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Introduction

The linear model is one of the most frequently applied models in statistics. It assumes
the expected value of a vector of observable random variables as a linear function of
a parameter vector. This parameter vector needs to be estimated first. The model
then enables the prediction of non–observable random variables whose expectations
are assumed to be a linear function of the same parameter vector. In general, the
parameter vector may be estimated by means of several procedures. Least squares
approaches, maximum likelihood as well as the generalized method of moments are
common estimation techniques. They are described in detail in textbooks such as Rao
and Toutenburg [1995], Koch [1997], and Greene [2002].

One of the most prominent fields of actuarial application of the linear model is loss
reserving. Loss reserving tries to find patterns in the run–off of claim payments of
insurance companies and uses them to predict future loss payments. In general, there
are various approaches to loss reserving, a record of which is given in Schmidt [2006].
The linear model on which we focus in this work is a straightforward method, which
makes prediction and the estimation of the prediction error easily feasible once the
model has been set up. Moreover, it provides various desired properties of estimators
and predictors. The use of linear models in loss reserving was firstly stressed by Halliwell
[1997] as well as Radtke and Schmidt [2004] and Schmidt [2004].

In the Gauss–Markov framework applied in this work, a linear model gives linear and
unbiased parameter estimators as well as predictors. They are determined by minimiz-
ing a common loss function which is the (conditional) expected squared prediction error
in this work. We thus strive for embedding traditional as well as recent proposals for
loss reserving into the linear model in order to obtain statistically justified predictors.

As mentioned above, predictors are forced to be linear, unbiased and to minimize the
expected squared prediction error. Furthermore, we are able to determine variances
of and covariances between prediction errors. Thus, we provide the basis to compare
the uncertainty of predictions obtained by different models with respect to the given
insurance portfolio.

Driven by a paper of Ajne [1994], who showed that the sum of chain–ladder predictors for
different lines of businesses equals the chain–ladder predictor of the aggregated portfolio
only in rare and rather academical cases, loss reserving researchers strived for taking the
next step in modeling the insurer’s portfolio adequately. In this respect, Braun [2004],
Kremer [2005], Pröhl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006]
were among the first to propose multivariate models which reflect the dependencies
between an arbitrary number of lines of businesses. The problem of additivity hence
found its appropriate answer by these models. This work aspires at the derivation of
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multivariate extensions of various loss reserving approaches as well as the computation
of prediction errors of the accident year, calendar year and total reserve in these models
where they have not been revealed so far.

Moreover, linear models enable the user to mitigate the paid/incurred problem. A single
portfolio may be described by a triangle of paid losses, i.e. all payments of the insurance
company, as well as a triangle of incurred losses, i.e. all payments and case reserves for
future payments. Naturally, these triangles lead to different predictors. Using a linear
constraint on the model parameters, Halliwell [1997] proposed a method to close the gap
between predictors obtained from the paid and the incurred triangle, respectively. In
this work, we examine the linear model under a linear constraint following Kloberdanz
and Schmidt [2008a, 2008b] and utilize these results in connection with specific loss
reserving models. Another approach to solving the paid/incurred problem, the so–
called Munich chain–ladder model, was developed by Quarg and Mack [2004] and further
motivated by Merz and Wüthrich [2006].

This work is organized as follows. We first present the elements of the general linear
model and derive important conclusions as to the shape of predictors and their pre-
diction errors (Chapter 1). Moreover, we show the uniqueness of the Gauss–Markov
predictor obtained. Chapter 1 also extends the linear model in a way that linear con-
straints on the parameters may be introduced. This allows for the inclusion of a–priori
information as to the behaviour of parameters as well as of random variables which are
to be predicted. Hence, this enables us to reduce the gap between ultimate loss pre-
dictions for the paid and incurred triangles and thus helps mitigate the paid/incurred
problem mentioned above.

Since we strive for the presentation of distribution–based models of loss reserving in
this work as well, Chapter 2 provides the basic results for linear models with normal
distribution assumed on the variable which is to be explained. To parallel the discussion
of the first chapter, we also present the normal linear model under a linear constraint.
Chapter 3 discusses the lognormal loglinear model in which the variables to be explained
are assumed to be lognormally distributed. Again, the case with linear constraints is
additionally discussed. In order to be able to embed the widely used chain–ladder
model, amongst others, into our general setting, we need to introduce the conditional
linear model in Chapter 4. It presents results for the conditional linear model under a
linear constraint as well. Subsequently, we will be in a position to apply these results
to specific models for loss reserving.

Chapter 5 leads over from theoretical considerations regarding the linear model to mod-
els used in practice. Chapter 6 deals with the additive model, in which we model the
expected value of incremental losses of the same development year as a constant mul-
tiple of the volume measure belonging to the respective accident year. Based on the
results of the multivariate additive model, a special bivariate model in which volume
measures do not differ among subportfolios is analyzed and subsequently results for the
bivariate additive model under a linear constraint are given. In Chapter 7, we examine
the lognormal logadditive model as a representative of a class of models in which as-
sumptions on the distribution of incremental and cumulative claims, respectively, are
drawn. This discussion is based on the textbooks of Mack [1997] as well as Radtke and
Schmidt [2004].
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A more recent model proposed by Panning [2006] is presented in Chapter 8. In a con-
ditional setting, we use incremental losses of the first development year as the volume
measure. The bivariate Panning model under a linear constraint gives another means
to counter the paid/incurred problem. The most well–known model in loss reserving,
the chain–ladder model, is the focal point of Chapter 9. In the traditional approach,
development factors project cumulative claims from one development year to the fol-
lowing one. However, we also present a chain–ladder model for incremental losses and
show the relation of its parameter estimates and reserve predictions to the ones ob-
tained in the model for cumulative losses. When determining prediction errors, we
utilize approximations suggested by Mack [1993].

Eventually, we present proposals for further research in Chapter 10. An attempt to solve
the paid/incurred problem, the model of Dahms [2008] incorporates the basic ideas of
the chain–ladder model applied on the outstanding case reserves. The closure–based
regression method of Anhalt and Marsden [2007] provides another means to tackle the
paid/incurred problem. Moreover, as the models mentioned above turn out to depend
on only one explaining variable, we suggest to make use of two or more regressors.
Analyzing the case of two regressors, we point out the mathematical pitfalls of such
approaches. Exemplarily, we present the Panning model with premiums as a second
regressor.

The additive model, the Panning model as well as the chain–ladder model were imple-
mented in Excel and used for the calculation of practical examples. Chapter 11 presents
results for reserves and their prediction errors obtained by these models. Moreover, we
examine the ability of the bivariate Panning and additive model, respectively, under
a linear constraint in order to close the gap between paid and incurred ultimate loss
predictions. Our triangles are taken from real-world data provided by reinsurers.

In the entire work, all random variables, random vectors as well as random matrices are
defined on the probability space (Ω,F , P ). Further assumptions such as measurability
and integrability with respect to certain sub-σ-algebras of F are stated in the text.
Furthermore, we assume that all equations, model assumptions and assertions refering
to random variables hold P -almost surely.
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