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Poisson Approximation
for Point Processes

Egbert Dettweiler

Abstract

Let (T})r>1 be a point process on Ry and N = (N;)>0 its associ-
ated counting process. If N is integrable and adapted to a right con-
tinuous filtration (F;);>0, then a non-negative, (F;)-adapted cadlag-
process A = (A¢)¢>0 is called the (F)-intensity of NV, if (Nt—fg As ds)e>0
is an (F;)-martingale. The intensity determines essentially the stochas-
tic development of N.

We prove the following main result: Let (N(),>; be a sequence
of counting processes with (]:t(n))—intensities ) = ()\En))tzo- Sup-
pose that (N (”))nzl is uniformly non-explosive and that the sequence
(/\(”))nzl converges in probability uniformly on bounded intervals to-
wards a deterministic intensity A = (A¢)¢>0. Let N = (N¢)i>0 be an
inhomogeneous Poisson process with intensity A, and denote for ev-
ery T > 0 by BY(D([0,7))) the family of all measurable functions
F : D([0,7]) — R bounded by 1. Then

() lim  sup  |BEF((N")i<r) —EF((N)i<r)| = 0.
=0 peB1(D([0,17))

This result can be generalized to the case of marked point pro-
cesses ((T, Xk))k>1, with marks Xj in a polish space (E,€). The
marked point process is described equivalently by a counting measure
N = ((N¢(B))+>0) B¢, and the notion of an intensity is replaced by an
intensity measure A = ((A\;(B))i>0)Bee. Suppose that now (N™), 5
is a sequence of counting measures with an associated sequence of
(}"t(n))—intensity measures (A™),>1. If (At(B))i>0)Bee is a determin-
istic intensity measure, then the condition

lim sup sup \)\gn)(B) —X(B)] = 0
n—00 {<T Be€

in probability for all 7' > 0 implies a convergence result corresponding
to () for the sequence (N(™),>;.



1 Introduction

A point process on the real line is defined as an increasing sequence (7, )n>1
of R;-valued random variables on a probability space (2, F,P) with the
additional property that

T, <Thy ,if T,<o0.
It is convenient to define Ty = 0.

The counting process N = (IN;);>o associated to (7),),>1 is given by

Ny = Z Lyt <ty

n>1

In this paper we will only consider point processes with an intensity:
Suppose that F = (F;);>0 is a filtration on (2, F, P) for which N = (Ny)i>o
is adapted, and that A = (\;):>0 is a F-adapted R -valued cadlag-process
such that for all t > 0

t
/ Ardr < oo P-as.. (1)
0

Then we say that N = (Ny)i>o (or (T).)n>1) has the F-intensity A, if the
process

tATm,
(Nt/\Tm - /0 Ar dT)tZO

is an F-martingale for every m > 1.

If it is known that 7,, T co P-a.s. (i.e. if (7},),>1 is non-explosive), then
we could say that N = (IV;);>o has the F-intensity A, if

t
(M—AMWEO

is a local F-martingale (with (7,),>; as localizing sequence). If we know that
either (N;)¢>o or (fot A\ dr)i>o is integrable, then (N; — fg A dr)i>o is even a
martingale.

A point process (1),),>1 is called finite, if P{T,, = oo} = 0 for every
n > 1.



The distribution P(z,),., of (T},)n>1 is a probability measure on the space

R — {(tk)kz()EﬁiJr (Z) O:to <t <ty <--e ,
(ZZ) ty <00 = T <Tlgi1,
(i00) th = 00 = typ1 = oo}
provided with the o-algebra
G:=o({mmln=1}),

where the 7, : S — R, are given by

Ta((te)rz0) =t .

We call (7;,)n>1 the canonical point process on S*®. The associated canonical
counting process (V¢)i>o on S then is defined by

Vy 1= Z 1{Tn§t} .

n>1

We will make the following convention: If (¢;)g>o € S has the property
that ¢,+1 = oo for some n > 0, then we also write (¢;)r<, instead of (tx)r>o0-

If we denote by & : 2 — S the map defined by
(W) = (Tn(w))nz0 ,
then clearly ®(P) = P(z,),.,-
For every t > 0 we set
G =o({vs|s<t}).

The filtration G = (G;)s>0 is called the canonical filtration on S®. If FN =
(FN)i>0 denotes the canonical filtration of the counting process (N;)i>o on
2, then obviously

F =271 (2)
for every t > 0.

For any filtration F = (F;);> the F-predictable o-algebra P(F) on R x
is the o-algebra generated by the sets |s,t] x F', where 0 < s <t and F' € F;.
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We will say that a process X = (X;);>0 on €2 is F-predictable, if X - viewed
as amap X : Ry x  — R - is P(F)-measurable.

Now suppose that (N;);>o has the F-intensity (A;);>0. Then the measure
A dt® dP is absolutely continuous relative to dt® dP on the measurable space
(R, x Q,P(FY)). Hence there exists a P(F")-measurable Radon-Nikodym
density m(\) = (m(A)¢)r>0. This density is known to have the following two
properties:

Proposition 1.1. If the counting process N = (Ni)i>o is integrable and
has the F-intensity X\, then N has the FN -intensity ©(\) and there is a G-
intensity X = (\)>o0 (which is even G-predictable) such that m(\); = \; o ®
for every t > 0.

Proof: We have to prove that for all 0 < s <t
t t
E{/ )\rdr—/ T(A)pdr | FY}=0.

But this follows, since by definition |s,t] x A € P(FY) for every A € FY,
and hence

t
/(/ Ardr) dP = / A dr @ dP
A Js ]s,t]x A
t
= / T(\), dr @ dP = /(/ m(A), dr) dP .
Ist]x A A s

If d: R, x Q— R, x S denotes the map given by

O(r,w) = (r, ®w)) ,
then it follows from (2) that
P(EY) = 07(P(G)), (3)

and this implies (cf. [1]) that for every P(F")-measurable function F there
exists a P(G)-measurable function G such that ' = G o ®. The second
assertion of the proposition is just a special case of this result. O

The FM-intensity m(A) = (7(A\)¢)i0 will be called the predictable pro-
jection of A on 2, and the intensity A = (\¢)i>0 is called the predictable
projection of A on S°°.



The predictable projection A on S® completely determines the distribu-
tion ®(P) of (T},)n>1. If e.g. (T,)n>1 is finite and F' : R} — R, measurable
and bounded, then

EF(Ty, -, T, (4)

LT e

H <)\tk ; Z<k 1) ftk LA ((t)i<—1) dr )}dtn dt .

k=1

2 Poisson Approximation

Suppose that on (2, F, P) we have a sequence of finite point processes (T,En))kz 1
and that the associated counting processes N = (Nt(n))tzo are all inte-

grable. Let further F(") = (ft(n))tzo be a sequence of filtrations on ) such
that every process N is F("-adapted, and suppose in addition that every
N® has the F(™-intensity A" = (AE"))QO.

We will say that the sequence ((Tk(n)) k>1)n>1 (resp. the sequence (N™), )
is uniformly finite, if

lim sup P{T\™ >t} =0 (5)

=00 1>1
for every m > 1, and uniformly non-explosive, if

lim sup P{T™ <t} =0 (6)

m—00 p>1
for every t > 0.

Now assume that A = (\;):>¢ is a deterministic, non-negative, right con-
tinuous and locally bounded process (i.e. A is just a function from R, into
R, ), such that A has the additional property

inf \; > ¢ (7)

t>0

for a certain constant ¢ > 0.

We may and will assume that there is a point process (T})g>1, whose
counting process N = (N;);>o has the FV-intensity A\. N is just an inhomo-
geneous Poisson process, and for our purposes we may and will assume that
N and V, -, F are independent.



For any measurable space (T,7) we denote by B(T') the set of all mea-
surable functions F': T"— R which are bounded by 1.

Now we can formulate the first approximation result:

Theorem 2.1. Suppose that for every T' > 0

sup IA™ — X\ =0 in probability . (8)
t<

Then for every m > 1

lim  sup [EF(TY,--  T0) ~EF(Ty,--,Ty)|=0. (9)

= FeBL(RT)

For the proof of this theorem we will essentially need the following lemma,
which is perhaps of some interest in itself.

Lemma 2.2. Suppose that (Tkgl))kzl and (T,f))kzl are two point processes
with associated counting processes N and N® . We assume

(i) that Y is a right continuous filtration, for which N is adapted and
has the U -intensity AV,

(i3) that N® has the intensity A relative to the canonical filtration FN®
of N®  and

(111) that FY and N@ are independent.

Let S be a given Y -stopping time and define for every t > 0

~ 1 2 2

Ny = Nt(Ag‘f'(Nt(vz?_Né)) ,

Foo= FosVvo({NDs— NP |s<t}), and (10)
S\t = )\gl)l{t<s} + A§2)1{S§t} .

Then N = (Nt)tzo is a_counting process with the intensity )= (;\t)tzo relative
to the filtration F = (F;)1>o0-

Proof: We have to prove that for every 0 < s <t

t
E{Nt—Nslfs}:E{/ Ardr | F} (11)
We set
D, == {{N? s -NPec, - NP NP e,

mGN, UiSS, CZEB(R+)}7



and
gs ::fs/\SﬂDs .

Then &, is a N-stable generator of F,, and hence it is sufficient to prove

/AQB(Nt — N,)dP = /AOB (/: A dr) dP (12)

for all A € ') and all B € D.

We start with the left hand side of (12):
/ (N — N,) dP (13)
ANB

= [ - NP [ (N - Ny ap.
N

ANB

For the first term on the right hand side we obtain
1 1
|- NG ap (14
ANB
= / 1Aﬁ{S>s}1Bﬂ{T>S}(Nt(/1)S - Ns(/l\)S) ap

tAS
= /1Am{s>s}1Bm{T>s}(/ AV dr) dp
SAS

tAS
_ / Laos ( / AD dr) P |

AS

since AN{S > s} € F and since BN {S > s} is either equal to 2 or empty.

For the second term on the right hand side of (13) we first get

2 2
/A B(Nt(v?? - Ns(\/)S) dP
A

_ /1A1B1{S§3<t}(Nt<2)—N?’)dP (15)
14151 N2 _ N@ygp 16
+ [ Lalplis<s(V; ;) dP (16)

First we consider (15). We set for n > 1

n k
5 = Zg_nl{%s&%}

k>1



Then

[ Litalcsn (V2 - N dp (1)
k>1

2 2
B Z/ Langs<s<nniist <s< I?,L}le{SSS}(Nt( ) Ni%)) dP

2" 2n

k>1
t
- Z/ 1Am{sg5<t}m{’“2—,f§s<2’;}1Bm{s<5}(/k )\7(,2) dr) dP
k>1 &

t
= / 1A1B1{S<S<t}(/( ))x,(nz) dr) dP |
Sn

since by assumption AN {s < S <t} N{&L < 5 < £} and N are
independent and B N {s < S} is either empty or equal to Q. For n — oo we
obtain from (17)

t
/ 1alplfecsen (N — NG dP = / Lalplsesen / AP dr)dP (18)
S

Now we consider the term (16), and suppose that B is of the form

B={N% - N ecCy, - N s NP e Gl

u umVS

with u; < s, and where we suppose in addition that the Borel sets C; are all
open. Then we get

/ Lalpliseg (NP — N®)dP (19)
= lim [ Langs<s)
2 (2)>
<1{N£21)vs(")_Néz(il)ecl""’Ni,)lvs(n)_Nf(zl)GCm}(Nt N ) P
= JL%Z/1A0{5<S}Q{I§1§S<2’;}
k>1

2
(1{N(2) o NP eCr e NN eCm}(Nt( ) _ N(2))> dpP

ulVom oM Um Vo o1



= T}LII;OZ/lAm{S<s}m{k2,E<S<2‘%}

k>1

t
(2)
(1{N(2) k 7N(i> eclv'“yN(z)v k 7N(i) ecm}( / >\T dr)) dP
Um b1 S

uVaom g LS
t
= / Lalpliseg( / A2 dr) dp

again by the independence of .7-1%) and N@.

(14), (17) and (19) together prove that

/ (N, — N,) dP
ANB

tAS
= / 1AmB{1{52s}( / AW dr)
SAS

t t
s ([ N0a0) + 15 ([ 4P dr) b ap
S s

t
= / 1AmB{1{szs}( / MM gsry dr)

t t
+ 1{3§S<t}(/ /\52)1{39"} d?“) + 1{5<3}(/ )\gnQ)l{SST} d?”)} dP

s

t

t
_ /1%3(/ A, dr) dP .

Thus we have proved (12). O

The counting process N of lemma 2.2 will be called the composition of
N gnd N® at S, and the intensity A is called the composition of AV and
A2 at S.

Proof of theorem 2.1:
(1) For every n > 1 and every ¢ > 0 we define

S =inf{t >0 : A" — A | > e} (20)

Every S™¢ is an F(™-stopping time. The assumption (8) implies that for
every ¢ >0, 0 > 0 and 7" > 0 there exists an n(e,d,7") > 1 such that

P{S"* <T} <§ forall n>n(e0,7T). (21)

9



[Suppose that there exist € > 0, § > 0 and 7' > 0, such that for every m > 1
there is an n > 1, for which

P{S"*<T}>9.
Since
{sup |\ = N| > e} C {S™ < T},
t<T
we get

P{sup|\" — \| > ¢} > 6
t<T

in contradiction to assumption (8).]

Hence, if (g;);>1 is a fixed null-sequence of positive numbers, there exists
a strictly increasing sequence (n;);>; in N, such that

P{S™% < j} <¢e; forevery n>n;. (22)
We set

S" = 9" for n; <n<mnjy (23)
Then

P{S" <j}<e; for n; <n<nj, (24)

and the sequence (S™),,>1 has especially the property that

lim P{S" <T}=0 forevery T">0. (25)

n—oo

Now let (T}")j>1 for every n > 1 denote the composition of (Tk(n))kzl
and (Ty)g>1 at S™, and let A" denote the corresponding composition of the
intensities A and A at S™. Then the sequence (A"),>1 has the property
that

sup |\ — \| <5 for m; <n<mjy . (26)
0

This property is inherited by the sequence (7(\")),>1 of the predictable pro-
jections: The inequality (26) means that

A —e; < X?(w) <A +¢gj

10



for all (t,w) € Ry x Q, and hence the uniqueness of the Radon-Nikodym
derivative shows that also

A—g; <T(\") < A +¢; (dt®dP) —as..
Thus we may assume that

sup [m(A"), — M| < g5 (27)
>0

holds on 2. The same assertion then holds for the associated sequence
(A")nz1 of predictable projections on S°°. Thus we have for all n > 1

sup [N, — N\| <¢g; for my <n<mnjg . (28)
>0

(2) Now we will prove that the sequence ((77")x>1)n>1 (and as a consequence
also the sequence ((T™)4=1)n>1) is uniformly finite.

Proof: We choose j > 1 such that ¢; < 7, where ¢ > 0 is the positive

constant, which minorizes A\. Then we have for n > n;
P{T" >t > T”

L [

k=1

o L R (i) e L (Wi V- dty

.e—jf,ffl(mﬁj)dr)e—ffmfl(wrsj)dr} A, e db

2t o= Jy (Ar-tej) dr(fo (Ar +5])d7">
(m — 1)
o= JoOr—e)) dr(fO A\ +e5)dr)™
(m — 1)
e (oA +ey)dr)™
(m —1)! ’

IN

11



where we used that for n > n;
)\t—éfj SX?S)\t—i“Ej

for all ¢ > 0. It follows that

P{I" >t} = i My

("b

bl

- Stmz:l Ne —|—5j dr)"
=0

and hence we have proved

hm sup P{T" >t} =0, (29)
P n>n;
Since the point processes (THis1, - (T,:Lj_l)kzl are all finite, it follows that

the sequence ((1}!)k>1)n>1 is uniformly finite.

We will prove now that also the original sequence ( (Tén))kzl)n21 is uni-
formly finite. Since

we have

P{T{" <t} — P{T} < t}]
< PHTW <ty n{S, <th) +P{T" <t} n{S, <t}) <2,

and hence
P{T™ >t} <P{I" >t} +2¢; (30)
for n > n;. Since for every fixed j > 1

lim sup P{T™ >t} =0,

£—00 1<n<n;
it follows from (30) and the uniform finiteness of ((T}")k>1)n>1 that

lim sup sup P{T™ >t} < 2¢; .

t—oo n>1

Since this holds for every j > 1, the uniform finiteness of ((T,gn))kzl)nzl
follows.

12



(3) Now we start with the proof of (9). Let ¢ > 0 be given. Since the
sequence ((Tén)>k21)n21 is uniformly finite, we can find a ¢ = t(¢) > 0 such
that

P{T™ >t} <e¢

for every n > 1, and by assumption (7) on the deterministic intensity A we
may at the same time assume that also

P{T, >t} <e.
Then
sup {EF(Tl(n),--- ,T,Sf))—F(Th"' ,Tm)| (31)
FeBL(RT)
< sup [BEF(TY,- 7T7§1n))1{T("><t} — F(T1, - Tu)Lz<n| + 2¢
FEBL(RT) "

and it is sufficient to prove

lim  sup |[EF(T, - T

"0 PEBL(RY)

e~ P Tz =0

(32)

Now we compare the expectation E F(T' 1("), e ,Tn(zn))l for a fixed

<y
F € B!(R"") with the corresponding expectation E F(T7, - - - )0 <y Of
the composed process (T)>1. Since Tk(") = T on {S" >t} N (T < 1}
and on {S" >t} N {7} <t} resp. for k < m, we have

(n) n
[E R, TEO) p yy

- \E F(Tl(")’ ... ,T,Sf))l

—EF(TY, - Tl
1 <ipngensg| T EF@ Tl ian cpnqsnsy
< 2 for n>n;.

and thus

sup ) ‘E F(Tl(n), e T EF(17, - - 7T~n711)1{m§t}‘ < 2 (33)

1,y —
FEBI (R ) (T <t}
for every n > n;.
(33) means that (32) follows, if we prove that

lim  sup }EF(Tfa T afg)l{fggt}_F(Tb T JTm)l{TmSt}} =0. (34)

n00 pEBL(RYY)
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For every F' € B'(R"") we know (cf. (4)) that

|E F( Tlna' )1{T”<t} F(Ty, -+ To) <]
= tla ) m)
tm—1

m —n _ t n
[T (R (ticson) - e HE MDY g
k=1

' ' . E A d

_/ / F(tla 7tm)H <)\t e ftk o r) dtm dtl
0 tm—1 k=1

IA
O\w
T
|

Since

n

A, ((t)ick1) — M| <

forall 1 <k < mandalln > n;, it follows easily from Lebesgue’s convergence
theorem that (34) holds, and the theorem is proved. O.

Remark 2.3. The dominated convergence argument at the end of the proof
of theorem 2.1 is just a qualitative argument and it may be useful to have a
better quantitative estimate. Such an estimate is given - in the more general
context of marked point processes - at the end of the proof of theorem 3.1
below.

In case that the sequence ((7, k(")) k>1)n>1 18 also uniformly non-explosive,
theorem 2.1 can be generalized.

Theorem 2.4. Suppose that - in addition to the hypotheses of theorem 2.1 -
the sequence ((T,ﬁ”))@l)nzl is uniformly non-explosive. Then for everyT > 0

lim  sup  [BF(T")iz1) — EF((Ti)iz1)| = 0. (36)

n—00 peBl(S>°,Gr)

Before we start with the proof of the theorem, we give a different inter-
pretation of the limit relation (36). Let D([0,7"]) denote the space of all right

14



continuous functions with left hand limits on the interval [0, T'] provided with
the o-algebra Dr generated by the maps f — f(¢) (¢t € [0,7]). Then the
map

¢T : (SooagT) - (D([O’TD7DT) )
defined by

Vr((tr)e=1) Zl[l)t] (tx)

k>1

is Gp-Dp-measurable. Now let
N®T — (Nt(n)>0StST

denote the counting process associated to (Tén))kzl and restricted to [0, T7.
Then N7 can be viewed as a D([0,T])-valued random vector. Moreover,

NOWT = 4 (T )21 -

If NT = (N;)o<t<r denotes the counting process associated to (Ty)g>1, then
(36) is equivalent to the assertion

im  sup  [EF(NOT)—EF(NT)] =0 o
"% peBI(D(0,1) Pr)

for every T' > 0.
Proof of theorem 2.4: Since
Gr=oc({m NT|k>1}),
a function F': S — R is Gp-measurable, if and only if F' is of the form

F((tk)i=1) = F((te AT)i1)

for every (tx)r>1 € S*. Since ((T(" )Jk>1)n>1 is uniformly non-explosive, for
every € > 0 we can find an m = m(e) > 1 such that

P{TW <T} <e foralln>1and P{T, <T}<c. (38)
Thus we have for every F' € B}(S*, Gr)

‘EF én))k>1) - EF((Tk)kzl)‘

< E|F ™A T)g>1)1 - F((Tk A T)k‘21>1{Tm>T}| + 2,

(TS >T)

15



and for the assertion (36) it is sufficient to prove

lim sup Elﬁ((T]gn)/\T)k21>1{T(n)>T}_F((Tk/\T>k21)1{Tm>T}’ =0.
n—00 peB1(§%° Gr) m
(39)
Let us define the transformation
Uy Bl(SOO, Gr) — Bl(RT)
by
\I/T(F)(tl, T 7tm) = F(tl /\T, c ,tm /\T,T,T,' . ')]-{tm>T} .

Then (40) means that we have to prove

lim  sup  E|Ur(F)(T", - T0) = Ur(F)(Ty, -, T)| =0, (40)
N0 FeB1(S%°,Gr)

but this assertion follows immediately from theorem 2.1. O

We now present a general example, which shows that the general assump-
tions on the sequence ((Tk(")) k>1)n>1 Of point processes are very natural.

We start with a single point process (T,),>1 and assume that for a
right continuous filtration F = (F});>¢ the associated counting process N =
(N¢)i>o is integrable, finite and has the F-intensity A = (A)i>o0.

Let (N* F* A\¥).>; be a sequence of independent copies of (N, F, \) and
define for every n > 1 the counting process N = (Nt(n))tzo by

N =" NE . (41)
k=1
Corresponding to N™ we define the filtration F™ by

FV =\ Ft . (42)
Then it is easy to show that every N has the F™-intensity A", given by

SRR~
)\ﬁ):EZ)\’%. (43)
k=1
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Theorem 2.5. Suppose that ESUPogthXt < oo for every T > 0 and that

a:=EXN > 0. Let N = (N,);>0 be a Poisson process with parameter o.
Then (with the notations introduced after theorem 2.4)

lim sup [EF(N™T) —EF(NT)| =0 “
=% peBL(D([0,T)),Dr)

for every T > 0.

Proof: We prove that for the sequence (N™) the assumptions of the theo-
rems 2.1 and 2.4 are fulfilled.

Let D([0,7]) denote the space of all functions f : [0,7] — R, which
are right continuous and have left hand limits. For f € D([0,T]) we set
IfIl == supg<i<r |f(t)|. Then D([0,T]) is a Banach space relative to this
norm. If we define

X5 = (A))oze<r ,

then (X[);>1 is an independent, identically distributed sequence of D([0, T7)-
valued random vectors. Since by assumption

E|XT| = Eoi%x <00,

we know from the strong law of large numbers for Banach space valued
random vectors (see e.g. [4]) that

1= o7 T

> X =EX{ P-as

"
in D([0,7]), which means that P-a-s.

sup ‘lzn:/\f—Ext‘ — 0.

0<t<T T

Thus we have that for P-almost every w € ) and every given ¢ > 0 there
exists an n(e,w) > 1 such that

0<t<T

I -
sup ‘ﬁ E )\f(w)—E)\t‘ <g
k=1

17



for every n > n(e,w). Since t — E), is right continuous, there exists also
some t(¢) > 0 such that

IEX, — EXo| < %

for every t < t(e). If we assume that n(e,w) is large enough such that
T < n(e,w)t(e), then

sup (AN (W) —al <e
0<t<T

for every n > n(e,w), and we have proved condition (8) of theorem 2.1.

For an application of theorem 2.3 it remains to prove that the sequence
(N™),> is uniformly non-explosive. We have

1
P{N™ >m} < EEN,:(”)

= iiEN’f = inENt

1 —
< —tEsup A,
m s<t

and hence (N(),,>; is uniformly non-explosive. O

3 The Case of Marked Point Processes

Let (E,€&) be a measurable space and let A denote an artificial element
outside of E. We set Ea := E U {A} and provide Ex with the o-algebra
En == 0(EU{{A}}). Now suppose that (7,),>1 is a point process and that
(Xn)n>1 is a sequence of Ea-valued random variables such that the following
condition holds:

T, =00 <— X, =A . (45)

Then the double sequence ((7},, X,,))n>1 is called a marked point process. For
n = 0 we make the convention X := ¢ with a fixed ¢ € E.

18



In the following we will always assume that E is a polish space and that
£ is the Borel field of E.

The marked point process ((7},, X,,))n>1 can be equivalently described by
the family

N = ((Nt(B))tZO)Bes

of counting processes, where

Ny(B) = Z Lir,<iylix,eBy -

n>1

For B = E we just write (IV;);>0 instead of (V:(E))s>o.

N can be viewed as a random measure on R, X E and will be called the
counting measure of (T, Xpn))n>1-

The role of the intensity is now replaced by the notion of an intensity
measure: Let F = (F;)i>o be a right continuous filtration on (2, F, P), such
that N is F-adapted in the sense that every process (Ny(B)):>o is F-adapted.
The smallest filtration, for which /N is adapted in this sense, is the canonical
filtration FY = (F)>0, defined by

FN :=o({NyB)|s<t,Bcé&}).
A family

A= ((At(B))tZO) Be€

of F-adapted, R -valued cadlag-processes (Ai(B)):>0 is called an intensity
measure, if for every ¢t > 0 the map

€3 B \(B)

is a finite measure on F, and if for every ¢ > 0
t
/ As(E)ds < oo P-as. .
0

Again we just write (A);>0 instead of (A(E))>o0-

Then we say that N (or ((7,, X,,))n>1) has the F-intensity measure A, if
for every B € £ and every m > 1 the process

(Nons,, (B) - /0 “A(B)ds) ., (46)
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is a F-martingale. If N is non-explosive (i.e. if (7},),>1 is non-explosive),
then (46) just means that every process

()~ [ A8 ), (47)

is a local F-martingale (with (7},),>1 as localizing sequence), and if (Ny)i>o
or ( fot s ds)i>p are integrable processes, then the processes in (47) are all
F-martingales.

The canonical space for the concrete construction of marked point pro-
cesses is here the space

§%(E) = { (e zi)izo € R x BAY* | () (thezo € 5%, a0 = e,
(i7) ty, =00 & xk:A}.
Again we write ((tg, zx))k<n for ((tx, zx))k>0 € S®(E), if t,11 = oc.
Now we define 7,, : S®(E) — R, and &, : S®(E) — Ea for n > 0 by
(e Tk)Jhz0) = tn and & (((Er, 2a))rz0) = Tn -

Then we set for every B € £

Vt(B) = Z 1{Tn§t}]'{§neB} )

n>1
and define on S*°(E) the filtration H = (H;);>0 by

Hi:=oc({vs(B)|s<t,Be&}).

Now let W : Q2 — S*(FE) be defined by
V(W) = (Tn(w), Xn(w)))nzo -
It follows that
V(M) = F (48)
for every t > 0, and

U(P) =P (1, x))ns1 -
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From now on we make the general assumption that every marked point
process ((T5,, Xn))n>1 considered in this paper is integrable and finite in the
sense that (N;):>o is integrable and finite. This is equivalent to the properties
that (A);>o is integrable and that fooo As ds = o0

Similarly to the simple point process case, the given intensity measure
A determines an associated predictable intensity measure: For every fixed
B € & the measure \;(B) dt @ dP is absolutely continuous relative to dt @ dP
on (R, x Q,P(FY)), and hence there exists a P(FY)-measurable Radon-
Nikodym density m(A)(B) = (7(A)i(B))i>0. By the same arguments as for
the proof of the existence of conditional distributions one can see that one
can choose a version of 7(\)(B), such that again

B — 7(\)(B)

is a finite measure on (F,&). It follows from (48) that there is also an H-
intensity measure

X = ((RNe(B))ez0) pee (49)
such that
7(A)e(B) = A(B) o ¥ (50)

for every t > 0 and every B € £. Again we will call 7(A) the predictable
projection of A on € and \ the predictable projection of A on S*®(FE).

The predictable projection A determines completely the distribution of
(T, X3))n>1: If F' o (Ry x E)™ — R is bounded and measurable, then

E F(((Tk, Xx))k<m) (51)

L

2m zntegrals
A B T m— dr
Atm(dfﬂ'm; ((tk,xk))kgm_l) ]t ((trs®r)) e<m—1) dtm
(e i

(where in the last line \(dz1) = A\(dzy, ((tr, 21) k<o)
The stochastic kernel
Xt(d:v; ((tia xi))igk—l)e_ftk_l X’“(((tiﬂ?i))iﬁk—l)dr dt
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has the probabilistic interpretation that
Reldes (T, X))ignor)e s (D= gy
= P{(Ty, Xy) € dt x dz | (T}, X;))i<k-1} - (52)

It is sometimes convenient to write formula (51) in a little bit different
form. We define

Ae(dz;((thsek)k<m) 0 X
Tt(dl‘; ((tk, xk))kgm) = Xt(((tk,dfk))kﬁm) 1f )\t«(tk’ xk))kgm) - 0
Oc if - Xe(((tk, ) ) r<m) = 0

Then 7,(dz; ((tg, xk))k<m) is & stochastic kernel,

e (da; (b ) hem) = To(d; ((Ers ©x) Jk<m) = Me(((Es 1)) k<m) (53)

for every t > 0, and formula (51) is now of the form

E F(((Tk, Xk))k<m) (54)
/ / / /{ ((tes k) ) <m)
m— tzmes m— tzmes

thk<<<tia$i))i§k,1) ftk , Ar((t,m0))i<k—1) dr }

N (s ((Ery T8) Jh<m—1) * -+, (d1; (ks T1) Jr<0) by -+ - ity

The kernel 7 has the probabilistic interpretation:

V1, (dz; (They X)) rzm—1) = P{Xon € dz | Ty, ((Thes Xi)Jhm—1} -

For the approximation results we need the following data: We suppose
that we are given a sequence

(((ngn)a X))z, B0, A

n>1"

where

(i) every ((T,in),Xlgn))kzl is an integrable and finite marked point process
with associated family N® = ((N"(B));s0) pes of counting measures,

(ii) every F(™ = (F" ) )e>0 is a right continuous filtration, and

(iii) every N(") has the F(™-intensity measure A" = ((Aﬁ")(B))tZO)Beg.
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Furthermore, we suppose that we are given a deterministic kernel A =
((At(B))t>0) Bee such that

inf \; > ¢ (55)

>0

for some positive constant c. Now let ((7}, Xi))r>1 be a marked point process,
whose counting measure N = ((NVy(B)):>0)see has the intensity measure
A. We call such a marked point process an inhomogeneous marked Poisson
process. W.l.o.g. we assume that ((T%, Xj))r>1 is independent of \/ -, F.
Again we have that -

M(dz) = yi(da) |

where 7;(dz) is just a probability measure on F.

Theorem 3.1. Assume that the sequence ()\(n))nZI has the property

sup sup |/\§n)(B) — M(B)| — 0 in probability (56)
t<T Be€

for every T' > 0. Then for every m > 1
lim sup [BF (T, XV km) = BF ((Ti, Xi)kzm)| = 0. (57)

n=00 PeBI((Ry xE)™

Remark 3.2. Condition (56) is mainly a condition on the convergence be-

haviour of certain conditional distributions of the X ,5"). Suppose that A
denotes the predictable projection of A on S®(E), and that according to
(53)

N (e (th o) Jhmr) = T (@ (s 20) ) - A ((E, 7))
with the interpretation
i (s (T, X emor) = P{XE) € da | TR (T, X kemr} -
If also A is given in the form
A(B) = n(B)A:
then (56) implies that

sup sup |7 (B) — 7(B)| — 0 in probability
t<T BeE

for every 7" > 0. This will follow from a remark at the end of step (1) of the
proof of theorem 3.1 below.
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For the proof of theorem 3.1 we will need the following lemma, which is
well known, but which we prove for the lack of an exact reference.

Lemma 3.3. Let (X, X) be a measurable space and suppose that j and v are
two finite measures on X. Then

sup ‘/Fd,LL—/Fdl/’ < 2sup |u(A) —v(A)|.
)

FeBl(X Aex

Proof: (cf. [5], sec. 29) We set A = u—v. Then A is a finite signed measure
on X, and there exists a decomposition of X in two sets B,, B_ € & such
that for every A € X

MANBL)>0 and AMANB-)<0

(this is the so called Hahn decomposition of X rel. to ). The non-negative
finite measures A* and A~, defined by

A(A)=XANB;) and AN (A)=-NANB.)

for all A € X, are called the upper and the lower variation of A resp.. One
has A = AT — A~ (this is the so called Jordan decomposition of \), and
|A| := AT + A7 is called the total variation of A\. The Hahn decomposition
shows that

maxx(A*(X). A” (X)) < sup [\(4)]

On the other side

sup [M(A)| < sup max(A*(A4), A7 (4)) < max(A"(X), A" (X)) .

Thus we have

sup |[A(A)] = max(AT(X), A7 (X)) .

AeXx

Since

IAIX) = AT(X) + 27 (X) < 2max(AF(X), A7 (X)),
we get for F' € BY(X)

\/m(dx)\ <DX) < 2max(AF(X), A~ (X))

= 2sup|A(4),
AeX
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and the lemma is proved. O

the next lemma generalizes lemma 2.2 to the case of marked point pro-
cesses.

Lemma 3.4. Suppose that ((Té”,X,S)))M and ((T, 2),X,f)))k21 are two
marked point processes with associated counting measures NV and N . We
assume that

(i) FY) is a right continuous filtration, for which N is adapted and has the
FO) _intensity measure XV, that

(ii) N® has the intensity measure N\ relative to the canonical filtration
FN? of N® | and that

(iii) F and N@ are independent.

Let S be a given FW-stopping time and define for every t > 0 and every
Be€&

N(B) = NJ%(B)+ (NZs(B) - NY(B)), (58)
Fo o= FosVo(INS(B) - NS(B)|s<t,Beé&}), and
MB) = AV (B)lgesy + A (B)s<ry -

Then ]Sf = ((N:(B))i0)Bee is a counting measure with the intensity measure
A = ((M(B))i>0)Bee relative to the filtration F = (F;);>0. The corresponding
marked point process ((Ti, Xi))k>1 1S given by

(T X)) = (LY, X)L 0, (59)

k
{S<T<1 } Zl (J 1))1{T}i)1§S<T](1)} :
j:

We omit the proof, which would be very similar to the proof of lemma
2.2. The marked point process ((Tj, Xj))r>1 will be called the composition of
((T,il),X,gl)))kzl and ((T,E ),X(Q)))kzl at S. Similarly, the intensity measure
A is called the composition of XV and \® at S.

Proof of theorem 3.1:
(1) For every n > 1 and every ¢ > 0 we define

S™¢ = inf{t > 0 : sup|A\"(B) — M(B)| > £} . (60)
Beé&
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We claim that S™¢ is an F(™-stopping time: Since E is a polish space, there
exists (cf. [1]) an at most countable algebra G C € such that £ = ¢(G). Thus
suppose that G = {B; |j > 1}. Then

sup [\ (B) — A (B)| = sup [\ (B;) — \(B;)|

Be& j>1

and therefore

{sme <ty = J U1 (B) = A(B))| > ¢} . (61)

s<t §>1
s€Qy T

Since F™ is right continuous, (61) shows that S™° is a stopping time.

The assumption (56) implies that for every € > 0, § > 0 and 7" > 0 there
exists an n(s,0,7) > 1 such that

P{s"* <T} <§ forall n>n(e0,7T). (62)
Thus we may argue as in the proof of theorem 2.1: If (¢;);>; is a fixed

null-sequence of positive numbers, there exists a strictly increasing sequence
(nj)j21 in N, such that

P{S™% < j} <e; forevery n>n;, (63)
and we set

S"i= 8" for n; <n < njy (64)
Then

P{S" <j}<e; for n; <n<nj. (65)

Let (T, X™)is1 (n > 1) denote the composition of (T, X™))4x1
and ((Ty, X1))r=1 at S, and let A" denote the corresponding composition of
the intensity measures A(” and X at S”. Then the sequence (A"),>; has the
property that

supsup |\'(B) — M(B)| <¢&; for n; <n <mnj . (66)
>0 Be€

By the same argument as in the proof of theorem 2.1 this property carries
over to the predictable projections A" of A" on S>°(E), i.e. we have also

supsup [\, (B) — M(B)| <¢&; for n; <n <mnj . (67)
>0 Be€
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Remark: Assume (cf. 53) that A" is given in the form

N (d; (b @) k) = 77 (ds (b @) Jozm) - Ny (B @) k<) (68)

for every m > 0 and ((tg, %) )kr<m € S®(E). For A (((tg, %) )k<m) > 0 and
B € £ we know that

F(B; (b 1) k) = % A <<<(titk;:f>>:f§?) |

Thus we have

|72 (B; ((th: 1) Jk<m) — 3(B))|
|>\ ((tk, 24))b<m) = M(B))] N
- X (((tr, z) ) k<m) X:(((tkal’k))kSm)

For large enough j > 1 we have ¢; < 5, which implies

|X?(((tk7 xk))kgm) - )\t‘ .

—n c_ c
)‘t (((tkaxk))kgm) >N — gj >\ — 5 > 5
for n > n; and we have proved that
4
sup [77(B; ((te, 26) Jk<m) — 1(B)| < =, (69)
Be€ c

for all m > 0, ((tx, zk))k<m and all n > n;, if j is large enough. This limit
relation can now be used to prove the remark 3.2.

(2) Now we start with proof of (57). As in part (2) of the proof of

theorem 2.1 it follows that the sequences ((Tk(n))kzﬂnzl and ((T])k>1)n>1
are uniformly finite. Thus for a fixed given € > 0 there exists a t = t(g) > 0
such that

P{T™ >t} <e and P{I" >t} <¢

for every n > 1, and by assumption (55) on the deterministic intensity mea-
sure A we may at the same time assume that also

P{T, >t} <e.
As a consequence, for the proof of (57) it is sufficient to prove

lim sup |EF (((Tkgn), X,E,n) Ji<m) 1
n—00 peBI((Ry x E)™)

(15 <t} (70)
—EF((Th, Xi)k<m) Lirn<y| = 0,
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and again by the same arguments as in the proof of theorem 2.1 this follows
if we prove that

lim sup ‘EF(((Tgng)kgm)l{mgt} (71)
T FeBL((Ry xE)™)

— EF ((Th, Xi)k<m) Lirn<y| = 0.
We have (cf. 51)
B F(((T3, X)) kem) Lz < (72)

/ / /m 1/ (k> ) k<) 110, ()

2m zntegrals

tm

Xy (A (b 1) Yy e s (oDl gy
..Xz(dmeﬁgl Ndr gy

If we set

ot () (((te; 1) Jcm—1)

= [ [ Pt (tn)
tm—1 J E
fm X:(((ti,l"i))igm—l)d” dt

X:Lm (dl’m7 ((tk; xk))kgm—l)e_ tm—1

m

then
Ut (BH((Ry x E)™)) € BY((Ry x E)™7), (73)
and
E F(((T7, Xi)kam) Lign ey = B (F) (T2 X)) kam—1) Lim <y - (74)
Similarly, for the transformation v,,, defined by
Ut (F) (5 ) k1)

_ /°° /E F(((th, ) k) o) ()

N, (da)e a2 gp

we have
E F(((Th Xi)e<m) Yzn<ty = B (F) ((Ths Xk) Jkzm—1) Lz,_i <ty - (75)

28



From (74) and (75) we obtain now for (71)

‘EF(((Tgvxg))kém)l{Tﬂlgt} —EF(((Th, Xi) Jr<m) Limn <ty
B () (T XiDkem) Lz <0
—Ey, (F)((Te, Xi) Jhem—1) Lz, 1<ty

B () (T Xk Lt 120

— B 1 (F) ((Th, X)) Jo<m—1) L1 <ty | -

From (74) we get for the term(76)
swp B () (T KD kem1) Lz, <
FEBL((Ry x E)™)

—E, (F)((Te, Xi) Jhem—1) Lz, 1<ty

< sup EF (T, Xi)k<m) Lgn <y

FEBL((Ryx E)m—1)

—E F(((Th, Xi))k<m—1) Lz 1<ty | -

Now consider the term (77). We have
ot (F) (s 21 zm1) = e (F) (s 21) )|
/ / (ks @) Jozm) M, (A (B, 00) ) izim1)

o0
iy
tm—1

= [ P )iz ()L ) s

o N (Ewigmea)dr = [ Ard

" Loy (t

(76)

(77)

(79)

) dt

For the first term on the right hand side of (79) we obtain from lemma 3.3

/too ‘/EF(((tk,ZEk))kSm)X:m(d:Em;((tk7$k))k§m_1)

- /E F(((t 28) ) Moy (€)1 () e

S 2t€j
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for n > n;, and for the second term on the right hand side of (79) we get

S tm " ). r — [tm T
/ e S A ((bewDimo)dr 2 S drdr |y g ()
tm—1

> — [ Andr
< / Lo (tm) As, € L
tm—1

(X () igmo)=Ar) dr 1| dty,

‘6 tm—1

< e / Lo ()A€ eoia 2t (81)

tm—1

With the aid of the inequalities (80) and (81) it is now easy to see that we
get for the term (77)

B (F) (T XiDkmo) Lt

— E i (F) (Ths X)) k<m—1) 11,1 <1

S BtEj .

Together with (78) it follows finally that

sup ’EF(((T,?,X/?))kSm)l{mét}
FEBL((R xE)™)

— EF(((Th, X&) Jk<m) Limn<n)

< 3mite; ,
and the theorem is proved. O

As in the simple point process case, theorem 3.1 can be generalized in
case that the sequence (((T,g"), x"Y) k>1),,~, is uniformly non-explosive.

Theorem 3.5. Suppose that (((T,fn), X,E")))kzl)ml is uniformly non-explosive.
Then under the assumptions of theorem 3.1 -

lm swp [BF((@, X)) ~EF((Th X)) = 0 (82)
0 FEBL((S%°(E),Hy))

for every t > 0.

Proof: We set for t > 0 and every k > 1

5}'; =&l < + el
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Then it is not difficult to prove that

He=o({(me Azt (Er=1}) -

Thus a function F': S*(E) — R is H;-measurable, if and only if F' is of the
form

F(((thza))i=1) = F(((t A &) iz1)

for every ((tg,xr))p>1 € S®(E). Since our sequence of marked point pro-
cesses is uniformly non-explosive, for every given ¢ > 0 we can find an
m = m(e) > 1 such that for every n > 1

P{T™ <t} <e and P{T, <t} <e.
Thus for every F' € BY((S™(E), H:))
B P17, X" k1) = B F (T, X))o ) |
< EBF(((T A X)) Ly

— F(((Ti Nt X1)) k1) Lty | + 22

where of course

(n)t ._ 3 (n)
Xk = Xk 1{T,§">§t}+61{T£")>t} .

Now the proof of the theorem is continued similarly to the proof of theorem
24. 0

The next result is in a certain sense connected with the problem of ap-
proximating a compound Poisson distribution as studied in [6].

Corollary 3.6. Suppose that (((Tk(;n), X,E;”)))kzl)n>1 is uniformly non-explosive
and that the assumptions of theorem 3.1 hold. For every n > 1 and every
t > 0 we set

=Y XPlgeray and Si=D Xilnen

k>1 k>1

Then

lim sup !E F((St(”))oqu) — EF((St)ogthH =0 (83)

"o FeB(D([0,T1)) -

for every T > 0.
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Proof: Let T > 0 be fixed and define the map o7 : S* — BY(D([0,T])) by

@T(((tkv xk))’@l) - (Z il <tk)>o<t<T

k>1
for ((tr, x1))k>1 € S®(F). Then F o por € B ((S®(E),Hr)) and

sup |EF((St(n))OStST) ~EF((S)ozizr)| =
FeB!(D([0,T]))

sup B (Foor) (T, X" )iz1) — E(F o o) (T, Xi) k1)

FeB(D([0,1]))

)

and (83) follows from theorem 3.5. O

As a general example we prove an analogue to theorem 2.5 in the marked
point process case. We start with a single marked point process (T, X))r>1
and assume that the associated counting measure N is integrable, finite, and
has the intensity measure \ relative to a right continuous filtration F =
(F()i>0. We suppose in addition that A has the properties that

E sup \y <oo forevery T >0, (84)
0<t<T
that
a:=E\N>0, (85)
and that
limsup |[EN(B) — EXg(B)| =0 (86)
tl0 Beg

Let (N* F* \¥),>; be a sequence of independent copies of (N, F, \) and
define for every n > 1 the counting measure N ™ = ((Nt(n)(B))tgo)Beg by

n

N(B) = NE(B) . (87)

Corresponding to N we define the filtration F™ by

FW =\ Ft . (88)
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Then it is easy to show that every N has the F(™-intensity measure A(®
given by

N8B Z Xi (B (89)
fort > 0and B € €.

Theorem 3.7. Let ((Tk, Xi))r>1 be a marked point process, whose counting
measure has the intensity measure X given by \(B) = EXo(B). Then

lim sup  [EF((T, X0)kzt) ~E F((Th, Xi))iz1) | = 0 (90)
N0 FeBL((S>°(E),Hr))

for every T > 0.

Proof: For a fixed T > 0 we define

Dy := {x = (f5)pee € D(0,T])° | lIxllz := supsup |f5(¢)] < 0o} .

Then (D7, ||-||7) is a Banach space. If we define
Xi = (N (B))esr)pee .

then (Xj)k>1 is an independent, identically distributed sequence of Dr-valued
random vectors. Since by assumption (84)

E | Xy|r = Esupsup \(B) < oo,
t<T Be&

we know from the strong law of large numbers for Banach space valued
random vectors (see e.g. [4]) that

1 n
- ZXk —EX, P-as.
n

Thus P-a.s.

sup sup |— M(B) —EXN(B)| =0 forn — oo .
t<713 Beg n Z ! )}
Together with assumption (86) the condition (56) of theorem 3.1 follows.

Since the sequence ((T]gn)>k21)n21 is also uniformly non-explosive (see the
end of the proof of theorem 2.4), the assertion of the theorem follows from
theorem 3.5. O
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Remark 3.8. The deterministic limit intensity A in theorem 3.7 is of the
form y(dz)a, where a > 0 and where y(dz) is a probability measure on FE.
This means that ((Tk, Xx))r>1 is a (homogeneous) marked Poisson process:
(T )k>1 is a classical Poisson process with parameter a > 0, (Xj)>1 is an i.i.d.
sequence independent of (T%)x>1, and y(dz) = Px,. Thus the distribution of
every S; is compound Poisson and corollary 3.6 gives a result for convergence
towards a compound Poisson process.
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