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Abstract

In the present paper we review and extend two stochastic models for loss
reserving and study their impact on extensions of the additive method and
of the chain–ladder method. The first of these models is a particular linear
model while the second one is a sequential model which is composed of a finite
number of conditional linear models. These models lead to multivariate ex-
tensions of the additive method and of the chain–ladder method, respectively,
which turn out to resolve the problem of additivity.
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1 Introduction

For a portfolio consisting of several lines of business, it is well–known that the
chain–ladder predictors for the aggregate portfolio usually differ from the sums of
the chain–ladder predictors for the different lines of business; see Ajne [1994] and
Klemmt [2004]. It is one of the purposes of the present paper to point out that
the non–coincidence between a chain–ladder predictor for the aggregate portfolio
and the sum of the chain–ladder predictors for the different lines of business has
its origin in the univariate character of the chain–ladder method which neglects the
dependence structure existing between the different lines of business.

The problem of dependence between different lines of business has already been
addressed in a paper by Holmberg [1994]. His paper is remarkable since it adopts a
general point of view and considers
– correlation within accident years,
– correlation between accident years, and
– correlation between different lines of business.
Nevertheless, the major part of Holmberg’s paper is devoted to correlation within
and between accident years and the author expresses the opinion that, in practical
applications, the great majority of the effects causing correlation between different
lines of business are already captured in the correlation within and between accident
years. It is another purpose of the present paper to show that correlation between
different lines of business can be modelled and that the resulting models, combined
with general optimization principles, lead to multivariate predictors which are su-
perior to the univariate ones. Here and in the sequel, the term univariate refers to
prediction for a single line of business and the term multivariate refers to simulta-
neous prediction for several lines of business or for different types of losses (like paid
and incurred losses) of the same line of business.

The papers by Ajne [1994] and Holmberg [1994] were slightly preceded in time by
a paper by Mack [1993] which, similar to the paper by Hachemeister and Stanard
[1975], turned out to be path–breaking in the discussion of stochastic models for the
chain–ladder method. In the model of Mack, dependence within accident years is
expressed by conditioning, but it is also assumed that the accident years are inde-
pendent. The assumption of independent accident years was subsequently relaxed
in the model of Schnaus presented by Schmidt and Schnaus [1996]. Both of these
models are univariate and hence do not reflect dependence between lines of business.

After the publication of the paper of Mack [1993], about a decade had to pass before
the emergence of the first bivariate models related to the chain–ladder method. One
of these models, due to Quarg and Mack [2004], expresses dependence between the
paid and incurred losses of a single line of business (a topic which had already been
studied before by Halliwell [1997] within the theory of linear models) and has been
used as a foundation for the construction of certain bivariate predictors which are
now known as Munich chain–ladder predictors. The other of these models, due to
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Braun [2004], expresses dependence between two lines of business and has been used
to construct new estimators for the prediction errors of the univariate chain–ladder
predictors, but it has not been used to construct bivariate predictors. Each of these
models extends the model of Mack.

Quite recently, Pröhl and Schmidt [2005] as well as Hess, Schmidt and Zocher [2006]
proposed multivariate models which reflect dependence between an arbitrary number
of lines of business. The model of Pröhl and Schmidt extends the model of Braun in
essentially the same way as the model of Schnaus extends the model of Mack, while
the model of Hess, Schmidt and Zocher extends in a rather straightforward way the
particular linear model which may be used to justify the additive method; see Radtke
and Schmidt [2004]. These models, combined with a general optimality criterion,
lead to multivariate versions of the chain–ladder method and of the additive method,
respectively, which turn out to resolve the problem of additivity.

In the present paper we review these recent multivariate models and methods of
loss reserving. In order to avoid the accumulation of technicalities, we start with a
systematic review of the univariate case (Section 2) and of prediction in conditional
linear models (Section 3). We then pass to the multivariate case (Section 4) and show
that, due to the multivariate approach, the predictors for the single lines of business
sum up to the corresponding predictors for the aggregate portfolio (Section 5). We
also show how the unbiased estimators of variances and covariances proposed by
Braun [2004] can be adapted to the multivariate models considered here (Section 6).
We conclude with some complementary remarks (Section 7) and a numerical example
illustrating the multivariate chain–ladder method (Section 8).

Throughout this paper, let (Ω,F , P ) be a probability space on which all random
variables, random vectors and random matrices are defined. We assume that all
random variables are square integrable and that all random vectors and random
matrices have square integrable coordinates. Moreover, all equalities and inequalities
involving random variables are understood to hold almost surely with respect to the
probability measure P .

2 Univariate Loss Prediction

In the present section we review two univariate stochastic models which are closely
related to two current methods of loss reserving.

We consider a single line of business which is described by a family {Zi,k}i,k∈{0,1,...,n}
of random variables. We interpret Zi,k as the loss of accident year i which is reported
or settled in development year k, and hence in calendar year i + k, and we refer to
Zi,k as the incremental loss of accident year i and development year k.
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We assume that the incremental losses Zi,k are observable for calendar years i+k ≤ n
and that they are non–observable for calendar years i + k ≥ n + 1. The observable
incremental losses are represented by the following run–off triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i

...
...

...
...

n−k Zn−k,0 Zn−k,1 . . . Zn−k,k

...
...

...
n−1 Zn−1,0 Zn−1,1

n Zn,0

Besides looking at the incremental losses, we also consider the cumulative losses Si,k

which are defined by

Si,k :=
k∑

l=0

Zi,l

Then the cumulative losses Si,k are observable for calendar years i + k ≤ n and
they are non–observable for calendar years i + k ≥ n + 1. Just like the observable
incremental losses, the observable cumulative losses are represented by a run–off
triangle:

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 S0,0 S0,1 . . . S0,k . . . S0,n−i . . . S0,n−1 S0,n

1 S1,0 S1,1 . . . S1,k . . . S1,n−i . . . S1,n−1

...
...

...
...

...
i Si,0 Si,1 . . . Si,k . . . Si,n−i

...
...

...
...

n−k Sn−k,0 Sn−k,1 . . . Sn−k,k

...
...

...
n−1 Sn−1,0 Sn−1,1

n Sn,0

Of course, the incremental losses can be recovered from the cumulative losses.

2.1 Univariate Additive Model

Let us first consider the univariate additive model:
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Univariate Additive Model: There exist real numbers ν0, ν1, . . . , νn >
0 and σ0, σ1, . . . , σn > 0 as well as real parameters ζ0, ζ1, . . . , ζn such that

E[Zi,k] = νi ζk

and

cov[Zi,k, Zj,l] =

{
νi σk if i = j and k = l

0 else

holds for all i, j, k, l ∈ {0, 1, . . . , n}.

For i, k ∈ {1, . . . , n} such that i + k ≥ n + 1, the estimators and predictors

ζ̂AD
k :=

∑n−k
j=0 Zj,k∑n−k
j=0 νj

ẐAD
i,k := νi ζ̂

AD
k

ŜAD
i,k := Si,n−i + νi

k∑

l=n−i+1

ζ̂AD
l

are said to be the estimators and the predictors of the univariate additive method.
Under the assumptions of the univariate additive model, these estimators and pre-
dictors are indeed reasonable, as will be shown in Section 4 below.

2.2 Univariate Chain–Ladder Model

Let us now consider the univariate chain–ladder model due to Schnaus which was
proposed by Schmidt and Schnaus [1996] and is a slight but convenient extension of
the model of Mack [1993].

The chain–ladder model is a sequential model since it involves successive condition-
ing with respect to the σ–algebras G0,G1, . . . ,Gn−1 where, for each k ∈ {1, . . . , n},
the σ–algebra

Gk−1

represents the information provided by the cumulative losses Sj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}, which is at the
same time the information provided by the incremental losses Zj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}.

We assume that Si,k > 0 holds for all i, k ∈ {0, 1, . . . , n}.
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Univariate Chain–Ladder Model: For each k ∈ {1, . . . , n}, there
exists a random variable ϕk and a strictly positive random variable σk

such that

EGk−1(Si,k) = Si,k−1 ϕk

and

covGk−1(Si,k, Sj,k) =

{
Si,k−1 σk if i = j

0 else

holds for all i, j ∈ {0, 1, . . . , n−k+1}.
For i, k ∈ {1, . . . , n} such that i + k ≥ n + 1, the estimators and predictors

ϕ̂CL
k :=

∑n−k
j=0 Sj,k∑n−k

j=0 Sj,k−1

ŜCL
i,k := Si,n−i

k∏

l=n−i+1

ϕ̂CL
l

(such that ϕ̂CL
n−i = Si,n−i) are said to be the estimators and the predictors of the

univariate chain–ladder method. Under the assumptions of the univariate chain–
ladder model, these estimators and predictors are indeed reasonable, as will be
shown in Section 4.

3 Estimation and Prediction

in the Conditional Linear Model

In the present section we consider a random vector X and a sub–σ–algebra G of F .
The σ–algebra G represents information which is provided by some other random
quantities.

The Conditional Linear Model: There exists a G–measurable ran-
dom matrix A and a G–measurable random vector β such that

EG[X] = Aβ

The random matrix A is assumed to be observable and is said to be the design
matrix and the random vector β is assumed to be non–observable and is said to be
the parameter vector or the parameter for short.

In the subsequent discussion, we assume that the assumption of the conditional
linear model is fulfilled.
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We assume further that some of the coordinates of X are observable whereas some
other coordinates are non–observable. Then the random vector X1 consisting of
the observable coordinates of X and the random vector X2 consisting of the non–
observable coordinates of X satisfy

EG[X1] = A1β

EG[X2] = A2β

for some submatrices A1 and A2 of A.

We also assume that the matrix A1 has full column rank, that the random matrices

Σ11 := VarG[X1]

Σ21 := CovG[X2,X1]

are known, and that Σ11 is (almost surely) invertible.

Since the random vector X2 is non–observable, only the random vector X1 can be
used for the estimation of the parameter β.

3.1 Gauss–Markov Estimation

Let us first consider the estimation problem for a random vector of the form Cβ,
where C is a G–measurable random matrix of suitable dimension.

A random variable Ŷ is said to be an estimator of Cβ if it is a measurable trans-
formation of the observable random vector X1. For an estimator Ŷ of Cβ, the
random variable

EG
[(

Ŷ −Cβ
)′(

Ŷ −Cβ
)]

is said to be the G–conditional expected squared estimation error of Ŷ. Since

EG
[(

Ŷ −Cβ
)′(

Ŷ −Cβ
)]

= trace
(
VarG

[
Ŷ

])
+ EG[Ŷ −Cβ

]′
EG[Ŷ −Cβ

]

the G–conditional expected squared estimation error is determined by the G–condi-
tional variance of the estimator and the G–conditional expectation of the estimation
error. An observable random vector Ŷ is said to be
– a linear estimator of Cβ if there exists a G–measurable random matrix Q such

that Ŷ = QX1.

– a G–conditionally unbiased estimator of Cβ if EG[Ŷ] = EG[Cβ].
– a Gauss–Markov predictor of Cβ if it is a G–conditionally unbiased linear es-

timator of Cβ and minimizes the G–conditional expected squared estimation
error over all G–conditionally unbiased linear estimators of Cβ.
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We have the following result:

3.1 Proposition (Gauss–Markov Theorem for Estimators). There exists a

unique Gauss–Markov estimator ŶGM(Cβ) of Cβ and it satisfies

ŶGM(Cβ) = C(A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1

In particular , ŶGM(Cβ) = CŶGM(β).

Proposition 3.1 implies that the coordinates of the Gauss–Markov estimator

β̂
GM

:= (A′
1Σ

−1
11 A1)

−1A′
1Σ

−1
11 X1

of the parameter β coincide with the Gauss–Markov estimators of its coordinates.

3.2 Gauss–Markov Prediction

Let us now consider the prediction problem for a non–observable random vector of
the form DX2, where D is a matrix of suitable dimension.

A random variable Ŷ is said to be a predictor of DX2 if it is a measurable transfor-

mation of the observable random vector X1. For a predictor Ŷ of DX2, the random
variable

EG
[(

Ŷ −DX2

)′(
Ŷ −DX2

)]

is said to be the G–conditional expected squared prediction error of Ŷ. Since

EG
[(

Ŷ −DX2

)′(
Ŷ −DX2

)]

= trace
(
VarG

[
Ŷ −DX2

])
+ EG[Ŷ −DX2

]′
EG[Ŷ −DX2

]

the G–conditional expected squared prediction error is determined by the G–con-
ditional variance and the G–conditional expectation of the prediction error. An
observable random vector Ŷ is said to be
– a linear predictor of DX2 if there exists a G–measurable random matrix Q such

that Ŷ = QX1.

– a G–conditionally unbiased predictor of DX2 if EG[Ŷ] = EG[DX2].
– a Gauss–Markov predictor of DX2 if it is a G–conditionally unbiased linear

predictor of DX2 and minimizes the G–conditional expected squared prediction
error over all G–conditionally unbiased linear predictors of DX2.

We have the following result:

3.2 Proposition (Gauss–Markov Theorem for Predictors). There exists a

unique Gauss–Markov predictor ŶGM(DX2) of DX2 and it satisfies

ŶGM(DX2) = D
(
A2β̂

GM
+ Σ21Σ

−1
11

(
X1−A1β̂

GM
))

In particular , ŶGM(DX2) = DŶGM(X2).
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Proposition 3.2 shows that the Gauss–Markov predictor

X̂GM
2 := A2β̂

GM
+ Σ21Σ

−1
11

(
X1−A1β̂

GM
)

of the non–observable random vector X2 depends not only on the Gauss–Markov

estimator β̂
GM

of the parameter β but also on the G–conditional covariance Σ21 be-
tween the non–observable random vector X2 and the observable random vector X1.
Moreover, the final assertion of Proposition 3.2 implies that the coordinates of the
Gauss–Markov predictor of the non–observable random vector coincide with the
Gauss–Markov predictors of its coordinates.

For a single non–observable random variable, the Gauss–Markov predictor has been
determined by Goldberger [1962]; see also Rao and Toutenburg [1995]. We also
refer to the paper by Halliwell [1996] and to the discussion of his paper by Schmidt
[1999a] and Hamer [1999] and the author’s response by Halliwell [1999]. Related
results can also be found in Radtke and Schmidt [2004] and in Schmidt [1998, 2004].

The proof of Propositions 3.1 and 3.2 can be achieved in exactly the same way
as in the unconditional case (which corresponds to the case G = {∅, Ω}, where
the G–conditional expectations, variances and covariances are nothing else than the
ordinary expectations, variances and covariances).

It is sometimes also of interest to predict a random vector of the form

DX =
(

D1 D2

) (
X1

X2

)

An obvious candidate is the predictor

ŶGM(DX) :=
(

D1 D2

) (
X1

X̂GM
2

)

Extending the definitions and repeating the discussion with X in the place of X2,

it is easily seen that the predictor ŶGM(DX) is indeed the Gauss–Markov predictor
of DX; see also Hamer [1999] for the even more general case of Gauss–Markov
estimation/prediction of D0β + D1X1 + D2X2.

4 Multivariate Loss Prediction

We are now prepared to consider multivariate loss prediction.

We consider m lines of business all having the same number of development years.
The m lines of business may be interpreted as subportfolios of an aggregate portfolio.

For the line of business p ∈ {1, . . . , m}, we denote by

Z
(p)
i,k
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and
S

(p)
i,k

the incremental loss and the cumulative loss, respectively, of accident year i ∈
{0, 1, . . . , n} and development year k ∈ {0, 1, . . . , n}.

For i, k ∈ {0, 1, . . . , n}, we thus obtain the m–dimensional random vectors

Zi,k :=
(
Z

(p)
i,k

)
p∈{1,...,m}

and

Si,k :=
(
S

(p)
i,k

)
p∈{1,...,m}

of incremental losses and cumulative losses of the combined subportfolios. The
observable incremental losses and the observable cumulative losses are represented
by the run–off triangles

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 Z0,0 Z0,1 . . . Z0,k . . . Z0,n−i . . . Z0,n−1 Z0,n

1 Z1,0 Z1,1 . . . Z1,k . . . Z1,n−i . . . Z1,n−1

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,k . . . Zi,n−i
...

...
...

...
n−k Zn−k,0 Zn−k,1 . . . Zn−k,k
...

...
...

n−1 Zn−1,0 Zn−1,1

n Zn,0

and

Accident Development Year

Year 0 1 . . . k . . . n−i . . . n−1 n

0 S0,0 S0,1 . . . S0,k . . . S0,n−i . . . S0,n−1 S0,n

1 S1,0 S1,1 . . . S1,k . . . S1,n−i . . . S1,n−1

...
...

...
...

...
i Si,0 Si,1 . . . Si,k . . . Si,n−i
...

...
...

...
n−k Sn−k,0 Sn−k,1 . . . Sn−k,k
...

...
...

n−1 Sn−1,0 Sn−1,1

n Sn,0

We can now present multivariate extensions of the models considered in Section 2:
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4.1 Multivariate Additive Model

Let us first consider a multivariate extension of the univariate additive model which
applies to the combined subportfolios and was proposed by Hess, Schmidt and Zocher
[2006].

Multivariate Additive Model: There exist positive definite diago-
nal matrices V0,V1, . . . ,Vn and positive definite symmetric matrices
Σ0,Σ1, . . . ,Σn as well as parameter vectors ζ0, ζ1, . . . , ζn such that

E[Zi,k] = Vi ζk

and

Cov[Zi,k,Zj,l] =

{
V

1/2
i ΣkV

1/2
i if i = j and k = l

O else

holds for all i, j, k, l ∈ {0, 1, . . . , n}.
In the subsequent discussion, we assume that the assumption of the multivariate
additive model is fulfilled and that the matrices V0,V1, . . . ,Vn are known.

Because of the assumption on the expectations of the incremental losses, the multi-
variate additive model is a linear model. This can be seen as follows: Define

β :=




ζ0

ζ1
...
ζk−1

ζk

ζk+1
...
ζn




and, for all i, k ∈ {0, 1, . . . , n}, define

Ai,k :=
(

O O . . . O Vi O . . . O
)

where the matrix Vi occurs in position 1+k. Then we have

E[Zi,k] = Ai,kβ

for all i, k ∈ {0, 1, . . . , n}. Let Z1 and A1 denote a block vector and a block matrix
consisting of the vectors Zi,k and the matrices Ai,k with i + k ≤ n (arranged in the
same order) and let Z2 and A2 denote a block vector and a block matrix consisting
of the vectors Zi,k and the matrices Ai,k with i + k ≥ n + 1. Then we have

E[Z1] = A1β

12



E[Z2] = A2β

Therefore, the multivariate additive model is indeed a linear model.

The following result provides formulas for the Gauss–Markov estimators of the para-
meters of the multivariate additive model:

4.1 Theorem. For each k ∈ {0, 1, . . . , n}, the Gauss–Markov estimator ζ̂
GM

k of
ζk satisfies

ζ̂
GM

k =

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

Proof. Because of the diagonal block structure of Σ11 = Var[Z1] and the block
structure of A1 we obtain

A′
1Σ

−1
11 A1 = diag

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)

k∈{0,1,...,n}

and

A′
1Σ

−1
11 Z1 =

(
n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

)

k∈{0,1,...,n}

Now the Gauss–Markov Theorem for estimators yields

β̂
GM

=
(
A′

1Σ
−1
11 A1

)−1

A′
1Σ

−1
11 Z1

=

((
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

)

k∈{0,1,...,n}

and hence

ζ̂
GM

k =

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

for all k ∈ {0, 1, . . . , n}. 2

The following result provides formulas for the Gauss–Markov predictors of the non–
observable incremental losses and for the Gauss–Markov predictors of the non–
observable cumulative losses:

4.2 Theorem. For all i, k ∈ {1, . . . , n} such that i+k ≥ n+1, the Gauss–Markov

predictor ẐGM
i,k of Zi,k satisfies

ẐGM
i,k = Vi ζ̂

GM

k

13



and the Gauss–Markov predictor ŜGM
i,k of Si,k satisfies

ŜGM
i,k = Si,n−i + Vi

k∑

l=n−i+1

ζ̂
GM

l

Proof. Since Σ21 = Cov[Z2,Z1] = O, the first assertion is immediate from the
Gauss–Markov Theorem for predictors and the second assertion follows from the
final remark of Section 3. 2

The Gauss–Markov Theorem for predictors implies that

– the Gauss–Markov predictors of the sum of the non–observable incremental
losses of a given accident year,

– the Gauss–Markov predictors of the sum of the non–observable incremental
losses of a given calendar year, and

– the Gauss–Markov predictors of the sum of all non–observable incremental
losses

are obtained by summation over the Gauss–Markov predictors of the corresponding
single non–observable incremental losses.

For i, k ∈ {1, . . . , n} such that i + k ≥ n + 1, the estimators and predictors

ζ̂
AD

k :=

(
n−k∑
j=0

V
1/2
j Σ−1

k V
1/2
j

)−1 n−k∑
j=0

(
V

1/2
j Σ−1

k V
1/2
j

)
V−1

j Zj,k

ẐAD
i,k := Vi ζ̂

AD

k

ŜAD
i,k := Si,n−i + Vi

k∑

l=n−i+1

ζ̂
AD

l

are said to be the estimators and predictors of the multivariate additive method.
Except for m = 1 or k = n they usually differ from the estimators and predictors

ζ̃k :=

(
n−k∑
j=0

Vj

)−1 n−k∑
j=0

Zj,k

Z̃i,k := Vi ζ̃k

S̃i,k := Si,n−i + Vi

k∑

l=n−i+1

ζ̃l

whose coordinates coincide with those of the univariate additive method.
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4.2 Multivariate Chain–Ladder Model

Let us now consider a multivariate extension of the univariate chain–ladder model
which applies to the combined subportfolios and was proposed by Pröhl and Schmidt
[2005]. This model is a slight but convenient extension of the model of Braun [2004];
see also Kremer [2005].

The multivariate chain–ladder model involves successive conditioning with respect
to the σ–algebras G0,G1, . . . ,Gn−1 where, for each k ∈ {1, . . . , n}, the σ–algebra

Gk−1

represents the information provided by the cumulative losses Sj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}, which is at the
same time the information provided by the incremental losses Zj,l of accident years
j ∈ {0, 1, . . . , n−k+1} and development years l ∈ {0, 1, . . . , k−1}.

For all i, k ∈ {0, 1, . . . , n} we denote by

∆i,k := diag(Si,k)

the diagonal random matrix whose diagonal elements are the coordinates of the
random vector Si,k.

We assume that all coordinates of Si,k are strictly positive. Then each ∆i,k is
invertible and the identity

Si,k = ∆i,k−1

(
∆−1

i,k−1Si.k

)

holds for all i ∈ {0, 1, . . . , n} and k ∈ {1, . . . , n}.
Multivariate Chain–Ladder Model: For each k ∈ {1, . . . , n}, there
exists a random parameter vector Φk and a positive definite symmetric
random matrix Σk such that

EGk−1 [Si,k] = ∆i,k−1 Φk

and

CovGk−1 [Si,k,Sj,k] =

{
∆

1/2
i,k−1 Σk∆

1/2
i,k−1 if i = j

O else

holds for all i, j ∈ {0, 1, . . . , n−k+1}.
In the subsequent discussion, we assume that the assumption of the multivariate
chain–ladder model is fulfilled.

The multivariate chain–ladder model consists of n conditional linear models corres-
ponding to the development years k ∈ {1, . . . , n}. This can be seen as follows: Fix
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k ∈ {1, . . . , n}, let S1 and A1 denote a block vector and a block matrix consisting
of the random vectors Si,k and the random matrices ∆i,k with i ≤ n− k (arranged
in the same order) and let S2 := Sn−k+1,k and A2 = ∆n−k+1,k. Then the random
vectors S1 and S2 and the random matrices A1 and A2 depend on k and we have

EGk−1 [S1] = A1Φk

EGk−1 [S2] = A2Φk

Therefore, the multivariate chain–ladder model consists indeed of n conditional
linear models.

The following result provides formulas for the Gauss–Markov estimators of the para-
meters in the multivariate chain–ladder model:

4.3 Theorem. For each k ∈ {1, . . . , n}, the Gauss–Markov estimator Φ̂GM
k of Φk

satisfies

Φ̂GM
k =

(
n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)−1 n−k∑
j=0

(
∆

1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)
∆−1

j,k−1Sj,k

Theorem 4.3 is immediate from the Gauss–Markov Theorem for estimators.

The following result provides formulas for the Gauss–Markov predictors of the cu-
mulative losses of the first non–observable calendar year:

4.4 Theorem. For each i ∈ {1, . . . , n}, the Gauss–Markov predictor ŜGM
i,n−i+1 of

Si,n−i+1 satisfies

ŜGM
i,n−i+1 = ∆i,n−iΦ̂

GM
n−i+1

Theorem 4.4 is immediate from the Gauss–Markov Theorem for predictors.

For i, k ∈ {1, . . . , n} such that i + k ≥ n + 1, the estimators and predictors

Φ̂CL
k :=

(
n−k∑
j=0

∆
1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)−1 n−k∑
j=0

(
∆

1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)
∆−1

j,k−1Sj,k

ŜCL
i,k := ∆̂CL

i,k−1Φ̂
CL
k

with

∆̂CL
i,k−1 :=

{
diag(Si,n−i) if k = n− i + 1

diag(ŜCL
i,k−1) else
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are said to be the estimators and predictors of the multivariate chain–ladder method.
Except for m = 1 or k = n they usually differ from the estimators and predictors

Φ̃k :=

(
n−k∑
j=0

∆j,k−1

)−1 n−k∑
j=0

Sj,k

S̃i,k := ∆̃i,kΦ̃k

with

∆̃i,k−1 :=

{
diag(Si,n−i) if k = n− i + 1

diag(S̃i,k−1) else

whose coordinates coincide with those of the univariate chain–ladder method.

In the case i + k = n + 1, the multivariate chain–ladder predictors are justified by
Theorem 4.4, but another justification is needed in the case i + k ≥ n + 2; this can
be achieved by minimizing the Gk−1–conditional expected prediction error over the
collection of all predictors Ŝi,k of Si,k satisfying

Ŝi,k = ∆̂CL
i,k−1Φ̂k

for some Gk−1–conditionally unbiased linear estimator Φ̂k of Φk; see Schmidt [1999b]
for the univariate case. We have the following result:

4.5 Theorem. For all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1, the chain–ladder

predictor ŜCL
i,k minimizes the Gk−1–conditional expected prediction error over all pre-

dictors Ŝi,k of Si,k satisfying

Ŝi,k = ∆̂CL
i,k−1Φ̂k

for some Gk−1–conditionally unbiased linear estimator Φ̂k of Φk.

A proof of Theorem 4.5 will be given in the Appendix.

The optimality of the multivariate chain–ladder method guaranteed by Theorem
4.5 is sequential and one–step ahead. Of course, one would like to have a condition
ensuring some kind of global optimality of the chain–ladder predictors; however,
even in the univariate case, no such condition seems to be known.

To illustrate the situation without introducing additional notation, let us recall two
results for the univariate case:
– The assumption of the univariate chain–ladder model is fulfilled in the model

of Mack [1993] in which it is assumed that the accident years are independent
and that the parameters ϕk and σk are non–random; see Schmidt and Schnaus
[1996]. Under the assumptions of the model of Mack, it can be shown that all
chain–ladder predictors are unbiased, but it can also be shown that many other
predictors are unbiased as well. Therefore, unbiasedness does not distinguish
the chain–ladder predictors among all other predictors.
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– One might hope that the chain–ladder predictors minimize the Gn−i–conditional
expected squared predictor error over all predictors of the form

Ŝi,k = Si,n−i

k∏

l=n−i+1

ϕ̂l

where, for each l ∈ {n− i+1, . . . , k}, ϕ̂l is a Gl–conditionally unbiased linear
estimator of ϕl. Again, under the assumptions of the model of Mack, it has
been shown in Schmidt [1997] that this kind of optimality may fail for the
chain–ladder predictors.

Thus, even in the univariate case and under the stronger assumptions of the model
of Mack, it remains an open question whether there exists a condition which is less
restrictive than the sequential optimality criterion of Theorem 4.5 and still ensures
some kind of global optimality of the chain–ladder predictors.

5 Additivity

Let 1 denote the m–dimensional vector with all coordinates being equal to 1. For
i, k ∈ {0, 1, . . . , n} define

Zi,k := 1′Zi,k

Si,k := 1′Si,k

We shall now study prediction of the non–observable incremental losses Zi,k and of
the non–observable cumulative losses Si,k of the aggregate portfolio.

5.1 Multivariate Additive Model

In the multivariate additive model it is immediate from the Gauss–Markov Theorem
for predictors that, for all i, k ∈ {1, . . . , n} such that i+k ≥ n+1, the Gauss–Markov

predictor ẐGM
i,k of Zi,k and the Gauss–Markov predictor ŜGM

i,k of Si,k satisfy

ẐGM
i,k = 1′ẐAD

i,k

ŜGM
i,k = 1′ŜAD

i,k

This means that the Gauss–Markov predictors for the aggregate portfolio are
obtained by summation over the Gauss–Markov predictors for the single lines of
business. Therefore, the multivariate additive method is consistent in the sense that
there is no problem of additivity.

Warning: One might believe that the Gauss–Markov predictors for the aggregate
portfolio could also be obtained by applying the univariate additive method to the
aggregate portfolio. This, however, is not the case since the multivariate additive
model for the combined subportfolios does not lead to a univariate additive model
for the aggregate portfolio.
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5.2 Multivariate Chain–Ladder Model

In the multivariate chain–ladder model it is immediate from the Gauss–Markov
Theorem for predictors that, for all i ∈ {1, . . . , n}, the Gauss–Markov predictor

ŜGM
i,n−i+1 of Si,n−i+1 satisfies

ŜGM
i,n−i+1 = 1′ŜCL

i,n−i+1

This means that the Gauss–Markov predictors for the aggregate portfolio are ob-
tained by summation over the multivariate Gauss–Markov predictors for the different
lines of business. Moreover, it is easy to see that, for all i, k ∈ {1, . . . , n} such that
i + k ≥ n + 2, the predictor

S∗i,k := 1′ŜCL
i,k

= 1′∆̂CL
i,k−1Φ̂

CL
k

=
(
ŜCL

i,k−1

)′
Φ̂CL

k

minimizes the Gk−1–conditional expected prediction error over all predictors Ŝi,k of
Si,k satisfying

Ŝi,k = 1′∆̂CL
i,k−1Φ̂k

=
(
ŜCL

i,k−1

)′
Φ̂k

for some Gk−1–conditionally unbiased linear predictor Φ̂k of Φk. Therefore, the
multivariate chain–ladder method is consistent in the sense that there is no problem
of additivity.

Warning: As in the case of the multivariate additive model, it would be a serious
mistake to predict the non–observable cumulative losses of the aggregate portfolio
on the basis of the observable cumulative losses of the aggregate portfolio since such
an approach would ignore the correlation structure between the different lines of
business; see Pröhl and Schmidt [2005].

6 Estimation of the Variance Parameters

In the case m = 1, which is the univariate case, the variance parameters Σ0,Σ1, . . . ,
Σn drop out in the formulas for the Gauss–Markov predictors in the multivariate
additive model and in the multivariate chain–ladder model.

In the case m ≥ 2, however, only the variance parameter Σn drops out in the formu-
las for the Gauss–Markov predictors in the multivariate additive model and in the
multivariate chain–ladder model; in this case, the variance parameters Σ0,Σ1, . . . ,
Σn−1 must be estimated.
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6.1 Multivariate Additive Model

Under the assumptions of the multivariate additive model and for k ≤ n−1, the
random matrix

Σ̂AD
k :=

1

n− k

n−k∑
j=0

V
−1/2
j

(
Zj,k −Vj ζ̃k

)(
Zj,k −Vj ζ̃k

)′
V
−1/2
j

is a positive semidefinite estimator of the positive definite matrix Σk; moreover, its
diagonal elements are unbiased estimators of the diagonal elements of Σk whereas
its non–diagonal elements slightly underestimate the corresponding elements of Σk.

Although unbiasedness of an estimator is usually considered to be desirable, this
property would not be helpful in the present situation since any estimator of Σk has
to be inverted and since the inverse of an unbiased estimator of Σk is very likely to
be biased anyway. Moreover, the relative bias of the estimators proposed before can
be shown to be very small.

By contrast, for any estimator of Σk, the property of being positive semidefinite is
a necessary, although not sufficient, condition for being positive definite and hence
invertible. In fact, the estimator of Σk proposed before is always singular when
k ≥ n−m + 2 since in this case the dimension of the linear space generated by any
realizations of the random vectors V

−1/2
j (Zj,k−Vj ζ̃k) with j ∈ {0, 1, . . . , n−k} is at

most m − 1 such that there exists at least one nonzero vector which is orthogonal
to each of the realizations of these random vectors; moreover, the realizations of
the random vectors V

−1/2
j (Zj,k−Vj ζ̃k) may be linearly dependent also for some

k ≤ n−m + 1, which implies that the corresponding realization of the estimator of
Σk proposed before may be singular also for some k ≤ n−m + 1.

In practical applications, it is thus necessary to check whether the estimators pro-
posed before are invertible or not, and to modify those estimators which are not
invertible. Such modifications could be obtained by extrapolation or by the use of
external information; see below.

6.2 Multivariate Chain–Ladder Model

Under the assumptions of the multivariate chain–ladder model and for k ≤ n−1,
the random matrix

Σ̂CL
k :=

1

n− k

n−k∑
j=0

∆
−1/2
j,k−1

(
Sj,k −∆j,k−1Φ̃k

)(
Sj,k −∆j,k−1Φ̃k

)′
∆
−1/2
j,k−1

is a positive semidefinite estimator of the positive definite matrix Σk; moreover, its
diagonal elements are unbiased estimators of the diagonal elements of Σk whereas
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its non–diagonal elements slightly underestimate the corresponding elements of Σk

and hence differ from the unbiased estimators proposed by Braun [2004].

The comments on the variance estimators proposed for the multivariate additive
model apply as well to the variance estimators proposed for the multivariate chain–
ladder model.

6.3 Extrapolation

In the case where the proposed estimators of the variances for late development
years are singular or almost singular, it could be reasonable to replace these esti-
mators with estimators obtained by extrapolation from the estimators for the first
development years which are usually invertible.

6.4 Iteration

In both models, one may try to improve the estimators of the variances and hence
the Gauss–Markov estimators of the parameters by iteration, as proposed by Kremer
[2005]. However, the iterates of some of the estimators of the variances may again
be singular, and it seems to be difficult to prove that the resulting empirical Gauss–
Markov estimators of the parameters are indeed improved by iteration.

6.5 External Information

In both models, another possibility for the estimation of the variance parameters
Σ0,Σ1, . . . ,Σn−1 consists in the use of external information, which is not contained
in the run–off triangle and could be obtained, e. g., from the run–off triangle of a
similar portfolio or from market statistics.

7 Remarks

Another bivariate model of loss reserving is the model of Quarg and Mack [2004]. Un-
der the assumptions of their model, Quarg and Mack propose bivariate chain–ladder
predictors for the paid and incurred cumulative losses of a single line of business with
the aim of reducing the gap between the univariate chain–ladder predictors for the
paid and incurred cumulative losses; see also Verdier and Klinger [2005] for a related
model. None of these two models is contained in the multivariate models proposed
in the present paper.

Since no conditions at all are imposed on the character of the different lines of
business in the multivariate models presented here, the multivariate additive method
and the multivariate chain–ladder method could, in principle, also be applied to the
paid and incurred cumulative losses of a single line of business.
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Let us finally note that the problem of additivity can also be solved in quite different
models like credibility models; see Radtke and Schmidt [2004] and Schmidt [2004].

8 A Numerical Example

In this section we present a numerical example for the multivariate chain–ladder
method in the case of m = 2 subportfolios and n = 3 development years.

8.1 The Data

The following run–off triangles contain the observable cumulative losses S
(1)
i,k , S

(2)
i,k ,

and Si,k of the two subportfolios and of the aggregate portfolio, respectively:

Subportfolio 1

AY DY

0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952
2 3700 3977
3 5231

Subportfolio 2

AY DY

0 1 2 3

0 3546 6578 7650 8123
1 4001 7566 8822
2 4040 7813
3 4300

Aggregate Portfolio

AY DY

0 1 2 3

0 5969 9701 11217 11935
1 6842 10988 12774
2 7740 11790
3 9531

8.2 Univariate Chain–Ladder Method

Applying the univariate chain–ladder method to each of these run–off triangles yields
the univariate chain–ladder factors (CLF) and the univariate chain–ladder predictors
of the non–observable cumulative losses:
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Subportfolio 1

AY DY

0 1 2 3

0 2423 3123 3567 3812
1 2841 3422 3952 4223
2 3700 3977 4569 4883
3 5231 6140 7054 7538

CLF 1.1738 1.1488 1.0687

Subportfolio 2

AY DY

0 1 2 3

0 3546 6578 7650 8123
1 4001 7566 8822 9367
2 4040 7813 9099 9662
3 4300 8148 9490 10076

CLF 1.8950 1.1646 1.0618

Aggregate Portfolio

AY DY

0 1 2 3

0 5969 9701 11217 11935
1 6842 10988 12774 13592
2 7740 11790 13672 14547
3 9531 15063 17467 18585

CLF 1.5804 1.1596 1.0640

8.3 Multivariate Chain–Ladder Method

We now combine the run–off triangles of the two subportfolios into a single run–off
triangle which contains the vectors Si,k of cumulative losses:

23



Combined Subportfolios

AY DY

0 1 2 3

0
(

2423
3546

) (
3123
6578

) (
3567
7650

) (
3812
8123

)

1
(

2841
4001

) (
3422
7566

) (
3952
8822

)

2
(

3700
4040

) (
3977
7813

)

3
(

5231
4300

)

Transforming the vectors Si,k of cumulative losses into diagonal matrices, we obtain
the following run–off triangle for the matrices ∆i,k = diag(Si,k) which is completed

by the vectors Φ̃k of univariate chain–ladder factors:

Combined Subportfolios

AY DY

0 1 2 3

0
(

2423 0
0 3546

) (
3123 0

0 6578

) (
3567 0

0 7650

) (
3812 0

0 8123

)

1
(

2841 0
0 4001

) (
3422 0

0 7566

) (
3952 0

0 8822

)

2
(

3700 0
0 4040

) (
3977 0

0 7813

)

3
(

5231 0
0 4300

)

Φ̃k

(
1.1738
1.8950

) (
1.1488
1.1646

) (
1.0687
1.0618

)

For the estimators of the variances we thus obtain

Σ̂CL
1 =

(
35.4968 −14.3861

−14.3861 5.9200

)

Σ̂CL
2 =

(
0.2637 0.0926
0.0926 0.0325

)

24



and hence

(
Σ̂CL

1

)−1

=

(
1.8616 4.5239
4.5239 11.1624

)

(
Σ̂CL

2

)−1

=

(
25876.4330 −73727.6467

−73727.6467 210097.0596

)

Note that estimators of the variances Σ0 and Σ3 are not needed. Applying the multi-
variate chain–ladder method to the combined subportfolios yields the multivariate
chain–ladder predictors of the non–observable cumulative losses:

Combined Subportfolios

AY DY

0 1 2 3

0
(

2423
3546

) (
3123
6578

) (
3567
7650

) (
3812
8123

)

1
(

2841
4001

) (
3422
7566

) (
3952
8822

) (
4223
9367

)

2
(

3700
4040

) (
3977
7813

) (
4569
9099

) (
4883
9661

)

3
(

5231
4300

) (
6105
8167

) (
7013
9512

) (
7495

10100

)

Φ̂k

(
1.1670
1.8994

) (
1.1489
1.1646

) (
1.0687
1.0618

)

8.4 Comparison

Predictors for non–observable aggregate cumulative losses may be computed by the
following three methods:

– Method A: Apply the univariate chain–ladder method to the aggregate port-
folio.

– Method B: Apply the univariate chain–ladder method to each of the subport-
folios and take sums of the univariate predictors.

– Method C: Apply the multivariate chain–ladder method to the combined sub-
portfolios and take sums of the multivariate predictors.

For example, for the ultimate aggregate cumulative loss of accident year 3,

– Method A yields the value 18585.
– Method B yields the value 7538 + 10076 = 17614.
– Method C yields the value 7495 + 10100 = 17595.

The following table presents several reserves obtained by these three methods:
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Reserve Method A Method B Method C

Accident Year 1 818 817 817
Accident Year 2 2757 2754 2754
Accident Year 3 9054 8084 8064

Total 12628 11655 11635

Calendar Year 4 8231 7452 7436
Calendar Year 5 3279 3131 3129
Calendar Year 6 1118 1071 1070

Total 12628 11655 11635

Due to round–off errors, some of the total reserves differ slightly from the sums of
the reserves over accident years of calendar years.

In the present example, the results obtained by Methods B and C are quite similar,
but they differ considerably from those obtained by Method A.

8.5 Preliminary Conclusions

Of course, one should not draw general conclusions from a single numerical example.
Nevertheless, the present example and experience with other sets of data justify the
following rules of thumb:
– Method C is optimal when the model assumptions and the optimality criteria

for the multivariate chain–ladder method can be accepted.
– Method B may in many cases provide a reasonable approximation of Method C.
– Method A may be disastrous since it ignores correlation between the different

lines of business.
Experience with other sets of data also indicates that the similarities and differences
between the three methods may vary with
– the lines of business under consideration,
– the number of lines of business, and
– the number of development years.
It is therefore indispensable for the actuary to acquire practical experience for every
combined portfolio of interest.

Appendix

Here we give a proof of Theorem 4.5.

Proof. Consider any Gk−1–conditionally unbiased linear estimator Φ̂k of Φk. Then
there exist Gk−1–measurable matrices Q0,k−1,Q1,n−1, . . . ,Qn−k,k−1 satisfying

Φ̂k =
n−k∑
j=0

Qj,k−1Sj,k
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and
∑n−k

j=0 Qj,k−1∆j,k−1 = I. Also, letting

QCL
j,k−1 :=

(
n−k∑
s=0

∆
1/2
s,k−1Σ

−1
k ∆

1/2
s,k−1

)−1(
∆

1/2
j,k−1Σ

−1
k ∆

1/2
j,k−1

)
∆−1

j,k−1

we obtain

Φ̂CL
k =

n−k∑
j=0

QCL
j,k−1Sj,k

and
∑n−k

j=0 QCL
j,k−1∆j,k−1 = I. We thus obtain

n−k∑
j=0

(
Qj,k−1 −QCL

j,k−1

)
∆j,k−1 = O

Since

QCL
j,k−1 =

(
n−k∑
s=0

∆
1/2
s,k−1Σ

−1
k ∆

1/2
s,k−1

)−1

∆j,k−1

(
VarGk−1 [Si,k]

)−1

this yields

CovGk−1

[
Φ̂k − Φ̂CL

k , Φ̂CL
k

]
=

n−k∑
j=0

n−k∑

l=0

(
Qj,k−1 −QCL

j,k−1

)
CovGk−1

[
Sj,k,Sl,k

](
QCL

l,k−1

)′

=
n−k∑
j=0

(
Qj,k−1 −QCL

j,k−1

)
VarGk−1

[
Sj,k

](
QCL

j,k−1

)′

=
n−k∑
j=0

(
Qj,k−1 −QCL

j,k−1

)
∆j,k−1

(
n−k∑
s=0

∆
1/2
s,k−1Σ

−1
k ∆

1/2
s,k−1

)−1

= O

Since i + k ≥ n + 1, we also have CovGk−1
[
Sj,k,Si,k

]
= O and thus

CovGk−1

[
Ŝi,k − ŜCL

i,k ,Si,k

]
= CovGk−1

[
∆̂CL

i,k−1Φ̂k − ∆̂CL
i,k−1Φ̂

CL
k ,Si,k

]

= ∆̂CL
i,k−1CovGk−1

[
Φ̂k − Φ̂CL

k ,Si,k

]

= ∆̂CL
i,k−1

n−k∑
j=0

(
Qj,k−1 −QCL

j,k−1

)
CovGk−1

[
Sj,k,Si,k

]

= O
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Using the two identities established before, we thus obtain

CovGk−1

[
Ŝi,k − ŜCL

i,k , ŜCL
i,k − Si,k

]
= CovGk−1

[
Ŝi,k − ŜCL

i,k , ŜCL
i,k

]

= ∆̂CL
i,k−1CovGk−1

[
Φ̂k − Φ̂CL

k , Φ̂CL
k

]
∆̂CL

i,k−1

= O

and hence

VarGk−1

[
Ŝi,k − Si,k

]
= VarGk−1

[
Ŝi,k − ŜCL

i,k

]
+ VarGk−1

[
ŜCL

i,k − Si,k

]

We thus obtain

EGk−1

[(
Ŝi,k − Si,k

)′(
Ŝi,k − Si,k

)]

= trace
(
VarGk−1

[
Ŝi,k − Si,k

])

= trace
(
VarGk−1

[
Ŝi,k − ŜCL

i,k

])
+ trace

(
VarGk−1

[
ŜCL

i,k − Si,k

])

≥ trace
(
VarGk−1

[
ŜCL

i,k − Si,k

])

= EGk−1

[(
ŜCL

i,k − Si,k

)′(
ŜCL

i,k − Si,k

)]

which proves the theorem. 2
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