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Abstract

A risk process is defined as a marked point process ((Tn, Xn))n≥1 on a certain
probability space (Ω,F ,P), where the time points T1 < T2 < · · · are the claim
arrival times of claims from a given portfolio of risks and the marks Xn are the
claim amounts at time Tn. If Nt(B) denotes the number of claims up to time
t with claim amount in a Borel set B, then ((Tn, Xn))n≥1 can equivalently be
described by the family of processes (Nt(B))t≥0 with B ∈ B(R+). Suppose
that (T, T ) is a measurable space, Θ a T -valued random variable, and that
(FΘ

t )t≥0 is the filtration defined by FΘ
t = σ(Θ) ∨ σ({Ns(B) : s ≤ t, B ∈

B(R+}). Assume that there is a family of (FΘ
t )-adapted processes (λt(B))t≥0

(B ∈ B(R+)) such that all processes (Nt(B)− ∫ t
0 λs(B)ds)t≥0 are local (FΘ

t )-
martingales. Then ((Tn, Xn))n≥1 is called a Θ-mixed risk process, and for a
number of reasons the random variable Θ is called the portfolio structure.

Now suppose that Z = (Zt)t≥0 is an (FΘ
t )-adapted process and that

(Ft)t≥0 is a subfiltration of (FΘ
t ). The filtering problem for Z given (Ft)

is just the problem to determine the process (E{Zt | Ft})t≥0, and the pre-
diction problem is the problem to determine for a given h > 0 the process
(E{Zt+h | Ft})t≥0. For a number of relevant processes Z one can use a mar-
tingale property inherited from the martingale property of ((Tn, Xn))n≥1 to
solve the filtering and the prediction problem. A typical example is the pro-
cess (SB

t )t≥0 (B ∈ B(R+)) given by SB
t =

∑
n≥1 Xn1{Tn≤t}1{Xn∈B}. In this

case the process (SB
t − ∫ t

0

∫
B xλs(dx)ds)t≥0 is a local (FΘ

t )-martingale.

1 Mixed Risk Processes

Let (E, E) be a measurable space and let ∆ denote an artificial element outside of E.
We set E∆ := E∪{∆} and provide E∆ with the σ-algebra E∆ := σ(E∪{{∆}}). Now
suppose that (Tn)n≥1 is a claim arrival process on the probability space (Ω,F ,P),
i.e. that P-a.s.

0 =: T0 ≤ T1 ≤ T2 ≤ · · · with Tn−1 < Tn , if Tn−1 < ∞ ,

and that (Xn)n≥1 is a sequence of E∆-valued random variables such that the following
condition holds:

Tn = ∞ ⇐⇒ Xn = ∆ . (1)
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Then the double sequence ((Tn, Xn))n≥1 is called a risk process with claim space E.
For n = 0 we make the convention X0 := ε with a fixed ε ∈ E.

We will always assume in the following that (E, E) is a polish space provided with
its Borel field. In most applications E = R+ and ∆ = ∞, i.e. E∆ = R+. Then every
Xn is interpreted as the claim size of the n-th claim and (Xn)n≥1 will be called the
claim size process or the claim amount process of the risk process.

Let us denote by M z
+(X,X ) the space of all Z+-valued measures on a measurable

space (X,X ).Then a risk process ((Tn, Xn))n≥1 with claim space E can be equiva-
lently described by the random measure

N : (Ω,F ,P) −→ M z
+(R+ × E,B(R+)⊗ E) ,

defined by

N :=
∑
n≥1

δ(Tn,Xn) .

For t ≥ 0 and B ∈ E we set

Nt(B) := N ([0, t]×B) =
∑
n≥1

1{Tn≤t}1{Xn∈B} .

Then every Nt(B) is a random variable and we can identify the random measure N
with the family

(
(Nt(B))t≥0

)
B∈E of stochastic processes. We will call

N =
(
(Nt(B))t≥0

)
B∈E

the risk measure of the risk process ((Tn, Xn))n≥1.

Since (Nt(E))t≥0 is just the claim number process of (Tn)n≥1, we will also write Nt

instead of Nt(E).

Now let F = (Ft)t≥0 be a given right continuous filtration on (Ω,F ,P). A family Λ =(
(λt(B))t≥0

)
B∈E of R+-valued stochastic processes is called an F-intensity measure,

if the following properties hold:
(i) for every fixed B ∈ E the process (λt(B))t≥0 is an F-progressively measurable
process with values in R+.
(ii) for every fixed t ≥ 0,

B 7−→ λt(B)

is a finite measure on (E, E), and
(iii) for every t ≥ 0, ∫ t

0

λs(E) ds < ∞ P-a.s..

In the following we will just write λt instead of λt(E).

2



Now suppose that ((Tn, Xn))n≥1 is a risk process with associated risk measure
N =

(
(Nt(B))t≥0

)
B∈E and assume that N is F-adapted. Then we say that N

(or ((Tn, Xn))n≥1) has the F-intensity measure Λ =
(
(λt(B))t≥0

)
B∈E , if

(
NTn∧t(B)−

∫ Tn∧t

0

λs(B) ds
)

t≥0
(2)

is an F-martingale for every n ≥ 1 and every B ∈ E . If the random variables
Nt := Nt(E) (t > 0) are integrable (in this case we will also say that the risk process
((Tn, Xn))n≥1 is integrable), then (2) just means that for all B ∈ E the processes

(
Nt(B)−

∫ t

0

λs(B) ds
)

t≥0
(3)

are F-martingales.

For B ∈ E the measure λt(B) (dt ⊗ dP) is obviously absolutely continuous relative
to λt(E) (dt ⊗ dP). Hence there exists a Radon-Nikodym-density γt(B) relative to
λt(E) (dt⊗ dP), and it is not difficult to prove that these densities can be chosen in
such a way that

B 7→ γt(B)

is a probability measure for all ω ∈ Ω. In case that always λt(E) > 0, one can just
set

γt(B) :=
λt(B)

λt(E)
.

In the following we assume always that

λt(B) = γt(B)λt ,

where γt is a probability measure on (E, E).

In this paper we will consider essentially two filtrations. The first filtration is the
canonical filtration FN = (FN

t )t≥0 of N , defined by

FN
t := σ

({
Ns(B)

∣∣ s ≤ t , B ∈ E})
.

For the second filtration we take a measurable space (T, T ), a measurable map

Θ : (Ω,F ,P) → (T, T ) ,

and define the filtration FΘ = (FΘ
t )t≥0 by

FΘ
t := σ(Θ) ∨ FN

t .

Θ will shortly be called the portfolio structure, and if ((Tn, Xn))n≥1 is a risk process
with a FΘ-intensity measure Λ =

(
(λt(B))t≥0

)
B∈E , then ((Tn, Xn))n≥1 is called a

Θ-mixed risk process.
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Suppose that G = (Gt)t≥0 is a FΘ-adapted process. Then it is easily shown that on
the set {Tn−1 ≤ t < Tn} Gt only depends on (Tk, Xk)k≤n−1 and on Θ and we express
this dependence by the notation

Gt = Gt(Θ, (Tk, Xk)k≤n−1) .

We will also often make use of the following convention: If a function f depends on
(tj, xj)j≤n, then we will use freely the different notations

f(t1, · · · , tn, x1, · · · , xn) , f((tj, xj)j≤n) , or

f((ti, xi)1≤i≤k−1, (tj, xj)k≤j≤n) for 1 ≤ k ≤ n .

For the purposes of this paper we need some further regularity properties of the
FΘ-intensity measure

Λ =
(
(λt(B))t≥0

)
B∈E

of a Θ-mixed risk process ((Tn, Xn))n≥1.

1.1 Definition. The FΘ-intensity measure Λ is said to be regular, if the following
condition holds:
There exists a σ-finite measure γ on (E, E) such that

γt = gt(·; Θ, T1, · · · , Tn−1, X1, · · · , Xn−1)γ

on {Tn−1 ≤ t < Tn}, and such that

(t, x, θ, t1, · · · , tn−1, x1, · · · , xn−1) 7→ gt(x; θ, t1, · · · , tn−1, x1, · · · , xn−1)

is measurable.

In case that Λ is regular, the distribution of

(Θ, T1, T2, · · · , X1, X2, · · · )
can easily be computed. Denote by β the distribution of Θ and suppose that
u1, · · · , un ∈ R+, B1, · · · , Bn ∈ E , and C ∈ T are given. Then

P
{
T1 ≤ u1, · · · , Tn ≤ un, X1 ∈ B1, · · · , Xn ∈ Bn, Θ ∈ C

}
(4)

=

∫

C

∫ u1

0

∫

B1

· · ·
∫ un

tn−1∧un

∫

Bn

G(n)(y, (ti, xi)i≤n)

γ(dxn)dtn · · · γ(dx1)dt1β(dy) ,

where the integrand G(n)(y, (ti, xi)i≤n) is given by

G(n)(y, (ti, xi)i≤n) =
n∏

i=1

{
gti(xi; y, (tj, xj)j≤i−1) (5)

· λti(y, (tj, xj)j≤i−1)e
− R ti

ti−1
λs(y,(tj ,xj)j≤i−1) ds}

.
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There are also explicit formulas for a number of important conditional distributions.
Define

G
(n,k)
Θ,(Ti,Xi)i≤n

((tj, xj)1≤j≤k)

:=
k∏

l=1

{
gtl(Θ, (Ti, Xi)i≤n, (tj, xj)1≤j≤l−1) (6)

· λtl(Θ, (Ti, Xi)i≤n, (tj, xj)1≤j≤l−1)e
− R tl

tl−1
λs(Θ,(Ti,Xi)i≤n,(tj ,xj)1≤j≤l−1) ds}

with the convention t0 = Tn. Then for n ≥ 1, k ≥ 1, u1, · · · , uk > 0, and
B1, · · · , Bk ∈ E we have

P
{
Tn+1 ≤ u1, · · · , Tn+k ≤ uk, Xn+1 ∈ B1, · · · , Xn+k ∈ Bk

∣∣FΘ
Tn

}

=

∫ u1

Tn∧u1

∫

B1

· · ·
∫ uk

tk−1∧uk

∫

Bk

G
(n,k)
Θ,(Ti,Xi)i≤n

((tj, xj)1≤j≤k) (7)

γ(dxk)dtk · · · γ(dx1)dt1 .

We remark that

FΘ
Tn

= σ(Θ, (Tj, Xj)0≤j≤n) .

There is also an explicit formula for the conditional distribution relative to the σ-
algebra FΘ

t for t ≥ 0 (cf. Dettweiler [2004]). For every n ≥ 1, k ≥ 1, u1, · · · , uk > 0,
and B1, · · · , Bk ∈ E one has

1{Tn−1≤t<Tn}P
{
Tn ≤ u1, · · · , Tn+k−1 ≤ uk, (8)

Xn ∈ B1, · · · , Xn+k−1 ∈ Bk

∣∣FΘ
t

}

= 1{Tn−1≤t<Tn}

∫ u1

t∧u1

∫

B1

· · ·
∫ uk

sk−1∧uk

∫

Bk

G
t,(n−1,k)
Θ,(Ti,Xi)i≤n−1

((tj, xj)1≤j≤k)

γ(dxk)dtk · · · γ(dx1)dt1 ,

where the density G
t,(n−1,k)
Θ,(Ti,Xi)i≤n−1

is given by

G
t,(n−1,k)
Θ,(Ti,Xi)i≤n−1

((tj, xj)1≤j≤k) (9)

:=
k∏

l=1

{
gtl(Θ, (Ti, Xi)i≤n−1, (tj, xj)1≤j≤l−1)

·λtl(Θ, (Ti, Xi)i≤n−1, (tj, xj)j≤l−1)e
− R tl

tl−1
λs(Θ,(Ti,Xi)i≤n−1,(tj ,xj)j≤l−1) ds}

with the convention t0 = t.

In this paper we will consider - beside the general results - three classes of special
risk processes.

(a) Mixed (homogeneous) Poisson Risk Processes: This is the case, if (λt)t≥0

is a constant process only depending on Θ and if also the densities gt above only
depend on Θ (and also not on t). This means that we assume

λt = λ(Θ) , and (10)

5



gt(·; Θ, T1, · · · , Tn−1, X1, · · · , Xn−1) = g(·; Θ) . (11)

(b) Mixed (inhomogeneous) Poisson Risk Processes: In this case we assume

λt = λt(Θ) , and (12)

gt(·; Θ, T1, · · · , Tn−1, X1, · · · , Xn−1) = gt(·; Θ) . (13)

(c) Mixed Markovian Risk Processes: Here we suppose that we have on the
sets {Tn−1 ≤ t < Tn} (n ≥ 1)

λt = λ
(n)
t (Θ) , and (14)

gt(·; Θ, T1, · · · , Tn−1, X1, · · · , Xn−1) = g
(n)
t (·; Θ) , (15)

and the mixed Markovian risk process is said to be homogeneous, if λ
(n)
t and g

(n)
t do

not depend on t.

2 Prediction

From now on we will always assume that ((Tn, Xn))n≥1 is a Θ-mixed risk process
with a regular FΘ-intensity measure Λ as described in definition 1.1.

Suppose that Z = (Zs)s≥0 is an integrable, FΘ-adapted process, that 0 ≤ t < u are
two given fixed time points and that Gt is a fixed sub-σ-algebra of FΘ

t . Then we
will call E{Zu | Gt} the prediction of Zu on the basis of the informations given by
Gt (or more shortly: the prediction of Zu given Gt). This prediction problem will be
solved in two steps: In this section we will first consider the prediction of Zu given
FΘ

t . Then in the next section we will solve the prediction of Zu given Gt by filtering
E{Zu | FΘ

t }, which simply means that we use the iteration formula for conditional
expectations: E{Zu | Gt} = E

{
E{Zu | FΘ

t }
∣∣Gt

}
. Since Z = (Zs)s≥0 is assumed to

be FΘ-adapted, we have

Zu =
∑
n≥1

1{Tn−1≤t<Tn}
∑

k≥1

1{Tn−1+k−1≤u<Tn−1+k}Zu(Θ, (Ti, Xi)i≤n−1+k−1) .

Thus we obtain from (8) the general formula

E{Zu | FΘ
t } =

∑
n≥1

1{Tn−1≤t<Tn}
∑

k≥1

I t,u
n,k(Θ, (Ti, Xi)i≤n−1) , (16)

where

I t,u
n,k(Θ, (Ti, Xi)i≤n−1) := E

{
1{Tn−1+k−1≤u<Tn−1+k}Zu(Θ, (Ti, Xi)i≤n−1+k−1)

∣∣FΘ
t

}
.

For k = 1 we have

I t,u
n,1(Θ, (Ti, Xi)i≤n−1) = Zu(Θ, (Ti, Xi)i≤n−1e

− R u
t λr(Θ,(Ti,Xi)i≤n−1)dr , (17)
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and for k > 1 we have (with the convention t0 = t)

I t,u
n,k(Θ, (Ti, Xi)i≤n−1) (18)

=

∫ u

t

∫

E

· · ·
∫ u

tk−2

∫

E

{
Zu(Θ, (Ti, Xi)i≤n−1, (tj, xj)1≤j≤k−1)

· e−
R u

t λr(Θ,(Ti,Xi)i≤n−1,(tj ,xj)1≤j≤k−1)drG
t,(n−1,k−1)
Θ,(Ti,Xi)i≤n−1

((tj, xj)1≤j≤k−1)
}

γ(dxk−1)dtk−1 · · · γ(dx1)dt1 .

The double series in formula (16) reduces to a finite sum, if Zu does not fully depend
on ((Tn, Xn))n≥1, i.e. if

Zu = Zu(Θ, (Ti, Xi)0≤i≤m)

for some fixed m ≥ 0. We omit the details.

We will restrict now to more special prediction problems. For this we assume that
in the following always E = R+ (or at least Rd), but we will still use the notation
E to distinguish the claim space from the time axis.

For a fixed Borel subset B of E and t ≥ 0 we set

SB
t :=

∑
n≥1

Xn1{Xn∈B}1{Tn≤t} . (19)

Then

SB
t =

∫ t

0

∫

B

xN(ds, dx) .

We will assume that for all t ≥ 0

E

∫ t

0

∫

B

|x| gs(x)λsγ(dx)ds < ∞ . (20)

Then one knows (cf. Dettweiler [2004]) that

(
SB

t −
∫ t

0

∫

B

x gs(x)λsγ(dx)ds
)

t≥0

is an FΘ-martingale. This implies

E{SB
u − SB

t | FΘ
t } = E

{∫ u

t

∫

B

x gs(x)λsγ(dx)ds
∣∣FΘ

t

}
. (21)

Thus the prediction of SB
u − SB

t given FΘ
t is the same as the prediction of

Zu :=

∫ u

t

∫

B

x gs(x)λsγ(dx)ds (22)

given FΘ
t .
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If the density processes g and λ fully depend on ((Tn, Xn))n≥1, one has to use the
general formula (16) for the Zu given by (22), which clearly is not an easy and
practical task. But there are two important special cases, where the prediction is
quite easy, since g and λ only depend on Θ.

2.1 Proposition. Suppose that ((Tn, Xn))n≥1 is a mixed inhomogeneous Poisson
risk process, for which the integrability assumption (20) holds. Then

E{SB
u − SB

t | FΘ
t } =

∫ u

t

∫

B

xgs(x; Θ)λs(Θ)γ(dx)ds . (23)

If especially ((Tn, Xn))n≥1 is a mixed homogeneous Poisson risk process, then

E{SB
u − SB

t | FΘ
t } = (u− t)λ(Θ)

∫

B

xg(x; Θ)γ(dx) . (24)

The prediction problem for general mixed risk processes is getting more simple in
the following situation. We introduce the stopping time

Tt := inf{v > t |Nv −Nt ≥ 1} ,

and consider the prediction problem for the increment SB
Tt∧u − SB

t . Since Tt = Tn

on {Tn−1 ≤ t < Tn}, we have

E{SB
Tt∧u − SB

t | FΘ
t } =

∑
n≥1

1{Tn−1≤t<Tn}E{1{Tn≤u}1{Xn∈B}Xn | FΘ
t } , (25)

and one obtains

E{SB
Tt∧u − SB

t | FΘ
t } =

∑
n≥1

1{Tn−1≤t<Tn}J
t,u
n (Θ, (Ti, Xi)i≤n−1) , (26)

where

J t,u
n (Θ, (Ti, Xi)i≤n−1) (27)

=

∫ u

t

( ∫

B

xgs(x; Θ, (Ti, Xi)i≤n−1)γ(dx)
)

λs(Θ, (Ti, Xi)i≤n−1)e
− R s

t λr(Θ,(Ti,Xi)i≤n−1) dr ds .

Especially, we have the following result:

2.2 Proposition. Suppose that the integrability condition (20) holds.
(a) If ((Tn, Xn))n≥1 is a mixed Markovian risk process (see (14) and (15), then

E{SB
Tt∧u − SB

t | FΘ
t } (28)

=
∑
n≥1

1{Tn−1≤t<Tn}

∫ u

t

( ∫

B

xg(n)
s (x; Θ)γ(dx)

)
λ(n)

s (Θ)e−
R s

t λ
(n)
r (Θ) dr ds .

Thus - in case that ((Tn, Xn))n≥1 is homogeneous -
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E{SB
Tt∧u − SB

t | FΘ
t } (29)

=
∑
n≥1

1{Tn−1≤t<Tn}
(
1− e−(u−t)λ(n)(Θ)

)( ∫

B

xg(n)(x; Θ)γ(dx)
)

.

(b) If ((Tn, Xn))n≥1 is a mixed inhomogeneous Poisson risk process, then

E{SB
Tt∧u − SB

t | FΘ
t } =

∫ u

t

( ∫

B

xgs(x; Θ)γ(dx)
)
λs(Θ)e−

R s
t λr(Θ) dr ds , (30)

and in case of a homogeneous Poisson risk process

E{SB
Tt∧u − SB

t | FΘ
t } =

(
1− e−(u−t)λ(Θ)

)( ∫

B

xg(x; Θ)γ(dx)
)

. (31)

In the next (and last) prediction problem we replace the deterministic time points t
and u by the stopping times Tn−1 and Tn, and consider the prediction of Xn1{Xn∈B}
given FΘ

Tn−1
. This means that we determine

E{Xn1{Xn∈B} | FΘ
Tn−1

} = E{Xn1{Xn∈B} |Θ, (Ti, Xi)i≤n−1} .

From (7) we obtain

E{Xn1{Xn∈B} | FΘ
Tn−1

}

=

∫ ∞

Tn−1

∫

B

xG
(n−1,1)
Θ,(Ti,Xi)i≤n−1

(t, x)γ(dx) dt

=

∫ ∞

Tn−1

( ∫

B

x gt(x; Θ, (Ti, Xi)i≤n−1)γ(dx)
)

(32)

λt(Θ, (Ti, Xi)i≤n−1)e
− R t

Tn−1
λr(Θ,(Ti,Xi)i≤n−1)dr

dt .

This implies for our examples of mixed risk processes the following proposition:

2.3 Proposition. Suppose that the integrability condition (20) holds.
(a) If ((Tn, Xn))n≥1 is a mixed Markovian risk process, then

E{Xn1{Xn∈B} | FΘ
Tn−1

} (33)

=

∫ ∞

Tn−1

( ∫

B

xg
(n)
t (x; Θ)γ(dx)

)
λ

(n)
t (Θ)e

− R t
Tn−1

λ
(n)
r (Θ) dr

dt .

Thus - in case that ((Tn, Xn))n≥1 is homogeneous -

E{Xn1{Xn∈B} | FΘ
Tn−1

} =

∫

B

xg(n)(x; Θ)γ(dx) . (34)

(b) If ((Tn, Xn))n≥1 is a mixed inhomogeneous Poisson risk process, then

E{Xn1{Xn∈B} | FΘ
Tn−1

} =

∫ ∞

Tn−1

( ∫

B

xgt(x; Θ)γ(dx)
)
λt(Θ)e

− R t
Tn−1

λr(Θ) dr
dt ,(35)

and in case of a mixed homogeneous Poisson risk process

E{Xn1{Xn∈B} | FΘ
Tn−1

} =

∫

B

xg(x; Θ)γ(dx) . (36)
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3 Filtering

In this section we filter the prediction formulas of the foregoing section relative to
sub-σ-algebras Gt of FN

t (resp. sub-σ-algebras GTn−1 of FN
Tn−1

). First we consider

filtering relative to FN
t .

Let us make the following convention: Below there will often occur - in connection
with conditional expectations - quotients of the form

F (x)

G(x)
,

where it may happen that the denominator G(x) is zero. In that case the value of
that quotient is defined to be zero.

The following lemma will be the basis of most of the results in this section.

3.1 Lemma. Suppose that F = F (Θ, (Ti, Xi)i≤n−1) is integrable. Then for every
t ≥ 0 and every n ≥ 1 the following filtering formula holds on the set {Tn−1 ≤ t <
Tn}:

E{F (Θ, (Ti, Xi)i≤n−1) | FN
t } =

Φn,F
t ((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

, (37)

with

Φn,F
t ((Ti, Xi)i≤n−1) (38)

=

∫

T

{
F (y, (Ti, Xi)i≤n−1)e

− R t
Tn−1

λr(y,(Ti,Xi)i≤n−1) dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy)

and

Ψn
t ((Ti, Xi)i≤n−1) (39)

=

∫

T

{
e
− R t

Tn−1
λr(y,(Ti,Xi)i≤n−1) dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy) .

Proof. Let H be an arbitrary bounded, FN
t -measurable function. Since H =

H((Ti, Xi)i≤n−1) on {Tn−1 ≤ t < Tn} (cf. Dettweiler [2004]), we obtain from (4)
∫

Ω

1{Tn−1≤t<Tn} H F (Θ, (Ti, Xi)i≤n−1) dP

=

∫

T

( ∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

∫ ∞

t

{
H((ti, xi)i≤n−1)F (y, (ti, xi)i≤n−1)

G(n−1)(y, (ti, xi)i≤n−1)λtn(y, (ti, xi)i≤n−1)

e
− R tn

tn−1
λr(y,(ti,xi)i≤n−1) dr

}
dtnγ(dxn−1)dtn−1 · · · γ(dx1)dt1

)
β(dy)
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=

∫

T

( ∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

{
H((ti, xi)i≤n−1)F (y, (ti, xi)i≤n−1)

G(n−1)(y, (ti, xi)i≤n−1)e
− R t

tn−1
λr(y,(ti,xi)j≤n−1)dr

}

γ(dxn−1)dtn−1 · · · γ(dx1)dt1

)
β(dy)

=

∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

H((ti, xi)i≤n−1)

( ∫

T

{
F (y, (ti, xi)i≤n−1)e

− R t
tn−1

λr(y,(t,xi)i≤n−1)dr

G(n−1)(y, (ti, xi)i≤n−1)
}

β(dy)
)
γ(dxn−1)dtn−1 · · · γ(dx1)dt1

=

∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

{
H((ti, xi)i≤n−1)

Φn,F
t ((ti, xi)i≤n−1)

}
γ(dxn−1)dtn−1 · · · γ(dx1)dt1

=

∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

{
H((ti, xi)i≤n−1)

Φn,F
t ((ti, xi)i≤n−1)

Ψn
t ((ti, xi)i≤n−1)

Ψn
t ((ti, xi)i≤n−1)

}
γ(dxn−1)dtn−1 · · · γ(dx1)dt1

=

∫

T

( ∫ t

0

∫

E

· · ·
∫ t

tn−2

∫

E

∫ ∞

t

{
H((ti, xi)i≤n−1)

Φn,F
t ((ti, xi)i≤n−1)

Ψn
t ((ti, xi)i≤n−1)

G(n−1)(y, (ti, xi)i≤n−1)λtn(y, (ti, xi)i≤n−1)

e
− R tn

tn−1
λr(y,(ti,xi)i≤n−1) dr

}
dtnγ(dxn−1)dtn−1 · · · γ(dx1)dt1

)
β(dy)

=

∫

Ω

1{Tn−1≤t<Tn} H
Φn,F

t ((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

dP .

Since

1{Tn−1≤t<Tn}
Φn,F

t ((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

is FN
t -measurable, the assertion of the lemma is proved. 2

The lemma could be applied quite general to the prediction formula (16). Thus we
would get

E{Zu | FN
t } =

∑
n≥1

1{Tn−1≤t<Tn}
∑

k≥1

Φ
n,It,u

n,k

t ((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

. (40)

We will not pursue this general setting.

As a first concrete application, we compute the prediction of SB
u − SB

t given FN
t

for mixed Poisson processes(cf. proposition 2.1). We remark that for a mixed
inhomogeneous Poisson process the density G(n−1) is given by

G(n−1)(y, (ti, xi)i≤n−1) = e−
R tn−1
0 λr(y)dr

n−1∏
i=1

(
gti(xi; y)λti(y)

)
, (41)

11



and for a mixed homogeneous Poisson process we have

G(n−1)(y, (ti, xi)i≤n−1) = λ(y)n−1e−tn−1λ(y)

n−1∏
i=1

g(xi; y) . (42)

Thus the following results follow immediately from lemma 3.1

3.2 Proposition. Suppose that ((Tn, Xn))n≥1 is a mixed inhomogeneous Poisson
risk process, for which the integrability assumption (20) holds. Then

E{SB
u − SB

t | FN
t } =

∑
n≥1

1{Tn−1≤t<Tn}
Φn,B

t,u ((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

, (43)

with

Φn,B
t,u ((Ti, Xi)i≤n−1) =

∫

T

{(∫ u

t

∫

B

xgs(x; y)λs(y)γ(dx)ds
)
e−

R t
0 λr(y) dr (44)

n−1∏
i=1

(
gTi

(Xi; y)λTi
(y)

)}
β(dy) ,

and

Ψn
t ((Ti, Xi)i≤n−1) =

∫

T

e−
R t
0 λr(y) dr

n−1∏
i=1

(
gTi

(Xi; y)λTi
(y)

)}
β(dy) . (45)

If ((Tn, Xn))n≥1 is a mixed homogeneous Poisson risk process, then

E{SB
u − SB

t | FN
t } =

∑
n≥1

1{Tn−1≤t<Tn}
Φn,B

t,u ((Xi)i≤n−1)

Ψn
t ((Xi)i≤n−1)

, (46)

with

Φn,B
t,u ((Xi)i≤n−1) (47)

= (u− t)

∫

T

{( ∫

B

xg(x; y) γ(dx)
)
λ(y)ne−tλ(y)

n−1∏
i=1

g(Xi; y)
}

β(dy)

and

Ψn
t ((Xi)i≤n−1) =

∫

T

{
λ(y)n−1e−tλ(y)

n−1∏
i=1

g(Xi; y)
}

β(dy) . (48)

Remark. Suppose that the measure γ is a probability measure. Then the intensity
measure Λ∗, defined by

λ∗t (B) := γ(B) , (49)

is extremely simple, and it is not difficult to see that there is a probability measure P∗

on (Ω,F), such that relative to P∗ the risk process (Tn, Xn)n≥1 has the FΘ-intensity

12



measure Λ∗. It is easily proved (cf. also Brémaud [1981]) that the restriction of
the original probability measure P to FΘ

t is absolutely continuous relative to the
restriction of P∗ to FΘ

t and has the Radon-Nikodym-density Lt, given by

Lt = ete
− R t

tn−1
λr(Θ,(Ti,Xi)i≤n−1)dr

G(n−1)(Θ, (Ti, Xi)i≤n−1) (50)

on {Tn−1 ≤ t < Tn}. It follows that (43) is just the formula

EP{SB
u − SB

t | FN
t } =

EP∗{(SB
u − SB

t )Lt | FN
t }

EP∗{Lt | FN
t }

, (51)

which is well known in the literature (cf. Brémaud [1981]). We will not pursue this
idea (i.e. using a type of Girsanov transformation for prediction), since our formulas
are immediate consequences from the construction of marked point processes.

In connection with the above theorem we consider a related prediction problem,
which occurs, if for the given time point t there is only the information on

{Tn−1 ≤ t < Tn} , and (Xi)i≤n−1 (n ≥ 1) .

available. To model this situation we set

Gn
t := σ({1{Tn−1≤t<Tn}, X1, · · · , Xn−1}) (52)

= σ
({{Tn−1 ≤ t < Tn} ∩

n−1⋂
j=1

{Xj ∈ Bj}
∣∣ Bj ∈ E (1 ≤ j ≤ n− 1)

})

and

Gt :=
∨
n≥1

Gn
t . (53)

For the filtering relative to Gt the following lemma is proved similarly as lemma 3.1.

3.4 Lemma. Suppose that F = F (Θ, (Ti, Xi)i≤n−1) is integrable. Then for every
t ≥ 0 and every n ≥ 1 the following filtering formula holds on {Tn−1 ≤ t < Tn}:

E{F (Θ, (Ti, Xi)i≤n−1) | Gt} = E{F (Θ, (Ti, Xi)i≤n−1) | Gn
t } (54)

=
Φ

n,F

t (Xi)i≤n−1)

Ψ
n

t ((Xi)i≤n−1)
, with

Φ
n,F

t ((Xi)i≤n−1) =

∫

T

∫ t

0

· · ·
∫ t

tn−2

{
F (y, (ti, Xi)i≤n−1)e

− R t
tn−1

λr(y,(ti,Xi)i≤n−1) dr

G(n−1)(y, (ti, Xi)i≤n−1)
}

dtn−1 · · · dt1β(dy)

and

13



Ψ
n

t ((Xi)i≤n−1) =

∫

T

∫ t

0

· · ·
∫ t

tn−2

{
e
− R t

tn−1
λr(y,(ti,Xi)i≤n−1) dr

G(n−1)(y, (ti, Xi)i≤n−1)
}

dtn−1 · · · dt1β(dy) .

If we apply this lemma to the filtering of E{SB
u − SB

t | FΘ
t } relative to Gt for mixed

Poisson risk processes we get:

3.5 Proposition. Suppose that ((Tn, Xn))n≥1 is a mixed inhomogeneous Poisson
risk process, for which the integrability assumption (20) holds. Then

E{SB
u − SB

t | Gt} =
∑
n≥1

1{Tn−1≤t<Tn}
Φ

B

t,u((Xi)i≤n−1)

Ψt((Xi)i≤n−1)
, (55)

with

Φ
n,B

t,u ((Xi)i≤n−1) =

∫

T

∫ t

0

· · ·
∫ t

tn−2

{( ∫ u

t

∫

B

xgs(x; y)λs(y)γ(dx)ds
)
e−

R t
0 λr(y) dr

n−1∏
i=1

(
gti(Xi; y)λti(y)

)}
dtn−1 · · · dt1β(dy) ,

and

Ψ
n

t ((Xi)i≤n−1)

=

∫

T

∫ t

0

· · ·
∫ t

tn−2

e−
R t
0 λr(y) dr

n−1∏
i=1

(
gti(Xi; y)λti(y)

)}
dtn−1 · · · dt1β(dy) .

If ((Tn, Xn))n≥1 is a mixed homogeneous Poisson risk process, then (cf. proposition
3.2)

E{SB
u − SB

t | FN
t } = E{SB

u − SB
t | Gt} . (56)

Now we consider the filtering of E{SB
Tt∧u − SB

t | FΘ
t } relative to FN

t and also to Gt.
Using the formula (26) we get from lemma 3.1 and lemma 3.4 the following general
result:

3.6 Proposition. Let ((Tn, Xn))n≥1 be a mixed risk process with regular FΘ-
intensity measure Λ and suppose that SB

Tt∧u − SB
t is integrable. If J t,u

n is defined
by (27), then

E{SB
Tt∧u − SB

t | FN
t } =

∑
n≥1

1[Tn−1,Tn[(t)
Φn

t,u((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

, (57)
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where Φn
t,u and Ψn

t are given by

Φn
t,u((Ti, Xi)i≤n−1) =

∫

T

{
Jn

t,u(y, (Ti, Xi)i≤n−1)e
− R t

tn−1
λr(y,(Ti,Xi)i≤n−1)dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy)

and

Ψn
t ((Ti, Xi)i≤n−1)

=

∫

T

{
e
− R t

tn−1
λr(y,(Ti,Xi)i≤n−1)dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy) .

For the filtering relative to Gt we have

E{SB
Tt∧u − SB

t | Gt} =
∑
n≥1

1[Tn−1,Tn[(t)
Φ

n

t,u((Xi)i≤n−1)

Ψ
n

t ((Xi)i≤n−1)
, (58)

where Φ
n

t,u and Ψ
n

t are given by

Φ
n

t,u((Xi)i≤n−1) =

∫

T

∫ t

0

· · ·
∫ t

tn−2

{
Jn

t,u(y, (ti, Xi)i≤n−1)e
− R t

tn−1
λr(y,(ti,Xi)i≤n−1)dr

G(n−1)(y, (ti, Xi)i≤n−1)
}

dtn−1 · · · dt1β(dy)

and

Ψ
n

t ((Xi)i≤n−1) =

∫

T

∫ t

0

· · ·
∫ t

tn−2

{
e
− R t

tn−1
λr(y,(ti,Xi)i≤n−1)dr

G(n−1)(y, (ti, Xi)i≤n−1)
}

dtn−1 · · · dt1β(dy) .

The above general result can easily be applied to more special mixed risk processes.
We just give two examples.

3.7 Proposition. Let ((Tn, Xn))n≥1 be a mixed risk process such that SB
Tt∧u−SB

t is
integrable.
(a) If ((Tn, Xn))n≥1 is a mixed homogeneous Markovian risk process, then

E{SB
Tt∧u − SB

t | FN
t } =

∑
n≥1

1[Tn−1,Tn[(t)
Φn

t,u((Ti, Xi)i≤n−1)

Ψn
t ((Ti, Xi)i≤n−1)

, (59)

with

Φn
t,u((Ti, Xi)i≤n−1)

=

∫

T

{(
(1− e−(u−t)λ(n)(y))

∫

B

xg(n)(x, y)γ(dx)
)
e−(t−Tn−1)λ(n)(y)

e−
Pn−1

i=1 (Ti−Ti−1)λ(i)(y)

n−1∏
i=1

(
g(i)(x; y)λ(i)(y)

)}
β(dy)
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and

Ψn
t,u((Ti, Xi)i≤n−1) =

∫

T

{
e−(t−Tn−1)λ(n)(y)e−

Pn−1
i=1 (Ti−Ti−1)λ(i)(y)

n−1∏
i=1

(
g(i)(x; y)λ(i)(y)

)}
β(dy) .

Similarly,

E{SB
Tt∧u − SB

t | Gt} =
∑
n≥1

1[Tn−1,Tn[(t)
Φ

n

t,u((Xi)i≤n−1)

Ψ
n

t ((Xi)i≤n−1)
, (60)

with

Φ
n

t,u((Xi)i≤n−1)

=

∫

T

{(
(1− e−(u−t)λ(n)(y))

∫

B

xg(n)(x, y)γ(dx)
) n−1∏

i=1

(
g(i)(x; y)λ(i)(y)

)

( ∫ t

0

· · ·
∫ t

tn−2

e−(t−tn−1)λ(n)(y)−Pn−1
i=1 (ti−ti−1)λ(i)(y)dtn−1 · · · dt1

)}
β(dy)

and

Ψ
n

t,u((Xi)i≤n−1)

=

∫

T

{ n−1∏
i=1

(
g(i)(x; y)λ(i)(y)

)

( ∫ t

0

· · ·
∫ t

tn−2

e−(t−tn−1)λ(n)(y)−Pn−1
i=1 (ti−ti−1)λ(i)(y)dtn−1 · · · dt1

)}
β(dy) .

(b) If ((Tn, Xn))n≥1 is a mixed homogeneous Poisson risk process, then

E{SB
Tt∧u − SB

t | FN
t } = E{SB

Tt∧u − SB
t | Gt} (61)

=
∑
n≥1

1{Tn−1≤t<Tn}
Φn

t,u((Xi)i≤n−1)

Ψn
t ((Xi)i≤n−1)

,

with

Φn
t,u((Xi)i≤n−1) =

∫

T

{(
1− e−(u−t)λ(y)

)

∫

B

xg(x; y) γ(dx)λ(y)n−1e−tλ(y)

n−1∏
i=1

g(Xi; y)
}

β(dy)

and

Ψt((Xi)i≤n−1) =

∫

T

{
λ(y)n−1e−tλ(y)

n−1∏
i=1

g(Xi; y)
}

β(dy) .
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Now we consider the prediction of Xn1{Xn∈B} given

GTn−1 = σ({X1, · · · , Xn−1}) ,

i.e. the filtering of E{Xn1{Xn∈B} | FΘ
Tn−1

} relative to GTn−1 . If we write

Jn(Θ, (Ti, Xi)i≤n−1)

for the right hand side of equation (32), we have the following general result:

3.8 Theorem. Let ((Tn, Xn))n≥1 be a mixed risk process with regular FΘ-intensity
measure and suppose that Xn1{Xn∈B} is integrable. Then

E{Xn1{Xn∈B} | (Xi)i≤n−1} =
Φn((Xi)i≤n−1)

Ψn((Xi)i≤n−1)
(62)

with

Φn((Xi)i≤n−1) =

∫

T

∫ ∞

0

· · ·
∫ ∞

tn−2

{
Jn(y, (ti, Xi)i≤n−1)

G(n−1)(y, (ti, Xi)i≤n−1)
}

dtn−1 · · · dt1β(dy) ,

and

Ψn((Xi)i≤n−1) =

∫

T

∫ ∞

0

· · ·
∫ ∞

tn−2

{
G(n−1)(y, (ti, Xi)i≤n−1)

}
dtn−1 · · · dt1β(dy) .

This result can easily be applied to special mixed risk processes. Thus we get e.g.:

3.9 Proposition. (a) If (Tn, Xn)n≥1 is a mixed Markovian risk process, then

Jn(y, (ti, xi)i≤n−1) = Jn(y, tn−1) (63)

=

∫ ∞

tn−1

( ∫

B

xg
(n)
tn (x; y)γ(dx)

)
λ

(n)
tn (y)e

− R tn
tn−1

λ
(n)
s (y)ds

dtn ,

and

E{Xn1{Xn∈B} | (Xi)1≤i≤n−1} (64)

=

∫
T

∫∞
0
· · · ∫∞

tn−2
Jn(y, tn−1)G

(n−1)(y, (ti, Xi)i≤n−1)dtn−1 · · · dt1β(dy)∫
T

∫∞
0
· · · ∫∞

tn−2
G(n−1)(y, (ti, Xi)i≤n−1)dtn−1 · · · dt1β(dy)

,

where

G(n−1)(y, (ti, xi)i≤n−1) =
n−1∏
i=1

g
(i)
ti (x; y)λ

(i)
ti (y)e

− R ti
ti−1

λ
(i)
s (y)ds

.

If (Tn, Xn)n≥1 is homogeneous, then

Jn(y, tn−1) = Jn(y) =

∫

B

xg(n)(x; y)γ(dx) ,
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and

E{Xn1{Xn∈B} | (Xi)i≤n−1} (65)

=

∫
T

{ ∫
B

xg(n)(x; y)γ(dx)
∏n−1

i=1 g(i)(Xi; y)
}

β(dy)∫
T

{ ∏n−1
i=1 g(i)(Xi; y)

}
β(dy)

.

(b)If (Tn, Xn)n≥1 is a mixed homogeneous Poisson risk process, then

E{Xn1{Xn∈B} | (Xi)i≤n−1} (66)

=

∫
T

{ ∫
B

xg(x; y)γ(dx)
∏n−1

i=1 g(Xi; y)
}

β(dy)∫
T

{∏n−1
i=1 g(Xi; y)

}
β(dy)

.

Proof. Formula (64) follows immediately from theorem 3.8. We just prove (65),
which implies (66). From (64) we have

E{Xn1{Xn∈B} | (Xi)i≤n−1} =
Φn((Xi)i≤n−1)

Ψn((Xi)i≤n−1)

with

Φn((Xi)i≤n−1) =

∫

T

{( ∫ ∞

0

· · ·
∫ ∞

tn−2

{
n−1∏
i=1

λ(i)(y)e−(ti−ti−1)λ(i)(y)}dtn−1 · · · dt1

)

∫

B

xg(n)(x; y)γ(dx)
n−1∏
i=1

g(i)(Xi; y)
}

β(dy)

and a similar formula for Ψn((Xi)1≤i≤n−1). Thus (65) follows, since

∫ ∞

0

· · ·
∫ ∞

tn−2

{
n−1∏
i=1

λ(i)(y)e−(ti−ti−1)λ(i)(y)}dtn−1 · · · dt1 = 1

for every y ∈ T . 2

Remark. At a first glance the formulas (65) and (66) may a little bit surprise, since
there is no dependence on the distributions of the claim arrival times T1, · · · , Tn−1.
But the reason is simple: The prediction of Xn1{Xn∈B} given X1, · · · , Xn−1 replaces
the natural time by the time points T1, · · · , Tn−1 and the independence of (Tn)n≥1

and (Xn)n≥1 reduces the prediction to a prediction problem for the discrete time
process (Xn)n≥1. The situation becomes quite different, if we consider the prediction
of Xn1{Xn∈B} given (Ti, Xi)i≤n−1:

Suppose that ((Tn, Xn))n≥1 is a mixed homogeneous Poisson risk process. Then

E{Xn1{Xn∈B} | (Ti, Xi)i≤n−1}
= E{Xn1{Xn∈B} |Tn−1, X1, · · · , Xn−1} (67)

=

∫
T

{( ∫
B

xg(x; y)γ(dx)
)
e−Tn−1λ(y)λ(y)n−1

∏n−1
i=1 g(Xi; y)

}
β(dy)∫

T

{
e−Tn−1λ(y)λ(y)n−1

∏n−1
i=1 g(Xi; y)

}
β(dy)

.
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Since an increase of information gives surely more reliable prediction, formula (67)
should be better than (65) in case there is the information on Tn−1.

As a last filtering problem we consider the problem of filtering the intensity measure
Λ relative to FN . It will turn out that the filtered intensity measure Λ̃ is again
regular. We have the following general result, which follows easily from lemma 3.1:

3.11 Theorem. Suppose that the intensities λt(B) (t ≥ 0 and B ∈ E) are integrable.
Then the following formula holds:

E{λt(B) | FN
t } =

∑
n≥1

1[Tn−1,Tn[(t)λ̃t(B; (Ti, Xi)i≤n−1) , (68)

with

λ̃t(B; (Ti, Xi)i≤n−1) =
φt(B; (Ti, Xi)i≤n−1)

θt((Ti, Xi)i≤n−1)
, (69)

where φt and θt are given by (cf. (5))

φt(B; (ti, xi)i≤n−1) =

∫

T

{ ∫

B

gt(x; y, (ti, xi)i≤n−1)γ(dx)λt(y, (ti, xi)i≤n−1)

e
− R t

tn−1
λr(y,(ti,xi)i≤n−1)dr

G(n−1)(y, (ti, xi)i≤n−1)
}

β(dy) ,

and

θt((ti, xi)i≤n−1) =

∫

T

{
e
− R t

tn−1
λr(y,(ti,xi)i≤n−1)dr

G(n−1)(y, (ti, xi)i≤n−1)
}

β(dy) ,

for 0 < t1 < · · · < tn−1 and x1, · · · , xn−1 ∈ E.

The FN -intensity measure

Λ̃ =
(
(λ̃t(B))t≥0

)
B∈E (70)

given by (69) has a similar structure as the FΘ-intensity measure Λ. On the set
{Tn−1 ≤ t < Tn} we have

λ̃t(dx; (Ti, Xi)i≤n−1) = γ̃t(dx; (Ti, Xi)i≤n−1) · λ̃t((Ti, Xi)i≤n−1) , (71)

where

λ̃t((Ti, Xi)i≤n−1) =
φt(E; (Ti, Xi)i≤n−1)

θt((Ti, Xi)i≤n−1)
, (72)

and where the probability measure γ̃t(dx; (Ti, Xi)i≤n−1) has a density

g̃t(x; (Ti, Xi)i≤n−1)

relative to γ(dx), which is given as follows:
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We set for x ∈ E

φ̃t(x; (ti, xi)i≤n−1) =

∫

T

{
gt(x; y, (ti, xi)i≤n−1)λt(y, (ti, xi)i≤n−1) (73)

e
− R t

tn−1
λr(y,(ti,xi)i≤n−1)dr

G(n−1)(y, (ti, xi)i≤n−1)
}

β(dy) ,

and choose a fixed, measurable g∗ : E → R+ such that g∗ ·γ is a probability measure.
Then

g̃t(x; (Ti, Xi)i≤n−1) =
φ̃t(x; (Ti, Xi)i≤n−1)

φt(E; (Ti, Xi)i≤n−1)
1{φt(E;(Ti,Xi)i≤n−1)>0} (74)

+ g∗(x)1{φt(E;(Ti,Xi)i≤n−1)=0} .

3.12 Corollary. Let ((Tn, Xn))n≥1 be a mixed homogeneous Poisson risk process
with the regular FΘ-intensity measure Λ given by (10) and (11). Then

λ̃t(dx; (tn, xn)n≥0) =
∑
n≥1

1[tn−1,tn[(t)λ̃t(dx; (ti, xi)i≤n−1)

with

λ̃t(dx; (ti, xi)i≤n−1) = g̃t(x; (ti, xi)i≤n−1)γ(dx)λ̃t((ti, xi)i≤n−1) , (75)

where

λ̃t((ti, xi)i≤n−1) =

∫
T

∏n−1
i=1 g(xi; y) λ(y)ne−tλ(y) β(dy)∫

T

∏n−1
i=1 g(xi; y) λ(y)n−1e−tλ(y) β(dy)

and

g̃t(x; (ti, xi)i≤n−1) =

∫
T

g(x; y)
∏n−1

i=1 g(xi; y) λ(y)ne−tλ(y) β(dy)∫
T

∏n−1
i=1 g(xi; y) λ(y)ne−tλ(y) β(dy)

.

Remark. It is well known (cf. e.g. Schmidt [1996]) that the filtering of a mixed
Poisson process gives a Markov process. Corollary 3.12 shows that the filtering of a
mixed Poisson risk process gives no longer a Markovian risk process.

3.14 Corollary. Let ((Tn, Xn))n≥1 be a mixed inhomogeneous Poisson risk process
with the regular FΘ-intensity measure Λ given by (12) and (13). Then

λ̃t(dx; (tn, xn)n≥0) =
∑
n≥1

1[tn−1,tn[(t)λ̃t(dx; (ti, xi)i≤n−1)

with

λ̃t(dx; (ti, xi)i≤n−1) = g̃t(x; (ti, xi)i≤n−1)γ(dx)λ̃t((ti, xi)i≤n−1) , (76)
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where

λ̃t((ti, xi)i≤n−1) =

∫
T

∏n−1
i=1

(
gti(xi; y) λti(y)

)
e−

R t
0 λs(y) ds β(dy)∫

T

∏n−1
i=1

(
gti(xi; y) λti(y)

)
e−

R t
0 λs(y) ds β(dy)

and

g̃t(x; (ti, xi)i≤n−1) =

∫
T

gt(x; y)λt(y)
∏n−1

i=1 gti(xi; y) λti(y)e−
R t
0 λs(y) ds β(dy)∫

T

∏n−1
i=1

(
gti(xi; y) λti(y)

)
e−

R t
0 λs(y) ds β(dy)

.

We omit the corresponding filtering result for the mixed Markovian risk process.

Theorem 3.11 has the following interpretation:

3.15 Proposition. Let ((Tn, Xn))n≥1 be an integrable, mixed risk process with reg-
ular FΘ-intensity measure

Λ =
(
(λt(B))t≥0

)
B∈E ,

and let

Λ̃ =
(
(λ̃t(B))t≥0

)
B∈E ,

be the intensity measure defined in theorem 3.11. Then ((Tn, Xn))n≥1 has the inten-
sity measure Λ̃ for the filtration FN .

Proof. We have to prove that for every B ∈ E the process

(
Nt(B)−

∫ t

0

λ̃s ds
)

t≥0

is an FN -martingale. This follows, since for 0 ≤ s < t

E{Nt(B)−Ns(B) | FN
s } = E

{
E{Nt(B)−Ns(B) | FΘ

s }
∣∣FN

s

}

= E
{
E{

∫ t

s

λr dr | FΘ
s }

∣∣FN
s

}

= E{
∫ t

s

λr dr | FN
s }

= E{
∫ t

s

λ̃r dr | FN
s } .

2

Remark. Proposition 3.15 could be used to compute directly the prediction for-
mulas relative to FN

t proved in this section. But this looks much more complicated
than the method of first predicting relative to FΘ

t and then filtering relative to FN
t .
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4 Prediction of the Claim Amount Distribution

The prediction problems of the foregoing sections are only a first step to get some
insight into the future behaviour of mixed risk processes. One should have in mind
that e.g. the prediction of the first claim amount

Xt,u := STt∧u − St (St = SE
t )

in the planning period [t, u] is just a mean value on the basis of the informations given
by FN

t . For more reliable information one should not only consider the prediction
of this mean value, but also (at least theoretically) the prediction of the distribution
of Xt,u. Suppose that this distribution is given by

Pt,u(dz;FN
t ) . (77)

Then one can easily predict in addition the ”distance” d(X(t), ϕt) to some given FN
t -

measurable function ϕt [one could imagine that ϕt is (connected with) the individual
premium predicted by the last section]. This prediction would simply be given by
the formula

E{d(Xt,u, ϕt) | FN
t } =

∫

E

d(z, ϕt)Pt,u(dz;FN
t ) . (78)

Such a distance d(·, ·) could be the euclidian distance

d2(z, v) := (z − v)2 . (79)

Thus for ϕt = E{Xt,u | FN
t } the prediction of d2(Xt,u, ϕt) is just the prediction of the

conditional variance of Xt,u given FN
t . But there are also other ”distances” (which

are even more important): We set for a given ε > 0

dε(z, v) := 1{z≥v+ε} , (80)

and

d+(z, v) := (z − v)+ . (81)

Then the prediction of dε(Xt,u, ϕt) e.g. is just the conditional probability of {Xt,u ≥
ϕt + ε} given FN

t .

The formulas for the prediction of the claim amount distribution are derived similarly
as the prediction formulas for Xt,u. Analogously to proposition 3.6 we get

4.1 Theorem. Let ((Tn, Xn))n≥1 be a integrable, mixed risk process with regular
FΘ-intensity measure

Λ =
(
(λt(B))t≥0

)
B∈E ,

and define for 0 ≤ t < u, n ≥ 1, y ∈ T , 0 < t1 < · · · < tn−1, x1, · · · , xn−1 ∈ E and
A ∈ E
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J t,u
n (A; y, (ti, xi)i≤n−1) =

∫ u

t

( ∫

A

gtn(x; y, (ti, xi)i≤n−1)γ(dx)
)

(82)

λtn(y, (ti, xi)i≤n−1)e
− R tn

t λs(y,(ti,xi)i≤n−1) ds dtn

+1A(0)e−
R u

t λs(y,(ti,xi)i≤n−1)ds .

Then

P{Xt,u ∈ A | FN
t } =

∑
n≥1

1[Tn−1,Tn[(t)
Φt,u

n (A; (Ti, Xi)i≤n−1)

Ψt
n((Ti, Xi)i≤n−1)

, (83)

where Φt,u
n (A) and Ψt

n are given by

Φt,u
n (A; (Ti, Xi)i≤n−1) =

∫

T

{
J t,u

n (A; y, (Ti, Xi)i≤n−1)e
− R t

tn−1
λr(y,(Ti,Xi)i≤n−1)dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy) ,

and

Ψt
n((Ti, Xi)i≤n−1)

=

∫

T

{
e
− R t

tn−1
λr(y,(Ti,Xi)i≤n−1)dr

G(n−1)(y, (Ti, Xi)i≤n−1)
}

β(dy) .

Thus we have the formula

Pt,u(dz;FN
t ) =

∑
n≥1

1[Tn−1,Tn[(t)
Φt,u

n (dz; (Ti, Xi)i≤n−1)

Ψt
n((Ti, Xi)i≤n−1)

. (84)

Proof. Since

Xt,u =
∑
n≥1

1{Tn−1≤t<Tn}Xn1{Tn≤u} ,

we have

{Xt,u ∈ A} ∩ {Tn−1 ≤ t < Tn} = {Xn1{Tn≤u} ∈ A} ∩ {Tn−1 ≤ t < Tn} .

If 0 /∈ A, then

{Xn1{Tn≤u} ∈ A} = {Xn ∈ A} ∩ {Tn ≤ u} ,

and if 0 ∈ A, then

{Xn1{Tn≤u} ∈ A} = ({Xn ∈ A} ∩ {Tn ≤ u}) ∪ {u < Tn}
where the union on the right hand side clearly is disjoint. Altogether we have

1{Xt,u∈A} =
∑
n≥1

1{Tn−1≤t<Tn}
(
1{Xn∈A}∩{Tn≤u} + 1A(0)1{u<Tn}

)
.
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Thus the prediction of 1{Xt,u∈A} given FΘ
t is given by (cf. section 2, esp. (27))

E{1{Xt,u∈A} | FΘ
t } =

∑
n≥1

1{Tn−1≤t<Tn}J
t,u
n (A; Θ, (ti, xi)i≤n−1) ,

where J t,u
n is defined by (82). An application of lemma 3.1 then proves (83). 2

Thus we get for example, if d denotes one of the ”distances” introduced above, the
following prediction formula:

4.2 Corollary. Let ϕt be FN
t -measurable and suppose that d(Xt,u, ϕt) is integrable.

Then

E{d(Xt,u, ϕt) | FN
t } = 1{Tn−1≤t<Tn}

Φt,u
n (G; (Ti, Xi)i≤n−1)

Ψt
n((Ti, Xi)i≤n−1)

,

where

Gt,u
n (y, (ti, xi)i≤n−1)

=

∫ u

t

( ∫

E

d(x, ϕt((ti, xi)i≤n−1))gtn(x; y, (ti, xi)i≤n−1)γ(dx)
)

λtn(y, (ti, xi)i≤n−1)e
− R tn

t λs(y,(ti,xi)i≤n−1) ds dtn

+d(0, ϕt((ti, xi)i≤n−1))e
− R u

t λs(y,(ti,xi)i≤n−1)ds ,

and where Φt,u
n (G) is defined analogously to Φt,u

n (A) (with J t,u
n (A) replaced by Gt,u

n ).

Of course, there are corresponding results for

Pt,u(dz;Gt) := P{Xt,u ∈ dz | Gt} , (85)

where Gt was defined in (53). Corresponding results also hold for

Pn(dz; (Ti, Xi)i≤n−1) := P{Xn ∈ dz | FTn−1} (86)

or

Pn(dz; (Xi)i≤n−1) := P{Xn ∈ dz |X1, · · · , Xn−1} .

(cf. theorem 3.8 and proposition 3.9).

For the mixed Poisson risk process we have the following corollary from theorem
4.1:

4.3 Corollary. Let ((Tn, Xn))n≥1 be a mixed homogeneous Poisson risk process with
densities gt and intensities λt given by (10) and (11), and define for A ∈ E , and
y ∈ T

H(A, y) :=

∫

A

g(x; y)γ(dx) .
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Then the following prediction formula holds:

P{Xt,u ∈ A | FN
t } =

∑
n≥1

1{Tn−1≤t<Tn}
Φt,u

n (A; (Xi)1≤i≤n−1)

Ψt
n((Xi)1≤i≤n−1)

,

with

Φt,u
n (A; (xi)1≤i≤n−1)

=

∫

T

{
H(A, y)(1− e−(u−t)λ(y))e−tλ(y)λ(y)n−1

n−1∏
i=1

g(xi; y)
}

β(dy)

+1A(0)e−(u−t)λ(y) ,

and

Ψn
t ((xi)1≤i≤n−1) =

∫

T

{
e−tλ(y)λ(y)n−1

n−1∏
i=1

g(xi; y)
}

β(dy) .

Thus we have

Pt,u(dz;FN
t ) =

∑
n≥1

1{Tn−1≤t<Tn}
Φt,u

n (dz; (Xi)i≤n−1)

Ψt
n((Xi)i≤n−1)

.

Let us suppose that ϕt only depends on X1, · · · , Xn−1 on the set {Tn−1 ≤ t < Tn},
which is the case, if

ϕt = E{Xt,u | FN
t }

(cf. (61). Then we obtain from the corollary the following two examples:

(1) For the distance d+ we have

E{d+(Xt,u, ϕt) | FN
t }

=
∑
n≥1

1{Tn−1≤t<Tn}

∫
E

d+(z, ϕt((Xi)i≤n−1))Φ
t
n(dz; (Xi)i≤n−1)

Ψt
n((Xi)i≤n−1)

,

where
∫

E

d+(z, ϕt((Xi)i≤n−1))Φ
t
n(dz; (Xi)i≤n−1)

=

∫

T

{(∫

E

d+(x, ϕt((Xi)i≤n−1))g(x; y)γ(dx)
)

(1− e−(u−t)λ(y))e−tλ(y)λ(y)n−1

n−1∏
i=1

g(xi; y)
}

β(dy) .

(2) For the distance dε we have
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P{Xt,u ≥ ϕt + ε | FN
t }

=
∑
n≥1

1{Tn−1≤t<Tn}

∫
E

dε(z, ϕt((Xi)i≤n−1))Φ
t
n(dz; (Xi)i≤n−1)

Ψt
n((Xi)i≤n−1)

,

where
∫

E

dε(z, ϕt((Xi)i≤n−1))Φ
t
n(dz; (Xi)i≤n−1)

=

∫

T

{(∫

E

1[ϕt((Xi)i≤n−1)+ε[(x)g(x; y)γ(dx)
)

(1− e−(u−t)λ(y))e−tλ(y)λ(y)n−1

n−1∏
i=1

g(xi; y)
}

β(dy) .
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