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Abstract

In the present paper we consider two subportfolios of risks as well as the
union of these portfolios and for the chain–ladder method and the additive
method we study the problem of whether or not the predictors based on the
subportfolios are consistent with those based on the full portfolio.
In the case of the chain–ladder method we extend the results of Ajne [1994]
and Klemmt [2005], using the duality of the chain–ladder method applied to
incremental losses; we also give a short proof for this duality, which was first
observed by Barnett, Zehnwirth and Dubossarky [2005].
Apparently, in the case of the additive method the aggregation problem has
not been considered before.



1 Introduction

To model a portfolio of risks, we consider a family of strictly positive random vari-
ables

{Zi,k}i,k∈{0,1,...,n}

We interpret the random variable Zi,k as the loss of accident year i which is settled
with a delay of k years and hence in development year k and in calendar year i+ k
and refer to Zi,k as the incremental loss of accident year i and development year k.
We assume that the incremental losses Zi,k are observable for calender years i+k ≤ n
and that they are non–observable for calender years i + k > n. The observable
incremental losses are represented in a run–off triangle and the non–observable ones
are to be predicted.

Consider now two subportfolios of risks with incremental losses Z̄i,k and Z̃i,k, respec-
tively, as well as the union of these portfolios with incremental losses

Z̆i,k := Z̄i,k + Z̃i,k

For a given loss reserving method the problem arises whether or not the sum of the
predictors based on the subportfolios equals the corresponding predictor based on
the aggregated portfolio. This problem is called the aggregation problem.

In the present paper we study the aggregation problem for the chain–ladder method
(Section 2) and for the additive method (Section 3). For the chain–ladder method
we extend results of Ajne [1994] and Klemmt [2005]; for the additive method, it
appears that the aggregation problem has not yet been considered in literature.

2 Chain-ladder method and aggregation problem

In the present section we study the aggregation problem for the chain–ladder method.
To this end, it is convenient to consider not only the chain–ladder method but also
its dual version, which is the usual chain–ladder method applied to the transposed
run–off triangle where accident and development years are interchanged. This allows
for a prediction of the non–observable incremental losses also in terms of the dual
version.

The uncommon approach of using chain–ladder method together with its dual ver-
sion is twofold: First, the use of usual and dual chain–ladder factors facilitates the
presentation of our results. Second, the proofs benefit from the fact that the chain–
ladder predictors of the non–observable incremental losses in terms of the usual
chain–ladder method coincide with those of the dual chain–ladder method which we
call duality of the chain–ladder method. This result is due to Barnett, Zehnwirth
and Dubossarsky [2005] and we include a proof of it which is particularly short.

The results on the aggregation problem presented in this section extend those of
Ajne [1994] and Klemmt [2005].
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2.1 Chain–ladder method and dual chain–ladder method

We refer to

Si,k :=
k∑

l=0

Zi,l and Ti,k :=
i∑

j=0

Zj,k

as the primal cumulative loss and the dual cumulative loss of accident year i and
development year k, respectively. Obviously, the cumulative losses Si,k and Ti,k are
observable for calendar years i + k ≤ n and they are non–observable for calendar
years i+k > n. Moreover, the incremental losses can be recovered from both primal
and dual cumulative losses by letting

Zi,k =

{
Si,0 if k = 0

Si,k − Si,k−1 else
and Zi,k =

{
T0,k if i = 0

Ti,k − Ti−1,k else

This fact motivates the prediction of the non–observable incremental losses along
both development and accident years and hence to distinguish between primal
(usual) and dual chain–ladder method.

The primal chain–ladder method is based on the primal chain–ladder factors

ϕCL

k :=

∑n−k
i=0 Si,k∑n−k

i=0 Si,k−1

of development year k, k ∈ {1, ..., n}, and consists in the prediction of the primal
cumulative losses Si,k, i+ k > n, by the chain–ladder predictors

SCL

i,k := Si,n−i

k∏
l=n−i+1

ϕCL

l

with i + k > n. Analogously, the dual chain–ladder method is based on the dual
chain–ladder factors

ψDCL

i :=

∑n−i
l=0 Ti,l∑n−i

l=0 Ti−1,l

of accident year i, i ∈ {1, ..., n}, and consists in the prediction of the dual cumulative
losses Ti,k, i+ k > n, by the chain–ladder predictors

TDCL

i,k := Tn−k,k

i∏
j=n−k+1

ψDCL

j

with i+ k > n. Thereby, the terms primal and dual are justified by the identities

ϕCL

k =

∑n−k
j=0

∑k
l=0 Zj,l∑n−k

j=0

∑k−1
l=0 Zj,l

and ψDCL

i =

∑n−i
l=0

∑i
j=0 Zj,l∑n−i

l=0

∑i−1
j=0 Zj,l
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The dual chain–ladder factors are the primal chain–ladder factors applied to the
transposed run–off triangle where accident and development years are interchanged,
i.e. in the dual chain–ladder method prediction runs along accident years instead of
development years.

For the remainder of this paper, we set SCL
i,k := Si,k and TDCL

i,k := Ti,k for all i+k ≤ n.

Using the primal respectively the dual chain–ladder method, the non–observable
incremental losses are predicted by the chain–ladder predictors

ZCL

i,k := SCL

i,k − SCL

i,k−1 = Si,n−i

(
k−1∏

l=n−i+1

ϕCL

l

)(
ϕCL

k − 1
)

= SCL

i,k−1

(
ϕCL

k − 1
)

respectively

ZDCL

i,k := TDCL

i,k − TDCL

i−1,k = Tn−k,k

(
i−1∏

j=n−k+1

ψDCL

j

)(
ψDCL

i − 1
)

= TDCL

i−1,k

(
ψDCL

i − 1
)

with i+ k > n.

The following result is due to Barnett, Zehnwirth and Dubossarsky [2005].

2.1.1 Theorem. The identity

ZCL

i,k = ZDCL

i,k

holds for all i+ k > n.

In order to give a proof of this duality we introduce the random variables

Ai,k :=
i∑

j=0

k∑
l=0

Zj,l

for all i, k ∈ {0, 1, ..., n}, which will turn out to be a useful technical device. Then,
the chain–ladder factors satisfy

ϕCL

k =
An−k,k

An−k,k−1

and ψDCL

i =
Ai,n−i

Ai−1,n−i

for all i, k ∈ {1, ..., n} and the cumulative losses satisfy

Si,k = Ai,k − Ai−1,k i ∈ {1, ..., n}, k ∈ {0, 1, ..., n}, i+ k ≤ n

Ti,k = Ai,k − Ai,k−1 k ∈ {1, ..., n}, i ∈ {0, 1, ..., n}, i+ k ≤ n
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The use of the rectangles Ai,k allows for a particularly short proof of Theorem 2.1.1.

Proof. (Proof of Theorem 2.1.1) We obtain

ZCL

i,k =
(
Ai,n−i − Ai−1,n−i

)( k−1∏
l=n−i+1

An−l,l

An−l,l−1

)(
An−k,k

An−k,k−1

− 1

)

=
(
Ai,n−i − Ai−1,n−i

) ∏k−1
l=n−i+1An−l,l∏k

l=n−i+1An−l,l−1

(
An−k,k − An−k,k−1

)
=

(
An−k,k − An−k,k−1

) ∏n−k+1
j=i−1 Aj,n−j∏n−k+1

j=i Aj−1,n−j

(
Ai,n−i − Ai−1,n−i

)
=

(
An−k,k − An−k,k−1

)( i−1∏
j=n−k+1

Aj,n−j

Aj−1,n−j

)(
Ai,n−i

Ai−1,n−i

− 1

)

= ZDCL

i,k

for all i+ k > n. 2

2.2 Aggregation problem

For the cumulative losses, the chain–ladder factors, the chain–ladder predictors and
the rectangles we take over the notation used for the incremental losses.

As a first result, we obtain that the primal respectively dual chain–ladder factor
based on the aggregated portfolio lies in the convex hull of the primal respectively
dual chain–ladder factors based on the subportfolios.

2.2.1 Lemma. The identities

ϕ̆CL

k =
Ān−k,k−1

Ăn−k,k−1

ϕ̄CL

k +
Ãn−k,k−1

Ăn−k,k−1

ϕ̃CL

k

and

ψ̆DCL

i =
Āi−1,n−i

Ăi−1,n−i

ψ̄DCL

i +
Ãi−1,n−i

Ăi−1,n−i

ψ̃DCL

i

hold for all i, k ∈ {1, ..., n}.

First of all, we want to study the aggregation problem on the basis of incremental
losses. We have the following result:
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2.2.2 Theorem. Consider i, k ∈ {1, ..., n} with i+ k > n.
(1) Assume that((

k−1∏
l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

j − ψ̃DCL

j

)
> 0

holds for all j ∈ {n− k + 1, ..., i}. Then

Z̄CL

j,k + Z̃CL

j,k > Z̆CL

j,k

for all j ∈ {n− k + 1, ..., i}.
(2) Assume that((

k−1∏
l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

j − ψ̃DCL

j

)
< 0

holds for all j ∈ {n− k + 1, ..., i}. Then

Z̄CL

j,k + Z̃CL

j,k < Z̆CL

j,k

for all j ∈ {n− k + 1, ..., i}.
(3) The following are equivalent:

(a) The identity((
k−1∏

l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

j − ψ̃DCL

j

)
= 0

holds for all j ∈ {n− k + 1, ..., i}.
(b) The identity

Z̄CL

j,k + Z̃CL

j,k = Z̆CL

j,k

holds for all j ∈ {n− k + 1, ..., i}.

Proof. Assume that the condition of (1) is fulfilled. Initially, we prove the assertion
for j = n− k + 1. Using Theorem 2.1.1 and Lemma A.3 we obtain

Z̄CL

n−k+1,k + Z̃CL

n−k+1,k − Z̆CL

n−k+1,k

= Z̄DCL

n−k+1,k + Z̃DCL

n−k+1,k − Z̆DCL

n−k+1,k

= T̄DCL

n−k,k

(
ψ̄DCL

n−k+1 − 1
)

+ T̃DCL

n−k,k

(
ψ̃DCL

n−k+1 − 1
)
− T̆DCL

n−k,k

(
ψ̆DCL

n−k+1 − 1
)

= T̄DCL

n−k,k

(
ψ̄DCL

n−k+1 − 1
)

+ T̃DCL

n−k,k

(
ψ̃DCL

n−k+1 − 1
)
−
(
T̄DCL

n−k,k + T̃DCL

n−k,k

) (
ψ̆DCL

n−k+1 − 1
)

= T̄DCL

n−k,k

(
ψ̄DCL

n−k+1 − ψ̆DCL

n−k+1

)
+ T̃DCL

n−k,k

(
ψ̃DCL

n−k+1 − ψ̆DCL

n−k+1

)
= γn−k+1

(
ϕ̄CL

k − ϕ̃CL

k

)(
ψ̄DCL

n−k+1 − ψ̃DCL

n−k+1

)
> 0

where γn−k+1 := (Ān−k,k−1 Ãn−k,k−1)/Ăn−k,k−1. Now, consider j ∈ {n− k + 2, ..., i}.
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We assume that the assertion holds for j− 1 and we prove the requested inequalitiy
for j. Using Theorem 2.1.1 and Lemma A.3 we obtain

Z̄CL

j,k + Z̃CL

j,k − Z̆CL

j,k

= Z̄DCL

j,k + Z̃DCL

j,k − Z̆DCL

j,k

= T̄DCL

j−1,k

(
ψ̄DCL

j − 1
)

+ T̃DCL

j−1,k

(
ψ̃DCL

j − 1
)
− T̆DCL

j−1,k

(
ψ̆DCL

j − 1
)

> T̄DCL

j−1,k

(
ψ̄DCL

j − 1
)

+ T̃DCL

j−1,k

(
ψ̃DCL

j − 1
)
−
(
T̄DCL

j−1,k + T̃DCL

j−1,k

) (
ψ̆DCL

j − 1
)

= T̄DCL

j−1,k

(
ψ̄DCL

j − ψ̆DCL

j

)
+ T̃DCL

j−1,k

(
ψ̃DCL

j − ψ̆DCL

j

)
= γj

((
k−1∏

l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

j − ψ̃DCL

j

)
> 0

where γj := (Āj−1,n−j Ãj−1,n−j)/Ăj−1,n−j. Cases (2) and (3) can be proved analo-
gously. 2

The duality of the chain–ladder method allows for a dual version of Theorem 2.2.2
where accident and development years are interchanged.

We illustrate the results of Theorem 2.2.2 by the following example:

2.2.3 Example. Incremental losses and predictors of the incremental losses of portfolio I:

accident development year k
year i 0 1 2 ψ̄DCL

i

0 150 270 240
1 420 200 354 2.48
2 400 330 417 1.70

ϕ̄CL
k 1.82 1.57

Incremental losses and predictors of the incremental losses of portfolio II:

accident development year k
year i 0 1 2 ψ̃DCL

i

0 200 200 200
1 200 200 200 2.00
2 200 200 200 1.50

ϕ̃CL
k 2.00 1.50

Sum of the predictors of portfolios I & II:

accident development year k
year i 0 1 2
0
1 554
2 530 617
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Incremental losses and predictors of the incremental losses of the aggregated portfolio:

accident development year k
year i 0 1 2
0 350 470 440
1 620 400 547
2 600 538 611

ϕ̆CL
k 1.90 1.54

The conditions of Theorem 2.2.2 (1) are fulfilled for (i, k) = (1, 2) as well as (i, k) = (2, 2)
and those of Theorem 2.2.2 (2) for (i, k) = (2, 1). So, we have

Z̄CL
1,2 + Z̃CL

1,2 = 554 > 547 = Z̆CL
1,2

Z̄CL
2,1 + Z̃CL

2,1 = 530 < 538 = Z̆CL
2,1

Z̄CL
2,2 + Z̃CL

2,2 = 617 > 611 = Z̆CL
2,2

However, for the primal cumulative losses we have

S̄CL
2,2 + S̃CL

2,2 = 1747 6> 1749 = S̆CL
2,2

Now, we want to study the aggregation problem on the basis of cumulative losses.
For that purpose, we need to strengthen the conditions given in Theorem 2.2.2.

2.2.4 Lemma. Consider i, k ∈ {1, ..., n} with i+ k > n. Assume that

k∏
l=n−j+1

ϕ̄CL

l >
k∏

l=n−j+1

ϕ̃CL

l

holds for all j ∈ {n− k + 1, ..., i}. Then(
k−1∏

l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1) >

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

for all j ∈ {n− k + 1, ..., i}.

Proof. By assumption, we have ϕ̄CL
k > ϕ̃CL

k , hence (ϕ̄CL
k − 1)/ϕ̄CL

k > (ϕ̃CL
k − 1)ϕ̃CL

k

and thus (
k−1∏

l=n−j+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1) =

(
k∏

l=n−j+1

ϕ̄CL

l

)
ϕ̄CL

k − 1

ϕ̄CL
k

>

(
k∏

l=n−j+1

ϕ̃CL

l

)
ϕ̃CL

k − 1

ϕ̃CL
k

=

(
k−1∏

l=n−j+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

for all j ∈ {n− k + 1, ..., i}. 2
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As can be seen from Example 2.2.3, the converse implication is in general not true.

For the cumulative losses we have the following result:

2.2.5 Theorem. Consider i, k ∈ {1, ..., n} with i+ k > n.
(1) Assume that (

k∏
l=n−j+1

ϕ̄CL

l −
k∏

l=n−j+1

ϕ̃CL

l

)(
ψ̄DCL

j − ψ̃DCL

j

)
> 0

holds for all j ∈ {n− k + 1, ..., i}. Then

S̄CL

j,k + S̃CL

j,k > S̆CL

j,k

for all j ∈ {n− k + 1, ..., i}.
(2) Assume that (

k∏
l=n−j+1

ϕ̄CL

l −
k∏

l=n−j+1

ϕ̃CL

l

)(
ψ̄DCL

j − ψ̃DCL

j

)
< 0

holds for all j ∈ {n− k + 1, ..., i}. Then

S̄CL

j,k + S̃CL

j,k < S̆CL

j,k

for all j ∈ {n− k + 1, ..., i}.
(3) The following are equivalent:

(a) The identity(
k∏

l=n−j+1

ϕ̄CL

l −
k∏

l=n−j+1

ϕ̃CL

l

)(
ψ̄DCL

j − ψ̃DCL

j

)
= 0

holds for all j ∈ {n− k + 1, ..., i}.
(b) The identity

S̄CL

j,k + S̃CL

j,k = S̆CL

j,k

holds for all j ∈ {n− k + 1, ..., i}.

Proof. Assume that the condition of (1) is fulfilled. Initially, we prove the assertion
for j = n− k + 1. Using Lemma A.4 for cell (n− k + 1, k) we obtain

S̄CL

n−k+1,k + S̃CL

n−k+1,k − S̆CL

n−k+1,k

= S̄CL

n−k+1,k−1 ϕ̄
CL

k + S̃CL

n−k+1,k−1 ϕ̃
CL

k − S̆CL

n−k+1,k−1 ϕ̆
CL

k

= S̄CL

n−k+1,k−1 ϕ̄
CL

k + S̃CL

n−k+1,k−1 ϕ̃
CL

k −
(
S̄CL

n−k+1,k−1 + S̃CL

n−k+1,k−1

)
ϕ̆CL

k

= S̄CL

n−k+1,k−1 (ϕ̄CL

k − ϕ̆CL

k ) + S̃CL

n−k+1,k−1 (ϕ̃CL

k − ϕ̆CL

k )

= γn−k+1

(
ϕ̄CL

k − ϕ̃CL

k

) (
ψ̄DCL

n−k+1 − ψ̃DCL

n−k+1

)
> 0

where γn−k+1 := (Ān−k,k−1 Ãn−k,k−1)/Ăn−k,k−1. Now, consider j ∈ {n− k + 2, ..., i}.
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We assume that the assertion holds for j − 1 and we prove the requested inequality
for j. Using Lemmas A.1 and A.4 we obtain

S̄CL

j,k + S̃CL

j,k − S̆CL

j,k

= S̄j,n−j

k∏
l=n−j+1

ϕ̄CL

l + S̃j,n−j

k∏
l=n−j+1

ϕ̃CL

l − S̆j,n−j

k∏
l=n−j+1

ϕ̆CL

l

= S̄j,n−j

k∏
l=n−j+1

ϕ̄CL

l + S̃j,n−j

k∏
l=n−j+1

ϕ̃CL

l − (S̄j,n−j + S̃j,n−j)
k∏

l=n−j+1

ϕ̆CL

l

= S̄j,n−j

(
k∏

l=n−j+1

ϕ̄CL

l −
k∏

l=n−j+1

ϕ̆CL

l

)
+ S̃j,n−j

(
k∏

l=n−j+1

ϕ̃CL

l −
k∏

l=n−j+1

ϕ̆CL

l

)

= S̄j,n−j

(
k∏

l=n−j+1

ϕ̄CL

l −
∑j−1

h=0 S̆
CL
h,k

Ăj−1,n−j

)
+ S̃j,n−j

(
k∏

l=n−j+1

ϕ̃CL

l −
∑j−1

h=0 S̆
CL
h,k

Ăj−1,n−j

)

> S̄j,n−j

(
k∏

l=n−j+1

ϕ̄CL

l −
∑j−1

h=0(S̄
CL
h,k + S̃CL

h,k)

Ăj−1,n−j

)

+S̃j,n−j

(
k∏

l=n−j+1

ϕ̃CL

l −
∑j−1

h=0(S̄
CL
h,k + S̃CL

h,k)

Ăj−1,n−j

)

= γj

(
k∏

l=n−j+1

ϕ̄CL

l −
k∏

l=n−j+1

ϕ̃CL

l

)(
ψ̄DCL

j − ψ̃DCL

j

)

> 0

where γj := (Āj−1,n−j Ãj−1,n−j)/Ăj−1,n−j. Cases (2) and (3) can be proved analo-
gously. 2

For the case i = k = n Theorem 2.2.5 is due to Ajne [1994].

Due to Lemma 2.2.4 the results of Theorem 2.2.5 are also valid for the incremental
losses. As can be seen from Example 2.2.3, the converse implication is in general not
true. Additionally, the duality of the chain–ladder method allows for a dual version
of Theorem 2.2.5.

2.2.6 Example. Incremental losses and predictors of the incremental losses of portfolio I:

accident development year k
year i 0 1 2 ψ̄DCL

i

0 100 100 300
1 300 100 600 3.00
2 400 200 900 2.00

ϕ̄CL
k 1.50 2.50
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Incremental losses and predictors of the incremental losses of portfolio II:

accident development year k
year i 0 1 2 ψ̃DCL

i

0 200 200 200
1 200 200 200 2.00
2 200 200 200 1.50

ϕ̃CL
k 2.00 1.50

Sum of the predictors of portfolios I & II:

accident development year k
year i 0 1 2
0
1 800
2 400 1100

Incremental losses and predictors of the incremental losses of the aggregated portfolio:

accident development year k
year i 0 1 2
0 300 300 500
1 500 300 667
2 600 450 875

ϕ̆CL
k 1.75 1.83

The conditions of Theorem 2.2.5 (1) are fulfilled for (i, k) = (1, 2) as well as (i, k) = (2, 2)
and those of Theorem 2.2.5 (2) for (i, k) = (2, 1). So, we have

S̄CL
1,2 + S̃CL

1,2 = 1600 > 1467 = S̆CL
1,2

S̄CL
2,1 + S̃CL

2,1 = 1000 < 1050 = S̆CL
2,1

S̄CL
2,2 + S̃CL

2,2 = 2100 > 1925 = S̆CL
2,2

The same inequalities are valid for the incremental losses.

In contrast to Theorems 2.2.2 and 2.2.5 which contain local results for the aggre-
gation problem, i.e results for the chain–ladder predictors of a single cell, Corollary
2.2.8 finally provides a global result. The following lemma is obvious.

2.2.7 Lemma. Assume that ϕ̄CL
l > ϕ̃CL

l holds for all l ∈ {1, ..., n}. Then

k∏
l=n−j+1

ϕ̄CL

l >

k∏
l=n−j+1

ϕ̃CL

l

for all i, k ∈ {1, ..., n} such that i+ k > n and j ∈ {n− k + 1, ..., i}.

As can be seen from Example 2.2.6, the converse implication is in general not true.
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If both chain–ladder factors, primal as well as dual, of one subportfolio are domi-
nated by both factors of the second subportfolio, then the sum of the chain–ladder
predictors based on the subportfolios exceeds the corresponding chain–ladder pre-
dictor based on the aggregated portfolio. The following corollary describes this
result and includes analogous statements for the converse inequality and identity.
Corollary 2.2.8 is an immediate consequence of Theorem 2.2.2 and Lemmas 2.2.4
and 2.2.7.

2.2.8 Corollary.
(1) Assume that ϕ̄CL

k > ϕ̃CL
k holds for all k ∈ {1, ..., n} and ψ̄DCL

i > ψ̃DCL
i holds for

all i ∈ {1, ..., n}. Then

Z̄CL

i,k + Z̃CL

i,k > Z̆CL

i,k and S̄CL

i,k + S̃CL

i,k > S̆CL

i,k

for all i+ k > n.
(2) Assume that ϕ̄CL

k > ϕ̃CL
k holds for all k ∈ {1, ..., n} and ψ̄DCL

i < ψ̃DCL
i holds for

all i ∈ {1, ..., n}. Then

Z̄CL

i,k + Z̃CL

i,k < Z̆CL

i,k and S̄CL

i,k + S̃CL

i,k < S̆CL

i,k

for all i+ k > n.
(3) Assume that ϕ̄CL

k = ϕ̃CL
k holds for all k ∈ {1, ..., n} or ψ̄DCL

i = ψ̃DCL
i holds for all

i ∈ {1, ..., n}. Then

Z̄CL

i,k + Z̃CL

i,k = Z̆CL

i,k and S̄CL

i,k + S̃CL

i,k = S̆CL

i,k

for all i+ k > n.

Corollary 2.2.8 extends a result of Klemmt [2005].

2.2.9 Example. Incremental losses and predictors of the incremental losses of portfolio I:

accident development year k
year i 0 1 2 3 ψ̄DCL

i

0 230 110 60 20
1 240 120 80 22 2.10
2 230 120 70 21 1.50
3 210 105 63 19 1.30

ϕ̄CL
k 1.50 1.20 1.05

Incremental losses and predictors of the incremental losses of portfolio II:

accident development year k
year i 0 1 2 3 ψ̃DCL

i

0 780 140 80 10
1 760 120 100 10 1.98
2 410 130 54 6 1.30
3 390 78 47 5 1.20

ϕ̃CL
k 1.20 1.10 1.01
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Sum of the predictors of portfolios I & II:

accident development year k
year i 0 1 2 3
0
1 32
2 124 27
3 183 110 24

Incremental losses and predictors of the incremental losses of the aggregated portfolio:

accident development year k
year i 0 1 2 3
0 1010 250 140 30
1 1000 240 180 30
2 640 250 114 22
3 600 168 98 19

ϕ̆CL
k 1.28 1.13 1.02

These results are in accordance with Corollary 2.2.8 (1).

2.3 Remarks

The results given in Theorem 2.2.2 (1), (2) and Theorem 2.2.5 (1), (2) for a given
cell remain valid under weaker conditions. If we replace the given conditions up to
a certain index by non–strict inequalities, we also obtain non–strict inequalities for
the chain–ladder predictors up to this index.

The chain–ladder method is based on the assumption that there exists a development
pattern for factors.
– If we assume that there exists a development pattern for factors for each sub-

portfolio, then we have parameters ϕ̄k and ϕ̃k with

E[S̄i,k] = E[S̄i,k−1] ϕ̄k

E[S̃i,k] = E[S̃i,k−1] ϕ̃k

for all k ∈ {1, ..., n} and i ∈ {0, 1, ..., n}.
– If we assume that there exists a development pattern for factors for the full

portfolio, then we have parameters ϕ̆k with

E[S̆i,k] = E[S̆i,k−1] ϕ̆k

for all k ∈ {1, ..., n} and i ∈ {0, 1, ..., n}.
Hence, there exists both a development pattern for factors for each subportfolio
and a development pattern for factors for the full portfolio, if and only if, for every
k ∈ {1, ..., n} there exists some ck−1 ∈ (0,∞) with

E[S̄i,k−1]

E[S̃i,k−1]
= ck−1

for all i ∈ {0, 1, ..., n}.
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For a consistent modelling of the subportfolios and the full portfolio one can use
the multivariate chain–ladder model which is the basis of the multivariate chain–
ladder method; see Pröhl and Schmidt [2005]. The multivariate chain–ladder model
describes not only the subportfolios but also the relation between them.

3 Additive method and aggregation problem

In the present section we study the aggregation problem for the additive method.
Because of the volume measures used in the additive method, the problem of whether
or not the sum of the predictors based on the subportfolios equals the corresponding
predictor based on the aggregated portfolio can be decided from a single and simple
equation (Lemma 3.2.2).

Apparently, the aggregation problem for the additive method has not yet been con-
sidered in literature.

3.1 Additive method

The additive method is based on known volume measures vi of accident year i, i ∈
{0, 1, ..., n} and on the additive incremental loss ratios

ζAD

k :=

∑n−k
i=0 Zi,k∑n−k
i=0 vi

of development year k, k ∈ {0, 1, ..., n}, and consists in the prediction of the incre-
mental losses Zi,k, i+ k > n, by the additive predictors

ZAD

i,k := vi ζ
AD

k

with i + k > n. For the prediction of the cumulative losses we use the additive
predictors

SAD

i,k := Si,n−i + vi

k∑
l=n−i+1

ζAD

l

with i+ k > n.

3.2 Aggregation problem

For the cumulative losses, the incremental loss ratios, the volume measures and the
additive predictors we take over the notation used for the incremental losses.

Since the additive predictors of the incremental losses are invariant with respect to
the multiplication of the volume measures with a positive scalar, we set

v̆i := α (v̄i + ṽi)

for all i ∈ {0, 1, ..., n} and some α ∈ (0,∞).
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A similar result to Lemma 2.2.1 holds for the additive incremental loss ratios.

3.2.1 Lemma. The identity

ζ̆AD

k =

∑n−k
i=0 v̄i∑n−k
i=0 v̆i

ζ̄AD

k +

∑n−k
i=0 ṽi∑n−k
i=0 v̆i

ζ̃AD

k

holds for all k ∈ {0, 1, ..., n}.

First of all, we want to study the aggregation problem on the basis of incremental
losses. We have the following result:

3.2.2 Lemma. For each i, k ∈ {1, ..., n} with i + k > n there exists some ck ∈
(0,∞) with

Z̄AD

i,k + Z̃AD

i,k − Z̆AD

i,k = ck

(
v̄i∑n−k

j=0 v̄j

− ṽi∑n−k
j=0 ṽj

)(
ζ̄AD

k − ζ̃AD

k

)

Proof. Using Lemma 3.2.1 we obtain

Z̄AD

i,k + Z̃AD

i,k − Z̆AD

i,k

= v̄i ζ̄
AD

k + ṽi ζ̃
AD

k − v̆i ζ̆
AD

k

= v̄i ζ̄
AD

k + ṽi ζ̃
AD

k − v̆i

(∑n−k
j=0 v̄j∑n−k
j=0 v̆j

ζ̄AD

k +

∑n−k
j=0 ṽj∑n−k
j=0 v̆j

ζ̃AD

k

)

=

(
v̄i − v̆i

∑n−k
j=0 v̄j∑n−k
j=0 v̆j

)
ζ̄AD

k +

(
ṽi − v̆i

∑n−k
j=0 ṽj∑n−k
j=0 v̆j

)
ζ̃AD

k

=

(
v̄i

∑n−k
j=0 (v̄j + ṽj)∑n−k

j=0 (v̄j + ṽj)
−
α (v̄i + ṽi)

∑n−k
j=0 v̄j∑n−k

j=0 α (v̄j + ṽj)

)
ζ̄AD

k

+

(
ṽi

∑n−k
j=0 (v̄j + ṽj)∑n−k

j=0 (v̄j + ṽj)
−
α (v̄i + ṽi)

∑n−k
j=0 ṽj∑n−k

j=0 α (v̄j + ṽj)

)
ζ̃AD

k

=

(
v̄i

∑n−k
j=0 ṽj − ṽi

∑n−k
j=0 v̄j∑n−k

j=0 (v̄j + ṽj)

)
ζ̄AD

k +

(
ṽi

∑n−k
j=0 v̄j − v̄i

∑n−k
j=0 ṽj∑n−k

j=0 (v̄j + ṽj)

)
ζ̃AD

k

=

(
v̄i

∑n−k
j=0 ṽj − ṽi

∑n−k
j=0 v̄j∑n−k

j=0 (v̄j + ṽj)

)(
ζ̄AD

k − ζ̃AD

k

)

=
(
∑n−k

j=0 v̄j)(
∑n−k

j=0 ṽj)∑n−k
j=0 (v̄j + ṽj)

(
v̄i∑n−k

j=0 v̄j

− ṽi∑n−k
j=0 ṽj

)(
ζ̄AD

k − ζ̃AD

k

)
2
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The previous lemma completely solves the aggregation problem for the incremental
losses. The following theorem takes up this result.

3.2.3 Theorem. Consider i, k ∈ {1, ..., n} with i + k > n and ./∈ {>,<,=}.
Then the following are equivalent:

(a) (
v̄i∑n−k

j=0 v̄j

− ṽi∑n−k
j=0 ṽj

)(
ζ̄AD

k − ζ̃AD

k

)
./ 0

(b)

Z̄AD

i,k + Z̃AD

i,k ./ Z̆AD

i,k

3.2.4 Example. Incremental losses and predictors of the incremental losses of portfolio I:

accident development year k
year i 0 1 2 v̄i

0 260 120 70 100
1 205 180 105 150
2 300 240 140 200

ζ̄AD
k 1,70 1,20 0,70

Incremental losses and predictors of the incremental losses of portfolio II:

accident development year k
year i 0 1 2 ṽi

0 300 200 160 200
1 260 250 200 250
2 340 300 240 300

ζ̃AD
k 1,20 1,00 0,80

Sum of the predictors of portfolios I & II:

accident development year k
year i 0 1 2
0
1 305
2 540 380

Incremental losses and predictors of the incremental losses of the aggregated portfolio:

accident development year k
year i 0 1 2 v̆i

0 560 320 230 300
1 465 430 307 400
2 640 536 383 500

ζ̆AD
k 1,39 1,07 0,77
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In the case of incremental losses, Lemma 3.2.2 demonstrates completely the relation be-
tween the sum of the additive predictors based on the subportfolios and the corresponding
additive predictor based on the aggregated portfolio. So, we have

Z̄AD
1,2 + Z̃AD

1,2 = 305 < 307 = Z̆AD
1,2

Z̄AD
2,1 + Z̃AD

2,1 = 540 > 536 = Z̆AD
2,1

Z̄AD
2,2 + Z̃AD

2,2 = 380 < 383 = Z̆AD
2,2

However, for the cumulative losses we have

S̄AD
2,2 + S̃AD

2,2 = 1560 6< 1559 = S̆AD
2,2

As can be seen from Example 3.2.4, the aggregation problem on the basis of cu-
mulative losses shall be considered separately. The following result is an immediate
consequence of Lemma 3.2.2.

3.2.5 Corollary. Consider i, k ∈ {1, ..., n} with i+ k > n.
(1) Assume that (

v̄i∑n−l
j=0 v̄j

− ṽi∑n−l
j=0 ṽj

)(
ζ̄AD

l − ζ̃AD

l

)
> 0

holds for all l ∈ {n− i+ 1, ..., k}. Then

S̄AD

i,l + S̃AD

i,l > S̆AD

i,l

for all l ∈ {n− i+ 1, ..., k}.
(2) Assume that (

v̄i∑n−l
j=0 v̄j

− ṽi∑n−l
j=0 ṽj

)(
ζ̄AD

l − ζ̃AD

l

)
< 0

holds for all l ∈ {n− i+ 1, ..., k}. Then

S̄AD

i,l + S̃AD

i,l < S̆AD

i,l

for all l ∈ {n− i+ 1, ..., k}.
(3) The following are equivalent:

(a) The identity (
v̄i∑n−l

j=0 v̄j

− ṽi∑n−l
j=0 ṽj

)(
ζ̄AD

l − ζ̃AD

l

)
= 0

holds for all l ∈ {n− i+ 1, ..., k}.
(b) The identity

S̄AD

i,l + S̃AD

i,l = S̆AD

i,l

holds for all l ∈ {n− i+ 1, ..., k}.

The concluding corollary is obvious.
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3.2.6 Corollary. Assume that there exists some c ∈ (0,∞) with v̄i/ṽi = c for all
i ∈ {0, 1, ..., n}. Then

Z̄AD

i,k + Z̃AD

i,k = Z̆AD

i,k and S̄AD

i,k + S̃AD

i,k = S̆AD

i,k

for all i, k ∈ {1, ..., n}. In this case the additive method is additive.

3.3 Remarks

Unlike the chain–ladder method, the additive method uses not only the information
contained in the run–off triangle but also certain known volume measures, and the
choice of the volume measures may considerably effect the aggregation problem. A
typical example of such a situation is the classification of a given portfolio of risks
into large and basic losses.
– Using the number of policies as volume measures for both subportfolios, then

v̄i/ṽi = 1 and the additivity of the additive method follows from Corollary 3.2.6.
In this case there is no reason to worry about the aggregation problem.

– Otherwise, if we choose for both subportfolios the expected number of claims
as volume measures, then these volume measures will in general fail to be pro-
portional and the additive method may fail to be additive.

Thus, the choice of the underlying volume measures may have an effect on the
additivity or non–additivity of the additive method.

The additive method is based on the assumption that there exists a development
pattern for cumulative quotas.
– If we assume that there exists a development pattern for cumulative quotas for

each subportfolio, then we have parameters ζ̄k and ζ̃k with

E[Z̄i,k] = v̄i ζ̄k

E[Z̃i,k] = ṽi ζ̃k

for all k ∈ {0, 1, ..., n} and i ∈ {0, 1, ..., n}.
– If we assume that there exists a development pattern for cumulative quotas for

the full portfolio, then we have parameters ζ̆k with

E[Z̆i,k] = v̆i ζ̆k

for all k ∈ {0, 1, ..., n} and i ∈ {0, 1, ..., n}.
Hence, there exists both a development pattern for cumulative quotas for each sub-
portfolio and a development pattern for cumulative quotas for the full portfolio, if
and only if, there exists some c ∈ (0,∞) with

v̄i

ṽi

= c

for all i ∈ {0, 1, ..., n}.

For a consistent modelling of the subportfolios and the full portfolio one can use the
multivariate additive model which is the basis of the multivariate additive method;
see Hess, Schmidt and Zocher [2006]. The multivariate additive model describes not
only the subportfolios but also the relation between them.

18



A Appendix

In this section we prove some technical Lemmas. Recall that SCL
i,k := Si,k and TDCL

i,k :=
Ti,k for all i+ k ≤ n.

A.1 Lemma. The identities∑i
j=0 S

CL
j,k

Ai,n−i

=
k∏

l=n−i+1

ϕCL

l =

∑i−1
j=0 S

CL
j,k

Ai−1,n−i

hold for all i ∈ {1, ..., n}, k ∈ {0, 1, ..., n} such that i+ k ≥ n.

Proof. The first identity is a generalization of Lemma 13.5.1 in Schmidt [2009].
There, the proof is given for k = n; the general case can be proved quite similar. The
second identity is an immediate consequence of the first identity and the definition
of the chain–ladder predictors of the primal cumulative losses SCL

i,k . 2

A.2 Lemma. The identities

SCL
i,k−1

An−k,k−1

=

(
i−1∏

j=n−k+1

ψDCL

j

)
(ψDCL

i − 1)

and
TDCL

i−1,k

Ai−1,n−i

=

(
k−1∏

l=n−i+1

ϕCL

l

)
(ϕCL

k − 1)

hold for all i+ k > n.

Proof. First of all, we obtain

1

An−k,k−1

k−1∏
l=n−i+1

ϕCL

l =

∏k−1
l=n−i+1An−l,l∏k

l=n−i+1An−l,l−1

=

∏i−1
j=n−k+1Aj,n−j∏i

j=n−k+1Aj−1,n−j

=
1

Ai−1,n−i

i−1∏
j=n−k+1

ψDCL

j

for all i+ k > n. Now, using this result we also obtain

SCL
i,k−1

An−k,k−1

=
1

An−k,k−1

(Ai,n−i − Ai−1,n−i)
k−1∏

l=n−i+1

ϕCL

l

=
1

Ai−1,n−i

(Ai,n−i − Ai−1,n−i)
i−1∏

j=n−k+1

ψDCL

j

= (ψDCL

i − 1)
i−1∏

j=n−k+1

ψDCL

j

for all i+ k > n. The dual part can be proved analogously. 2
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A.3 Lemma. The identity

T̄DCL

i−1,k

(
ψ̄DCL

i − ψ̆DCL

i

)
+ T̃DCL

i−1,k

(
ψ̃DCL

i − ψ̆DCL

i

)
= γi

((
k−1∏

l=n−i+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−i+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

i − ψ̃DCL

i

)

holds for all i+ k > n where γi := (Āi−1,n−i Ãi−1,n−i)/Ăi−1,n−i.

Proof. First of all, using Lemma 2.2.1 we obtain

ψ̄DCL

i − ψ̆DCL

i = ψ̄DCL

i − Āi−1,n−i

Ăi−1,n−i

ψ̄DCL

i − Ãi−1,n−i

Ăi−1,n−i

ψ̃DCL

i

=
Ãi−1,n−i

Ăi−1,n−i

ψ̄DCL

i − Ãi−1,n−i

Ăi−1,n−i

ψ̃DCL

i

=
Ãi−1,n−i

Ăi−1,n−i

(
ψ̄DCL

i − ψ̃DCL

i

)
for all i ∈ {1, ..., n} and analogously

ψ̃DCL

i − ψ̆DCL

i =
Āi−1,n−i

Ăi−1,n−i

(
ψ̃DCL

i − ψ̄DCL

i

)
for all i ∈ {1, ..., n}. Using this result and Lemma A.2 we obtain

T̄DCL

i−1,k

(
ψ̄DCL

i − ψ̆DCL

i

)
+ T̃DCL

i−1,k

(
ψ̃DCL

i − ψ̆DCL

i

)
= T̄DCL

i−1,k

Ãi−1,n−i

Ăi−1,n−i

(
ψ̄DCL

i − ψ̃DCL

i

)
+ T̃DCL

i−1,k

Āi−1,n−i

Ăi−1,n−i

(
ψ̃DCL

i − ψ̄DCL

i

)
=

Āi−1,n−i Ãi−1,n−i

Ăi−1,n−i

(
T̄DCL

i−1,k

Āi−1,n−i

−
T̃DCL

i−1,k

Ãi−1,n−i

)(
ψ̄DCL

i − ψ̃DCL

i

)

= γi

((
k−1∏

l=n−i+1

ϕ̄CL

l

)
(ϕ̄CL

k − 1)−

(
k−1∏

l=n−i+1

ϕ̃CL

l

)
(ϕ̃CL

k − 1)

)(
ψ̄DCL

i − ψ̃DCL

i

)
for all i+ k > n. 2

A.4 Lemma. The identity

S̄i,n−i

(
k∏

l=n−i+1

ϕ̄CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

)
+ S̃i,n−i

(
k∏

l=n−i+1

ϕ̃CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

)

= γi

(
k∏

l=n−i+1

ϕ̄CL

l −
k∏

l=n−i+1

ϕ̃CL

l

)(
ψ̄DCL

i − ψ̃DCL

i

)

holds for all i+ k > n where γi := (Āi−1,n−i Ãi−1,n−i)/Ăi−1,n−i.

20



Proof. First, using Lemma A.1 we obtain

k∏
l=n−i+1

ϕ̄CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

=
k∏

l=n−i+1

ϕ̄CL

l −
∑i−1

j=0 S̄
CL
j,k

Ăi−1,n−i

−
∑i−1

j=0 S̃
CL
j,k

Ăi−1,n−i

=
k∏

l=n−i+1

ϕ̄CL

l −
Āi−1,n−i

Ăi−1,n−i

k∏
l=n−i+1

ϕ̄CL

l −
Ãi−1,n−i

Ăi−1,n−i

k∏
l=n−i+1

ϕ̃CL

l

=
Ãi−1,n−i

Ăi−1,n−i

(
k∏

l=n−i+1

ϕ̄CL

l −
k∏

l=n−i+1

ϕ̃CL

l

)

for all i+ k > n and analogously

k∏
l=n−i+1

ϕ̃CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

=
Āi−1,n−i

Ăi−1,n−i

(
k∏

l=n−i+1

ϕ̃CL

l −
k∏

l=n−i+1

ϕ̄CL

l

)

for all i+ k > n. Moreover, applying Lemma A.2 for k = n− i+ 1 yields

Si,n−i

Ai−1,n−i

= ψDCL

i − 1

for all i ∈ {1, ..., n}. Thus, using the previous results we obtain

S̄i,n−i

(
k∏

l=n−i+1

ϕ̄CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

)
+ S̃i,n−i

(
k∏

l=n−i+1

ϕ̃CL

l −
∑i−1

j=0(S̄
CL
j,k + S̃CL

j,k)

Ăi−1,n−i

)

= S̄i,n−i
Ãi−1,n−i

Ăi−1,n−i

(
k∏

l=n−i+1

ϕ̄CL

l −
k∏

l=n−i+1

ϕ̃CL

l

)

+ S̃i,n−i
Āi−1,n−i

Ăi−1,n−i

(
k∏

l=n−i+1

ϕ̃CL

l −
k∏

l=n−i+1

ϕ̄CL

l

)

=
Āi−1,n−i Ãi−1,n−i

Ăi−1,n−i

(
S̄i,n−i

Āi−1,n−i

− S̃i,n−i

Ãi−1,n−i

)(
k∏

l=n−i+1

ϕ̄CL

l −
k∏

l=n−i+1

ϕ̃CL

l

)

= γi

(
ψ̄DCL

i − ψ̃DCL

i

)(
k∏

l=n−i+1

ϕ̄CL

l −
k∏

l=n−i+1

ϕ̃CL

l

)

for all i+ k > n. 2
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Großschäden. Blätter DGVFM 27, 49-58.
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