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Abstract

In the present paper we consider collective models in risk theory and their
thinning and decomposition. We give three applications to reinsurance, mul-
tiplicative tariffs, and loss reserving. For each of these applications we show
how maximum–likelihood and marginal–sum estimation can be used to esti-
mate the parameters.

1 Introduction

We consider a portfolio of risks in a particular line of insurance. In order to calculate
premiums for future insurance periods (e.g. years) we want to model the total claim
amount per insurance period. Based on this model we can predict the total claim
amount and hence the premium for a future period.

In actuarial mathematics there are two basic models: the individual model and the
collective model.

The individual model is a pair

〈n, {Zj}j∈{1,...,n}〉

where n is a positive integer and the Zj’s are independent random variables. We
interpret n as the number of risks of the portfolio and Zj as the claim amount of
risk j during the next insurance period. The total claim amount of the portfolio is
given by

n∑
j=1

Zj
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The assumption that the risks are independent is appropriate when there is no
interdependence between the risks. However, estimation of the distributions of the
individual claim amounts causes a serious problem at least for those risks for which
no or only very little claims experience is available from the past.

If we additionally assume that the distribution of the claim amount is identical for all
risks in the portfolio, then we get the individual model for a homogeneous portfolio.
From the statistical point of view, a homogenous portfolio presents an i.i.d. sample
of size n and there is a rich theory for this model. Unfortunately, however, insurance
portfolios tend to be non–homogeneous such that in most cases the individual model
for a homogeneous portfolio is inappropriate.

Because of these reasons, the collective model, which refers to the single claims
instead of the single risks, is the more common model in actuarial mathematics.
The pair

〈N, {Xj}j∈N〉
is called a collective model if N is a random variable with P [N ∈ N0] = 1] and
{Xj}j∈N is a sequence of random variables which is i.i.d. and independent of N . We
interpret N as the random number of claims caused by the risks of the portfolio
during an insurance period and Xj as the claim amount of the jth claim. From the
statistical point of view, the collective model is an i.i.d. sample with random sample
size N .

Under the collective point of view, the individual risk causing a particular claim
is neglected such that the possible lack of inhomogeneity of the portfolio becomes
irrelevant. For this reason, the assumption of i.i.d. claim amounts in the collective
model is much more realistic than the assumption of i.i.d. risks in the individual
model.

In the collective model the total claim amount of the portfolio is given by

S :=
N∑
j=1

Xj =
∞∑
n=0

χ{N=n}
n∑
j=1

Xj

such that the random sum is defined by a distinction of cases depending on the
values of N .

Throughout this paper, let (Ω,F , P ) be the probability space on which all random
variables are defined. We denote by ϕZ the characteristic function of a random
variable Z and by mZ the probability generating function of a random variable Z
with P [Z ∈ N0] = 1. We also use the convention 0/0 := 0.
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2 The Collective Model

Throughout this section, let
〈N, {Xj}j∈N〉

be a collective model with total claim amount

S :=
N∑
j=1

Xj

In principle, the distribution of S can be determined by the following results:

2.1 Theorem. The characteristic function of S satisfies ϕS = mN ◦ ϕX1.

In the special case where the claim amounts (and hence also the total claim amount)
have a discrete distribution on the non–negative integers, the characteristic functions
occurring in the previous result can be replaced by probability generating functions:

2.2 Theorem. If P [X1 ∈ N0] = 1, then P [S ∈ N0] = 1 and the probability gener-
ating function of S is satisfies mS = mN ◦mX1.

If the characteristic (or probability generating) function of the total claim amount
can not be identified as that of a known distribution or if the distributions of the
claim number and the claim amounts are unknown except for the first moments,
then it is still possible to compute the corresponding first moments of the total
claim amount:

2.3 Theorem (Wald’s equations). The total claim amount satisfies

E[S] = E[N ] E[X]

var[S] = E[N ] var[X] + var[N ] E[X]2

3 The Abstract Collective Model

In this section we consider a useful extension of the collective model. The pair

〈N, {Yj}j∈N〉

is called an abstract collective model if N is a random variable with P [N ∈ N0] = 1]
and {Yj}j∈N is sequence of random variables in Rp which is i.i.d. and independent
of N . The (classical) collective model is the special cases with p = 1.

In the examples given below, the first component of the claim variable Yj is the claim
amount of the jth claim and the other components contain further information on
that claim.
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Transformation

Let us first consider the transformation of a collective model resulting from a trans-
formation of the claim variables. If g : Rp → R is a measurable function, then the
pair

〈N, {g ◦ Yj}j∈N〉
is a collective model since the σ–algebra generated by g ◦ Yj is contained in that
generated by Yj and since the distribution of g ◦ Yj is a measurable transformation
of that of Yj which is the same for all j.

Thinning

Let C1, . . . , Cm be a measurable subsets of Rp such that the selection probabilities

ηk := P [Y1 ∈ Ck]

satisfy ηk > 0 for all k ∈ {1, . . . ,m} and
∑m

k=1 ηk = 1.

Let us fix k ∈ {1, . . . ,m} and consider thinning of the abstract collective model with
respect to the set Ck. Then the thinned claim number Nk is given by

Nk :=
N∑
j=1

χ{Yj∈Ck}

and the thinned claim variables are given by

Yk,j :=
∞∑

h=1

χ{νk,j=h}Yh

where the random index νk,j is recursively defined by

νk,j :=

{
0 if j = 0
inf{h ∈ N|νk,j−1 < h, Yh ∈ Ck} else

and describes the random position (in the sequence of all claim variables) of the jth
claim variable taking its value in Ck.

3.1 Theorem. For every k ∈ {1, . . . ,m}, the pair

〈Nk, {Yk,j}j∈N〉

is an abstract collective model. Moreover, the distribution of the thinned claim num-
ber is determined by its probability generating function satisfying

mNk(z) = mN(1− ηk + ηkz)
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and the distribution of the thinned claim variables satisfies

P [Yk,j ≤ y] = P [Y1 ≤ y|Y1 ∈ Ck]

In this result, the assertion on the probability generating function of Nk is immediate
from Theorem 2.2 since Nk is the total claim amount in the collective model

〈Nk, {χCk ◦ Yj}j∈N〉
and a proof of the second identity can be found in Schmidt (2009; Satz 8.2.9).

Applying Wald’s first equation to the collective model 〈Nk, {χCk ◦Yj}j∈N〉 we obtain
the following result:

3.2 Lemma. For every k ∈ {1, . . . ,m}, the expectation of the thinned claim number
satisfies

E[Nk] = ηkE[N ]

3.3 Example. Assume that N has the Poisson distribution with parameter λ.
Then the probability generating function of N satisfies mN(z) = e−λ(1−z) and it
follows that

mNk(z) = mN(1− ηk + ηkz)

= e−λ(1−(1−ηk+ηkz))

= e−ληk(1−z)

Therefore, Nk has the Poisson distribution with parameter ληk. 4

Decomposition

Thinning with respect to the set C1, . . . , Cm yields m collective models. The follow-
ing result provides information on the joint distribution of the random variables of
these models:

3.4 Theorem.

(1) The family of all thinned claim variables {Yk,j}k∈{1,...,m},j∈N is independent.
(2) The family of all thinned claim variables {Yk,j}k∈{1,...,m},j∈N is independent of

the family of all thinned claim numbers {Nk}k∈{1,...,m}.
(3) The conditional joint distribution of the thinned claim numbers (N1, . . . , Nm) is

the conditional multinomial distribution with parameters N and (η1, . . . , ηm).
(4) The thinned claim numbers and hence the thinned collective models are inde-

pendent if and only if N has a Poisson distribution.

A proof of the first assertions can be found in Hess (2000); for the special case of the
decomposition into two collective model see also Schmidt (1996). The last assertion
follows from the third; see e.g. Hess and Schmidt (2002).
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4 Excess–of–Loss Reinsurance

Reinsurance allows an insurance company to transform its portfolio into a more
homogeneous one by sharing the total claim amount with a reinsurer; see e.g. Mack
(2002; Chapter 4) or Hess and Schmidt (2006).

In excess–of–loss reinsurance the reinsurer assumes, for every claim, liability for the
part of the claim amount exceeding a negotiated priority d. In actuarial practice,
the liability of the reinsurer is usually bounded by a certain limit, but for the sake of
simplicity we constrain ourselves to an unlimited excess–of–loss reinsurance contract.

We start with a collective model

〈N, {Xj}j∈N〉
for the original portfolio and we assume that 0 < P [Xj > d] < 1. If the claim amount
Xj exceeds the priority d, then the insurer pays d and the reinsurer pays Xj − d;
otherwise the insurer pays Xj and the reinsurer pays nothing. Thus, transformations
of the collective model yield the collective model

〈N, {min{Xj, d}j∈N〉
for the insurer and the collective model

〈N, {max{Xj − d, 0}}j∈N〉
for the reinsurer. The total claim amount of the original portfolio is thus split into
the sum of the total claim amount of the insurer and the total claim amount of the
reinsurer

N∑
j=1

Xj =
N∑
j=1

min{Xj, d}+
N∑
j=1

max{Xj − d, 0}

In general, the random variables occurring in the collective model for the reinsurer
are not observable for the reinsurer. It is therefore desirable to construct an equiva-
lent collective model in which all random variables are observable for the reinsurer.

By thinning the collective model 〈N, {Xj}j∈N〉 of the original portfolio with respect
to the set C1 := (d,∞), we get the collective model 〈N1, {X1,j}j∈N〉 containing only
the claims exceeding priority d and the number N1 of those claims; here the selection
probability η1 = P [Xj > d] is the probability that a claim exceeds the priority d.
Since the reinsurer pays only the part of the claim amounts exceeding the priority,
a transformation of this collective model leads to the collective model

〈N1, {X1,j − d}j∈N〉
of the reinsurer in which indeed all random variable are observable for the reinsurer.
The distribution of the claim sizes X1,j − d satisfies

P [X1,j − d ≤ z] = P [X1 ≤ d+ z|X1 > d]

6



Moreover, we have
N∑
j=1

max{Xj − d, 0} =

N1∑
j=1

(X1,j − d)

which means that the total claim amounts of both collective models for the reinsurer
are identical; for a proof see Hess (2003).

If the distributions of N and X1 belong to parametric families of distributions, then
the reinsurer may estimate the parameters by using truncated data methods. This
is of interest with regard to negotiations on future reinsurance contracts with a
different priority.

4.1 Example. As a very simple example let us consider the collective model
〈N, {Xj}j∈N〉 where N has the Poisson distribution with parameter λ and every
Xj has the exponential distribution with expectation 1/α. Then, in the thinned
collective model 〈N1, {X1,j − d}j∈N〉, the excess claim number N1 has the Poisson
distribution with parameter λη1 with

η1 = P [Xj > d] = e−αd

and the excess claim amounts Zj := X1,j − d have the exponential distribution with
expectation 1/α, due to the fact that the exponential distribution is memoryless.
Therefore, the likelihood–function of the thinned collective model satisfies

L(α, λ|N1, {Zj}j∈N) = e−λe
−αd (λe−αd)N1

N1!
·
N1∏
j=1

αe−αZj

Putting the first partial derivatives of the log–likelihood–function equal to zero we
obtain the maximum–likelihood estimators

α̂ML =

(
1

N1

N1∑
j=1

Zj

)−1

and

λ̂ML =
N1

e−bα
MLd

Using these estimators, the reinsurer can analyze the effect of changing the priority
d in a future reinsurance contract. 4

5 Multiplicative Tariff

In certain lines of business, the risks of the portfolio are classified with respect to a
finite number levels of one or more tariff factors. For example, in motor car liability
insurance such tariff factors could be the power of the engine or the mileage per year
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and the levels would be intervals. Once such a classification is given, every risk of
the portfolio belongs to a unique tariff cell which is determined by a combination
of levels of the different tariff factors. For a discussion see Mack (2002; Chapter 2)
and Zocher (2006).

Such a classification of risks is useful, when the full portfolio is inhomogeneous and
the subportfolios corresponding to a cell are supposed to be rather homogeneous.
In this situation, it would be inappropriate to charge the same premium to all risks
in the portfolio and the insurer would like to allow for different premiums for risks
belonging to different cells.

In a multiplicative tariff, the net premiums for the different cells determined in such
a way that, for every cell, the net premium is proportional to certain parameters
presenting the levels of the tariff factors.

For the sake of simplicity we consider the construction of the multiplicative tariff in
the case of two tariff factors with respective levels 1, . . . , I and 1, . . . , K and tariff
cells (i, k) ∈ {1, . . . , I} × {1, . . . , K}.
To this end we consider the abstract collective model

〈N, {(Xj, Uj, Tj)}j∈N〉
We interpret N the number of claims in the portfolio, Xj as the claim amount of
the jth claim, and (Uj, Tj) as the tariff cell of the risk which causes the jth claim.

We assume that Xj and (Uj, Tj) are independent. Furthermore, we assume that
there exist known volume measures vi,k > 0 (e.g. the number of risks in cell (i, k))
and unknown parameters αi > 0 and βk > 0 such that

P [(Uj, Tj) = (i, k)] = αi βk vi,k

holds for all (i, k) ∈ {1, . . . , I} × {1, . . . , K}.
Then we have

I∑
i=1

K∑

k=1

αi βk vi,k = 1

We want to decompose the collective model 〈N, {(Xj, Uj, Tj)}j∈N〉 with respect to
the tariff cells. Define Ci,k := R × {i} × {k}. Then the selection probabilities are
ηi,k = αi βk vi,k and we get the thinned collective models

〈Ni,k, {(Xi,k;j, Ui,k;j, Ti,k;j)}j∈N〉
By the construction of the thinned collective models we have Ui,k;j = i and Ti,k;j = k.
Thus, the second and third component of the thinned claim variables are redundant
and we get the collective models

〈Ni,k, {Xi,k;j}j∈N〉
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From the statistical point of view this is a poststratification with respect to the tariff
cells.

Since Xj and (Uj, Tj) are independent, we get

P [Xi,k;j ≤ x] = P [Xi,k;j ≤ x, Ui,k;j = i, Ti,k;j = k]

= P [Xj ≤ x, Uj = i, Tj = k|Uj = i, Tj = k]

= P [Xj ≤ x]

this means that the claim amounts Xi,k;j have the same distribution as the original
claim amounts Xj. Therefore the distribution or moments of the claim amounts of
any cell may be estimated from the full sample by usual methods.

In order to interpret the parameters, we consider the expectation of the total claim
amount of the thinned collective models. Applying Lemma 3.2, we get

E[Ni,k] = αi βk vi,k E[N ]

and using this identity together with E[S] = E[N ]E[X1] we obtain

E[Si,k] = E[Ni,k]E[Xi,k;1]

= αi βk vi,k E[N ]E[X1]

= αi βk vi,k E[S]

The ratio Si,k/vi,k is total claim amount per risk in cell (i, k) and its expectation

E

[
Si,k
vi,k

]
= αi βk E[S]

is the net premium per risk in cell (i, k). Up to the estimation of the parameters,
we have thus constructed a multiplicative tariff.

We want to estimate the unknown parameters by the maximum–likelihood method.
Applying Theorem 3.4 (1), we get the joint distribution of the thinned claim numbers

P

[
I⋂
i=1

K⋂

k=1

{Ni,k = ni,k}
]

= P

[
I⋂
i=1

K⋂

k=1

{Ni,k = ni,k}
∣∣∣∣∣N = n

]
· P [N = n]

=
n!∏I

i=1

∏K
k=1 ni,k!

I∏
i=1

K∏

k=1

η
ni,k
i,k · p(n)

with n =
∑I

i=1

∑K
k=1 ni,k and p(n) := P [N = n]. Then the likelihood function

satisfies

L(α1, . . . , αI , β1, . . . , βK |{Ni,k}i∈{1,...,I},k∈{1,...,K})

=
N !∏I

i=1

∏K
k=1Ni,k!

I∏
i=1

K∏

k=1

(αi βk vi,k)
Ni,k · p(N)
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(note thatN =
∑I

i=1

∑K
k=1Ni,k). Positive maximizers α̂ML

1 , . . . , α̂ML
I and β̂ML

1 , . . . , β̂ML
K

of the likelihood function fulfilling the constraint

I∑
i=1

K∑

k=1

α̂ML
i β̂ML

k vi,k = 1

are maximum–likelihood estimators of the parameters α1, . . . , αI and β1, . . . , βK .
As proved in Hess (2009) the maximum–likelihood estimators are solutions of the
marginal–sum equations

I∑
i=1

α̂i β̂k vi,k =
I∑
i=1

Ni,k

N
k ∈ {1, . . . , K}

K∑

k=1

α̂i β̂k vi,k =
K∑

k=1

Ni,k

N
i ∈ {1, . . . , I}

under the constraint
I∑
i=1

K∑

k=1

α̂i β̂k vi,k = 1

Since vi,k > 0 these equations have a solution which is unique up to scaling and can
be obtained by iteration (see Dietze, Riedrich and Schmidt (2006)).

As an alternative to maximum–likelihood estimation, the marginal–sum equations
can also be deduced from the identities for the expected claim numbers: We have

E[Ni,k] = αi βk vi,k E[N ]

and summation yields

I∑
i=1

E[Ni,k]

E[N ]
=

I∑
i=1

αi βk vi,k k ∈ {1, . . . , K}

K∑

k=1

E[Ni,k]

E[N ]
=

K∑

k=1

αi βk vi,k i ∈ {1, . . . , I}

Replacing the expectations by the corresponding random variables and the unknown
parameters by their estimators then leads to the marginal–sum equations. Also,
applying the same principle to the identities

E[Si,k] = αi βk vi,k E[S]

yields a different set of marginal equations, using the total claim amounts of the
cells instead of the claim numbers.

Therefore, marginal–sum estimation may be regarded as a principle of estimation
in its own right.
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6 Loss Reserving

The problem of loss reserving results from the fact that by the end of an insurance
year certain claims are not yet settled since either the claim size is not yet known
or the claim has not yet been reported. Since all claims of a given accident year
have to be paid from the premium income of the same accident year, the insurer has
to determine a reserve for claims payments in future development years. In certain
lines of business like liability insurance, the amount of all future payments may be
huge when compared with the annual premium income. In actuarial mathematics
there is a rich literature on loss reserving; see also Schmidt (2011) in the present
volume.

In the construction of models for loss reserving it is usually assumed that every
claim can be settled either in the accident year of with a delay of at most I years.
Accordingly, it is usually assumed that certain data from I + 1 accident years are
available.

We consider I + 1 independent abstract collective models

〈N (i), {(X(i)
j , D

(i)
j )}j∈N〉

corresponding to the accident years i ∈ {0, 1, . . . , I} and we assume for all i ∈
{0, 1, . . . , I} and j ∈ N that
– N (i) has the Hofmann distribution πai,pi,ci with parameters ai ∈ R+ and pi, ci ∈

(0,∞) (see Appendix A for details),

– X
(i)
j and D

(i)
j are independent,

– X
(i)
j is a real–valued random variable, and

– the distribution of D
(i)
j is given by P [D

(i)
j = k] = ϑk with k ∈ {0, 1, . . . , I} and

parameters ϑ0, ϑ1, . . . , ϑI ∈ (0,∞) with
∑I

k=0 ϑk = 1.

For every accident year i, we interpret N (i) as the number of claims, X
(i)
j as the

claim amount of the jth claim, and D
(i)
j as the delay until settlement of the jth

claim (such that there is exactly one payment per claim). We assume that the claim

variables (X
(i)
j , D

(i)
j ) are observable if i+D

(i)
j ≤ I and that they are non–observable

if i+D
(i)
j ≥ I + 1.

Each of the abstract collective models can be decomposed with respect to the values
of the delays D

(i)
j by choosing Ck := R × {k} for all k ∈ {0, 1, . . . , I}. Then ϑk is

the selection probability for the set Ck (delay of k years) and we get the abstract
collective models

〈N (i)
k , {(X(i)

k,j, D
(i)
k,j)}j∈N〉

for all i ∈ {0, . . . , I}. Due to the choice of the sets Ck, we have D
(i)
k,j = k.

Letting Ni,k := N
(i)
k and Xi,k;j := X

(i)
k,j, we thus obtain the collective models

〈Ni,k, {Xi,k;j}j∈N〉
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which are observable if i+k ≤ I and non–observable if i+k ≥ I+1. These collective
models are independent for different i’s since we started with independent models
for the accident years. Therefore all claim amounts Xi,k;j are independent. For a
given accident year i we can use all observable claim amounts for estimating their
common distribution or moments.

For every accident year i, the joint distribution of the thinned claim numbers Ni,k can
be obtained from Theorem 3.4 (3) and the representation of a Hofmann–distribution
as a mixed Poisson–distribution (see Proposition A.1 with t = 1). We thus obtain

P

[
I⋂

k=0

{Ni,k = ni,k}
]

= P

[
I⋂

k=0

{Ni,k = ni,k}
∣∣∣∣∣N

(i) =
I∑

k=0

ni,k

]
· P
[
N (i) =

I∑

k=0

ni,k

]

=

(∑I
k=0 ni,k

)
!

∏I
k=0 ni,k!

I∏

k=0

ϑ
ni,k
k ·

∫

R
e−λ

λ
PI
k=0 ni,k(∑I

k=0 ni,k

)
!
dQai,pi,ci(λ)

=

∫

R

I∏

k=0

e−λϑk
(λϑk)

ni,k

ni,k!
dQai,pi,ci(λ)

Since we started with independent collective models for the different accident years,
the joint distribution of all thinned claim numbers is given by

P

[
I⋂
i=0

I⋂

k=0

{Ni,k = ni,k}
]

=
I∏
i=0

∫

R

I∏

k=0

e−λϑk
(λϑk)

ni,k

ni,k!
dQai,pi,ci(λ)

This model was considered by Schmidt and Zocher (2005; Section 7) who showed
that the joint distribution of all observable claim numbers satisfies

P

[
I⋂
i=0

I−i⋂

k=0

{Ni,k = ni,k}
]

=
I∏
i=0

((∑I−i
k=0 ni,k

)
!∏I−i

k=0 ni,k!

I−i∏

k=0

(
ϑk∑I−i
l=0 ϑl

)ni,k

· π
ai,pi

I−iP
k=0

ϑk,ci
I−iP
k=0

ϑk

(
I−i∑

k=0

ni,k

))

Positive maximizers p̂ML
0 , p̂ML

1 , . . . , p̂ML
I and ϑ̂ML

0 , ϑ̂ML
1 , . . . , ϑ̂ML

I of the corresponding
likelihood function fulfilling the constraint

I∑

k=0

ϑ̂ML
k = 1

are maximum–likelihood estimators of the parameters p0, p1, . . . , pI and ϑ0, ϑ1, . . . , ϑI .
Schmidt and Zocher (2005) have shown that the maximum–likelihood estimators ful-
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fill the marginal–sum equations

I−k∑
i=0

p̂i ϑ̂k =
I−k∑
i=0

Ni,k k ∈ {0, 1, . . . , I}

I−i∑

k=0

p̂i ϑ̂k =
I−i∑

k=0

Ni,k i ∈ {0, 1, . . . , I}

under the constraint
I∑

k=0

ϑ̂k = 1

It is well known that these equations have a unique and explicit solution (see e.g.
Schmidt and Wünsche (1998)).

Using the maximum–likelihood estimators, we can now predict the non–observable
claim numbers In fact, using Lemma 3.2 and Proposition A.3 we obtain

E[Ni,k] = piϑk

This identity suggest to use the observable random variable

N̂i,k := p̂ML
i ϑ̂ML

k

to predict the non–observable claim numbers Ni,k with i+ k ≥ I + 1 (or to estimate
their expectations). Since the total claim amounts Si,k satisfy

E[Si,k] = E[Ni,k]E[Xi,k;j]

= E[Ni,k]E[X1]

one may use the observable random variable

Ŝi,k := p̂ML
i ϑ̂ML

k µ̂

with an estimator µ̂ of the expectation µ := E[X1] to predict the non–observable
total claim amounts Si,k with i+ k ≥ I + 1 (or to estimate its expectation).

As in the model considered in the previous section, the marginal–sum equations can
also be deduced from the expectations of the observable claim numbers: As noted
before, we have E[Ni,k] = piϑk, and summation yields

I−k∑
i=0

E[Ni,k] =
I−k∑
i=0

pi ϑk k ∈ {0, 1, . . . , I}

I−i∑

k=0

E[Ni,k] =
I−i∑

k=0

pi ϑk i ∈ {0, 1, . . . , I}

Replacing the expectations by the corresponding random variables and the unknown
parameters by their estimators then leads to the marginal–sum equations.
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7 Comparison of the Marginal–Sum Equations

In the case of a multiplicative tariff and also in the case of loss reserving, maximum–
likelihood estimation in a collective model leads to marginal–sum equations. Al-
though the structure of the marginal–sum equations in both cases is similar, there
are nevertheless important differences:

In the case of a multiplicative tariff the claim number is observable and this makes
maximum–likelihood estimation of the parameters independent of the distribution
of the claim number. By contrast, in the case of loss reserving certain claim num-
bers are non–observable such that we cannot use Theorem 3.4 (3) to obtain the
joint distribution of the decomposed claim numbers; in this case, the assumption of
Hofmann distributed claim numbers allows us to determine the joint distribution of
the thinned claim numbers.

But also the marginal–sum equations are quite different: In the case of a multi-
plicative tariff they have a rectangular structure and cannot solved explicitly; for a
discussion on their solvability, see Dietze et al. (2006). In the case of loss reserv-
ing they have a triangular structure and can solved explicitly; see e.g. Schmidt and
Wünsche (1998).

A Hofmann family and Hofmann distribution

The Hofmann family was introduced by Hofmann (1955). We use the presentation
by Schmidt and Zocher (2005).

We consider a family {Qt}t∈R of distributions Qt : P(N0) → [0, 1] and a sequence
{Πk}k∈N0 of functions Πk : R+ → [0, 1] such that the identity

Qt[{k}] = Πk(t)

holds for all t ∈ R+ and k ∈ N0.

The family {Qt}t∈R is said to be the Hofmann family H(a, p, c) with parameters
a ∈ R+ and p, c ∈ (0,∞) if there exists a differentiable function νa,p,c : R+ → R
such that

νa,p,c(0) = 0

dνa,p,c
dt

(t) =
p

(1 + ct)a

Π0(t) = e−νa,p,c(t)

Πk(t) =
(−t)k
k!

dkΠ0

dtk
(t)

hold for all t ∈ R+ and k ∈ N.
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The function νa,p,c has an explicit representation:

νa,p,c =





pt if a = 0

p

c
log(1 + ct) if a = 1

p

c

(1 + ct)1−a − 1

1− a if a ∈ (0, 1) ∪ (1,∞)

The special cases a = 0 and a = 1 are the Poisson case and the negativebinomial
case, respectively.

Applying the Bernstein–Widder Theorem to the completely monotone function Π0,
we see that the Hofmann family has a mixed Poisson representation; see e.g. Berg
et al. (1984):

A.1 Proposition. There exists a probability measure Qa,p,c : B(R) → [0, 1] with
Qa,p,c[R+] = 1 and such that

Qt[{k}] =

∫

R+

e−λt
(λt)k

k!
dQa,p,c(λ)

holds for all t ∈ R+ and k ∈ N0.

Using this Proposition, we get the following result on the probability generating
function:

A.2 Proposition. The probability generation function of Qt satisfies

mQt(z) = e−νa,p,c(t−tz)

If {Qt}t∈R+ is the Hofmann family H(a, p, c), then the discrete distribution πa,p,c on
the non–negative integers satisfying

πa,p,c[{k}] = Q1[{k}]
for all k ∈ N0 is called the Hofmann distribution with parameters a ∈ R+ and
p, c ∈ (0,∞). Proposition A.1 shows that every Hofmann distribution is a mixed
Poisson distribution. The probability generating function of a Hofmann distribution
is obtained by letting t = 1 in Proposition A.2 and yields its first and second order
moments:

A.3 Proposition. If N is a random variable with distribution πa,p,c, then

E[N ] = p

var[N ] = p(1 + ac)

Therefore we have E[N ] ≤ var[N ] which is true for every mixed Poisson distribution
and is typical for the moments of real data.
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