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Abstract

For the multivariate additive model proposed by Hess et al. [2006] which
provides an extension of the additive (or incremental loss ratio) method to
correlated lines of business, we determine the Gauss–Markov predictors of
the calendar year reserves and their mean squared errors of prediction. We
also show that the mean squared errors of prediction can be estimated by
using moment estimators for the parameters which determine the correlation
structure. The result is of interest with regard to Solvency II, and it is new
even in the univariate case considered by Mack [1991].



1 Introduction

Like the chain–ladder method, the additive (or incremental loss ratio) method is one
of the most popular methods in loss reserving. Unlike the chain–ladder method,
however, it uses not only the data of the run–off triangle of all observable losses
but also certain volume measures for the accident years. As a volume measure one
could take, for example, the number of policies or the premium income, and such
objective measures of exposure could compensate for the volatility of the data of
the run–off triangle.

Mack [1991] proposed a stochastic model which, combined with a natural principle
of parameter estimation, produces the predictors of the non–observable incremental
losses used in the additive method and which is now called the additive model of
loss reserving. In fact, the additive model is a linear model, the estimators of the
parameters turn out to be Gauss–Markov estimators, and the predictors of the
non–observable losses turn out to be Gauss–Markov predictors. Because of this
observation and inspired by a personal communication of Braun [2005], Hess et al.
[2006] proposed a multivariate version of the additive model and the Gauss–Markov
predictors in their multivariate additive model provide a multivariate version of the
additive method which takes into account correlations between different lines of
business; see also Schmidt [2006b].

In the (multivariate) additive model, the Gauss–Markov predictors of the non–
observable incremental losses are completely determined by the volume measures
and the correlation structure, and this is also true for their mean squared errors of
prediction. Moreover, since Gauss–Markov prediction is linear, the Gauss–Markov
predictor of a sum of non–observable incremental losses is just the sum of their
Gauss–Markov predictors. Since reserves are sums of non–observable incremental
losses, the Gauss–Markov predictors of reserves and their mean squared errors of
prediction are easy to determine, and it turns out that the mean squared errors of
prediction can be estimated by replacing the variances and covariances with moment
estimators.1

For the accident year reserves and the total reserve, the natural estimators of the
mean squared errors of prediction were determined by Mack [1991] for the univariate
additive model and by Merz and Wüthrich [2009] for the multivariate additive model.
For Solvency II purposes, however, calendar year reserves are more important, and
this is particularly true for the reserve for the first non–observable calendar year.
In the present paper, we determine the calendar year reserves in the multivariate
additive model and their mean squared errors of prediction which, as noted before,
can be estimated by the use of plug–in estimators.

1The use of plug–in estimators for estimating the mean squared errors of prediction is not
possible in the chain–ladder model proposed by Mack [1993] and its multivariate extension proposed
by Pröhl and Schmidt [2005]. In these models, certain approximations seem to be unavoidable in
the construction of estimators of the mean squared errors of prediction and it appears to be difficult
to quantify the approximation errors.
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2 The Multivariate Additive Model

We consider m portfolios of risks all having the same number of development years.
The m portfolios may be interpreted as subportfolios of an aggregate portfolio. For
portfolio p ∈ {1, . . . ,m}, we denote by

Z
(p)
i,k

the incremental loss of accident year i ∈ {0, 1, . . . , n} and development year k ∈
{0, 1, . . . , n}. For i, k ∈ {0, 1, . . . , n}, we thus obtain the m–dimensional random
vector of incremental losses

Zi,k :=
(
Z

(p)
i,k

)
p∈{1,...,m}

The observable incremental losses are represented by the following run–off triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i
...

...
...

...
n−k Zn−k,0 Zn−k,1 . . . Zn−k,k
...

...
...

n−1 Zn−1,0 Zn−1,1

n Zn,0

Here the rows represent accident years, the columns represent development years,
and the diagonals (with the sum i+ k being constant) represent calendar years.

The multivariate additive model is defined as follows:2

The Multivariate Additive Model: There exist positive definite
symmetric matrices V0,V1, . . . ,Vn and Σ0,Σ1, . . . ,Σn and unknown
vectors ζ0, ζ1, . . . , ζn such that

E[Zi,k] = Vi ζk

and

cov[Zi,k,Zj,l] = V
1/2
i ΣkV

1/2
i δi,j δk,l

holds for all i, j, k, l ∈ {0, 1, . . . , n}.
2We use the Kronecker symbol δk,l with δk,l := 1 if k = l and δk,l := 0 else.
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The multivariate additive model is a general but straightforward extension of the
univariate additive model proposed by Mack [1991]. In particular, the matrices Vi

may be chosen to be diagonal as to represent volume measures of the portfolios for
accident year i.

We assume henceforth that the assumptions of the multivariate additive model are
fulfilled.

Because of the assumption on the expectations of the incremental claims, the multi-
variate additive model is a linear model. This can be seen as follows: Define

ζ :=




ζ0

ζ1
...
ζk−1

ζk
ζk+1
...
ζn




and, for all i, k ∈ {0, 1, . . . , n}, define

Ai,k :=
(

O O . . . O Vi O . . . O
)

where the matrix Vi occurs in position k+1. Then we have

E[Zi,k] = Ai,kζ

for all i, k ∈ {0, 1, . . . , n}. Let Z1 and A1 denote a block vector and a block matrix
consisting of the vectors Zi,k and the matrices Ai,k with i+ k ≤ n (arranged in the
same order) and let Z2 and A2 denote a block vector and a block matrix consisting
of the vectors Zi,k and the matrices Ai,k with i+ k ≥ n+ 1. Then we have

E[Z1] = A1ζ

E[Z2] = A2ζ

Therefore, the multivariate additive model is indeed a linear model.

3 The Results

In the multivariate additive model, the problem is to predict the non–observable
incremental losses Zi,k with i + k ≥ n + 1, certain sums of such losses or, even
more generally, random vectors of the form DZ2 with some matrix D of suitable
dimension. A random vector Y is said to be an admissible predictor of DZ2 if there
exists a matrix Q satisfying Y = QZ1 and QA1 = DA2 (such that Y a linear and
unbiased predictor of DZ2), and it is said to be a Gauss–Markov predictor of DZ2

4



if it minimizes the mean squared error or prediction (or expected squared prediction
error)

E[(U−DZ2)′(U−DZ2)]

over all admissible predictors U of DZ2. The Gauss–Markov Theorem asserts that
there exists a unique Gauss–Markov predictor (DZ2)GM of DZ2 and that it satisfies
(DZ2)GM = DZGM

2 ; see Hess et al. [2006; Proposition 2.1]. This last identity is most
useful since it implies that the Gauss–Markov predictor of Z2 is determined by the
Gauss–Markov predictors of the non–observable losses Zi,k.

It turns out that Gauss–Markov prediction of non–observable losses is closely related
to Gauss–Markov estimation of the parameter. A random vector Y is said to be
an admissible estimator of Cζ if there exists a matrix Q satisfying Y = QZ1 and
QA1 = C (such that Y a linear and unbiased estimator of Cζ), and it is said to be a
Gauss–Markov estimator of Cζ if it minimizes the mean squared error of estimation
(or expected squared estimation error)

E[(U−Cζ)′(U−Cζ)]

over all admissible estimators U of Cζ. Again, there exists a unique Gauss–Markov
estimator (Cζ)GM of Cζ and it satisfies (Cζ)GM = CζGM such that, in particular,
the Gauss–Markov estimator of ζ is determined by the Gauss–Markov estimators of
the parameters ζk.

3.1 Lemma. The Gauss–Markov estimators ζGM
k of ζk satisfy

ζGM
k =

(
n−k∑

h=0

V
1/2
h Σ−1

k V
1/2
h

)−1 n−k∑

h=0

(
V

1/2
h Σ−1

k V
1/2
h

)
V−1
h Zh,k

for all k ∈ {0, 1, . . . , n} and

cov[ζGM
k , ζGM

l ] =

(
n−k∑

h=0

V
1/2
h Σ−1

k V
1/2
h

)−1

δk,l

for all k, l ∈ {0, 1, . . . , n}.
Proof. The first identity follows from Hess et al. [2006; proof of Theorem 3.1] and
the second identity is immediate from the first. 2

The Gauss–Markov estimators of the parameters determine the Gauss–Markov pre-
dictors of the non–observable incremental losses:

3.2 Lemma. The Gauss–Markov predictors ZGM
i,k of Zi,k satisfy

ZGM
i,k = Vi ζ

GM
k

for all i, k ∈ {0, 1, . . . , n} such that i+ k ≥ n+ 1 and

cov[ZGM
i,k − Zi,k,Z

GM
j,l −Zj,l] =

(
Vi var[ζGM

k ]V′j + V
1/2
i ΣkV

1/2
i δi,j

)
δk,l

for all i, j, k, l ∈ {0, 1, . . . , n} such that i+ k ≥ n+ 1 and j + l ≥ n+ 1.
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Proof. Because of Lemma 3.1, the first identity follows from Hess et al. [2006;
Theorem 3.1]. Furthermore, Lemma 3.1 yields

cov[ZGM
i,k ,Z

GM
j,l ] = cov[Vi ζ

GM
k ,Vjζ

GM
l ]

= Vi cov[ζGM
k , ζGM

l ]V′j
= Vi var[ζGM

k ]V′j δk,l

and we also have

cov[Zi,k,Zj,l] = V
1/2
i ΣkV

1/2
i δi,j δk,l

Since ZGM
i,k and ZGM

j,l are linear combinations of observable incremental losses whereas
Zi,k and Zj,l are non–observable incremental losses, we have cov[ZGM

i,k ,Zj,l] = O =
cov[Zi,k,Z

GM
j,l ] and hence

cov[ZGM
i,k −Zi,k,Z

GM
j,l −Zj,l] = cov[ZGM

i,k ,Z
GM
j,l ] + cov[Zi,k,Zj,l]

= Vi var[ζGM
k ]V′j δk,l + V

1/2
i ΣkV

1/2
i δi,j δk,l

which gives the second identity. 2

For the non–observable calendar years c ∈ {n+1, . . . , 2n}, the calendar year reserve
R(c) is defined as

R(c) :=
n∑

i=c−n
Zi,c−i

The Gauss–Markov estimators of the parameters also determine the Gauss–Markov
predictors of the calendar year reserves:

3.3 Theorem. For every c ∈ {n+1, . . . , 2n}, the Gauss–Markov predictor RGM
(c) of

R(c) satisfies

RGM
(c) =

n∑
i=c−n

Vi

(
n−c+i∑

h=0

V
1/2
h Σ−1

c−iV
1/2
h

)−1 n−c+i∑

h=0

(
V

1/2
h Σ−1

c−iV
1/2
h

)
V−1
h Zh,c−i

and

var[RGM
(c) −R(c)] =

n∑
i=c−n

Vi

((
n−c+i∑

h=0

V
1/2
h Σ−1

c−iV
1/2
h

)−1

+
(
V

1/2
i Σ−1

c−iV
1/2
i

)−1
)

Vi

Moreover, its mean squared error of prediction satisfies

E[(RGM
(c) −R(c))

′(RGM
(c) −R(c))] = trace

(
var[RGM

(c) −R(c)]
)
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Proof. Since Gauss–Markov prediction is linear, Lemma 3.2 yields

RGM
(c) =

n∑
i=c−n

ZGM
i,c−i

=
n∑

i=c−n
Vi ζ

GM
c−i

=
n∑

i=c−n
Vi

(
n−c+i∑

h=0

V
1/2
h Σ−1

c−iV
1/2
h

)−1 n−c+i∑

h=0

(
V

1/2
h Σ−1

c−iV
1/2
h

)
V−1
h Zh,c−i

which is the first identity. Furthermore, we have

RGM
(c) −R(c) =

n∑
i=c−n

(ZGM
i,c−i−Zi,c−i)

and because of Lemma 3.2 and Lemma 3.1 we obtain

var[RGM
(c) −R(c)] = var

[
n∑

i=c−n
(ZGM

i,c−i−Zi,c−i)

]

=
n∑

i=c−n

n∑
j=c−n

cov
[
(ZGM

i,c−i−Zi,c−i), (ZGM
j,c−j−Zj,c−j)

]

=
n∑

i=c−n

n∑
j=c−n

(
Vi var[ζGM

c−i ]V
′
j + V

1/2
i Σc−iV

1/2
i δi,j

)
δc−i,c−j

=
n∑

i=c−n

(
Vi

(
n−c+i∑

h=0

V
1/2
h Σ−1

c−iV
1/2
h

)−1

V′i + V
1/2
i Σc−iV

1/2
i

)

=
n∑

i=c−n
Vi

((
n−c+i∑

h=0

V
1/2
h Σ−1

c−iV
1/2
h

)−1

+
(
V

1/2
i Σ−1

c−iV
1/2
i

)−1
)

Vi

which is the second identity. Since Gauss–Markov predictors are unbiased, this
yields

E
[
(RGM

(c) −R(c))
′(RGM

(c) −R(c))
]

= E
[
trace

(
(RGM

(c) −R(c))(R
GM
(c) −R(c))

′
)]

= trace
(
E
[
(RGM

(c) −R(c))(R
GM
(c) −R(c))

′
])

= trace
(

var[RGM
(c) −R(c)]

)

which is the final identity. 2

Since Gauss–Markov prediction is linear, the precious result also yields, for a given
calendar year c ∈ {n+1, . . . , 2n}, the Gauss–Markov predictor of the sum 1′R(c) of
the calendar year reserves over all subportfolios p ∈ {1, . . . ,m}:
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3.4 Corollary. For every c ∈ {n+ 1, . . . , 2n}, the Gauss–Markov predictor
(1′R(c))

GM of 1′R(c) satisfies

(1′R(c))
GM = 1′RGM

(c)

and its mean squared error of prediction satisfies

E
[(

(1′R(c))
GM−1′R(c)

)2]
= 1′ var[RGM

(c) −R(c)] 1

Prediction of the aggregated reserves 1′R(c) is of considerable interest for Solvency
II purposes. This is particularly true for the reserve 1′R(n+1) of the first non–
observable calendar year. When combined with Theorem 3.3, Corollary 3.4 provides
the Gauss–Markov predictors of the aggregated reserves and their mean squared
errors of prediction. Then the standard errors of prediction which is defined as the
square root of the mean squared error of prediction measures the prediction error in
the monetary unit. Another measure would be the coefficient of variation which is
defined as the ratio of the standard error of prediction and the (absolute value of)
the predictor and is dimension–free.

4 Estimation of the Variance Parameters

The Gauss–Markov estimators of the parameters, the Gauss–Markov predictors of
calendar year reserves and the mean squared errors of prediction involve inverses of
the variance parameters Σ0,Σ1, . . . ,Σn which have to be estimated.

For k ∈ {0, 1, . . . , n− 1}, Hess et al. [2006] proposed the estimators

Σ̂k :=
1

n− k
n−k∑
j=0

V
−1/2
j

(
Zj,k −Vj ζ̂k

)(
Zj,k −Vj ζ̂k

)′
V
−1/2
j

where

ζ̂k :=

(
n−k∑

h=0

Vh

)−1 n−k∑

h=0

Zh,k

is an unbiased linear estimator of ζk. The estimator Σ̂k is a positive semidefinite
estimator of the positive definite matrix Σk; moreover, the diagonal elements of
Σ̂k are unbiased estimators of the diagonal elements of Σk but the nondiagonal
elements of Σ̂k slightly underestimate the corresponding elements of Σk. The lack of
unbiasedness of these estimators outside the diagonal is inessential since estimators
of the variance parameters have to be inverted and unbiasedness of an estimator is
usually not inherited by its inverse.
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Inspite of the nice properties of these estimators, estimation of the variance para-
meters is by no means automatic:
– Although there is no need for an estimator of Σn with regard to the Gauss–

Markov predictors, such an estimator is needed for the mean squared errors of
prediction.

– For k ∈ {0, 1, . . . , n−1}, we have rank(Σ̂k) ≤ n−k+1; this is obvious from the

fact that rank(xx′) ≤ 1 holds every x ∈ Rm. Since the estimator Σ̂k is invertible

if and only if rank(Σ̂k) = m, it cannot be invertible for k ≥ n−m+ 2.

– Even for k ≤ n−m+1, the realization of the estimator Σ̂k fails to be invertible
if it happens that the realizations of the family {V−1/2

j (Zj,k−Vj ζ̂k)}j∈{0,1,...,n−k}
are linearly dependent.

For k = n and also for those k ∈ {0, 1, . . . , n−1} for which the realization of Σ̂k fails
to be invertible, an additional effort has to be made to construct an estimator of Σk.
For every choice of such an estimator, one has to make sure that it is positive definite
and hence invertible, and this includes the requirement that its diagonal elements
are greater than zero. In principle, interpolation or extrapolation methods could be
used but the resulting estimator has to be adjusted when it fails to be invertible.
After all, estimation of the variance parameters requires not only statistical skills
but also profound understanding of the data and actuarial judgement.

5 A Numerical Example

As an example, we apply our results to the case of a portfolio consisting of two
subportfolios where portfolio 1 concerns general liability and portfolio 2 concerns
auto liability. We use the incremental losses provided by Braun [2004] and the
volume measures proposed by Merz and Wüthrich [2009]. These data are given in
Tables 3 and 4 of the Appendix.

Table 1 presents the Gauss–Markov predictors of the calendar year reserves which
are obtained from the respective univariate additive models (m = 1) for each of the
two subportfolios and from the bivariate additive model (m = 2) as well as their
sums over both subportfolios.
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Calendar Subportfolio 1 Subportfolio 2 Joint Portfolio
Year Univariate Bivariate Univariate Bivariate Univariate Bivariate

14 1860715 1860396 941851 942713 2802565 2803109
15 1511377 1510865 495808 496655 2007185 2007520
16 1093135 1092589 282928 283126 1376063 1375715
17 716349 716674 161417 161561 877766 878236
18 448055 448488 85786 86021 533841 534509
19 257669 258625 41579 41772 299248 300397
20 150088 151440 19425 19634 169513 171074
21 97640 98973 7161 7383 104801 106357
22 68762 69195 7258 7308 76021 76503
23 44049 44259 3328 3308 47377 47567
24 32059 32055 3430 3437 35489 35492
25 22490 22486 -1899 -1879 20591 20607
26 9114 9114 -392 -392 8722 8722

Table 1: Gauss–Markov Predictors of Calendar Year Reserves

Table 1 shows that the differences between univariate and bivariate Gauss–Markov
predictors are negligible. However, the difference between univariate and bivariate
Gauss–Markov prediction become sensible if one considers the standard errors of
prediction or even the coefficients of variation which are presented in Table 2:

Calendar Subportfolio 1 Subportfolio 2 Joint Portfolio
Year Univariate Univariate Bivariate

14 79886 4.29% 52218 5.54% 107172 3.82%
15 63184 4.18% 39907 8.05% 90974 4.53%
16 57529 5.26% 34513 12.20% 77282 5.62%
17 54216 7.57% 29190 18.08% 68701 7.82%
18 45267 10.10% 20026 23.34% 53529 10.01%
19 40651 15.78% 12430 29.90% 43977 14.64%
20 34617 23.06% 10730 55.24% 36774 21.50%
21 35872 36.74% 9577 133.73% 38003 35.73%
22 34753 50.54% 9308 128.23% 34886 45.60%
23 26214 59.51% 6309 189.59% 20878 43.89%
24 25848 80.63% 6129 178.67% 16483 46.44%
25 25884 115.09% 3767 198.34% 16379 79.48%
26 13766 151.04% 2716 692.22% 11951 137.02%

Table 2: Standard Errors of Prediction and Coefficients of Variation

Table 2 shows that
– the standard error of prediction of the calendar year reserve of the joint portfolio

is always smaller than the sum of the standard errors of the calendar year
reserves of the two subportfolios and that

– for the majority of calendar years and, in particular, for the first non–observable
calendar year 14, the coefficient of variation of the joint portfolio is smaller than
the coefficients of variation of both subportfolios.

This indicates that, at least with respect to the standard error of prediction and
the coefficient of variation, Gauss–Markov prediction in the multivariate additive
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model for a joint portfolio presents an advantage over Gauss–Markov prediction in
the univariate additive models for the single subportfolios which typically neglects
the correlation structure between the subportfolios.
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Appendix

Tables 3 and 4 present the volume measures and the incremental losses of portfolios 1
and 2, respectively.

Table 5 presents the coordinates of the auxiliary estimator ζ̂k of the parameter ζk which
is used in the definition of the estimator Σ̂k of the variance parameter Σk. Representing
the estimator Σ̂k as

Σ̂k =

(
σ̂

(1,1)
k σ̂

(1,2)
k

σ̂
(2,1)
k σ̂

(2,2)
k

)

we have σ̂(2,1)
k = σ̂

(1,2)
k and we define the standard deviations

σ̂
(1)
k := (σ̂(1,1)

k )1/2

σ̂
(2)
k := (σ̂(2,2)

k )1/2

and the coefficient of correlation

%̂
(1,2)
k :=

σ̂
(1,2)
k

σ̂
(1)
k σ̂

(2)
k

This correlation structure in turn determines Σ̂k and is given in Table 6 in which for k = 12
and k = 13 the estimators of the standard deviations have been obtained by exponential
extrapolation and those of the coefficients of correlation have estimated by the arithmetic
mean over development years k ∈ {0, 1, . . . , 11} (which appears to be reasonable because
of the volatility of the estimated coefficients of correlation in these development years).
Table 7 presents the Gauss–Markov estimators of the parameters.

For every subportfolio p ∈ {1, 2}, the assumption of the additive model implies that the
incremental loss ratios

ζ
(p)
k = E[Z(p)

i,k /v
(p)
i ]

are independent of i ∈ {0, 1, . . . , n}. Thus, the normalized incremental loss ratios

ϑ
(p)
k :=

ζ
(p)
k∑n

l=0 ζ
(p)
l

form a development pattern for incremental quotas and their sums

γ
(p)
k :=

k∑

l=0

ϑ
(p)
l

form a development pattern for cumulative quotas; see Schmidt [2006a] as well as Schmidt
and Zocher [2008] for a general discussion of development patterns. Since Gauss–Markov
estimation is linear, the Gauss–Markov estimator of the incremental loss ratio of sub-
portfolio p is given by the p–th coordinate of the Gauss–Markov estimator ζGM

k . Now
normalization yields the estimators of the development pattern for incremental quotas
presented in Table 8, and summation yields the estimators of the development pattern for
cumulative quotas presented in Table 9. As can be seen from Table 9, loss development
in auto liability (portfolio 2) is much faster than in general liability (portfolio 1).
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