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Abstract

Counting processes are of use in several areas, for example in risk theory.
Following the recent development of the transition from univariate models
to multivariate models, this paper considers multivariate counting processes.
Multivariate versions of the Poisson process and the mixed Poisson process
are introduced as well as other classes of multivariate counting processes, like
those having the Markov property, the multinomial property and independent
increments. These properties are used to characterize the multivariate Poisson
process and the multivariate mixed Poisson process.

1 Introduction

This paper extends the theory of the univariate counting process to the multivariate
setting. Multivariate versions of the Poisson process and the mixed Poisson pro-
cess are introduced and will be characterized by simple properties of multivariate
counting processes such as independent increments, the multinomial property and
the Markov property. Some of the characterizations are similar to the univariate
case, but there are also some new results induced by the multivariate setting, as
for example the binomial property and independent increments imply independent
coordinates.

In Section 2 the multivariate Poisson process and the multivariate mixed Poisson
process are introduced. It is shown that the multivariate mixed Poisson process has
in general dependent coordinates, in contrast to the multivariate Poisson process.

The multinomial property is introduced in Section 3 and both the multivariate Pois-
son process and the multivariate mixed Poisson process are characterized in terms
of the multinomial property and a particular choice of the one–dimensional distribu-
tions. Furthermore, relations between the multinomial property and other properties
of multivariate counting processes, like stationary increments, the Markov property
and the binomial property are considered.

In Section 4 the previous characterizations of the multivariate Poisson process and
the multivariate mixed Poisson process are substantially improved with the help of a

1



multivariate version of the Bernstein–Widder Theorem, which is stated in Appendix
A. Thus, a multivariate counting process is a multivariate mixed Poisson process if
and only if it has the multinomial property, and it is a multivariate Poisson process
if and only if it has independent increments and the binomial property.

Throughout this paper let (Ω,F , P) be the underlying probability space. Further-
more, a bold letter represents a vector or a random vector. 1 and 0 are the vectors
having entries all equal to one and zero, respectively, and it will be convenient to
use the notations

λn :=
k∏

i=1

λi
n(i)

and n ! :=
k∏

i=1

n(i) !

for k–dimensional vectors as well as n ≤ m if and only if n(i) ≤ m(i) for every
coordinate i.

A stochastic process {Nt}t∈R+
is said to be a counting process if there exists a null

set M ∈ F (called the exceptional null set) such that the following properties are
satisfied for every ω ∈ Ω\M :

(i) N0(ω) = 0,
(ii) Nt(ω) ∈ N0 for all t > 0,
(iii) Nt(ω) = infs∈ (t,∞) Ns(ω) for all t ∈ R+,
(iv) sups∈ [0,t) Ns(ω) ≤ Nt(ω) ≤ sups∈ [0,t) Ns(ω) + 1 for all t ∈ R+, and
(v) supt∈R+

Nt(ω) = ∞ .

Nt can be interpreted as the number of events occurring in the interval (0, t]. The
above definition excludes positive probability of infinitely many events occurring in
a finite time interval (called explosion) as well as positive probability of only a finite
number of events occurring in an infinite time interval.

A multivariate stochastic process {Nt}t∈R+
in k dimensions is said to be a multi-

variate counting process if every coordinate {N (i)
t }t∈R+ , i ∈ {1, . . . , k}, and the

sum {Nt}t∈R+ := {1′Nt}t∈R+ of all coordinates is a counting process. Thus, there
exists a null set M ∈ F (called the exceptional null set of the multivariate counting
process) such that for all ω ∈ Ω\M properties (i)–(v) are fulfilled by all coordinates

{N (i)
t (ω)}t∈R+ , i ∈ {1, . . . , k}, and the sum {Nt(ω)}t∈R+ of all coordinates. As a

consequence, simultaneous jumps of different coordinates are almost surely excluded.
From now on k will always be the dimension of the multivariate counting process
we are working with and we furthermore assume that M is empty.

2 Multivariate Poisson Processes and

Multivariate Mixed Poisson Processes

We start this section with a multivariate version of a most prominent member of
univariate counting processes. A multivariate counting process {Nt}t∈R+

is said to
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be a multivariate Poisson process with parameter λ ∈ (0, ∞) if

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

m∏
j=1

e−1′λ (tj−tj−1) (λ (tj − tj−1))
nj

nj !

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.

A first characterization of the multivariate Poisson process is immediate from the
definition.

2.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then the following

are equivalent:

(a) {Nt}t∈R+
is a multivariate Poisson process.

(b) {Nt}t∈R+
has stationary and independent increments and

P [{Nt = n}] = e−1′λ t (λ t)n

n!

holds for all t ∈ R+ and n ∈ N k
0 .

Rewriting the definition as

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

k∏
i=1

m∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

we recognize that a multivariate Poisson process has independent coordinates, which
are univariate Poisson processes in the usual sense. Since the inverse is also true,
we obtain another characterization of the multivariate Poisson process, this time
among stochastic processes.

2.2 Lemma. Let {Nt}t∈R+
be a stochastic process. Then the following are equiv-

alent:

(a) {Nt}t∈R+
is a multivariate Poisson process.

(b) {Nt}t∈R+
has independent coordinates {N (i)

t }t∈R+ which are Poisson pro-
cesses.

Proof: Since the coincidence of the finite–dimensional distributions is obvious, it
just remains to show that a stochastic process {Nt}t∈R+

fulfilling assumption (b) is
a multivariate counting process.
Every coordinate {N (i)

t }t∈R+ is a counting process with jump times distributed
according to an Erlang distribution which is continuous w.r.t. the Lebesgue measure.
By independence of the coordinates we obtain common jump time distributions
which are also continuous w.r.t. the Lebesgue measure. The event of arbitrary jump
times of different coordinates being equal has Lebesgue measure zero and therefore
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the probability of such an event is also zero. Thus, {Nt}t∈R+
is a multivariate

counting process. �

Hence, a multivariate Poisson process is certainly not a multivariate process of much
interest, but serves in this paper as a kind of benchmark for the multivariate mixed
Poisson process.

A multivariate counting process {Nt}t∈R+
is said to be a multivariate mixed Poisson

process with mixing distribution U : B(Rk) → [0, 1] if U [(0, ∞)] = 1 and if

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

∫
Rk

m∏
j=1

e−1′λ (tj−tj−1) (λ (tj − tj−1))
nj

nj !
dU(λ)

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.

Similar to the univariate setting we may obtain a multivariate mixed Poisson process
by randomizing the parameter of a Poisson process. Conversely, choosing the mixing
distribution U of a multivariate mixed Poisson process to be a Dirac–distribution,
we see that every multivariate Poisson process is a multivariate mixed Poisson pro-
cess. A multivariate mixed Poisson process has stationary increments, but does not
have in general independent increments (Corollary 4.3) or independent coordinates
(Theorem 2.3). Like the multivariate Poisson process, a multivariate mixed Poisson
process is stable in some sense as the i–th coordinate of the process is a (univariate)
mixed Poisson process with mixing distribution Ui where Ui represents the corre-
sponding marginal distribution of U .

The following theorem was inspired by Hofmann [1955] and justifies the use of the
multivariate mixed Poisson process.

2.3 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mixing

distribution U . Then the following are equivalent.

(a) The coordinates of {Nt}t∈R+
are independent.

(b) The identity U =
⊗k

i=1 Ui is valid.

Proof: The assumption U =
⊗k

i=1 Ui yields by straightforward calculation the
independence of the coordinates of {Nt}t∈R+

.
Now assume that (a) holds. Denoting by LV the Laplace transform of a distribution
V on B(Rk) we obtain for every t ∈ R k

+

LU(t) =

∫
Rk

e−t′λ dU(λ)

= P

[
k⋂

i=1

{
N

(i)
ti = 0

}]
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=
k∏

i=1

P
[{

N
(i)
ti = 0

}]
=

k∏
i=1

∫
R

e−tiλi dU(λ)

=

∫
Rk

e−t′λ d(
⊗k

i=1Ui) (λ)

= L⊗k
i=1Ui

(t)

The uniqueness of the Laplace transform (Kallenberg [2002]) implies U =
⊗k

i=1Ui

and the assertion is shown. �

Let {Nt}t∈R+
be a multivariate mixed Poisson process with mixing distribution U

and let Λ be a random vector with distribution U . If the corresponding moment of
Λ exists, we obtain with the help of the Laplace transform

E [Nt] = t E [Λ] and

Cov [Ns,Nt] = min(s, t) Diag (E [Λ]) + s t Var [Λ]

Since the correlation of the coordinates of the mixing distribution specifies the cor-
relation of the coordinates of the multivariate mixed Poisson process, a wide range
of correlations and dependencies can be modelled.

3 Further Classes of Multivariate

Counting Processes

The finite–dimensional distributions of the increments of a multivariate Poisson
process are completely determined by the one–dimensional distributions (Lemma
2.1). Looking at this relation in a precise manner it is convenient to introduce the
following property of multivariate counting processes.

A multivariate counting process {Nt}t∈R+
has the multinomial property if

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P

[{
Ntm =

m∑
j=1

nj

}]

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for
all nj ∈ N k

0 , j ∈ {1, . . . ,m}. In the univariate setting the multinomial property
seems to be introduced first by Schmidt [1996]. Although there are properties which
are equivalent to the multinomial property, for example order statistic properties of
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the jump time distributions (Feigin [1979]), it is convenient to use the multinomial
property since it just operates with the process {Nt}t∈R+

itself.

3.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then the following

are equivalent:
(a) {Nt}t∈R+

is a multivariate Poisson process.
(b) {Nt}t∈R+

has the multinomial property and

P [{Nt = n}] = e−1′λ t (λ t)n

n!

holds for all t ∈ R+ and n ∈ N k
0 .

The significance of the one–dimensional distributions is valid for the multivariate
mixed Poisson process, too.

3.2 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Furthermore, let

U : B(Rk) → [0, 1] be a distribution with U [(0, ∞)] = 1. Then the following are
equivalent:
(a) {Nt}t∈R+

is a multivariate mixed Poisson process with mixing distribution U .
(b) {Nt}t∈R+

has the multinomial property and

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

holds for all t ∈ R+ and n ∈ N k
0 .

The multinomial property can also be written in terms of the conditional distri-
bution of increments up to time tm w.r.t. the process at time tm. Furthermore
this conditional distribution is a product of multinomial distributions. Thus, given
the number of events at present, the distribution of the events into disjoint time
intervals in the past corresponds to sampling with replacement. As this sampling is
independent for the coordinates of the process, every coordinate could be sampled
separately. Hence, it can be statistically tested whether a counting process possesses
the multinomial property. By straightforward calculation we obtain the next lemma.

3.3 Lemma. Let {Nt}t∈R+
be a multivariate counting process having the multi-

nomial property. Then {Nt}t∈R+
has stationary increments.

After having considered conditional probabilities of increments in the past w.r.t the
process at present, we now change the direction and consider conditional probabili-
ties of increments in the future w.r.t the process at present.

A multivariate counting process {Nt}t∈R+
has the Markov property if the identity

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1}

]
6



holds for all m ∈ N and t0, t1, . . . , tm+1 ∈ R+ with 0 = t0 < t1 < . . . < tm+1 and for
all n1, . . . ,nm+1 ∈ N k

0 with lm :=
∑m

j=1 nj.

The Markov property, like the multinomial property, is stated here in terms of in-
crements and without using conditional probabilities, since technical calculation be-
comes more comfortable (see proof of Lemma 3.5). If P

[
∩m

j=1

{
Ntj −Ntj−1

= nj

}]
> 0, then the previous identities are equivalent to

P

[{
Ntm+1 −Ntm = nm+1

} ∣∣∣∣ m⋂
j=1

{
Ntj −Ntj−1

= nj

}]
= P

[{
Ntm+1 −Ntm = nm+1

} ∣∣ {Ntm = lm}
]

Roughly speaking, the future increment of a Markov process only depends on the
total increment up to the present and not on the partitioning of the increment in
the past. Hence it is obvious that a multivariate counting process having indepen-
dent increments is a Markov process. Another sufficient condition for the Markov
property is the multinomial property as stated in the next lemma, which can be
obtained by simple calculation.

3.4 Lemma. Let {Nt}t∈R+
be a multivariate counting process having the multi-

nomial property. Then {Nt}t∈R+
is a Markov process.

On the other hand the Markov property is not sufficient for the multinomial property
without adding another property, which we obtain by restricting the multinomial
property to the case m = 2. A multivariate counting process {Nt}t∈R+

has the
binomial property if

P [{Ns = l} ∩ {Nt −Ns = n}]

=

(
k∏

i=1

(
n(i) + l(i)

l(i)

) (s

t

)l(i) (
1− s

t

)n(i)
)

P [{Nt = n + l}]

holds for all s, t ∈ R+ with 0 < s < t and all l, n ∈ N
k
0 . In contrast to the

multinomial property the binomial property has been widely used (see e.g Lundberg
[1964]).

3.5 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then the following

are equivalent

(a) {Nt}t∈R+
has the multinomial property.

(b) {Nt}t∈R+
has the binomial property and the Markov property.

Before proving Lemma 3.5, we state a consequence of the binomial property which
is derived from the properties of the paths of a multivariate counting process.

3.6 Lemma. Let {Nt}t∈R+
be a multivariate counting process. If {Nt}t∈R+

has
the binomial property, then

P [{Nt = n}] > 0
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holds for all t > 0 and all n ∈ N k
0 .

Proof: First, we assume there exists some m ∈ N k
0 such that

P [{Nt = n}] = 0

holds for all t > 0 and n ∈ N k
0 with n ≥ m. Then we have P [{Nt ≥ m}] = 0 for

all t > 0, which is a contradiction to limt→∞ P [{Nt ≥ n}] = 1 for all n ∈ N k
0 . The

last identities are valid since all paths of every coordinate of a multivariate counting
process increase and have no upper limit.
Now, consider m ∈ N k

0 . By the first part of the proof there exists some t > 0 and
some n ∈ N k

0 with n ≥ m such that

P [{Nt = n}] > 0

The binomial property leads to

P [{Ns = l}] ≥ P [{Ns = l} ∩ {Nt −Ns = n− l}]

=

(
k∏

i=1

(
n(i)

l(i)

) (s

t

)l(i) (
1− s

t

)n(i)−l(i)
)

P [{Nt = n}]

and hence

P [{Ns = l}] > 0

for all s ∈ (0, t) and all l ∈ N k
0 with l ≤ n. Moreover, for all u ∈ (t,∞) the identity∑

p≥n P [{Nu = p} | {Nt = n}] = 1 yields the existence of some p ∈ N k
0 with p ≥ n

such that

P [{Nu = p}] ≥ P [{Nu = p} ∩ {Nt = n}]
= P [{Nu = p} | {Nt = n}] P [{Nt = n}]
> 0

Replacing t and n by u and p in the preceding argument, we get

P [{Ns = l}] > 0

for all s > 0 and all l ∈ N k
0 with l ≤ n.

Since m ∈ N k
0 was arbitrary, the assertion is shown. �

Now, we can prove Lemma 3.5 in a simplified manner.
Proof: Since (a) obviously implies (b), we only have to show that the Markov
property and the binomial property imply the multinomial property. We proceed
by induction over the number m of time periods in the equation

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P

[{
Ntm =

m∑
j=1

nj

}]
(∗)
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with arbitrary t0, t1, . . . , tm ∈ R+, 0 = t0 < t1 < . . . < tm and arbitrary nj ∈
N

k
0 , j ∈ {1, . . . ,m}.

For m = 1 (∗) is evidently satisfied.
Now, assume that (∗) holds for m ∈ N. Consider t0, t1, . . . , tm, tm+1 ∈ R+ with
0 = t0 < t1 < . . . < tm < tm+1 and nj ∈ N

k
0 , j ∈ {1, . . . ,m + 1}. Setting

lj :=
∑j

h=1 nh for j ∈ {1, . . . ,m + 1} and using the Markov property and the
binomial property we get

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1}

]

=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P [{Ntm = lm}]

·

 k∏
i=1

(
l
(i)
m+1

l
(i)
m

) (
tm

tm+1

)l
(i)
m
(

tm+1 − tm
tm+1

)n
(i)
m+1

 P
[{

Ntm+1 = lm+1

}]

=

 k∏
i=1

l
(i)
m+1!∏m+1

j=1 n
(i)
j !

m+1∏
j=1

(
tj − tj−1

tm+1

)n
(i)
j

 P
[{

Ntm+1 = lm+1

}]
P [{Ntm = lm}]

Since we obtain from the binomial property P [{Ntm = lm}] > 0 (Lemma 3.6), the
above identity yields that (∗) is valid for m + 1 time periods. Hence, the binomial
property and the Markov property imply the multinomial property. �

The following picture recapitulates the implications between the properties of mul-
tivariate counting processes introduced so far.

stationary
increments �

6

-multivariate
mixed

Poisson process �

P [{Nt = n}] > 0

6

binomial
property

6

multinomial
property

-

6

multivariate
Poisson process

-

Markov
property

6

independent
increments
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As the picture shows the multinomial property provides several links between the
properties considered here. This statement will be strengthened in the next section.

4 Characterizations

Lemma 3.2 can be substantially improved as follows:

4.1 Theorem. Let {Nt}t∈R+
be a multivariate counting process. Then the follow-

ing are equivalent

(a) {Nt}t∈R+
is a multivariate mixed Poisson process.

(b) {Nt}t∈R+
has the multinomial property.

(c) {Nt}t∈R+
has the binomial property and the Markov property.

Proof: Because of Lemma 3.2 and 3.5 it remains to show that (b) implies (a).
We set

Πn(t) := P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}]

for all t ∈ R k
+ and n ∈ N k

0 .
Consider t ∈ R k

+, t ∈ R+ with t ∈ (0, t1) and n ∈ N k
0 . The multinomial property

implies

P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}
∩
{

N
(i)
t −N

(i)
ti = l(i) − n(i)

}]

=

(
k∏

i=1

(
l(i)

n(i)

) (
ti
t

)n(i) (
1− ti

t

)l(i)−n(i)
)

Πl(t1)

for all l ≥ n and thus

Πn(t) =
∑

l∈ [n,∞)

P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}
∩
{

N
(i)
t −N

(i)
ti = l(i) − n(i)

}]

=
∑

l∈ [n,∞)

(
k∏

i=1

(
l(i)

n(i)

) (
ti
t

)n(i) (
1− ti

t

)l(i)−n(i)
)

Πl(t1)

In particular, we have

Π0(t) =
∑

l∈N k
0

(
k∏

i=1

(
1− ti

t

)l(i)
)

Πl(t1)

=
∑

l∈N k
0

(
k∏

i=1

(ti − t)l(i)

)
Πl(t1)

t1′l
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The power series Π0(t) in k coordinates is absolutely bounded for t ∈ (0, 2t1) by∑
l∈N k

0
Πl(t1) = 1 and therefore absolutely convergent. Thus, Π0 is continuous on

(0, 2t1) and the power series can infinitely often be differentiated in this open set
(Dieudonné [1960]).

DnΠ0(t) =
∑

l∈ [n,∞)

(
k∏

i=1

l(i)!

(l(i) − n(i))!

(
1− ti

t

)l(i)−n(i) (
−1

t

)n(i)
)

Πl(t1)

=
n!

(−t)n

∑
l∈ [n,∞)

(
k∏

i=1

(
l(i)

n(i)

)(
ti
t

)n(i) (
1− ti

t

)l(i)−n(i)
)

Πl(t1)

and hence

Πn(t) =
(−t)n

n!
DnΠ0(t)

for all t ∈ (0, 2t1). Since t was arbitrary, the inequality

(−1)1
′n DnΠ0(t) ≥ 0

holds for all t ∈ (0, ∞) and Π0 is continuous on (0, ∞). The right continuity of
the path of the coordinates of a multivariate counting process yields that Π0 is right
continuous on R k

+ and so Π0 is continuous on R k
+.

Last but not least, we have Π0(0) = 1 since {Nt}t∈R+
is a multivariate counting

process. Thus, Π0 fulfils all conditions of the Multivariate Bernstein–Widder Theo-
rem (Theorem A.1) which yields the existence of a distribution U : B(Rk) → [0, 1]
with U

[
R

k
+

]
= 1 such that

Π0(t) =

∫
Rk

e−t′λ dU(λ)

holds for all t ∈ R k
+. So we obtain Π0(t) = LU(t). Since LU is finite on [0, ∞) we

can interchange differentiation and integration on (0, ∞). Thus, differentiating Π0

on (0, ∞) we get

Πn(t) =
(−t)n

n!
DnΠ0(t)

=
(−t)n

n!

∫
Rk

(−λ)n e−t′λ dU(λ)

=

∫
Rk

e−t′λ tn λn

n!
dU(λ)

Using P [{Nt = n}] = Πn(t1), we immediately obtain

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

for all t > 0 and n ∈ N k
0 . The last identities are also valid for t = 0 as all paths

start at 0.
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Assume now U [R k
+\(0, ∞)] > 0. Then there would exist a coordinate such that the

mixing distribution fulfils Ui[{0}] > 0. This yields limt→∞ P[{N (i)
t = 0}] > 0 which

is a contradiction to {N (i)
t }t∈R+ being a counting process and having paths going

to infinity. Thus we obtain U [R k
+\(0, ∞)] = 0 and therefore U [(0, ∞)] = 1 which

completes the proof. �

In the univariate setting related results have been obtained by Nawrotzki [1955],
Lundberg [1964], Feigin [1979], Albrecht [1981] as well as Schmidt and Zocher [2003].
Having characterized the multivariate mixed Poisson process we can now character-
ize the multivariate Poisson process such that we are able to answer the question
under which condition a multivariate mixed Poisson process possesses independent
increments.

4.2 Theorem. Let {Nt}t∈R+
be a multivariate counting process. Then the follow-

ing are equivalent:

(a) {Nt}t∈R+
is a multivariate Poisson process.

(b) {Nt}t∈R+
has the binomial property and independent increments.

Proof: By Section 3 we already know that multivariate Poisson process possesses
the binomial property and independent increments.
Now assume that {Nt}t∈R+

has the binomial property and independent increments.
Independent increments imply the Markov property and therefore (compare Theo-
rem 4.1) {Nt}t∈R+

is a multivariate mixed Poisson process with mixing distribution
U . The coordinate i of {Nt}t∈R+

is a mixed Poisson process with mixing distribu-
tion Ui.
Since the multivariate counting process has the binomial property and independent
increments, every coordinate has the same properties. Thus, by Schmidt and Zocher
[2003] every coordinate is a Poisson process and hence a mixed Poisson process with
mixing distribution being the Dirac distribution in xi ∈ (0,∞), in formula Ui = δxi

.
The only distribution U fulfilling Ui = δxi

for all i ∈ {1, . . . , k} is U = δx. Hence,
{Nt}t∈R+

is a multivariate Poisson process. �

4.3 Corollary. Let {Nt}t∈R+
be a multivariate counting process. Then the fol-

lowing are equivalent:

(a) {Nt}t∈R+
is a multivariate mixed Poisson process with independent incre-

ments.
(b) {Nt}t∈R+

is a multivariate Poisson process.

As a consequence of the previous corollary a multivariate mixed Poisson process
with independent increments has always independent coordinates. With the char-
acterizations stated above an illustration of the properties of multivariate counting
processes may look like the following:
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Appendix

A Multivariate Bernstein–Widder Theorem

For the main result in Section 4 we need a multivariate extension of the famous
Bernstein–Widder theorem, which states that a completely monotone function has
a representation as Laplace transform of a distribution. The Bernstein–Widder the-
orem possesses a lot of different proofs from various fields of mathematics. However,
the proof of the multivariate extension is often taken for granted and therefore not
carried out (compare Bochner [1955, Theorem 4.2.1] and Berg et al. [1984, Exercise
4.6.27]). So in this section we state the multivariate Bernstein–Widder theorem in a
fashion fitting our purpose and give a proof, which is inspired by Berg et al. [1984].

A.1 Theorem (Multivariate Bernstein–Widder). Let f : R k
+ → R be a

continuous function with f(0) = 1 and

(−1)1
′nDnf(t) ≥ 0

for all n ∈ N k
0 . Then there exists a distribution U on B(Rk) with U

[
R

k
+

]
= 1 such

that

f(t) =

∫
Rk

e−t′x dU(x)

holds for all t ∈ R k
+.

Proof: Every numeration used in this proof refers to Berg et al. [1984].
First, we show that f is completely monotone in the sense of Definition 4.6.1,
which states that a function has to be nonnegative and fulfils for all finite sets
{a1, . . . , an} ⊆ R

k
+ and all s ∈ R k

+ the inequality ∇a1 · · ·∇anf(s) ≥ 0 in order to
be completely monotone, where ∇a is defined by ∇af(s) := f(s)− f(s + a). Thus,
we generalize a part of the proof of Theorem 4.6.13. Consider a ∈ R k

+, then the
function ∇af is continuous on R k

+. Furthermore, we have for all n ∈ N k
0 and t > 0

with the mean value theorem (Browder [1996])

(−1)1
′nDn(∇af)(t) = (−1)1

′n∇aD
nf(t)

= (−1)1
′n
(
Dnf(t)−Dnf(t + a)

)
13



= (−1)1
′n+1

k∑
i=1

ai D
n+eif(ξ)

with ξ ∈ [t, t + a]. And so we have (−1)1
′nDn(∇af)(t) ≥ 0. By iteration we get

for all a1, . . . , an ∈ R k
+, n ∈ N that the function ∇a1 . . .∇anf is continuous on R k

+

and fulfils (−1)1
′nDn(∇a1 . . .∇anf)(t) ≥ 0 for all n ∈ N k

0 and t > 0. In particular,
∇a1 . . .∇anf(t) ≥ 0 for all t > 0 and by continuity ∇a1 . . .∇anf(t) ≥ 0 for all
t ≥ 0. As f is by assumption nonnegative it is completely monotone.
It follows from Theorem 4.6.5 that f is positive definite and bounded (in notation
of Berg et al. [1984] f ∈ Pb(R k

+)). Thus, the continuity of f in connection with
Proposition 4.4.7. yields the existence of a finite, nonnegative measure U on B(Rk

+)
with

f(t) =

∫
R k

+

e−t′x dU(x)

for all t ∈ R k
+. Finally

U
[
R

k
+

]
=

∫
R k

+

dU(x)

= f(0)

= 1

and the assertion is shown. �
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