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Abstract

Suppose that (Nt)t≥0 is a counting process on a probability space (Ω,F ,P)
and that Ω is provided with a filtration (Ft)t≥0 of the form Ft = G ∨ σ({Ns :
s ≤ t}). If C = (Ct)t≥0 is the (Ft)-compensator of (Nt), then (Nt) is called
a mixed (or conditioned) counting process with (Ft)-compensator C. The
construction of such mixed counting processes for a given compensator is due
to Jacod. By the structure of the filtration, the mixing takes place at time 0.
In the present paper we study the problem how to construct point processes,
where the mixing takes place ”continuously” at every time point t ≥ 0. The
main result is the following: Suppose that PC is the probability measure
obtained from the Jacod construction - with mixing at time 0. Then it is
shown that a certain Girsanov transformation of PC can be interpreted as a
probability measure, for which (Nt) is the result of continuous mixing.

1 Introduction

A point process on R+ is defined as a sequence (Tn)n≥1 of R+-valued random vari-
ables on some probability space (Ω,F ,P) such that (i) 0 < T1, (ii) Tn ≤ Tn+1, and
(iii) Tn < Tn+1, if Tn < ∞. Such a point process can be equivalently described by a
counting process (Nt)t≥0 related to (Tn)n≥1 by

Nt =
∑
n≥1

1[0,t](Tn) .

If F = (Ft)t≥0 is a given standard filtration on Ω, such that (Nt)t≥0 is F-adapted,
then by the theorem of Doob-Meyer there exists an increasing, right-continuous, F-
predictable process (Ct)t≥0, called the F-compensator of (Nt)t≥0, such that

(
Nt∧Tn−

Ct∧Tn

)
n≥1

is an F-martingale for every n ≥ 1.

The compensator plays an essential rôle for the construction of point processes.
Define now Ω = S∞ to be the space of all sequences (tn)n≥1 in R+ such that (i)
0 < t1, (ii) tn ≤ tn+1, and (iii) tn < tn+1, if tn < ∞. For ω = (tk)k≥1 ∈ S∞ and
n ≥ 1 we set Tn(ω) = tn and introduce on Ω = S∞ the filtration F0 = (F0

t )t≥0

defined by

F0
t := σ

({Tn ∧ t |n ≥ 1})
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We further set F0 := F0
∞, and define N = (Nt)t≥0 by (Tn)n≥1 as above. Now suppose

that C = (Ct)t≥0 is a given increasing, right continuous, and F0-predictable process
on Ω. Then a classical construction (due to Jacod, cf. Liptser, Shiryayev [1978])
proves that there exists a probability measure PC on (Ω,F0) such that relative to
PC the given process C is just the F0-compensator of N .

There is a rather immediate generalization. Let (D,D,Q) be a further probability
space and set (Ω,F) := (S∞ ×D,F0 ⊗D). Suppose that (Tn)n≥1 and N = (Nt)t≥0

are canonically extended to this larger Ω. We consider the filtration F1 = (F1
t )t≥0

given by F1
t := F0

t ⊗ D and suppose again that C = (Ct)t≥0 is a given increasing,
right continuous, but now F1-predictable process on Ω. Then C(y) = (Ct(·, y))t≥0

is F0-predictable for every y ∈ D, and hence there exists by the above mentioned
construction a probability measure PC(y) on S∞ for every y ∈ D, such that relative
to PC(y) the process C(y) is the F0-compesator of N . Now define

PC(d((tn)n≥1, y)) := Q(dy)PC(y)(d(tn)n≥1) .

Then relative to PC the process C is the F1-compensator of N . With this general-
ization of the first construction one gets among others the existence of the double-
stochastic Poisson processes.

The just described construction method means that at the starting time 0 there is
mixing according to the probability measure Q on (D,D). Let us give a slightly
different view of this mixing. Denote by Y the canonical projection from Ω onto
D, and let FN = (FN

t )t≥0 denote the natural filtration generated by the counting
process N . Then FN

t = F0
t ⊗ {∅, D} and F1

t = FN
t ∨ σ(Y ), i.e. every σ-algebra of

the natural filtration of N is enlarged by σ(Y ), F1
0 = σ(Y ), and

PC
{
(Tn)n≥1 ∈ ·

∣∣ Y = y
}

= PC(y) .

Now we can start to explain the problem we will consider in this paper. Let first
π = (sj)j≥1 ∈ S∞ be fixed, i.e. (sj)j≥1 is an infinite (or finite, if sm = 0 for some
m ≥ 1), strictly increasing sequence 0 =: s0 < s1 < s2 < · · · of given time points.
For every sj < ∞ (j ≥ 0) we choose a measurable space (Dj,Dj) and set

(Ω,F) :=
(
Ω×

∏
sj<∞

Dj,F0 ⊗
⊗
sj<∞

Dj
)

.

Let Y j : Ω → Dj denote the canonical projection. Then we define the following
filtration Fπ = (Fπ

t )t≥0 on Ω. We set

Fπ
t := FN

t ∨ σ({Y j | j ≤ k − 1}) for sk−1 ≤ t < sk .

Suppose that Q0 is a probability measure on D0 and that for k ≥ 1 Qk is a stochastic
kernel from

(
Ω,FN

sk
∨ σ(Y0, · · · , Yk−1)

)
to (Dk,Dk).

Now let C = (Ct)t≥0 be a given increasing, right continuous, and Fπ-predictable
process on Ω. Then for sk−1 ≤ t < sk, Ct is just a function on S∞×D0×· · ·×Dk−1,
and for every fixed yk−1 ∈ Dk−1 the process

(
Ct(·, yk−1)− Csk−1

(·, yk−1)
)

sk−1≤t<sk
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is predictable for the filtration
(FN

t ∨ σ({Y0, · · · , Yk−2})
)

sk−1≤t<sk
. It follows from

the classical construction method, that there is a stochastic kernel PCsk−1
(·,yk−1)

from
(
S∞ × D0 × · · · × Dk−2,FN

sk−1
∨ σ({Y0, · · · , Yk−2})

)
to (Ω,FN

sk
), such that(

Ct − Csk−1

)
sk−1≤t<sk

is the (Fπ
t )-compensator of (Nt − Nsk−1

)sk−1≤t<sk
relative to

PCsk−1
(·,yk−1)(dω)Qk−1(·, dyk−1). Therefore, the composition

Pπ(dω) =
(
Q0(dy0)P

C0(·,y0)(dω0)
) ◦ · · · ◦ (

Qn(·, dyn)PCsn (·,yn)(dωn)
) ◦ · · ·

of all the above kernels gives a probability measure on Ω such that C = (Ct)t≥0 is
the Fπ-compensator of N = (Nt)t≥0 relative to Pπ.

The roughly outlined ideas of conditioning or mixing at the time points 0 = s0 <
s1 < s2 < · · · , where the mixing may depend on the history of the point process
up to the times sj, are the content of the next paragraph. There we will prove
the details even for marked point processes. At the same time, we will replace the
above sequence of measurable spaces (Dj,Dj) (j ≥ 0) by a single function space.
The reason is that later on we will consider the question, what happens in case that
the mesh |π| of π = (sj)j≥1 tends to zero. This means the question, whether there
exists a kind of ”permanent” or ”continuous” mixing and not only mixing at fixed,
discrete time points.

This problem is the content of the last paragraph. There we start with a fixed
measure PC = PC(y)Q(dy) obtained by the classical construction with mixing at
time 0 (see above). We prove that a special type of Girsanov transformation of PC

can indeed be interpreted as a certain permanent mixing.

2 A Generalization of the Classical Construction

Let (E,B(E)) be a polish space with its Borel field B(E). For an element 4 outside
of E we set E4 = E ∪ {4}. Then we define

S∞(E) :=
{

((tk, xk))k≥1 ∈ (R+ × E4)N
∣∣∣ (i) 0 < t1 ≤ t2 ≤ · · · ,

(ii) tk < ∞ ⇒ xk ∈ E and tk < tk+1 ,

(iii) tk = ∞ ⇒ xk = 4 and tk+1 = ∞
}

.

If t = (tk)k≥1 ∈ RN+ and x = (xk)k≥1 ∈ EN
4 are such that ((tk, xk))k≥1 ∈ S∞(E),

then we also write (t,x) instead of ((tk, xk))k≥1, and if (t,x) has the property that
tk = ∞ for k > n, then we will also write ((tk, xk))1≤k≤n for (t,x) and (tk)1≤k≤n for
t. It will often be convenient to define t0 = 0 for a given ((tk, xk))k≥1.

For every k ≥ 1 we will denote by Tk and Xk resp. the projections on S∞(E) defined
by

Tk(ω) = tk and Xk(ω) = xk

resp. for ω = (t,x) = ((tk, xk))k≥1 ∈ S∞(E).
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On S∞(E) we will consider the filtration (Ct)t≥0 defined by

Ct := σ
({{Tk ≤ s} ∩ {Xk ∈ B} ∣∣ s ≤ t and B ∈ B(E)

})
,

and S∞(E) is provided with the σ-algebra C = C∞.

We also need the space

S∞ :=
{

((tk))k≥1 ∈ RN+
∣∣∣ (i) 0 < t1 ≤ t2 ≤ · · · ,

(ii) tk < ∞ ⇒ tk < tk+1 ,

(iii) tk = ∞ ⇒ tk+1 = ∞
}

.

If x0 ∈ E is fixed, then S∞ can be identified with S∞({x0}) and hence as a subspace
of S∞(E). For this reason we use the same notation Tk for the projection defined
on S∞ onto the k-th coordinate. Moreover, T0 : S∞ → R+ denotes the function
T0 ≡ 0.

Now let (F,B(F )) be a second polish space with its Borel field. By D0(R+, F )
we denote the space of all cadlag functions f : R+ → F with f(0) = 0. For
f ∈ D0(R+, F ) we use the notation f t for the stopped function f t := f(· ∧ t), and
we define the projections Yt and Y t resp. on D0(R+, F ) by

Yt(f) := f(t) and Y t(f) := f t

for f ∈ D0(R+, F ). Furthermore, we introduce on D0(R+, F ) the filtration (Dt)t≥0

given by
Dt := σ

({Ys | s ≤ t}) = σ({Y t}) ,

and set D := D∞.

Let us already remark that

(Ω,F) := (S∞(E)×D0(R+, F ), C ⊗ D)

will be the measurable space on which we are going to construct probability measures
from certain data to obtain point processes.

There are two types of data involved in our construction.

(I) The first type is a kernel C from S∞(E) × D0(R+, F ) to R+ × E which is
predictable in a sense, we will define now.

For every t ≥ 0 let ϕt : S∞(E) → S∞(E) be given by

ϕt

(
((tk, xk))k≥1

)
:= ((uk, yk))k≥1 ,

where uk = tk, yk = xk for tk ≤ t and uk = ∞, yk = 4 for tk > t. If θ = ((sk, yk))k≥1

is the element in S∞(E) with sk = ∞ and yk = 4 for all k ≥ 1, then

ϕt

(
((tk, xk))k≥1

)
= θ for t < t1 . (1)
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Later on, we will also use a kind of complementary function ψt : S∞(E) → S∞(E)
defined by

ψt

(
((tk, xk))k≥1

)
:= ((uk, yk))k≥1 ,

where uk = tk+nt − t and yk = xk+nt for k ≥ 1 in case that

nt := nt

(
((tk, xk))k≥1

)
:= min{k ≥ 0|tk+1 > t} < ∞ ,

and uk = ∞, yk = 4 for all k ≥ 1 in case that nt = ∞.

The functions ϕt and ψt are connected with another function

ϑt : S∞(E)× S∞(E) → S∞(E) ,

which will be used later. Let (t,x) = ((tk, xk))k≥1 and (u, z) = ((uk, zk))k≥1 be ele-
ments of S∞(E). Then ϑt

(
(t,x), (u, z)

)
is defined to be that element ((sk, yk))k≥1 ∈

S∞(E), which is defined by (sk, yk) = (tk, xk) for tk ≤ t and by (snt+k, ynt+k) =
(uk + t, zk) for k ≥ 1 and nt := nt((t,x)) as defined above. It is easy to see that the
following relations hold:

ϕt

(
ϑt

(
(t,x), (u, z)

))
= ϕt

(
(t,x)

)
,

ψt

(
ϑt

(
(t,x), (u, z)

))
= (u, z) ,

ϑt

(
ϕt

(
(t,x)

)
, ψt

(
(t,x)

))
= (t,x) . (2)

Now the kernel C is called a predictable kernel from S∞(E)×D0(R+, F ) to R+×E,
if for all (t,x) ∈ S∞(E), f ∈ D0(R+, F ), t ≥ 0, and B ∈ B(E),

C
(
(t,x), f ; [0, t]×B

)
= C

(
ϕt−((t,x)), f ; [0, t]×B

)
.

Later on, we will also write

Ct

(
(t,x), f ; B

)
:= C

(
(t,x), f ; [0, t]×B

)
.

2.1 Definition. Let C be a predictable kernel with the following additional prop-
erties:

(i) C
(
(t,x), f ; {0} × E

)
= 0 ,

(ii) C
(
(t,x), f ; {t} × E

) ≤ 1 , and
(iii) C

(
(t,x), f ; [0, t]× E

)
= ∞ ⇒ C

(
(t,x), f ; ]t,∞]× E

)
= 0

for (t,x) ∈ S∞(E), f ∈ D0(R+, F ), and t ≥ 0. Then C will be called a compensator
kernel.

(II) A second type of data we need for our construction is given by a family Q =
(Qs,t)0≤s<t≤∞ of stochastic kernels from S∞(E)×D0(R+, F ) to D0(R+, F ).

2.2 Definition. Suppose that the family Q has the properties

(i) Qs,t

(
(t,x), f ; A

)
= Qs,t

(
ϕs(t,x), f s; A

)
and

(ii) Qs,t

(
(t,x), f ; {g ∈ D0(R+, F )| gs = f s and g = gt}) = 1
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for (t,x) ∈ S∞(E), f ∈ D0(R+, F ), s < t ≤ ∞ and A ∈ D. Then Q is called a
family of structural kernels.

For the formulation of our first construction result we need some further prepara-
tions. Suppose first that the maps Tk, Xk, Yt, and Y t are canonically extended to
(Ω,F) := (S∞(E)×D0(R+, F ), C ⊗D). Assume for the moment that P is already
a probability measure on (Ω,F) and that F = (Ft)t≥0 is a given right continuous fil-
tration. The process ((Tk, Xk))k≥1 will be called a (marked) point process. A marked
point process can be eqivalently described by a random measure

N : (Ω,F ,P) → M+(R+ × E,B(R+)⊗ B(E))

(M+(X,X ):= space of non-negative measures on the measurable space (X,X )): For
t ≥ 0 and B ∈ B(E) we set

Nt(B) = N([0, t]×B)

:=
( ∑

k≥1

δ(Tk,Xk)

)
([0, t]×B) =

∑

k≥1

1{Tk≤t}∩{Xk∈B} .

N will be called the counting measure of ((Tk, Xk))k≥1. Suppose that

C : (Ω,F ,P) → M+(R+ × E,B(R+)⊗ B(E))

is a second random measure with the properties that for every B ∈ B(E)
(i) the process t 7→ Ct(B) := C(]0, t]×B) is F-predictable, and
(ii)

(
NTn∧t(B)− CTn∧t(B)

)
t≥0

is an F-martingale for every n ≥ 1.

Then C is called the compensator measure of N (or of ((Tk, Xk))k≥1).

Suppose that π = (sk)k≥1 is a fixed given element in S∞ such that supk≥1 sk = ∞.
Then we define

Fπ = (Fπ
t )t≥0

to be the following filtration on Ω. For t ∈ [sj−1, sj[ (j ≥ 1) we set

Fπ
t := σ

({{Tk ≤ s} ∩ {Xk ∈ B}
∣∣ s ≤ t, B ∈ B(E)

})
∨ σ

({Y sj}) .

Now we can state our first construction result.

2.3 Theorem. Suppose that a compensator kernel C, a family Q of structural ker-
nels and a π ∈ S∞ as above are given. Then there exists a probability measure Pπ

on Ω = S∞(E)×D0(R+, F ) with the following properties:
(1) The marked point process (T,X) = ((Tk, Xk))k≥1 has the Fπ-compensator mea-
sure Cπ(dt, dx) given by

Cπ
t (B)(ω) = Cπ([0, t]×B)(ω) (3)

:=
∑
j≥1

(
Ct∧sj

(
(T(ω),X(ω)), Y sj(ω); B

)

− Ct∧sj−1

(
(T(ω),X(ω)), Y sj(ω); B

))
.
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(2) For sj−1 < ∞ and every B ∈ D the map

ω = ((t,x), f) 7→
∫

1B(g)Qsj−1,sj

(
ϕsj−1

((t,x)), f ; dg
)

(4)

is a version of the conditional probability

Pπ
{
Y sj ∈ B|Csj−1

∨ σ({Y sj−1})} .

Proof. For π = (sj)j≥1 define πn := (sj)1≤j≤n. Then the theorem is proved by
induction in n.
(A) The case n = 1 is just the classical construction, which can be found e.g. in
Last, Brandt [1995; theorem 8.2.1]. In this case, the filtration Fπ1 is given by

Fπ1
t = Ct ∨ σ({Y s1}) ,

and we have to construct a probability measure P1 = Pπ1 such that the point process
((Tk, Xk))k≥1 has the Fπ1-compensator measure C1 given by

C1
t (A)(ω) = C1([0, t]× A)(ω) := Ct

((
(Tk(ω), Xk(ω))

)
, Y s1(ω); A

)

for t ≥ 0 and A ∈ B(E), and such that

P1{Y s1 ∈ B} =

∫
1B(g) Q0,s1(dg)

for B ∈ D (observe that Q0,s1 does not depend on ω).

We outline the main steps of the construction proof of P1 not only for completeness
but also for a better understanding of the induction step (B) below.

For every fixed f ∈ D0(R+, F ) we will construct by induction a projective sequence
(R1

n)n≥0 of probability measures on the spaces (S∞(E), CTn). Since CT0 = C0 =
{∅, S∞(E)}, the definition of R1

0 is clear.

Now suppose that R1
n−1 (n ≥ 1) is already constructed. First, we define a kernel Fn

from (S∞(E), CTn−1) to (R+,B(R+)). For every t ≥ 0 and (t,x) ∈ S∞(E) we set

Fn

(
ϕTn−1((t,x)), f ; ]t,∞]

)

:=
∏

Tn−1<u≤t

(
1−C

(
ϕTn−1((t,x)), f ; {u} × E

))

· exp
{−Cc

(
ϕTn−1((t,x)), f ; ]Tn−1, t]× E

)}
,

where Cc denotes the continuous part of the increasing function

t 7→ Ct((t,x)), f ; E) .

For every A ∈ B(R+), every B ∈ B(E), and all (t,x) ∈ S∞(E) we have

C
(
(t,x), f ; A×B

) ≤ C
(
(t,x), f ; A× E

)
,
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and hence there exists a Radon-Nikodym density t 7→ Ht((t,x), f ; B) of the mea-
sure C

(
(t,x), f ; · × B

)
relative to C

(
(t,x), f ; · × E

)
. Following the ideas in Meyer

[1966;ch.VIII.p.154] and using that both R+ and E are polish spaces, one can prove
that H may be assumed to have the following addditional properties:
(i) (t,x) 7→ Ht((t,x), f ; B) is measurable for all t ≥ 0 and B ∈ B(E),
(ii) t 7→ Ht((t,x), f ; B) is measurable for all (t,x) ∈ S∞(E) and B ∈ B(E),
(iii) B 7→ Ht((t,x), f ; B) is a probability measure on (E,B(E)) for every (t,x) ∈
S∞(E) and all t ≥ 0,
(iv) For every stochastic kernel G from (S∞(E), C) to (R+,B(R+)) such that G((t,x); ·)
is absolutely continuous relative to C

(
(t,x), f ; · × E

)
,

(t,x) 7→
∫

A

Ht((t,x), f ; B) G((t,x); dt)

is measurable for A ∈ B(R+) and B ∈ B(E), and
∫

A

Ht((t,x), f ; B) G((t,x); dt)

defines a probability measure on R+ × E for every (t,x) ∈ S∞(E).

We apply property (iv) of H for the kernel Fn defined above, and obtain that the
definition

Gn

(
(t,x), f ; A×B

)

=

∫

]Tn−1,∞[∩A

Hs

(
ϕTn−1((t,x)), f ; B

)
Fn

(
ϕTn−1((t,x)), f ; ds

)

+ 1A×B(∞,4)Fn

(
ϕTn−1((t,x)), f ; {∞})

for every A ∈ B(R+), every B ∈ B(E), and all (t,x) ∈ S∞(E), defines a stochastic
kernel from S∞(E) to R+ × E. For C ∈ CTn we define now

R1
n(f ; C)

=

∫
· · ·

∫
1C

(
((tk, xk))1≤k≤n

)
Gn

(
((tk, xk))1≤k≤n−1, f ; d(tn, xn)

)

· · ·G1

(
f ; d(t1, x1)

)
,

where for (t,x) = ((tk, xk))k≥1, ((tk, xk))1≤k≤n is just ϕTn((t,x)), and
G1

(
f ; d(t1, x1)

)
:= G1

(
ϕT0(t,x), f ; d(t1, x1)

)
= G1

(
θ, f ; d(t1, x1)

)
(cf. (1)).

Then R1
n(f ; ·) is a probability measure on (S∞(E), CTn), and it is rather easy to check

that the sequence (R1
n(f ; ·))n≥1 is projective, and hence defines a unique probability

measure R1(f ; ·) on (S∞(E), C) with the characteristic property that for every non-
negative, bounded, C-measurable function g : S∞(E) → R+,

∫
g
(
ϕTn((t,x))

)
R1

(
f ; d(t,x)

)
=

∫
g
(
ϕTn((t,x))

)
R1

n

(
f ; d(t,x)

)
.

Now we just replace f by f s1 . Then it is proved in Last, Brandt [1995; theorem
8.2.1] that relative to R1(f s1 ; ·) the marked point process ((Tk, Xk))k≥1 on S∞(E)
has the asserted compensator measure.
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Moreover, by the construction,

f 7→ R1(f s1 ; A)

is D-measurable for every A ∈ C, and hence

A×B 7→ P1(A×B) :=

∫

B

R1(f s1 ; A)Q0,s1(df)

(A ∈ C, B ∈ D) defines a probability measure Pπ1 := P1 on S∞(E) × D0(R+, F )
with the asserted properties.

(B) Suppose that we have already constructed

Pn−1 := Pπn−1 = Ps1,··· ,sn−1 .

If sn = ∞, then the proof of the theorem is finished. Hence assume that sn < ∞.
Then we proceed as follows.

For every (u, z), (t,x) ∈ S∞(E), every f ∈ D0(R+, F ) and every A ∈ B(E) we
define

Cn
t

(
(t,x), f ; A) := C

(sn−1,(u,z))
t

(
(t,x), f ; A)

:= Csn−1+t

(
ϑsn−1

(
(u, z), (t,x)

)
, f ; A

)
− Csn−1

(
(u, z), f ; A

)
.

Then Cn is a kernel from S∞(E) × D0(R+, F ) to R+ × E and one obtains ex-
actely as in step (A) of the proof an associated stochastic kernel Rn such that
for every (u, z) ∈ S∞(E) and every f ∈ D0(R+, F ) the marked point process
((Tk, Xk))k≥1 has the compensator measure C(sn,(u,z)) relative to the probability
measure Rn

(
(u, z), f ; d(t,x)

)
.

Now we can define Ps1,··· ,sn . For every non-negative, bounded, C ⊗ D-measurable
function H : Ω → R+ we set

∫
H(ω)Ps1,··· ,sn(dω)

=

∫

S∞(E)×D0(R+,F )

∫

D0(R+,F )

∫

S∞(E)

H
(
ϑsn−1((u, z), (t,x)), g

)

[
Rn

(
(u, z), g; d(t,x)

)
Qsn−1,sn

(
(u, z), f ; dg

)

Ps1,··· ,sn−1
(
d((u, z), f)

)]
.

With this definition we compute first the compensator measure of the canonical
marked point process relative to Pn := Ps1,··· ,sn .

Let En denote the expectation relative to Pn. Then we have to prove (cf. e.g.
Lipster, Shiryayev [1978; lemma 18.6]) that for every A ∈ B(E) and for every
stopping time T such that NT (A) is Pn-integrable,

En{NT (A)} = En{Cπ
T (A)} ,

9



where for ω = ((t,x), f),

Cπ
T (A)(ω) =

n∑
j=1

(
CT∧sj

(
(t,x), f sj ; A

)−CT∧sj−1

(
(t,x), f sj ; A

))
.

Now we have

NT (A) = NT (A)−NT∧sn−1(A) + NT∧sn−1(A)

=
(
NT (A)−Nsn−1(A)

)
1{T>sn−1} + NT∧sn−1(A)

and also

Cπ
T (A) =

(
Cπ

T (A)− Cπ
sn−1

(A)
)
1{T>sn−1} + Cπ

T∧sn−1
(A) .

The induction hypothesis implies that

En{NT∧sn−1(A)} = En{Cπ
T∧sn−1

(A)} ,

and it remains to prove

En

{(
NT (A)−Nsn−1(A)

)
1{T>sn−1}

}
(5)

= En

{(
Cπ

T (A)− Cπ
sn−1

(A)
)
1{T>sn−1}

}
.

Let us start with the left-hand side of (5).

En

{(
NT (A)−Nsn−1(A)

)
1{T>sn−1}

}

= En

{(
NT∨sn−1(A)−Nsn−1(A)

)
1{T>sn−1}

}

= En

{
1{T>sn−1}En

{
NT∨sn−1(A)−Nsn−1(A) | Fπ

sn−1

}}

= En

{
1{T>sn−1}En

{ ∑

k≥1

1{sn−1<Tk≤T∨sn−1}∩{Xk∈A} | Csn−1 ∨ σ({Y sn})}
}

.

For the computation of the conditional expectation in the last line we remark that
every ω = ((s,y), h) ∈ Ω = S∞(E) × D0(R+, F ) can be written in the form ω =(
ϑsn−1((u, z), (t,x)), h

)
with (u, z), (t,x) ∈ S∞(E). We obtain

En

{ ∑

k≥1

1{sn−1<Tk≤T∨sn−1}∩{Xk∈A} | Csn−1 ∨ σ({Y sn})}

=

∫

S∞(E)

( ∑

k≥1

1]0,T (ω)∨sn−1− sn−1](tk)1A(xk)
)
Rn

(
(u, z), h; d(t,x)

)

=

∫

S∞(E)

C
(sn−1,(u,z))
T (ω)∨sn−1− sn−1

(
(t,x), h; A

)

Rn
(
(u, z), h; d(t,x)

)

=

∫

S∞(E)

[
CT (ω)∨sn−1

(
ϑsn−1

(
(u, z), (t,x)

)
, h; A

)−Csn−1

(
(u, z), h; A

)]

Rn
(
(u, z), h; d(t,x)

)

10



= En

{
Cπ

T∨sn−1
(A)− Cπ

sn−1
(A) | Csn−1 ∨ σ({Y sn})} ,

and

En

{(
NT (A)−Nsn−1(A)

)
1{T>sn−1}

}
= En

{(
Cπ

T (A)− Cπ
sn−1

(A)
)
1{T>sn−1}

}

is proved.

To prove the second assertion of the theorem for Pn, we take an A ∈ Csn−1 and a
B ∈ σ({Y sn−1}). Then we get

∫

A×B

Pn
{
Y sn ∈ C | Csn−1 ∨ σ({Y sn−1})} dPn

=

∫
1A×B(ω)1C(Y sn(ω)) Pn(dω)

=

∫

S∞(E)×D0(R+,F )

1A×B(ω)

∫

D0(R+,F )

1C(g)

Qsn−1,sn(ϕsn−1((s,y)), f ; dg)Pn−1(dω) ,

where ω = (ϕsn−1((s,y)), f) in the last integral. Altogether we have now proved
that for π = (sj)1≤j≤n the assertions of the theorem are true.

(C) If π = (sj)j≥1 has the property that sm = ∞ for some m ≥ 1, then the proof
is finished with the construction of Ps1,··· ,sn , where n = min{j|sj = ∞}. Hence we
suppose now that sj < ∞ for all j ≥ 1.

For every n ≥ 1 let ρn : Ω → Ω be the projection defined by

ρn(ω) :=
(
ϕsn((t,x)), f sn

)

for ω = ((t,x), f). Then the construction of Pn := Ps1,··· ,sn shows that for every
non-negative, bounded, measurable function H : Ω → R+ we have

∫
H(ρn(ω))Pn+1(dω) =

∫
H(ρn(ω))Pn(dω) .

Hence the theorem of Kolmogorov implies that there exists a unique probability
measure Pπ on Ω such that

∫
H(ρn(ω))Pπ(dω) =

∫
H(ρn(ω))Pn(dω)

holds for every n.

Let us prove that Pπ fulfills the properties (1) and (2) of the theorem.

For the proof of (1) we choose an arbitrary Fπ-stopping time T such that NT (A) is
Pπ-integrable for every A ∈ B(E). Then

E NT∧sn(A) = En NT∧sn(A)

= En Cπ
T∧sn

(A) = E Cπ
T∧sn

(A)

11



for every n and hence

E NT (A) = E Cπ
T (A) .

This proves that (1) holds.

For the proof of (2) we take an arbitrary set D ∈ Csn−1 ∨ σ({Y sn−1}) and a C ∈ D.
Then

∫

D

Pπ
{
Y sn ∈ C | Csn−1 ∨ σ({Y sn−1})} dPπ

=

∫
1D 1C(Y sn) dPπ

=

∫
1D 1C(Y sn) dPn

=

∫

Ω

1D

∫

D0(R+,F )

1C(g)Qsn−1,sn(ρsn−1(ω); dg)Pn−1(dω)

=

∫

D

∫

D0(R+,F )

1C(g)Qsn−1,sn(ρsn−1(ω); dg)Pπ(dω) ,

and (2) follows.

This finishes the proof of the theorem. 2

3 Consequences from the Construction

In the definition 2.1 of a compensator kernel we only demanded predictability on
S∞(E), i.e. predictability relative to the filtration (Ct)t≥0. In this section we will as-
sume that the compensator kernel C has the stronger property that C is predictable
relative to the filtration F = (Ft)t≥0 := (Ct ∨ Dt)t≥0, i.e. that for every t ≥ 0 and
A ∈ B(E),

S∞(E)×D0(R+, F ) 3 ((t,x), f) 7→ C
(
(t,x), f ; [0, t]× A

)

is F-predictable. Let us call C in this case a strongly predictable compensator kernel.

If C is strongly predictable, then we have especially

C
(
(t,x), f ; [0, t]× A

)
= C

(
(t,x), f t; [0, t]× A

)
,

and from theorem 2.3 we get the following result.

3.1 Proposition. Suppose that C is a strongly predictable compensator kernel. For
every family Q of structural kernels and every π ∈ S∞ with supj≥1 sj = ∞ let Pπ,Q

denote the probability measure on Ω = S∞(E) ×D0(R+, F ) constructed in theorem
2.3. Then the marked point process (T,X) = ((Tk, Xk))k≥1 on Ω has the same
F-compensator measure C for every probability measure Pπ,Q. C is given by

Ct(A)(ω) = Ct

(
((Tk(ω), Xk(ω)))k≥1, Y (ω); A

)
(6)
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for t ≥ 0 and A ∈ B(E), and Pπ,Q and Q are related by

Pπ,Q
{
Y sn ∈ B

∣∣ Csn−1 ∨ σ({Y sn−1)
}

(7)

=

∫

D0(R+,F )

1B(χsn−1(f, g))Qsn−1,sn( · ; dg)

for n ≥ 1 and B ∈ D.

In this section we will be mainly concerned with the following question. Let C be
strongly predictable and let Q be a family of structural kernels. Then for every
π ∈ S∞ we have the probability measure Pπ,Q on Ω. Now suppose that (πn)n≥1

is a sequence in S∞ such that limn→∞ |πn| = 0, where |π| := supj≥1 |sj − sj−1| for
π = (sj)j≥1 ∈ S∞. Does there exist a limit probability measure PQ of the sequence
(Pπn,Q)n≥1 such that C = (Ct(B))t≥0,B∈B(E) is again the compensator measure of
the canonical marked point process on Ω?

Below we will give an answer to that question for an important special case. Before,
we need some further consequences of the construction in the last section.

Suppose that the family Q of structural kernels has the special property that

Qs,t((t,x), f ; B) = Qs,t(f ; B)

for all t ≥ 0, ((t,x), f) ∈ Ω, and B ∈ D, i.e. every Qs,t is just a kernel from
D0(R+, F ) to D0(R+, F ). We will shortly say that Q does not depend on S∞(E).

If Q does not depend on S∞(E), then for every π ∈ S∞ the probability measure
Pπ,Q turns out to be well known from the classical construction.

In the following it will write integrals often in the form
∫

µ(dx)f(x). The reason is
simply that this notation is more natural for the composition of kernels: Suppose
that (X,X ), (Y,Y), and (Z,Z) are measurable spaces, that K is a kernel from X
to Y and L is a kernel from Y to Z. Then the composition K ◦L of K and L is the
kernel from X to Z, defined by

(K ◦ L)(x,C) :=

∫

Y

K(x, dy)L(y, B) (8)

for x ∈ X and C ∈ Z.

Every strongly predictable compensator kernel C determines a family (Rs,t)0≤s<t≤∞
of stochastic kernels from S∞(E) × D0(R+, F ) to S∞(E). For 0 ≤ s < t ≤ ∞,
A ∈ C, and ω = (((t,x), f) ∈ S∞(E) × D0(R+, F ) we define the compensator
measure Cs,t;ω(dr, dx) by

Cs,t;ω
r (A) = Cs,t;ω([0, r]× A) (9)

:= Ct∧(s+r)(ϑs((t,x), (u,y), f ; A)−Cs((t,x), f ; A)

for r ≥ 0 and A ∈ B(E). This compensator measure determines a unique probability
measure

R̃s,t

(
(t,x), f ; d(u,y)

)
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on S∞(E), such that the canonical marked point process has Cs,t;ω(dr, dx) as com-
pensator measure, and

((t,x), f) 7→ R̃s,t

(
(t,x), f ; d(u,y)

)

is a stochastic kernel from S∞(E)×D0(R+, F ) to S∞(E), which we denote by R̃s,t.
To every R̃s,t we associate a new kernel Rs,t, which is related to R̃s,t in the following
way: Let H : S∞(E) → R+ be a bounded, C-measurable function. Then we set for
((t,x), f) ∈ S∞(E)×D0(R+, F )

∫
Rs,t

(
(t,x), f ; d(v, z)

)
H(v, z) (10)

:=

∫
R̃s,t

(
(t,x), f ; d(u,y)

)
H

(
ϑs

(
ϕs(t,x), ϕt−s(u,y)

))
.

The thus defined family (Rs,t)0≤s<t≤∞ of kernels has the property that

Rs,t ◦Rt,v = Rs,v , (11)

for s < t < v, i.e. the family (Rs,t)0≤s<t≤∞ is a so-called hemigroup of kernels
relative to the kernel composition introduced in (8).

From now on we will assume that the family Q of structural kernels does not depend
on S∞(E) and is also a hemigroup relative to the composition of kernels, i.e. we
assume that

Qs,t ◦Qt,v = Qs,v (12)

holds for all 0 ≤ s < t < v ≤ ∞. Then the following result holds.

3.2 Proposition. Suppose that C is a strongly predictable compensator kernel
and that Q does not depend on S∞(E). Then there exists a probability measure
Q̂ on D0(R+, F ) and a kernel R̂ from D0(R+, F ) to S∞(E), such that for every
π = (sj)j≥1 ∈ S∞ with supj≥1 sj = ∞,

Pπ,Q = R̂ ◦ Q̂ , (13)

which means by (8) that for every non-negative, bounded, measurable function H on
Ω

∫
H(ω)Pπ,Q(dω) (14)

=

∫

D0(R+,F )

∫

S∞(E)

Q̂(df)R̂(f ; d(t,x))H((t,x), f) .

The measure Q̂ is related to the kernel family Q in the following way. For every
n ≥ 1 and every B ∈ D,

f 7→
∫

1B(g)Qsn−1,sn(f ; dg)

14



is a version of the conditional probability Q̂{Y sn ∈ B|Dsn−1}. In the present case, the
compensator measure C = (Ct(A))t≥0,A∈B(E) of the canonical marked point process
is even the compensator measure relative to the filtration (D ∨ Ct)t≥0.

Proof. We set πn = (sj)1≤j≤n. Then it follows from theorem 2.3 that

Pπn,Q = Q0,s1 ◦R0,s1 ◦ · · · ◦Qsn−1,sn ◦Rsn−1,sn .

Since Q does not depend on S∞(E), we can change the order of integration in such
a way that

Pπn,Q =
(
Q0,s1 ◦ · · · ◦Qsn−1,sn

) ◦ (
R0,s1 ◦ · · · ◦Rsn−1,sn

)
.

Thus we get from (11) and (12)

Pπn,Q = Q0,sn ◦R0,sn .

With
Q̂ := Q0,∞ and R̂ := R0,∞

assertion (13) is proved.
The assertion that

Q̂{Y sn ∈ B | Dsn−1} =

∫
1B(g)Qsn−1,sn( · ; dg) Q̂-a.s.,

is immediate from the construction of Q̂. 2

The next result is an essential step to a solution of the stated problem.

3.3 Proposition. Suppose that Q does not depend on S∞(E) and that G =
(Gs,t)0≤s<t≤∞ is a second hemigroup of structural kernels. Let further as before

π = (sj)j≥1 ∈ S∞ with supj≥1 sj = ∞ be given, and denote by P̂ the measure

Pπ,Q = R̂ ◦ Q̂ of proposition 3.2.
(1) Suppose that for every 0 ≤ s < t ≤ ∞, (t,x) ∈ S∞(E), and f ∈ D0(R+, F ), the
probability measures Gs,t

(
(t,x), f ; dg

)
and Qs,t(f ; dg) are equivalent. Then there

exists a positive process X = (Xsn)n≥0 on Ω with the following properties:
(i) For every n ≥ 1 the random variable Xsn is Csn−1 ∨ Dsn-measurable.
(ii) (Xsn)n≥1 is a (Csn ∨ Dsn)n≥0-martingale such that X0 = 1.
(iii) For every (t,x) ∈ S∞(E) the process

(
Xsn((t,x), · ))

n≥0

is a martingale relative to the filtration (Dsn)n≥0 and the probability measure Q̂.
(iv) For every A ∈ C, B ∈ D (as σ-algebras on S∞(E) and D0(R+, F ) resp.), and
every n ≥ 1,

Pπ,G
{
ϕsn

(
(T,X)

) ∈ A, Y sn ∈ B
}

(15)

=

∫
1A(ϕsn(t,x))1B(f sn) Xsn((t,x), f)P̂(d((t,x), f)) .
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(v) For every n ≥ 1,

Gsn−1,sn

(
(t,x), f ; dg

)
=

Xsn

(
(t,x), g

)

Xsn−1

(
(t,x), f sn−1

)Qsn−1,sn(f, dg) . (16)

(vi) For every B ∈ D (as a σ-algebra on D0(R+, F )) and m < n the map

((t,x), f) 7→
∫

D0(R+,F )

1B(g)Φπ
m,n

(
ϕsm((t,x)), g

)
Qsm,sn(f, dg) , (17)

where

Φπ
m,n

(
ϕsm((t,x)), g

)
=

∫

S∞(E)

Xsn

(
(s,y), g

)

Xsm

(
(s,y), g

)Rsm,sn((t,x), g; d(s,y)) , (18)

is a version of the conditional probability

Pπ,G
{
Y sn ∈ B

∣∣ Csm ∨ Dsm

}
.

(2) Conversely, suppose that X = (Xsn)n≥0 is a process on Ω with the properties

(i), (ii) and (iii) of (1). Then the sequence (Xsn · P̂)n≥0 is a consistent sequence
of probability measures on Ω, and the limit measure PX can be given the following
interpretation. We set

Gsn−1,sn

(
(t,x), f ; dg

)
=

Xsn

(
(t,x), g

)

Xsn−1

(
(t,x), f

)Qsn−1,sn(f, dg) .

Then Gsn−1,sn

(
(t,x), f ; dg

)
is a probability measure on D0(R+, F ) for all ((t,x), f) ∈

S∞(E) and Gsn−1,sn is a stochastic kernel from Ω to D0(R+, F ). Obviosly, for
every ((t,x), f) ∈ Ω the probability measure Gsn−1,sn

(
(t,x), f ; dg

)
is equivalent to

Qsn−1,sn(f, dg) with the density

Xsn

(
(t,x), g

)

Xsn−1

(
(t,x), f

) .

Now define the probability measure Pπ,G as in section 2 by

Pπ,G
{
ϕsn

(
(T,X)

) ∈ A, Y sn ∈ B
}

(19)

=

∫ (
G0,s1 ◦R0,s1 ◦ · · · ◦Gsn−1,sn ◦Rsn−1,sn

)
(dω) 1A×B(ω) .

Then PX = Pπ,G.

Proof. By assumption and definition 2.2 we have for every n ≥ 1,

Gsn−1,sn

(
(t,x), f ; dg

)
= Zsn−1

(
(t,x), g

)
Qsn−1,sn(f ; dg) ,

where the Radon-Nikodym density Zsn−1

(
(t,x), ·) of Gsn−1,sn

(
(t,x), f ; ·) relative to

Qsn−1,sn(f ; ·) has this special form because of definition 2.2,(ii). Moreover, it follows
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from that definition also that Zsn−1 is Csn−1 ∨ Dsn-measurable. Now we define for
every n ≥ 1,

Xsn

(
(t,x), f sn

)
:=

n−1∏
j=0

Zsj

(
(t,x), f sj+1

)
,

and set X0 := 1. Then every Xsn is clearly positive and Csn−1 ∨ Dsn-measurable for
n ≥ 1, i.e. (i) holds.

For the proof of property (ii) we take arbitrary fixed A ∈ Csn−1 and B ∈ Dsn−1 , and
get

∫

A∩B

Xsn d P̂

=

∫

A∩B

Zsn−1 · · ·Z0 d P̂

=

∫

A∩B

Zsn−1 · · ·Z0 d
(
Q0,s1 ◦R0,s1 ◦ · · · ◦Qsn−2,sn−1 ◦Rsn−2,sn−1 ◦Qsn−1,sn

)

=

∫

Ω

( ∫

D0(R+,F )

Zsn−1 dQsn−1,sn

)
(Zsn−2 · · ·Z0) 1A∩B

d
(
Q0,s1 ◦R0,s1 ◦ · · · ◦Qsn−2,sn−1 ◦Rsn−2,sn−1

)

=

∫

Ω

(Zsn−2 · · ·Z0) 1A∩B d
(
Q0,s1 ◦R0,s1 ◦ · · · ◦Qsn−2,sn−1 ◦Rsn−2,sn−1

)

=

∫

A∩B

Xsn−1 d P̂ ,

where we used that by assumption
∫

D0(R+,F )

Zsn−1 dQsn−1,sn =

∫

D0(R+,F )

dGsn−1,sn = 1 . (20)

It follows from the just derived equation that (Xsn)n≥1 is a (Csn∨Dsn)n≥0-martingale
and (ii) is proved.

The proof of (iii) is an immediate consequence of (20).

For the proof of (iv) we take A ∈ C and B ∈ D (as σ-algebras on S∞(E) and
D0(R+, F ) resp.). Then

Pπ,G
{
ϕsn

(
(T,X)

) ∈ A, Y sn ∈ B
}

=

∫
1A×B d

(
G0,s1 ◦R0,s1 ◦ · · · ◦Gsn−1,sn ◦Rsn−1,sn

)

=

∫
1A×B d

(
(Z0Q0,s1) ◦R0,s1 ◦ · · · ◦ ((Zsn−1Qsn−1,sn) ◦Rsn−1,sn

)

=

∫
1A×BXsn d

(
Q0,s1 ◦R0,s1 ◦ · · · ◦Qsn−1,sn ◦Rsn−1,sn

)

=

∫
1A((t,x))1B(f) Xsn((t,x), f)P̂(d((t,x), f)) ,
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and (iv) is proved.

The proof of (v) follows from

Xsn

(
(t,x), f sn

)

Xsn−1

(
(t,x), f sn−1

) = Zsn−1

(
(t,x), f sn

)
.

For the proof of (vi) we take a C ∈ C and a D ∈ D (again as σ-algebras on S∞(E)
and D0(R+, F ) resp.). Then we get

∫

C×D

Pπ,G
{
Y sn ∈ B

∣∣ Csm ∨ Dsm

}
dPπ,G

=

∫
1C(ϕsm((T,X)))1B(Y sn)1D(Y sm) dPπ,G (21)

=

∫
1C(ϕsm((T,X))1B(Y sn)1D(Y sm)

d
(
G0,s1 ◦R0,s1 ◦ · · · ◦Rsn−2,sn−1 ◦Gsn−1,sn

)

=

∫ { ∫
1B(Y sn)d

(
Gsm,sm+1 ◦Rsm,sm+1 ◦ · · · ◦Gsn−1,sn

)}
1C(ϕsm((T,X)))

· 1D(Y sm) d
(
G0,s1 ◦R0,s1 ◦ · · · ◦Gsm−1,sm ◦Rsm−1,sm

)
.

For the inner integral in the last line of (21) we get more precisely

∫
1B(Y sn)d

(
Gsm,sm+1 ◦Rsm,sm+1 ◦ · · · ◦Gsn−1,sn

)

=

∫
1B(Y sn)Zsm · · ·Zsn−1 d(Qsm,sn ◦Rsm,sn)

=

∫
1B(g)

{ ∫
Xsn((s,y), g)

Xsn((s,y), g)

Rsm,sn((T,X), g; d(s,y))
}
Qsm,sn(Y sm ; dg)

=

∫
1B(g)Φπ

m,n(ϕsm((T,X), g)Qsm,sn(Y sm ; dg) .

It follows that
∫

C×D

Pπ,G
{
Y sn ∈ B

∣∣ Csm ∨ Dsm

}
dPπ,G

=

∫ { ∫
1B(g)Φπ

m,n(ϕsm((T,X), g)Qsm,sn(Y sm ; dg)
}

1C(ϕsm((T,X)))

· 1D(Y sm) d
(
G0,s1 ◦R0,s1 ◦ · · · ◦Gsm−1,sm ◦Rsm−1,sm

)
,

and (vi) is proved.

(2): Since (Xsn)n≥1 is a (Csn ∨ Dsn)n≥0-martingale by property (ii), we have

∫

A∩B

Xsnd P̂ =

∫

A∩B

Xsn−1d P̂
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for every A ∈ Csn−1 and B ∈ Dsn−1 . This shows that

Xsn · P̂|Csn−1∨Dsn−1
= Xsn−1 · P̂ .

Thus the sequence (Xsn · P̂)n≥1 is a consistent family of probability measures, and
there exists a probability measure PX on Ω such that

PX |Csn∨Dsn
= Xsn · P̂

for every n ≥ 0. By property (iii) every Gsn−1,sn is a stochastic kernel and

XnP̂|Csn∨Dsn

= (Xs1Q0,s1) ◦R0,s1 ◦ · · · ◦ (
Xsn

Xsn−1

Qsn−1,sn) ◦Rsn−1,sn .

The assertion PX = Pπ,G is then obvious. 2

Now we can formulate the main result of this section.

3.4 Theorem. Let F = (Ft)t≥0 denote the filtration on Ω = S∞(E) ×D0(R+, F ),
defined by Ft := Ct ∨ Dt, and suppose that X = (Xt)t≥0 is a process on Ω with the
properties
(1) X is a positive, continuous F-martingale relative to P̂ = R̂ ◦ Q̂ with X0 = 1,
and
(2) for every (t,x) ∈ S∞(E) the process

(
Xt((t,x), ·))

t≥0
is a (Dt)-martingale rela-

tive to Q̂.
Then

(
Xt · P̂

)
t≥0

is a consistent family of probability measures on the measurable

spaces (Ω,Ft), and the limit PX is a probability measure on (Ω,F) with the proper-
ties:
(i) The canonical marked point process ((Tn, Xn))n≥1 has the F-compensator measure
C given by

Ct(B)(ω) = Ct

(
((Tk(ω), Xk(ω)))k≥1, Y (ω); B

)
(22)

for t ≥ 0 and B ∈ B(E),
(ii) for every C ∈ C, D ∈ D (again as σ-algebras on S∞(E) and D0(R+, F ) resp.)
and s ≥ 0 the probability measures PX and P̂ are related by

PX
{
ϕs

(
(T,X)

) ∈ C, Y s ∈ D
}

(23)

=

∫
1C(ϕs(t,x))1D(f s) Xs((t,x), f)P̂(d((t,x), f)) ,

(iii) For every D ∈ D (as a σ-algebra on D0(R+, F )) and 0 ≤ s < t the map

((t,x), f) 7→
∫

D0(R+,F )

1D(g)Φs,t

(
(t,x), g

)
Qs,t(f, dg) , (24)

where

Φs,t

(
(t,x), g

)
=

∫

S∞(E)

Xt

(
(s,y), g

)

Xs

(
(s,y), g

)Rs,t((t,x), g; d(s,y)) , (25)
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is a version of the conditional probability

PX
{
Y t ∈ D

∣∣Fs

}
.

(iv) Furthermore, if we set

Gs,t

(
(t,x), f ; dg

)
=

Xt

(
ϕs(t,x), g

)

Xs

(
(t,x), f

) Qs,t(f, dg) , (26)

we can define for every π ∈ S∞ the probability measure Pπ,G as in (19). Then for
every sequence (πn)n≥1 in S∞ with limn→∞ |πn| = 0 we have

lim
n→∞

Pπn,G = PX (27)

in the sense that for every t ≥ 0

lim
n→∞

sup
A∈Ft

|PX{A} −Pπn,G{A}| = 0 . (28)

Proof. The idea of the proof is to approximate the given process X by a sequence
(Xn)n≥1 of discrete time processes as considered in proposition 3.3. Thus we start
with the proof of assertion (iv).

We take a fixed sequence (πn)n≥1 of elements πn = (sn
j )j≥1 ∈ S∞ such that πn ⊂ πn+1

for every n ≥ 1 and limn→∞ |πn| = 0.

Then we define for every n ≥ 1 the discrete time process (Xn
sn
k
)k≥1 by

Xn
sn
k
((t,x), f) :=

k∏
j=1

Xsn
j

(
ϕsn

j−1
((t,x)), f

)

Xsn
j−1

(
ϕsn

j−1
((t,x)), f

) , (29)

and set Xn
0 = 1. By definition and assumption (2) it follows immediately that every

process Xn = (Xn
sn
k
)k≥1 has the properties (i), (ii) and (iii) of part (1) of proposition

3.3. Now the main part of the proof of (iv) consists in showing that limn→∞ Xn
t = Xt

in L1 for every t > 0, where Xn
t := Xn

sn
k

for sn
k−1 < t ≤ sn

k .

For the following we assume w.l.o.g. that the given t > 0 belongs to every partition
πn, i.e. t = sn

mn
for some mn ≥ 1. We will further assume first that c ≤ Xs ≤ C

for all s ≤ t, where 0 < c < C < ∞ are constants. As usual, we denote by [X] the
quadratic variation of X. Then the Ito-formula gives

log Xt =

∫ t

0

1

Xs

dXs − 1

2

∫ t

0

1

X2
s

d[X]s . (30)

Using this formula, we get

log Xn
t − log Xt

= R1
n + R2

n −
1

2
R3

n + R4
n −

1

2
R5

n ,
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where

R1
n := log Xn

sn
mn
−

mn∑
j=1

Xsn
j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

Xsn
j−1

(
ϕsn

j−1
(·), ·)

+
1

2

mn∑
j=1

(
Xsn

j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

)2

Xsn
j−1

(
ϕsn

j−1
(·), ·)2 ,

R2
n :=

mn∑
j=1

[Xsn
j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

Xsn
j−1

(
ϕsn

j−1
(·), ·) −

Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

Xsn
j−1

(·, ·)
]

,

R3
n :=

mn∑
j=1

[
(
Xsn

j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

)2

Xsn
j−1

(
ϕsn

j−1
(·), ·)2 −

(
Xsn

j
(·, ·)−Xsn

j−1
(·, ·))2

Xsn
j−1

(·, ·)2

]
,

R4
n :=

mn∑
j=1

Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

Xsn
j−1

(·, ·) −
∫ t

0

1

Xs

dXs ,

R5
n :=

mn∑
j=1

(
Xsn

j
(·, ·)−Xsn

j−1
(·, ·))2

Xsn
j−1

(·, ·)2
−

∫ t

0

1

X2
s

d[X]s .

We will prove that limn→∞ Ri
n = 0 for i = 1, · · · , 5 in probability.

(α) lim R1
n = 0: From the Taylor expansion

log(1 + x) = x− 1

2
x2 +

1

3

1

(1 + θx)3
x3 ,

with 0 ≤ θ ≤ 1, we get

|R1
n| ≤

1

3

mn∑
j=1

1
(
1 + θj

Xsn
j

(
ϕsn

j−1
(·),·

)
−Xsn

j−1

(
ϕsn

j−1
(·),·

)

Xsn
j−1

(
ϕsn

j−1
(·),·

)
)3

·

∣∣∣Xsn
j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

∣∣∣
3

Xsn
j−1

(
ϕsn

j−1
(·), ·)3 .

From the assumption that c ≤ Xs ≤ C for all s ≥ 0 one derives that

1 + θj

Xsn
j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

Xsn
j−1

(
ϕsn

j−1
(·), ·) ≥ c

C
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and hence we get

|R1
n| ≤ 1

3

C3

c6

mn∑
j=1

∣∣∣Xsn
j

(
ϕsn

j−1
(·), ·)−Xsn

j−1

(
ϕsn

j−1
(·), ·)

∣∣∣
3

≤ 4

3

C3

c6
(S1

n + S2
n) ,

with

S1
n :=

mn∑
j=1

∣∣∣Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

∣∣∣
3

and

S2
n :=

mn∑
j=1

∣∣∣Xsn
j
(·, ·)−Xsn

j

(
ϕsn

j−1
(·), ·)

∣∣∣
3

.

Since

S1
n ≤ max

1≤j≤mn

∣∣Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

∣∣∣
mn∑
j=1

∣∣∣Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

∣∣∣
2

,

and

lim
n→∞

mn∑
j=1

∣∣∣Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

∣∣∣
2

= [X]t

in L1, the assumption of the continuity of X implies that

lim
n→∞

S1
n = 0

in probability.

For S2
n we consider a fixed ω = ((t,x), f) ∈ S∞(E) × D0(R+, F ) with (t,x) =

((tk, xk))k≥1. If t < t1, then obviously S2
n = 0. Hence suppose t ≥ t1 and set m :=

max{k ≥ 1|tk ≤ t}. If |πn| < max1≤k≤m |tk − tk−1|, and j(k) := min{sn
j |sn

j > tk} for
k = 1, · · · ,m, then

S2
n((t,x), f) =

m∑

k=1

∣∣∣Xsn
j(k)

((t,x), f)−Xsn
j(k)

(ϕsn
j(k)−1

(t,x), f)
∣∣∣
3

, (31)

and hence

lim
n→∞

S2
n((t,x), f) =

m∑

k=1

∣∣∣Xtk+((t,x), f)−Xtk+(ϕtk−(t,x), f)
∣∣∣
3

.

The continuity assumption on X now implies limn→∞ S2
n = 0 P̂-a.s.. Altogether,

limn→∞ R1
n = 0 in probability is proved.
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(β) lim R2
n = 0: As in the last part of the proof of (α) let ω = ((t,x), f) ∈ S∞(E)×

D0(R+, F ) with (t,x) = ((tk, xk))k≥1 be fixed. Then we get with the notations above
for the non-trivial case t ≥ t1

|R2
n((t,x), f)| ≤ c−1

mn∑
j=1

∣∣Xsn
j
((t,x), f)−Xsn

j
(ϕsn

j−1
(t,x), f)

∣∣

= c−1

m∑

k=1

∣∣Xsn
j(k)

((t,x), f)−Xsn
j(k)

(ϕsn
j(k)−1

(t,x), f)
∣∣ ,

and hence

lim sup
n→∞

|R2
n((t,x), f)| ≤ c−1

m∑

k=1

∣∣Xtk+((t,x), f)−Xtk+(ϕtk−(t,x), f)
∣∣ = 0 ,

and limn→∞ R2
n = 0 in probability follows.

(γ) lim R3
n = 0: Now we have for the fixed given ω

|R3
n((t,x), f)|

≤ c−2

mn∑
j=1

[(
Xsn

j

(
ϕsn

j−1
(t,x), f

)−Xsn
j−1

(
ϕsn

j−1
(t,x), f

))2

−
(
Xsn

j

(
(t,x), f

)−Xsn
j−1

(
(t,x), f

))2]

≤ c−2
(
A1

n((t,x), f) + 2A2
n((t,x), f)

)
,

with

A1
n((t,x), f) =

mn∑
j=1

(
Xsn

j
((t,x), f)−Xsn

j
(ϕsn

j−1
(t,x), f)

)2

and

A2
n((t,x), f) =

mn∑
j=1

∣∣Xsn
j
((t,x), f)−Xsn

j
(ϕsn

j−1
(t,x), f)

∣∣

·
∣∣Xsn

j

(
ϕsn

j−1
(t,x), f

)−Xsn
j−1

(
ϕsn

j−1
(t,x), f

)∣∣ .

Now

lim
n→∞

A1
n((t,x), f) = 0

follows as limn→∞ S2
n = 0 in (α). For A2

n((t,x), f) we have

A2
n((t,x), f) ≤ 2C

mn∑
j=1

∣∣Xsn
j
((t,x), f)−Xsn

j
(ϕsn

j−1
(t,x), f)

∣∣ ,

and

lim
n→∞

A2
n((t,x), f) = 0 .
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follows. Thus limn→∞ R3
n((t,x), f) = 0 for all ((t,x), f), and especially, limn→∞ R3

n =
0 in probability.

(δ) lim R4
n = 0: By our assumption s 7→ X−1

s is a continuous function bounded by
c−1. If we set

Fn :=
∑
j≥1

1]sn
j−1,sn

j ]X
−1
sn
j−1

,

then

lim
n→∞

Fn(s) = X−1
s

and
∫ t

0

Fn(s)dXs =
mn∑
j=1

Xsn
j
(·, ·)−Xsn

j−1
(·, ·)

Xsn
j−1

(·, ·) ,

and limn→∞ R4
n = 0 in probability (even in L2) follows easily.

(ε) lim R5
n = 0: We have

R5
n = B1

n + B2
n

with

B1
n :=

mn∑
j=1

(
Xsn

j
(·, ·)−Xsn

j−1
(·, ·))2 − (

[X]sn
j
(·, ·)− [X]sn

j−1
(·, ·))

Xsn
j−1

(·, ·)2
,

and

B2
n :=

mn∑
j=1

[X]sn
j
(·, ·)− [X]sn

j−1
(·, ·)

Xsn
j−1

(·, ·)2
−

∫ t

0

1

X2
s

d[X]s .

Since

B1
n ≤ c−2

( mn∑
j=1

(
Xsn

j
−Xsn

j−1

)2 − [X]t

)
,

and

lim
n→∞

mn∑
j=1

(
Xsn

j
−Xsn

j−1

)2
= [X]t

in L1, limn→∞ B1
n = 0 in L1. For B2

n we set (similar as in (δ))

Gn :=
∑
j≥1

1]sn
j−1,sn

j ]X
−2
sn
j−1

.

Then

lim
n→∞

Gn(s) = X−2
s , and
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mn∑
j=1

[X]sn
j
(·, ·)− [X]sn

j−1
(·, ·)

Xsn
j−1

(·, ·)2
=

∫ t

0

Gn(s)d[X]s ,

and hence

lim
n→∞

B2
n = 0 P̂-a.s. .

This proves (ε).

Altogether we have proved

lim
n→∞

log Xn
t = log Xt

in probability for all t ≥ 0 under the special assumption c ≤ Xt ≤ C for all t ≥ 0.
If this assumption does not hold, we define the stopping times

Sm := inf
{
t ≥ 0

∣∣Xt <
1

m
or Xt > m

}

(m ≥ 1). Since X is a continuous, positive process, limm→∞ Sm = ∞ P̂-a.s.. There-
fore,

P̂
{ ∣∣ log Xn

t − log Xt

∣∣ > δ
}

≤ P̂
{
Sm ≤ t

}
+ P̂

({
Sm > t

} ∩ {∣∣ log Xn
t − log Xt

∣∣ > δ
})

≤ P̂
{
Sm ≤ t

}
+ P̂

{∣∣ log Xn
Sm∧t − log XSm∧t

∣∣ > δ
}

.

For m large enough, we have P̂
{
Sm ≤ t

}
< ε

2
. For that m there exists an n0 such

that

P̂
{∣∣ log Xn

Sm∧t − log XSm∧t

∣∣ > δ
}

<
ε

2

for all n ≥ n0, and it follows that

lim
n→∞

log Xn
t = log Xt

in probability without any boundedness restriction. Thus we have finally obtained
that

lim
n→∞

Xn
t = Xt

in probability.

Since EXn
t = EXt = 1 for all n ≥ 1 and since the random variables Xn

t are positive,
the sequence (Xn

t )n≥1 is uniformly integrable, which now implies that

lim
n→∞

Xn
t = Xt

even in L1.
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Now consider the family (Xt · P̂)t≥0 of probability measures on the measurable
spaces (Ω,Ft). The consistency of this family is an immediate consequence of the
martingale property of X. Thus there exists a unique probability measure PX on
(Ω,F) such that

PX |Ft = Xt · P̂

for every t ≥ 0. Similarly, for the discrete time process Xn defined in (29) there
exists a unique probability measure PXn

such that

PXn |Ft = Xn
t · P̂

for every t ≥ 0. Furthermore, it follows from proposition 3.3 that

Pπ,G = PXn

.

From limn→∞ Xn
t = Xt in L1 for t ≥ 0 we get for every A ∈ Ft that

|PX(A)−Pπ,G(A)| = |PX(A)−PXn

(A)|
=

∣∣
∫

1A XtdP̂−
∫

1A Xn
t dP̂

∣∣

≤
∫
|Xt −Xn

t |dP̂ ,

and (28) follows. Thus we have proved assertion (iv) of the theorem.

Proof of (i): We have to prove that relative to the limit measure PX the point
process ((Tn, Xn))n≥1 has the asserted F-compensator measure C. For every m ≥ 1
we have

EPX

{
NTm∧t(B)

}
=

∫
NTm∧t(B)dPX

=

∫
NTm∧t(B)XtdP̂

= lim
n→∞

∫
NTm∧t(B)Xn

t dP̂

= lim
n→∞

∫
CTm∧t(B)Xn

t dP̂

=

∫
CTm∧t(B)XtdP̂

=

∫
CTm∧t(B)dPX ,

since by proposition 3.3 every process (Xn
t )t≥0 defines a probability measure PXn

for which ((Tn, Xn))n≥1 has the F-compensator measure C. This finishes the proof
of (i).

Proof of (ii): This follows from (15) and (28).
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Proof of (iii): For D ∈ D and A ∈ Fs we obtain for t > s

∫

A

PX
{
Y t ∈ D

∣∣Fs

}
dPX =

∫

A

1D(Y t)dPX

=

∫
1A1D(Y t)

Xt

Xs

Xs dP̂

=

∫
1A1D(Y t)

Xt

Xs

Xs d
(
(Q0,s ◦R0,s) ◦ (Qs,t ◦Rs,t)

)

=

∫
1A Xs

(∫
1D(Y t)

Xt

Xs

d(Qs,t ◦Rs,t)
)

d(Q0,s ◦R0,s)

=

∫
1A

( ∫
1DΦs,t dQs,t

)
Xs d(Q0,s ◦R0,s)

=

∫

A

( ∫
1DΦs,t dQs,t

)
dPX ,

and (iii) follows. 2

Remark. (1) Theorem 3.4 remains true, if we demand instead of condition (1) the
weaker condition that X is a positive cadlag F-martingale with X0 = 1 such that X
is predictable on S∞(E) in the sense that

Xt((t,x), ·) = Xt(ϕt−((t,x)), ·)

for every (t,x) ∈ S∞(E). The proof makes a little bit more effort, since the Ito
formula for log Xt (see (30)) is now a little bit more complicated because of the
possible jumps of (Xt)t≥0. If (Xc

t )t≥0 denotes the continuous part of (Xt)t≥0, one
has to use now the formula

log Xt =

∫ t

0

1

Xs

dXc
s −

1

2

∫ t

0

1

X2
s

d[Xc]s +
∑
s≤t

∆ log Xs .

(2) Condition (2) of the theorem follows in a certain sense from condition (1). More
precisely, one can prove that condition (1) or the condition stated in remark (1)
implies that there is a modification of (Xt)t≥0 such that (2) holds for this modifica-
tion.

Especially part (iv) of the last theorem shows in connection with proposition 3.3 that
the probability measure PX presents a model of a point process, where continuous
mixing takes place. For this reason, we will call in the following the process Y the
mixing process.

It seems not to be obviuos whether martingales of the type considered in the above
theorem exist. Our next result is concerned with this problem.

3.6 Proposition. We denote again by F = (Ft)t≥0 the filtration on Ω = S∞(E)×
D0(R+, F ), defined by Ft := Ct ∨ Dt.
(1) Suppose that Z = (Zt)t≥0 is a continuous, square integrable (Dt)-martingale on

D0(R+, F ) relative to Q̂. Then the extension of Z to Ω (which we denote again by

27



Z) is an F-martingale relative to P̂.
(2) Let now F = (Ft)t≥0 be a given F-progressively measurable process on Ω such
that ∫ t

0

F 2
s d [Z]s

is P̂-integrable for all t ≥ 0, and that

∫ t

0

Fs

(
(t,x), ·)2

d [Z]s

is Q̂-integrable for every (t,x) ∈ S∞(E). Define

Mt =

∫ t

0

Fs dZs (32)

for t ≥ 0. Then M = (Mt)t≥0 is a continuous, square integrable F-martingale

relative to P̂, which clearly has the quadratic variation [M ] given by

[M ]t =

∫ t

0

F 2
s d [Z]s (33)

for all t ≥ 0. Define X = (Xt)t≥0 by

Xt := exp
{
Mt − 1

2
[M ]t

}

for t ≥ 0, and suppose that the following conditions hold:

EP̂ exp
(1

2
[M ]t

)
< ∞ for all t ≥ 0 (34)

and

EQ̂ exp
(1

2
[M ]t((t,x), ·)) < ∞ for t ≥ 0 and every (t,x) ∈ S∞(E). (35)

Then X has properties (1) and (2) of theorem 3.5, and hence the assertions of the
theorem hold for X.

Proof. (1): Let 0 < s < t be given. We know that Qs,t is a regular conditional

distribution of Q̂{Y t ∈ · |Ds}. Since Z is a (Dt)-martingale, we have

∫
Zt(g)Qs,t(·; dg) = EQ̂{Zt | Ds} = Zs Q̂-a.s. .

Now we take an A ∈ Cs and a B ∈ Ds. Then

∫

A×B

Zt dP̂

=

∫ ∫
1A((t,x))1B(f)Zt(f)R̂(f ; d(t,x)Q̂(df)
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=

∫ ∫ ∫
1A((t,x))1B(f s)Zt(g)Qs,t(f

s; dg)R0,s(f
s; d(t,x))Q0,s(df)

=

∫ [ ∫
Zt(g)Qs,t(f

s; dg)
][ ∫

1A((t,x))R0,s(f
s; d(t,x))

]
1B(f s)Q0,s(df)

=

∫
Zs(f)

[ ∫
1A((t,x))R0,s(f

s; d(t,x))
]
1B(f s)Q0,s(df)

=

∫ ∫
1A((t,x))1B(f)Zs(f)R0,s(f ; d(t,x)Q0,s(df)

=

∫

A×B

Zs dP̂ ,

and it follows that Z is even an F-martingale.

(2): By our assumptions, M is a continuous, square integrable F-martingale. Now
it is well known (cf. e.g. Karatzas, Shreve [1988]) that under the condition (34)
of (2) the process X is an F-martingale, i.e. condition (1) of theorem 3.4 is
proved. Similarly, condition (35) implies that for every (t,x) ∈ S∞(E) the process
(Xt((t,x), ·))t≥0 is a (Dt)-martingale relative to Q̂, and condition (2) of theorem 3.4
follows. 2

The conditions (34) and (35) in the last proposition are not the most general condi-
tions, which ensure that

(
exp

{
Mt − 1

2
[M ]t

})
t≥0

has the martingale properties (1)

and (2) of theorem 3.4. This is known from the theory of exponential martingales
(cf. Liptser, Shiryayev [1978]). We have just chosen these two conditions to give an
impression of the general problem to obtain martingales of the above type. In many
cases, condition (35) is the easier condition, e.g. if the process F does not depend
on the elements in D0(R+, F ).

We conclude this section with a general example, which shows the difference between
point processes with continuous mixing and classical mixed point processes. To avoid
an overburdening of the notations we restrict ourselves in this example to the case
of non-marked point processes.

3.7 Proposition. Suppose that the process Z of proposition 3.6 is a Q̂-Brownian
motion B = (Bt)t≥0 and that T = (Tn)n≥1 is a point process such that the count-
ing process (Nt)t≥0 of (Tn)n≥1 is a double-stochastic Poisson process with intensity

(λt(B))t≥0. Let the process (Ft)t≥0 of proposition 3.6 be given by Ft(t) := Nt(t)
1
2 ,

and suppose further that

EQ̂

(
exp

{(
e

1
2
t − 1

) ∫ t

0

λs(B)ds
})

< ∞ (36)

for all t ≥ 0. Then the process (Xt)t≥0 of proposition 3.6 has the properties (34) and
(35), and (36) holds in case of the following two simple examples for the intensity
(λt(B))t≥0.
Example (1): Let 0 < α < β be given constants and denote by T the stopping time
T = inf{t > 0 : |Bt| > 1}. Define

λs(B) := α1{T>s} + β1{T≤s} . (37)
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Example (2): Define

λs(B) := log(1 + max
r≤s

|Br|) . (38)

The distribution of T relative to PX is given as follows: For every k ≥ 1 we set
γk :=

√
k −√k − 1. Then for 0 ≤ t1 < t2 < · · · < tn+1 = t one has

PX
{
T1 > t1, T2 > t2, · · · , Tn+1 > tn+1

}
(39)

= EQ̂

(
exp

{−
∫ t

0

λs(B) ds
}[ ∫ ∞

t1

∫ ∞

t2

· · ·
∫ ∞

tn

exp
{ n∑

k=1

(
γk(Bt∧sk

−Bsk
)− 1

2
(t ∧ sk − sk)

)} n∏

k=1

λsk
(B) dsn · · · ds1

])

The distribution of the mixing process Y is given by

PX
{
Y t ∈ D

}
(40)

=
∑

k≥1

EQ̂

(
1D(Bt) exp

{−
∫ t

0

λs(B) ds
}[ ∫ t

0

∫ t

s1

· · ·
∫ t

sk−2

exp
{ k−1∑

j=1

(
γj(Bt −Bsj

)− 1

2
(t− sj)

)} k−1∏
j=1

λsj
(B) dsk−1 · · · ds1

])

for every t ≥ 0 and D ∈ D.

Proof. Since

[M ]t(ω) =

∫ t

0

Ns((t,x)) ds for ω = ((t,x), y) ,

[M ]t(ω) does not depend on y, and hence condition (35) is trivially fulfilled. For the
proof of (34) we use that Nt has the Poisson distribution with parameter

∫ t

0
λs(B)ds

relative to the probability measure R̂(B) = R̂(B; d(t,x)). Hence we get first

ER̂(B)

{
exp

(1

2
[M ]t

)}
= ER̂(B)

{
exp

(1

2

∫ t

0

Ns ds
)}

≤ ER̂(B)

{
exp

(1

2
tNt

)}

= e−
R t
0 λs(B)ds

∑

k≥0

e
1
2
tk

( ∫ t

0
λs(B)ds

)k

k!

= exp
((

e
1
2
t − 1

) ∫ t

0

λs(B)ds
)

,

and assumption (36) implies

EP̂

{
exp

(1

2
[M ]t

)}
= EQ̂

{
ER̂(B)

{
exp

(1

2
[M ]t

)}}

≤ EQ̂

{
exp

((
e

1
2
t − 1

) ∫ t

0

λs(B)ds
)}

< ∞ .
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Thus (34) holds and hence we know from proposition 3.6 that the process X defined
by

Xt = exp
{∫ t

0

Ns(t)
1
2 dBs − 1

2

∫ t

0

Ns(t) ds
}

(41)

has the properties (1) and (2) of theorem 3.4. Thus there exists a probability measure
PX on Ω = S∞ ×D0(R+, F ) with the properties stated in theorem 3.4.

Now let us show that for the examples (1) and (2) of intensities the condition (36)
holds.

For example (1) we obtain

∫ t

0

λs(B)ds = αT + β(t− T ) = βt− (β − α)T ,

and (36) holds, since β > α.

For example (2) we get

∫ t

0

log(1 + max
r≤s

|Br|) ds ≤ t log(1 + max
s≤t

|Bs|) ,

and hence

exp
((

e
1
2
t − 1

) ∫ t

0

λs(B)ds
)

≤ (1 + max
s≤t

|Bs|)t(e
1
2 t−1) .

Now it follows from the theorem of Fernique (cf. Araujo, Giné [1980;theorem 6.5])
that for every t ≥ 0 there exists an r0 > 0 such for all r < r0

EQ̂ exp
{
r max

s≤t
|Bs|2

}
< ∞ .

This implies especially that

EQ̂ max
s≤t

|Bs|n < ∞

for every n ≥ 1, and

EQ̂

{
(1 + max

s≤t
|Bs|)t(e

1
2 t−1)

}
< ∞

follows. Thus we have proved (36) for example (2).

For the proof of the formulas (39) and (40) we use that

Nt =
∑

k≥1

1{Tk≤t} and

N
1
2
t =

∑

k≥1

γk1{Tk≤t} .
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This shows that the process X (see (41)) has the form

Xt = exp
{ ∑

k≥1

1{Tk≤t}[γk(Bt −BTk
)− 1

2
(t− Tk)]

}
. (42)

Using this formula, it is now easy to derive (39) and (40). First we prove (39). From
the definition of PX we have

PX
{
T1 > t1, T2 > t2, · · · , Tn+1 > tn+1

}

= EP̂

{
1{T1>t1,T2>t2,··· ,Tn+1>tn+1}Xt

}

= EP̂

{
1{T1>t1,T2>t2,··· ,Tn+1>tn+1}

· exp
{ n∑

k=1

[γk(Bt∧Tk
−BTk

)− 1

2
(t ∧ Tk − Tk)]

}

= EQ̂{G(B)} ,

with

G(B) = ER̂(B)

{
1{T1>t1,T2>t2,··· ,Tn+1>tn+1}

· exp
{ n∑

k=1

[γk(Bt∧Tk
−BTk

)− 1

2
(t ∧ Tk − Tk)]

}
.

From the definition of R̂ we get with the shorter notation

Fk(sk) := γk(Bt∧sk
−Bsk

)− 1

2
(t ∧ sk − sk) and λs = λs(B)

(1 ≤ k ≤ n)

G(B) =

∫ ∞

t1

· · ·
∫ ∞

tn

∫ ∞

t

exp
{ n∑

k=1

Fk(sk)}

·
n+1∏

k=1

[
exp

{−
∫ sk

sk−1

λrdr
}
λsk

]
dsn+1 dsn · · · ds1

=

∫ ∞

t1

· · ·
∫ ∞

tn

exp
{ n∑

k=1

Fk(sk)
}

exp{−
∫ t

sk

λr dr}

·
n∏

k=1

[
exp

{−
∫ sk

sk−1

λr dr
}
λsk

]
dsn · · · ds1

= exp{−
∫ t

0

λr dr}
∫ ∞

t1

· · ·
∫ ∞

tn

exp
{ n∑

k=1

Fk(sk)
} n∏

k=1

λsk
dsn · · · ds1 ,

and integrating G(B) relative to Q̂ gives the asserted formula (39).

For the proof of (40) we proceed similarly. First we have

PX
{
Y t ∈ D

}
= EQ̂

{
1D(Bt)ER̂(B){Xt}

}
,
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and for the inner integral we get

ER̂(B){Xt} =
∑

k≥1

ER̂(B)

{
1{T1≤t,··· ,Tk−1≤t,Tk>t}Xt

}
. (43)

For every term under the sum of equation (43) we compute further

ER̂(B)

{
1{T1≤t,··· ,Tk−1≤t,Tk>t}Xt

}

=

∫ t

0

∫ t

t1

· · ·
∫ t

tk−2

∫ ∞

t

exp
{ k−1∑

j=1

Fj(sj)
}

·
k∏

j=1

[
exp

{−
∫ sj

sj−1

λrdr
}
λsj

]
dsk · · · ds1

= exp{−
∫ t

0

λr dr}
∫ t

0

· · ·
∫ t

tk−2

exp
{ k−1∑

j=1

Fk(sk)
} k−1∏

j=1

λsj
dsk−1 · · · ds1 ,

where for k = 1 the last ”iterated” integral is understood to have the value 1. Now
the asserted equation (40) follows from (43). 2

Remark: Formula (39) proves especially that the probability measures PX define
new classes of point processes not covered by the classical construction, and for-
mula (40) shows the mutual effect between the mixing of the point process and the
influence of the point process itself on the structural data.

References

Bauer, H. [2001]: Measure and Integration Theory. Berlin – New York: DeGruyter.
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