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ABSTRACT

The present paper provides a unifying survey of some of the most
important methods of loss reserving based on run-off triangles and
proposes the use of a family of such methods instead of a single one.
The starting point is the thesis that the use of run-off triangles in

loss reserving can be justified only under the assumption that the de-
velopment of the losses of every accident year follows a development
pattern which is common to all accident years.
The notion of a development pattern turns out to be a unifying

force in the comparison of various methods of loss reserving, in-
cluding the chain-ladder method, the loss-development method, the
Cape Cod method, and the additive method. For each of these meth-
ods, the predictors of the ultimate losses can be given the shape of
Bornhuetter-Ferguson predictors.
The process of arranging known methods of loss reserving under

the umbrella of the extended Bornhuetter-Ferguson method requires
the identification of prior estimators of the development pattern and
the expected ultimate losses. This process can be reversed by com-
bining components of different methods to obtain new versions of
the extended Bornhuetter-Ferguson method.
The Bornhuetter-Ferguson principle proposes the simultaneous use

of various versions of the extended Bornhuetter-Ferguson method
and a comparison of the resulting predictors in order to select best
predictors and to determine prediction ranges.
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1. Introduction

During the last decades, actuaries have pro-
posed a large variety of methods of loss reserv-
ing based on run-off triangles. In each of these
methods, it is assumed that all claims are set-
tled within a fixed number of development years
and that the development of incremental or cu-
mulative losses from the same number of acci-
dent years is known up to the present calendar
year such that the losses can be represented in a
run-off triangle.
The most venerable and most famous of these

methods are certainly the chain-ladder method
and the Bornhuetter-Ferguson method. It appears
that the basic idea of the chain-ladder method
was already known to Tarbell (1934) while the
Bornhuetter-Ferguson method was first described
almost forty years later in the paper by Bornhuet-
ter and Ferguson (1972).
At the first glance, both methods have very

little in common:

² The chain-ladder method proposes predictors
of the ultimate (cumulative) losses and every
predictor is obtained sequentially by multiply-
ing the current (cumulative) loss by the chain-
ladder factors which are certain development
factors (or link ratios) obtained from the run-
off triangle.

² The Bornhuetter-Ferguson method proposes
predictors of the outstanding losses and every
predictor is obtained by multiplying an estima-
tor of the expected ultimate (cumulative) loss
by an estimator of the percentage of the out-
standing loss with respect to the ultimate one.

The fact that these methods aim at different tar-
get quantities can be neglected since predictors of
ultimate losses can be converted into predictors
of outstanding losses, and vice versa. However,
a crucial difference lies in the fact that the chain-
ladder method proceeds from current losses
while the Bornhuetter-Ferguson method is based
on the expected ultimate losses, and this differ-

ence is connected with the sources of information
which are taken into account:

² The chain-ladder method relies completely on
the data contained in the run-off triangle.

² The Bornhuetter-Ferguson method restricts the
use of the run-off triangle to the estimation
of the percentage of the outstanding loss and
uses the product of the earned premium and
an expected loss ratio to estimate the expected
ultimate loss.

The aim of this paper is to show that, in spite
of their different appearances, the chain-ladder
method and the Bornhuetter-Ferguson method,
as well as many other methods of loss reserving,
have indeed very much in common.
The striking point with the Bornhuetter-Fergu-

son method is the multiplicative structure of the
predictors of the outstanding losses. In the orig-
inal version of the method, each of the two fac-
tors has the particular meaning mentioned be-
fore. This interpretation may be dropped. If it is
dropped, then we obtain predictors each of which
is the product of some estimator of the ultimate
loss and some estimator of the percentage of out-
standing losses, and we are free to choose these
estimators as we like.
We thus arrive at a general class of predic-

tors of outstanding losses, and hence at a corre-
sponding class of predictors of ultimate losses.1

The predictors of this class will be referred to as
predictors of the extended Bornhuetter-Ferguson
method. It will be shown that the chain-ladder
predictors belong to this class and that the pre-
dictors of many other methods of loss reserving
belong to this class as well.
Since the prediction of outstanding or ultimate

losses is a statistical problem, it is most helpful
to formulate all methods (which in many cases

1Like the chain-ladder method and the Bornhuetter-Ferguson
method, different methods of loss reserving address different target
quantities. For the sake of comparison, it is necessary to express
all methods in terms of the same target quantities. Our choice of
focusing on ultimate losses (and later also on other cumulative
losses) is essentially a matter of personal preferences.
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were originally designed as deterministic algo-
rithms) in a statistical setting. This means that all
losses are interpreted as random variables which
are either observable or not. In particular, the data
represented in a run-off triangle are interpreted
as realizations of observable losses and the out-
standing or ultimate losses are non-observable
(except for the initial accident year).
Once the statistical setting is accepted, the fun-

damental notion of a development pattern can be
introduced. Although the notion of a develop-
ment pattern is more or less present in many pub-
lications on loss reserving, its force with regard
to the comparison of methods has been made
evident only recently; see Radtke and Schmidt
(2004) and Schmidt (2006).
Using the notion of a development pattern, we

will show that the extended Bornhuetter-Fergu-
son method is not just a particular one among
various methods of loss reserving but is a general
one which contains many other methods as spe-
cial cases and leads to the Bornhuetter-Ferguson
principle, which consists of the simultaneous ap-
plication of several versions of the extended
Bornhuetter-Ferguson method to a given run-off
triangle.
This paper extends the discussion of the ex-

tended Bornhuetter-Ferguson method which was
started in some of the contributions in Radtke and
Schmidt (2004) and was continued in Schmidt
(2006; Section 4). The extension consists of

² the inclusion of development patterns which
differ from the classical ones,

² a general discussion of the estimation of de-
velopment patterns, and

² the embedding of quite recent methods of loss
reserving into the extended Bornhuetter-Fergu-
son method.

In particular, we take into account the contri-
butions of Mack (2006) and Panning (2006) in
response to the CAS 2006 Reserves Call Paper
Program.
This paper is organized as follows:

In Section 2, we introduce the general mod-
eling of loss development data by a family of
random variables representing the incremental or
cumulative losses and the representation of the
observable incremental or cumulative losses by
a run-off triangle.
In Section 3, we introduce and study the cen-

tral notion of a development pattern which turns
out to be a powerful and unifying concept for the
interpretation and comparison of several methods
of loss reserving based on run-off triangles. We
show that the notion of a development pattern
can be expressed in several different but equiva-
lent ways and that a development pattern can also
be obtained on the basis of volume measures.
In Section 4, we study the problem of estimat-

ing the parameters of a development pattern.
In Section 5, we present the extended Born-

huetter-Ferguson method in its predictive form
for the ultimate (cumulative) losses and we show
that many other methods of loss reserving can be
interpreted as special cases. This section is the
central part of the present paper. The results of
this section are summarized in a table which in-
dicates that certain combinations of estimators of
the development pattern and of the expected ulti-
mate losses yield new methods of loss reserving
which have not yet been considered in the liter-
ature.
In Section 6, we illustrate possible applications

of the Bornhuetter-Ferguson principle by a nu-
merical example. For a given run-off triangle, we
use a variety of versions of the extended Born-
huetter-Ferguson method to compute predictors
of the first year reserve and the total reserve. The
realizations of these predictors are visualized in
a two-dimensional plot which, when combined
with actuarial judgment, may be used to deter-
mine best predictors and ranges; in addition, they
may be used to compare the portfolio under con-
sideration with a market portfolio or to check
whether premiums are adequate or not.
In Section 7, we present proofs of two non-

evident results used in Section 5.
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2. Run-off triangles

We consider a portfolio of risks and we assume
that each claim of the portfolio is settled either in
the accident year or in the following n develop-
ment years. The portfolio may be modeled either
by incremental losses or by cumulative losses.

2.1. Incremental losses

To model a portfolio by incremental losses,
we consider a family of random variables
fZi,kgi,k2f0,1,:::,ng and we interpret the random
variable Zi,k as the loss of accident year i which
is settled with a delay of k years and hence in
development year k and in calendar year i+ k.
We refer to Zi,k as the incremental loss of acci-
dent year i and development year k.
We assume that the incremental losses Zi,k are

observable for calendar years i+ k · n and that
they are non-observable for calendar years i+ k ¸
n+1. The observable incremental losses are rep-
resented by the following run-off triangle:

Development Year

0 1 ¢ ¢ ¢ k ¢ ¢ ¢ n¡ i ¢ ¢ ¢ n¡1 n

Accident
Year

0 Z0,0 Z0,1 ¢ ¢ ¢ Z0,k ¢ ¢ ¢ Z0,n¡i ¢ ¢ ¢ Z0,n¡1 Z0,n

1 Z1,0 Z1,1 ¢ ¢ ¢ Z1,k ¢ ¢ ¢ Z1,n¡i ¢ ¢ ¢ Z1,n¡1
...

...
...

...
...

i Zi,0 Zi,1 ¢ ¢ ¢ Zi,k ¢ ¢ ¢ Zi,n¡i
...

...
...

...
n¡ k Zn¡k,0 Zn¡k,1 ¢ ¢ ¢ Zn¡k,k
...

...
...

n¡1 Zn¡1,0 Zn¡1,1

n Zn,0

The problem is to predict the non-observable in-
cremental losses.

2.2. Cumulative losses

To model a portfolio by cumulative losses,
we consider a family of random variables
fSi,kgi,k2f0,1,:::,ng and we interpret the random vari-

able Si,k as the loss of accident year i which is
settled with a delay of at most k years and hence
not later than in development year k. We refer
to Si,k as the cumulative loss of accident year i
and development year k, to Si,n¡i as a cumulative
loss of the present calendar year n or as a cur-
rent (cumulative) loss, and to Si,n as an ultimate
(cumulative) loss.
We assume that the cumulative losses Si,k are

observable for calendar years i+ k · n and that
they are non-observable for calendar years i+ k ¸
n+1. The observable cumulative losses are rep-
resented by the following run-off triangle:

Development Year

0 1 ¢ ¢ ¢ k ¢ ¢ ¢ n¡ i ¢ ¢ ¢ n¡1 n

Accident
Year

0 S0,0 S0,1 ¢ ¢ ¢ S0,k ¢ ¢ ¢ S0,n¡i ¢ ¢ ¢ S0,n¡1 S0,n

1 S1,0 S1,1 ¢ ¢ ¢ S1,k ¢ ¢ ¢ S1,n¡i ¢ ¢ ¢ S1,n¡1
...

...
...

...
...

i Si,0 Si,1 ¢ ¢ ¢ Si,k ¢ ¢ ¢ Si,n¡i
...

...
...

...
n¡ k Sn¡k,0 Sn¡k,1 ¢ ¢ ¢ Sn¡k,k
...

...
...

n¡1 Sn¡1,0 Sn¡1,1

n Sn,0

The problem is to predict the non-observable cu-
mulative losses.

2.3. Remarks

Of course, modeling a portfolio by incremental
losses is equivalent to modeling a portfolio by
cumulative losses:

² The cumulative losses are obtained from the
incremental losses by letting

Si,k :=
kX
l=0

Zi,l:

Then the non-observable cumulative losses sat-
isfy

Si,k = Si,n¡i+
kX

l=n¡i+1
Zi,l:

88 CASUALTY ACTUARIAL SOCIETY VOLUME 2/ISSUE 1



The Bornhuetter-Ferguson Principle

² The incremental losses are obtained from the
cumulative losses by letting

Zi,k :=

(
Si,0 if k = 0

Si,k ¡ Si,k¡1 else
:

In the sequel we shall switch between incremen-
tal and cumulative losses as necessary.
Correspondingly, prediction of non-observable

incremental losses is equivalent to prediction of
non-observable cumulative losses:

² If fẐi,kgi,k2f0,1,:::,ng, i+k¸n+1 is a family of
predictors of the non-observable incremental
losses, then a family of predictors of the non-
observable cumulative losses is obtained by
letting

Ŝi,k := Si,n¡i+
kX

l=n¡i+1
Ẑi,l:

² If fŜi,kgi,k2f0,1,:::,ng,i+k¸n+1 is a family of predic-
tors of the non-observable cumulative losses,
then a family of predictors of the non-observ-
able incremental losses is obtained by letting

Ẑi,k :=

(
Ŝi,n¡i+1¡ Si,n¡i if k = n¡ i+1
Ŝi,k ¡ Ŝi,k¡1 else

:

For the ease of notation and to avoid the distinc-
tion of cases as in the previous definition, we
shall also refer to Zi,n¡i and Si,n¡i as predictors
of Zi,n¡i and Si,n¡i, although these random vari-
ables are, of course, observable.
The enumeration of accident years and devel-

opment years starting with 0 instead of 1 is wide-
ly but not yet generally accepted; see Stanard
(1985), Taylor (2000), Radtke and Schmidt
(2004), Panning (2006) and the publications of
the present authors. It is useful for several rea-
sons:

² For losses which are settled within the acci-
dent year, the delay of settlement is 0. It is
therefore natural to start the enumeration of
development years with 0.

² Using the enumeration of development years
also for accident years implies that the incre-

mental or cumulative loss of accident year
i and development year k is observable if
and only if i+ k · n. In particular, the current
losses Si,n¡i are those of the present calendar
year n and are crucial in most methods of loss
reserving.

After all, the notation used here simplifies math-
ematical formulas.

3. Development patterns

The use of run-off triangles in loss reserving
can be justified only if it is assumed that the de-
velopment of the losses of every accident year
follows a development pattern which is common
to all accident years. This vague idea of a de-
velopment pattern can be formalized in various
ways.
In the present section we consider three clas-

sical development patterns, which are formally
distinct but nevertheless similar and can easily be
converted into each other, and we also introduce
alternative development patterns. The variety of
development patterns is nevertheless needed
since each of these development patterns occurs
as a natural primitive model for some of the
methods of loss reserving to be discussed in Sec-
tion 5 or as a part of certain more sophisticated
models; see Schmidt (2006).
The assumption of an underlying development

pattern can be viewed as a primitive stochastic
model and provides the key to the comparison
of various methods of loss reserving.

3.1. Incremental quotas

A vector #= (#0,#1, : : : ,#n) of parameters
(with

Pn
l=0#l = 1) is said to be a development

pattern for incremental quotas if the identity

#k =
E[Zi,k]
E[Si,n]

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.
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Thus, a development pattern for incremental
quotas exists if, and only if, for every devel-
opment year k 2 f0,1, : : : ,ng the individual incre-
mental quotas

#i,k :=
E[Zi,k]
E[Si,n]

are identical for all accident years.
In the case of a run-off triangle for paid losses

or claim counts it is usually reasonable to as-
sume in addition that #k > 0 holds for all k 2
f0,1, : : : ,ng. In the case of incurred losses, how-
ever, this additional assumption may be inappro-
priate since, due to conservative loss reserving,
the expected incremental losses of development
years k 2 f1, : : : ,ng may be negative.

3.2. Cumulative quotas

A vector ° = (°0,°1, : : : ,°n) of parameters
(with °n = 1) is said to be a development pattern
for cumulative quotas if the identity

°k =
E[Si,k]
E[Si,n]

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.
Thus, a development pattern for cumulative

quotas exists if, and only if, for every develop-
ment year k 2 f0,1, : : : ,ng the individual cumula-
tive quotas

°i,k :=
E[Si,k]
E[Si,n]

are identical for all accident years.
In the case of a run-off triangle for paid losses

or claim counts, it is usually reasonable to as-
sume in addition that 0< °0 < °1 < ¢ ¢ ¢< °n.
The development patterns for cumulative quo-

tas and for incremental quotas can be converted
into each other:

² If ° is a development pattern for cumulative
quotas, then a development pattern # for in-
cremental quotas is obtained by letting

#k :=

(
°0 if k = 0

°k ¡ °k¡1 else
:

² If # is a development pattern for incremental
quotas, then a development pattern ° for cu-
mulative quotas is obtained by letting

°k :=
kX
l=0

#l:

Furthermore, the condition 0< °0 < °1 < ¢ ¢ ¢< °n
is fulfilled if, and only if, #k > 0 holds for all
k 2 f0,1, : : : ,ng.

3.3. Factors

A vector '= ('1, : : : ,'n) of parameters is said
to be a development pattern for factors if the iden-
tity

'k =
E[Si,k]
E[Si,k¡1]

holds for all k 2 f1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.
Thus, a development pattern for factors exists

if, and only if, for every development year k 2
f1, : : : ,ng the individual factors

'i,k :=
E[Si,k]
E[Si,k¡1]

are identical for all accident years.
In the case of a run-off triangle for paid losses

or claim counts, it is usually reasonable to as-
sume in addition that 'k > 1 holds for all k 2
f1, : : : ,ng.
The development patterns for factors and for

cumulative quotas can be converted into each
other:

² If ' is a development pattern for factors, then
a development pattern ° for cumulative quotas
is obtained by letting

°k :=
nY

l=k+1

1
'l
:

² If ° is a development pattern for cumulative
quotas, then a development pattern ' for fac-
tors is obtained by letting

'k :=
°k
°k¡1

:
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Furthermore, 'k > 1 holds for all k 2 f1, : : : ,ng
if, and only if, the condition °0 < °1 < ¢ ¢ ¢< °n is
fulfilled.
Combining the previous result and that of the

preceding subsection, it is evident that also the
development patterns for factors and for incre-
mental quotas can be converted into each other.

3.4. Incremental ratios

The classical development patterns considered
before are quite familiar and have been shown to
be equivalent.
An alternative development pattern can be dis-

tilled from the paper by Panning (2006) which
was written in response to the CAS 2006 Re-
serves Call Paper Program:
A vector ¯ = (¯0,¯1, : : : ,¯n) of parameters

(with ¯0 = 1) is said to be a development pattern
for incremental ratios if the identity

¯k =
E[Zi,k]
E[Zi,0]

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.
Thus, a development pattern for incremental

ratios exists if, and only if, for every develop-
ment year k 2 f0,1, : : : ,ng the individual incre-
mental ratios

¯i,k :=
E[Zi,k]
E[Zi,0]

are identical for all accident years.
In the case of a run-off triangle for paid losses

or claim counts it is usually reasonable to as-
sume in addition that ¯k > 0 holds for all k 2
f0,1, : : : ,ng.
The development patterns for incremental ra-

tios and for incremental quotas can be converted
into each other:

² If ¯ is a development pattern for incremental
ratios, then a development pattern # for incre-
mental quotas is obtained by letting

#k :=
¯kPn
l=0¯l

:

² If # is a development pattern for incremental
quotas, then a development pattern ¯ for in-
cremental ratios is obtained by letting

¯k :=
#k
#0
:

Moreover, the development patterns for incre-
mental ratios and for cumulative quotas can be
converted into each other as well:

² If ¯ is a development pattern for incremental
ratios, then a development pattern ° for cumu-
lative quotas is obtained by letting

°k :=
Pk
l=0¯lPn
l=0¯l

:

² If ° is a development pattern for cumulative
quotas, then a development pattern ¯ for in-
cremental ratios is obtained by letting

¯k :=

(1 if k = 0
°k ¡ °k¡1
°0

else
:

Furthermore, ¯k > 0 holds for all k 2 f0,1, : : : ,ng
if and only if #k > 0 holds for all k 2 f0,1, : : : ,ng,
and this is the case if and only if 0< °0 < °1 <
¢ ¢ ¢< °n.

3.5. Incremental loss ratios

The development pattern considered so far are
completely determined by expected incremental
or cumulative losses. However, if a vector ¼ =
(¼0,¼1, : : : ,¼n) of known volume measures (like
premiums or the number of contracts) is given,
then another development pattern can be defined
which also depends on the volume measure ¼.
A vector ³(¼) = (³0(¼),³1(¼), : : : ,³n(¼)) of pa-

rameters is said to be a development pattern for
incremental loss ratios if the identity

³k(¼) = E
·
Zi,k
¼i

¸
holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.
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Thus, a development pattern for incremental
loss ratios exists if, and only if, for every devel-
opment year k 2 f0,1, : : : ,ng the individual incre-
mental loss ratios

³i,k(¼) := E
·
Zi,k
¼i

¸
are identical for all accident years.
In the case of a run-off triangle for paid losses

or claim counts it is usually reasonable to as-
sume in addition that ³k(¼)> 0 holds for all k 2
f0,1, : : : ,ng.
If ³(¼) is a development pattern for incremen-

tal loss ratios, then

² a development pattern #(¼) for incremental
quotas is obtained by letting

#k(¼) :=
³k(¼)Pn
l=0 ³l(¼)

and
² a development pattern °(¼) for cumulative
quotas is obtained by letting

°k(¼) :=
Pk
l=0 ³l(¼)Pn
l=0 ³l(¼)

These definitions are entirely analogous to those
used in the case of a development pattern for
incremental ratios.

3.6. Remarks

In the case of a run-off triangle for paid losses
or claim counts, the intuitive interpretation of the
development patterns of incremental or cumula-
tive quotas would be their interpretation as incre-
mental or cumulative probabilities. This interpre-
tation is helpful, but it is not quite correct since
the parameters of these development patterns are
defined in terms of quotients of expectations in-
stead of expectations of quotients; as it is well-
known, these quantities are in general distinct.

One may thus argue that the definitions of de-

velopment patterns are inconvenient since they

do not exactly correspond to intuition. The de-

velopment patterns defined in terms of quotients
of expectations are nevertheless reasonable since
they are all equivalent in the sense that they can
be converted into each other (which would be im-
possible for certain development patterns defined
in terms of expectations of quotients). Due to this
equivalence, the development patterns presented
here provide a powerful and unifying concept
for the interpretation and comparison of several
methods of loss reserving.
Quite generally, alternative development pat-

terns can be derived from the classical ones by
interchanging the roles of incremental and cu-
mulative losses and/or the roles of the initial and
the ultimate development year. In this sense, the
development pattern for incremental ratios corre-
sponds to the development pattern for cumulative
quotas.

4. Estimation of development
patterns

For each of the methods of loss reserving to be
discussed in Section 5, the predictors of the ul-
timate losses can be justified by the assumption
that a development pattern exists. This is due to
the fact that, in either case, the predictors can be
expressed in terms of certain estimators of the
parameters of the development pattern for cumu-
lative quotas.
Quite generally, estimation of the development

pattern can be based on one or both of the fol-
lowing different sources of information:

² Internal information: This is any information
which is completely contained in the run-off
triangle of the portfolio under consideration.

² External information: This is any information
which is completely independent of the run-off
triangle of the portfolio under consideration.
External information could be obtained, e.g.,
from market statistics or from other portfolios
which are judged to be similar to the given
one; also, volume measures (like premiums or
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the number of contracts) for the given portfolio
present external information since they are not
contained in the run-off triangle.

Of course, these different sources of information
may also be combined, in which case estimation
is based on mixed information.
It is possible to develop a general theory on

the estimation of the parameters of a develop-
ment pattern, but this would exceed the scope of
the present paper. Instead, we shall confine our-
selves to the presentation of the three types of es-
timators which will be needed in Section 5. The
first two of these estimators are entirely based on
internal information while the third one is based
on mixed information. Nevertheless, the similar-
ity of these three types of estimators indicates
a general principle of estimation which can be
applied to any development pattern.
The estimators presented below are based on

the development patterns for factors, incremental
ratios, and incremental loss ratios, respectively.
Since each of these development patterns can be
converted into a development pattern for cumula-
tive quotas, as shown in Section 3, the same con-
version formulas will be used to convert these es-
timators into estimators of the parameters of the
corresponding development pattern for cumula-
tive quotas.

4.1. Estimation from empirical individual
factors

At the first glance, there is little hope to es-
timate the parameters of the development pat-
terns for incremental or cumulative quotas since
the only obvious estimators of #k and °k are the
empirical individual incremental quotas Z0,k=S0,n
and the empirical individual cumulative quotas
S0,k=S0,n, respectively. Fortunately, the situation
is quite different for the development pattern for
factors:
Assume that '= ('1, : : : ,'n) is a development

pattern for factors. Then, for every development

year k 2 f1, : : : ,ng, each of the empirical individ-
ual factors or link ratios

'̂i,k :=
Si,k
Si,k¡1

with i 2 f0,1, : : : ,n¡ kg is a reasonable estimator
of 'k, and this is also true for every weighted
mean

'̂k :=
n¡kX
j=0

Wj,k'̂j,k

with random variables (or constants) satisfyingPn¡k
j=0Wj,k = 1. The most prominent estimator of

this large family is the chain-ladder factor

'̂CLk :=

Pn¡k
j=0 Sj,kPn¡k
j=0 Sj,k¡1

=
n¡kX
j=0

Sj,k¡1Pn¡k
h=0 Sh,k¡1

'̂j,k,

which is used in the chain-ladder method. We

denote by

'̂CL := ('̂CL1 , : : : , '̂
CL
n )

the random vector consisting of all chain-ladder
factors.
Due to the correspondence between the devel-

opment patterns for factors and for cumulative
quotas, it is clear that in the same way estima-
tors of factors can be converted into estimators of

cumulative quotas. In particular, the chain-ladder
quotas

°̂CLk :=
nY

l=k+1

1
'̂CLl

serve as estimators of the cumulative quotas

°k :=
nY

l=k+1

1
'l
:

We denote by

°̂CL := (°̂CL0 , °̂CL1 , : : : , °̂CLn )

the random vector consisting of all chain-ladder
quotas.
We remark that the chain-ladder quotas are en-

tirely based on internal information.
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4.2. Estimation from empirical individual
incremental ratios

Assume that ¯ = (¯0,¯1, : : : ,¯n) is a develop-
ment pattern for incremental ratios. Then, for ev-
ery development year k 2 f0,1, : : : ,ng, each of the
empirical individual incremental ratios

ˆ̄
i,k :=

Zi,k
Zi,0

with i 2 f0,1, : : : ,n¡ kg is a reasonable estimator
of ¯k, and this is also true for every weighted
mean

ˆ̄
k :=

n¡kX
j=0

Wj,k
ˆ̄
j,k

with random variables (or constants) satisfyingPn¡k
j=0Wj,k = 1. An example of this large family

is the Panning ratio

ˆ̄ Panning
k :=

Pn¡k
j=0 Zj,kZj,0Pn¡k
j=0 Z

2
j,0

=
n¡kX
j=0

Z2j,0Pn¡k
h=0Z

2
h,0

ˆ̄
j,k

which is used in Panning’s method. We denote
by

ˆ̄ Panning := ( ˆ̄ Panning0 , ˆ̄ Panning1 , : : : , ˆ̄ Panningn )

the random vector consisting of all Panning ra-
tios.
Due to the correspondence between the devel-

opment patterns for incremental ratios and for
cumulative quotas, it is clear that in the same
way estimators of incremental ratios can be con-
verted into estimators of cumulative quotas. In
particular, the Panning quotas

°̂
Panning
k :=

Pk
l=0
ˆ̄ Panning
lPn

l=0
ˆ̄ Panning
l

serve as estimators of the cumulative quotas

°k :=
Pk
l=0¯lPn
l=0¯l

:

We denote by

°̂Panning := (°̂Panning0 , °̂Panning1 , : : : , °̂Panningn )

the random vector consisting of all Panning quo-
tas.

We remark that the Panning quotas are entirely

based on internal information.

4.3. Estimation from empirical individual
incremental loss ratios

Assume that ¼ = (¼0,¼1, : : : ,¼n) is a vector of

known volume measures and that ³(¼) = (³0(¼),

³1(¼), : : : ,³n(¼)) is a development pattern for

loss ratios. Then, for every development year

k 2 f0,1, : : : ,ng, each of the empirical individual
incremental loss ratios

³̂i,k(¼) :=
Zi,k
¼i

with i 2 f0,1, : : : ,n¡ kg is a reasonable estimator
of ³k(¼), and this is also true for every weighted

mean

³̂k(¼) :=
n¡kX
j=0

Wj,k³̂j,k(¼)

with random variables (or constants) satisfyingPn¡k
j=0Wj,k = 1. The most prominent estimator of

this large family is the additive loss ratio

³̂ADk (¼) :=

Pn¡k
j=0Zj,kPn¡k
j=0 ¼j

=
n¡kX
j=0

¼jPn¡k
h=0¼h

³̂j,k(¼),

which is used in the additive method. We denote

by

³̂AD(¼) := (³̂AD0 (¼), ³̂AD1 (¼), : : : , ³̂ADn (¼))

the random vector consisting of all additive loss

ratios.

In view of the transformation of a development

pattern for incremental loss ratios into a devel-

opment pattern for cumulative quotas, it is clear

that in the same way estimators of incremen-

tal loss ratios can be converted into estimators

of cumulative quotas. In particular, the additive

quotas

°̂ADk (¼) :=
Pk
l=0 ³̂

AD
l (¼)Pn

l=0 ³̂
AD
l (¼)
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serve as estimators of the cumulative quotas

°k(¼) :=
Pk
l=0 ³l(¼)Pn
l=0 ³l(¼)

:

We denote by

°̂AD(¼) := (°̂AD0 (¼), °̂AD1 (¼), : : : , °̂ADn (¼))

the random vector consisting of all additive quo-
tas.
We remark that the additive quotas are based

on mixed information, since they involve the in-
ternal information provided by the run-off trian-
gle and the external information provided by the
volume measure.

4.4. Remarks

The use of weighted means in estimating the
parameters of a development pattern can be jus-
tified in a linear model with uncorrelated depen-
dent variables and suitably chosen variances. For
example,

² the chain-ladder factors can be justified in the
chain-ladder model of Mack and Schnaus [see
Mack (1994), Schmidt and Schnaus (1996),
Radtke and Schmidt (2004), and Schmidt
(2006)],

² the Panning ratios can be justified in the model
of Panning (2006), and

² the additive loss ratios can be justified in
the linear model of Mack [see Mack (1991),
Radtke and Schmidt (2004), and Schmidt
(2006)].

Each of these models is a linear model with a
particular assumption on the variances and the
afore-mentioned estimators have the Gauss-
Markov property. If, however, in any of these
models the assumption on the variances would be
changed, then the Gauss-Markov estimators of
the parameters would be weighted means which
are distinct from the chain-ladder factors, the
Panning ratios, or the additive loss ratios, respec-
tively.

5. Prediction of ultimate losses
The present section provides a unifying pre-

sentation of the most important methods of loss
reserving. The starting point is an extension
of the Bornhuetter-Ferguson method which is
closely related to the notion of a development
pattern for cumulative quotas and turns out to be
a unifying principle under which various other
methods of loss reserving can be subsumed.

5.1. Extended Bornhuetter-Ferguson
method

The extended Bornhuetter-Ferguson method is
based on the assumption that there exist vectors
®= (®0,®1, : : : ,®n) and ° = (°0,°1, : : : ,°n) of pa-
rameters (with °n = 1) such that the identity

E[Si,k] = °k®i

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng. Then we have

E[Si,n] = ®i

and hence
°k =

E[Si,k]
E[Si,n]

,

which means that ° is a development pattern for
cumulative quotas.
The extended Bornhuetter-Ferguson method is

also based on the additional assumption that a
vector

°̂ = (°̂0, °̂1, : : : , °̂n)

of prior estimators of the cumulative quotas with
°̂n = 1 and a vector

®̂= (®̂0, ®̂1, : : : , ®̂n)

of prior estimators of the expected ultimate losses
are given.2 As already indicated in Section 4, the

2The term prior in connection with the estimators of the cumulative
quotas and the expected ultimate losses needs some explanation:
It is used here only to indicate that these estimators are needed
before the computation of the Bornhuetter-Ferguson predictors. Of
course, the estimators of the expected ultimate losses could also be
regarded as preliminary predictors of the ultimate losses, but this
point is minor, and there will be no update of the estimators of the
cumulative quotas.
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prior estimators of the cumulative quotas can be
obtained from internal, external, or mixed infor-
mation. This is, of course, also true for the prior
estimators of the expected ultimate losses.
The Bornhuetter-Ferguson predictors of the cu-

mulative losses Si,k with i+ k ¸ n are defined as
ŜBFi,k (°̂,®̂) := Si,n¡i+(°̂k ¡ °̂n¡i)®̂i:

The definition of the Bornhuetter-Ferguson pre-
dictors reminds us of the identity

E[Si,k] = E[Si,n¡i]+ (°k ¡ °n¡i)®i
which is a consequence of the model assumption.
We denote by

ŜBF(°̂,®̂) := (ŜBFi,k (°̂,®̂))i,k2f0,1,:::,ng, i+k¸n

the triangle of all Bornhuetter-Ferguson predic-
tors.
Taking the difference between the Bornhuetter-

Ferguson predictors and the current losses yields

ŜBFi,k (°̂,®̂)¡ Si,n¡i = (°̂k ¡ °̂n¡i)®̂i:
In the case k = n this yields

ŜBFi,n (°̂,®̂)¡ Si,n¡i = (1¡ °̂n¡i)®̂i,
which is a predictor of the reserve Si,n¡ Si,n¡i of
accident year i and has the shape of the reserve
predictors proposed by Bornhuetter and Fergu-
son (1972). However, in the original form of
the Bornhuetter-Ferguson method it is assumed
that the prior estimators of the expected ultimate
losses are based on premiums and expected loss
ratios while those of the development pattern are
obtained from the run-off triangle. Both assump-
tions are dropped in the extended Bornhuetter-
Ferguson method, and this is the key to arranging
various methods of loss reserving, which at the
first glance have little in common, under a com-
mon umbrella.

5.2. Iterated Bornhuetter-Ferguson
method

In the case where the current losses are judged
to be reliable, it may be desirable to modify

the Bornhuetter-Ferguson predictors in order to
strengthen the weight of the current losses and
to reduce that of the prior estimators of the ex-
pected ultimate losses. This goal can be achieved
by iteration.
For example, if on the right-hand side of the

formula defining the Bornhuetter-Ferguson pre-
dictors the prior estimators ®̂i are replaced by the
Bornhuetter-Ferguson predictors ŜBFi,n , then the re-
sulting predictors of the cumulative losses Si,k
with i+ k ¸ n are the Benktander-Hovinen predic-
tors3

ŜBHi,k (°̂,®̂) := Si,n¡i+(°̂k ¡ °̂n¡i)ŜBFi,n (°̂,®̂),
which, in the case °̂0 < °̂1 < ¢ ¢ ¢< °̂n = 1, increase
the weight of the current losses and reduce that
of the prior estimators of the expected ultimate
losses.
More generally, the iterated Bornhuetter-Fergu-

son predictors4 of order m 2 N0 of the cumulative
losses Si,k with i+ k ¸ n are defined by letting
Ŝ(m)i,k (°̂,®̂)

:=

(
Si,n¡i+(°̂k ¡ °̂n¡i)®̂i if m= 0

Si,n¡i+(°̂k ¡ °̂n¡i)Ŝ(m¡1)i,n (°̂,®̂) else
:

Then we have Ŝ(0)i,k (°̂,®̂) = ŜBFi,k (°̂,®̂) and

Ŝ(1)i,k (°̂,®̂) = Ŝ
BH
i,k (°̂,®̂). We denote by

Ŝ(m)(°̂,®̂) := (Ŝ(m)i,k (°̂,®̂))i,k2f0,1,:::,ng, i+k¸n

the triangle of all Bornhuetter-Ferguson predic-
tors of order m. Letting

®(m)i (°̂,®̂) :=

(
®̂i if m= 0

Ŝ(m¡1)i,n else

the iterated Bornhuetter-Ferguson predictors can
be written as

Ŝ(m)i,k (°̂,®̂) = Si,n¡i+(°̂k ¡ °̂n¡i)®̂(m)i (°̂,®̂)

3This interpretation of the method proposed by Benktander (1976),
which in fact is more general, follows Mack (2000). The Benk-
tander method was rediscovered by Hovinen (1981) and a related
paper is that of Neuhaus (1992).
4The iterated Bornhuetter-Ferguson method is due to Mack (2000).
With regard to terminology, it should be noted that in Mack (2000)
the loss-development predictors presented in Subsection 5.3 are
referred to as chain-ladder predictors.
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and with

®̂(m)(°̂,®̂)

:= (®̂(m)0 (°̂,®̂), ®̂(m)1 (°̂,®̂), : : : , ®̂(m)n (°̂,®̂))

we obtain

Ŝ(m)(°̂,®̂) = ŜBF(®̂(m)(°̂,®̂), °̂):

Therefore, the iterated Bornhuetter-Ferguson
method of order m with respect to °̂ and ®̂
is nothing else than the extended Bornhuetter-
Ferguson method with respect to °̂ and
®̂(m)(®̂, °̂).

5.3. Loss-development method

The loss-development method5 is based on
the assumption that there exists a vector ° =
(°0,°1, : : : ,°n) of parameters (with °n = 1) such
that the identity

°k =
E[Si,k]
E[Si,n]

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng. Then ° is a development pattern for cu-
mulative quotas.
The loss-development method is also based on

the additional assumption that a vector

°̂ = (°̂0, °̂1, : : : , °̂n)

of prior estimators of the cumulative quotas with
°̂n = 1 is given.
The loss-development predictors of the cumu-

lative losses Si,k with i+ k ¸ n are defined as

ŜLDi,k (°̂) := °̂k
Si,n¡i
°̂n¡i

:

The definition of the loss-development predictors
reminds of the identity

E[Si,k] = °k
E[Si,n¡i]
°n¡i

,

5The loss-development method provides a simple and useful exten-
sion of the chain-ladder method (see Subsection 5.4) and is some-
times referred to as the (generalized) chain-ladder method; see, e.g.,
Mack (2000). The loss-development method has been described in
Radtke and Schmidt (2004) but it is likely that there are earlier
sources in the literature.

which is a consequence of the model assumption.
We denote by

ŜLD(°̂) := (ŜLDi,k (°̂))i,k2f0,1,:::,ng, i+k¸n

the triangle of all loss-development predictors. It
is immediate from the definition that the loss-
development predictors satisfy

ŜLDi,k (°̂) = Si,n¡i+(°̂k ¡ °̂n¡i)ŜLDi,n (°̂):
Letting

®̂LDi (°̂) := ŜLDi,n (°̂)

the loss-development predictors can be written
as

ŜLDi,k (°̂) = Si,n¡i+(°̂k ¡ °̂n¡i)®̂LDi (°̂)

and with

®̂LD(°̂) := (®̂LD0 (°̂), ®̂LD1 (°̂), : : : , ®̂LDn (°̂))

we obtain

ŜLD(°̂) = ŜBF(°̂,®̂LD(°̂)):

Therefore, the loss-development method with re-
spect to °̂ is nothing else than the extended Born-
huetter-Ferguson method with respect to °̂ and
®̂LD(°̂).
Moreover, it has been shown by Mack (2000)

that the loss-development predictors are the lim-
its of the iterated Bornhuetter-Ferguson predic-
tors; see also Radtke and Schmidt (2004), or
Schmidt (2006).

5.4. Chain-ladder method

The chain-ladder method is based on the as-
sumption that there exists a vector'=('1, : : : ,'n)
of parameters such that the identity

'k =
E[Si,k]
E[Si,k¡1]

holds for all k 2 f1, : : : ,ng and for all i 2 f0,1,
: : : ,ng. Then ' is a development pattern for fac-
tors.
The chain-ladder predictors of the cumulative

losses Si,k with i+ k ¸ n are defined as

ŜCLi,k := Si,n¡i
kY

l=n¡i+1
'̂CLl ,

VOLUME 2/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 97



Variance Advancing the Science of Risk

where

'̂CLk :=

Pn¡k
j=0 Sj,kPn¡k
j=0 Sj,k¡1

is the chain-ladder factor introduced in Section 4.
The definition of the chain-ladder predictors re-
minds us of the identity

E[Si,k] = E[Si,n¡i]
kY

l=n¡i+1
'l,

which is a consequence of the model assumption.
We denote by

ŜCL := (ŜCLi,k )i,k2f0,1,:::,ng, i+k¸n

the triangle of all chain-ladder predictors. Since

°̂CLk =
nY

l=k+1

1
'̂CLl

the chain-ladder predictors can be written as

ŜCLi,k = °̂
CL
k

Si,n¡i
°̂CLn¡i

:

We thus obtain

ŜCL = ŜLD(°̂CL)

and hence, using the result of the previous sub-
section,

ŜCL = ŜBF(°̂CL,®̂LD(°̂CL)):

Because of these two identities, the chain-ladder
method coincides with the loss-development
method with respect to °̂CL and is nothing else
than the extended Bornhuetter-Ferguson method
with respect to °̂CL and ®̂LD(°̂CL).
We recall that the chain-ladder factors can be

written in the form

'̂CLk =
n¡kX
j=0

Sj,k¡1Pn¡k
h=0 Sh,k¡1

'̂j,k:

Therefore, the chain-ladder method can be modi-
fied by replacing the chain-ladder factors '̂CLk by
any other estimators of the form

'̂k =
n¡kX
j=0

Wj,k'̂j,k

with random variables (or constants) satisfyingPn¡k
j=0Wj,k = 1 for all k 2 f1, : : : ,ng. Every such

modification yields a new development pattern of

factors '̂ and hence a new development pattern

of cumulative quotas °̂ such that the above iden-

tities for the chain-ladder predictors remain valid

for the modified chain-ladder predictors with '̂

and °̂ in the place of '̂CL and °̂CL, respectively.

Every such modification of the chain-ladder

method is a special case of the loss-development

method.

5.5. Cape Cod method

The Cape Cod method is based on the assump-
tion that there exists

² a vector ° = (°0,°1, : : : ,°n) of parameters (with
°n = 1) such that the identity

°k =
E[Si,k]
E[Si,n]

holds for all k 2 f0,1, : : : ,ng and for all i 2
f0,1, : : : ,ng,

² a vector ¼ = (¼0,¼1, : : : ,¼n) of known volume
measures, and

² a parameter · such that the identity

·= E
·
Si,n
¼i

¸
holds for all i 2 f0,1, : : : ,ng.

Then ° is a development pattern for cumulative
quotas, the last assumption means that the indi-
vidual ultimate loss ratios

·i := E
·
Si,n
¼i

¸
are identical for all accident years, and the pa-
rameter · is said to be the ultimate loss ratio
(common to all accident years).
The Cape Cod method is also based on the

additional assumption that a vector

°̂ = (°̂0, °̂1, : : : , °̂n)
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of prior estimators of the cumulative quotas with
°̂n = 1 is given.
The Cape Cod predictors6 of the cumulative

losses Si,k with i+ k ¸ n are defined as

ŜCCi,k (¼, °̂) := Si,n¡i+(°̂k ¡ °̂n¡i)¼i·̂CC(¼, °̂)

where

·̂CC(¼, °̂) :=

Pn
j=0 Sj,n¡jPn
j=0 °̂n¡j¼j

is the Cape Cod loss ratio, which is an estimator
of the parameter ·. The definition of the Cape
Cod predictors reminds us of the identity

E[Si,k] = E[Si,n¡i] + (°k ¡ °n¡i)¼i·,

which is a consequence of the model assumption.
We denote by

ŜCC(¼, °̂) := (ŜCCi,k (¼, °̂))i,k2f0,1,:::,ng, i+k¸n

the triangle of all Cape Cod predictors.7 Letting

®̂CCi (¼, °̂) := ¼i·̂
CC(¼, °̂)

the Cape Cod predictors can be written as

ŜCCi,k (¼, °̂) = Si,n¡i+(°̂k ¡ °̂n¡i)®̂CCi (¼, °̂)

and with

®̂CC(¼, °̂) := (®̂CC0 (¼, °̂), ®̂
CC
1 (¼, °̂), : : : , ®̂

CC
n (¼, °̂))

we obtain

ŜCC(¼, °̂) = ŜBF(°̂,®̂CC(¼, °̂)):

Therefore, the Cape Cod method with respect
to ¼ and °̂ is nothing else than the extended
Bornhuetter-Ferguson method with respect to °̂
and ®̂CC(¼, °̂).

6An early source containing a description of the Cape Cod method
is the monograph by Straub (1988) who refers in turn to an un-
published paper by Bühlmann (1983). The Cape Cod method was
also mentioned by Stanard (1985) who refers to Stanard (1980)
and Bühlmann (1983).
7It is interesting to note that the Cape Cod predictors depend only
on the relative size of the volume measures of the different accident
years. In fact, for every c > 0, we have ·̂CC(c¼, °̂) = (1=c)·̂CC(¼, °̂),
and hence ŜCC(c¼, °̂) = ŜCC(¼, °̂).

We note that the Cape Cod loss ratio ·̂CC(¼, °̂)
can be written in the form

·̂CC(¼, °̂) =
nX
j=0

°̂n¡j¼jPn
h=0 °̂n¡h¼h

Sj,n¡j
°̂n¡j¼j

:

Therefore, the Cape Cod method can be modified
by replacing the Cape Cod loss ratio by any other
estimator of the form

·̂(¼, °̂) =
nX
j=0

Wj
Sj,n¡j
°̂n¡j¼j

with random variables (or constants) satisfyingPn
j=0Wj = 1. For every such modification, the

above identities for the Cape Cod predictors re-
main valid with ®̂i(¼, °̂) := ¼i·̂(¼, °̂) in the place
of ®̂CCi (¼, °̂) and with

®̂(¼, °̂) := (®̂0(¼, °̂), ®̂1(¼, °̂), : : : , ®̂n(¼, °̂))

in the place of ®̂CC(¼, °̂).

5.6. Additive method

The additive method,8 which is also called the
incremental loss ratio method, is based on the
assumption that there exists a vector ¼ = (¼0,¼1,
: : : ,¼n) of known volume measures and a vec-
tor ³(¼) = (³0(¼),³1(¼), : : : ,³n(¼)) of parameters
such that the identity

E[Zi,k] = ¼i³k(¼)

holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng. Then the vector

³(¼) := (³0(¼),³1(¼), : : : ,³n(¼))

is a development pattern for incremental loss ra-
tios and the vector

°(¼) := (°0(¼),°1(¼), : : : ,°n(¼))

with

°k(¼) =
Pk
l=0 ³l(¼)Pn
l=0 ³l(¼)

as a development pattern for cumulative quotas.

8The additive method was described by Mack (1997); see also
Radtke and Schmidt (2004) where it is pointed out that the pre-
dictors of the additive method can be obtained as Gauss-Markov
predictors in a suitable linear model.
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The additive predictors of the cumulative losses
Si,k with i+ k ¸ n are defined as

ŜADi,k (¼) := Si,n¡i+¼i
kX

l=n¡i+1
³̂ADl (¼)

where

³̂ADk (¼) :=

Pn¡k
j=0 Zj,kPn¡k
j=0 ¼j

is the additive loss ratio introduced in Section 4.
The definition of the additive predictors reminds
us of the identity

E[Si,k] = E[Si,n¡i]+¼i
kX

l=n¡i+1
³l(¼),

which is a consequence of the model assump-
tions. We denote by

ŜAD(¼) := (ŜADi,k (¼))i,k2f0,1,:::,ng, i+k¸n

the triangle of all additive predictors. Letting

°̂ADk (¼) :=
Pk
l=0 ³̂

AD
l (¼)Pn

l=0 ³̂
AD
l (¼)

®̂ADi (¼) := ¼i
nX
l=0

³̂ADl (¼)

the additive predictors of the non-observable cu-
mulative losses can be written as

ŜADi,k (¼) = Si,n¡i+(°̂
AD
k (¼)¡ °̂ADn¡i(¼))®̂ADi (¼)

and with

°̂AD(¼) := (°̂AD0 (¼), °̂AD1 (¼), : : : , °̂ADn (¼))

®̂AD(¼) := (®̂AD0 (¼), ®̂AD1 (¼), : : : , ®̂ADn (¼))

we obtain

ŜAD(¼) = ŜBF(°̂AD(¼),®̂AD(¼)):

Therefore, the additive method with respect to ¼
is nothing else than the extended Bornhuetter-
Ferguson method with respect to °̂AD(¼) and
®̂AD(¼).9

9It is interesting to note that, just like the Cape Cod predictors,
the additive predictors depend only the relative size of the volume
measures of the different accident years. In fact, for every c > 0,
we have °̂AD(c¼) = °̂AD(¼) and ®̂AD(c¼) = ®̂AD(¼), and hence
ŜAD(c¼) = ŜAD(¼).

Moreover, it will be shown in Subsection 7.1
that

®̂AD(¼) = ®̂CC(¼, °̂AD(¼)):

This yields

ŜAD(¼) = ŜBF(°̂AD(¼),®̂AD(¼))

= ŜBF(°̂AD(¼),®̂CC(¼, °̂AD(¼)))

= ŜCC(¼, °̂AD(¼)):

Therefore, the additive method with respect to ¼
also coincides with the Cape Cod method with
respect to ¼ and °̂AD(¼).
The additive method can be extended by com-

bining the prior estimator ®̂AD(¼) of the expected
ultimate losses with an arbitrary prior estimator
°̂ of the development pattern for cumulative quo-
tas, which results in the version

ŜBF(°̂,®̂AD(¼))

of the extended Bornhuetter-Ferguson method.

5.7. Mack’s method

In response to the CAS 2006 Reserves Call
Paper Program, Mack (2006) proposed another
method of estimating the parameters of the ex-
tended Bornhuetter-Ferguson method.
Mack’s method is based on the assumption of

the extended Bornhuetter-Ferguson method and
on the assumption that there exists a vector ¼ =
(¼0,¼1, : : : ,¼n) of known volume measures and a
vector ·= (·0,·1, : : : ,·n) of parameters such that
the identity

®i = ¼i·i

holds for all i 2 f0,1, : : : ,ng.
Ignoring the possible adjustments due to actu-

arial judgment that Mack (2006) mentions,
Mack’s predictors of the cumulative losses Si,k
with i+ k ¸ n are defined as

ŜMacki,k (¼)

:= Si,n¡i+(°̂
Mack
k (¼)¡ °̂Mackn¡i (¼))¼i·̂

Mack
i (¼)
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where

°̂Mackk (¼) :=
Pk
l=0 ³̂

Mack
l (¼)Pn

l=0 ³̂
Mack
l (¼)

·̂Macki (¼) := %̂Macki (¼)
nX
l=0

³̂Mackl (¼)

and

%̂Macki (¼) :=
Pn¡i
l=0Zi,lPn¡i

l=0¼i³̂
AD
l (¼)

³̂Mackk (¼) :=

Pn¡k
j=0Zj,kPn¡k

j=0 ¼j%̂
Mack
j (¼)

:

We denote by

ŜMack(¼) := (ŜMacki,k (¼))i,k2f0,1,:::,ng, i+k¸n

the triangle of all predictors of Mack’s method.10

Letting
®̂Macki (¼) := ¼i·̂

Mack
i (¼),

the predictors of Mack’s method can be written
as

ŜMacki,k (¼) = Si,n¡i+(°̂
Mack
k (¼)¡ °̂Mackn¡i (¼))®̂

Mack
i (¼)

and with

°̂Mack(¼) := (°̂Mack0 (¼), °̂Mack1 (¼), : : : , °̂Mackn (¼))

®̂Mack(¼) := (®̂Mack0 (¼), ®̂Mack1 (¼), : : : , ®̂Mackn (¼))

we obtain

ŜMack(¼) = ŜBF(°̂Mack(¼),®̂Mack(¼)):

Therefore, Mack’s method with respect to ¼

is nothing else than the extended Bornhuetter-
Ferguson method with respect to °̂Mack(¼) and
®̂Mack(¼).
Moreover, it will be shown in Subsection 7.2

that

°̂Mack(¼) = °̂AD(®̂LD(°̂AD(¼)))

®̂Mack(¼) = ®̂AD(®̂LD(°̂AD(¼))):

Thus, letting

¼̂Mack(¼) := ®̂LD(°̂AD(¼))

10As it is the case for the additive method, it is easily seen that also
the predictors of Mack’s method depend only on the relative size
of the volume measures of the different accident years.

we obtain

°̂Mack(¼) = °̂AD(¼̂Mack(¼))

®̂Mack(¼) = ®̂AD(¼̂Mack(¼))

and hence

ŜMack(¼) = ŜBF(°̂Mack(¼),®̂Mack(¼))

= ŜBF(°̂AD(¼̂Mack(¼)),®̂AD(¼̂Mack(¼)))

= ŜAD(¼̂Mack(¼)):

This means that Mack’s method consists of two
steps:

² First, the initial volume measure ¼ is adjusted
via the loss-development method with respect
to the additive development pattern °̂AD(¼).

² Second, the ultimate losses are predicted by
the additive method with respect to the ad-
justed volume measure ¼̂Mack(¼).11

As a consequence of the last result of the previ-
ous subsection, we also obtain

ŜMack(¼) = ŜCC(¼̂Mack(¼), °̂AD(¼̂Mack(¼)))

which means that Mack’s method with respect to
¼ also coincides with the Cape Cod method with
respect to ¼̂Mack(¼) and °̂AD(¼̂Mack(¼)).

5.8. Panning’s method

In response to the CAS 2006 Reserves Call
Paper Program, Panning (2006) proposed a quite
original method of loss reserving which can also
be viewed as another method of parameter es-
timation for the extended Bornhuetter-Ferguson
method.
Panning’s method is based on the assumption

that there exists a vector ¯ = (¯0,¯1, : : : ,¯n) of
parameters such that the identity

¯k =
E[Zi,k]
E[Zi,0]

11Since the adjusted volume measures are loss-development pre-
dictors of the ultimate losses, their order of magnitude usually dif-
fers from that of the initial volume measures. At first glance, this
may cause some irritation, but it is resolved immediately because,
as pointed out before, the prior estimators of the additive method
depend only on the relative size of the volume measures.
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holds for all k 2 f0,1, : : : ,ng and for all i 2 f0,1,
: : : ,ng.12 Then the vector

¯ := (¯0,¯1, : : : ,¯n)

is a development pattern for incremental ratios
and the vector

° := (°0,°1, : : : ,°n)

with

°k :=
Pk
l=0¯lPn
l=0¯l

as a development pattern for cumulative quotas.
Ignoring the adjustment of the Panning ratios

of the last development years used by Panning
(2006), Panning’s predictors of the cumulative
losses Si,k with i+ k ¸ n are defined as

Ŝ
Panning
i,k := Si,n¡i+Zi,0

kX
l=n¡i+1

ˆ̄ Panning
l

where

ˆ̄ Panning
k :=

Pn¡k
j=0Zj,kZj,0Pn¡k
j=0 Z

2
j,0

is the Panning ratio introduced in Section 4. The
definition of Panning’s predictors reminds us of
the identity

E[Si,k] = E[Si,n¡i]+E[Zi,0]
kX

l=n¡i+1
¯l

which is a consequence of the model assumption.
We denote by

ŜPanning := (ŜPanningi,k )i,k2f0,1,:::,ng, i+k¸n

the triangle of all predictors of Panning’s method.
Letting

°̂
Panning
k :=

Pk
l=0
ˆ̄ Panning
lPn

l=0
ˆ̄ Panning
l

®̂
Panning
i := Zi,0

nX
l=0

ˆ̄ Panning
l :

12Actually, Panning’s assumptions are stronger and are those of the
homogeneous and homoscedastic conditional linear model for the
incremental losses of every single development year with respect
to the losses of the initial development year.

Panning’s predictors can be written as

Ŝ
Panning
i,k = Si,n¡i+(°̂

Panning
k ¡ °̂Panningn¡i )®Panningi

and with

°̂Panning := (°̂Panning0 , °̂Panning1 , : : : , °̂Panningn )

®̂Panning := (®̂Panning0 , ®̂Panning1 , : : : , ®̂Panningn )

we obtain

ŜPanning = ŜBF(°̂Panning,®̂Panning):

Therefore, Panning’s method is noting else than
the extended Bornhuetter-Ferguson method with
respect to °̂Panning and ®̂Panning.
It is remarkable that Panning’s method pro-

vides a serious and singular alternative to the
chain-ladder method since both methods are en-
tirely based on the (internal) information con-
tained in the run-off triangle.
Panning’s method can be extended in two

ways:
An obvious extension of Panning’s method

consists of the combination of the prior estimator
®̂Panning of the expected ultimate losses with an
arbitrary prior estimator °̂ of the development
pattern for cumulative quotas, which results in
the version

ŜBF(°̂,®̂Panning)

of the extended Bornhuetter-Ferguson method.
This extension of Panning’s method corresponds
to the natural extension of the additive method.
Another and slightly less obvious extension of

Panning’s method is based on the following ob-
servation: Since

ˆ̄ Panning
0 = 1

we have

°̂
Panning
0 =

1Pn
l=0
ˆ̄ Panning
l

and hence

®̂
Panning
i =

Zi,0

°̂
Panning
0

:
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Table 1. Comparison of some versions of the extended Bornhuetter-Ferguson method resulting from the use of different prior
estimators of the cumulative quotas and the expected ultimate losses

Prior Estimators of Cumulative Quotas

°̂external °̂AD(¼) °̂CL °̂Panning
Prior Estimators of
Expected Ultimate Losses

®̂external Bornhuetter-Ferguson Method (external)
®̂CC(¼, °̂) Cape Cod Method (external) Additive Method
®̂AD(¼) Additive Method
®̂LD(°̂) Loss-Development Method (external) Chain-Ladder Method
®̂Panning¤(°̂) Panning’s Method
®̂Panning Panning’s Method

Thus, for any prior estimator °̂ of the develop-
ment pattern for cumulative quotas, we may de-
fine

®̂
Panning¤
i (°̂) :=

Zi,0
°̂0

(such that ®̂Panning¤i (°̂Panning) = ®̂Panningi ). Letting

®̂Panning¤(°̂)

:= (®̂Panning¤0 (°̂), ®̂Panning¤1 (°̂), : : : , ®̂Panning¤n (°̂))

we obtain the version

ŜBF(°̂,®̂Panning¤(°̂))

of the extended Bornhuetter-Ferguson method.
This extension of Panning’s method can be un-
derstood as a modification of the loss-develop-
ment method which is obtained from the latter by
replacing the ratios Si,n¡i=°̂n¡i of calendar year
n by the ratios Zi,0=°̂0 = Si,0=°̂0 of development
year 0.

5.9. Remarks

Table 1 compares the different methods of loss
reserving considered in this section with regard
to the choices of the prior estimator °̂ of the cu-
mulative quotas and the prior estimator ®̂ of the
expected ultimate losses, respectively. We denote
by °̂external and ®̂external any prior estimators of
° and ® which are based on external informa-
tion and hence yield the Bornhuetter-Ferguson
predictors based on external information. Table
1 is to be understood in the sense that, when-
ever the prior estimators of the expected ultimate

losses depend on prior estimators of the cumula-
tive quotas, the prior estimators of the cumulative
quotas are also used for the prior estimators of
the expected ultimate losses. For example,

² the external loss-development method is the
extended Bornhuetter-Ferguson method with
respect to the prior estimators °̂external and
®̂LD(°̂external) whereas

² the chain-ladder method is the extended Born-
huetter-Ferguson method with respect to the
prior estimators °̂CL and ®̂LD(°̂CL).

The double occurrence of the additive method
and of Panning’s method is due to the iden-
tities ®̂AD(¼) = ®̂CC(¼, °̂AD(¼)) and ®̂Panning =
®̂Panning¤(°̂Panning).
Table 1 provides a concise and systematic com-

parison of methods of loss reserving which, to
a different degree, are widely used in actuarial
practice. Of course, the other combinations of
prior estimators of the cumulative quotas and of
the expected ultimate losses, which are all dis-
tinct and apparently have not been given a name
in the literature, could be used as well, and even
other choices of prior estimators could be con-
sidered. In particular, new prior estimators can
be generated by taking convex combinations of
the prior estimators given in the table.
In Table 1 we have excluded the prior esti-

mators of the method of Mack which, due
to the identities °̂Mack(¼) = °̂AD(¼̂Mack(¼)) and
®̂Mack(¼) = ®̂AD(¼̂Mack(¼)), are special cases of
the prior estimators of the additive method with
respect to the transformation ¼̂Mack(¼) of the vol-
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Table 2. Realization of a run-off triangle for cumulative losses, completed by volume measures and realizations of the external
prior estimators of the cumulative quotas and the expected ultimate losses

Development Year k

Accident Year i 0 1 2 3 4 5 ¼i ®̂external
i

0 1001 1855 2423 2988 3335 3483 4000 3520
1 1113 2103 2774 3422 3844 4500 3980
2 1265 2433 3233 3977 5300 4620
3 1490 2873 3880 6000 5660
4 1725 4261 6900 6210
5 1889 8200 6330

°̂external
k

0.2800 0.5300 0.7100 0.8600 0.9500 1.0000

ume measure ¼.13 Nevertheless, Mack’s method
will be included in the numerical example pre-
sented in Section 6.
In conclusion, the discussion in the present

section and, in particular, the above table shows
that the extended Bornhuetter-Ferguson method
provides a general method under which several
methods of loss reserving can be subsumed. The
focus on

² prior estimators of the cumulative quotas and
² prior estimators of the expected ultimate losses
provides a large variation of loss reserving meth-
ods.
We are thus led to the notion of the Born-

huetter-Ferguson principle. The Bornhuetter-
Ferguson principle consists of

² the simultaneous use of various versions of the
extended Bornhuetter-Ferguson method,

² the comparison of the resulting predictors, and
² the final selection of best predictors of the ul-
timate losses.

The Bornhuetter-Ferguson principle should be
regarded as a method of loss reserving in its own
right which, in every single application, can be
specified according to the available sources of
information and their degree of credibility and
which, in turn, can also be used to check the

13It is interesting to note that in Mack’s method different develop-
ment patterns are used for the adjustment of the volume measure
and the final application of the additive method with respect to the
adjusted volume measure.

Table 3. Realizations of the prior estimators of the
cumulative quotas

Development Year k

0 1 2 3 4 5
Prior
Quotas

°̂external
k

0.2800 0.5300 0.7100 0.8600 0.9500 1.0000
°̂AD
k (¼) 0.2626 0.5430 0.7091 0.8623 0.9600 1.0000
°̂CL
k

0.2546 0.5222 0.6939 0.8549 0.9575 1.0000
°̂Panning
k

0.2620 0.5482 0.7137 0.8657 0.9613 1.0000
°̂Mack
k

(¼) 0.2567 0.5259 0.6970 0.8567 0.9581 1.0000

credibility of these different sources of informa-
tion.

6. Numerical example

In the present section we present a numeri-
cal example to illustrate the possible use of the
Bornhuetter-Ferguson principle. Of course, any
observations and comments we shall make re-
fer only to the numerical example under con-
sideration, and different data would lead to dif-
ferent observations and conclusions. It is also
evident that in actuarial practice a much more
refined analysis would be required which, how-
ever, could still be performed in the same spirit.
We hope to show that the Bornhuetter-Fergu-

son principle can be used to select an appropriate
version of the extended Bornhuetter-Ferguson
method for a given run-off triangle. By contrast,
since the selection process is driven by the data
and actuarial judgment, it should be clear that the
Bornhuetter-Ferguson principle cannot be used
to identify a single version which would be su-
perior for every run-off triangle.
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Table 4. Realizations of the prior estimators of the expected ultimate losses

Accident Year i

0 1 2 3 4 5
Prior Expected Prior
Ultimate Losses Quotas

V11 ®̂external
i °̂external 3520 3980 4620 5660 6210 6330

V12 ®̂external
i °̂AD(¼) 3520 3980 4620 5660 6210 6330

V13 ®̂external
i °̂CL 3520 3980 4620 5660 6210 6330

V14 ®̂external
i °̂Panning 3520 3980 4620 5660 6210 6330

V21 ®̂CC
i (¼, °̂external) °̂external 3703 4166 4906 5554 6387 7591

V22 ®̂CC
i (¼, °̂AD(¼)) °̂AD(¼) 3703 4166 4907 5555 6388 7591

V23 ®̂CC
i (¼, °̂CL) °̂CL 3760 4230 4982 5641 6487 7709

V24 ®̂CC
i (¼, °̂Panning) °̂Panning 3690 4151 4889 5535 6365 7564

V31 ®̂AD
i (¼) °̂external 3703 4166 4907 5555 6388 7591

V32 ®̂AD
i (¼) °̂AD(¼) 3703 4166 4907 5555 6388 7591

V33 ®̂AD
i (¼) °̂CL 3703 4166 4907 5555 6388 7591

V34 ®̂AD
i (¼) °̂Panning 3703 4166 4907 5555 6388 7591

V41 ®̂LD
i (°̂external) °̂external 3483 4046 4624 5465 8040 6746

V42 ®̂LD
i (°̂AD(¼)) °̂AD(¼) 3483 4004 4612 5472 7848 7195

V43 ®̂LD
i (°̂CL) °̂CL 3483 4015 4652 5592 8160 7420

V44 ®̂LD
i (°̂Panning) °̂Panning 3483 3999 4594 5436 7772 7209

V51 ®̂Panning¤
i (°̂external) °̂external 3575 3975 4518 5321 6161 6746

V52 ®̂Panning¤
i (°̂AD(¼)) °̂AD(¼) 3813 4239 4818 5675 6570 7195

V53 ®̂Panning¤
i (°̂CL) °̂CL 3932 4372 4969 5853 6776 7420

V54 ®̂Panning¤
i (°̂Panning) °̂Panning 3820 4247 4828 5686 6583 7209

V61 ®̂Panning
i °̂external 3820 4247 4828 5686 6583 7209

V62 ®̂Panning
i °̂AD(¼) 3820 4247 4828 5686 6583 7209

V63 ®̂Panning
i °̂CL 3820 4247 4828 5686 6583 7209

V64 ®̂Panning
i °̂Panning 3820 4247 4828 5686 6583 7209

V75 ®̂Mack
i (¼) °̂Mack(¼) 3529 4056 4672 5543 7951 7289

6.1. Data

For n= 5, Table 2 contains

² a realization of a run-off triangle of cumulative
losses Si,k,

² volume measures ¼i of the accident years,
² realizations of the prior estimators ®̂externali the
expected ultimate losses, and

² realizations of the prior estimators °̂externalk of
the cumulative quotas,

where all ®̂externali and °̂externalk are based on ex-
ternal information. The comparison of the cu-
mulative losses of developments years 0 and 1
indicates that the realization of S4,1 could be an
outlier, maybe due to a single large claim.

Table 3 displays the realizations of the prior
estimators of the cumulative quotas which are
used in the different versions of the extended
Bornhuetter-Ferguson method. It appears that the
development patterns °̂CL and °̂Mack(¼) are quite
similar.
Table 4 displays the realizations of the prior

estimators of the expected ultimate losses which
are used in the different versions of the extended
Bornhuetter-Ferguson method. In Table 4, the
additive method and Panning’s method occur
twice since V22 = V32 and V54 = V64. Due to
the outlier in accident year 4 and development
year 1, the prior estimators of the expected ul-
timate losses of accident year 4 obtained by the
loss development method are extremely high.
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Figure 1. Plot of the first-year reserves and the total reserves.

Table 5. Realizations of the first-year reserves and the total
reserves

Prior Expected Prior First-Year Total
Ultimate Losses Quotas Reserve Reserve

V11 ®̂external °̂external 4164 9964
V12 ®̂external °̂AD(¼) 4284 9948
V13 ®̂external °̂CL 4315 10258
V14 ®̂external °̂Panning 4295 9872

V21 ®̂CC(¼, °̂external) °̂external 4530 10973
V22 ®̂CC(¼, °̂AD(¼)) °̂AD(¼) 4687 10976
V23 ®̂CC(¼, °̂CL) °̂CL 4776 11475
V24 ®̂CC(¼, °̂Panning) °̂Panning 4687 10859

V31 ®̂AD(¼) °̂external 4531 10974
V32 ®̂AD(¼) °̂AD(¼) 4687 10976
V33 ®̂AD(¼) °̂CL 4703 11300
V34 ®̂AD(¼) °̂Panning 4704 10898

V41 ®̂LD(°̂external) °̂external 4572 11071
V42 ®̂LD(°̂AD(¼)) °̂AD(¼) 4770 11279
V43 ®̂LD(°̂CL) °̂CL 4935 11987
V44 ®̂LD(°̂Panning) °̂Panning 4769 11159

V51 ®̂Panning¤(°̂external) °̂external 4199 10127
V52 ®̂Panning¤(°̂AD(¼)) °̂AD(¼) 4619 10792
V53 ®̂Panning¤(°̂CL) °̂CL 4787 11467
V54 ®̂Panning¤(°̂Panning) °̂Panning 4643 10735

V61 ®̂Panning °̂external 4487 10822
V62 ®̂Panning °̂AD(¼) 4628 10813
V63 ®̂Panning °̂CL 4651 11141
V64 ®̂Panning °̂Panning 4643 10735

V75 ®̂Mack(¼) °̂Mack(¼) 4851 11706

Minimum 4164 9872
Maximum 4935 11987

6.2. Reserves

There are various kinds of reserves which are
of interest. The most important ones are perhaps

² the reserves for the different accident years,
² the reserves for the different calendar years,
² the total reserve.
Here we confine ourselves to the first-year
reserve (which is the reserve for the first non-
observable calendar year) and the total re-
serve.
Table 5 displays the realizations of the first-

year reserves and of the total reserves which are
obtained from the data by applying different
versions of the extended Bornhuetter-Ferguson
method. In Table 5, the additive method and Pan-
ning’s method occur twice since V22 = V32 and
V54 = V64.
A subset of the pairs of reserves14 presented

in Table 5 is plotted in Figure 1. Figure 1 shows
that there is a strong positive correlation be-
tween the first-year reserves and the total re-
serves. Moreover, we make the following obser-

14In order not to overcharge the plot, the pairs of reserves which are
based on the prior estimators ®̂AD(¼) or ®̂Panning¤(°̂) are omitted.
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Figure 2. Plot of the reliable first-year reserves and total reserves.

vations:

² Both reserves are low for the versions V11,
V12, V13, V14 using the external prior esti-
mators of the expected ultimate losses.

² Both reserves are relatively low for the ver-
sions V11, V21, V41, V61 using the external
prior estimators of the quotas.

² Both reserves are relatively high for the ver-
sions V13, V23, V43, V63 using the chain-
ladder quotas; this is due to the outlier in ac-
cident year 4 and development year 1.

² Both reserves are high for the versions
V43 (chain-ladder method) and V75 (Mack’s
method).15

Moreover, there is a high volatility between the
pairs of reserves produced by the different
versions of the extended Bornhuetter-Ferguson
method.

6.3. Reduction to reliable reserves

When combined with actuarial judgement, the
previous observations may be used to select pre-

15In the example, the reserves produced by the chain-ladder method
and by Mack’s method are similar; this corresponds to the similarity
of the development patterns °̂CL and °̂Mack given in Table 3 and to
a remark of Mack (2006) indicating that a certain iteration of his
method would approach the chain-ladder method.

dictors providing reliable reserves:

² If the data of the run-off triangle are judged
to be highly reliable, then the low predictors
which are based of the external prior estima-
tors of the expected ultimate losses and/or the
quotas could be discarded.

² Since the predictors produced by the chain-
ladder method and by Mack’s method are ex-
tremely high, they could be discarded as well.

² The remaining predictors provide ranges for
the first-year reserve and for the total reserve
which are not too large.

The remaining pairs of reserves could be judged
as being reliable and are plotted in Figure 2. Fig-
ure 2 shows that the reliable pairs of reserves
yield a rather small range for the first-year re-
serves (about 3% of the maximal value) and a
slightly larger range for the total reserves (about
6% of the maximal value).

6.4. Selection of best reserves

Once the reliable reserves are determined, the
final problem is to select predictors which can
be regarded as best predictors of the ultimate
losses. For example, if particularly prudent re-
serves are required, then one might select the pre-
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Figure 3. Plot of the selected first-year reserve and total reserve.

dictors of version V23 (Cape Cod method with
chain-ladder quotas) plotted in Figure 3. Of
course, actuarial judgement could also lead to
the selection of another version of the extended
Bornhuetter-Ferguson method among those
which produce reliable reserves.

6.5. Ranges

The selection of a particular version of the
extended Bornhuetter-Ferguson method provides
predictors which can be regarded as best predic-
tors of the ultimate losses. However, the rules of
accounting tend to require not only best predic-
tors but also ranges reflecting the uncertainty of
the best predictors.
The Bornhuetter-Ferguson principle also pro-

vides an approximate solution to this require-
ment: since the different versions of the extended
Bornhuetter-Ferguson method generate a variety
of reserves, they can be used to determine reli-
able ranges for the ultimate losses. These ranges
are, of course, non-probabilistic ones; instead,
they reflect the uncertainty caused by the differ-
ent sources of information used in the different
versions of the extended Bornhuetter-Ferguson
method.

In our opinion, the ranges provided by the
Bornhuetter-Ferguson principle could be more
realistic than those obtained from additional and
more or less artificial probabilistic assumptions
like, e.g., the normal assumption for incremental
losses.

6.6. Analysis of the run-off triangle

Beyond the selection of best predictors and
ranges, the Bornhuetter-Ferguson principle may
also be used to analyze the run-off triangle and
hence the portfolio under consideration. We only
mention two rather obvious aspects of such an
analysis:

² In the case where the predictors based on (ex-
ternal) prior estimators obtained from a mar-
ket portfolio differ significantly from the other
predictors, the structure of the portfolio under
consideration is likely to differ from the mar-
ket portfolio.

² In the case where the predictors based on vol-
ume measures differ significantly from the
other predictors, there might be something
wrong with the volume measures; in particu-
lar, if the volume measures are premiums, then
the difference between the predictors could in-
dicate inappropriate pricing.
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6.7. Refined analysis
The plot presented in Figure 1 is just one

of various possibilities in analyzing the effects
of the different versions of the extended Born-
huetter-Ferguson method. Other two-dimen-
sional plots could be designed for representing
certain pairs of predictors produced by the differ-
ent versions of the extended Bornhuetter-Fergu-
son method and could be used for selecting best
predictors and ranges or for analyzing the run-off
triangle.

7. Proofs
The present section provides proofs of two

non-obvious results mentioned in Subsections
5.6 and 5.7, respectively.

7.1. Additive method and Cape Cod
method

The following result implies that the additive
method with respect to the volume measure ¼ is
identical to the Cape Cod method with respect to
¼ and the development pattern °̂AD(¼):

LEMMA The prior estimators of the additive
method satisfy

®̂AD(¼) = ®̂CC(¼, °̂AD(¼)):

PROOF We haveÃ
nX
l=0

³̂ADl (¼)

!0@ nX
j=0

¼j°̂
AD
n¡j(¼)

1A
=

nX
j=0

¼j

n¡jX
l=0

³̂ADl (¼)

=
nX
l=0

³̂ADl (¼)
n¡lX
j=0

¼j

=
nX
l=0

n¡lX
j=0

Zj,l

=
nX
j=0

n¡jX
l=0

Zj,l

=
nX
j=0

Sj,n¡j :

This yields

®̂ADi (¼) = ¼i
nX
l=0

³̂ADl (¼)

= ¼i

Pn
j=0 Sj,n¡jPn

j=0¼j°̂
AD
n¡j(¼)

= ¼i·̂
CC(¼, °̂AD(¼))

= ®̂CCi (¼, °̂AD(¼))

as was to be shown.

7.2. Mack’s method and additive
method

The following result implies that Mack’s
method with respect to the volume measure
¼ is identical to the additive method with
respect to the (adjusted) volume measure
®̂LD(°AD(¼)):

LEMMA The prior estimators of Mack’s method
satisfy

°̂Mack(¼) = °̂AD(®̂LD(°AD(¼))

and

®̂Mack(¼) = ®̂AD(®̂LD(°AD(¼))

PROOF We have

¼i%̂
Mack
i (¼) = ¼i

Pn¡i
l=0Zi,lPn¡i

l=0¼i³̂
AD
l (¼)

=
Pn¡i
l=0Zi,lPn¡i

l=0 ³̂
AD
l (¼)

=
Si,n¡i
°̂ADn¡i(¼)

1Pn
l=0 ³̂

AD
l (¼)

= ŜLDi,n (°̂
AD(¼))

1Pn
l=0 ³̂

AD
l (¼)

= ®̂LDi (°̂AD(¼))
1Pn

l=0 ³̂
AD
l (¼)
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and hence

³̂Mackk (¼) =

Pn¡k
j=0 Zj,kPn¡k

j=0 ¼j%̂
Mack
j (¼)

=

Pn¡k
j=0 Zj,kPn¡k

j=0 ®̂
LD
j (°̂AD(¼))

nX
l=0

³̂ADl (¼)

= ³̂ADk (®̂LD(°̂AD(¼)))
nX
l=0

³̂ADl (¼):

This yields

°̂Mackk (¼) =
Pk
l=0 ³̂

Mack
l (¼)Pn

l=0 ³̂
Mack
l (¼)

=
Pk
l=0 ³̂

AD
l (®̂LD(°̂AD(¼)))Pn

l=0 ³̂
AD
l (®̂LD(°̂AD(¼)))

= °̂ADk (®̂LD(°̂AD(¼)))

and

®̂Macki (¼) = ¼i·̂
Mack
i (¼)

= ¼i%̂i(¼)
nX
l=0

³̂Mackl (¼)

= ®̂LDi (°̂AD(¼))
nX
l=0

³̂ADk (®̂LD(°̂AD(¼)))

= ®̂ADi (®̂LD(°̂AD(¼)))

as was to be shown.
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