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Abstract

In the present paper we propose a multivariate version of the additive model
of loss reserving. The multivariate additive model is a linear model with a
particular design matrix and a particular variance structure and is suitable
for certain portfolios consisting of several correlated subportfolios. Under
the assumptions of the multivariate additive model, we derive a formula for
the Gauss–Markov predictor for a non–observable incremental claim. We
also show that the Gauss–Markov predictors for the reserve of a particular
accident year and for the total reserve are obtained by summation over the
Gauss–Markov predictors for the corresponding non–observable incremental
claims, and that this is also true for the Gauss–Markov predictors for the
corresponding quantities of the aggregate portfolio.

1 Introduction

In recent years, major progress in actuarial mathematics has been achieved by the
use of multivariate models and methods.

Quite recently, and not yet documented in Radtke and Schmidt [2004], multivariate
models and methods have also been introduced in loss reserving. The development
started with a particular bivariate extension of the chain–ladder method proposed
by Quarg and Mack [2004] which applies to paid and incurred claims of the same
portfolio. Subsequently, Braun [2004] proposed another bivariate model in order to
construct correlation–dependent estimators for the prediction errors of the univariate
chain–ladder predictors, but he did not proceed to correlation–dependent prediction.
The model of Braun was then extended by Pröhl and Schmidt [2005] who used a
natural optimality criterion to develop a multivariate version of the chain–ladder
method which at the same time resolves the problem of additivity; see Ajne [1994]. A
related paper is that of Kremer [2005] who proposed another multivariate extension
of the chain–ladder method which, however, is less appropriate for applications since
it involves the inversion of much larger matrices; also, the problems of optimality
and additivity have not been addressed in that paper.
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In a personal communication to the first author of the present paper, Braun [2005]
pointed out that not only the (multiplicative) chain–ladder method but also the
additive method could be extended to the multivariate case. This is not really
surprising since it has been pointed by Schmidt [2004b] that the predictors of the
univariate additive method are nothing else than the Gauss–Markov predictors for
the non–observable incremental claims in a suitably chosen linear model which is
called the additive model ; see also Schmidt [2004a, 2004c].

Since a public document justifying the multivariate extension of the additive method
does not seem to be available until now, we propose here a rather general multivariate
extension of the additive model and determine, under the assumptions of this model,
the Gauss–Markov predictors for the non–observable incremental claims. We also
show that the Gauss–Markov predictor for any sum of incremental claims coincides
with the sums of the Gauss–Markov predictors for the single incremental claims.
This implies that the problem of additivity is absent in the case of Gauss–Markov
prediction in the multivariate additive model.

Throughout this paper, let (Ω,F , P ) be a probability space on which all random
variables are defined. We assume that all random variables are square integrable and
that all random vectors have square integrable coordinates. Moreover, all equalities
involving random variables are understood to hold almost surely with respect to the
probability measure P .

In Section 2 of this paper we recall the basic result on Gauss–Markov prediction
in the linear model; see also Schmidt [2004a, 2004c]. In Section 3 we introduce
the multivariate additive model of loss reserving and determine the Gauss–Markov
predictors for the non–observable incremental claims.

2 Prediction in the Linear Model

In the present we consider a random vector X and we assume that X satisfies the
linear model

E[X] = Aβ

where A is a known design matrix and β is an unknown parameter vector.

We assume further that some of the coordinates of X are observable whereas some
other coordinates are non–observable. Then the random vector X1 consisting of
the observable coordinates of X and the random vector X2 consisting of the non–
observable coordinates of X satisfy

E[X1] = A1β

E[X2] = A2β

for some submatrices A1 and A2 of A.

2



We also assume that the matrix A1 has full column rank, that the matrices

Σ11 := Var[X1]

Σ21 := Cov[X2,X1]

are known, and that Σ11 is invertible. Since the random vector X2 is non–observable,
only the random vector X1 can be used for the estimation of the parameter β. The
estimator

β∗ := (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1

is the Gauss–Markov estimator of β on the basis of X1.

Let us now consider the prediction problem for the non–observable random vector
DX2, where D is any matrix of suitable dimension.

A random variable Ŷ is said to be a predictor of DX2 if it is a measurable trans-

formation of the observable random vector X1. For a predictor Ŷ of DX2, the real
number

E
[(

Ŷ −DX2

)′(
Ŷ −DX2

)]

is said to be the expected squared prediction error of Ŷ. Since

E
[(

Ŷ −DX2

)′(
Ŷ −DX2

)]

= trace
(
Var

[
Ŷ −DX2

])
+ E

[
Ŷ −DX2

]′
E

[
Ŷ −DX2

]

the expected squared prediction error is determined by the variance and the expec-
tation of the prediction error.

An observable random vector Ŷ is said to be
– a linear predictor of DX2 if there exists a matrix Q such that Ŷ = QX1.

– an unbiased predictor of DX2 if E[Ŷ] = E[DX2].
– a Gauss–Markov predictor of DX2 if it is an unbiased linear predictor of DX2

and if it minimizes the expected squared prediction error over all unbiased linear
predictors of DX2.

We have the following result:

2.1 Proposition (Gauss–Markov Theorem). There exists a unique Gauss–
Markov predictor Y∗(DX2) of DX2 and it satisfies

Y∗(DX2) = D
(
A2β

∗ + Σ21Σ
−1
11

(
X1 −A1β

∗))

In particular , Y∗(DX2) = DY∗(X2).

Proposition 2.1 shows that the Gauss–Markov predictor depends not only on the
Gauss–Markov estimator of the unknown parameter but also on the covariance be-
tween the non–observable random vector and the observable one. Moreover, the
final assertion of Proposition 2.1 shows that the coordinates of the Gauss–Markov
predictor of the non–observable random vector coincide with the Gauss–Markov
predictors of its coordinates.
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3 Application to Loss Reserving

In the present section we consider m ∈ N portfolios all having the same number
of development years. The m portfolios may be interpreted as subportfolios of an
aggregate portfolio.

For portfolio p ∈ {1, . . . , m}, we denote by

Z
(p)
i,k

the incremental claim size of accident year i ∈ {0, 1, . . . , n} and development year
k ∈ {0, 1, . . . , n}.

For i, k ∈ {0, 1, . . . , n}, we thus obtain the m–dimensional random vector of incre-
mental claims

Zi,k :=
(
Z

(p)
i,k

)
p∈{1,...,m}

The observable incremental claims are represented by the following run–off triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i
...

...
...

...
n−k Zn−k,0 Zn−k,1 . . . Zn−k,k
...

...
...

n−1 Zn−1,0 Zn−1,1

n Zn,0

We can now formulate the multivariate additive model :

The Multivariate Additive Model: There exist positive definite
symmetric matrices V0,V1, . . . ,Vn and Σ0,Σ1, . . . ,Σn and unknown
vectors ζ0, ζ1, . . . , ζn such that

E[Zi,k] = Vi ζk

and

Cov[Zi,k,Zj,l] =

{
V

1/2
i ΣkV

1/2
i if i = j and k = l

O else

holds for all i, j, k, l ∈ {0, 1, . . . , n}.
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The multivariate additive model is a general but straightforward extension of the
univariate additive model documented by Schmidt [2004b]. In particular, each of
the matrices Vi may be chosen to be diagonal as to represent volume measures of
accident year i.

We assume henceforth that the assumptions of the multivariate additive model are
fulfilled.

Because of the assumption on the expectations of the incremental claims, the multi-
variate additive model is a linear model. This can be seen as follows: Define

β :=




ζ0

ζ1
...
ζk−1

ζk

ζk+1
...
ζn




and, for all i, k ∈ {0, 1, . . . , n}, define

Ai,k :=
(

O O . . . O Vi O . . . O
)

where the matrix Vi occurs in position k+1. Then we have

E[Zi,k] = Ai,kβ

for all i, k ∈ {0, 1, . . . , n}. Let Z1 and A1 denote a block vector and a block matrix
consisting of the vectors Zi,k and the matrices Ai,k with i + k ≤ n (arranged in the
same order) and let Z2 and A2 denote a block vector and a block matrix consisting
of the vectors Zi,k and the matrices Ai,k with i + k > n. Then we have

E[Z1] = A1β

E[Z2] = A2β

Therefore, the multivariate additive model is indeed a linear model.

The following result provides a formula for the Gauss–Markov predictors of the
non–observable incremental claims:

3.1 Theorem. For all i, k ∈ {0, 1, . . . , n} such that i + k > n, the Gauss–Markov
predictor Y∗(Zi,k) of Zi,k satisfies

Y∗(Zi,k) = Vi

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k
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Proof. Because of to the diagonal block structure of Σ11 = Var[Z1] and the block
structure of A1 we obtain

A′
1Σ

−1
11 A1 = diag

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)

k∈{0,1,...,n}

and

A′
1Σ

−1
11 Z1 =

(
n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

)

k∈{0,1,...,n}

and hence

β∗ =

((
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

)

k∈{0,1,...,n}

Since Σ21 = Cov[Z2,Z1] = O, we obtain

Y∗(Zi,k) = Ai,kβ
∗

= Vi

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

as was to be shown. 2

The Gauss–Markov Theorem implies that the Gauss–Markov predictors for the sum
of the non–observable incremental claims of a given accident year and for the sum of
all non–observable incremental claims are obtained by summation from the Gauss–
Markov predictors for single non–observable claims.

The Gauss–Markov Theorem also implies that, for a given accident year and a given
development year, the Gauss–Markov predictor for the non–observable incremental
claim 1′Zi,k of the aggregate portfolio is equal to the sum 1′Y∗(Zi,k) of the Gauss–
Markov predictors of the non–observable incremental claims of the subportfolios;
here 1 denotes the m–dimensional vector with all coordinates being equal to 1. Of
course, the preceding remarks on the Gauss–Markov predictors for sums of non–
observable incremental claims apply to the aggregate portfolio as well.

4 Remark

The multivariate additive model involves a particular assumption on the structure
of the variances of the incremental claims. This assumption is not really essential:
If it is modified or dropped, then an obvious modification or extension of Theorem
3.1 is easily obtained from Proposition 2.1.
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