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Abstract

The present paper provides a unifying survey of some of the most important
methods and models of loss reserving which are based on run–off triangles.
The starting point is the thesis that the use of run–off triangles in loss reserving
can be justified only under the assumption that the development of the losses
of every accident year follows a development pattern which is common to all
accident years. This assumption can be viewed as a primitive stochastic model
of loss reserving.
The notion of a development pattern turns out to be a unifying force in the
comparison of methods which to a large extent can be summarized under a
general version of the Bornhuetter–Ferguson method. It is shown that the
loss–development method and the chain–ladder method as well as the Cape–
Cod method and the additive method can be viewed as special cases of the
general Bornhuetter–Ferguson method.
Some of these methods can be justified by general principles of statistical
inference applied to suitable and more sophisticated stochastic models. It
is shown that credibility prediction and Gauss–Markov prediction as well as
maximum–likelihood estimation can contribute in a substantial way to the
understanding of various methods of loss reserving.

Keywords: Bornhuetter–Ferguson principle, credibility prediction, develop-
ment pattern, Gauss–Markov prediction, loss reserving, maximum–likelihood
estimation.
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1 Introduction

We start with the general modelling of loss development data by a family of random
variables representing incremental or cumulative losses and with the run–off triangles
representing the observable incremental or cumulative losses (Section 2).

We then introduce the central notion of a development pattern which can be ex-
pressed in three different but equivalent ways and turns out to be a powerful and
unifying concept for the interpretation and comparison of several methods and
models of loss reserving (Section 3).

The subsequent three sections are devoted to methods, least–squares prediction, and
maximum–likelihood estimation:

In the section on methods (Section 4), we start with a general version of the Born-
huetter–Ferguson method which provides a general framework into which several
other methods, like the loss–development method, the chain–ladder method, the
Cape–Cod method and the additive method, can be embedded as special cases.
We also consider two variants of the chain–ladder method which have no practical
interest but are needed as a link between the chain–ladder method and certain
stochastic models.

In the section on least–squares prediction (Section 5), we study credibility prediction
and Gauss–Markov prediction. It is shown that, under certain model assumptions,
these methods of prediction yield predictors of the Bornhuetter–Ferguson type.

In the section on maximum–likelihood estimation (Section 6), we study maximum–
likelihood estimation for a large class of stochastic models for claim counts. It is
shown that in many cases, but not always, the maximum–likelihood estimators of the
expected ultimate cumulative losses are identical with the chain–ladder predictors
of the ultimate cumulative losses.

In the final section (Section 7) we collect some conclusions.

Throughout this paper, let (Ω,F , P ) be a probability space on which all random vari-
ables are defined. We also assume that all random variables are square integrable.
Moreover, all equalities and inequalities involving random variables are understood
to hold almost surely with respect to the probability measure P .
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2 Loss Development Data

We consider a portfolio of risks and we assume that each claim of the portfolio is
settled either in the accident year or in the following n development years. The
portfolio may be modelled either by incremental losses or by cumulative losses.

2.1 Incremental Losses

To model a portfolio by incremental losses, we consider a family of random variables
{Zi,k}i,k∈{0,1,...,n} and we interpret the random variable Zi,k as the loss of accident
year i which is settled with a delay of k years and hence in development year k and
in calendar year i + k. We refer to Zi,k as the incremental loss of accident year i
and development year k.

We assume that the incremental losses Zi,k are observable for calendar years i+k ≤ n
and that they are non–observable for calendar years i + k ≥ n + 1. The observable
incremental losses are represented by the following run–off triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i

...
...

...
...

n−k Zn−k,0 Zn−k,1 . . . Zn−k,k

...
...

...
n−1 Zn−1,0 Zn−1,1

n Zn,0

The problem is to predict the non–observable incremental losses.

2.2 Cumulative Losses

To model a portfolio by cumulative losses, we consider a family of random variables
{Si,k}i,k∈{0,1,...,n} and we interpret the random variable Si,k as the loss of accident
year i which is settled with a delay of at most k years and hence not later than in
development year k. We refer to Si,k as the cumulative loss of accident year i and
development year k, to Si,n−i as a cumulative loss of the present calendar year n,
and to Si,n as an ultimate cumulative loss.

We assume that the cumulative losses Si,k are observable for calendar years i+k ≤ n
and that they are non–observable for calendar years i + k ≥ n + 1. The observable
cumulative losses are represented by the following run–off triangle:
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Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 S0,0 S0,1 . . . S0,k . . . S0,n−i . . . S0,n−1 S0,n

1 S1,0 S1,1 . . . S1,k . . . S1,n−i . . . S1,n−1

...
...

...
...

...
i Si,0 Si,1 . . . Si,k . . . Si,n−i

...
...

...
...

n−k Sn−k,0 Sn−k,1 . . . Sn−k,k

...
...

...
n−1 Sn−1,0 Sn−1,1

n Sn,0

The problem is to predict the non–observable cumulative losses.

2.3 Remarks

Of course, modelling a portfolio by incremental losses is equivalent to modelling a
portfolio by cumulative losses:
– The cumulative losses are obtained from the incremental losses by letting

Si,k :=
k∑

l=0

Zi,l

– The incremental losses are obtained from the cumulative losses by letting

Zi,k :=

{
Si,k if k = 0

Si,k − Si,k−1 else

In the sequel we shall switch between incremental and cumulative losses as necessary.

Correspondingly, prediction of non–observable incremental losses is essentially equi-
valent to prediction of non–observable cumulative losses:
– If {Ẑi,k}i,k∈{0,1,...,n},i+k≥n+1 is a family of predictors of the non–observable in-

cremental losses, then a family of predictors of the non–observable cumulative
losses is obtained by letting

Ŝi,k := Si,n−i +
k∑

l=n−i+1

Ẑi,l

– If {Ŝi,k}i,k∈{0,1,...,n},i+k≥n+1 is a family of predictors of the non–observable cu-
mulative losses, then a family of predictors of the non–observable incremental
losses is obtained by letting

Ẑi,k :=

{
Ŝi,n−i+1 − Si,n−i if k = n− i + 1

Ŝi,k − Ŝi,k−1 else
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For the ease of notation and to avoid the distinction of cases as in the previous
definition, we shall also refer to Zi,n−i and Si,n−i as predictors of Zi,n−i and Si,n−i,
although these random variables are, of course, observable.

Warning: Whenever prediction is subject to an optimality criterion, it cannot be
guaranteed in general that the previous formulas lead from optimal predictors of
incremental losses to optimal predictors of cumulative losses or vice versa.

The enumeration of accident years and development years starting with 0 instead of
1 is widely but not yet generally accepted; see Taylor [2000] as well as Radtke and
Schmidt [2004]. It is useful for several reasons:
– For losses which are settled within the accident year, the delay of settlement is 0.

It is therefore natural to start the enumeration of development years with 0.
– Using the enumeration of development years also for accident years implies that

the incremental or cumulative loss of accident year i and development year k is
observable if and only if i + k ≤ n. In particular, the cumulative losses Si,n−i

are those of the present calendar year n and are crucial in most methods of loss
reserving.

After all, the notation used here simplifies mathematical formulas.
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3 Development Patterns

The use of run–off triangles in loss reserving can be justified only if it is assumed that
the development of the losses of every accident year follows a development pattern
which is common to all accident years. This vague idea of a development pattern
can be formalized in various ways.

In the present section we consider three types of development patterns which are
formally distinct but can easily be converted into each other. These development
patterns and their equivalence provide a key to the comparison of several methods
of loss reserving.

The assumption of an underlying development pattern can be viewed as a primitive
stochastic model of loss reserving.

3.1 Incremental Quotas

The development pattern for incremental quotas compares the expected incremental
losses with the expected ultimate cumulative losses:

Development Pattern for Incremental Quotas: There exist para-
meters ϑ0, ϑ1, . . . , ϑn with

∑n
l=0 ϑl = 1 such that the identity

ϑk =
E[Zi,k]

E[Si,n]

holds for all k ∈ {0, 1, . . . , n} and for all i ∈ {0, 1, . . . , n}.
The assumption means that, for every development year k ∈ {0, 1, . . . , n}, the in-
cremental quotas

ϑi,k =
E[Zi,k]

E[Si,n]

are identical for all accident years.

In the case of a run–off triangle for paid losses or claim counts, it is usually reasonable
to assume in addition that ϑk > 0 holds for all k ∈ {0, 1, . . . , n}. In the case
of incurred losses, however, this additional assumption may be inappropriate since,
due to conservative reserving, the (expected) incremental losses of development years
k ∈ {1, . . . , n} may be negative.

3.2 Cumulative Quotas

The development pattern for cumulative quotas compares the expected cumulative
losses with the expected ultimate cumulative losses:
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Development Pattern for Cumulative Quotas: There exist para-
meters γ0, γ1, . . . , γn with γn = 1 such that the identity

γk =
E[Si,k]

E[Si,n]

holds for all k ∈ {0, 1, . . . , n} and for all i ∈ {0, 1, . . . , n}.
The assumption means that, for every development year k ∈ {0, 1, . . . , n}, the cu-
mulative quotas

γi,k =
E[Si,k]

E[Si,n]

are identical for all accident years.

In the case of a run–off triangle for paid losses or claim counts, it is usually reasonable
to assume in addition that 0 < γ0 < γ1 < · · · < γn. In the case of incurred losses,
however, this additional assumption may be inappropriate since, due to conservative
reserving, the sequence of the (expected) cumulative losses may be decreasing.

The development patterns for incremental and cumulative quotas can be converted
into each other:
– If ϑ0, ϑ1, . . . , ϑn is a development pattern for incremental losses, then a develop-

ment pattern for cumulative losses is obtained by letting

γk :=
k∑

l=0

ϑl

– If γ0, γ1, . . . , γn is a development pattern for cumulative losses, then a develop-
ment pattern for incremental losses is obtained by letting

ϑk :=

{
γ0 if k = 0

γk − γk−1 else

Furthermore, the condition ϑk > 0 is fulfilled for all k ∈ {0, 1, . . . , n} if and only if
0 < γ0 < γ1 < · · · < γn.

3.3 Factors

The development pattern for factors compares subsequent expected cumulative losses:

Development Pattern for Factors: There exist parameters ϕ1, . . . , ϕn

such that the identity

ϕk =
E[Si,k]

E[Si,k−1]

holds for all k ∈ {1, . . . , n} and for all i ∈ {0, 1, . . . , n}.
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The assumption means that, for every development year k ∈ {1, . . . , n}, the factors

ϕi,k =
E[Si,k]

E[Si,k−1]

are identical for all accident years.

In the case of a run–off triangle for paid losses or claim counts, it is usually reasonable
to assume in addition that ϕk > 1 holds for all k ∈ {1, . . . , n}. In the case of
incurred losses, however, this additional assumption may be inappropriate since,
due to conservative reserving, the sequence of the (expected) cumulative losses may
be decreasing.

The development patterns for cumulative quotas and for factors can be converted
into each other:
– If γ0, γ1, . . . , γn is a development pattern for cumulative losses, then a develop-

ment pattern for factors is obtained by letting

ϕk :=
γk

γk−1

– If ϕ1, . . . , ϕn is a development pattern for factors, then a development pattern
for cumulative losses is obtained by letting

γk :=
n∏

l=k+1

1

ϕl

(such that γn = 1).
Furthermore, the condition γ0 < γ1 < · · · < γn is fulfilled if and only if ϕk > 1 holds
for all k ∈ {1, . . . , n}.
Combining this result and that of the previous subsection, it is evident that also the
development patterns for incremental quotas and for factors can be converted into
each other. We omit the corresponding formulas since they will not be needed in
the sequel.

3.4 Estimation

At the first glance, there is little hope to estimate the parameters of the development
patterns for incremental or cumulative quotas since the only obvious estimators of
ϑk and γk are the observable quotients Z0,k/S0,n and S0,k/S0,n, respectively.

Fortunately, the situation is quite different for the development pattern for factors:
For every development year k ∈ {1, . . . , n}, each of the individual development
factors

ϕ̂i,k :=
Si,k

Si,k−1
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with i ∈ {0, 1, . . . , n − k} is a reasonable estimator of ϕk, and this is also true for
every weighted mean

ϕ̂k :=
n−k∑
j=0

Wj,k ϕ̂j,k

with random variables (or constants) satisfying
∑n−k

j=0 Wj,k = 1. The most prominent
estimator of this large family is the chain–ladder factor

ϕ̂CL
k :=

∑n−k
j=0 Sj,k∑n−k

j=0 Sj,k−1

which can also be written as

ϕ̂CL
k =

n−k∑
j=0

Sj,k−1∑n−k
h=0 Sh,k−1

ϕ̂j,k

and is used in the chain–ladder method.

Due to the correspondence between the three development patterns, it is then clear
that in the same way estimators of factors can be converted into estimators of
cumulative quotas and hence into estimators of incremental quotas.

3.5 Remarks

In the case of a run–off triangle for paid losses or claim counts, the intuitive inter-
pretation of the development patterns of incremental or cumulative quotas would be
their interpretation as incremental or cumulative probabilities. This interpretation
is helpful, but it is not quite correct since the parameters of the development pattern
are defined as quotients of expectations instead of expectations of quotients and since
these quantities are in general distinct.

One may thus argue that the definitions of development patterns are inconvenient
since they do not exactly correspond to intuition. In the following two sections,
however, it will be shown that the definitions given here are nevertheless reason-
able since they provide a powerful and unifying concept for the interpretation and
comparison of several methods and models of loss reserving.
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4 Methods

The present section provides a unifying presentation of the most important methods
of loss reserving. The starting point is a general version of the Bornhuetter–Ferguson
method which is closely related to the notion of a development pattern for cumulative
quotas and turns out to be a unifying principle under which various other methods
of loss reserving can be subsumed.

4.1 Bornhuetter–Ferguson Method

The Bornhuetter–Ferguson method is based on the assumption that there exist
parameters α0, α1, . . . , αn and γ0, γ1, . . . , γn with γn = 1 such that the identity

E[Si,k] = γk αi

holds for all i, k ∈ {0, 1, . . . , n}. Then we have

E[Si,n] = αi

and hence

E[Si,k] = γk E[Si,n]

such that the parameters γ0, γ1, . . . , γn form a development pattern for cumulative
quotas.

The Bornhuetter–Ferguson method is also based on the additional assumption that
prior estimators

α̂0, α̂1, . . . , α̂n

of the expected ultimate cumulative losses E[Si,n] and prior estimators

γ̂0, γ̂1, . . . , γ̂n

of the development pattern are given and that γ̂n = 1.

Comment: Prior estimators may be obtained from information provided by various
sources:
– Internal information: This is any information which is contained in the run–

off triangle of the portfolio under consideration. Internal information could
be used, e. g., by estimating the development pattern from the given run–off
triangle.

– External information: This is any information which is not contained in the
run–off triangle of the portfolio under consideration. External information could
be obtained, e. g., from market statistics, from other portfolios which are judged
to be similar to the given one, or from premiums or other volume measures of
the portfolio under consideration; see Section 4.6.
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Of course, prior estimators may also be obtained by combining internal and external
information. In any case, the choice of prior estimators is an important decision to
be made by the actuary.

The Bornhuetter–Ferguson predictors of the cumulative losses Si,k with i + k ≥ n
are defined as

ŜBF
i,k := Si,n−i +

(
γ̂k − γ̂n−i

)
α̂i

The definition of the Bornhuetter–Ferguson predictors reminds of the identity

E[Si,k] = E[Si,n−i] +
(
γ̂k − γ̂n−i

)
α̂i

which is a consequence of the model assumption.

The definition of the Bornhuetter–Ferguson predictors shows that the prior estima-
tors are dominant for young accident years whereas they are less important for old
development years. Also, in the extreme case where the prior estimators are com-
pletely determined by external information, the major part of the run–off triangle is
ignored and only the cumulative losses of the present calendar year are used. This
is reasonable when the quality of the data from older calendar years is poor.

Example A. We consider the following reduced run–off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by
the prior estimators of the expected ultimate cumulative losses and of the development
pattern:

Accident Development Year k
Year i α̂i 0 1 2 3 4 5

0 3517 3483
1 3981 3844
2 4598 3977
3 5658 3880
4 6214 3261
5 6325 1889

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000

Computing now the Bornhuetter–Ferguson predictors, the run–off triangle is completed
as follows:

Accident Development Year k
Year i α̂i 0 1 2 3 4 5

0 3517 3483
1 3981 3844 4043
2 4598 3977 4391 4621
3 5658 3880 4785 4389 5577
4 6214 3261 4442 5436 5995 6306
5 6325 1889 3344 4546 5558 6127 6443

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000
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When the cumulative losses of the present calendar year are judged to be reli-
able, it may be desirable to modify the Bornhuetter–Ferguson predictors in order to
strengthen the weight of the cumulative losses of the present calendar year and to
reduce that of the prior estimators of the expected ultimate cumulative losses. This
goal can be achieved by iteration.

For example, if on the right hand side of the previous formula the prior estimators
α̂i are replaced by the Bornhuetter–Ferguson predictors ŜBF

i,n , then the resulting
predictors are the Benktander–Hovinen predictors

ŜBH
i,k := Si,n−i +

(
γ̂k − γ̂n−i

)
ŜBF

i,n

which in the case γ̂n−i < γ̂k increase the weight of the cumulative losses of the
present calendar year and reduce that of the prior estimators of the expected ultimate
cumulative losses.

More generally, the iterated Bornhuetter–Ferguson predictors of order m ∈ N0 are
defined by letting

Ŝ
(m)
i,k :=





Si,n−i +
(
γ̂k − γ̂n−i

)
α̂i if m = 0

Si,n−i +
(
γ̂k − γ̂n−i

)
Ŝ

(m−1)
i,n if m ≥ 1

Then we have Ŝ
(0)
i,k = ŜBF

i,k and Ŝ
(1)
i,k = ŜBH

i,k , and induction yields

Ŝ
(m)
i,k =

(
1− (

1−γ̂n−i

)m
)

γ̂k
Si,n−i

γ̂n−i

+
(
1−γ̂n−i

)m
ŜBF

i,k

= γ̂k
Si,n−i

γ̂n−i

+
(
1−γ̂n−i

)m
(

ŜBF
i,k − γ̂k

Si,n−i

γ̂n−i

)

= γ̂k
Si,n−i

γ̂n−i

+
(
1−γ̂n−i

)m(
γ̂k−γ̂n−i

)(
α̂i − Si,n−i

γ̂n−i

)

for all m ∈ N0. In the particular case where α̂i = Si,n−i/γ̂n−i or γ̂n−i = 1, the
iteration is without interest since in that case the identity

Ŝ
(m)
i,k = γ̂k

Si,n−i

γ̂n−i

holds for all m ∈ N0. By contrast, the iteration is of considerable interest in the
case where 0 < γ̂n−i < 1 since in that case we obtain

lim
m→∞

Ŝ
(m)
i,k = γ̂k

Si,n−i

γ̂n−i

and convergence of the sequence of the iterated Bornhuetter–Ferguson predictors is
monotone but may be increasing or decreasing.
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Example B. The following table contains the prior estimators of the expected ultimate
cumulative losses, the iterated Bornhuetter–Ferguson predictors

Ŝ
(m)
i,n =

Si,n−i

γ̂n−i
+

(
1−γ̂n−i

)m+1
(

α̂i − Si,n−i

γ̂n−i

)

and their limits:

Accident Prior Iterated Bornhuetter–Ferguson Predictors Limit
Year i α̂i Ŝ

(0)
i,5 Ŝ

(1)
i,5 Ŝ

(2)
i,5 Ŝ

(3)
i,5 Ŝ

(4)
i,5 Ŝ

(5)
i,5 . . . Ŝ

(10)
i,5 . . .

0 3517 3483 3483 3483 3483 3483 3483 . . . 3483 . . . 3483
1 3981 4043 4046 4046 4046 4046 4046 . . . 4046 . . . 4046
2 4598 4621 4623 4624 4624 4624 4624 . . . 4624 . . . 4624
3 5658 5577 5553 5546 5544 5543 5543 . . . 5543 . . . 5543
4 6214 6306 6351 6373 6384 6389 6392 . . . 6394 . . . 6394
5 6325 6443 6528 6589 6633 6664 6687 . . . 6730 . . . 6746

The iteration steps 0 and 1 correspond to the Bornhuetter–Ferguson method and to the
Benktander–Hovinen method, respectively. The table illustrates that convergence is mono-
tone but may be increasing or decreasing, and that convergence is usually fast for old
accident years and slow for young accident years.

4.2 Loss–Development Method

The loss–development method is based on the assumption that there exist para-
meters γ0, γ1, . . . , γn with γn = 1 such that the identity

E[Si,k] = γk E[Si,n]

holds for all i, k ∈ {0, 1, . . . , n}. Then the parameters γ0, γ1, . . . , γn form a develop-
ment pattern for cumulative quotas.

The loss–development method is also based on the additional assumption that prior
estimators

γ̂0, γ̂1, . . . , γ̂n

of the development pattern are given and that γ̂n = 1.

The loss–development predictors of the cumulative losses Si,k with i + k ≥ n are
defined as

ŜLD
i,k := γ̂k

Si,n−i

γ̂n−i

The definition of the loss–development predictors reminds of the identity

E[Si,k] = γk
E[Si,n−i]

γn−i
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which is a consequence of the model assumption.

When compared with the Bornhuetter–Ferguson predictors, the importance of the
cumulative losses of the present calendar year and of the prior estimators of the
development pattern is increased in the loss–development predictors since the latter
do not involve any prior estimators of the expected ultimate cumulative losses.

Example C. We consider the following reduced run–off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by
the prior estimators of the development pattern:

Accident Development Year k
Year i 0 1 2 3 4 5

0 3483
1 3844
2 3977
3 3880
4 3261
5 1889

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000

Computing now the loss–development predictors, the run–off triangle is completed as
follows:

Accident Development Year k
Year i 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 3261 4476 5499 6074 6394
5 1889 3440 4722 5802 6409 6746

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000

The loss–development predictors can be written as

ŜLD
i,k = Si,n−i +

(
γ̂k − γ̂n−i

)
ŜLD

i,n

This shows that the loss–development predictors are nothing else than the Born-
huetter–Ferguson predictors with respect to the prior estimators

α̂LD
i := ŜLD

i,n

of the expected ultimate cumulative losses. In other words, the loss–development
method is a particular case of the Bornhuetter–Ferguson method with prior esti-
mators of the expected ultimate cumulative losses which are based on internal and
external information.
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Moreover, in the case where 0 < γ̂n−i < 1, the loss–development predictors are
precisely the limits of the sequences of the iterated Bornhuetter–Ferguson predictors
with respect to arbitrary prior estimators of the expected ultimate cumulative losses,
as has been shown in Section 4.1.

4.3 Chain–Ladder Method

The chain–ladder method is based on the assumption that there exist parameters
ϕ1, . . . , ϕn such that the identity

E[Si,k] = ϕk E[Si,k−1]

holds for all i ∈ {0, 1, . . . , n} and k ∈ {1, . . . , n}. Then the parameters ϕ1, . . . , ϕn

form a development pattern for factors.

The chain–ladder predictors of the cumulative losses Si,k with i + k ≥ n are defined
as

ŜCL
i,k := Si,n−i

k∏

l=n−i+1

ϕ̂CL
l

where

ϕ̂CL
k :=

∑n−k
j=0 Sj,k∑n−k

j=0 Sj,k−1

is the chain–ladder factor introduced in Section 3. The definition of the chain–ladder
predictors reminds of the identity

E[Si,k] = E[Si,n−i]
k∏

l=n−i+1

ϕl

which is a consequence of the model assumption.

When compared with the loss–development predictors, it is remarkable that the
chain–ladder predictors are not determined by the cumulative losses of the present
calendar year but involve, via the chain–ladder factors, all cumulative losses of the
run–off triangle.

Example D. We consider the following run–off triangle for cumulative losses:

Accident Development Year k
Year i 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844
2 1265 2433 3233 3977
3 1490 2873 3880
4 1725 3261
5 1889
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Computing first the chain–ladder factors and then the chain–ladder predictors, the run–off
triangle is completed as follows:

Accident Development Year k
Year 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3483
1 1113 2103 2774 3422 3844 4013
2 1265 2433 3233 3977 4454 4650
3 1490 2873 3880 4780 5354 5590
4 1725 3261 4334 5339 5980 6243
5 1889 3587 4767 5873 6578 6867

ϕ̂CL
k 1.899 1.329 1.232 1.120 1.044

It has been pointed out in Section 3 that the different development patterns and
their estimators can be converted into each other. In particular, letting

γk :=
n∏

l=k+1

1

ϕl

converts a development pattern for factors into a development pattern for cumulative
quotas and letting

γ̂k :=
n∏

l=k+1

1

ϕ̂l

converts the estimators of a development pattern for factors into estimators of a
development pattern for cumulative quotas. Thus, letting

γ̂CL
k :=

n∏

l=k+1

1

ϕ̂CL
l

the chain–ladder predictors can be written as

ŜCL
i,k = γ̂CL

k

Si,n−i

γ̂CL
n−i

This shows that the chain–ladder predictors are nothing else than the loss–develop-
ment predictors with respect to the chain–ladder cumulative quotas γ̂CL

k as prior
estimators of the cumulative quotas. Furthermore, we have

ŜCL
i,k = Si,n−i +

(
γ̂CL

k − γ̂CL
n−i

)
ŜCL

i,n

This shows that the chain–ladder predictors are precisely the Bornhuetter–Ferguson
predictors with respect to the prior estimators γ̂CL

k of the cumulative quotas and the
prior estimators

α̂CL
i := ŜCL

i,n
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of the expected ultimate cumulative losses. In other words, the chain–ladder method
is a particular case of the loss–development method and hence of the Bornhuetter–
Ferguson method with prior estimators of the development pattern and the expected
ultimate cumulative losses which are completely based on internal information.

The chain–ladder method can be modified by replacing the chain–ladder factors ϕ̂CL
k

by any other estimators of the form

ϕ̂k =
n−k∑
j=0

Wj,k ϕ̂j,k

with random variables (or constants) satisfying
∑n−k

j=0 Wj,k = 1.

4.4 Grossing–Up Method

The grossing–up method is based on the assumption that there exist parameters
γ0, γ1, . . . , γn with γn = 1 such that the identity

E[Si,k] = γk E[Si,n]

holds for all i, k ∈ {0, 1, . . . , n}. Then the parameters γ0, γ1, . . . , γn form a develop-
ment pattern for cumulative quotas.

The grossing–up predictors of the cumulative losses Si,k with i + k ≥ n are defined
as

ŜGU
i,k := γ̂GU

k

Si,n−i

γ̂GU
n−i

where

γ̂GU
k :=





1 if k = n

∑n−k−1
j=0 Sj,k∑n−k−1
j=0 ŜGU

j,n

else

is the grossing–up cumulative quota of development year k. The definition of the
grossing–up predictors reminds of the identity

E[Si,k] = γk
E[Si,n−i]

γn−i

which is a consequence of the model assumption.

The computation of the grossing–up cumulative quotas and of the grossing–up pre-
dictors for the ultimate cumulative losses proceeds by recursion along the accident
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years, which yields

γ̂GU
n = 1 and ŜGU

0,n = S0,n

γ̂GU
n−1 =

S0,n−1

ŜGU
0,n

and ŜGU
1,n =

S1,n−1

γ̂GU
n−1

γ̂GU
n−2 =

S0,n−2 + S1,n−2

ŜGU
0,n + ŜGU

1,n

and ŜGU
2,n =

S2,n−2

γ̂GU
n−2

...
...

As can be seen from the definition, the grossing–up predictors are nothing else than
the loss–development predictors with respect to the grossing–up cumulative quotas
γ̂GU

k as prior estimators of the cumulative quotas. Furthermore, we have

ŜGU
i,k = Si,n−i +

(
γ̂GU

k − γ̂GU
n−i

)
ŜGU

i,n

which shows that the grossing–up predictors are precisely the Bornhuetter–Ferguson
predictors with respect to the prior estimators γ̂GU

k of the cumulative quotas and
the prior estimators

α̂GU
i := ŜGU

i,n

of the expected ultimate cumulative losses. In other words, the grossing–up method
is a particular case of the loss–development method and hence of the Bornhuetter–
Ferguson method with prior estimators of the development pattern and the expected
ultimate cumulative losses which are completely based on internal information.

Since the previous remark applies as well to the chain–ladder predictors, the question
arises whether there is any difference between the grossing–up predictors and the
chain–ladder predictors. The answer to this question is that there is no difference
at all since it can be shown that the grossing–up cumulative quotas and the chain–
ladder cumulative quotas are identical for all development years; see e. g. Lorenz
and Schmidt [1999].

The grossing–up method thus provides a computational alternative to the chain–
ladder method, but this alternative seems to be of little practical interest if any.
The reformulation of the chain–ladder method provided by the grossing–up method
is, however, of considerable interest with regard to the comparison of methods:

First, among all methods for cumulative losses considered here, the chain–ladder
method appears to be somewhat singular since it uses estimators of a develop-
ment pattern for factors instead of cumulative quotas, but its equivalence with the
grossing–up method shows that this singularity is only due to the most intelligent
formulation of an algorithm which avoids recursion and is hence more easily under-
stood.

Second, the grossing–up method provides an substantial link between the chain–
ladder method and the marginal–sum method; see Subsection 4.5.
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4.5 Marginal–Sum Method

The marginal–sum method is based on the assumption that there exist parameters
α0, α1, . . . , αn and ϑ0, ϑ1, . . . , ϑn with

∑n
l=0 ϑl = 1 such that the identity

E[Zi,k] = ϑk αi

holds for all i, k ∈ {0, 1, . . . , n}. Summation yields

E[Si,n] = αi

and hence

E[Zi,k] = ϑk E[Si,n]

such that the parameters ϑ0, ϑ1, . . . , ϑn form a development pattern for incremental
quotas.

Observable random variables α̂MS
0 , α̂MS

1 , . . . , α̂MS
n and ϑ̂MS

0 , ϑ̂MS
1 , . . . , ϑ̂MS

n are said to
be marginal–sum estimators if they are solutions to the marginal–sum equations

n−i∑

l=0

α̂i ϑ̂l =
n−i∑

l=0

Zi,l

for i ∈ {0, 1, . . . , n} and

n−k∑
j=0

α̂j ϑ̂k =
n−k∑
j=0

Zj,k

for k ∈ {0, 1, . . . , n} as well as

n∑

l=0

ϑ̂l = 1

The marginal–sum equations remind of the identities

n−i∑

l=0

αi ϑl =
n−i∑

l=0

E[Zi,l]

and

n−k∑
j=0

αj ϑk =
n−k∑
j=0

E[Zj,k]

as well as
n∑

k=0

ϑk = 1

which are immediate from the model assumptions.
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The question arises whether marginal–sum estimators exist and are unique. The
answer to this question is affirmative: Marginal–sum estimators exist and are unique,
and they satisfy

α̂MS
i = ŜGU

i,n

and

ϑ̂MS
k =

{
γ̂GU

0 if k = 0

γ̂GU
k − γ̂GU

k−1 if k ≥ 1

In view of the discussion of the grossing–up method, the previous identities imply
that the marginal–sum estimators satisfy

α̂MS
i = ŜCL

i,n

and

ϑ̂MS
k =

{
γ̂CL

0 if k = 0

γ̂CL
k − γ̂CL

k−1 if k ≥ 1

Thus, letting

γ̂MS
k :=

k∑

l=0

ϑ̂MS
l

we obtain

γ̂MS
k = γ̂CL

k

for all k ∈ {0, 1, . . . , n}.

The marginal–sum predictors of the cumulative losses Si,k with i+k ≥ n are defined
as

ŜMS
i,k := γ̂MS

k

Si,n−i

γ̂MS
n−i

Then we have

ŜMS
i,k = ŜCL

i,k

This shows that the marginal–sum method is equivalent to the chain–ladder method.
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4.6 Cape–Cod Method

The Cape–Cod method is based on the assumption that there exist parameters
γ0, γ1, . . . , γn with γn = 1 such that the identity

E[Si,k] = γk E[Si,n]

holds for all i, k ∈ {0, 1, . . . , n}. Then the parameters γ0, γ1, . . . , γn form a develop-
ment pattern for cumulative quotas.

The Cape–Cod method is also based on the additional assumption that premiums
or other volume measures π0, π1, . . . , πn ∈ (0,∞) of the accident years are known,
that the expected ultimate cumulative loss ratios

κi := E

[
Si,n

πi

]

are identical for all accident years, and that prior estimators γ̂0, γ̂1, . . . , γ̂n of the
development pattern are given and satisfy γ̂n = 1.

The Cape–Cod predictors of the cumulative losses Si,k with i + k ≥ n are defined as

ŜCC
i,k := Si,n−i +

(
γ̂k − γ̂n−i

)
πi κ̂

CC

where

κ̂CC :=

∑n
j=0 Sj,n−j∑n

j=0 γ̂n−j πj

is the Cape–Cod loss ratio, which is an estimator of the expected ultimate cumulative
loss ratio (common to all accident years).

The Cape–Cod predictors are nothing else than the Bornhuetter–Ferguson predictors
with respect to the prior estimators

α̂CC
i := πi κ̂

CC

of the expected ultimate cumulative losses. In other words, the Cape–Cod method
is a particular case of the Bornhuetter–Ferguson method with prior estimators of the
expected ultimate cumulative losses which are based on both internal and external
information.

Example E. We consider the following reduced run–off triangle for cumulative losses
which contains the cumulative losses of the present calendar year and is complemented by
the premiums and the prior estimators of the development pattern:
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Accident Development Year k
Year i πi 0 1 2 3 4 5

0 4025 3483
1 4456 3844
2 5315 3977
3 5986 3880
4 6939 4261
5 8158 1889

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000

The previous triangle differs from those considered before since the value of S4,1 is 4261
instead of 3261, which indicates that there might be an outlier in accident year 4. Using
the table

i Si,5−i γ̂5−i πi γ̂5−i πi

0 3483 1.000 4025 4025
1 3844 0.950 4456 4233
2 3977 0.860 5315 4571
3 3880 0.700 5986 4190
4 4261 0.510 6939 3539
5 1889 0.280 8158 2284
∑

21334 22842

we obtain κ̂CC = 0.934. Computing now the prior estimators of the expected ultimate cu-
mulative losses and the Cape–Cod predictors, the run–off triangle is completed as follows:

Accident Development Year k
Year i α̂i 0 1 2 3 4 5

0 3758 3483
1 4162 3844 4052
2 4964 3977 4424 4672
3 5591 3880 4775 5278 5557
4 6481 4261 5492 6529 7113 7437
5 7619 1889 3641 5089 6308 6994 7375

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000

The previous table should be compared with the following one which is the same run–off
triangle completed with the loss–development predictors:

Accident Development Year k
Year i 0 1 2 3 4 5

0 3483
1 3844 4046
2 3977 4393 4624
3 3880 4767 5266 5543
4 4261 5848 7185 7937 8355
5 1889 3440 4722 5802 6409 6746

γ̂k 0.280 0.510 0.700 0.860 0.950 1.000
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The example indicates that the development of the Cape–Cod predictors over the
accident years is much smoother than the development of the loss–development
predictors which means that the Cape–Cod method reduces outlier effects. The
smoothing effect is of course due to and depends on the premiums or other volume
measures which are used instead.

The following considerations may help to understand the smoothing effect of the
Cape–Cod method:

Assume that, for every accident year i, the expected ultimate cumulative loss ratio
is estimated by

κ̂i :=
ŜLD

i,n

πi

=
Si,n−i

γ̂n−i πi

Then the Cape–Cod loss ratio can be written as a weighted mean

κ̂CC =

∑n
j=0 Sj,n−j∑n

j=0 γ̂n−j πj

=
n∑

j=0

γ̂n−j πj∑n
h=0 γ̂n−h πh

κ̂j

and the identity

Si,n−i = γ̂n−i πi κ̂i

suggests to decompose the cumulative loss Si,n−i of the present calendar year into
its regular part

Ti,n−i := γ̂n−i πi κ̂
CC

and its outlier effect

Xi,n−i := Si,n−i − Ti,n−i

and then to apply the loss–development method to the regular part while keeping
the outlier effect fixed over all subsequent development years. Since

T̂ LD
i,k + Xi,n−i = γ̂k

Ti,n−i

γ̂n−i

+
(
Si,n−i − Ti,n−i

)

= Si,n−i +
(
γ̂k − γ̂n−i

) Ti,n−i

γ̂n−i

= Si,n−i +
(
γ̂k − γ̂n−i

)
πi κ̂

CC

= ŜCC
i,k

we see that the resulting predictors are precisely the Cape–Cod predictors.

The Cape–Cod method can be modified by replacing the Cape–Cod loss ratio κ̂CC

by any other estimator of the form

κ̂ =
n∑

j=0

Wj κ̂j

with random variables (or constants) satisfying
∑n

j=0 Wj = 1.
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4.7 Additive Method

The additive method is based on the assumption that there exist known parameters
π0, π1, . . . , πn ∈ (0,∞) and unknown parameters ζ0, ζ1, . . . , ζn such that the identity

E[Zi,k] = ζk πi

holds for all i, k ∈ {0, 1, . . . , n}.
If the parameters π0, π1, . . . , πn are interpreted as premiums or other volume mea-
sures of the accident years, then the assumption means that, for every development
year k, the expected incremental loss ratios

ζi,k := E

[
Zi,k

πi

]

are identical for all accident years. Letting

αi := πi

n∑

k=0

ζk

and

γk :=

∑k
l=0 ζl∑n
l=0 ζl

we obtain

E[Si,k] = γk αi

for all i, k ∈ {0, 1, . . . , n} such that αi = E[Si,n] and the parameters γ0, γ1, . . . , γn

form a development pattern for cumulative quotas.

The additive predictors of the incremental losses Zi,k with i + k ≥ n are defined as

ẐAD
i,k := ζ̂AD

k πi

and the additive predictors of the cumulative losses Si,k with i + k ≥ n are defined
as

ŜAD
i,k := Si,n−i +

k∑

l=n−i+1

ẐAD
i,l

where

ζ̂AD
k :=

∑n−k
j=0 Zj,k∑n−k
j=0 πj

is the additive incremental loss ratio of development year k.

Example F. We consider the following run–off triangle for cumulative losses which is
complemented by the premiums:
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Accident Development Year k
Year i πi 0 1 2 3 4 5

0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844
2 5315 1265 2433 3233 3977
3 5986 1490 2873 3880
4 6939 1725 3261
5 8158 1889

We thus obtain the following run–off triangle for incremental losses which is complemented
by the additive incremental loss ratios:

Accident Development Year k
Year i πi 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422
2 5315 1265 1168 800 744
3 5986 1490 1383 1007
4 6939 1725 1536
5 8158 1889

ζ̂k 0.243 0.222 0.154 0.142 0.091 0.037

Computing now the additive predictors of the non–observable incremental losses, the run–
off triangle of incremental losses is completed as follows:

Accident Development Year k
Year i πi 0 1 2 3 4 5

0 4025 1001 854 568 565 347 148
1 4456 1113 990 671 648 422 165
2 5315 1265 1168 800 744 484 197
3 5986 1490 1383 1007 850 545 221
4 6939 1725 1536 1069 985 631 257
5 8158 1889 1811 1256 1158 742 302

ζ̂k 0.243 0.222 0.154 0.142 0.091 0.037

Accordingly, the run–off triangle of cumulative losses is completed as follows:

Accident Development Year k
Year i πi 0 1 2 3 4 5

0 4025 1001 1855 2423 2988 3335 3483
1 4456 1113 2103 2774 3422 3844 4009
2 5315 1265 2433 3233 3977 4461 4658
3 5986 1490 2873 3880 4730 5275 5496
4 6939 1725 3261 4330 5315 5946 6203
5 8158 1889 3700 4956 6114 6856 7158

Letting

γ̂AD
k :=

∑k
l=0 ζ̂AD

l∑n
l=0 ζ̂AD

l
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and

α̂AD
i := πi

n∑

l=0

ζ̂AD
l

the additive predictors of the non–observable cumulative losses may be written as

ŜAD
i,k := Si,n−i +

(
γ̂AD

k − γ̂AD
n−i

)
α̂AD

i

This shows that the additive predictors of the cumulative losses are nothing else than
the Bornhuetter–Ferguson predictors with respect to the additive cumulative quotas
γ̂AD

k and the prior estimators α̂AD
i of the expected ultimate cumulative losses. In

other words, the additive method is a particular case of the Bornhuetter–Ferguson
method with prior estimators of the cumulative quotas and of the expected ultimate
cumulative losses which are based on both internal and external information.

The expected cumulative loss ratios

κi := E

[
Si,n

πi

]

satisfy

κi =
n∑

l=0

ζi,l

Since the expected incremental loss ratios are identical for all accident years, it
follows that also the expected cumulative loss ratios are identical for all accident
years. Therefore, the additive loss ratio

κ̂AD :=
n∑

l=0

ζ̂AD
l

can be interpreted as an estimator of the expected ultimate cumulative loss ratio

κ =
n∑

l=0

ζl

common to all accident years. Moreover, the prior estimators α̂AD
i can be written

as

α̂AD
i = πi κ̂

AD

and it can be shown that

κ̂AD =

∑n
j=0 Sj,n−j∑n

j=0 γ̂AD
n−j πj
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This shows that the additive predictors of the non–observable cumulative losses are
nothing else than the Cape–Cod predictors with respect to the additive cumulative
quotas γ̂AD

k . In other words, the additive method is a particular case of the Cape–
Cod method with prior estimators of the cumulative quotas which are based on both
internal and external information.

The observation that the additive method is a special case of the Cape–Cod method
is due to Zocher [2005].

4.8 Remarks

The following table compares the different methods of loss reserving considered
in this section with regard to the choices of the prior estimators of the expected
ultimate cumulative losses αi and of the cumulative quotas γk:

Expected Ultimate Cumulative Quotas

Cumulative Losses Arbitrary γ̂CL
k γ̂AD

k

Arbitrary Bornhuetter–Ferguson
Method

ŜLD
i,n Loss–Development Chain–Ladder

Method Method

πi κ̂CC Cape–Cod Additive
Method Method

Note that the prior estimators SLD
i,n and πi κ̂

CC depend on the choice of the prior
estimators γ̂0, γ̂1, . . . , γ̂n.

Of course, the four other combinations which apparently have not been given a name
in the literature could be used as well, and even other choices of the prior estimators
of the expected ultimate cumulative losses and of the cumulative quotas could be
considered.

The discussion of the present section and, in particular, the above table shows that
the Bornhuetter–Ferguson method provides a general principle under which several
methods of loss reserving can be subsumed. The focus
– on prior estimators of the expected ultimate cumulative losses and
– on prior estimators of the cumulative quotas
provides a large variability of loss reserving methods. The above table contains
important special cases but could certainly be enlarged.

Moreover,
– any convex combination of prior estimators of the expected ultimate cumulative

losses yields new prior estimators of the expected ultimate cumulative losses,
and
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– any convex combination of prior estimators of the development pattern for
cumulative quotas yields new prior estimators of the development pattern.

This point is made precise in the following example:

Example G. Let α̂0, α̂1, . . . , α̂n be prior estimators of α0, α1, . . . , αn and let γ̂0, γ̂1, . . . , γ̂n

be prior estimators of γ0, γ1, . . . , γn such that each of these prior estimators is completely
based on external information. Then the prior estimators

α̃i := a1 α̂i + a2 ŜLD
i,n + a3 (πi κ̂

CC)

with a1 + a2 + a3 = 1 and

γ̃k := b1 γ̂k + b2 γ̂CL
k + b3 γ̂AD

k

with b1 + b2 + b3 = 1 are prior estimators of α0, α1, . . . , αn and γ0, γ1, . . . , γn, respectively,
which through the weights a1, a2, a3 and b1, b2, b3 express the reliability attributed to the
prior estimators α̂i, Ŝ

LD
i,n , πi κ̂

CC and γ̂k, γ̂
CL
k , γ̂AD

k , respectively.
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5 Least–Squares Prediction

Least–squares prediction is one of the general principles of statistical inference. It
is similar to least–squares estimation but differs from the latter since the target
quantity is a non–observable random variable instead of a model parameter.

The main aspects of least–squares prediction are credibility prediction and Gauss–
Markov prediction; in either case, the problem is to determine optimal predictors
with respect to the expected squared prediction error.

An extension of Gauss–Markov prediction is conditional Gauss–Markov prediction
in which unconditional first and second order moments are replaced by conditional
moments.

5.1 Credibility Prediction

In the context of loss reserving, credibility prediction aims at predicting any linear
combination T of (observable or non–observable) incremental losses by a predictor
of the form

T̂ = a +
n∑

j=0

n−j∑

l=0

aj,lZj,l

These predictors are said to be admissible. Note that

– the class of all admissible predictors does not depend on the sum to be predicted,
– the admissible predictors are not necessarily linear in the observable incremental

losses since the coefficient a may be distinct from 0, and
– the admissible predictors are not assumed to be unbiased.

The general form of the prediction problem is reasonable since it includes, e. g.,
prediction of the ultimate cumulative losses Si,n which are sums of the observable
incremental losses Zi,0, Zi,1, . . . , Zi,n−i and the non–observable incremental losses
Zi,n−i+1, . . . , Zi,n.

For a sum T of incremental losses, an admissible predictor is said to be a credibility
predictor of T if it minimizes the expected squared prediction error

E[(T̂ − T )2]

over all admissible predictors T̂ .

The following results are well–known:

(1) For every sum T of incremental losses, there exists a credibility predictor T̂CR

and the credibility predictor is unique.
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(2) If T1 and T2 are sums of incremental losses and if c1 and c2 are real numbers,
then the credibility predictor of

T := c1T1 + c2T2

satisfies

T̂CR = c1T̂
CR
1 + c2T̂

CR
2

which means that credibility prediction is linear.
(3) If T is a sum of incremental losses, then an admissible predictor T̂ ∗ is the

credibility predictor of T if and only if it satisfies the normal equations

E[T̂ ∗] = E[T ]

and

E[T̂ ∗Zj,l] = E[TZj,l]

for all j, l ∈ {0, 1, . . . , n} such that j + l ≤ n.
(4) The credibility predictor of any sum of incremental losses is unbiased.
Because of (2) it is sufficient to determine the credibility predictors of the incremental
losses Zi,k. In the case where i + k ≤ n, we have

ẐCR
i,k = Zi,k

In the case where i + k ≥ n + 1, we write

ẐCR
i,k = ai,k +

n∑

h=0

n−h∑
m=0

ai,k,h,mZh,m

and determine the coefficients from the normal equations

E

[
ai,k +

n∑

h=0

n−h∑
m=0

ai,k,h,mZh,m

]
= E[Zi,k]

and

E

[(
ai,k +

n∑

h=0

n−h∑
m=0

ai,k,h,mZh,m

)
Zj,l

]
= E[Zi,kZj,l]

which may equivalently be written as

ai,k +
n∑

h=0

n−h∑
m=0

ai,k,h,m E[Zh,m] = E[Zi,k]
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and

n∑

h=0

n−h∑
m=0

ai,k,h,m cov[Zh,m, Zj,l] = cov[Zi,k, Zj,l]

for all j, l ∈ {0, 1, . . . , n} such that j + l ≤ n.

We thus see that the credibility predictor of a non–observable incremental loss is
completely determined by the first and second order moments of the incremental
losses. Solving the normal equations proceeds in two steps:
– The normal equations involving covariances form a system of linear equations

for the coefficients ai,k,h,m. The fact that a credibility predictor of Zi,k exists
implies that this system of linear equations has at least one solution.

– Inserting any such solution into the normal equation involving expectations
yields the coefficient ai,k.

It should be noted that the system of linear equations may have several solutions
(which is the case if and only if the covariance matrix of the observable cumulative
losses is singular). This means that the credibility predictor of Zi,k, which is known
to be unique, can be represented in several ways.

In most credibility models for loss reserving which have been considered in the
literature, it is assumed that any two incremental losses from different accident
years are uncorrelated. In this case, the credibility predictor of a non–observable
incremental loss Zi,k can be written as

ẐCR
i,k = ai,k +

n−i∑
m=0

ai,k,i,mZi,m

and its coefficients can be determined from the reduced normal equations

ai,k +
n−i∑
m=0

ai,k,i,m E[Zi,m] = E[Zi,k]

and

n−i∑
m=0

ai,k,i,m cov[Zi,m, Zi,l] = cov[Zi,k, Zi,l]

for all l ∈ {0, 1, . . . , n− i}.

As an example, let us now consider credibility prediction in the credibility model of
Witting, which is a model for claim counts:

Credibility Model of Witting:

(i) Any two incremental losses of different accident years are uncorre-
lated.
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(ii) There exist parameters ϑ0, ϑ1, . . . , ϑn ∈ (0, 1) with
∑n

l=0 ϑl = 1 such
that, for every accident year i ∈ {0, 1, . . . , n}, the conditional joint
distribution of the family {Zi,k}k∈{0,1,...,n} with respect to the ultimate
cumulative loss Si,n is the multinomial distribution with parameters
Si,n and ϑ0, ϑ1, . . . , ϑn.

For the remainder of this subsection we assume that the assumptions of the credi-
bility model of Witting are fulfilled. Then we have

E(Zi,k|Si,n) = Si,n ϑk

cov(Zi,k, Zi,l|Si,n) =

{
−Si,n ϑ2

k + Si,n ϑk if k = l

−Si,n ϑkϑl else

Letting

αi := E[Si,n]

σi := var[Si,n]

we obtain

E[Zi,k] = αi ϑk

cov[Zi,k, Zi,l] =

{
(σi − αi) ϑ2

k + αi ϑk if k = l

(σi − αi) ϑkϑl else

The first of the previous identities shows that the parameters ϑ0, ϑ1, . . . , ϑn form a
development pattern for incremental quotas. Inserting the previous identities into
the normal equations, we obtain, for all i, k ∈ {0, 1, . . . , n} such that i + k ≥ n + 1,

ẐCR
i,k = ϑk

(
1

1 + γn−i τi

αi +
γn−i τi

1 + γn−i τi

Si,n−i

γn−i

)

and hence

ŜCR
i,k = Si,n−i +

k∑

l=n−i+1

ẐCR
i,l

= Si,n−i +
(
γk − γn−i

) (
1

1 + γn−i τi

αi +
γn−i τi

1 + γn−i τi

Si,n−i

γn−i

)

where γk :=
∑k

l=0 ϑl and τi := (σi−αi)/αi. This shows that the credibility predictor
of the non–observable cumulative loss Si,k is the Bornhuetter–Ferguson predictor
with respect to the prior estimators

γ̂k := γk
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of the development pattern for cumulative quotas and the prior estimators

α̂CR
i :=

1

1 + γn−i τi

αi +
γn−i τi

1 + γn−i τi

Si,n−i

γn−i

of the expected ultimate cumulative losses, which are weighted means of external in-
formation provided by the unknown parameter αi and internal information provided
by the loss–development predictor ŜLD

i,n = Si,n−i/γn−i.

Example H. If, in addition to the assumptions of the model of Witting, it is assumed
that every ultimate cumulative loss Si,n has the Poisson distribution with expectation αi,
then we have τi = 0 and the credibility predictors of every non–observable cumulative loss
Si,k satisfy

ŜCR
i,k = Si,n−i +

(
γk − γn−i

)
αi

and are thus identical with the Bornhuetter–Ferguson estimators with respect to the prior
estimators γ̂k := γk and α̂i := αi. In this case, the assumptions of the Poisson model are
fulfilled and maximum–likelihood estimation could be used as an alternative to credibility
prediction; see subsection 6.1 below.

Similar results obtain in the credibility model of Mack [1990] and in a special case
of the credibility model of Hesselager and Witting [1998]; see Radtke and Schmidt
[2004].

5.2 Gauss–Markov Prediction

A predictor T̂ of a linear combination T of (observable or non–observable) incre-
mental losses is said to be
– a linear predictor if there exists a family {aj,l}j,l∈{0,1,...,n},l+j≤n of coefficients

such that

T̂ =
n∑

j=0

n−j∑

l=0

aj,lZj,l

– an unbiased predictor of T if

E[T̂ ] = E[T ]

– a Gauss–Markov predictor of T if it is an unbiased linear predictor of T which
minimizes the expected squared prediction error

E[(T̂ − T )2]

over all unbiased linear predictors T̂ of T .
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The existence of a Gauss–Markov predictor of T cannot be guaranteed in general.
(For example, if E[Zi,k] = 0 holds for every observable every incremental loss and
if T is such that E[T ] 6= 0, then there exists no unbiased linear estimator of T .)
Therefore, we consider Gauss–Markov prediction only under the assumptions of the
linear model.

Let Z1 denote a random vector consisting of the observable incremental losses and
let Z2 denote a random vector consisting of the non–observable incremental losses
(arranged in any order).

Linear Model:

(i) There exist matrices A1 and A2 and a vector β such that

E[Z1] = A1β

E[Z2] = A2β

(ii) The matrix A1 has full column rank.
(iii) The matrix

Σ11 := var[Z1]

is invertible.

For the remainder of this subsection, we assume that the assumptions of the linear
model are fulfilled.

Under the assumptions of the linear model. the following results are well–known:
(1) For every sum T of incremental losses, there exists a Gauss–Markov predictor

T̂GM and the Gauss–Markov predictor is unique.
(2) If T1 and T2 are sums of incremental losses and if c1 and c2 are real numbers,

then the Gauss–Markov predictor of

T := c1T1 + c2T2

satisfies

T̂GM = c1T̂
GM
1 + c2T̂

GM
2

which means that Gauss–Markov prediction is linear.
Because of (2) it is sufficient to determine the Gauss–Markov predictors of the
incremental losses Zi,k. In the case where i + k ≤ n, we have

ẐGM
i,k = Zi,k

In the case where i + k ≥ n + 1, we obtain

ẐGM
i,k = a′i,kβ̂

GM
+ cov[Zi,k,Z1]Σ

−1
11

(
Z1 −A1β̂

GM
)
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where a′i,k is the row vector of the matrix A2 satisfying E[Zi,k] = a′i,kβ,

β̂
GM

:= (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 Z1

is the Gauss–Markov estimator of β (based on the observable incremental losses)
and cov[Zi,k,Z1] is the row vector with entries cov[Zi,k, Zj,l] with j, l ∈ {0, 1, . . . , n}
and j + l ≤ n; see Goldberger [1962] and Rao and Toutenburg [1995] as well as
Halliwell [1996, 1999], Hamer [1999] and Schmidt [1998, 1999a, 2004].

As an example, let us now consider Gauss–Markov prediction in the linear model of
Mack:

Linear Model of Mack: There exist parameters π0, π1, . . . , πn ∈ (0,∞)
and ζ0, ζ1, . . . , ζn as well as σ0, σ1, . . . , σn ∈ (0,∞) such that

E[Zi,k] = πi ζk

and

cov[Zi,k, Zj,l] =

{
πi σk if i = j and k = l

0 else

holds for all i, j, k, l ∈ {0, 1, . . . , n}.
For the remainder of this subsection we assume that the assumptions of the linear
model of Mack are fulfilled. Define

β :=




ζ0

ζ1
...
ζn




and, for all i, k ∈ {0, 1, . . . , n},
a′i,k :=

(
0 . . . 0 πi 0 . . . 0

)

where πi occurs in position 1+k. This shows that the linear model of Mack satisfies
indeed the assumptions of the linear model. For the Gauss–Markov estimator of β
we obtain

β̂
GM

=




∑n
j=0 Zj,0∑n
j=0 πj

∑n−1
j=0 Zj,1∑n−1
j=0 πj

...

Z0,n

π0
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Since cov[Zi,k, Zj,l] = 0 holds for all i, j, k, l ∈ {0, 1, . . . , n} such that i + k ≥ n + 1
and j + l ≤ n, it follows that the Gauss–Markov predictor of the non–observable
incremental loss Zi,k satisfies

ẐGM
i,k = πi

∑n−k
j=0 Zj,k∑n−k
j=0 πj

and hence

ẐGM
i,k = ẐAD

i,k

and linearity of Gauss–Markov prediction yields

ŜGM
i,k = ŜAD

i,k

This shows that the additive method is justified by Gauss–Markov prediction in the
linear model of Mack.

5.3 Conditional Gauss–Markov Prediction

In the present subsection we consider a sequential model for the chain–ladder me-
thod. This model is a sequential model since it involves successive conditioning
with respect to the σ–algebras G0,G1, . . . ,Gn−1 where, for each k ∈ {1, . . . , n}, the
σ–algebra

Gk−1

represents the information provided by the cumulative losses Sj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}, which is at the
same time the information provided by the incremental losses Zj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}.

Sequential Chain–Ladder Model: For each k ∈ {1, . . . , n}, there
exists a random variable ϕk and a strictly positive random variable σk

such that

EGk−1(Si,k) = Si,k−1 ϕk

and

covGk−1(Si,k, Sj,k) =

{
Si,k−1 σk if i = j

0 else

holds for all i, j ∈ {0, 1, . . . , n− k + 1}.
In the case where the random variables ϕ1, . . . , ϕn are all constant, integration yields
E[Si,k] = ϕk E[Si,k−1] such that the parameters ϕ1, . . . , ϕn form a development pat-
tern for factors. In the general case, the random parameters ϕ1, . . . , ϕn may be
interpreted as a random development pattern for factors.
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The sequential chain–ladder model may be considered as a sequence of n conditional
linear models corresponding to the development years k ∈ {1, . . . , n}. Each of these
conditional linear models consists of an observable part




EGk−1(S0,k)
EGk−1(S1,k)

...
EGk−1(Sn−k,k)


 =




S0,k−1

S1,k−1
...

Sn−k,k−1


 ϕk

and a non–observable part

EGk−1(Sn−k+1,k) = Sn−k+1,k−1 ϕk

Then the Gk−1–conditional Gauss–Markov estimator ϕ̂GM
k of the random parameter

ϕk satisfies

ϕ̂GM
k =

∑n−k
j=0 Sj,k∑n−k

j=0 Sj,k−1

and hence coincides with the chain–ladder factor ϕ̂CL
k .

Furthermore, for every accident year i ≥ n − k + 1, the Gk−1–conditional Gauss–
Markov predictor ŜGM

i,k of the non–observable cumulative loss Si,k satisfies

ŜGM
i,k = Si,k−1 ϕ̂GM

k

= Si,k−1 ϕ̂CL
k

The previous formula, however, is only useful when Si,k−1 is observable, which is the
case if and only if i + k − 1 ≤ n and hence i = n− k + 1.

Turning the point of view from development years to accident years, we see that the
Gn−i–conditional Gauss–Markov predictors of the first non–observable cumulative
losses Si,n−i+1 satisfy

ŜGM
i,n−i+1 = Si,n−i ϕ̂

CL
n−i+1

and hence coincide with the chain–ladder predictors.

In the case i+k = n+1, the chain–ladder predictors are thus justified by conditional
Gauss–Markov estimation, but another justification is needed in the case i + k ≥
n+2. This can be achieved by minimizing the Gk−1–conditional expected prediction
error

EGk−1

((
Ŝi,k − Si,k

)2)

over the collection of all predictors Ŝi,k of Si,k satisfying

Ŝi,k = ŜCL
i,k−1ϕ̂k
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for some Gk−1–conditionally unbiased linear estimator ϕ̂k of ϕk, and it turns out that
the minimum over this restricted class of predictors is attained for the chain–ladder
predictor ŜCL

i,k . The sequential optimality criterion adopted here reflects very well the
sequential character of the chain–ladder method and of the chain–ladder model. The
criterion is also reasonable since prediction for the first non–observable calendar year
is much more important than prediction for subsequent calendar years: Predictors
for the first non–observable calendar year cannot be corrected later whereas predic-
tors for subsequent calender years will be corrected anyway since already one year
later additional loss experience and hence a new run–off triangle will be available.

The sequential chain–ladder model is due to Schnaus and was proposed by Schmidt
and Schnaus [1996] where it is studied in detail; see also Schmidt [1997, 1999b,
2006]. The sequential chain–ladder model is a slight but convenient extension of the
chain–ladder model of Mack [1993]. A systematic comparison of several models for
the chain–ladder method is given in Hess and Schmidt [2002].

5.4 Remarks

Although least–squares prediction is a central topic in econometrics, it appears that
this method has been ignored in loss reserving until recently. It is the merit of Hal-
liwell [1996] that least–squares prediction is by now considered as a most useful tool
in loss reserving; see also Schmidt [1999a], Hamer [1999], Halliwell [1999], Radtke
and Schmidt [2004], and Schmidt [2006].
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6 Maximum–Likelihood Estimation

Another general principle of statistical inference is maximum–likelihood estimation.
The maximum–likelihood principle is applicable only if the joint distribution of all
observable random variables is known with the exception of certain parameters.

The models considered here are models for claim counts. The basic model is the
Poisson model which is a special case of the general multinomial model.

6.1 Poisson Model

The Poisson model is a model for claim counts and consists of the following assump-
tions:

Poisson model:

(i) The family {Zi,k}i,k∈{0,1,...,n} of all incremental losses is independent.
(ii) There exist parameters α0, α1, . . . , αn ∈ (0,∞) and ϑ0, ϑ1, . . . , ϑn ∈

(0, 1) with
∑n

l=0 ϑl = 1 such that, for all i, k ∈ {0, 1, . . . , n}, the
incremental loss Zi,k has the Poisson distribution with expectation
αi ϑk.

We assume in this subsection that the assumptions of the Poisson model are fulfilled.

Because of (ii) we have

E[Zi,k] = αi ϑk

Summation yields

E[Si,n] = αi

and hence

E[Zi,k] = ϑk E[Si,n]

such that the parameters ϑ0, ϑ1, . . . , ϑn form a development pattern for incremental
quotas.

In the Poisson model the joint distribution of all incremental losses is known except
for the parameters. In fact, we have

P

[
n⋂

i=0

n⋂

k=0

{Zi,k = zi,k}
]

=
n∏

i=0

n∏

k=0

(
e−αiϑk

(αiϑk)
zi,k

zi,k!

)

To estimate the parameters we can thus use the maximum–likelihood method. The
maximum–likelihood method is based in the joint distribution of all observable in-
cremental losses which is given by

P

[
n⋂

i=0

n−i⋂

k=0

{Zi,k = zi,k}
]

=
n∏

i=0

n−i∏

k=0

(
e−αiϑk

(αiϑk)
zi,k

zi,k!

)
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It follows that the likelihood function L is given by

L
(
α0, α1, . . . , αn, ϑ0, ϑ1, . . . , ϑn

∣∣∣ Z
)

:=
n∏

i=0

n−i∏

k=0

(
e−αiϑk

(αiϑk)
Zi,k

Zi,k!

)

where Z := {Zi,k}i,k∈{0,1,...,n},i+k≤n. Interpreting the maximum–likelihood princi-
ple in a wide sense (which ignores the second order conditions for a maximum),
observable random variables

α̂ML
0 , α̂ML

1 , . . . , α̂ML
n

and
ϑ̂ML

0 , ϑ̂ML
1 , . . . , ϑ̂ML

n

are said to be maximum–likelihood estimators if they annihilate all first order partial
derivatives of the likelihood function (or, equivalently, of the log–likelihood function)
and satisfy the constraint

n∑

l=0

ϑ̂ML
l = 1

Straightforward computation shows that the maximum–likelihood estimators satisfy
the marginal–sum equations

n−i∑

l=0

α̂i ϑ̂l =
n−i∑

l=0

Zi,l

with i ∈ {0, 1, . . . , n} and

n−k∑
j=0

α̂j ϑ̂k =
n−k∑
j=0

Zj,k

with k ∈ {0, 1, . . . , n} and, of course, the constraint

n∑

l=0

ϑ̂l = 1

Therefore, the maximum–likelihood estimators coincide with the marginal–sum es-
timators. It now follows from the properties of the marginal–sum estimators that
in the Poisson model the maximum–likelihood estimators of the expected ultimate
cumulative losses are identical with the chain–ladder predictors of the ultimate cu-
mulative losses. This was first observed by Hachemeister and Stanard [1975].

However, if, in addition to the assumptions of the Poisson model, it is assumed that
the expected ultimate cumulative losses are all identical such that

αi = α
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holds for all i ∈ {0, 1, . . . , n}, then maximum–likelihood estimation is still possible
but the maximum–likelihood estimators turn out to satisfy

α̂ =
n∑

l=0

1

n− l + 1

n−k∑
j=0

Zj,l

and

ϑ̂k =

1

n− k + 1

n−k∑
j=0

Zj,k

n∑

l=0

1

n− l + 1

n−l∑
j=0

Zj,l

In particular, the maximum–likelihood estimators of the expected ultimate cumula-
tive losses are not identical with the chain–ladder estimators of the ultimate cumu-
lative losses; see Schmidt and Zocher [2005].

6.2 Multinomial Model

The multinomial model is a model for claim counts and consists of the following
assumptions:

Multinomial Model:

(i) The accident years are independent.
(ii) There exist parameters ϑ0, ϑ1, . . . , ϑn ∈ (0, 1) with

∑n
l=0 ϑl = 1 such

that, for every accident year i ∈ {0, 1, . . . , n}, the conditional joint
distribution of the family {Zi,k}k∈{0,1,...,n} with respect to the ultimate
cumulative loss Si,n is the multinomial distribution with parameters
Si,n and ϑ0, ϑ1, . . . , ϑn.

We assume in this subsection that the assumptions of the multinomial model are
fulfilled.

Because of (ii) we have

E(Zi,k|Si,n) = ϑk Si,n

and hence

E[Zi,k] = ϑk E[Si,n]

such that the parameters ϑ0, ϑ1, . . . , ϑn form a development pattern for incremental
quotas.

The multinomial model is appealing since it suggests that every claim of any acci-
dent year is reported or settled with probability ϑk in development year k. It thus
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reminds of the urn model in which Si,n balls are drawn with replacement from an
urn consisting of balls with 1+n different colours corresponding to the development
years.

Letting

αi := E[Si,n]

it is easy to see that the multinomial model contains the Poisson model as the special
case in which every ultimate cumulative loss Si,n has the Poisson distribution with
expectation αi. Moreover, under the assumptions of the multinomial model, it can be
shown that the incremental losses of any accident year are independent if and only if
the family of all incremental losses is independent and every incremental loss has the
Poisson distribution with expectation αiϑk. Therefore, the main advantage of the
multinomial model over the Poisson model is the fact that it allows for dependence
between the incremental losses of a given accident year.

If, in addition to the assumptions of the multinomial model, the distributions of
the ultimate cumulative losses are assumed to belong to a parametric family of
distributions, then the joint distribution of all incremental losses is known except
for the parameters and maximum–likelihood estimation can be used to estimate the
expected ultimate cumulative losses.

In the case where each of the ultimate cumulative losses has a Poisson distribution,
we are back to the Poisson model and the maximum–likelihood estimators of the
expected ultimate cumulative losses are identical with the chain–ladder predictors
of the ultimate cumulative losses.

The same result obtains in the case where each of the ultimate cumulative losses has
a negativebinomial distribution; see Schmidt and Wünsche [1998]. Negativebinomial
distributions are of interest since they are mixed Poisson distributions (with respect
to a mixing gamma distribution), and mixed Poisson distributions in turn are of
interest since their variances exceed their expectations, which is the case for most
empirical claim count distributions.

In fact, a much more general result is true: If, in addition to the assumptions of the
multinomial model, each of the ultimate cumulative losses has a Hofmann distri-
bution, then the maximum–likelihood estimators of the expected ultimate cumula-
tive losses are identical with the chain–ladder predictors of the ultimate cumulative
losses; see Schmidt and Zocher [2005]. The definition and the discussion of Hofmann
distributions are beyond the scope of this paper, but we remark that Hofmann distri-
butions were introduced by Hofmann [1955] and that every Hofmann distribution is
at the same time a mixed Poisson distribution and a compound Poisson distribution
and can be computed by recursion; see e. g. Hess, Liewald and Schmidt [2002].
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Since the class of all Hofmann distributions is a wide class of mixed Poisson distri-
butions, the multinomial model with ultimate cumulative loss counts having a Hof-
mann distribution is a very general model for claim counts in which the maximum–
likelihood estimators of the expected ultimate cumulative losses are identical with
the chain–ladder predictors of the ultimate cumulative losses.

6.3 Remarks

Alternatively, the Poisson model can be extended to a general stochastic model
in which the family {Zi,k}i,k∈{0,1,...,n} is independent and the distribution of every
incremental loss belongs to an exponential family. In such models, the theory of
generalized linear models can be applied.
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7 Conclusions

The notion of a development pattern, which can be expressed in three different but
equivalent ways, provides a powerful tool for the comparison of different methods
and of different models of loss reserving.

The general Bornhuetter–Ferguson method provides a general framework into which
several methods of loss reserving can be embedded via
– a particular choice of the prior estimators of the development pattern for cu-

mulative quotas and/or
– a particular choice of the prior estimators of the expected ultimate cumulative

losses.
Moreover, there are many stochastic models in which
– the credibility predictors or
– the Gauss–Markov predictors or
– the maximum–likelihood estimators of the expected ultimate cumulative losses
can be interpreted as Bornhuetter–Ferguson predictors.

The choice of a stochastic model or a method of prediction is a choice which has to
be made by the actuary and may have a considerable impact on the result. In the
Poisson model, e. g., credibility prediction and maximum–likelihood estimation are
possible but lead to different results; here the choice of the statistical method could
be based on the judgement that either external information or internal information
is more reliable. Still in the Poisson model, the form of the maximum–likelihood
estimators of the expected ultimate cumulative losses depends on the assumption
that the expected ultimate cumulative losses may be different or are all identical.

We also remark that the chain–ladder method and the additive method can be
extended to the multivariate case which corresponds to a portfolio consisting of
several subportfolios representing dependent lines of business. Moreover, the multi-
variate chain–ladder method and the multivariate additive method can be justified
by multivariate models extending the univariate models considered in the present
paper. A detailed discussion of these multivariate methods and models may be
found in Schmidt [2006].
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