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Abstract

A marginal–sum equation of order p ≥ 2 is a system of nonlinear equations
which in turn are linear equations for polynomials of degree p in p variables.
Marginal–sum equations typically arise in the construction of a multiplicative
tariff in actuarial mathematics.
In the present paper we study the existence and the radial uniqueness of
solutions of marginal–sum equations and the possibility of computing solutions
by iteration. To this end, we first show that the marginal–sum problem is
equivalent with several fixed–point problems and we then study these fixed–
point problems and the corresponding fixed–point iterations.
As a general result, we show that a marginal–sum equation always has a
solution and that the solution cannot be unique. Moreover, for the case p = 2
we show that the solution is radially unique and can be computed by the fixed–
point iteration with respect to a related fixed–point problem and arbitrary
initial values. By contrast, for the case p ≥ 3 we present a numerical example
in which for certain initial values the fixed–point iteration is cyclic and hence
divergent.



1 Introduction

To introduce the marginal–sum problem, we consider an example from actuarial
mathematics; see Schmidt [2009] for further details.

1.1 Example (Multiplicative tariff in motor–car liability insurance). Con-
sider a portfolio of risks in motor–car liability insurance and assume that the risks
are classified with respect to I classes of the power of the engine and J classes of
the annual mileage of the car insured. Then the portfolio consists of I × J cells
according to the possible combinations of power and mileage. For every risk in the
portfolio the insurance company has to determine an annual premium πij ∈ (0,∞)
depending on the cell (i, j) ∈ {1, . . . , I} × {1, . . . , J} to which the risk belongs. Ac-
cording to the equivalence principle of actuarial mathematics, applied to every cell,
the premiums should satisfy

Nij πij = Sij

where Nij is the number of risks in cell (i, j) and Sij is the total claim amount
produced by the risks in that cell.
For statistical reasons, it is desirable to reduce the number of the I × J parameters
πij. This can be achieved by the requirement that the tariff has a multiplicative
structure in the sense that the premiums have the form

πij = µαiβj

with parameters µ, αi, βj ∈ (0,∞) such that the identity

Nij µαiβj = Sij

holds for every cell (i, j). Summation of these identities over j resp. i yields the
marginal–sum equations

J∑
j=1

Nijµαiβj =
J∑
j=1

Sij for i ∈ {1, . . . , I}

I∑
i=1

Nijµαiβj =
I∑
i=1

Sij for j ∈ {1, . . . , J}

and hence the equation

µ

I∑
i=1

J∑
j=1

Nijαiβj =
I∑
i=1

J∑
j=1

Sij .

Here µ is interpreted as the basic premium and αi and βj are interpreted as tar-
iff factors corresponding to the tariff classes i and j of the risks in cell (i, j) ∈
{1, . . . , I} × {1, . . . , J} and the last equation corresponds to the equivalence princi-
ple, applied not to the cells but to the full portfolio of risks.
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The question arises whether or not the marginal–sum equations have a solution and
whether or not a solution, if it exists, can be obtained by iteration from arbitrary
initial values. Of course, uniqueness of a solution cannot be expected since multipli-
cation of µ by a constant can be compensated by division of all αi or all βj by the
same constant. Thus, if a solution exists, then there also exist normalized solutions
satisfying, e. g., µ = 1 or

I∑
i=1

αi = 1 =
J∑
j=1

βj

or
max

i∈{1,...,I}
αi = 1 = max

j∈{1,...,J}
βj .

The last of these normalizations is particularly popular since in that case the pa-
rameters αi and βj represent a discount on the basic premium.

The marginal–sum problem of order p = 2 arising in the previous example has
been studied by Dietze, Riedrich and Schmidt [2006]. In the present paper we shall
study the marginal–sum problem for any order p ≥ 2. This general version of the
marginal–sum problem is of interest in actuarial mathematics since in most cases a
multiplicative tariff involves more than two tariff factors.

We shall use the following notation: For n ∈ N, let Rn denote the vector space of
all n–dimensional vectors of real numbers, written as row vectors x = (x1, . . . , xn),
and, for i ∈ {1, . . . , n}, let ei denote the i–th unit vector of Rn. We denote by ‖ . ‖
an arbitrary norm on Rn and by ‖ . ‖L the norm given by ‖x‖L :=

∑n
i=1 |xi|. We

also denote by ≤ the natural order relation on Rn such that x ≤ y if and only if
xi ≤ yi holds for all i ∈ {1, . . . , n}, and we define Rn+ := {x ∈ Rn | 0 ≤ x}.

2 The marginal–sum equation

Consider p ∈ N with p ≥ 2 and n1, . . . , np ∈ N and define

J :=

p∏

k=1

{1, . . . , nk} = {1, . . . , n1} × · · · × {1, . . . , np} .

The elements of J are referred to as multiindices and for a multiindex j ∈ J we shall
also write

j = (j1, . . . , jp) .

For k ∈ {1, . . . , p} and i ∈ {1, . . . , nk} we define

J(k, i) :=
{
j ∈ J

∣∣ jk = i
}
.

We assume that for every multiindex j ∈ J we are given real numbers Nj ∈ (0,∞)
and Sj ∈ R+ and that for every choice of k ∈ {1, . . . , p} and i ∈ {1, . . . , nk} there
exists some j ∈ J(k, i) such that Sj ∈ (0,∞).
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In what follows we study the existence and uniqueness of a solution

(
µ, {a(k)

i }k∈{1,...,p},i∈{1,...,nk}
)

with µ ∈ (0,∞) and a
(k)
i ∈ (0,∞) for all k ∈ {1, . . . , p} and i ∈ {1, . . . , nk} of the

marginal–sum equations

µa
(k)
i

∑

j∈J(k,i)

Nj

∏

r∈{1,...,p}\{k}
a

(r)
jr

=
∑

j∈J(k,i)

Sj

as well as related fixed–point equations and the problem of whether or not a solution
can be obtained by iteration.

To simplify the notation, we shall henceforth use vectors and block vectors of suitable
dimensions. A vector a(k) ∈ Rnk with k ∈ {1, . . . , p} will also be written as

a(k) = (a
(k)
1 , . . . , a(k)

nk
) .

Correspondingly, a vector A ∈∏r∈{1,...,p}Rnr will also be written as

A = (a(1), . . . , a(p))

and, for k ∈ {1, . . . , p}, a vector C ∈∏r∈{1,...,p}\{k}Rnr will also be written as

C = (c(1), . . . , c(k−1), c(k+1), . . . , c(p)) .

For A ∈∏r∈{1,...,p}Rnr and k ∈ {1, . . . , p} we also consider the reduced vector

A(k) := (a(1), . . . , a(k−1), a(k+1), . . . , a(p))

which results from A by deleting the subvector a(k). Define also

D :=

{
A ∈

p∏
r=1

Rnr
∣∣∣∣∣ a(r) ∈ Rnr+ \ {0} for all r ∈ {1, . . . , p}

}

and, for k ∈ {1, . . . , p}, define

D(k) :=

{
C ∈

∏

r∈{1,...,p}\{k}
Rnr

∣∣∣∣∣ c(r) ∈ Rnr+ \ {0} for all r ∈ {1, . . . , p} \ {k}
}
.

For k ∈ {1, . . . , p} and i ∈ {1, . . . , nk} we define the map ξ
(k)
i : D(k) → (0,∞) by

letting

ξ
(k)
i (C) :=

∑
j∈J(k,i) Sj∑

j∈J(k,i)Nj

∏
r∈{1,...,p}\{k} c

(r)
jr

.
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For k ∈ {1, . . . , p} this yields the map ξ(k) : D → (0,∞)nk given by

ξ(k) := (ξ
(k)
1 , . . . , ξ(k)

nk
)

and these maps are combined to yield the map Ξ : D → ∏p
k=1(0,∞)nk ⊆ D given

by

Ξ(A) := (ξ(1)(A(1)), . . . , ξ(p)(A(p))) .

Then (µ,A) with µ ∈ (0,∞) and A ∈ ∏p
r=1(0,∞)nr is a solution of the marginal–

sum equation

µA = Ξ(A)

if and only if (µ, {α(k)
i }k∈{1,...,p},i∈{1,...,nk}) is a solution of the marginal–sum equations

µα
(k)
i

∑

j∈J(k,i)

Nj

∏

r∈{1,...,p}\{k}
a

(r)
jr

=
∑

j∈J(k,i)

Sj .

Summation of the previous identity over i ∈ {1, . . . , nk} yields the following lemma:

2.1 Lemma. If (µ,A) is a solution of the marginal–sum equation, then

µ =

∑
j∈J Sj∑

j∈JNj

∏p
r=1 a

(r)
jr

.

The following lemma provides some obvious but useful properties of the map Ξ:

2.2 Lemma. Consider k ∈ {1, . . . , p}.
(1) The map ξ(k) is continuous.
(2) If C,D ∈ D(k) are such that C ≤ D, then ξ(k)(C) ≥ ξ(k)(D).
(3) The identity

ξ(k)(t1c
(1), . . . , tk−1c

(k−1), tk+1c
(k+1), . . . , tpc

(p)) =
1∏

r∈{1,...,p}\{k} tr
ξ(k)(C)

holds for every choice of C ∈ D(k) and t1, . . . , tk−1, tk+1, . . . , tp ∈ (0,∞).

As a first application of Lemma 2.2, we show that whenever the marginal–sum
equation has a solution then it has infinitely many solutions:
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2.3 Theorem. Assume that the marginal–sum equation has a solution (µ,A).
Then, for every choice of t1, . . . , tp ∈ (0,∞),

(
µ∏p
r=1 tr

, (t1a
(1), . . . , tpa

(p))

)

is a solution as well and, in particular, each of
(

1, (µ1/pa(1), . . . , µ1/pa(p))
)

and (
µ

p∏
r=1

‖a(r)‖ ,
(

a(1)

‖a(1)‖ , . . . ,
a(p)

‖a(p)‖
))

is a solution.

Proof. For every k ∈ {1, . . . , p}, the assumption yields µa(k) = ξ(k)(A). Using
Lemma 2.2 we thus obtain

µ∏p
r=1 tr

tka
(k) =

1∏
r∈{1,...,p}\{k} tr

ξ(k)(A(k))

= ξ(k)(t1a
(1), . . . , tk−1a

(k−1), tk+1a
(k+1), . . . , tpa

(p))

which proves the assertion. �

By Theorem 2.3, every solution (µ,A) of the marginal–sum equation may be normal-
ized such that, e. g., either µ = 1 or ‖a(k)‖ = 1 holds for all k ∈ {1, . . . , p}. Theorem
2.3 also implies that the marginal–sum equation cannot have a unique solution and
it suggests the following definition: We say that the marginal–sum equation has a
radially unique solution if it has a solution and if for any two solutions (µ,A) and
(ν,B) there exist t1, . . . , tp ∈ (0,∞) satisfying

b(k) = tka
(k)

for all k ∈ {1, . . . , p} (and hence also ν = µ/
∏p

r=1 tr, by equation (2.1) or Theorem
2.3).

3 Equivalent fixed–point problems

In the present section we show that the marginal–sum equation is closely related to
several fixed–point equations.

A reduced fixed–point problem

The marginal–sum equation µA = Ξ(A) can be reduced by eliminating one of the
components a(k) of A. Here we consider elimination of the last component a(p). For
k ∈ {1, . . . , p− 1}, define a map ϕ(k) : D(p) → (0,∞)nk by letting

ϕ(k)(C) := ξ(k)(c(1), . . . , c(k−1), c(k+1), . . . , c(p−1), ξ(p)(C)) .
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These maps are combined to yield the map Φ : D(p) →∏p−1
r=1(0,∞)nr given by

Φ := (ϕ(1), . . . ,ϕ(p−1)) .

The following lemma is an immediate consequence of Lemma 2.2:

3.1 Lemma. Consider k ∈ {1, . . . , p− 1}.
(1) The map ϕ(k) is continuous.
(2) If C,D ∈ D(p) are such that c(k) ≤ d(k), then ϕ(k)(C) ≤ ϕ(k)(D).
(3) If C ∈ D(p) and t1, . . . , tp−1 ∈ (0,∞), then ϕ(k)(t1c

(1), . . . , tp−1c
(p−1)) = tk ϕ

(k)(C).
(4) If C ∈ D(p) and t ∈ (0,∞), then ϕ(k)(tC) = tϕ(k)(C).
(5) If C is fixed–point of Φ and if t1, . . . , tp−1 ∈ (0,∞), then

(t1c
(1), . . . , tp−1c

(p−1)) is a fixed–point of Φ as well.

By Theorem 2.3, the marginal–sum equation has a solution if and only if it has a
solution (µ,A) with µ = 1. The following result provides a connection between the
existence of a solution of the marginal–sum equation and that of a fixed–point of Φ:

3.2 Theorem. For A ∈ D the following assertions are equivalent:
(a) (1,A) is a solution of the marginal–sum equation.
(b) A(p) is a fixed–point of Φ and A satisfies ξ(p)(A(p)) = a(p).

Proof. Assume first that (a) holds. Then we have ξ(k)(A(k)) = a(k) for all
k ∈ {1, . . . , p}. In particular, we have ξ(p)(A(p)) = a(p) and hence ϕ(k)(A(p)) =
ξ(k)(A(k)) = a(k) for all k ∈ {1, . . . , p− 1}. Therefore, (a) implies (b).
Assume now that (b) holds. Then we have ξ(p)(A(p)) = a(p) and hence
ξ(k)(A(k)) = ϕ(k)(A(p)) = a(k) for all k ∈ {1, . . . , p − 1}. Therefore, (b) implies
(a). �

Lemma 3.1 implies that the map Φ cannot have a unique fixed–point. We say that
the map Φ has a radially unique fixed–point if it has a fixed–point and if for any
two fixed–points C and D of Φ there exist t1, . . . , tp−1 ∈ (0,∞) satisfying

d(k) = tkc
(k)

for all k ∈ {1, . . . , p− 1}.

3.3 Corollary. The following assertions are equivalent:
(a) The marginal–sum equation has a radially unique solution.
(b) The map Φ has a radially unique fixed–point.

Proof. Assume first that (a) holds. For every fixed–point C of Φ there exists some
A satisfying A(p) = C and a(p) = ξ(p)(C) and Theorem 3.2 implies that (1,A) is
a solution of the marginal–sum equation. Since, by assumption, the marginal–sum
equation has a radially unique solution, it follows that the map Φ has a radially
unique fixed–point. Therefore, (a) implies (b).
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Assume now that (b) holds and consider two solutions (µ,A) and (ν,B) of the
marginal–sum equation. Because of Theorem 2.3, we may assume that µ = 1 = ν.
Now Theorem 3.2 implies that A(p) and B(p) are fixed–points of Φ and satisfy
ξ(p)(A(p)) = a(p) and ξ(p)(B(p)) = b(p). This yields the existence of t1, . . . , tp−1 ∈
(0,∞) satisfying

b(k) = tka
(k)

for all k ∈ {1, . . . , p− 1}. Using Lemma 2.2, we also obtain

b(p) = ξ(p)(B(p))

= ξ(p)(t1a
(1), . . . , tp−1a

(p−1))

=
1∏p−1
r=1 tr

ξ(p)(A(p))

=
1∏p−1
r=1 tr

a(p)

which yields the existence of some tp ∈ (0,∞) satisfying

b(p) = tpa
(p) .

Therefore, (b) implies (a). �

The canonical fixed–point problem

As noted before, the marginal–sum equation µA = Ξ(A) has a solution if and only
if it has a solution (µ,A) with µ = 1. Therefore, the canonical fixed–point problem
associated with the marginal–sum equation is the fixed–point problem for the map
Ξ. The following result is obvious:

3.4 Theorem. For A ∈ D the following assertions are equivalent:
(a) (1,A) is a solution of the marginal–sum equation.
(b) A is a fixed–point of Ξ.

We say that the map Ξ has a radially unique fixed–point if it has a fixed–point and
if for any two fixed–points A and B of Ξ there exist t1, . . . , tp ∈ (0,∞) satisfying

b(k) = tka
(k)

for all k ∈ {1, . . . , p}. The following result is obvious:

3.5 Corollary. The following assertions are equivalent:
(a) The marginal–sum equation has a radially unique solution.
(b) The map Ξ has a radially unique fixed–point.

Because of Theorem 3.4, the map Ξ cannot have a unique fixed–point.
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The normalized fixed–point problem

For k ∈ {1, . . . , p} define a map ξ̄
(k)

: D(k) → (0,∞)nk by letting

ξ̄
(k)

(C) :=
ξ(k)(C)

‖ξ(k)(C)‖
and these maps are combined to yield the map Ξ̄ : D → ∏p

k=1(0,∞)nk ⊆ D given
by

Ξ̄(A) := (ξ̄
(1)

(A(1)), . . . , ξ̄
(p)

(A(p))) .

As Ξ̄ depends on the norm ‖ . ‖, we shall write Ξ̄L in the case where ‖ . ‖ = ‖ . ‖L.
Because of Lemma 2.2, the map Ξ̄ is continuous. We have the following result:

3.6 Theorem. For A ∈ D satisfying ‖a(k)‖ = 1 for all k ∈ {1, . . . , p}, the following
assertions are equivalent:
(a) (µ,A) with

µ =

∑
j∈J Sj∑

j∈JNj

∏p
r=1 a

(r)
jr

is a solution of the marginal–sum equation.
(b) A is a fixed–point of Ξ̄.

Proof. Assume first that (a) holds. Then we have, for every k ∈ {1, . . . , p},
ξ(k)(A(k)) = µa(k)

and hence, since ‖a(k)‖ = 1,

ξ̄
(k)

(A(k)) = a(k)

which means that A is a fixed–point of Ξ̄. Therefore, (a) implies (b).
Assume now that (b) holds. Then we have, for every k ∈ {1, . . . , p},

ξ̄
(k)

(A(k)) = a(k)

and hence

ξ(k)(A(k)) = ‖ξ(k)(A(k))‖ a(k)

which yields, for every i ∈ {1, . . . , nk},
∑

j∈J(k,i) Sj∑
j∈J(k,i)Nj

∏
r∈{1,...,p}\{k} a

(r)
jr

= ξ
(k)
i (A(k)) = ‖ξ(k)(A(k))‖ a(k)

i

and hence
∑

j∈J(k,i) Sj∑
j∈J(k,i) Nj

∏p
r=1 a

(r)
jr

= ‖ξ(k)(A(k))‖ .
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Multiplication with the denominator and subsequent summation over i ∈ {1, . . . , nk}
and putting

µ :=

∑
j∈J Sj∑

j∈JNj

∏p
r=1 a

(r)
jr

yields µ = ‖ξ(k)(A(k))‖ and hence

ξ(k)(A(k)) = µa(k)

for all k ∈ {1, . . . , p}, which means that (µ,A) is a solution of the marginal–sum
equation. Therefore, (b) implies (a). �

We thus obtain the following result:

3.7 Corollary. The following assertions are equivalent:
(a) The marginal–sum equation has a radially unique solution.
(b) The map Ξ̄ has a unique fixed–point.

Proof. The marginal–sum equation has a radially unique solution if and only if
it has a unique solution (µ,A) satisfying ‖a(k)‖ = 1 for all k ∈ {1, . . . , p}. The
assertion now follows from Theorem 3.6. �

4 Existence of solutions and fixed–points

In the case p = 2, the existence of a solution of the marginal–sum equation has been
proven by Dietze, Riedrich and Schmidt [2006] for the first time. The proof given
there proceeds via the fixed–point equation for the map Φ and is based on Brouwer’s
fixed–point theorem; it is in fact analogous to a proof given by Morishima (1964;
Appendix, Section 2) for the existence in certain nonlinear eigenvalue problems; see
also Krasnoselskii (1964; Theorem 5.5). A slightly different proof proceeding via the
fixed–point equation for Ξ̄ may be found in Göpfert, Riedrich and Tammer [2009].
Each of these proofs can be extended to the general case and we present here an
extension of the second one.

4.1 Theorem. The marginal–sum equation has a solution and each of the maps Φ,
Ξ and Ξ̄ has a fixed–point.

Proof. Due to the results of Section 3 and Theorem 2.3, it is sufficient to show
that the map Ξ̄L has a fixed–point. To this end we consider the set

DL :=

{
A ∈

p∏
r=1

Rnr
∣∣∣∣∣ a(r) ∈ Rnr+ and ‖a(r)‖L = 1 for all r ∈ {1, . . . , p}

}
.

Then we have DL ⊆ D and Ξ̄L maps the set DL into itself. Moreover, the set DL is
convex and compact, and Lemma 2.2 implies that the map Ξ̄L is continuous. Now
Brouwer’s fixed–point theorem ensures the existence of a fixed–point of Ξ̄L; see e. g.
Granas and Dugundji [2003]. �
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5 The case p = 2: Radial uniqueness and iteration

Throughout this section we assume that p = 2. We shall show that
– the marginal–sum equation and each of the fixed–point equations for Φ resp.

Ξ has a radially unique solution,
– the map Ξ̄ has a unique fixed–point, and
– the fixed–point iteration for Φ resp. Ξ̄ converges, for every initial value, to a

fixed–point.
To simplify the notation, we write I, J instead of n1, n2 and we also write α,β
instead of a(1), a(2) and H,G instead of ξ(1), ξ(2). Then the maps H and G are
continuous and homogeneous of degree −1 and the maps Ξ and Ξ̄ satisfy

Ξ(α,β) = (H(β),G(α))

and

Ξ̄(α,β) =

(
H(β)

‖H(β)‖ ,
G(α)

‖G(α)‖
)

and the marginal–sum equation µ(α,β) = Ξ(α,β) becomes

µ(α,β) = (H(β),G(α)) .

We also have Φ = ϕ(1) and hence

Φ = H ◦G

and we define

Ψ := G ◦H .

Then Ψ is the map of the fixed–point problem resulting from the marginal–sum
equation by elimination of the first variable instead of the last. By Lemma 3.1,
Φ and Ψ are continuous, monotone increasing and homogeneous of degree 1. The
fixed–point equations for Φ,Ψ,Ξ, Ξ̄ read

Φ(α) = α

Ψ(β) = β

Ξ(α,β) = (α,β)

Ξ̄(α,β) = (α,β)

and for each of these fixed–point problems we shall now study the radial uniqueness
of the solution and the question whether or not the respective fixed–point iteration
converged to a fixed–point. Let us first consider the fixed–point iteration for Φ.

5.1 Theorem. The map Φ has a radially unique fixed–point and for every α(0) the
sequence {Φn(α(0))}n∈N0 converges to a fixed–point of Φ.
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Proof. Because of Theorem 4.1, the map Φ has a fixed–point α∗ and radial
uniqueness of the fixed–point will follow from the convergence of the fixed–point
iteration. For n ∈ N0, define

x(n) := Φn(α(0))

as well as

u(n) := λ(n)α∗ and z(n) := µ(n)α∗

where

λ(n) := min
i∈{1,...,I}

x
(n)
i

α∗i
and µ(n) := max

i∈{1,...,I}
x

(n)
i

α∗i
.

Then we have

u(n) ≤ x(n) ≤ z(n) .

This construction is illustrated by the following picture (for the case I = 2):

- t1

6

t2

•
u(n)

•
x(n)

• z(n)

•
α∗

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Since u(n) and z(n) are fixed–points of Φ and since Φ is monotone increasing, we
obtain λ(n)α∗ = u(n) = Φ(u(n)) ≤ Φ(x(n)) ≤ Φ(z(n)) = z(n) = µ(n)α∗, hence

λ(n)α∗ ≤ x(n+1) ≤ µ(n)α∗

and thus

λ(n) ≤ λ(n+1) ≤ µ(n+1) ≤ µ(n) .

Therefore, there exist some λ, µ ∈ (0,∞) satisfying

λ = lim
n→∞

λ(n) ≤ lim
n→∞

µ(n) = µ

and we shall prove below that λ = µ. Then we have

lim
n→∞

u(n) = λα∗ = µα∗ = lim
n→∞

z(n)
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and it follows that also the sequence {x(n)}n∈N0 converges to λα∗ = µα∗, which is
a fixed–point of Φ since α∗ is a fixed–point of Φ and since Φ is homogeneous of
degree 1. Since α∗ is an arbitrary fixed–point of Φ, it then follows that Φ has a
radially unique fixed–point.
Let us thus prove that λ = µ. For n ∈ N0 we define

v(n) := u(n) +
(
µ(n) − λ(n)

)
α∗i(n) ei(n)

y(n) := z(n) +
(
λ(n) − µ(n)

)
α∗j(n) ej(n)

where i(n), j(n) ∈ {1, . . . , I} satisfy

x
(n)
j(n)

α∗j(n)

= λ(n) and
x

(n)
i(n)

α∗i(n)

= µ(n) .

Then we have

u(n) ≤ v(n) ≤ x(n) ≤ y(n) ≤ z(n) .

Since every coordinate of Φ is continuously partially differentiable with

∂Φi

∂tj
(t) > 0

and since the set [u(0), z(0)] is compact, there exists some γ ∈ (0,∞) such that

∂Φi

∂tj
(t) ≥ γ

holds for all i, j ∈ {1, . . . , I} and t ∈ [u(0), z(0)]. Since z(n) is a fixed–point of Φ and
since Φ is monotone increasing, we obtain

z(n) − x(n+1) = Φ(z(n))−Φ(x(n))

≥ Φ(z(n))−Φ(y(n))

and for every i ∈ {1, . . . , I} the mean value theorem yields the existence of some
t(n,i) ∈ [y(n), z(n)] ⊆ [u(0), z(0)] such that

z
(n)
i − x(n+1)

i ≥ ϕ(i)(z(n))− ϕ(i)(y(n))

=

(
∂ϕ(i)

∂tj(n)

(t(n,i))

)(
z

(n)
j(n) − y(n)

j(n)

)

=

(
∂ϕ(i)

∂tj(n)

(t(n,i))

)(
µ(n) − λ(n)

)
α∗j(n)

≥ γ
(
µ(n) − λ(n)

)
min

j∈{1,...,I}
α∗j

13



which yields

z(n+1) = µ(n+1)α∗

=
x

(n+1)
i(n+1)

αi(n+1)

α∗

≤ 1

α∗i(n+1)

(
z

(n)
i(n+1) − γ

(
µ(n) − λ(n)

)
min

j∈{1,...,I}
α∗j

)
α∗

≤
(
µ(n) − γ

(
µ(n) − λ(n)

)minj∈{1,...,I} α∗j
maxj∈{1,...,I} α∗j

)
α∗ .

Repeating the argument for the fixed–point u(n) of Φ yields

u(n+1) ≥
(
λ(n) + γ

(
µ(n) − λ(n)

)minj∈{1,...,I} α∗j
maxj∈{1,...,I} α∗j

)
α∗ .

Combining these two inequalities we obtain
(
µ(n+1) − λ(n+1)

)
α∗ = z(n+1) − u(n+1)

≤
(
µ(n) − λ(n)

)(
1− 2 γ

minj∈{1,...,I} α∗j
maxj∈{1,...,I} α∗j

)
α∗

and hence

µ(n+1) − λ(n+1) ≤
(
µ(n) − λ(n)

)(
1− 2 γ

minj∈{1,...,I} α∗j
maxj∈{1,...,I} α∗j

)

for all n ∈ N0. Since µ(n+1) − λ(n+1) ≥ 0 and γ > 0, we have

0 ≤ 1− 2 γ
minj∈{1,...,I} α∗j
maxj∈{1,...,I} α∗j

< 1

and it now follows that λ = limn→∞ λ(n) = limn→∞ µ(n) = µ, as was to be shown. �

In the previous proof, radial uniqueness of the fixed–point is obtained as a conse-
quence of the convergence of the fixed–point iteration. We note that radial unique-
ness may also be obtained by elementary arguments, or by using Morishima (1964;
Appendix, Section 2).

Correspondingly, we have the following result on the fixed–point iteration for Ψ:

5.2 Corollary. The map Ψ has a radially unique fixed–point and for every β(0) the
sequence {Ψn(β(0))}n∈N0 converges to a fixed–point of Ψ.

Combining Theorem 5.1 and Corollary 3.3 yields the following result:

5.3 Corollary. The marginal–sum equation µ(α,β) = Ξ(α,β) has a radially
unique solution.

14



Let us now consider the fixed–point iteration for Ξ:

5.4 Corollary. The map Ξ has a radially unique fixed–point and for every (α(0),β(0))
there exist fixed–points α∗ of Φ and β∗ of Ψ such that the sequence {Ξn(α(0),β(0))}n∈N0

satisfies
lim
j→∞

Ξ2j(α(0),β(0)) = (α∗,β∗)

and
lim
j→∞

Ξ2j+1(α(0),β(0)) = (H(β∗),G(α∗))

and such that (α∗,G(α∗)) and (H(β∗),β∗) are fixed–points of Ξ.

Proof. By Corollary 5.3 and Corollary 3.5 the map Ξ has a radially unique
fixed–point. Furthermore, for every (α,β) we have

Ξ(α,β) = (H(β),G(α))

and hence

Ξ2(α,β) = Ξ((H(β),G(α)))

= (H(G(α)),G(H(β)))

= (Φ(α),Ψ(β))

which by induction yields

Ξ2j(α,β) = (Φj(α),Ψj(β))

and hence

Ξ2j+1(α,β) = Ξ((Φj(α),Ψj(β)))

= (H(Ψj(β)),G(Φj(α))) .

By Theorem 5.1 and Corollary 5.2, the sequence {Φj(α(0))}j∈N0 converges to a fixed–

point α∗ of Φ and the sequence {Ψj(β(0))}j∈N0 converges to a fixed–point β∗ of Ψ,
and this yields

lim
j→∞

Ξ2j(α(0),β(0)) = (α∗,β∗)

lim
j→∞

Ξ2j+1(α(0),β(0)) = (H(β∗),G(α∗)) .

Finally, we have

Ξ(α∗,G(α∗)) = (H(G(α∗)),G(α∗))

= (Φ(α∗),G(α∗))

= (α∗,G(α∗))

as well as

Ξ(H(β∗),β∗) = (H(β∗),β∗)

such that (α∗,G(α∗)) and (H(β∗),β∗) are fixed–points of Ξ (which also follows
from Theorems 3.2 and 3.4). �
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The previous result is quite interesting: The even and the odd iterates converge,
but it is uncertain whether the limits are fixed–points. Nevertheless, crossing–over
the components of these limits yields fixed–points, and if the two limits are identical
then of course they provide a fixed–point.

Let us finally consider the fixed–point iteration for Ξ̄:

5.5 Corollary. The map Ξ̄ has a unique fixed–point and for every (α0,β0) the
sequence {Ξ̄n

(α0,β0)}n∈N0 converges to the fixed–point of Ξ̄.

Proof. By Corollary 5.3 and Corollary 3.7 the map Ξ̄ has a unique fixed–point.
Furthermore, for every (α,β) we have

Ξ̄(α,β) =

(
H(β)

‖H(β)‖ ,
G(α)

‖G(α)‖
)

and hence, due to the fact that H and G are homogeneous of degree −1,

Ξ̄
2
(α,β) = Ξ̄

(
H(β)

‖H(β)‖ ,
G(α)

‖G(α)‖
)

=

(
H(G(α))

‖H(G(α))‖ ,
G(H(β))

‖G(H(β))‖
)

=

(
Φ(α)

‖Φ(α)‖ ,
Ψ(β)

‖Ψ(β)‖
)

which by induction, and due to the fact that Φ and Ψ are homogeneous of degree
1, yields

Ξ̄
2j

(α,β) =

(
Φj(α)

‖Φj(α)‖ ,
Ψj(β)

‖Ψj(β)‖

)

and hence

Ξ̄
2j+1

(α,β) = Ξ̄

(
Φj(α)

‖Φj(α)‖ ,
Ψj(β)

‖Ψj(β)‖

)

=

(
H(Ψj(β))

‖H(Ψj(β))‖ ,
G(Φj(α))

‖G(Φj(α))‖

)
.

By Theorem 5.1 and Corollary 5.2, the sequence {Φj(α(0))}j∈N0 converges to a fixed–

point α∗ of Φ and the sequence {Ψj(β(0))}j∈N0 converges to a fixed–point β∗ of Ψ.
For these fixed–points we have

Ξ̄

(
α∗

‖α∗‖ ,
G(α∗)
‖G(α∗)‖

)
=

(
H(G(α∗))
‖H(G(α∗))‖ ,

G(α∗)
‖G(α∗)‖

)

=

(
Φ(α∗)
‖Φ(α∗)‖ ,

G(α∗)
‖G(α∗)‖

)

=

(
α∗

‖α∗‖ ,
G(α∗)
‖G(α∗)‖

)
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as well as

Ξ̄

(
H(β∗)
‖H(β∗)‖ ,

β∗

‖β∗‖
)

=

(
H(β∗)
‖H(β∗)‖ ,

β∗

‖β∗‖
)

such that (α∗/‖α∗‖,G(α∗)/‖G(α∗)‖) and (H(β∗)/‖H(β∗)‖,β∗/‖β∗‖) are fixed–
points of Ξ̄ (which also follows from Theorems 3.2, 2.3 and 3.6). Since Ξ̄ has a
unique fixed–point, this implies

(
α∗

‖α∗‖ ,
G(α∗)
‖G(α∗)‖

)
=

(
H(β∗)
‖H(β∗)‖ ,

β∗

‖β∗‖
)
.

We thus obtain

lim
j→∞

Ξ̄
2j

(α(0),β(0)) = lim
j→∞

(
Φj(α(0))

‖Φj(α(0))‖ ,
Ψj(β(0))

‖Ψj(β(0))‖

)

=

(
α∗

‖α∗‖ ,
β∗

‖β∗‖
)

=

(
H(β∗)
‖H(β∗)‖ ,

G(α∗)
‖G(α∗)‖

)

= lim
j→∞

(
H(Ψj(β(0)))

‖H(Ψj(β(0)))‖ ,
G(Φj(α(0)))

‖G(Φj(α(0)))‖

)

= lim
j→∞

Ξ̄
2j+1

(α(0),β(0))

and hence

lim
n→∞

Ξ̄
n
(α(0),β(0)) =

(
α∗

‖α∗‖ ,
β∗

‖β∗‖
)

as was to be shown. �

6 The case p = 3: A counterexample

Throughout this section we assume that p = 3. We shall present an example in
which
– the marginal–sum equation has a radially unique solution which can be repre-

sented in parametric form,
– the map Ξ̄ has a unique fixed–point, and
– there exist initial values for which the fixed–point iteration for Ξ̄ is divergent

(which would be impossible in the case p = 2).
To simplify the notation, we write α,β,γ instead of a(1), a(2), a(3) and H,G,F in-
stead of ξ(1), ξ(2), ξ(3). Then the maps Ξ and Ξ̄ satisfy

Ξ(α,β,γ) = (H(β,γ),G(α,γ),F(α,β))

and

Ξ̄(α,β,γ) =

(
H(β,γ)

‖H(β,γ)‖ ,
G(α,γ)

‖G(α,γ)‖ ,
F(α,β)

‖F(α,β)‖
)

17



and the marginal–sum equation µ(α,β,γ) = Ξ(α,β,γ) becomes

µ(α,β,γ) = (H(β,γ),G(α,γ),F(α,β)) .

We shall study the following example:

6.1 Example. Assume that n1 = 2, n2 = 2, n3 = 3 and assume further that Sijk = 1
holds for all (i, j, k) ∈ {1, 2} × {1, 2} × {1, 2, 3} and that

N111 = 31, N112 = 1, N113 = 1, N121 = 1, N122 = 1, N123 = 1,
N211 = 1, N212 = 1, N213 = 1, N221 = 1, N222 = 31, N223 = 1

Then the marginal–sum equations read

µα1 = H1(β,γ) = 6/(β1(31γ1 + γ2 + γ3) + β2(γ1 + γ2 + γ3))

µα2 = H2(β,γ) = 6/(β1(γ1 + γ2 + γ3) + β2(γ1 + 31γ2 + γ3))

µβ1 = G1(α,γ) = 6/(α1(31γ1 + γ2 + γ3) + α2(γ1 + γ2 + γ3))

µβ2 = G2(α,γ) = 6/(α1(γ1 + γ2 + γ3) + α2(γ1 + 31γ2 + γ3))

µγ1 = F1(α,β) = 4/(α1(31β1 + β2) + α2(β1 + β2))

µγ2 = F2(α,β) = 4/(α1(β1 + β2) + α2(β1 + 31β2))

µγ3 = F3(α,β) = 4/(α1(β1 + β2) + α2(β1 + β2))

For this example, we study the radial uniqueness of a solution of the marginal–sum
equations, the uniqueness of a fixed–point of Ξ̄, and the question whether or not
the fixed–point iteration with respect to Ξ̄ and arbitrary initial values converges to
a fixed–point of Ξ̄. We obtain the following results:

Claim 1. The marginal–sum equation has a radially unique solution

(µ◦, (α◦,β◦,γ◦))

with

µ◦ =
84

17rst
α◦ = r

(
1

2
,
1

2

)
β◦ = s

(
1

2
,
1

2

)
γ◦ = t

(
2

21
,

2

21
,
17

21

)

and arbitrary r, s, t ∈ (0,∞).

Indeed: By Theorem 2.3, the marginal–sum equations have a radially unique solution
if and only if they have exactly one solution (µ, (α,β,γ)) satisfying ‖α‖L = ‖β‖L =
‖γ‖L = 1 and hence α1 + α2 = β1 + β2 = γ1 + γ2 + γ3 = 1. Under this condition,
the marginal–sum equations become

µα1 = 6/(30β1γ1 + 1) (1)

µ(1− α1) = 6/(30(1− β1)γ2 + 1) (2)

µβ1 = 6/(30α1γ1 + 1) (3)
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µ(1− β1) = 6/(30(1− α1)γ2 + 1) (4)

µγ1 = 4/(30α1β1 + 1) (5)

µγ2 = 4/(30(1− α1)(1− β1) + 1) (6)

µ(1− γ1 − γ2) = 4 (7)

Multiplication of (1) and (3) with the denominators and taking the difference yields

α1 = β1

and inserting this identity into (1), (5), (6) and using (7) then gives

α1(30α1γ1 + 1) = 6/µ = 3(1− γ1 − γ2)/2 (8)

γ1(30α1
2 + 1) = 4/µ = 1− γ1 − γ2 (9)

γ2(30(1− α1)2 + 1) = 4/µ = 1− γ1 − γ2 (10)

Taking the difference of (8) and (9) yields

γ2 = 1 + γ1 − 2α1

and inserting this identity into (9) and (10) then gives the identities

γ1 − α1 =
2α1

30α1
2 + 3

− α1

γ1 − α1 =
2(1− α1)

30(1− α1)2 + 3
− (1− α1)

Therefore, the function f given by

f(x) :=
2x

30x2 + 3
− x

satisfies f(α1) = γ1 − α1 = f(1 − α1). Since f is strictly decreasing this identity
yields α1 = 1− α1 and hence α1 = 1/2, β1 = 1/2, γ1 = 2/21, γ2 = 2/21.

Claim 2. The map Ξ̄ has a unique fixed–point (α∗,β∗,γ∗) and the fixed–point
satisfies

(α∗,β∗,γ∗) =

(
α•

‖α•‖ ,
β•

‖β•‖ ,
γ•

‖γ•‖
)

with

α• =

(
1

2
,
1

2

)
β• =

(
1

2
,
1

2

)
γ• =

(
2

21
,

2

21
,
17

21

)

This follows from Claim 1 and Theorem 3.6.

Claim 3. The vectors (α+,β+,γ+) and (α−,β−,γ−) given by

α± :=

(
15±

√
−285 + 30

√
226

30
,

15∓
√
−285 + 30

√
226

30

)
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β± :=

(
15±

√
−285 + 30

√
226

30
,

15∓
√
−285 + 30

√
226

30

)

γ± :=

(−1 +
√

226 ±
√
−285 + 30

√
226

510− 30
√

226
,
−1 +

√
226 ∓

√
−285 + 30

√
226

510− 30
√

226
,

512− 32
√

226

510− 30
√

226

)

satisfy

Ξ̄L(α+,β+,γ+) = (α−,β−,γ−)

Ξ̄L(α−,β−,γ−) = (α+,β+,γ+)

such that none of the sequences {Ξ̄n
L(α+,β+,γ+)}n∈N and {Ξ̄n

L(α−,β−,γ−)}n∈N
converges to the unique fixed–point of Ξ̄L.

The verification of Claim 3 is tedious but straightforward.

Claim 4. For any norm ‖ . ‖, each of the sequences {Ξ̄n
(α+,β+,γ+)}n∈N and

{Ξ̄n
(α−,β−,γ−)}n∈N is divergent.

This is a consequence of the following general theorem and Claim 3.

6.2 Theorem. Consider (α,β,γ) and define

(α(n),β(n),γ(n)) := Ξ̄
n
(α,β,γ)

(α
(n)
L ,β

(n)
L ,γ

(n)
L ) := Ξ̄

n
L(α,β,γ)

(where Ξ refers to an arbitrary norm). Then the sequence {(α(n),β(n),γ(n))}n∈N
converges if and only if the sequence {(α(n)

L ,β
(n)
L ,γ

(n)
L )}n∈N converges.

Proof. Assume first that the sequence {(α(n),β(n),γ(n))}n∈N converges. Because
of the properties of H,G,F established in Lemma 2.2, we have

α
(n)
L = α(n) ‖H(β(n−1),γ(n−1))‖

‖H(β(n−1),γ(n−1))‖L
β

(n)
L = β(n) ‖G(α(n−1),γ(n−1))‖

‖G(α(n−1),γ(n−1))‖L
γ

(n)
L = γ(n) ‖F(α(n−1),β(n−1))‖

‖F(α(n−1),β(n−1))‖L
and we also see that the right hand side of these equations converges. This proves
one of the implications, and the other one is obtained by interchanging the roles of
the norms. �

We note that the previous result and its proof can be extended to arbitrary order
p ≥ 2.

6.3 Remark. We have computed the fixed–point iteration for Ξ̄L for various other
choices of the initial values, including initial values in a small neighbourhood of the
fixed–point. The numerical results indicate that for every choice of the initial values
either the even iterates converge to (α+,β+,γ+) and the odd iterates converge to
(α−,β−,γ−), or vice versa.
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7 Further Remarks

In the case p ≥ 3 no general results are known on radial uniqueness and on the
convergence of fixed–point iterations. The proofs for the case p = 2 given in Section
5 cannot be extended to the case p ≥ 3. We also note that extensive numerical
computations in the case p ≥ 3 have provided the following observations:
– In all examples the marginal–sum equation has a radially unique solution.
– In all examples and for all choices of the initial values the fixed–point iteration

for the map Φ appears to converge to a fixed–point; see Theorem 5.1 for the
case p = 2.

– In all examples and for all choices of the initial values the fixed–point iteration
for the map Ξ appears to possess the accumulation points 0 and +∞. This
differs from the case p = 2; see Corollary 5.4.

– Except for very few examples the fixed–point iteration for the map Ξ̄L appears
to be convergent; see Section 6 for such an example.
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