate version of the chain–ladder
method. The multivariate chain–ladder method is based on a stochastic
model which is a multivariate version of the model of Schnaus and extends
the univariate model of Mack and the bivariate model of Braun. It is suitable
for a portfolio consisting of several subportfolios with a certain dependence
structure and it resolves in some sense the problem of non–additivity of the
univariate chain–ladder method.

1 Introduction

The chain–ladder method is a widely used method of loss reserving which can be
modified and generalized in various ways; see Radtke and Schmidt [2004] for a survey
of various methods of loss reserving and underlying stochastic models.

The chain–ladder method applies to a single run–off triangle and it is well–known
that the chain–ladder predictors for the non–observable (future) aggregate claims of
an aggregate portfolio consisting of several subportfolios differ, except for unrealistic
special cases, from the sums of the chain–ladder predictors for the non–observable
aggregate claims of the subportfolios; see Ajne [1994].

The non–coincidence between the chain–ladder predictors for sums and the sums of
chain–ladder predictors has its origin in the univariate character of the chain–ladder
method which neglects the dependence structure existing between the subportfolios
of a portfolio.

In a recent paper published in this journal, Braun [2004] proposed a bivariate model
for loss reserving which extends the univariate model of Mack [1993] and takes into
account correlation between the subportfolios of a portfolio consisting of two sub-
portfolios. In the spirit of Mack [1993], Braun [2004] used his model as a foundation
for the construction of estimators of the prediction errors of the univariate chain–
ladder predictors, but he did not use his model to replace the univariate chain–ladder
predictors by bivariate ones reflecting the correlation structure.
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In the present paper, we propose a multivariate model which extends the univariate
model of Schnaus, presented in Schmidt and Schnaus [1996], and the bivariate model
of Braun [2004]. Under the assumptions of this model, we deduce multivariate chain–
ladder predictors which are suitable for portfolios consisting of several subportfolios
with a certain dependence structure. It is shown that the multivariate chain–ladder
predictors are optimal with respect to an essentially classical optimality criterion
and resolve in a certain sense the problem of non–additivity of the univariate chain–
ladder method.

Throughout this paper, let (Ω,F , P ) be a probability space on which all random
variables are defined. We assume that all random variables are square integrable and
that all random vectors and random matrices have square integrable coordinates.
Moreover, all equalities and inequalities involving random variables are understood
to hold almost surely with respect to the probability measure P .

2 Univariate Chain–Ladder Prediction

In the present section we consider a single portfolio which is described by a family
{Si,k}i,k∈{0,1,...,n} of random variables. We interpret Si,k as the aggregate claim size
of accident year i and development year k and we assume that Si,k is observable for
calendar year i + k ≤ n and non–observable for calendar year i + k > n. Then the
observable claim sizes can be represented by the following run–off triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 S0,0 S0,1 . . . S0,k . . . S0,n−i . . . S0,n−1 S0,n

1 S1,0 S1,1 . . . S1,k . . . S1,n−i . . . S1,n−1

...
...

...
...

...
i Si,0 Si,1 . . . Si,k . . . Si,n−i

...
...

...
...

n−k Sn−k,0 Sn−k,1 . . . Sn−k,k

...
...

...
n−1 Sn−1,0 Sn−1,1

n Sn,0

We assume henceforth that each of the random variables Si,k is strictly positive.

For i ∈ {0, 1, . . . , n} and k ∈ {1, . . . , n}, the random variable

Fi,k :=
Si,k

Si,k−1

is said to be the individual development factor of accident year i and development
year k.
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We can now define the univariate chain–ladder method :

Univariate Chain–Ladder Method: The univariate chain–ladder
method is defined by letting

SCL
i,n−i := Si,n−i

for all i ∈ {1, . . . , n} and

FCL
k :=

n−k∑
j=0

Sj,k−1∑n−k
h=0 Sh,k−1

Fj,k

for all k ∈ {1, . . . , n} as well as

SCL
i,k := SCL

i,k−1 FCL
k

for all i, k ∈ {1, . . . , n} such that i+k > n.

The random variables FCL
k and SCL

i,k are said to be the univariate chain–ladder factor
of development year k and the univariate chain–ladder predictor of the aggregate
claim size Si,k of accident year i and development year k, respectively.

The univariate chain–ladder method is an algorithm which can be justified by various
stochastic models and suitable optimality criteria. In particular, since each of the
chain–ladder factors is a weighted mean of the observable individual development
factors of the same development year, one may consider the question whether the
weights used in the definition of the chain–ladder factors are optimal in some sense.

One of the models justifying the univariate chain–ladder method is the model of
Schnaus, presented in Schmidt and Schnaus [1996], which extends the model of Mack
[1993]. In Schmidt and Schnaus [1996] it is shown that the chain–ladder predictors
for the aggregate claim sizes of the first non–observable calendar year n+1 are indeed
optimal under the assumptions of the model of Schnaus and with respect to an
essentially classical optimality criterion. Optimality of the chain–ladder predictors
for the aggregate claim sizes of subsequent non–observable calendar years is studied
in Schmidt [1997, 1999].

3 Multivariate Chain–Ladder Prediction

In the present section we consider m ∈ N portfolios all having the same number
of development years. The m portfolios may be interpreted as subportfolios of an
aggregate portfolio.
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For portfolio p ∈ {1, . . . , m}, we denote by

S
(p)
i,k

the aggregate claim size of accident year i ∈ {0, 1, . . . , n} and development year
k ∈ {0, 1, . . . , n} and we denote by

F
(p)
i,k

the individual development factor of accident year i ∈ {0, 1, . . . , n} and development
year k ∈ {1, . . . , n}.

For i, k ∈ {0, 1, . . . , n} we thus obtain the m–dimensional random vector of aggregate
claims

Si,k

and for i ∈ {0, 1, . . . , n} and k ∈ {1, . . . , n} we obtain the m–dimensional random
vector of individual development factors

Fi,k

The observable aggregate claim size vectors are represented by the following run–off
triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 S0,0 S0,1 . . . S0,k . . . S0,n−i . . . S0,n−1 S0,n

1 S1,0 S1,1 . . . S1,k . . . S1,n−i . . . S1,n−1

...
...

...
...

...
i Si,0 Si,1 . . . Si,k . . . Si,n−i

...
...

...
...

n−k Sn−k,0 Sn−k,1 . . . Sn−k,k

...
...

...
n−1 Sn−1,0 Sn−1,1

n Sn,0

We assume henceforth that all coordinates of each of the vectors Si,k are strictly
positive.

While the univariate chain–ladder method can be defined as an algorithm without
an underlying stochastic model, the multivariate chain–ladder method presented
below is based on a stochastic model which

– in the case m = 1 is the univariate model of Schnaus, presented in Schmidt and
Schnaus [1996], and hence extends the univariate model of Mack [1993] and

– in the case m ≥ 2 extends the bivariate model of Braun [2004]; see Section 6
for further details.
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For a smooth definition of the multivariate chain–ladder method, it is convenient to
represent the random vectors Si,k by the diagonal matrices

∆i,k := diag(Si.k)

Then we have Si,k = ∆i,k1 for all i, k ∈ {0, 1, . . . , n}, where 1 is the vector in Rm

with all coordinates being equal to 1, and we also have

Si,k := ∆i,k−1 Fi,k

for all i ∈ {0, 1, . . . , n} and k ∈ {1, . . . , n}. Also, for k ∈ {0, 1, . . . , n−1}, let

Gk

denote the σ–algebra generated by the family {Si,l}i∈{0,1,...,n},l∈{0,1,...,k}.

We can now define the multivariate model of Schnaus :

The Multivariate Model of Schnaus:

(i) For each k ∈ {1, . . . , n}, there exists a Gk−1–measurable random
vector Φk such that

EGk−1(Si,k) = ∆i,k−1 Φk

holds for all i ∈ {0, 1, . . . , n}.
(ii) For each k ∈ {1, . . . , n}, there exists a Gk−1–measurable random

matrix Σk which is symmetric and positive definite such that

CovGk−1(Si,k,Sj,k) =

{
∆

1/2
i,k−1 Σk ∆

1/2
i,k−1 if i = j

O if i 6= j

holds for all i, j ∈ {0, 1, . . . , n}.
Under the assumptions of the multivariate model of Schnaus, we have

EGk−1(Fi,k) = Φk

and

CovGk−1(Fi,k,Fj,k) =

{
∆
−1/2
i,k−1 Σk ∆

−1/2
i,k−1 if i = j

O if i 6= j

The following result is evident from the first part of Theorem 7.2 below:

3.1 Theorem. Assume that the assumptions of the multivariate model of Schnaus
are fulfilled. Then, for each k ∈ {1, . . . , n}, the random vector

FCL
k :=

(
n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)−1 n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1Fj,k
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satisfies EGk−1(FCL
k ) = EGk−1(Fi,k) for all i ∈ {0, 1, . . . , n} and is the unique random

vector which, for each i ∈ {0, . . . , n} such that i+k > n, minimizes the conditional
expected squared prediction error

EGk−1

((
Fi,k −Y

)′(
Fi,k −Y

))

over all m–dimensional random vectors Y satisfying

Y =
n−k∑
j=0

Wj,kFj,k

with Gk−1–measurable random matrices W0,k, . . .Wn−k,k such that
∑n−k

j=0 Wj,k = I.

The random vector FCL
k given by Theorem 3.1 is said to be the multivariate chain–

ladder factor for development year k ∈ {1, . . . , n}. In the case m = 1 it coincides
with the usual (univariate) chain–ladder factor for development year k, and in the
case k = n we have FCL

n = F0,n.

In the following result we change the point of view by looking at accident year
i ∈ {1, . . . , n} instead of development year k ∈ {1, . . . , n}. In accident year i,
the last observable vector of aggregate claims is Si,n−i and the first problem is to
predict the first non–observable vector of aggregate claims Si,n−i+1. These vectors
are related by the identity

Si,n−i+1 = ∆i,n−i Fi,n−i+1

It is therefore not too surprising that the best predictor of Si,n−i+1 is obtained
by replacing the vector of individual chain ladder factors Fi,n−i+1 in the previous
identity by its best predictor given by Theorem 3.1:

3.2 Corollary. Assume that the assumptions of the multivariate model of Schnaus
are fulfilled. Then, for each i ∈ {1, . . . , n}, the random vector

SCL
i,n−i+1 := ∆i,n−i

(
i−1∑
j=0

∆
1/2
j,n−iΣ

−1
n−i+1∆

1/2
j,n−i

)−1 i−1∑
j=0

∆
1/2
j,n−iΣ

−1
n−i+1∆

1/2
j,n−iFj,n−i+1

satisfies EGn−i(SCL
i,n−i+1) = EGn−i(Si,n−i+1) and is the unique random vector which

minimizes the conditional expected squared prediction error

EGn−i

((
Si,n−i+1 −Y

)′(
Si,n−i+1 −Y

))

over all m–dimensional random vectors Y satisfying

Y = ∆i,n−i

i−1∑
j=0

Wj,n−i+1Fj,n−i+1
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with Gn−i–measurable random matrices W0,n−i+1, . . .Wi−1,n−i+1 such that

i−1∑
j=0

Wj,n−i+1 = I

Corollary 3.2 follows from the second part of Theorem 7.2 below.

Because of Theorem 7.1, the previous results can be extended to various generaliza-
tions of the model of Schnaus.

We can now define the multivariate chain–ladder method :

The Multivariate Chain–Ladder Method: Under the assumptions
of the multivariate model of Schnaus , the multivariate chain–ladder
method is defined by letting

SCL
i,n−i := Si,n−i

for all i ∈ {1, . . . , n} and

FCL
k :=

(
n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)−1 n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1Fj,k

for all k ∈ {1, . . . , n} as well as

∆CL
i,k−1 := diag(SCL

i,k−1)

SCL
i,k := ∆CL

i,k−1 FCL
k

for all i, k ∈ {1, . . . , n} such that i+k > n.

It can be shown as in the univariate case that, for each i ∈ {1, . . . , n}, the sequence
{SCL

i,k }k∈{n−i+1,...,n} satisfies the multivariate analogue of the sequential optimality
criterion introduced by Schmidt [1999]:

3.3 Corollary. Assume that the assumptions of the multivariate model of Schnaus
are fulfilled. Then, for all i, k ∈ {1, . . . , n} such that i+k > n, the random vector

SCL
i,k

satisfies EGk−1(SCL
i,k ) = EGk−1(Si,k) and is the unique random vector which minimizes

the conditional expected squared prediction error

EGk−1

((
Si,k −Y

)′(
Si,k −Y

))

over all m–dimensional random vectors Y satisfying

Y = ∆CL
i,k−1

i−1∑
j=0

Wj,kFj,k

with Gk−1–measurable random matrices W0,k, . . .Wi−1,k such that
∑i−1

j=0 Wj,k = I.
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The previous result can be applied to predict the sum of the coordinates of Si,k:

3.4 Corollary. Assume that the assumptions of the multivariate model of Schnaus
are fulfilled. Then, for all i, k ∈ {1, . . . , n} such that i+k > n, the random variable

1′SCL
i,k

satisfies EGk−1(1′SCL
i,k ) = EGk−1(1′Si,k) and is the unique random variable which min-

imizes the conditional expected squared prediction error

EGk−1

((
1′Si,k − Y

)2)

over all m–dimensional random variables Y satisfying

Y = 1′∆CL
i,k−1

i−1∑
j=0

Wj,kFj,k

with Gk−1–measurable random matrices W0,k, . . .Wi−1,k such that
∑i−1

j=0 Wj,k = I.

We remark that the problem of global optimality of the chain–ladder predictors has
been solved in the negative in the case m = 1; see Schmidt [1997].

4 Multivariate versus Univariate Chain–Ladder

Prediction

The interested reader is invited to apply the multivariate and the univariate chain–
ladder method to numerical examples with, for example, m = 2 = n and to compare
the results.

In the case where k = n or Σk is diagonal, it is easily seen that the multivariate
chain–ladder factor FCL

k does not depend on Σk and that, for each p ∈ {1, . . . , m},
the coordinates F

CL(p)
k of FCL

k satisfy

F
CL(p)
k =

n−k∑
j=0

S
(p)
j,k−1∑n−k

h=0 S
(p)
h,k−1

F
(p)
j,k

and hence coincide with the chain–ladder factors for the subportfolio p.

In the case where each of the matrices Σ1, . . . ,Σn−1 is diagonal, it follows that
univariate chain–ladder prediction for every single subportfolio produces the same
result as multivariate chain–ladder prediction for the aggregate portfolio.

In general, however, univariate chain–ladder prediction for every single subportfolio
is not the same as multivariate chain–ladder prediction. The following result makes
this statement more precise:

4.1 Theorem. Assume that the assumptions of the multivariate model of Schnaus
are fulfilled and assume that 2 ≤ k < n. Then the following are equivalent :

8



(a) Every coordinate of the chain–ladder predictor FCL
k depends only on the corres-

ponding coordinates of F0,k, . . . ,Fn−k,k.
(b) The matrix Σk is diagonal.

Proof. Assume first that (a) holds.
In the case m = 1, there is nothing to prove.
In the case m = 2, each of the random matrices

(
n−k∑

h=0

∆
1/2
h,k−1Σ

−1
k ∆

1/2
h,k−1

)−1

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

with j ∈ {0, 1, . . . , n−k} is diagonal and Theorem 7.3 implies that the random
matrices

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

with j ∈ {0, 1, . . . , n−k} are either all diagonal or proportional to each other.
– In the first case, Σ−1

k is diagonal as well.
– In the second case, the matrices ∆j,k−1 with j∈{0, 1, . . . , n−k} are proportional

to each other such that there exist c1, . . . , cn−k ∈ (0,∞) satisfying

Sj,k−1 = cj S0,k−1

for all j ∈ {0, 1, . . . , n−k} and hence

CovGk−2(Sj,k−1,S0,k−1) = cj VarGk−2(S0,k−1)

which is impossible since CovGk−2(Sj,k−1,S0,k−1) = O 6= VarGk−2(S0,k−1).
This implies that Σ−1

k is diagonal.
In the case m ≥ 3, consider arbitrary q, r ∈ {1, . . . , m} such that q 6= r and delete
all rows and columns with index p ∈ {1, . . . , m} \ {q, r} of the matrices ∆j,k−1, Σ−1

k

and

Aj := ∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

with j ∈ {0, 1, . . . , n−k}. Then the remaining matrices ∆q,r
j,k−1, (Σ−1

k )q,r and Aq,r
j

satisfy

Aq,r
j =

(
∆q,r

j,k−1

)1/2(
Σ−1

k

)q,r(
∆q,r

j,k−1

)1/2

Since each of the matrices Aq,r
j with j ∈ {0, 1, . . . , n−k} is a two–dimensional positive

definite symmetric random matrix such that each of the random matrices
(

n−k∑

h=0

Aq,r
h

)
Aq,r

j

is diagonal, it now follows from the argument presented in the case m = 2 that
(Σ−1

k )q,r is diagonal. Varying q, r ∈ {1, . . . , m} such that q 6= r, it follows that Σ−1
k

is diagonal.
We have thus shown that Σk is diagonal. Therefore, (a) implies (b).
The converse implication is obvious. 2
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5 The Problem of Non–Additivity of

Chain–Ladder Predictors

It is well–known and not really surprising that, except for unrealistic special cases,
the chain–ladder predictors for the sum of several run–off triangles differ from the
sum of the chain–ladder predictors for the single run–off triangles; see Ajne [1994].

In some sense, the multivariate chain–ladder model resolves the problem of non–
additivity of chain–ladder predictors. Since the multivariate chain–ladder model
involves conditional correlation between the aggregate claims of a fixed development
year, univariate chain–ladder prediction for the sum of the aggregate claims over the
subportfolios is meaningless since it ignores the correlation structure which relates
the subportfolios to each other; this is also the case when the subportfolios are
uncorrelated. Therefore, the only reasonable predictor of 1′Si,k with i+k > n is the
predictor 1′SCL

i,k which is the sum of the coordinates of the multivariate chain–ladder
predictor of Si,k.

6 Related Models

The multivariate model of Schnaus presented in Section 3 is inspired by the bivariate
model of Braun and its straightforward extension to the multivariate case which is
defined as follows:

The Multivariate Model of Braun:

(i) The accident years are independent in the sense that the family of
σ–algebras {σ({Si,k}k∈{0,1,...,n})}i∈{0,1,...,n} is independent.

(ii) For each k ∈ {1, . . . , n}, there exists vector ϕk such that

EGk−1(Si,k) = ∆i,k−1 ϕk

holds for all i ∈ {0, 1, . . . , n}.
(iii) For each k ∈ {1, . . . , n}, there exists a matrix σk which is symmetric

and positive definite such that

VarGk−1(Si,k) = ∆
1/2
i,k−1 σk ∆

1/2
i,k−1

holds for all i, j ∈ {0, 1, . . . , n}.
In the multivariate model of Braun, which
– in the case m = 1 is due to Mack [1993] and
– in the case m = 2 is due to Braun [2004],
the vector ϕk and the matrix σk are non–random.

It can be shown as in the univariate case that the multivariate model of Braun is a
special case of the multivariate model of Schnaus; see Schmidt and Schnaus [1996].
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Also, since the univariate model of Schnaus is strictly more general than the model
of Mack, it is clear that the multivariate model of Schnaus is strictly more general
than the multivariate model of Braun; see Hess and Schmidt [2002].

Braun [2004] used his bivariate model to construct estimators for the prediction
errors of the univariate chain–ladder predictors of two correlated portfolios which
take into account correlation between the portfolios and which are intended as to
improve the estimators proposed by Mack [1993] neglecting correlation. As it is the
case for the estimators proposed by Mack, the estimators proposed by Braun are
constructed in a reasonable but heuristic way; in particular, in both cases it is not
known whether these estimators have any particular statistical properties like, e. g.,
unbiasedness.

In the bivariate model of Braun, it follows from Theorem 4.1 that the univariate
chain–ladder predictors are not optimal unless the matrices σk are diagonal. This
means that the estimators of the prediction errors proposed by Braun [2004] refer
to non–optimal predictors of the non–observable aggregate claims. Thus, instead of
improving the estimators of the prediction errors of non–optimal predictors, it would
be more reasonable to start with the optimal predictors provided by the multivariate
chain–ladder method under the assumptions of the multivariate model of Schnaus
and then to try to develop reasonable estimators for the prediction errors of the
multivariate chain–ladder predictors.

Another bivariate model of loss reserving, which is loosely related to the multivariate
model of Schnaus, is the model of Quarg and Mack [2004]. Under the assumptions of
their model, Quarg and Mack propose bivariate chain–ladder predictors for the paid
and incurred aggregate claims of the same portfolio with the aim of reducing the gap
between the univariate chain–ladder predictors for the paid and incurred aggregate
claims of the same portfolio. The model of Quarg and Mack is not included in the
multivariate model of Schnaus since it assumes a conditional correlation structure
within the accident years instead of a completely specified conditional correlation
structure between the paid and incurred aggregate claims.

7 Appendix

Throughout this appendix, let H be a sub–σ–algebra of F .

We start with a general theorem:

7.1 Theorem. Let X and Z be random vectors and assume that there exist an
H–measurable random vector H and H–measurable random matrices C and E such
that EH(X) = CH and EH(Z) = EH. Let Ψ := covH(X,Z) and assume that
Σ := varH(Z) is almost surely invertible.
Then the random vector

Ŷ :=
(
Ψ + (C−ΨΣ−1E)(E′Σ−1E)−1E′

)
Σ−1Z
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satisfies EH(Ŷ) = EH(X) and is the unique random vector which minimizes the
H–conditional expected squared prediction error

EH
((

X−Y
)′(

X−Y
))

over all random vectors Y having the same dimension as X and satisfying Y = AZ
with an H–measurable random matrix A such that AE = C.
Moreover , if D is an H–measurable random matrix of suitable dimension, then the
random vector DŶ satisfies EH(DŶ) = EH(DY) and is the unique random vector
which minimizes the H–conditional expected squared prediction error

EH
((

DX−Y
)′(

DX−Y
))

over all random vectors Y having the same dimension as X and satisfying Y = AZ
with an H–measurable random matrix A such that AE = DC.

Proof. The random matrix

Â :=
(
Ψ + (C−ΨΣ−1E)(E′Σ−1E)−1E′

)
Σ−1

is H–measurable and satisfies ÂE = C. For every H–measurable random matrix A
satisfying AE = C we have

EH(AZ) = AEH(Z)

= AEH

= CH

= EH(X)

and

CovH
(
X− ÂZ,AZ− ÂZ

)
= CovH

(
X− ÂZ, (A−Â)Z

)

= CovH
(
X− ÂZ,Z

)
(A−Â)′

= (Ψ−ÂΣ)(A−Â)′

= − (C−ΨΣ−1E)(E′Σ−1E)−1E′(A−Â)′

= − (C−ΨΣ−1E)(E′Σ−1E)−1(AE−ÂE)′

= O

which yields

VarH
(
X−AZ

)
= VarH

((
X− ÂZ

)
−

(
AZ− ÂZ

))

= VarH
(
X− ÂZ

)
+ VarH

(
AZ− ÂZ

)

12



and hence

EH
((

X−AZ
)′(

X−AZ
))

= trace
(
EH

((
X−AZ

)(
X−AZ

)′))

= trace
(
VarH

(
X−AZ

))

= trace
(
VarH

(
X− ÂZ

))

+ trace
(
VarH

(
AZ− ÂZ

))

Since trace(VarH(AZ−ÂZ)) ≥ 0, the first assertion follows.
The final assertion is then immediate from what has been shown before and the
identities EH(DX) = DCH and CovH(DX,Z) = DΨ. 2

The final part of the previous result applies, in particular, to the case where the
matrix D is the transpose of a unit vector. This means that the best predictor of a
coordinate of X is identical with the corresponding coordinate of the best predictor
of X.

The previous result can be specialized as follows:

7.2 Theorem. Let X0,X1, . . . ,Xr be random vectors and assume that exists
an H–measurable random vector satisfying EH(Xi) = H for all i ∈ {0, 1, . . . , r}.
Assume further that covH(Xi,Xj) = O holds for all i, j ∈ {0, 1, . . . , r} such that
i 6= j and that , for each i ∈ {1, . . . , r}, Σi := varH(Xi) is almost surely invertible.
Then the random vector

Ŷ :=

(
r∑

i=1

Σ−1
i

)−1 r∑
i=1

Σ−1
i Xi

satisfies EH(Ŷ) = EH(X0) and is the unique random vector which minimizes the
H–conditional expected squared prediction error

EH
((

X0 −Y
)′(

X0 −Y
))

over all random vectors Y having the same dimension as X0 and satisfying Y =∑r
i=1 AiXi with H–measurable random matrices A1, . . .Ar such that

∑r
i=1 Ai = I.

Moreover , if D is an H–measurable random matrix of suitable dimension, then the
random vector DŶ satisfies EH(DŶ) = EH(DX0) and is the unique random vector
which minimizes the H–conditional expected squared prediction error

EH
((

DX0 −Y
)′(

DX0 −Y
))

over all random vectors Y having the same dimension as X0 and satisfying Y =∑r
i=1 AiXi with H–measurable random matrices A1, . . .Ar such that

∑r
i=1 Ai = D.
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Theorem 7.2 is a conditional version of a result to be found e. g. in Schmidt [2004].
Of course, the remark following Theorem 7.1 applies to Theorem 7.2 as well.

The following result is used in the proof of Theorem 4.1:

7.3 Theorem. Assume that A1, . . . ,Ar are two–dimensional matrices which are
symmetric. Then the following are equivalent :
(a) For each i ∈ {1, . . . , r}, there exists a diagonal matrix Di such that

Ai =

(
r∑

j=1

Aj

)
Di

(b) The matrices A1, . . . ,Ar are diagonal or proportional to each other.

Proof. Assume first that (a) holds. Then the matrix
∑r

j=1 Aj is either diagonal
or not.
– If

∑r
j=1 Aj is diagonal, then A1, . . . ,Ar are diagonal as well.

– If
∑r

j=1 Aj is not diagonal, then the symmetry of A1, . . . ,Ar yields the existence
of d1, . . . , dr ∈ R such that Di = di I and hence

Ai = di

r∑
j=1

Aj

for all i ∈ {1, . . . , r}, which implies that A1, . . . ,Ar are proportional to each
other.

Therefore, (a) implies (b).
The converse implication is obvious. 2
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