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Poisson Approximation
for Point Processes

Egbert Dettweiler

Abstract

Let (Tk)k≥1 be a point process on R+ and N = (Nt)t≥0 its associ-
ated counting process. If N is integrable and adapted to a right con-
tinuous filtration (Ft)t≥0, then a non-negative, (Ft)-adapted cadlag-
process λ = (λt)t≥0 is called the (Ft)-intensity of N , if (Nt−

∫ t
0 λs ds)t≥0

is an (Ft)-martingale. The intensity determines essentially the stochas-
tic development of N .

We prove the following main result: Let (N (n))n≥1 be a sequence
of counting processes with (F (n)

t )-intensities λ(n) = (λ(n)
t )t≥0. Sup-

pose that (N (n))n≥1 is uniformly non-explosive and that the sequence
(λ(n))n≥1 converges in probability uniformly on bounded intervals to-
wards a deterministic intensity λ = (λt)t≥0. Let N = (Nt)t≥0 be an
inhomogeneous Poisson process with intensity λ, and denote for ev-
ery T > 0 by B1(D([0, T ])) the family of all measurable functions
F : D([0, T ]) → R bounded by 1. Then

(∗) lim
n→∞

sup
F∈B1(D([0,T ]))

∣∣EF
(
(N (n)

t )t≤T

)
−EF

(
(Nt)t≤T

)∣∣ = 0 .

This result can be generalized to the case of marked point pro-
cesses ((Tk, Xk))k≥1, with marks Xk in a polish space (E, E). The
marked point process is described equivalently by a counting measure
N = ((Nt(B))t≥0)B∈E , and the notion of an intensity is replaced by an
intensity measure λ = ((λt(B))t≥0)B∈E . Suppose that now (N (n))n≥1

is a sequence of counting measures with an associated sequence of
(F (n)

t )-intensity measures (λ(n))n≥1. If ((λt(B))t≥0)B∈E is a determin-
istic intensity measure, then the condition

lim
n→∞

sup
t≤T

sup
B∈E

|λ(n)
t (B)− λt(B)| = 0

in probability for all T > 0 implies a convergence result corresponding
to (∗) for the sequence (N (n))n≥1.
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1 Introduction

A point process on the real line is defined as an increasing sequence (Tn)n≥1

of R+-valued random variables on a probability space (Ω,F ,P) with the
additional property that

Tn < Tn+1 , if Tn <∞ .

It is convenient to define T0 ≡ 0.

The counting process N = (Nt)t≥0 associated to (Tn)n≥1 is given by

Nt :=
∑
n≥1

1{Tn≤t} ,

In this paper we will only consider point processes with an intensity:
Suppose that F = (Ft)t≥0 is a filtration on (Ω,F ,P) for which N = (Nt)t≥0

is adapted, and that λ = (λt)t≥0 is a F-adapted R+-valued cadlag-process
such that for all t ≥ 0∫ t

0

λr dr <∞ P-a.s.. (1)

Then we say that N = (Nt)t≥0 (or (Tn)n≥1) has the F-intensity λ, if the
process

(
Nt∧Tm −

∫ t∧Tm

0

λr dr
)

t≥0

is an F-martingale for every m ≥ 1.

If it is known that Tn ↑ ∞ P-a.s. (i.e. if (Tn)n≥1 is non-explosive), then
we could say that N = (Nt)t≥0 has the F-intensity λ, if

(
Nt −

∫ t

0

λr dr
)

t≥0

is a local F-martingale (with (Tn)n≥1 as localizing sequence). If we know that
either (Nt)t≥0 or (

∫ t

0
λr dr)t≥0 is integrable, then (Nt −

∫ t

0
λr dr)t≥0 is even a

martingale.

A point process (Tn)n≥1 is called finite, if P{Tn = ∞} = 0 for every
n ≥ 1.
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The distribution P(Tn)n≥1
of (Tn)n≥1 is a probability measure on the space

S∞ :=
{

(tk)k≥0 ∈ R
Z+

+

∣∣∣ (i) 0 = t0 ≤ t1 ≤ t2 ≤ · · · ,

(ii) tk <∞ ⇒ tk < tk+1 ,

(iii) tk = ∞ ⇒ tk+1 = ∞
}

provided with the σ-algebra

G := σ({τn |n ≥ 1}) ,

where the τn : S∞ → R+ are given by

τn((tk)k≥0) := tn .

We call (τn)n≥1 the canonical point process on S∞. The associated canonical
counting process (νt)t≥0 on S∞ then is defined by

νt :=
∑
n≥1

1{τn≤t} .

We will make the following convention: If (tk)k≥0 ∈ S∞ has the property
that tn+1 = ∞ for some n ≥ 0, then we also write (tk)k≤n instead of (tk)k≥0.

If we denote by Φ : Ω → S∞ the map defined by

Φ(ω) := (Tn(ω))n≥0 ,

then clearly Φ(P) = P(Tn)n≥1
.

For every t ≥ 0 we set

Gt := σ({νs | s ≤ t}) .

The filtration G = (Gt)t≥0 is called the canonical filtration on S∞. If FN =
(FN

t )t≥0 denotes the canonical filtration of the counting process (Nt)t≥0 on
Ω, then obviously

FN
t = Φ−1(Gt) (2)

for every t ≥ 0.

For any filtration F = (Ft)t≥0 the F-predictable σ-algebra P(F) on R+×Ω
is the σ-algebra generated by the sets ]s, t]×F , where 0 ≤ s < t and F ∈ Fs.
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We will say that a process X = (Xt)t≥0 on Ω is F-predictable, if X - viewed
as a map X : R+ × Ω → R - is P(F)-measurable.

Now suppose that (Nt)t≥0 has the F-intensity (λt)t≥0. Then the measure
λt dt⊗ dP is absolutely continuous relative to dt⊗ dP on the measurable space
(R+ × Ω,P(FN)). Hence there exists a P(FN)-measurable Radon-Nikodym
density π(λ) = (π(λ)t)t≥0. This density is known to have the following two
properties:

Proposition 1.1. If the counting process N = (Nt)t≥0 is integrable and
has the F-intensity λ, then N has the FN -intensity π(λ) and there is a G-
intensity λ = (λt)t≥0 (which is even G-predictable) such that π(λ)t = λt ◦ Φ
for every t ≥ 0.

Proof: We have to prove that for all 0 ≤ s < t

E
{ ∫ t

s

λr dr −
∫ t

s

π(λ)r dr
∣∣FN

s

}
= 0 .

But this follows, since by definition ]s, t] × A ∈ P(FN) for every A ∈ FN
s ,

and hence∫
A

( ∫ t

s

λr dr
)
dP =

∫
]s,t]×A

λr dr ⊗ dP

=

∫
]s,t]×A

π(λ)r dr ⊗ dP =

∫
A

( ∫ t

s

π(λ)r dr
)
dP .

If Φ̃ : R+ × Ω → R+ × S∞ denotes the map given by

Φ̃(r, ω) = (r,Φ(ω)) ,

then it follows from (2) that

P(FN) = Φ̃−1(P(G)) , (3)

and this implies (cf. [1]) that for every P(FN)-measurable function F there
exists a P(G)-measurable function G such that F = G ◦ Φ̃. The second
assertion of the proposition is just a special case of this result. 2

The FN -intensity π(λ) = (π(λ)t)t≥0 will be called the predictable pro-
jection of λ on Ω, and the intensity λ = (λt)t≥0 is called the predictable
projection of λ on S∞.
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The predictable projection λ on S∞ completely determines the distribu-
tion Φ(P) of (Tn)n≥1. If e.g. (Tn)n≥1 is finite and F : Rn

+ → R+ measurable
and bounded, then

EF (T1, · · · , Tn) (4)

=

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tn−1

{
F (t1, · · · , tn)

n∏
k=1

(
λtk((ti)i≤k−1)e

−
∫ tk

tk−1
λr((ti)i≤k−1) dr

)}
dtn · · · dt1 .

2 Poisson Approximation

Suppose that on (Ω,F ,P) we have a sequence of finite point processes (T
(n)
k )k≥1,

and that the associated counting processes N (n) = (N
(n)
t )t≥0 are all inte-

grable. Let further F(n) = (F (n)
t )t≥0 be a sequence of filtrations on Ω such

that every process N (n) is F(n)-adapted, and suppose in addition that every
N (n) has the F(n)-intensity λ(n) = (λ

(n)
t )t≥0.

We will say that the sequence ((T
(n)
k )k≥1)n≥1 (resp. the sequence (N (n))n≥1)

is uniformly finite, if

lim
t→∞

sup
n≥1

P{T (n)
m > t} = 0 (5)

for every m ≥ 1, and uniformly non-explosive, if

lim
m→∞

sup
n≥1

P{T (n)
m ≤ t} = 0 (6)

for every t ≥ 0.

Now assume that λ = (λt)t≥0 is a deterministic, non-negative, right con-
tinuous and locally bounded process (i.e. λ is just a function from R+ into
R+), such that λ has the additional property

inf
t≥0

λt ≥ c (7)

for a certain constant c > 0.

We may and will assume that there is a point process (Tk)k≥1, whose
counting process N = (Nt)t≥0 has the FN -intensity λ. N is just an inhomo-
geneous Poisson process, and for our purposes we may and will assume that
N and

∨
n≥1F

(n)
∞ are independent.
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For any measurable space (T, T ) we denote by B1(T ) the set of all mea-
surable functions F : T → R which are bounded by 1.

Now we can formulate the first approximation result:

Theorem 2.1. Suppose that for every T > 0

sup
t≤T

|λ(n)
t − λt| → 0 in probability . (8)

Then for every m ≥ 1

lim
n→∞

sup
F∈B1(Rm

+ )

∣∣EF (T
(n)
1 , · · · , T (n)

m )− EF (T1, · · · , Tm)
∣∣ = 0 . (9)

For the proof of this theorem we will essentially need the following lemma,
which is perhaps of some interest in itself.

Lemma 2.2. Suppose that (T
(1)
k )k≥1 and (T

(2)
k )k≥1 are two point processes

with associated counting processes N (1) and N (2). We assume
(i) that F(1) is a right continuous filtration, for which N (1) is adapted and
has the F(1)-intensity λ(1),
(ii) that N (2) has the intensity λ(2) relative to the canonical filtration FN(2)

of N (2), and
(iii) that F (1)

∞ and N (2) are independent.
Let S be a given F(1)-stopping time and define for every t ≥ 0

Ñt := N
(1)
t∧S + (N

(2)
t∨S −N

(2)
S ) ,

F̃t := F (1)
t∧S ∨ σ

(
{N (2)

s∨S −N
(2)
S | s ≤ t}

)
, and (10)

λ̃t := λ
(1)
t 1{t<S} + λ

(2)
t 1{S≤t} .

Then Ñ = (Ñt)t≥0 is a counting process with the intensity λ̃ = (λ̃t)t≥0 relative
to the filtration F̃ = (F̃t)t≥0.

Proof: We have to prove that for every 0 ≤ s < t

E{Ñt − Ñs | F̃s} = E
{ ∫ t

s

λ̃r dr
∣∣ F̃s

}
. (11)

We set

Ds :=
{
{N (2)

u1∨S −N
(2)
S ∈ C1, · · · , N (2)

um∨S −N
(2)
S ∈ Cm}

∣∣
m ∈ N, ui ≤ s, Ci ∈ B(R+)

}
,
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and

Es := Fs∧S ∩ Ds .

Then Es is a ∩-stable generator of F̃s, and hence it is sufficient to prove∫
A∩B

(Ñt − Ñs) dP =

∫
A∩B

( ∫ t

s

λ̃r dr
)
dP (12)

for all A ∈ F (1)
s∧S and all B ∈ Ds.

We start with the left hand side of (12):∫
A∩B

(Ñt − Ñs) dP (13)

=

∫
A∩B

(N
(1)
t∧S −N

(1)
s∧S) dP +

∫
A∩B

(N
(2)
t∨S −N

(2)
s∨S) dP .

For the first term on the right hand side we obtain∫
A∩B

(N
(1)
t∧S −N

(1)
s∧S) dP (14)

=

∫
1A∩{S>s}1B∩{T>s}(N

(1)
t∧S −N

(1)
s∧S) dP

=

∫
1A∩{S>s}1B∩{T>s}

( ∫ t∧S

s∧S

λ(1)
r dr

)
dP

=

∫
1A∩B

( ∫ t∧S

s∧S

λ(1)
r dr

)
dP ,

since A∩{S > s} ∈ F (1)
s and since B∩{S > s} is either equal to Ω or empty.

For the second term on the right hand side of (13) we first get∫
A∩B

(N
(2)
t∨S −N

(2)
s∨S) dP

=

∫
1A1B1{s≤S<t}(N

(2)
t −N

(2)
S ) dP (15)

+

∫
1A1B1{S<s}(N

(2)
t −N (2)

s ) dP . (16)

First we consider (15). We set for n ≥ 1

S(n) :=
∑
k≥1

k

2n
1{ k−1

2n ≤S< k
2n }
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Then ∫
1A1B1{s≤S<t}(N

(2)
t −N

(2)

S(n)) dP (17)

=
∑
k≥1

∫
1A1B1{s≤S<t}1{ k−1

2n ≤S< k
2n }(N

(2)
t −N

(2)
k
2n

) dP

=
∑
k≥1

∫
1A∩{s≤S<t}∩{ k−1

2n ≤S< k
2n }1B∩{s≤S}(N

(2)
t −N

(2)
k
2n

) dP

=
∑
k≥1

∫
1A∩{s≤S<t}∩{ k−1

2n ≤S< k
2n }1B∩{s≤S}

( ∫ t

k
2n

λ(2)
r dr

)
dP

=

∫
1A1B1{s≤S<t}

( ∫ t

S(n)

λ(2)
r dr

)
dP ,

since by assumption A ∩ {s ≤ S < t} ∩ {k−1
2n ≤ S < k

2n} and N (2) are
independent and B ∩ {s ≤ S} is either empty or equal to Ω. For n→∞ we
obtain from (17)∫

1A1B1{s≤S<t}(N
(2)
t −N (2)

S ) dP =

∫
1A1B1{s≤S<t}

( ∫ t

S

λ(2)
r dr

)
dP (18)

Now we consider the term (16), and suppose that B is of the form

B = {N (2)
u1∨S −N

(2)
S ∈ C1, · · · , N (2)

um∨S −N
(2)
S ∈ Cm}

with ui ≤ s, and where we suppose in addition that the Borel sets Ci are all
open. Then we get∫

1A1B1{S<s}(N
(2)
t −N (2)

s ) dP (19)

= lim
n→∞

∫
1A∩{S<s}(
1{N(2)

u1∨S(n)
−N

(2)

S(n)
∈C1,··· ,N(2)

um∨S(n)
−N

(2)

S(n)
∈Cm}

(N
(2)
t −N (2)

s )
)
dP

= lim
n→∞

∑
k≥1

∫
1A∩{S<s}∩{ k−1

2n ≤S< k
2n }(

1{N(2)

u1∨
k
2n
−N

(2)
k
2n
∈C1,··· ,N(2)

um∨ k
2n
−N

(2)
k
2n
∈Cm}

(N
(2)
t −N (2)

s )
)
dP
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= lim
n→∞

∑
k≥1

∫
1A∩{S<s}∩{ k−1

2n ≤S< k
2n }(

1{N(2)

u1∨
k
2n
−N

(2)
k
2n
∈C1,··· ,N(2)

um∨ k
2n
−N

(2)
k
2n
∈Cm}

( ∫ t

s

λ(2)
r dr

))
dP

=

∫
1A1B1{S<s}

( ∫ t

s

λ(2)
r dr

)
dP

again by the independence of F (1)
∞ and N (2).

(14), (17) and (19) together prove that∫
A∩B

(Ñt − Ñs) dP

=

∫
1A∩B

{
1{S≥s}

( ∫ t∧S

s∧S

λ(1)
r dr

)
+ 1{s≤S<t}

( ∫ t

S

λ(2)
r dr

)
+ 1{S<s}

( ∫ t

s

λ(2)
r dr

)}
dP

=

∫
1A∩B

{
1{S≥s}

( ∫ t

s

λ(1)
r 1{S>r} dr

)
+ 1{s≤S<t}

( ∫ t

s

λ(2)
r 1{S≤r} dr

)
+ 1{S<s}

( ∫ t

s

λ(2)
r 1{S≤r} dr

)}
dP

=

∫
1A∩B

( ∫ t

s

{
λ(1)

r 1{S>r} + λ(2)
r 1{S≤r}

}
dr

)
dP

=

∫
1A∩B

( ∫ t

s

λ̃r dr
)
dP .

Thus we have proved (12). 2

The counting process Ñ of lemma 2.2 will be called the composition of
N (1) and N (2) at S, and the intensity λ̃ is called the composition of λ(1) and
λ(2) at S.

Proof of theorem 2.1:
(1) For every n ≥ 1 and every ε > 0 we define

Sn,ε := inf{t > 0 : |λ(n)
t − λt| ≥ ε} . (20)

Every Sn,ε is an F(n)-stopping time. The assumption (8) implies that for
every ε > 0, δ > 0 and T > 0 there exists an n(ε, δ, T ) ≥ 1 such that

P{Sn,ε ≤ T} < δ for all n ≥ n(ε, δ, T ) . (21)

9



[Suppose that there exist ε > 0, δ > 0 and T > 0, such that for every m ≥ 1
there is an n ≥ 1, for which

P{Sn,ε ≤ T} ≥ δ .

Since

{sup
t≤T

|λ(n)
t − λt| ≥ ε} ⊆ {Sn,ε ≤ T} ,

we get

P{sup
t≤T

|λ(n)
t − λt| ≥ ε} ≥ δ

in contradiction to assumption (8).]

Hence, if (εj)j≥1 is a fixed null-sequence of positive numbers, there exists
a strictly increasing sequence (nj)j≥1 in N, such that

P{Sn,εj ≤ j} < εj for every n ≥ nj . (22)

We set

Sn := Sn,εj for nj ≤ n < nj+1 (23)

Then

P{Sn ≤ j} < εj for nj ≤ n < nj+1 (24)

and the sequence (Sn)n≥1 has especially the property that

lim
n→∞

P{Sn ≤ T} = 0 for every T > 0 . (25)

Now let (T̃ n
k )k≥1 for every n ≥ 1 denote the composition of (T

(n)
k )k≥1

and (Tk)k≥1 at Sn, and let λ̃n denote the corresponding composition of the
intensities λ(n) and λ at Sn. Then the sequence (λ̃n)n≥1 has the property
that

sup
t≥0

|λ̃n
t − λt| ≤ εj for nj ≤ n < nj+1 . (26)

This property is inherited by the sequence (π(λ̃n))n≥1 of the predictable pro-
jections: The inequality (26) means that

λt − εj ≤ λ̃n
t (ω) ≤ λt + εj

10



for all (t, ω) ∈ R+ × Ω, and hence the uniqueness of the Radon-Nikodym
derivative shows that also

λ− εj ≤ π(λ̃n) ≤ λ+ εj (dt⊗ dP)− a.s..

Thus we may assume that

sup
t≥0

|π(λ̃n)t − λt| ≤ εj (27)

holds on Ω. The same assertion then holds for the associated sequence
(λ

n
)n≥1 of predictable projections on S∞. Thus we have for all n ≥ 1

sup
t≥0

|λn

t − λt| ≤ εj for nj ≤ n < nj+1 . (28)

(2) Now we will prove that the sequence ((T̃ n
k )k≥1)n≥1 (and as a consequence

also the sequence ((T
(n)
k )k≥1)n≥1) is uniformly finite.

Proof: We choose j ≥ 1 such that εj < c
2
, where c > 0 is the positive

constant, which minorizes λ. Then we have for n ≥ nj

P{T̃ n
m > t ≥ T̃ n

m−1}

=

∫ t

0

· · ·
∫ t

tm−2

∫ ∞

t

{ m∏
k=1

(
λ

n

tk
((ti)i≤k−1)

· e−
∫ tk

tk−1
λ

n
r ((ti)i≤k−1) dr

)}
dtm · · · dt1

=

∫ t

0

· · ·
∫ t

tm−2

{ m−1∏
k=1

(
λ

n

tk
((ti)i≤k−1)

· e−
∫ tk

tk−1
λ

n
r ((ti)i≤k−1) dr

)
e
−

∫ t
tm−1

λ
n
r ((ti)i≤m−1) dr

}
dtm−1 · · · dt1

≤ e2εjt

∫ t

0

· · ·
∫ t

tm−2

{ m−1∏
k=1

(
(λtk + εj)

· e−
∫ tk

tk−1
(λr+εj) dr

)
e
−

∫ t
tm−1

(λr+εj) dr
}
dtm−1 · · · dt1

= e2εjte−
∫ t
0 (λr+εj) dr

( ∫ t

0
(λr + εj) dr

)m−1

(m− 1)!

= e−
∫ t
0 (λr−εj) dr

( ∫ t

0
(λr + εj) dr

)m−1

(m− 1)!

≤ e−
c
2
t

( ∫ t

0
(λr + εj) dr

)m−1

(m− 1)!
,
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where we used that for n ≥ nj

λt − εj ≤ λ
n

t ≤ λt + εj

for all t ≥ 0. It follows that

P{T̃ n
m > t} =

m∑
k=1

P{T̃ n
k > t ≥ T̃ n

k−1}

≤ e−
c
2
t

m−1∑
k=0

( ∫ t

0
(λr + εj) dr

)k

k!
,

and hence we have proved

lim
t→∞

sup
n≥nj

P{T̃ n
m > t} = 0 . (29)

Since the point processes (T̃ 1
k )k≥1, · · · , (T̃

nj−1
k )k≥1 are all finite, it follows that

the sequence ((T̃ n
k )k≥1)n≥1 is uniformly finite.

We will prove now that also the original sequence ((T
(n)
k )k≥1)n≥1 is uni-

formly finite. Since

{T (n)
m < t} ∩ {Sn ≥ t} = {T̃ n

m < t} ∩ {Sn ≥ t} ,

we have∣∣P{T (n)
m < t} −P{T̃ n

m < t}
∣∣

≤ P({T (n)
m < t} ∩ {Sn < t}) + P({T̃ n

m < t} ∩ {Sn < t}) ≤ 2εj ,

and hence

P{T (n)
m ≥ t} ≤ P{T̃ n

m ≥ t}+ 2εj (30)

for n ≥ nj. Since for every fixed j ≥ 1

lim
t→∞

sup
1≤n≤nj

P{T (n)
m ≥ t} = 0 ,

it follows from (30) and the uniform finiteness of ((T̃ n
k )k≥1)n≥1 that

lim sup
t→∞

sup
n≥1

P{T (n)
m ≥ t} ≤ 2εj .

Since this holds for every j ≥ 1, the uniform finiteness of ((T
(n)
k )k≥1)n≥1

follows.
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(3) Now we start with the proof of (9). Let ε > 0 be given. Since the
sequence ((T

(n)
k )k≥1)n≥1 is uniformly finite, we can find a t = t(ε) > 0 such

that

P{T (n)
m > t} ≤ ε

for every n ≥ 1, and by assumption (7) on the deterministic intensity λ we
may at the same time assume that also

P{Tm > t} ≤ ε .

Then

sup
F∈B1(Rm

+ )

∣∣EF (T
(n)
1 , · · · , T (n)

m )− F (T1, · · · , Tm)
∣∣ (31)

≤ sup
F∈B1(Rm

+ )

∣∣EF (T
(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t} − F (T1, · · · , Tm)1{Tm≤t}

∣∣ + 2ε ,

and it is sufficient to prove

lim
n→∞

sup
F∈B1(Rm

+ )

∣∣EF (T
(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t}−F (T1, · · · , Tm)1{Tm≤t}

∣∣ = 0 .

(32)

Now we compare the expectation EF (T
(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t} for a fixed

F ∈ B1(Rm
+ ) with the corresponding expectation EF (T̃ n

1 , · · · , T̃ n
m)1{T̃ n

m≤t} of
the composed process (T̃ n

k )k≥1. Since T (n)
k = T̃ n

k on {Sn > t} ∩ {T (n)
m ≤ t}

and on {Sn > t} ∩ {T̃ n
m ≤ t} resp. for k ≤ m, we have∣∣EF (T

(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t} − EF (T̃ n

1 , · · · , T̃ n
m)1{T̃ n

m≤t}
∣∣

=
∣∣EF (T

(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t}∩{Sn≤t}

∣∣ +
∣∣EF (T̃ n

1 , · · · , T̃ n
m)1{T̃ n

m≤t}∩{Sn≤t}
∣∣

≤ 2εj for n ≥ nj .

and thus

sup
F∈B1(Rm

+ )

∣∣EF (T
(n)
1 , · · · , T (n)

m )1{T (n)
m ≤t}−EF (T̃ n

1 , · · · , T̃ n
m)1{T̃ n

m≤t}
∣∣ ≤ 2εj (33)

for every n ≥ nj.

(33) means that (32) follows, if we prove that

lim
n→∞

sup
F∈B1(Rm

+ )

∣∣EF (T̃ n
1 , · · · , T̃ n

m)1{T̃ n
m≤t}−F (T1, · · · , Tm)1{Tm≤t}

∣∣ = 0 . (34)
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For every F ∈ B1(Rm
+ ) we know (cf. (4)) that∣∣EF (T̃ n

1 , · · · , T̃ n
m)1{T̃ n

m≤t} − F (T1, · · · , Tm)1{Tm≤t}
∣∣

=

∣∣∣∣ ∫ t

0

· · ·
∫ t

tm−1

F (t1, · · · , tm)

m∏
k=1

(
λ

n

tk
((ti)i≤k−1) · e

−
∫ tk

tk−1
λ

n
r ((ti)i≤k−1) dr

)
dtm · · · dt1

−
∫ t

0

· · ·
∫ t

tm−1

F (t1, · · · , tm)
m∏

k=1

(
λtk · e

−
∫ tk

tk−1
λr dr

)
dtm · · · dt1

∣∣∣∣
≤

∫ t

0

· · ·
∫ t

tm−1

∣∣∣∣ m∏
k=1

(
λ

n

tk
((ti)i≤k−1) · e

−
∫ tk

tk−1
λ

n
r ((ti)i≤k−1) dr

)
(35)

−
m∏

k=1

(
λtk · e

−
∫ tk

tk−1
λr dr

)∣∣∣∣ dtm · · · dt1 .
Since

|λn

tk
((ti)i≤k−1)− λtk | ≤ εj

for all 1 ≤ k ≤ m and all n ≥ nj, it follows easily from Lebesgue’s convergence
theorem that (34) holds, and the theorem is proved. 2.

Remark 2.3. The dominated convergence argument at the end of the proof
of theorem 2.1 is just a qualitative argument and it may be useful to have a
better quantitative estimate. Such an estimate is given - in the more general
context of marked point processes - at the end of the proof of theorem 3.1
below.

In case that the sequence ((T
(n)
k )k≥1)n≥1 is also uniformly non-explosive,

theorem 2.1 can be generalized.

Theorem 2.4. Suppose that - in addition to the hypotheses of theorem 2.1 -
the sequence ((T

(n)
k )k≥1)n≥1 is uniformly non-explosive. Then for every T > 0

lim
n→∞

sup
F∈B1(S∞,GT )

∣∣EF ((T
(n)
k )k≥1)− EF ((Tk)k≥1)

∣∣ = 0 . (36)

Before we start with the proof of the theorem, we give a different inter-
pretation of the limit relation (36). Let D([0, T ]) denote the space of all right

14



continuous functions with left hand limits on the interval [0, T ] provided with
the σ-algebra DT generated by the maps f 7→ f(t) (t ∈ [0, T ]). Then the
map

ψT : (S∞,GT ) → (D([0, T ]),DT ) ,

defined by

ψT ((tk)k≥1)(t) :=
∑
k≥1

1[0,t](tk) ,

is GT -DT -measurable. Now let

N (n),T = (N
(n)
t )0≤t≤T

denote the counting process associated to (T
(n)
k )k≥1 and restricted to [0, T ].

Then N (n),T can be viewed as a D([0, T ])-valued random vector. Moreover,

N (n),T = ψT ((T
(n)
k )k≥1) .

If NT = (Nt)0≤t≤T denotes the counting process associated to (Tk)k≥1, then
(36) is equivalent to the assertion

lim
n→∞

sup
F∈B1(D([0,T ]),DT )

∣∣EF (N (n),T )− EF (NT )
∣∣ = 0 (37)

for every T > 0.

Proof of theorem 2.4: Since

GT = σ({τk ∧ T | k ≥ 1}) ,

a function F : S∞ → R is GT -measurable, if and only if F is of the form

F ((tk)k≥1) = F̃ ((tk ∧ T )k≥1)

for every (tk)k≥1 ∈ S∞. Since ((T
(n)
k )k≥1)n≥1 is uniformly non-explosive, for

every ε > 0 we can find an m = m(ε) ≥ 1 such that

P{T (n)
m ≤ T} < ε for all n ≥ 1 and P{Tm ≤ T} < ε . (38)

Thus we have for every F ∈ B1(S∞,GT )∣∣EF ((T
(n)
k )k≥1)− EF ((Tk)k≥1)

∣∣
≤ E

∣∣F̃ ((T
(n)
k ∧ T )k≥1)1{T (n)

m >T} − F̃ ((Tk ∧ T )k≥1)1{Tm>T}
∣∣ + 2ε ,

15



and for the assertion (36) it is sufficient to prove

lim
n→∞

sup
F∈B1(S∞,GT )

E
∣∣F̃ ((T

(n)
k ∧T )k≥1)1{T (n)

m >T}−F̃ ((Tk∧T )k≥1)1{Tm>T}
∣∣ = 0 .

(39)

Let us define the transformation

ΨT : B1(S∞,GT ) → B1(Rm
+ )

by

ΨT (F )(t1, · · · , tm) := F (t1 ∧ T, · · · , tm ∧ T, T, T, · · · )1{tm>T} .

Then (40) means that we have to prove

lim
n→∞

sup
F∈B1(S∞,GT )

E
∣∣ΨT (F )(T

(n)
1 , · · · , T (n)

m )−ΨT (F )(T1, · · · , Tm)
∣∣ = 0 , (40)

but this assertion follows immediately from theorem 2.1. 2

We now present a general example, which shows that the general assump-
tions on the sequence ((T

(n)
k )k≥1)n≥1 of point processes are very natural.

We start with a single point process (T n)n≥1 and assume that for a
right continuous filtration F = (F t)t≥0 the associated counting process N =
(N t)t≥0 is integrable, finite and has the F-intensity λ = (λt)t≥0.

Let (Nk,Fk, λk)k≥1 be a sequence of independent copies of (N,F, λ) and
define for every n ≥ 1 the counting process N (n) = (N

(n)
t )t≥0 by

N
(n)
t :=

n∑
k=1

Nk
t
n
. (41)

Corresponding to N (n) we define the filtration F(n) by

F (n)
t :=

n∨
k=1

Fk
t
n
. (42)

Then it is easy to show that every N (n) has the F(n)-intensity λ(n), given by

λ
(n)
t =

1

n

n∑
k=1

λk
t
n
. (43)
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Theorem 2.5. Suppose that E sup0≤t≤T λt < ∞ for every T > 0 and that
α := Eλ0 > 0. Let N = (Nt)t≥0 be a Poisson process with parameter α.
Then (with the notations introduced after theorem 2.4)

lim
n→∞

sup
F∈B1(D([0,T ]),DT )

∣∣EF (N (n),T )− EF (NT )
∣∣ = 0 (44)

for every T > 0.

Proof: We prove that for the sequence (N (n)) the assumptions of the theo-
rems 2.1 and 2.4 are fulfilled.

Let D([0, T ]) denote the space of all functions f : [0, T ] → R, which
are right continuous and have left hand limits. For f ∈ D([0, T ]) we set
‖f‖ := sup0≤t≤T |f(t)|. Then D([0, T ]) is a Banach space relative to this
norm. If we define

XT
k := (λk

t )0≤t≤T ,

then (XT
k )k≥1 is an independent, identically distributed sequence ofD([0, T ])-

valued random vectors. Since by assumption

E ‖XT
1 ‖ = E sup

0≤t≤T
λt <∞ ,

we know from the strong law of large numbers for Banach space valued
random vectors (see e.g. [4]) that

1

n

n∑
k=1

XT
k = EXT

1 P-a.s.

in D([0, T ]), which means that P-a-s.

sup
0≤t≤T

∣∣ 1
n

n∑
k=1

λk
t − Eλt

∣∣ → 0 .

Thus we have that for P-almost every ω ∈ Ω and every given ε > 0 there
exists an n(ε, ω) ≥ 1 such that

sup
0≤t≤T

∣∣ 1
n

n∑
k=1

λk
t (ω)− Eλt

∣∣ < ε

2
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for every n ≥ n(ε, ω). Since t 7→ Eλt is right continuous, there exists also
some t(ε) > 0 such that

|Eλt − Eλ0| <
ε

2

for every t ≤ t(ε). If we assume that n(ε, ω) is large enough such that
T ≤ n(ε, ω)t(ε), then

sup
0≤t≤T

|λ(n)
t (ω)− α| < ε

for every n ≥ n(ε, ω), and we have proved condition (8) of theorem 2.1.

For an application of theorem 2.3 it remains to prove that the sequence
(N (n))n≥1 is uniformly non-explosive. We have

P{N (n)
t ≥ m} ≤ 1

m
EN

(n)
t

=
1

m

n∑
k=1

ENk
t
n

=
1

m
nEN t

n

=
1

m
nE

∫ t
n

0

λs ds ≤
1

m
tE sup

s≤ t
n

λs

≤ 1

m
tE sup

s≤t
λs ,

and hence (N (n))n≥1 is uniformly non-explosive. 2

3 The Case of Marked Point Processes

Let (E, E) be a measurable space and let ∆ denote an artificial element
outside of E. We set E∆ := E ∪ {∆} and provide E∆ with the σ-algebra
E∆ := σ(E ∪ {{∆}}). Now suppose that (Tn)n≥1 is a point process and that
(Xn)n≥1 is a sequence of E∆-valued random variables such that the following
condition holds:

Tn = ∞ ⇐⇒ Xn = ∆ . (45)

Then the double sequence ((Tn, Xn))n≥1 is called a marked point process. For
n = 0 we make the convention X0 := ε with a fixed ε ∈ E.
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In the following we will always assume that E is a polish space and that
E is the Borel field of E.

The marked point process ((Tn, Xn))n≥1 can be equivalently described by
the family

N =
(
(Nt(B))t≥0

)
B∈E

of counting processes, where

Nt(B) =
∑
n≥1

1{Tn≤t}1{Xn∈B} .

For B = E we just write (Nt)t≥0 instead of (Nt(E))t≥0.

N can be viewed as a random measure on R+ ×E and will be called the
counting measure of ((Tn, Xn))n≥1.

The rôle of the intensity is now replaced by the notion of an intensity
measure: Let F = (Ft)t≥0 be a right continuous filtration on (Ω,F ,P), such
that N is F-adapted in the sense that every process (Nt(B))t≥0 is F-adapted.
The smallest filtration, for which N is adapted in this sense, is the canonical
filtration FN = (FN

t )t≥0, defined by

FN
t := σ({Ns(B) | s ≤ t , B ∈ E}) .

A family

λ =
(
(λt(B))t≥0

)
B∈E

of F-adapted, R+-valued cadlag-processes (λt(B))t≥0 is called an intensity
measure, if for every t ≥ 0 the map

E 3 B 7→ λt(B)

is a finite measure on E, and if for every t ≥ 0∫ t

0

λs(E) ds <∞ P-a.s. .

Again we just write (λt)t≥0 instead of (λt(E))t≥0.

Then we say that N (or ((Tn, Xn))n≥1) has the F-intensity measure λ, if
for every B ∈ E and every m ≥ 1 the process(

Nt∧Tm(B)−
∫ t∧Tm

0

λs(B) ds
)

t≥0
(46)
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is a F-martingale. If N is non-explosive (i.e. if (Tn)n≥1 is non-explosive),
then (46) just means that every process

(
Nt(B)−

∫ t

0

λs(B) ds
)

t≥0
(47)

is a local F-martingale (with (Tn)n≥1 as localizing sequence), and if (Nt)t≥0

or (
∫ t

0
λs ds)t≥0 are integrable processes, then the processes in (47) are all

F-martingales.

The canonical space for the concrete construction of marked point pro-
cesses is here the space

S∞(E) :=
{

((tk, xk))k≥0 ∈ (R+ × E∆)Z+

∣∣∣ (i) (tk)k≥0 ∈ S∞ , x0 = ε ,

(ii) tk = ∞ ⇔ xk = 4
}
.

Again we write ((tk, xk))k≤n for ((tk, xk))k≥0 ∈ S∞(E), if tn+1 = ∞.

Now we define τn : S∞(E) → R+ and ξn : S∞(E) → E∆ for n ≥ 0 by

τn(((tk, xk))k≥0) = tn and ξn(((tk, xk))k≥0) = xn .

Then we set for every B ∈ E

νt(B) :=
∑
n≥1

1{τn≤t}1{ξn∈B} ,

and define on S∞(E) the filtration H = (Ht)t≥0 by

Ht := σ({νs(B) | s ≤ t , B ∈ E}) .

Now let Ψ : Ω → S∞(E) be defined by

Ψ(ω) := ((Tn(ω), Xn(ω)))n≥0 .

It follows that

Ψ−1(Ht) = FN
t (48)

for every t ≥ 0, and

Ψ(P) = P((Tn,Xn))n≥1
.
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From now on we make the general assumption that every marked point
process ((Tn, Xn))n≥1 considered in this paper is integrable and finite in the
sense that (Nt)t≥0 is integrable and finite. This is equivalent to the properties
that (λt)t≥0 is integrable and that

∫∞
0
λs ds = ∞.

Similarly to the simple point process case, the given intensity measure
λ determines an associated predictable intensity measure: For every fixed
B ∈ E the measure λt(B) dt⊗dP is absolutely continuous relative to dt⊗dP
on (R+ × Ω,P(FN)), and hence there exists a P(FN)-measurable Radon-
Nikodym density π(λ)(B) = (π(λ)t(B))t≥0. By the same arguments as for
the proof of the existence of conditional distributions one can see that one
can choose a version of π(λ)(B), such that again

B 7→ π(λ)t(B)

is a finite measure on (E, E). It follows from (48) that there is also an H-
intensity measure

λ =
(
(λt(B))t≥0

)
B∈E (49)

such that

π(λ)t(B) = λt(B) ◦Ψ (50)

for every t ≥ 0 and every B ∈ E . Again we will call π(λ) the predictable
projection of λ on Ω and λ the predictable projection of λ on S∞(E).

The predictable projection λ determines completely the distribution of
((Tn, Xn))n≥1: If F : (R+ × E)m → R is bounded and measurable, then

EF (((Tk, Xk))k≤m) (51)

=

∫ ∞

0

∫
E

· · ·
∫ ∞

tm−1

∫
E︸ ︷︷ ︸

2m integrals

F (((tk, xk))k≤m)

λtm(dxm; ((tk, xk))k≤m−1)e
−

∫ tm
tm−1

λr(((tk,xk))k≤m−1) dr
dtm

· · ·λt1(dx1)e
−

∫ t1
0 λr dr dt1

(where in the last line λt(dx1) = λt(dx1, ((tk, xk))k≤0)).

The stochastic kernel

λt(dx; ((ti, xi))i≤k−1)e
−

∫ t
tk−1

λr(((ti,xi))i≤k−1) dr
dt
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has the probabilistic interpretation that

λt(dx; ((Ti, Xi))i≤k−1)e
−

∫ t
tk−1

λr(((Ti,Xi))i≤k−1) dr
dt

= P
{
(Tk, Xk) ∈ dt× dx

∣∣ ((Ti, Xi))i≤k−1

}
. (52)

It is sometimes convenient to write formula (51) in a little bit different
form. We define

γt(dx; ((tk, xk))k≤m) =

{
λt(dx;((tk,xk))k≤m)

λt(((tk,xk))k≤m)
if λt(((tk, xk))k≤m) > 0

δε if λt(((tk, xk))k≤m) = 0
.

Then γt(dx; ((tk, xk))k≤m) is a stochastic kernel,

λt(dx; ((tk, xk))k≤m) = γt(dx; ((tk, xk))k≤m) · λt(((tk, xk))k≤m) (53)

for every t ≥ 0, and formula (51) is now of the form

EF (((Tk, Xk))k≤m) (54)

=

∫ ∞

0

· · ·
∫ ∞

tm−1︸ ︷︷ ︸
m−times

∫
E

· · ·
∫

E︸ ︷︷ ︸
m−times

{
F (((tk, xk))k≤m)

m∏
k=1

λtk(((ti, xi))i≤k−1)e
−

∫ tk
tk−1

λr(((ti,xi))i≤k−1) dr

}
γtm(dxm; ((tk, xk))k≤m−1) · · · γt1(dx1; ((tk, xk))k≤0) dtm · · · dt1 .

The kernel γ has the probabilistic interpretation:

γTm
(dx; ((Tk, Xk))k≤m−1) = P{Xm ∈ dx |Tm , ((Tk, Xk))k≤m−1} .

For the approximation results we need the following data: We suppose
that we are given a sequence(

((T
(n)
k , X

(n)
k ))k≥1,F

(n), λ(n)
)

n≥1
,

where
(i) every ((T

(n)
k , X

(n)
k )k≥1 is an integrable and finite marked point process

with associated family N (n) = ((N
(n)
t (B))t≥0)B∈E of counting measures,

(ii) every F(n) = (F (n)
t )t≥0 is a right continuous filtration, and

(iii) every N (n) has the F(n)-intensity measure λ(n) = ((λ
(n)
t (B))t≥0)B∈E .
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Furthermore, we suppose that we are given a deterministic kernel λ =
((λt(B))t≥0)B∈E such that

inf
t≥0

λt ≥ c (55)

for some positive constant c. Now let ((Tk, Xk))k≥1 be a marked point process,
whose counting measure N = ((Nt(B))t≥0)B∈E has the intensity measure
λ. We call such a marked point process an inhomogeneous marked Poisson
process. W.l.o.g. we assume that ((Tk, Xk))k≥1 is independent of

∨
n≥1F

(n)
∞ .

Again we have that

λt(dx) = γt(dx)λt ,

where γt(dx) is just a probability measure on E.

Theorem 3.1. Assume that the sequence (λ(n))n≥1 has the property

sup
t≤T

sup
B∈E

|λ(n)
t (B)− λt(B)| → 0 in probability (56)

for every T > 0. Then for every m ≥ 1

lim
n→∞

sup
F∈B1((R+×E)m)

∣∣EF(
((T

(n)
k , X

(n)
k )k≤m

)
−EF

(
((Tk, Xk)k≤m

)∣∣ = 0. (57)

Remark 3.2. Condition (56) is mainly a condition on the convergence be-
haviour of certain conditional distributions of the X(n)

k . Suppose that λ̃(n)

denotes the predictable projection of λ(n) on S∞(E), and that according to
(53)

λ̃
(n)
t (dx; ((tk, xk))k≤m−1) = γ̃

(n)
t (dx; ((tk, xk))k≤m−1) · λ̃(n)

t (((tk, xk))k≤m−1) ,

with the interpretation

γ̃
(n)
Tm

(dx; ((T
(n)
k , X

(n)
k ))k≤m−1) = P

{
X(n)

m ∈ dx
∣∣T (n)

m , ((T
(n)
k , X

(n)
k ))k≤m−1

}
.

If also λ is given in the form

λt(B) = γt(B)λt ,

then (56) implies that

sup
t≤T

sup
B∈E

|γ̃(n)
t (B)− γt(B)| → 0 in probability

for every T > 0. This will follow from a remark at the end of step (1) of the
proof of theorem 3.1 below.
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For the proof of theorem 3.1 we will need the following lemma, which is
well known, but which we prove for the lack of an exact reference.

Lemma 3.3. Let (X,X ) be a measurable space and suppose that µ and ν are
two finite measures on X. Then

sup
F∈B1(X)

∣∣ ∫
F dµ−

∫
F dν

∣∣ ≤ 2 sup
A∈X

|µ(A)− ν(A)| .

Proof: (cf. [5], sec. 29) We set λ = µ− ν. Then λ is a finite signed measure
on X, and there exists a decomposition of X in two sets B+, B− ∈ X such
that for every A ∈ X

λ(A ∩B+) ≥ 0 and λ(A ∩B−) ≤ 0

(this is the so called Hahn decomposition of X rel. to λ). The non-negative
finite measures λ+ and λ−, defined by

λ+(A) = λ(A ∩B+) and λ−(A) = −λ(A ∩B−)

for all A ∈ X , are called the upper and the lower variation of λ resp.. One
has λ = λ+ − λ− (this is the so called Jordan decomposition of λ), and
|λ| := λ+ + λ− is called the total variation of λ. The Hahn decomposition
shows that

max(λ+(X), λ−(X)) ≤ sup
A∈X

|λ(A)| .

On the other side

sup
A∈X

|λ(A)| ≤ sup
A∈X

max(λ+(A), λ−(A)) ≤ max(λ+(X), λ−(X)) .

Thus we have

sup
A∈X

|λ(A)| = max(λ+(X), λ−(X)) .

Since

|λ|(X) = λ+(X) + λ−(X) ≤ 2 max(λ+(X), λ−(X)) ,

we get for F ∈ B1(X)∣∣ ∫
F λ(dx)

∣∣ ≤ |λ|(X) ≤ 2 max(λ+(X), λ−(X))

= 2 sup
A∈X

|λ(A) ,
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and the lemma is proved. 2

the next lemma generalizes lemma 2.2 to the case of marked point pro-
cesses.

Lemma 3.4. Suppose that ((T
(1)
k , X

(1)
k ))k≥1 and ((T

(2)
k , X

(2)
k ))k≥1 are two

marked point processes with associated counting measures N (1) and N (2). We
assume that
(i) F(1) is a right continuous filtration, for which N (1) is adapted and has the
F(1)-intensity measure λ(1), that
(ii) N (2) has the intensity measure λ(2) relative to the canonical filtration
FN(2) of N (2), and that
(iii) F (1)

∞ and N (2) are independent.
Let S be a given F(1)-stopping time and define for every t ≥ 0 and every
B ∈ E

Ñt(B) := N
(1)
t∧S(B) + (N

(2)
t∨S(B)−N

(2)
S (B)) , (58)

F̃t := F (1)
t∧S ∨ σ

(
{N (2)

s∨S(B)−N
(2)
S (B) | s ≤ t , B ∈ E}

)
, and

λ̃t(B) := λ
(1)
t (B)1{t<S} + λ

(2)
t (B)1{S≤t} .

Then Ñ = ((Ñt(B))t≥0)B∈E is a counting measure with the intensity measure
λ̃ = ((λ̃t(B))t≥0)B∈E relative to the filtration F̃ = (F̃t)t≥0. The corresponding
marked point process ((T̃k, X̃k))k≥1 is given by

(T̃k, X̃k) = (T
(1)
k , X

(1)
k )1{T (1)

k ≤S} (59)

+1{S<T
(1)
k }

k∑
j=1

(T
(2)
k−(j−1), X

(2)
k−(j−1))1{T (1)

j−1≤S<T
(1)
j } .

We omit the proof, which would be very similar to the proof of lemma
2.2. The marked point process ((T̃k, X̃k))k≥1 will be called the composition of
((T

(1)
k , X

(1)
k ))k≥1 and ((T

(2)
k , X

(2)
k ))k≥1 at S. Similarly, the intensity measure

λ̃ is called the composition of λ(1) and λ(2) at S.

Proof of theorem 3.1:
(1) For every n ≥ 1 and every ε > 0 we define

Sn,ε := inf{t > 0 : sup
B∈E

|λ(n)
t (B)− λt(B)| > ε} . (60)
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We claim that Sn,ε is an F(n)-stopping time: Since E is a polish space, there
exists (cf. [1]) an at most countable algebra G ⊆ E such that E = σ(G). Thus
suppose that G = {Bj |j ≥ 1}. Then

sup
B∈E

|λ(n)
t (B)− λt(B)| = sup

j≥1
|λ(n)

t (Bj)− λt(Bj)| ,

and therefore

{Sn,ε < t} =
⋃
s<t

s∈Q+

⋃
j≥1

{
|λ(n)

s (Bj)− λs(Bj)| > ε
}
. (61)

Since F(n) is right continuous, (61) shows that Sn,ε is a stopping time.

The assumption (56) implies that for every ε > 0, δ > 0 and T > 0 there
exists an n(ε, δ, T ) ≥ 1 such that

P{Sn,ε ≤ T} < δ for all n ≥ n(ε, δ, T ) . (62)

Thus we may argue as in the proof of theorem 2.1: If (εj)j≥1 is a fixed
null-sequence of positive numbers, there exists a strictly increasing sequence
(nj)j≥1 in N, such that

P{Sn,εj ≤ j} < εj for every n ≥ nj , (63)

and we set

Sn := Sn,εj for nj ≤ n < nj+1 (64)

Then

P{Sn ≤ j} < εj for nj ≤ n < nj+1 . (65)

Let ((T̃ n
k , X̃

n
k ))k≥1 (n ≥ 1) denote the composition of ((T

(n)
k , X

(n)
k ))k≥1

and ((Tk, Xk))k≥1 at Sn, and let λ̃n denote the corresponding composition of
the intensity measures λ(n) and λ at Sn. Then the sequence (λ̃n)n≥1 has the
property that

sup
t≥0

sup
B∈E

|λ̃n
t (B)− λt(B)| ≤ εj for nj ≤ n < nj+1 . (66)

By the same argument as in the proof of theorem 2.1 this property carries
over to the predictable projections λn of λ̃n on S∞(E), i.e. we have also

sup
t≥0

sup
B∈E

|λn

t (B)− λt(B)| ≤ εj for nj ≤ n < nj+1 . (67)
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Remark: Assume (cf. 53) that λn is given in the form

λ
n

t (dx; ((tk, xk))k≤m) = γn
t (dx; ((tk, xk))k≤m) · λn

t (((tk, xk))k≤m) (68)

for every m ≥ 0 and ((tk, xk))k≤m ∈ S∞(E). For λn

t (((tk, xk))k≤m) > 0 and
B ∈ E we know that

γn
t (B; ((tk, xk))k≤m) =

λ
n

t (B; ((tk, xk))k≤m)

λ
n

t (((tk, xk))k≤m)
.

Thus we have∣∣γn
t (B; ((tk, xk))k≤m)− γt(B)

∣∣
≤

∣∣λn

t (B; ((tk, xk))k≤m)− λt(B)
∣∣

λ
n

t (((tk, xk))k≤m)
+

∣∣λn

t (((tk, xk))k≤m)− λt

∣∣
λ

n

t (((tk, xk))k≤m)
.

For large enough j ≥ 1 we have εj ≤ c
2
, which implies

λ
n

t (((tk, xk))k≤m) ≥ λt − εj ≥ λt −
c

2
≥ c

2

for n ≥ nj and we have proved that

sup
B∈E

∣∣γn
t (B; ((tk, xk))k≤m)− γt(B)

∣∣ ≤ 4

c
εj (69)

for all m ≥ 0, ((tk, xk))k≤m and all n ≥ nj, if j is large enough. This limit
relation can now be used to prove the remark 3.2.

(2) Now we start with proof of (57). As in part (2) of the proof of
theorem 2.1 it follows that the sequences ((T

(n)
k )k≥1)n≥1 and ((T̃ n

k )k≥1)n≥1

are uniformly finite. Thus for a fixed given ε > 0 there exists a t = t(ε) > 0
such that

P{T (n)
m > t} ≤ ε and P{T̃ n

m > t} ≤ ε

for every n ≥ 1, and by assumption (55) on the deterministic intensity mea-
sure λ we may at the same time assume that also

P{Tm > t} ≤ ε .

As a consequence, for the proof of (57) it is sufficient to prove

lim
n→∞

sup
F∈B1((R+×E)m)

∣∣EF(
((T

(n)
k , X

(n)
k )k≤m

)
1{T (n)

m ≤t} (70)

− EF
(
((Tk, Xk)k≤m

)
1{Tm≤t}

∣∣ = 0 ,
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and again by the same arguments as in the proof of theorem 2.1 this follows
if we prove that

lim
n→∞

sup
F∈B1((R+×E)m)

∣∣EF(
((T̃ n

k , X̃
n
k )k≤m

)
1{T̃ n

m≤t} (71)

− EF
(
((Tk, Xk)k≤m

)
1{Tm≤t}

∣∣ = 0 .

We have (cf. 51)

EF (((T̃ n
k , X̃

n
k ))k≤m)1{T̃ n

m≤t} (72)

=

∫ ∞

0

∫
E

· · ·
∫ ∞

tm−1

∫
E︸ ︷︷ ︸

2m integrals

F (((tk, xk))k≤m)1[0,t](tm)

λ
n

tm(dxm; ((tk, xk))k≤m−1)e
−

∫ tm
tm−1

λ
n
r (((tk,xk))k≤m−1) dr

dtm

· · ·λn

t1
(dx1)e

−
∫ t1
0 λ

n
r dr dt1 .

If we set

ψn
m,t(F )

(
((tk, xk))k≤m−1

)
=

∫ ∞

tm−1

∫
E

F (((tk, xk))k≤m)1[0,t](tm)

λ
n

tm(dxm; ((tk, xk))k≤m−1)e
−

∫ tm
tm−1

λ
n
r (((ti,xi))i≤m−1) dr

dtm ,

then

ψn
m,t

(
B1((R+ × E)m)

)
⊆ B1((R+ × E)m−1) , (73)

and

EF
(
((T̃ n

k , X̃
n
k )k≤m

)
1{T̃ n

m≤t} = Eψn
m,t(F )

(
((T̃ n

k , X̃
n
k ))k≤m−1

)
1{T̃ n

m−1≤t} . (74)

Similarly, for the transformation ψm,t, defined by

ψm,t(F )
(
((tk, xk))k≤m−1

)
=

∫ ∞

tm−1

∫
E

F (((tk, xk))k≤m)1[0,t](tm)

λtm(dxm)e
−

∫ tm
tm−1

λr dr
dtm ,

we have

EF
(
((Tk, Xk)k≤m

)
1{Tm≤t} = Eψm,t(F )

(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t} . (75)
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From (74) and (75) we obtain now for (71)∣∣∣EF(
((T̃ n

k , X̃
n
k ))k≤m

)
1{T̃ n

m≤t} − EF
(
((Tk, Xk))k≤m

)
1{Tm≤t}

∣∣∣
≤

∣∣∣Eψn
m,t(F )

(
((T̃ n

k , X̃
n
k ))k≤m−1

)
1{T̃ n

m−1≤t} (76)

− Eψn
m,t(F )

(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

∣∣∣
+

∣∣∣Eψn
m,t(F )

(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t} (77)

− Eψm,t(F )
(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

∣∣∣ .
From (74) we get for the term(76)

sup
F∈B1((R+×E)m)

∣∣∣Eψn
m,t(F )

(
((T̃ n

k , X̃
n
k ))k≤m−1

)
1{T̃ n

m−1≤t}

− Eψn
m,t(F )

(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

∣∣∣
≤ sup

F∈B1((R+×E)m−1)

∣∣∣EF
(
((T̃ n

k , X̃
n
k ))k≤m−1

)
1{T̃ n

m−1≤t} (78)

− EF
(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

∣∣∣ .
Now consider the term (77). We have∣∣∣ψn

m,t(F )
(
((tk, xk))k≤m−1

)
− ψm,t(F )

(
((tk, xk))k≤m−1

)∣∣∣ (79)

≤
∫ ∞

tm−1

∣∣∣ ∫
E

F (((tk, xk))k≤m)λ
n

tm(dxm; ((tk, xk))k≤m−1)

−
∫

E

F (((tk, xk))k≤m)λtm(dxm)
∣∣∣1[0,t](tm) dtm

+

∫ ∞

tm−1

∣∣∣e− ∫ tm
tm−1

λ
n
r (((ti,xi))i≤m−1) dr − e

−
∫ tm

tm−1
λr dr

∣∣∣λtm1[0,t](tm) dtm .

For the first term on the right hand side of (79) we obtain from lemma 3.3∫ ∞

tm−1

∣∣∣ ∫
E

F (((tk, xk))k≤m)λ
n

tm(dxm; ((tk, xk))k≤m−1)

−
∫

E

F (((tk, xk))k≤m)λtm(dxm)
∣∣∣1[0,t](tm) dtm

≤ 2tεj (80)
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for n ≥ nj, and for the second term on the right hand side of (79) we get∫ ∞

tm−1

∣∣∣e− ∫ tm
tm−1

λ
n
r (((ti,xi))i≤m−1) dr − e

−
∫ tm

tm−1
λr dr

∣∣∣λtm1[0,t](tm) dtm

≤
∫ ∞

tm−1

1[0,t](tm)λtme
−

∫ tm
tm−1

λr dr

∣∣e− ∫ tm
tm−1

(
λ

n
r (((ti,xi))i≤m−1)−λr

)
dr − 1

∣∣ dtm
≤ tεj

∫ ∞

tm−1

1[0,t](tm)λtme
−

∫ tm
tm−1

λr dr
dtm (81)

With the aid of the inequalities (80) and (81) it is now easy to see that we
get for the term (77)∣∣∣Eψn

m,t(F )
(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

− Eψm,t(F )
(
((Tk, Xk))k≤m−1

)
1{Tm−1≤t}

∣∣∣
≤ 3tεj .

Together with (78) it follows finally that

sup
F∈B1((R+×E)m)

∣∣∣EF(
((T̃ n

k , X̃
n
k ))k≤m

)
1{T̃ n

m≤t}

− EF
(
((Tk, Xk))k≤m

)
1{Tm≤t}

∣∣∣ ≤ 3mtεj ,

and the theorem is proved. 2

As in the simple point process case, theorem 3.1 can be generalized in
case that the sequence

(
((T

(n)
k , X

(n)
k ))k≥1

)
n≥1

is uniformly non-explosive.

Theorem 3.5. Suppose that
(
((T

(n)
k , X

(n)
k ))k≥1

)
n≥1

is uniformly non-explosive.
Then under the assumptions of theorem 3.1

lim
n→∞

sup
F∈B1((S∞(E),Ht))

∣∣EF
(
((T

(n)
k , X

(n)
k ))k≥1

)
−EF

(
((Tk, Xk))k≥1

)∣∣ = 0 (82)

for every t > 0.

Proof: We set for t ≥ 0 and every k ≥ 1

ξt
k := ξk1{τk≤t} + ε1{τk>t} .
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Then it is not difficult to prove that

Ht = σ({(τk ∧ t)k≥1 , (ξt
k)k≥1}) .

Thus a function F : S∞(E) → R is Ht-measurable, if and only if F is of the
form

F
(
((tk, xk))k≥1

)
= F̃

(
((tk ∧ t, ξt

k))k≥1

)
for every ((tk, xk))k≥1 ∈ S∞(E). Since our sequence of marked point pro-
cesses is uniformly non-explosive, for every given ε > 0 we can find an
m = m(ε) ≥ 1 such that for every n ≥ 1

P{T (n)
m ≤ t} < ε and P{Tm ≤ t} < ε .

Thus for every F ∈ B1((S∞(E),Ht))∣∣EF
(
((T

(n)
k , X

(n)
k ))k≥1

)
− EF

(
((Tk, Xk))k≥1

)∣∣
≤ E

∣∣F̃(
((T (n) ∧ t,X(n),t

k ))k≥1

)
1{T (n)

m >t}

− F̃
(
((Tk ∧ t,X t

k))k≥1

)
1{Tm>t}

∣∣ + 2ε ,

where of course

X
(n),t
k := X

(n)
k 1{T (n)

k ≤t} + ε1{T (n)
k >t} .

Now the proof of the theorem is continued similarly to the proof of theorem
2.4. 2

The next result is in a certain sense connected with the problem of ap-
proximating a compound Poisson distribution as studied in [6].

Corollary 3.6. Suppose that
(
((T

(n)
k , X

(n)
k ))k≥1

)
n≥1

is uniformly non-explosive
and that the assumptions of theorem 3.1 hold. For every n ≥ 1 and every
t ≥ 0 we set

S
(n)
t =

∑
k≥1

X
(n)
k 1{T (n)

k ≤t} and St =
∑
k≥1

Xk1{Tk≤t} .

Then

lim
n→∞

sup
F∈B1(D([0,T ]))

∣∣EF
(
(S

(n)
t )0≤t≤T

)
− EF

(
(St)0≤t≤T

)∣∣ = 0 (83)

for every T > 0.
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Proof: Let T > 0 be fixed and define the map ϕT : S∞ → B1(D([0, T ])) by

ϕT

(
((tk, xk))k≥1

)
=

( ∑
k≥1

xk1[0,t](tk)
)

0≤t≤T

for ((tk, xk))k≥1 ∈ S∞(E). Then F ◦ ϕT ∈ B1((S∞(E),HT )) and

sup
F∈B1(D([0,T ]))

∣∣EF
(
(S

(n)
t )0≤t≤T

)
− EF

(
(St)0≤t≤T

)∣∣ =

sup
F∈B1(D([0,T ]))

∣∣E (F ◦ ϕT )
(
((T

(n)
k , X

(n)
k ))k≥1

)
− E (F ◦ ϕT )

(
((Tk, Xk))k≥1

)∣∣ ,
and (83) follows from theorem 3.5. 2

As a general example we prove an analogue to theorem 2.5 in the marked
point process case. We start with a single marked point process ((T k, Xk))k≥1

and assume that the associated counting measure N is integrable, finite, and
has the intensity measure λ relative to a right continuous filtration F =
(F t)t≥0. We suppose in addition that λ has the properties that

E sup
0≤t≤T

λt <∞ for every T > 0 , (84)

that

α := Eλ0 > 0 , (85)

and that

lim
t↓0

sup
B∈E

∣∣Eλt(B)− Eλ0(B)
∣∣ = 0 . (86)

Let (Nk,Fk, λk)k≥1 be a sequence of independent copies of (N,F, λ) and
define for every n ≥ 1 the counting measure N (n) = ((N

(n)
t (B))t≥0)B∈E by

N
(n)
t (B) :=

n∑
k=1

Nk
t
n
(B) . (87)

Corresponding to N (n) we define the filtration F(n) by

F (n)
t :=

n∨
k=1

Fk
t
n
. (88)
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Then it is easy to show that every N (n) has the F(n)-intensity measure λ(n),
given by

λ
(n)
t (B) =

1

n

n∑
k=1

λk
t
n
(B) (89)

for t ≥ 0 and B ∈ E .

Theorem 3.7. Let ((Tk, Xk))k≥1 be a marked point process, whose counting
measure has the intensity measure λ given by λt(B) = Eλ0(B). Then

lim
n→∞

sup
F∈B1((S∞(E),HT ))

∣∣EF(
((T

(n)
k , X

(n)
k ))k≥1

)
−EF

(
((Tk, Xk))k≥1

)∣∣ = 0 (90)

for every T > 0.

Proof: For a fixed T > 0 we define

DT :=
{
x = (fB)B∈E ∈ D([0, T ])E

∣∣ ‖x‖T := sup
t≤T

sup
B∈E

|fB(t)| <∞
}
.

Then (DT , ‖·‖T ) is a Banach space. If we define

Xk := ((λk
t (B))t≤T )B∈E ,

then (Xk)k≥1 is an independent, identically distributed sequence of DT -valued
random vectors. Since by assumption (84)

E ‖X1‖T = E sup
t≤T

sup
B∈E

λt(B) <∞ ,

we know from the strong law of large numbers for Banach space valued
random vectors (see e.g. [4]) that

1

n

n∑
k=1

Xk = EX1 P-a.s..

Thus P-a.s.

sup
t≤T

sup
B∈E

∣∣ 1
n

n∑
k=1

λk
t (B)− Eλt(B)

∣∣ → 0 for n→∞ .

Together with assumption (86) the condition (56) of theorem 3.1 follows.
Since the sequence ((T

(n)
k )k≥1)n≥1 is also uniformly non-explosive (see the

end of the proof of theorem 2.4), the assertion of the theorem follows from
theorem 3.5. 2
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Remark 3.8. The deterministic limit intensity λ in theorem 3.7 is of the
form γ(dx)α, where α > 0 and where γ(dx) is a probability measure on E.
This means that ((Tk, Xk))k≥1 is a (homogeneous) marked Poisson process:
(Tk)k≥1 is a classical Poisson process with parameter α > 0, (Xk)k≥1 is an i.i.d.
sequence independent of (Tk)k≥1, and γ(dx) = PX1 . Thus the distribution of
every St is compound Poisson and corollary 3.6 gives a result for convergence
towards a compound Poisson process.
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