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Abstract

This note addresses some results of Hess (2000) on the decomposition of a
random sample size by using the concept of the multivariate probability gen-
erating function.

1 Introduction

Using the concept of the multivariate probability function we prove a nice formula
for the vector of thinned random sample sizes. This leads to new proofs of some of
the results presented in Hess (2000).

We use the following vector notation: Let d ∈ N and denote by ei the ith unit
vector in Rd. Define 1 :=

∑d
i=1 ei. For x = (x1 . . . xd)

′ ∈ Rd, n = (n1 . . . nd)
′ ∈ Nd

0

and n ∈ N0 such that n ≥ 1′n we define (using the definition 00 := 1)

xn :=
d∏
i=1

xni
i

n! :=
d∏
i=1

ni!(
n

n

)
:=

n!

n! · (n− 1′n)!

Throughout this paper, let (Ω,F ,P) be a probability space.

2 Probability Generating Function

In this section we consider the multivariate extension of the probability generating
function; see also Zocher (2005).
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Let N : Ω→ Nd
0 be a random vector. The function mN : [0, 1]d → R with

mN (t) = E
[
tN
]

is called the probability generating function of N . In the case d = 1 this definition
coincides with that in the univariate case.

2.1 Lemma. The probability generating function mN has the following properties:
(a) mN is increasing with respect to the coordinatewise order relation and

0 ≤ mN (t) ≤ mN (1) = 1

holds for all t ∈ [0, 1]d.
(b) mN is continuous.
(c) mN is infinitely often differentiable on [0, 1)d.
(d) The identity

P [N = n] =
1

n!
· ∂nmN

∂tn1
1 . . . ∂tnd

d

(0)

holds for all n ∈ Nd
0 and n := 1′n.

In particular, the distribution of N is uniquely defined by its probability generating
function.

The previous lemma was proved by Zocher (2005) using the representation of the
probability generating function as a power series in d variables.

2.2 Lemma. For all i ∈ {1, . . . , d} the probability generating function of the
coordinate Ni fulfills

mNi
(t) = mN (1− ei + tei)

The assertion follows directly from the definition.

2.3 Lemma. The random vector N has independent coordinates if and only if

mN (t) =
d∏
i=1

mNi
(ti)

holds for all t ∈ [0, 1]d.

Proof. If the coordinates are independent, then measurable functions of the
coordinates are independent as well and the product formula follows. Conversely, if
the product formula holds, then Lemma 2.1 yields for all n ∈ Nd

P [N = n] =
1

n!

∂nmN

∂tn1
1 . . . ∂tnd

d

(0)

=
d∏
i=1

1

ni!

dnimNi

dtni
(0)

=
d∏
i=1

P [Ni = ni]
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and hence the coordinates of N are independent. 2

2.4 Examples.
(a) Multinomial distribution: The random vector N has the multinomial dis-

tribution Mult(n,η) with n ∈ N and η ∈ (0, 1)d such that 1′η ≤ 1 if

P [N = n] =

(
n

n

)
ηn (1− 1′η)

n−1′n

holds for all n ∈ Nd
0 such that 1′n ≤ n. In this case the probability generating

function of N satisfies

mN (t) = (t′η + (1− 1′η))
n

= (1− 1′η + t′η)
n

Since

mNi
(t) = mN (1− (1− t)ei)

= (1− ηi + tiηi)
n

the one–dimensional marginal distributions of Mult(n,η) are the binomial dis-
tributions Bin(n, ηi).

(b) Multivariate Poisson distribution: The random vector N has the multi-
variate Poisson distribution MPoi(α) with α ∈ (0,∞)d if

P [N = n] =
αn

n!
e−1′α

holds for all n ∈ Nd
0. This means that N has independent coordinates which

are Poisson distributed. The probability generating function satisfies

mN (t) =
d∏
i=1

mNi
(ti)

=
d∏
i=1

e−αi(1−ti)

= e−α
′(1−t)

(c) Negativemultinomial distribution: The random vector N has the nega-
tivemultinomial distribution NMult(β,η) with β ∈ (0,∞) and η ∈ (0, 1)d

such that 1′η < 1 if

P [N = n] =
Γ(β + 1′n)

Γ(β)n!
(1− 1′η)β ηn
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holds for all n ∈ Nd
0. In this case the probability generating function satisfies

mN (t) =

(
1− 1′η

1− t′η

)β
Since

mNi
(t) = mN (1− (1− t)ei)

=

(
1− 1′η

1− 1′η + ηi − tηi

)β

=

(
1− ηi/(1− 1′η + ηi)

1− tiηi/(1− 1′η + ηi)

)β

the one–dimensional marginal distributions of NMult(n,η) are the negative-
binomial distributions NBin(β, ηi/(1− 1′η + ηi)).

Since we will consider conditional distributions it is necessary to define conditional
probability generating functions. Let Θ : Ω → R be a random variable and let
K : P(Nd

0) × Ω → [0, 1] be a Θ–Markov kernel. For each ω ∈ Ω, K(., ω) is a
probability measure on P(Nd

0) having a probability generating function mK(., ω).
This defines a function mK : [0, 1]d × Ω → R which is called the Markov kernel
generating function of K.

For the random vector N : Ω→ Nd
0 there exists a Θ–conditional distribution PN |Θ

of N . The Markov kernel generating function of PN |Θ is called a Θ–conditional
probability generating function of N and will be denoted by mN |Θ. As usual for
conditional expectations we will drop the argument ω ∈ Ω.

2.5 Lemma. The conditional probability generating function mN |Θ satisfies

mN |Θ(t) = E
(
tN
∣∣∣Θ)

and

mN (t) = E
[
mN |Θ(t)

]

2.6 Example. Let N : Ω → Nd
0 be a random vector and let N : Ω → N be

random variable such that PN |N = Mult(N,η) for some η ∈ (0, 1)d with 1′η ≤ 1.
Then we have

mN |N(t) = (1− 1′η + t′η)
N

and

mN (t) = E
[
(1− 1′η + t′η)

N
]
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3 Random Samples and their Decomposition

In this section we prove a formula on the probability generating function of the
vector of thinned random sample sizes. This formula leads to new proofs of results
of Hess (2000).

Let (M,M) be a measurable space. Given a random variable N : Ω → N0 and a
sequence {Yj}j∈N of random variables Yj : Ω→M , the pair〈

N, {Yj}j∈N
〉

is called a random sample if the sequence {Yj}j∈N is i.i.d. and independent of N . In
this case N , is called the random sample size and Yj is called a sample variable.

Let {C1, . . . , Cd} be a measurable partition of M such that P [Y1 ∈ Ci] > 0 holds
for all i ∈ {1, . . . , d}. Furthermore define ηi := P [Y1 ∈ Ci] for all i ∈ {1, . . . , d} and
η := (η1 . . . ηd)

′.

For each i ∈ {1, . . . , d}, the thinned random sample size of group i is defined as

Ni :=
N∑
j=1

χ{Yj∈Ci}

and N := (N1, . . . , Nd)
′ is called vector of the thinned random sample sizes.

The next theorem gives a nice formula for the probability generating function of the
vector of the thinned random sample sizes:

3.1 Theorem. It holds

mN |N(t) = (t′η)
N

mN (t) = mN (t′η)

mNi
(t) = mN(1− ηi + tηi)

for all t ∈ [0, 1]d, t ∈ [0, 1] and i ∈ {1, . . . , d}.

In particular, the conditional distribution of N given N is the multinomial distri-
bution M(N,η).

Proof. Since the random sample size and the sample variables are independent,
we get

mN |N(t) = E

(
d∏
i=1

tNi
i

∣∣∣∣∣N
)

= E

(
d∏
i=1

t

∑N

j=1
χ{Yj∈Ci}

i

∣∣∣∣∣N
)
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=
∞∑
n=0

E

[
d∏
i=1

t

∑n

j=1
χ{Yj∈Ci}

i · χ{N=n}

]
·
(
P [N = n]

)−1
· χ{N=n}

=
∞∑
n=0

E

 d∏
i=1

n∏
j=1

t
χ{Yj∈Ci}
i

 · χ{N=n}

=
∞∑
n=0

E

 n∏
j=1

d∏
i=1

t
χ{Yj∈Ci}
i

 · χ{N=n}

=
∞∑
n=0

n∏
j=1

E

[
d∏
i=1

t
χ{Yj∈Ci}
i

]
· χ{N=n}

Because of

t
χ{Yj∈Ci}(ω)

i =

{
ti if Yj(ω) ∈ Ci
1 if Yj(ω) /∈ Ci

and since {C1, . . . , Cd} is a partition of M , the previous identity yields

mN |N(t) =
∞∑
n=0

n∏
j=1

E

[
d∑
i=1

tiχ{Yj∈Ci}

]
· χ{N=n}

=
∞∑
n=0

n∏
j=1

d∑
i=1

tiP [Yj ∈ Ci] · χ{N=n}

=
∞∑
n=0

n∏
j=1

d∑
i=1

ti ηi · χ{N=n}

=
∞∑
n=0

(
d∑

h=1

ti ηi

)n
· χ{N=n}

= (t′η)
N

This proves the first equation. Using this equation we get from Lemma 2.5

mN (t) = E
[
mN |N(t)

]
= E

[
(t′η)

N
]

= mN (t′η)

Lemma 2.2 yields

mNi
(t) = mN (1− ei + tei)

= mN

(
(1− ei + tei)

′ η
)

= mN(1− ηi + tηi)

Since 1′η = 1, the final assertion follows from Example 2.6. 2

Theorem 3.1 can be used to prove the following corollary via probability generating
functions, see Example 2.4:
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3.2 Corollary.
(a) If N has the binomial distribution Bin(n, ϑ) with n ∈ N and ϑ ∈ (0, 1), then

N has the multinomial distribution Mult(n, ϑη) and each Ni has the binomial
distribution Bin(n, ϑηi).

(b) If N has the Poisson distribution Poi(α) with α ∈ (0,∞), then N has the
multivariate Poisson distribution MPoi(αη) and each Ni has the Poisson dis-
tribution Poi(αηi). In this case, N has independent coordinates.

(c) If N has the negativebinomial distribution NBin(β, ϑ) with β ∈ (0,∞) and
ϑ ∈ (0, 1), then N has the negativemultinomial distribution NMult(β, ϑη) and
each Ni has the negativebinomial distribution NBin(β, ϑηi/(1− ϑ+ ϑηi)).

Next we want to show that the Poisson case is the only case in which the coordinates
are independent. A proof of this result was given by Hess and Schmidt (2002), but
here we want to give an analytic one.

3.3 Theorem. The thinned random sample sizes are independent if and only if
the original sample size has a Poisson distribution.

Proof. In Corollary 3.2 we have established that the Poisson distribution of the
original sample size implies independence of the thinned random sample sizes. Now
let the thinned random sample sizes be independent. Using 1′η = 1, Theorem 3.1,
and Lemma 2.3, we get

mN

(
1−

d∑
i=1

(ηi − tiηi)
)

= mN(t′η)

= mN (t)

=
d∏
i=1

mNi
(ti)

=
d∏
i=1

mN(1− ηi + tiηi)

=
d∏
i=1

mN(1− (ηi − tiηi))

for all t = (t1, . . . , td)
′ ∈ [0, 1]d. Lemma 2.1 yields that mN is continuous, increasing

and fulfills mN(1) = 1. Therefore mN is an increasing solution of the functional
equation

f

(
1−

d∑
i=1

ui

)
=

d∏
i=1

f(1− ui)

for all u1, . . . , ud ∈ [0, 1] fulfilling
∑d
i=1 ui ≤ 1 in the class of all continuous functions

f : [0, 1]→ R fulfilling the initial condition f(1) = 1. Define ϕ : [0, 1]→ [0, 1] with
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ϕ(u) = 1− u. Then ϕ is a bijection. This leads to the functional equation

(f ◦ ϕ)

(
d∑
i=1

ui

)
=

d∏
i=1

(f ◦ ϕ)(ui)

for all u1, . . . , ud ∈ [0, 1] fulfilling
∑d
i=1 ui ≤ 1 in the class of all continuous functions

f : [0, 1]→ R fulfilling the initial condition f(1) = 1, and hence (f ◦ϕ)(0) = 1. Since
this characterized the exponential function we get (f ◦ ϕ)(t) = e−αt for some α ∈ R
and therefore f(t) = e−α(1−t). As mentioned before, mN is increasing. Therefore
wet get α ∈ (0,∞). This is the probability generating function of the Poisson
distribution Poi(α). 2

We complete this note with a result on mixed Poisson distributions.

3.4 Theorem. If N has the mixed Poisson distribution with parameter Θ, then N
has the mixed multivariate Poisson distribution with parameter Θη.

Proof. Let n ∈ Nd
0. Using Theorem 3.1 we get

P [N = n] = P

(
N = n

∣∣∣∣∣N =
d∑
i=1

ni

)
·P

[
N =

d∑
i=1

ni

]

=

(∑d
i=1 ni

)
!∏d

i=1 ni!
·
d∏
i=1

ηni
i ·

∫
Ω

e−Θ Θ
∑d

i=1
ni(∑d

i=1 ni
)
!
dP

=
∫

Ω

d∏
i=1

e−Θηi
(Θηi)

ni

ni!
dP

as was to be shown. 2

For related results on the decomposition of sample variables see Hess (2000) who gen-
eralized results by Franke and Macht (1995) and Hess, Schmidt and Macht (1995).
For applications to counting processes see Schmidt (1996) and Hess (2003).
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