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Preface

Twenty–five years ago, Hans Bühlmann published his famous monograph Mathe-
matical Methods in Risk Theory in the series Grundlehren der Mathematischen
Wissenschaften and thus established nonlife actuarial mathematics as a recognized
subject of probability theory and statistics with a glance towards economics. This
book was my guide to the subject when I gave my first course on nonlife actuarial
mathematics in Summer 1988, but at the same time I tried to incorporate into my
lectures parts of the rapidly growing literature in this area which to a large extent
was inspired by Bühlmann’s book.

The present book is entirely devoted to a single topic of risk theory: Its subject is
the development in time of a fixed portfolio of risks. The book thus concentrates on
the claim number process and its relatives, the claim arrival process, the aggregate
claims process, the risk process, and the reserve process. Particular emphasis is
laid on characterizations of various classes of claim number processes, which provide
alternative criteria for model selection, and on their relation to the trinity of the
binomial, Poisson, and negativebinomial distributions. Special attention is also paid
to the mixed Poisson process, which is a useful model in many applications, to the
problems of thinning, decomposition, and superposition of risk processes, which are
important with regard to reinsurance, and to the role of martingales, which occur
in a natural way in canonical situations. Of course, there is no risk theory without
ruin theory, but ruin theory is only a marginal subject in this book.

The book is based on lectures held at Technische Hochschule Darmstadt and later at
Technische Universität Dresden. In order to raise interest in actuarial mathematics
at an early stage, these lectures were designed for students having a solid background
in measure and integration theory and in probability theory, but advanced topics like
stochastic processes were not required as a prerequisite. As a result, the book starts
from first principles and develops the basic theory of risk processes in a systematic
manner and with proofs given in great detail. It is hoped that the reader reaching
the end will have acquired some insight and technical competence which are useful
also in other topics of risk theory and, more generally, in other areas of applied
probability theory.

I am deeply indebted to Jürgen Lehn for provoking my interest in actuarial mathe-
matics at a time when vector measures rather than probability measures were on my
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mind. During the preparation of the book, I benefitted a lot from critical remarks
and suggestions from students, colleagues, and friends, and I would like to express
my gratitude to Peter Amrhein, Lutz Küsters, and Gerd Waldschaks (Universität
Mannheim) and to Tobias Franke, Klaus–Thomas Heß, Wolfgang Macht, Beatrice
Mensch, Lothar Partzsch, and Anja Voss (Technische Universität Dresden) for the
various discussions we had. I am equally grateful to Norbert Schmitz for several
comments which helped to improve the exposition.

Last, but not least, I would like to thank the editors and the publishers for accepting
these Lectures on Risk Theory in the series Skripten zur Mathematischen Stochastik
and for their patience, knowing that an author’s estimate of the time needed to
complete his work has to be doubled in order to be realistic.

Dresden, December 18, 1995 Klaus D. Schmidt
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Introduction

Modelling the development in time of an insurer’s portfolio of risks is not an easy task
since such models naturally involve various stochastic processes; this is especially
true in nonlife insurance where, in constrast with whole life insurance, not only the
claim arrival times are random but the claim severities are random as well.

The sequence of claim arrival times and the sequence of claim severities, the claim
arrival process and the claim size process, constitute the two components of the
risk process describing the development in time of the expenses for the portfolio
under consideration. The claim arrival process determines, and is determined by,
the claim number process describing the number of claims occurring in any time
interval. Since claim numbers are integervalued random variables whereas, in the
continuous time model, claim arrival times are realvalued, the claim number process
is, in principle, more accessible to statistical considerations.

As a consequence of the equivalence of the claim arrival process and the claim
number process, the risk process is determined by the claim number process and
the claim size process. The collective point of view in risk theory considers only
the arrival time and the severity of a claim produced by the portfolio but neglects
the individual risk (or policy) causing the claim. It is therefore not too harmful to
assume that the claim severities in the portfolio are i. i. d. so that their distribution
can easily be estimated from observations. As noticed by Kupper(1) [1962], this
means that the claim number process is much more interesting than the claim size
process. Also, Helten and Sterk(2) [1976] pointed out that the separate analysis of
the claim number process and the claim size process leads to better estimates of the

(1)Kupper [1962]: Die Schadenversicherung . . . basiert auf zwei stochastischen Grössen, der
Schadenzahl und der Schadenhöhe. Hier tritt bereits ein fundamentaler Unterschied zur Lebensver-
sicherung zutage, wo die letztere in den weitaus meisten Fällen eine zum voraus festgelegte, feste
Zahl darstellt. Die interessantere der beiden Variablen ist die Schadenzahl.
(2)Helten and Sterk [1976]: Die Risikotheorie befaßt sich also zunächst nicht direkt mit der
stochastischen Gesetzmäßigkeit des Schadenbedarfs, der aus der stochastischen Gesetzmäßigkeit
der Schadenhäufigkeit und der Schadenausbreitung resultiert, denn ein Schadenbedarf . . . kann
ja in sehr verschiedener Weise aus Schadenhäufigkeit und Schadenhöhe resultieren . . . Für die
K–Haftpflicht zeigt eine Untersuchung von Tröblinger [1975 ] sehr deutlich, daß eine Aufspaltung
des Schadenbedarfs in Schadenhäufigkeit und Schadenhöhe wesentlich zur besseren Schätzung des
Schadenbedarfs beitragen kann.
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aggregate claims amount, that is, the (random) sum of all claim severities occurring
in some time interval.

The present book is devoted to the claim number process and also, to some extent, to
its relatives, the aggregate claims process, the risk process, and the reserve process.
The discussion of various classes of claim number processes will be rather detailed
since familiarity with a variety of properties of potential models is essential for model
selection. Of course, no mathematical model will ever completely match reality, but
analyzing models and confronting their properties with observations is an approved
way to check assumptions and to acquire more insight into real situations.

The book is organized as follows: We start with the claim arrival process (Chapter 1)

Chapter 1

The Claim
Arrival Process

Chapter 2

The Claim
Number Process

Chapter 3

The Claim Number Process
as a Markov Process

Chapter 5

The Aggregate
Claims Process

Chapter 6

The Risk Process
in Reinsurance

Chapter 4

The Mixed Claim
Number Process

Chapter 7

The Reserve Process
and the Ruin Problem

Interdependence Table
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and then turn to the claim number process which will be studied in three chapters,
exhibiting the properties of the Poisson process (Chapter 2) and of its extensions
to Markov claim number processes (Chapter 3) and to mixed Poisson processes
(Chapter 4). Mixed Poisson processes are particularly useful in applications since
they reflect the idea of an inhomogeneous portfolio. We then pass to the aggregate
claims process and study some methods of computing or estimating aggregate claims
distributions (Chapter 5). A particular aggregate claims process is the thinned claim
number process occurring in excess of loss reinsurance, where the reinsurer assumes
responsibility for claim severities exceeding a given priority, and this leads to the
discussion of thinning and the related problems of decomposition and superposition
of risk processes (Chapter 6). Finally, we consider the reserve process and the ruin
problem in an infinite time horizon when the premium income is proportional to
time (Chapter 7).

The Interdependence Table given above indicates various possibilities for a selective
reading of the book. For a first reading, it would be sufficient to study Chapters 1,
2, 5, and 7, but it should be noted that Chapter 2 is almost entirely devoted to the
Poisson process. Since Poisson processes are unrealistic models in many classes of
nonlife insurance, these chapters should be complemented by some of the material
presented in Chapters 3, 4, and 6. A substantial part of Chapter 4 is independent
of Chapter 3, and Chapters 6 and 7 contain only sporadic references to definitions
or results of Chapter 3 and depend on Chapter 5 only via Section 5.1. Finally, a
reader who is primarily interested in claim number processes may leave Chapter 5
after Section 5.1 and omit Chapter 7.

The reader of these notes is supposed to have a solid background in abstract measure
and integration theory as well as some knowledge in measure theoretic probability
theory; by contrast, particular experience with special distributions or stochastic
processes is not required. All prerequisites can be found in the monographs by
Aliprantis and Burkinshaw [1990], Bauer [1991, 1992], and Billingsley [1995].

Almost all proofs are given in great detail; some of them are elementary, others
are rather involved, and certain proofs may seem to be superfluous since the result
is suggested by the actuarial interpretation of the model. However, if actuarial
mathematics is to be considered as a part of probability theory and mathematical
statistics, then it has to accept its (sometimes bothering) rigour.

The notation in this book is standard, but for the convenience of the reader we fix
some symbols and conventions; further details on notation may be found in the List
of Symbols.

Throughout this book, let (Ω,F , P ) be a fixed probability space, let B(Rn) denote
the σ–algebra of Borel sets on the Euclidean space Rn, let ξ denote the counting
measure concentrated on N0, and let λn denote the Lebesgue measure on B(Rn);
in the case n = 1, the superscript n will be dropped.
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The indicator function of a set A will be denoted by χA. A family of sets {Ai}i∈I is
said to be disjoint if it is pairwise disjoint, and in this case its union will be denoted
by

∑
i∈I Ai. A family of sets {Ai}i∈I is said to be a partition of A if it is disjoint

and satisfies
∑

i∈I Ai = A.

For a sequence of random variables {Zn}n∈N which are i. i. d. (independent and
identically distributed), a typical random variable of the sequence will be denoted
by Z. As a rule, integrals are Lebesgue integrals, but occasionally we have to switch
to Riemann integrals in order to complete computations.

In some cases, sums, products, intersections, and unions extend over the empty
index set; in this case, they are defined to be equal to zero, one, the reference set,
and the empty set, respectively. The terms positive, increasing, etc. are used in the
weak sense admitting equality.

The main concepts related to (probability) distributions as well as the definitions
and the basic properties of the distributions referred to by name in this book are
collected in the Appendix. Except for the Dirac distributions, all parametric families
of distributions are defined as to exclude degenerate distributions and such that their
parameters are taken from open intervals of R or subsets of N.

It has been pointed out before that the present book addresses only a single topic of
risk theory: The development in time of a fixed portfolio of risks. Other important
topics in risk theory include the approximation of aggregate claims distributions,
tariffication, reserving, and reinsurance, as well as the wide field of life insurance or,
more generally, insurance of persons. The following references may serve as a guide
to recent publications on some topics of actuarial mathematics which are beyond
the scope of this book:
– Life insurance mathematics : Gerber [1986, 1990, 1995], Wolfsdorf [1986], Wolt-

huis [1994], and Helbig and Milbrodt [1995].
– Life and nonlife insurance mathematics : Bowers, Gerber, Hickman, Jones, and

Nesbitt [1986], Panjer and Willmot [1992], and Daykin, Pentikäinen and Pesonen
[1994].

– Nonlife insurance mathematics : Bühlmann [1970], Gerber [1979], Sundt [1984,
1991, 1993], Heilmann [1987, 1988], Straub [1988], Wolfsdorf [1988], Goovaerts,
Kaas, van Heerwaarden, and Bauwelinckx [1990], Hipp and Michel [1990], and
Norberg [1990].

Since the traditional distinction between life and nonlife insurance mathematics is
becoming more and more obsolete, future research in actuarial mathematics should,
in particular, aim at a unified theory providing models for all classes of insurance.



Chapter 1

The Claim Arrival Process

In order to model the development of an insurance business in time, we proceed in
several steps by successively introducing
– the claim arrival process,
– the claim number process,
– the aggregate claims process, and
– the reserve process.
We shall see that claim arrival processes and claim number processes determine each
other, and that claim number processes are the heart of the matter.

The present chapter is entirely devoted to the claim arrival process.

We first state the general model which will be studied troughout this book and
which will be completed later (Section 1.1). We then study the special case of a
claim arrival process having independent and identically exponentially distributed
waiting times between two successive claims (Section 1.2). We finally show that the
exponential distribution is of particular interest since it is the unique distribution
which is memoryless on the interval (0,∞) (Section 1.3).

1.1 The Model

We consider a portfolio of risks which are insured by some insurer. The risks produce
claims and pay premiums to the insurer who, in turn, will settle the claims. The
portfolio may consist of a single risk or of several ones.

We assume that the insurer is primarily interested in the overall performance of the
portfolio, that is, the balance of premiums and claim payments aggregated over all
risks. (Of course, a surplus of premiums over claim payments would be welcome!)
In the case where the portfolio consists of several risks, this means that the insurer
does not care which of the risks in the portfolio causes a particular claim. This is
the collective point of view in risk theory.
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We assume further that in the portfolio claims occur at random in an infinite time
horizon starting at time zero such that
– no claims occur at time zero, and
– no two claims occur simultaneously.
The assumption of no two claims occurring simultaneously seems to be harmless.
Indeed, it should not present a serious problem when the portfolio is small; however,
when the portfolio is large, it depends on the class of insurance under consideration
whether this assumption is really acceptable. (For example, the situation is certainly
different in fire insurance and in (third party liability) automobile insurance, where in
certain countries a single insurance company holds about one quarter of all policies;
in such a situation, one has to take into account the possibility that two insurees
from the same large portfolio produce a car accident for which both are responsible
in parts.)

Comment: When the assumption of no two claims occurring simultaneously is
judged to be non–acceptable, it can nevertheless be saved by slightly changing the
point of view, namely, by considering claim events (like car accidents) instead of
single claims. The number of single claims occurring at a given claim event can then
be interpreted as the size of the claim event. This point of view will be discussed
further in Chapter 5 below.

Let us now transform the previous ideas into a probabilistic model:

A sequence of random variables {Tn}n∈N0
is a claim arrival process if there exists a

null set ΩT ∈ F such that, for all ω ∈ Ω\ΩT ,
– T0(ω) = 0 and
– Tn−1(ω) < Tn(ω) holds for all n ∈ N.
Then we have Tn(ω) > 0 for all n ∈ N and all ω ∈ Ω\ΩT . The null set ΩT is said
to be the exceptional null set of the claim arrival process {Tn}n∈N0

.

For a claim arrival process {Tn}n∈N0
and for all n ∈ N, define the increment

Wn := Tn − Tn−1 .

Then we have Wn(ω) > 0 for all n ∈ N and all ω ∈ Ω\ΩT , and hence

E[Wn] > 0

for all n ∈ N, as well as

Tn =
n∑

k=1

Wk

for all n ∈ N. The sequence {Wn}n∈N is said to be the claim interarrival process
induced by the claim arrival process {Tn}n∈N0

.
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Interpretation:
– Tn is the occurrence time of the nth claim.
– Wn is the waiting time between the occurrence of claim n−1 and the occurrence

of claim n.
– With probability one, no claim occurs at time zero and no two claims occur

simultaneously.

For the remainder of this chapter, let {Tn}n∈N0
be a fixed claim arrival process and

let {Wn}n∈N be the claim interarrival process induced by {Tn}n∈N0
. Without loss of

generality, we may and do assume that the exceptional null set of the claim arrival
process is empty.

Since Wn = Tn − Tn−1 and Tn =
∑n

k=1 Wn holds for all n ∈ N, it is clear that the
claim arrival process and the claim interarrival process determine each other. In
particular, we have the following obvious but useful result:

1.1.1 Lemma. The identity

σ
({Tk}k∈{0,1,...,n}

)
= σ

({Wk}k∈{1,...,n}
)

holds for all n∈N.

Furthermore, for n ∈ N, let Tn and Wn denote the random vectors Ω → Rn with
coordinates Ti and Wi, respectively, and let Mn denote the (n×n)–matrix with
entries

mij :=

{
1 if i ≥ j
0 if i < j .

Then Mn is invertible and satisfies detMn = 1, and we have Tn = Mn ◦Wn and
Wn = M−1

n ◦Tn. The following result is immediate:

1.1.2 Lemma. For all n∈N, the distributions of Tn and Wn satisfy

PTn
= (PWn

)Mn
and PWn

= (PTn
)M−1

n
.

The assumptions of our model do not exclude the possibility that infinitely many
claims occur in finite time. The event

{supn∈N Tn < ∞}
is called explosion.

1.1.3 Lemma. If supn∈N E[Tn] < ∞, then the probability of explosion is equal to
one.

This is obvious from the monotone convergence theorem.
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1.1.4 Corollary. If
∑∞

n=1 E[Wn] < ∞, then the probability of explosion is equal
to one.

In modelling a particular insurance business, one of the first decisions to take is to
decide whether the probability of explosion should be zero or not. This decision is,
of course, a decision concerning the distribution of the claim arrival process.

We conclude this section with a construction which in the following chapter will
turn out to be a useful technical device:

For n ∈ N, the graph of Tn is defined to be the map Un : Ω → Ω×R, given by

Un(ω) :=
(
ω, Tn(ω)

)
.

Then each Un is F–F⊗B(R)–measurable. Define a measure µ : F⊗B(R) → [0,∞]
by letting

µ[C] :=
∞∑

n=1

PUn [C] .

The measure µ will be called the claim measure induced by the claim arrival process
{Tn}n∈N0

.

1.1.5 Lemma. The identity

µ[A×B] =

∫

A

( ∞∑
n=1

χ{Tn∈B}

)
dP

holds for all A ∈ F and B ∈ B(R).

Proof. Since U−1
n (A×B) = A ∩ {Tn∈B}, we have

µ[A×B] =
∞∑

n=1

PUn [A×B]

=
∞∑

n=1

P [A ∩ {Tn∈B}]

=
∞∑

n=1

∫

A

χ{Tn∈B} dP

=

∫

A

( ∞∑
n=1

χ{Tn∈B}

)
dP ,

as was to be shown. 2

The previous result connects the claim measure with the claim number process which
will be introduced in Chapter 2.
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Most results in this book involving special distributions concern the case where the
distributions of the claim arrival times are absolutely continuous with respect to
Lebesgue measure; this case will be referred to as the continuous time model. It is,
however, quite interesting to compare the results for the continuous time model with
corresponding ones for the case where the distributions of the claim arrival times
are absolutely continuous with respect to the counting measure concentrated on N0.
In the latter case, there is no loss of generality if we assume that the claim arrival
times are integer–valued, and this case will be referred to as the discrete time model.
The discrete time model is sometimes considered to be an approximation of the
continuous time model if the time unit is small, but we shall see that the properties
of the discrete time model may drastically differ from those of the continuous time
model. On the other hand, the discrete time model may also serve as a simple
model in its own right if the portfolio is small and if the insurer merely wishes to
distinguish claim–free periods from periods with a strictly positive number of claims.
Results for the discrete time model will be stated as problems in this and subsequent
chapters.

Another topic which is related to our model is life insurance. In the simplest case, we
consider a single random variable T satisfying P [{T > 0}] = 1, which is interpreted
as the time of death or the lifetime of the insured individual; accordingly, this model
is called single life insurance. More generally, we consider a finite sequence of random
variables {Tn}n∈{0,1,...,N} satisfying P [{T0 = 0}] = 1 and P [{Tn−1 < Tn}] = 1 for all
n ∈ {1, . . . , N}, where Tn is interpreted as the time of the nth death in a portfolio
of N insured individuals; accordingly, this model is called multiple life insurance.
Although life insurance will not be studied in detail in these notes, some aspects of
single or multiple life insurance will be discussed as problems in this and subsequent
chapters.

Problems
1.1.A If the sequence of claim interarrival times is i. i. d., then the probability of explo-

sion is equal to zero.

1.1.B Discrete Time Model: The inequality Tn ≥ n holds for all n ∈ N.

1.1.C Discrete Time Model: The probability of explosion is equal to zero.

1.1.D Multiple Life Insurance: Extend the definition of a claim arrival process as
to cover the case of multiple (and hence single) life insurance.

1.1.E Multiple Life Insurance: The probability of explosion is equal to zero.

1.2 The Erlang Case

In some of the special cases of our model which we shall discuss in detail, the claim
interarrival times are assumed or turn out to be independent and exponentially
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distributed. In this situation, explosion is either impossible or certain:

1.2.1 Theorem (Zero–One Law on Explosion). Let {αn}n∈N be a sequence
of real numbers in (0,∞) and assume that the sequence of claim interarrival times
{Wn}n∈N is independent and satisfies PWn = Exp(αn) for all n∈N.
(a) If the series

∑∞
n=1 1/αn diverges, then the probability of explosion is equal to

zero.
(b) If the series

∑∞
n=1 1/αn converges, then the probability of explosion is equal to

one.

Proof. By the dominated convergence theorem, we have

E
[
e−

∑∞
n=1

Wn

]
= E

[ ∞∏
n=1

e−Wn

]

=
∞∏

n=1

E
[
e−Wn

]

=
∞∏

n=1

αn

αn + 1

=
∞∏

n=1

(
1− 1

1 + αn

)

≤
∞∏

n=1

e−1/(1+αn)

= e−
∑∞

n=1
1/(1+αn) .

Thus, if the series
∑∞

n=1 1/αn diverges, then the series
∑∞

n=1 1/(1+αn) diverges as
well and we have P [{∑∞

n=1 Wn = ∞}] = 1, and thus

P [{supn∈N Tn < ∞}] = P

[{ ∞∑
n=1

Wn < ∞
}]

= 0 ,

which proves (a).
Assertion (b) is immediate from Corollary 1.1.4. 2

In the case of independent claim interarrival times, the following result is also of
interest:

1.2.2 Lemma. Let α ∈ (0,∞). If the sequence of claim interarrival times {Wn}n∈N
is independent, then the following are equivalent :
(a) PWn = Exp(α) for all n∈N.
(b) PTn = Ga(α, n) for all n∈N.
In this case, E[Wn] = 1/α and E[Tn] = n/α holds for all n∈N, and the probability
of explosion is equal to zero.
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Proof. The simplest way to prove the equivalence of (a) and (b) is to use charac-
teristic functions.
• Assume first that (a) holds. Since Tn =

∑n
k=1 Wk, we have

ϕTn(z) =
n∏

k=1

ϕWk
(z)

=
n∏

k=1

α

α− iz

=

(
α

α− iz

)n

,

and thus PTn = Ga(α, n). Therefore, (a) implies (b).
• Assume now that (b) holds. Since Tn−1 + Wn = Tn, we have

(
α

α− iz

)n−1

· ϕWn(z) = ϕTn−1(z) · ϕWn(z)

= ϕTn(z)

=

(
α

α− iz

)n

,

hence

ϕWn(z) =
α

α− iz
,

and thus PWn = Exp(α). Therefore, (b) implies (a).
• The final assertion is obvious from the distributional assumptions and the zero–
one law on explosion.
• For readers not familiar with characteristic functions, we include an elementary
proof of the implication (a) =⇒ (b); only this implication will be needed in the
sequel. Assume that (a) holds. We proceed by induction.
Obviously, since T1 = W1 and Exp(α) = Ga(α, 1), we have PT1 = Ga(α, 1).
Assume now that PTn = Ga(α, n) holds for some n ∈ N. Then we have

PTn [B] =

∫

B

αn

Γ(n)
e−αx xn−1χ(0,∞)(x) dλ(x)

and

PWn+1 [B] =

∫

B

αe−αxχ(0,∞)(x) dλ(x)

for all B ∈ B(R). Since Tn and Wn+1 are independent, the convolution formula
yields

PTn+1 [B] = PTn+Wn+1 [B]

= PTn ∗ PWn+1 [B]
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=

∫

B

(∫

R

αn

Γ(n)
e−α(t−s)(t−s)n−1χ(0,∞)(t−s) αe−αsχ(0,∞)(s) dλ(s)

)
dλ(t)

=

∫

B

αn+1

Γ(n+1)
e−αt

(∫

R
n(t−s)n−1χ(0,t)(s) dλ(s)

)
χ(0,∞)(t) dλ(t)

=

∫

B

αn+1

Γ(n+1)
e−αt

(∫ t

0

n(t−s)n−1 ds

)
χ(0,∞)(t) dλ(t)

=

∫

B

αn+1

Γ(n+1)
e−αt tn χ(0,∞)(t) dλ(t)

=

∫

B

αn+1

Γ(n+1)
e−αt t(n+1)−1χ(0,∞)(t) dλ(t)

for all B ∈ B(R), and thus PTn+1 = Ga(α, n+1). Therefore, (a) implies (b). 2

The particular role of the exponential distribution will be discussed in the following
section.

Problems
1.2.A Let Q := Exp(α) for some α ∈ (0,∞) and let Q′ denote the unique distribution

satisfying Q′[{k}] = Q[(k−1, k]] for all k ∈ N. Then Q′ = Geo(1−e−α).

1.2.B Discrete Time Model: Let ϑ∈(0, 1). If the sequence {Wn}n∈N is independent,
then the following are equivalent:
(a) PWn = Geo(ϑ) for all n ∈ N.
(b) PTn = Geo(n, ϑ) for all n ∈ N.
In this case, E[Wn] = 1/ϑ and E[Tn] = n/ϑ holds for all n ∈ N.

1.3 A Characterization of the Exponential
Distribution

One of the most delicate problems in probabilistic modelling is the appropriate
choice of the distributions of the random variables in the model. More precisely, it
is the joint distribution of all random variables that has to be specified. To make this
choice, it is useful to know that certain distributions are characterized by general
properties which are easy to interpret.

In the model considered here, it is sufficient to specify the distribution of the claim
interarrival process. This problem is considerably reduced if the claim interarrival
times are assumed to be independent, but even in that case the appropriate choice
of the distributions of the single claim interarrival times is not obvious. In what
follows we shall characterize the exponential distribution by a simple property which
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is helpful to decide whether or not in a particular insurance business this distribution
is appropriate for the claim interarrival times.

For the moment, consider a random variable W which may be interpreted as a
waiting time.

If PW = Exp(α), then the survival function R → [0, 1] : w 7→ P [{W > w}] of the
distribution of W satisfies P [{W > w}] = e−αw for all w ∈ R+, and this yields

P [{W > s+t}] = P [{W > s}] · P [{W > t}]

or, equivalently,

P [{W > s+t}|{W > s}] = P [{W > t}]

for all s, t ∈ R+. The first identity reflects the fact that the survival function of the
exponential distribution is self–similar on R+ in the sense that, for each s ∈ R+,
the graphs of the mappings t 7→ P [{W > s+t}] and t 7→ P [{W > t}] differ only by
a scaling factor. Moreover, if W is interpreted as a waiting time, then the second
identity means that the knowledge of having waited more than s time units does
not provide any information on the remaining waiting time. Loosely speaking, the
exponential distribution has no memory (or does not use it). The question arises
whether the exponential distribution is the unique distribution having this property.

Before formalizing the notion of a memoryless distribution, we observe that in the
case PW = Exp(α) the above identities hold for all s, t ∈ R+ but fail for all s, t ∈ R
such that s < 0 < s+t; on the other hand, we have PW [R+] = 1. These observations
lead to the following definition:

A distribution Q : B(R) → [0, 1] is memoryless on S ∈ B(R) if
– Q[S] = 1 and
– the identity

Q[(s+t,∞)] = Q[(s,∞)] ·Q[(t,∞)]

holds for all s, t ∈ S.
The following result yields a general property of memoryless distributions:

1.3.1 Theorem. Let Q : B(R) → [0, 1] be a distribution which is memoryless on
S ∈ B(R). If 0∈S, then Q satisfies either Q[{0}] = 1 or Q[(0,∞)] = 1.

Proof. Assume that Q[(0,∞)] < 1. Since 0 ∈ S, we have

Q[(0,∞)] = Q[(0,∞)] ·Q[(0,∞)]

= Q[(0,∞)]2 ,
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hence

Q[(0,∞)] = 0 ,

and thus

Q[(t,∞)] = Q[(t,∞)] ·Q[(0,∞)]

= 0

for all t ∈ S.
Define t := inf S and choose a sequence {tn}n∈N ⊆ S which decreases to t. Then we
have

Q[(t,∞)] = supn∈N Q[(tn,∞)]

= 0 .

Since Q[S] = 1, we also have

Q[(−∞, t)] = 0 .

Therefore, we have

Q[{t}] = 1 ,

hence Q[{t} ∩ S] = 1, and thus t ∈ S.
Finally, since 0 ∈ S, we have either t < 0 or t = 0. But t < 0 implies t ∈ (2t,∞)
and hence

Q[{t}] ≤ Q[(2t,∞)]

= Q[(t,∞)] ·Q[(t,∞)]

= Q[(t,∞)]2 ,

which is impossible. Therefore, we have t = 0 and hence Q[{0}] = 1, as was to be
shown. 2

The following result characterizes the exponential distribution:

1.3.2 Theorem. For a distribution Q : B(R) → [0, 1], the following are equivalent :
(a) Q is memoryless on (0,∞).
(b) Q = Exp(α) for some α ∈ (0,∞).
In this case, α = − log Q[(1,∞)].

Proof. Note that Q = Exp(α) if and only if the identity

Q[(t,∞)] = e−αt

holds for all t ∈ [0,∞).
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• Assume that (a) holds. By induction, we have

Q[(n,∞)] = Q[(1,∞)]n

and

Q[(1,∞)] = Q[(1/n,∞)]n

for all n ∈ N.
Thus, Q[(1,∞)] = 1 is impossible because of

0 = Q[∅]
= infn∈N Q[(n,∞)]

= infn∈N Q[(1,∞)]n ,

and Q[(1,∞)] = 0 is impossible because of

1 = Q[(0,∞)]

= supn∈N Q[(1/n,∞)]

= supn∈N Q[(1,∞)]1/n .

Therefore, we have

Q[(1,∞)] ∈ (0, 1) .

Define now α := − log Q[(1,∞)]. Then we have α ∈ (0,∞) and

Q[(1,∞)] = e−α ,

and thus

Q[(m/n,∞)] = Q[(1,∞)]m/n

=
(
e−α

)m/n

= e−αm/n

for all m, n ∈ N. This yields

Q[(t,∞)] = e−αt

for all t ∈ (0,∞) ∩ Q. Finally, for each t ∈ [0,∞) we may choose a sequence
{tn}n∈N ⊆ (0,∞) ∩Q which decreases to t, and we obtain

Q[(t,∞)] = supn∈N Q[(tn,∞)]

= supn∈N e−αtn

= e−αt .

By the introductory remark, it follows that Q = Exp(α). Therefore, (a) implies (b).
• The converse implication is obvious. 2
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1.3.3 Corollary. For a distribution Q : B(R) → [0, 1], the following are equivalent :
(a) Q is memoryless on R+.
(b) Either Q = δ0 or Q = Exp(α) for some α ∈ (0,∞).

Proof. The assertion is immediate from Theorems 1.3.1 and 1.3.2. 2

With regard to the previous result, note that the Dirac distribution δ0 is the limit
of the exponential distributions Exp(α) as α →∞.

1.3.4 Corollary. There is no distribution which is memoryless on R.

Proof. If Q : B(R) → [0, 1] is a distribution which is memoryless on R, then
either Q = δ0 or Q = Exp(α) for some α ∈ (0,∞), by Theorem 1.3.1 and Corollary
1.3.3. On the other hand, none of these distributions is memoryless on R. 2

Problems
1.3.A Discrete Time Model: For a distribution Q : B(R) → [0, 1], the following are

equivalent:
(a) Q is memoryless on N.
(b) Either Q = δ1 or Q = Geo(ϑ) for some ϑ ∈ (0, 1).
Note that the Dirac distribution δ1 is the limit of the geometric distributions
Geo(ϑ) as ϑ → 0.

1.3.B Discrete Time Model: For a distribution Q : B(R) → [0, 1], the following are
equivalent:
(a) Q is memoryless on N0.
(b) Either Q = δ0 or Q = δ1 or Q = Geo(ϑ) for some ϑ ∈ (0, 1).
In particular, the negativebinomial distribution fails to be memoryless on N0.

1.3.C There is no distribution which is memoryless on (−∞, 0).

1.4 Remarks

Since the conclusions obtained in a probabilistic model usually concern probabilities
and not single realizations of random variables, it is natural to state the assump-
tions of the model in terms of probabilities as well. While this is a merely formal
justification for the exceptional null set in the definition of the claim arrival process,
there is also a more substantial reason: As we shall see in Chapters 5 and 6 below,
it is sometimes of interest to construct a claim arrival process from other random
variables, and in that case it cannot in general be ensured that the exceptional null
set is empty.

Theorem 1.3.2 is the most famous characterization of the exponential distribution.
Further characterizations of the exponential distribution can be found in the mono-
graphs by Galambos and Kotz [1978] and, in particular, by Azlarov and Volodin
[1986].



Chapter 2

The Claim Number Process

In the previous chapter, we have formulated a general model for the occurrence of
claims in an insurance business and we have studied the claim arrival process in
some detail.

In the present chapter, we proceed one step further by introducing the claim number
process. Particular attention will be given to the Poisson process.

We first introduce the general claim number process and show that claim number
processes and claim arrival processes determine each other (Section 2.1). We then
establish a connection between certain assumptions concerning the distributions of
the claim arrival times and the distributions of the claim numbers (Section 2.2). We
finally prove the main result of this chapter which characterizes the (homogeneous)
Poisson process in terms of the claim interarrival process, the claim measure, and a
martingale property (Section 2.3).

2.1 The Model

A family of random variables {Nt}t∈R+
is a claim number process if there exists a

null set ΩN ∈ F such that, for all ω ∈ Ω\ΩN ,
– N0(ω) = 0,
– Nt(ω) ∈ N0∪{∞} for all t ∈ (0,∞),
– Nt(ω) = infs∈(t,∞) Ns(ω) for all t ∈ R+,
– sups∈[0,t) Ns(ω) ≤ Nt(ω) ≤ sups∈[0,t) Ns(ω) + 1 for all t ∈ R+, and
– supt∈R+

Nt(ω) = ∞.
The null set ΩN is said to be the exceptional null set of the claim number process
{Nt}t∈R+

.

Interpretation:
– Nt is the number of claims occurring in the interval (0, t].
– Almost all paths of {Nt}t∈R+

start at zero, are right–continuous, increase with
jumps of height one at discontinuity points, and increase to infinity.
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Our first result asserts that every claim arrival process induces a claim number
process, and vice versa:

2.1.1 Theorem.
(a) Let {Tn}n∈N0

be a claim arrival process. For all t∈R+ and ω∈Ω, define

Nt(ω) :=
∞∑

n=1

χ{Tn≤t}(ω) .

Then {Nt}t∈R+
is a claim number process such that ΩN = ΩT , and the identity

Tn(ω) = inf{t ∈ R+ | Nt(ω) = n}
holds for all n∈N0 and all ω∈Ω\ΩT .

(b) Let {Nt}t∈R+
be a claim number process. For all n∈N0 and ω∈Ω, define

Tn(ω) := inf{t ∈ R+ | Nt(ω) = n} .

Then {Tn}n∈N0
is a claim arrival process such that ΩT = ΩN , and the identity

Nt(ω) =
∞∑

n=1

χ{Tn≤t}(ω)

holds for all t∈R+ and all ω∈Ω\ΩN .

The verification of Theorem 2.1.1 is straightforward.

0 -

1

2

3

4

5

n

6

0 T1(ω) T2(ω) T3(ω) T4(ω) T5(ω)

t•

•

•

•

•

• Nt(ω)

Claim Arrival Process and Claim Number Process

For the remainder of this chapter, let {Nt}t∈R+
be a claim number process, let

{Tn}n∈N0
be the claim arrival process induced by the claim number process, and let

{Wn}n∈N be the claim interarrival process induced by the claim arrival process. We
assume that the exceptional null set is empty.
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By virtue of the assumption that the exceptional null set is empty, we have two
simple but most useful identities, showing that certain events determined by the
claim number process can be interpreted as events determined by the claim arrival
process, and vice versa:

2.1.2 Lemma. The identities
(a) {Nt ≥ n} = {Tn ≤ t} and
(b) {Nt = n} = {Tn ≤ t}\{Tn+1 ≤ t} = {Tn ≤ t < Tn+1}
hold for all n∈N0 and t∈R+.

The following result expresses in a particularly concise way the fact that the claim
number process and the claim arrival process contain the same information:

2.1.3 Lemma.
σ({Nt}t∈R+

) = σ({Tn}n∈N0
) .

In view of the preceding discussion, it is not surprising that explosion can also be
expressed in terms of the claim number process:

2.1.4 Lemma. The probability of explosion satisfies

P [{supn∈N Tn < ∞}] = P

[⋃
t∈N

{Nt = ∞}
]

= P

[⋃
t∈(0,∞)

{Nt = ∞}
]

.

Proof. Since the family of sets {{Nt = ∞}}t∈(0,∞) is increasing, we have

⋃
t∈(0,∞)

{Nt = ∞} =
⋃

t∈N
{Nt = ∞} .

By Lemma 2.1.2, this yields

⋃
t∈(0,∞)

{Nt = ∞} =
⋃

t∈N
{Nt = ∞}

=
⋃

t∈N

⋂
n∈N

{Nt ≥ n}
=

⋃
t∈N

⋂
n∈N

{Tn ≤ t}
=

⋃
t∈N

{supn∈N Tn ≤ t}

= {supn∈N Tn < ∞} ,

and the assertion follows. 2

2.1.5 Corollary. Assume that the claim number process has finite expectations.
Then the probability of explosion is equal to zero.

Proof. By assumption, we have E[Nt] < ∞ and hence P [{Nt =∞}] = 0 for all
t ∈ (0,∞). The assertion now follows from Lemma 2.1.4. 2



20 Chapter 2 The Claim Number Process

The discussion of the claim number process will to a considerable extent rely on the
properties of its increments which are defined as follows:

For s, t ∈ R+ such that s ≤ t, the increment of the claim number process {Nt}t∈R+

on the interval (s, t] is defined to be

Nt −Ns :=
∞∑

n=1

χ{s<Tn≤t} .

Since N0 = 0 and Tn > 0 for all n ∈N, this is in accordance with the definition
of Nt; in addition, we have

Nt(ω) = (Nt−Ns)(ω) + Ns(ω) ,

even if Ns(ω) is infinite.

The final result in this section connects the increments of the claim number process,
and hence the claim number process itself, with the claim measure:

2.1.6 Lemma. The identity

µ[A×(s, t]] =

∫

A

(Nt−Ns) dP

holds for all A ∈ F and s, t ∈ R+ such that s ≤ t.

Proof. The assertion follows from Lemma 1.1.5 and the definition of Nt−Ns. 2

In the discrete time model, we have Nt = Nt+h for all t ∈ N0 and h∈ [0, 1) so that
nothing is lost if in this case the index set of the claim number process {Nt}t∈R+

is
reduced to N0; we shall then refer to the sequence {Nl}l∈N0

as the claim number
process induced by {Tn}n∈N0

.

Problems
2.1.A Discrete Time Model: The inequalities

(a) Nl ≤ Nl−1+1 and
(b) Nl ≤ l
hold for all l ∈ N.

2.1.B Discrete Time Model: The identities
(a) {Nl−Nl−1 = 0} =

∑l
j=1{Tj−1 < l < Tj},

{Nl−Nl−1 = 1} =
∑l

j=1{Tj = l}, and
(b) {Tn = l} = {n ≤ Nl}\{n ≤ Nl−1} = {Nl−1 < n ≤ Nl}
hold for all n ∈ N and l ∈ N.
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2.1.C Multiple Life Insurance: For all t ∈ R+, define Nt :=
∑N

n=1 χ{Tn≤t}. Then
there exists a null set ΩN ∈ F such that, for all ω ∈ Ω\ΩN ,
– N0(ω) = 0,
– Nt(ω) ∈ {0, 1, . . . , N} for all t ∈ (0,∞),
– Nt(ω) = infs∈(t,∞) Ns(ω) for all t ∈ R+,
– sups∈[0,t) Ns(ω) ≤ Nt(ω) ≤ sups∈[0,t) Ns(ω) + 1 for all t ∈ R+, and
– supt∈R+

Nt(ω) = N .

2.2 The Erlang Case

In the present section we return to the special case of claim arrival times having an
Erlang distribution.

2.2.1 Lemma. Let α ∈ (0,∞). Then the following are equivalent :
(a) PTn = Ga(α, n) for all n∈N.
(b) PNt = P(αt) for all t∈(0,∞).
In this case, E[Tn] = n/α holds for all n∈N and E[Nt] = αt holds for all t∈(0,∞).

Proof. Note that the identity

e−αt (αt)n

n!
=

∫ t

0

αn

Γ(n)
e−αssn−1 ds−

∫ t

0

αn+1

Γ(n+1)
e−αssn ds

holds for all n ∈ N and t ∈ (0,∞).
• Assume first that (a) holds. Lemma 2.1.2 yields

P
[{Nt = 0}] = P

[{t < T1}
]

= e−αt ,

and, for all n ∈ N,

P
[{Nt = n}] = P

[{Tn ≤ t}]− P
[{Tn+1 ≤ t}]

=

∫

(−∞,t]

αn

Γ(n)
e−αssn−1χ(0,∞)(s) dλ(s)

−
∫

(−∞,t]

αn+1

Γ(n+1)
e−αss(n+1)−1χ(0,∞)(s) dλ(s)

=

∫ t

0

αn

Γ(n)
e−αssn−1 ds−

∫ t

0

αn+1

Γ(n+1)
e−αssn ds

= e−αt (αt)n

n!
.

This yields

P
[{Nt = n}] = e−αt (αt)n

n!

for all n ∈ N0, and hence PNt = P(αt). Therefore, (a) implies (b).
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• Assume now that (b) holds. Since Tn > 0, we have

P
[{Tn ≤ t}] = 0

for all t ∈ (−∞, 0]; also, for all t ∈ (0,∞), Lemma 2.1.2 yields

P
[{Tn ≤ t}] = P

[{Nt ≥ n}]

= 1− P
[{Nt ≤ n−1}]

= 1−
n−1∑

k=0

P
[{Nt = k}]

= 1−
n−1∑

k=0

e−αt (αt)k

k!

= (1−e−αt)−
n−1∑

k=1

e−αt (αt)k

k!

=

∫ t

0

αe−αs ds−
n−1∑

k=1

(∫ t

0

αk

Γ(k)
e−αssk−1 ds−

∫ t

0

αk+1

Γ(k+1)
e−αssk ds

)

=

∫ t

0

αn

Γ(n)
e−αssn−1 ds

=

∫

(−∞,t]

αn

Γ(n)
e−αssn−1χ(0,∞)(s) dλ(s) .

This yields

P
[{Tn ≤ t}] =

∫

(−∞,t]

αn

Γ(n)
e−αssn−1χ(0,∞)(s) dλ(s)

for all t ∈ R, and hence PTn = Ga(α, n). Therefore, (b) implies (a).
• The final assertion is obvious. 2

By Lemma 1.2.2, the equivalent conditions of Lemma 2.2.1 are fulfilled whenever the
claim interarrival times are independent and identically exponentially distributed;
that case, however, can be characterized by a much stronger property of the claim
number process involving its increments, as will be seen in the following section.

Problem
2.2.A Discrete Time Model: Let ϑ ∈ (0, 1). Then the following are equivalent:

(a) PTn = Geo(n, ϑ) for all n ∈ N.
(b) PNl

= B(l, ϑ) for all l ∈ N.
In this case, E[Tn] = n/ϑ holds for all n ∈ N and E[Nl] = lϑ holds for all l ∈ N;
moreover, for each l ∈ N, the pair (Nl−Nl−1, Nl−1) is independent and satisfies
PNl−Nl−1

= B(ϑ).
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2.3 A Characterization of the Poisson Process

The claim number process {Nt}t∈R+
has

– independent increments if, for all m ∈ N and t0, t1, . . . , tm ∈ R+ such that
0 = t0 < t1 < . . . < tm, the family of increments {Ntj−Ntj−1

}j∈{1,...,m} is indepen-
dent, it has

– stationary increments if, for all m ∈ N and t0, t1, . . . , tm, h ∈ R+ such that
0 = t0 < t1 < . . . < tm, the family of increments {Ntj+h−Ntj−1+h}j∈{1,...,m} has
the same distribution as {Ntj−Ntj−1

}j∈{1,...,m}, and it is
– a (homogeneous) Poisson process with parameter α ∈ (0,∞) if it has stationary

independent increments such that PNt = P(αt) holds for all t ∈ (0,∞).
It is immediate from the definitions that a claim number process having independent
increments has stationary increments if and only if the identity PNt+h−Nt = PNh

holds
for all t, h ∈ R+.

The following result exhibits a property of the Poisson process which is not captured
by Lemma 2.2.1:

2.3.1 Lemma (Multinomial Criterion). Let α ∈ (0,∞). Then the following
are equivalent :
(a) The claim number process {Nt}t∈R+

satisfies

PNt = P(αt)

for all t ∈ (0,∞) as well as

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]

=
n!∏m

j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

for all m ∈ N and t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm and for
all n ∈ N0 and k1, . . . , km ∈ N0 such that

∑m
j=1 kj = n.

(b) The claim number process {Nt}t∈R+
is a Poisson process with parameter α.

Proof. The result is obtained by straightforward calculation:
• Assume first that (a) holds. Then we have

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]

= P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]
· P [{Ntm = n}]

=
n!∏m

j=1 kj!
·

m∏
j=1

(
tj−tj−1

tm

)kj

· e−αtm
(αtm)n

n!
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=
n!∏m

j=1 kj!
·

m∏
j=1

(
tj−tj−1

tm

)kj

·
m∏

j=1

e−α(tj−tj−1) αkj · tnm
n!

=
m∏

j=1

e−α(tj−tj−1) (α(tj−tj−1))
kj

kj!
.

Therefore, (a) implies (b).
• Assume now that (b) holds. Then we have

PNt = P(αt)

as well as

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]

=

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]

P [{Ntm = n}]

=

m∏
j=1

P [{Ntj−Ntj−1
= kj}]

P [{Ntm = n}]

=

m∏
j=1

e−α(tj−tj−1) (α(tj−tj−1))
kj

kj!

e−αtm
(αtm)n

n!

=
n!∏m

j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

.

Therefore, (b) implies (a). 2

Comparing the previous result with Lemmas 2.2.1 and 1.2.2 raises the question
whether the Poisson process can also be characterized in terms of the claim arrival
process or in terms of the claim interarrival process. An affirmative answer to this
question will be given in Theorem 2.3.4 below.

While the previous result characterizes the Poisson process with parameter α in the
class of all claim number processes satisfying PNt = P(αt) for all t ∈ (0,∞), we
shall see that there is also a strikingly simple characterization of the Poisson process
in the class of all claim number processes having independent increments; see again
Theorem 2.3.4 below.

Theorem 2.3.4 contains two further characterizations of the Poisson process: one in
terms of the claim measure, and one in terms of martingales, which are defined as
follows:
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Let I be any subset of R+ and consider a family {Zi}i∈I of random variables having
finite expectations and an increasing family {Fi}i∈I of sub–σ–algebras of F such
that each Zi is Fi–measurable. The family {Fi}i∈I is said to be a filtration, and it
is said to be the canonical filtration for {Zi}i∈I if it satisfies Fi = σ({Zh}h∈I∩(−∞,i])
for all i ∈ I. The family {Zi}i∈I is a
– submartingale for {Fi}i∈I if it satisfies

∫

A

Zi dP ≤
∫

A

Zj dP

for all i, j ∈ I such that i < j and for all A ∈ Fi, it is a
– supermartingale for {Fi}i∈I if it satisfies

∫

A

Zi dP ≥
∫

A

Zj dP

for all i, j ∈ I such that i < j and for all A ∈ Fi, and it is a
– martingale for {Fi}i∈I if it satisfies

∫

A

Zi dP =

∫

A

Zj dP

for all i, j ∈ I such that i < j and for all A ∈ Fi.
Thus, a martingale is at the same time a submartingale and a supermartingale, and
all random variables forming a martingale have the same expectation. Reference to
the canonical filtration for {Zi}i∈I is usually omitted.

Let us now return to the claim number process {Nt}t∈R+
. For the remainder of this

section, let {Ft}t∈R+
denote the canonical filtration for the claim number process.

The following result connects claim number processes having independent incre-
ments and finite expectations with a martingale property:

2.3.2 Theorem. Assume that the claim number process {Nt}t∈R+
has indepen-

dent increments and finite expectations. Then the centered claim number process
{Nt−E[Nt]}t∈R+

is a martingale.

Proof. Since constants are measurable with respect to any σ–algebra, the natural
filtration for the claim number process coincides with the natural filtration for the
centered claim number process. Consider s, t ∈ R+ such that s < t.
(1) The σ–algebras Fs and σ(Nt−Ns) are independent :
For m∈N and s0, s1, . . . , sm, sm+1∈R+ such that 0=s0 <s1 < . . .< sm =s<t=sm+1,
define

Gs1,...,sm := σ
({Nsj

}j∈{1,...,m}
)

= σ
({Nsj

−Nsj−1
}j∈{1,...,m}

)
.
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By assumption, the increments {Nsj
−Nsj−1

}j∈{1,...,m+1} are independent, and this
implies that the σ–algebras Gs1,...,sm and σ(Nt−Ns) are independent.
The system of all such σ–algebras Gs1,...,sm is directed upwards by inclusion. Let
Es denote the union of these σ–algebras. Then Es and σ(Nt−Ns) are independent.
Moreover, Es is an algebra, and it follows that σ(Es) and σ(Nt−Ns) are independent.
Since Fs = σ(Es), this means that the σ–algebras Fs and σ(Nt−Ns) are independent.
(2) Consider now A ∈ Fs. Because of (1), we have

∫

A

((
Nt−E[Nt]

)− (
Ns−E[Ns]

))
dP =

∫

Ω

χA

(
(Nt−Ns)− E[Nt−Ns]

)
dP

=

∫

Ω

χA dP ·
∫

Ω

(
(Nt−Ns)− E[Nt−Ns]

)
dP

= 0 ,

and hence
∫

A

(
Nt−E[Nt]

)
dP =

∫

A

(
Ns−E[Ns]

)
dP .

(3) It now follows from (2) that {Nt−E[Nt]}t∈R+
is a martingale. 2

As an immediate consequence of the previous result, we have the following:

2.3.3 Corollary. Assume that the claim number process {Nt}t∈R+
is a Poisson

process with parameter α. Then the centered claim number process {Nt−αt}t∈R+
is

a martingale.

We shall see that the previous result can be considerably improved.

We now turn to the main result of this section which provides characterizations of
the Poisson process in terms of
– the claim interarrival process,
– the increments and expectations of the claim number process,
– the martingale property of a related process, and
– the claim measure.
With regard to the claim measure, we need the following definitions: Define

E :=
{
A×(s, t] | s, t ∈ R+, s ≤ t, A ∈ Fs

}

and let

H := σ(E)

denote the σ–algebra generated by E in F⊗B((0,∞)).
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2.3.4 Theorem. Let α ∈ (0,∞). Then the following are equivalent :
(a) The sequence of claim interarrival times {Wn}n∈N is independent and satisfies

PWn = Exp(α) for all n∈N.
(b) The claim number process {Nt}t∈R+

is a Poisson process with parameter α.
(c) The claim number process {Nt}t∈R+

has independent increments and satisfies
E[Nt] = αt for all t∈R+.

(d) The process {Nt−αt}t∈R+
is a martingale.

(e) The claim measure µ satisfies µ|H = (αP⊗λ)|H.

Proof. We prove the assertion according to the following scheme:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (a)

• Assume first that (a) holds. The basic idea of this part of the proof is to show
that the self–similarity of the survival function of the exponential distribution on
the interval (0,∞) implies self–similarity of the claim arrival process in the sense
that, for any s ∈ R+, the claim arrival process describing the occurrence of claims
in the interval (s,∞) has the same properties as the claim arrival process describing
the occurrence of claims in the interval (0,∞) and is independent of Ns.
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•
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(1) By assumption, the sequence {Wn}n∈N is independent and satisfies

PWn = Exp(α)

for all n∈N. By Lemma 1.2.2, this yields PTn = Ga(α, n) for all n∈N, and it now
follows from Lemma 2.2.1 that

PNt = P(αt)

holds for all t ∈ (0,∞).
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(2) Because of (1), we have

P [{Nt = ∞}] = 0

for all t ∈ R+, and it now follows from Lemma 2.1.4 that the probability of explosion
is equal to zero. Thus, without loss of generality, we may and do assume that
Nt(ω) < ∞ holds for all t ∈ R+ and all ω ∈ Ω, and this yields

Ω =
∞∑

k=0

{Nt = k}

for all t ∈ R+.
(3) For s ∈ R+, define

T s
0 := 0

and, for all n ∈ N,

T s
n :=

∞∑

k=0

(
χ{Ns=k} · (Tk+n−s)

)

=
∞∑

k=0

(
χ{Tk≤s<Tk+1} · (Tk+n−s)

)
.

Then the sequence {T s
n}n∈N0

satisfies T s
0 = 0 and

T s
n−1 < T s

n

for all n ∈ N. Therefore, {T s
n}n∈N0

is a claim arrival process. Let {W s
n}n∈N denote

the claim interarrival process induced by {T s
n}n∈N0

.
(4) For each s ∈ R+, the finite dimensional distributions of the claim interarrival
processes {W s

n}n∈N and {Wn}n∈N are identical ; moreover, Ns and {W s
n}n∈N are

independent :
Consider first t ∈ R+ and k ∈ N0. Then we have

{Ns = k}∩{t < W s
1 } = {Ns = k}∩{t < T s

1 }
= {Ns = k}∩{t < Tk+1−s}
= {Tk ≤ s < Tk+1}∩{s+t < Tk+1}
= {Tk ≤ s}∩{s+t < Tk+1}
= {Tk ≤ s}∩{s+t < Tk+Wk+1}
= {Tk ≤ s}∩{s−Tk+t < Wk+1} .

Using the transformation formula for integrals, independence of Tk and Wk+1, and
Fubini’s theorem, we obtain

P [{Ns = k}∩{t < W s
1 }] = P [{Tk ≤ s}∩{s−Tk+t < Wk+1}]
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=

∫

Ω

χ{Tk≤s}∩{s−Tk+t<Wk+1}(ω) dP (ω)

=

∫

R2

χ(−∞,s](r) χ(s−r+t,∞)(u) dPWk+1,Tk
(u, r)

=

∫

R2

χ(−∞,s](r) χ(s−r+t,∞)(u) d(PWk+1
⊗PTk

)(u, r)

=

∫

R
χ(−∞,s](r)

(∫

R
χ(s−r+t,∞)(u) dPWk+1

(u)

)
dPTk

(r)

=

∫

(−∞,s]

(∫

Ω

χ{s−r+t<Wk+1}(ω) dP (ω)

)
dPTk

(r)

=

∫

(−∞,s]

P [{s−r+t < Wk+1}] dPTk
(r) .

Using this formula twice together with the fact that the distribution of each Wn is
Exp(α) and hence memoryless on R+, we obtain

P [{Ns = k}∩{t < W s
1 }] =

∫

(−∞,s]

P [{s−r+t < Wk+1}] dPTk
(r)

=

∫

(−∞,s]

P [{s−r < Wk+1}] P [{t < Wk+1}] dPTk
(r)

=

∫

(−∞,s]

P [{s−r < Wk+1}] dPTk
(r) · P [{t < Wk+1}]

= P [{Ns = k}∩{0 < W s
1 }] · P [{t < Wk+1}]

= P [{Ns = k}] · P [{t < W1}] .

Therefore, we have

P [{Ns = k}∩{t < W s
1 }] = P [{Ns = k}] · P [{t < W1}] .

Consider now n ∈ N, t1, . . . , tn ∈ R+, and k ∈ N0. For each j ∈ {2, . . . , n}, we have

{Ns = k}∩{tj < W s
j } = {Ns = k}∩{tj < T s

j −T s
j−1}

= {Ns = k}∩{tj < Tk+j−Tk+j−1}
= {Ns = k}∩{tj < Wk+j} .

Since the sequence {Wn}n∈N is independent and identically distributed, the previous
identities yield

P

[
{Ns = k} ∩

n⋂
j=1

{tj < W s
j }

]

= P

[
n⋂

j=1

(
{Ns = k}∩{tj < W s

j }
)]
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= P

[(
{Ns = k}∩{t1 < W s

1 }
)
∩

n⋂
j=2

(
{Ns = k}∩{tj < W s

j }
)]

= P

[(
{Ns = k}∩{t1 < W s

1 }
)
∩

n⋂
j=2

(
{Ns = k}∩{tj < Wk+j}

)]

= P

[(
{Ns = k}∩{t1 < W s

1 }
)
∩

n⋂
j=2

{tj < Wk+j}
]

= P

[(
{Tk ≤ s}∩{s−Tk+t1 < Wk+1}

)
∩

n⋂
j=2

{tj < Wk+j}
]

= P [{Tk ≤ s}∩{s−Tk+t1 < Wk+1}] ·
n∏

j=2

P [{tj < Wk+j}]

= P [{Ns = k}∩{t1 < W s
1 }] ·

n∏
j=2

P [{tj < Wk+j}]

= P [{Ns = k}] · P [{t1 < W1}] ·
n∏

j=2

P [{tj < Wj}]

= P [{Ns = k}] ·
n∏

j=1

P [{tj < Wj}]

= P [{Ns = k}] · P
[

n⋂
j=1

{tj < Wj}
]

.

Therefore, we have

P

[
{Ns = k} ∩

n⋂
j=1

{tj < W s
j }

]
= P [{Ns = k}] · P

[
n⋂

j=1

{tj < Wj}
]

.

Summation over k ∈ N0 yields

P

[
n⋂

j=1

{tj < W s
j }

]
= P

[
n⋂

j=1

{tj < Wj}
]

.

Inserting this identity into the previous one, we obtain

P

[
{Ns = k} ∩

n⋂
j=1

{tj < W s
j }

]
= P [{Ns = k}] · P

[
n⋂

j=1

{tj < W s
j }

]
.

The last two identities show that the finite dimensional distributions of the claim in-
terarrival processes {W s

n}n∈N and {Wn}n∈N are identical, and that Ns and {W s
n}n∈N

are independent. In particular, the sequence {W s
n}n∈N is independent and satisfies

PW s
n

= Exp(α) for all n ∈ N.



2.3 A Characterization of the Poisson Process 31

(5) The identity PNs+h−Ns = PNh
holds for all s, h ∈ R+ :

For all n ∈ N0, we have

{Ns+h −Ns = n} =
∞∑

k=0

{Ns = k}∩{Ns+h = k+n}

=
∞∑

k=0

{Ns = k}∩{Tk+n ≤ s+h < Tk+n+1}

=
∞∑

k=0

{Ns = k}∩{T s
n ≤ h < T s

n+1}

= {T s
n ≤ h < T s

n+1} .

Because of (4), the finite dimensional distributions of the claim interarrival processes
{W s

n}n∈N and {Wn}n∈N are identical, and it follows that the finite dimensional
distributions of the claim arrival processes {T s

n}n∈N0
and {Tn}n∈N0

are identical as
well. This yields

P [{Ns+h −Ns = n}] = P [{T s
n ≤ h < T s

n+1}]
= P [{Tn ≤ h < Tn+1}]
= P [{Nh = n}]

for all n ∈ N0.
(6) The claim number process {Nt}t∈R+

has independent increments :
Consider first s ∈ R+. Because of (4), Ns and {W s

n}n∈N are independent and
the finite dimensional distributions of the claim interarrival processes {W s

n}n∈N
and {Wn}n∈N are identical; consequently, Ns and {T s

n}n∈N0
are independent and,

as noted before, the finite dimensional distributions of the claim arrival processes
{T s

n}n∈N0
and {Tn}n∈N0

are identical as well.
Consider next s ∈ R+, m ∈ N, h1, . . . , hm ∈ R+, and k, k1, . . . , km ∈ N0. Then we
have

P

[
{Ns = k} ∩

m⋂
j=1

{Ns+hj
−Ns = kj}

]

= P

[
{Ns = k} ∩

m⋂
j=1

{T s
kj
≤ hj < T s

kj+1}
]

= P [{Ns = k}] · P
[

m⋂
j=1

{T s
kj
≤ hj < T s

kj+1}
]

= P [{Ns = k}] · P
[

m⋂
j=1

{Tkj
≤ hj < Tkj+1}

]

= P [{Ns = k}] · P
[

m⋂
j=1

{Nhj
= kj}

]
.
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We now claim that, for all m ∈ N, the identity

P

[
m⋂

j=1

{Ntj−Ntj−1
= nj}

]
=

m∏
j=1

P [{Ntj−Ntj−1
= nj}] .

holds for all t0, t1, . . . , tm∈R+ such that 0 = t0 < t1 < . . . < tm, and n1, . . . , nm∈N0.
This follows by induction:
The assertion is obvious for m = 1.
Assume now that it holds for some m ∈ N and consider t0, t1, . . . , tm, tm+1 ∈ R+

such that 0 = t0 < t1 < . . . < tm < tm+1, and n1, . . . , nm, nm+1 ∈ N0. For
j ∈ {0, 1, . . . ,m}, define hj := tj+1−t1. Then we have 0 = h0 < h1 < . . . < hm and
hence, by assumption and because of (5),

P

[
m⋂

j=1

{Nhj
−Nhj−1

= nj+1}
]

=
m∏

j=1

P [{Nhj
−Nhj−1

= nj+1}]

=
m∏

j=1

P [{Nhj−hj−1
= nj+1}]

=
m∏

j=1

P [{Ntj+1−tj = nj+1}]

=
m∏

j=1

P [{Ntj+1
−Ntj = nj+1}]

=
m+1∏
j=2

P [{Ntj−Ntj−1
= nj}] .

Using the identity established before with s := t1, this yields

P

[
m+1⋂
j=1

{Ntj−Ntj−1
= nj}

]
= P

[
m+1⋂
j=1

{
Ntj =

j∑
i=1

ni

}]

= P

[
{Nt1 = n1} ∩

m+1⋂
j=2

{
Ntj =

j∑
i=1

ni

}]

= P

[
{Nt1 = n1} ∩

m+1⋂
j=2

{
Ntj−Nt1 =

j∑
i=2

ni

}]

= P

[
{Nt1 = n1} ∩

m⋂
j=1

{
Ntj+1

−Nt1 =

j+1∑
i=2

ni

}]

= P

[
{Nt1 = n1} ∩

m⋂
j=1

{
Nt1+hj

−Nt1 =

j+1∑
i=2

ni

}]
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= P [{Nt1 = n1}] · P
[

m⋂
j=1

{
Nhj

=

j+1∑
i=2

ni

}]

= P [{Nt1 = n1}] · P
[

m⋂
j=1

{Nhj
−Nhj−1

= nj+1}
]

= P [{Nt1 = n1}] ·
m+1∏
j=2

P [{Ntj−Ntj−1
= nj}]

=
m+1∏
j=1

P [{Ntj−Ntj−1
= nj}] ,

which is the assertion for m+1. This proves our claim, and it follows that the claim
number process {Nt}t∈R+

has independent increments.
(7) It now follows from (6), (5), and (1) that the claim number process {Nt}t∈R+

is
a Poisson process with parameter α. Therefore, (a) implies (b).
• Assume now that (b) holds. Since {Nt}t∈R+

is a Poisson process with parameter α,
it is clear that {Nt}t∈R+

has independent increments and satisfies E[Nt] = αt for
all t ∈ R+. Therefore, (b) implies (c).
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• Assume next that (c) holds. Since {Nt}t∈R+
has independent increments and

satisfies E[Nt] = αt for all t∈R+, it follows from Theorem 2.3.2 that {Nt−αt}t∈R+

is a martingale. Therefore, (c) implies (d).
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• Assume now that (d) holds. For all s, t ∈ R+ such that s ≤ t and for all A ∈ Fs,
Lemma 2.1.6 together with the martingale property of {Nr−αr}r∈R+

yields

µ[A×(s, t]] =

∫

A

(Nt−Ns) dP

=

∫

A

α(t−s) dP

= α(t−s) · P [A]

= α λ[(s, t]] · P [A]

= (αP⊗λ)[A×(s, t]] .

Since A×(s, t] is a typical set of E , this gives

µ|E = (αP⊗λ)|E .

Since Ω×(0,∞) =
∑∞

n=1 Ω×(n−1, n], the set Ω×(0,∞) is the union of countably
many sets in E such that αP ⊗λ is finite on each of these sets. This means that
the measure µ|E = (αP⊗λ)|E is σ–finite. Furthermore, since the family {Fs}s∈R+

is increasing, it is easy to see that E is stable under intersection. Since σ(E) = H,
it now follows from the uniqueness theorem for σ–finite measures that

µ|H = (αP⊗λ)|H .

Therefore, (d) implies (e)
• Assume finally that (e) holds. In order to determine the finite dimensional distri-
butions of the claim interarrival process {Wn}n∈N, we have to study the probability
of events having the form

A ∩ {t < Wn}
for n ∈ N, t ∈ R+, and A ∈ σ({Wk}k∈{1,...,n−1}) = σ({Tk}k∈{0,1,...,n−1}).
(1) For n ∈ N0, define

En :=

{
n⋂

k=1

{tk < Tk}
∣∣∣∣∣t1, . . . , tn ∈ R+

}
.

Since En is stable under intersection and satisfies σ(En) = σ({Tk}k∈{0,1,...,n}), it is
sufficient to study the probability of events having the form

A ∩ {t < Wn}
for n ∈ N, t ∈ R+, and A ∈ En−1.
(2) For n ∈ N, t ∈ R+, and A ∈ En−1, define

Hn,t(A) :=
{
(ω, u) | ω ∈ A, Tn−1(ω)+t < u ≤ Tn(ω)

}
.
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Then we have

U−1
n (Hn,t(A)) = A ∩ {Tn−1+t < Tn}

= A ∩ {t < Wn} ,

as well as

U−1
k (Hn,t(A)) = ∅

for all k ∈ N such that k 6= n. This gives

A ∩ {t < Wn} =
∞∑

k=1

U−1
k (Hn,t(A)) .

Now the problem is to show that Hn,t(A) ∈ H; if this is true, then we can apply the
assumption on the claim measure µ in order to compute P [A ∩ {t < Wn}].
(3) The relation Hn,t(A) ∈ H holds for all n ∈ N, t ∈ R+, and A ∈ En−1:
First, for all k, m ∈ N0 such that k ≤ m and all p, q, s, t ∈ R+ such that s+t < p < q,
we have(

{s < Tk}∩{Tm+t ≤ p}
)
× (p, q] =

(
{Ns < k}∩{m ≤ Np−t}

)
× (p, q] ,

which is a set in E and hence in H.
Next, for all k, m ∈ N such that k ≤ m and all s, t ∈ R+, define

Hk,m;s,t := {(ω, u) | s < Tk(ω), Tm(ω)+t < u} .

Then we have

Hk,m;s,t =
⋃

p,q∈Q, s+t<p<q

(
{s < Tk}∩{Tm+t ≤ p}

)
× (p, q] ,

and hence Hk,m;s,t ∈ H.
Finally, since

A =
n−1⋂

k=1

{tk < Tk}

for suitable t1, . . . , tn−1 ∈ R+, we have

Hn,t(A) = Hn,t

(
n−1⋂

k=1

{tk < Tk}
)

=

{
(ω, u)

∣∣∣∣∣ ω ∈
n−1⋂

k=1

{tk < Tk}, Tn−1(ω)+t < u ≤ Tn(ω)

}

=
n−1⋂

k=1

{(ω, u) | tk < Tk(ω), Tn−1(ω)+t < u} ∩ {(ω, u) | Tn(ω) < u}

=
n−1⋂

k=1

Hk,n−1;tk,t ∩Hn,n;0,0 ,

and hence Hn,t(A) ∈ H.



36 Chapter 2 The Claim Number Process

(4) Consider n ∈ N, t ∈ R+, and A ∈ En−1. Because of (2) and (3), the assumption
on the claim measure yields

P [A ∩ {t < Wn}] = P

[ ∞∑

k=1

U−1
k (Hn,t(A))

]

=
∞∑

k=1

P [U−1
k (Hn,t(A))]

=
∞∑

k=1

PUk
[Hn,t(A)]

= µ[Hn,t(A)]

= (αP⊗λ)[Hn,t(A)] .

Thus, using the fact that the Lebesgue measure is translation invariant and vanishes
on singletons, we have

∫

R
χ(Tn−1(ω)+t,Tn(ω)](s) dλ(s) =

∫

R
χ[t,Wn(ω))(s) dλ(s)

hence

1

α
P [A ∩{t < Wn}] = (P⊗λ)[Hn,t(A)]

=

∫

Ω×R
χHn,t(A)(ω, s) d(P⊗λ)(ω, s)

=

∫

Ω×R
χA(ω) χ(Tn−1(ω)+t,Tn(ω)](s) d(P⊗λ)(ω, s)

=

∫

Ω

χA(ω)

(∫

R
χ(Tn−1(ω)+t,Tn(ω)](s) dλ(s)

)
dP (ω)

=

∫

Ω

χA(ω)

(∫

R
χ[t,Wn(ω))(s) dλ(s)

)
dP (ω)

=

∫

Ω×R
χA(ω) χ[t,Wn(ω))(s) d(P⊗λ)(ω, s)

=

∫

Ω×R
χ[t,∞)(s) χA∩{s<Wn}(ω) d(P⊗λ)(ω, s)

=

∫

R
χ[t,∞)(s)

(∫

Ω

χA∩{s<Wn} dP (ω)

)
dλ(s)

=

∫

[t,∞)

P [A ∩{s < Wn}] dλ(s) ,

and thus

P [A ∩ {t < Wn}] = α

∫

[t,∞)

P [A ∩{s < Wn}] dλ(s) .
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(5) Consider n ∈ N and A ∈ En−1. Then the function g : R → R, given by

g(t) :=

{
0 if t ∈ (−∞, 0)

P [A ∩{t < Wn}] if t ∈ R+ ,

is bounded; moreover, g is monotone decreasing on R+ and hence almost surely
continuous. This implies that g is Riemann integrable and satisfies

∫

[0,t)

g(s) dλ(s) =

∫ t

0

g(s) ds

for all t ∈ R+. Because of (4), the restriction of g to R+ satisfies

g(t) = P [A ∩{t < Wn}]

= α

∫

[t,∞)

P [A ∩{s < Wn}] dλ(s)

= α

∫

[t,∞)

g(s) dλ(s) ,

and thus

g(t)− g(0) = −α

∫

[0,t)

g(s) dλ(s)

= −α

∫ t

0

g(s) ds .

This implies that the restriction of g to R+ is differentiable and satisfies the differ-
ential equation

g′(t) = −α g(t)

with initial condition g(0) = P [A].
For all t ∈ R+, this yields

g(t) = P [A] · e−αt ,

and thus

P [A ∩{t < Wn}] = g(t)

= P [A] · e−αt .

(6) Consider n ∈ N. Since Ω ∈ En−1, the previous identity yields

P [{t < Wn}] = e−αt

for all t ∈ R+. Inserting this identity into the previous one, we obtain

P [A ∩{t < Wn}] = P [A] · P [{t < Wn}]
for all t ∈ R+ and A ∈ En−1. This shows that σ({W1, . . . ,Wn−1}) and σ(Wn) are
independent.
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(7) Because of (6), it follows by induction that the sequence {Wn}n∈N is independent
and satisfies

PWn = Exp(α)

for all n ∈ N. Therefore, (e) implies (a). 2

To conclude this section, let us consider the prediction problem for claim number
processes having independent increments and finite second moments:

2.3.5 Theorem (Prediction). Assume that the claim number process {Nt}t∈R+

has independent increments and finite second moments. Then the inequality

E[(Nt−(Ns+E[Nt−Ns]))
2] ≤ E[(Nt−Z)2]

holds for all s, t ∈ R+ such that s ≤ t and for every random variable Z satisfying
E[Z2] < ∞ and σ(Z) ⊆ Fs.

Proof. Define Z0 := Ns + E[Nt−Ns]. By assumption, the pair {Nt−Z0, Z0−Z}
is independent, and this yields

E[(Nt−Z0)(Z0−Z)] = E[Nt−Z0] · E[Z0−Z]

= E[Nt−(Ns+E[Nt−Ns])] · E[Z0−Z]

= 0 .

Therefore, we have

E[(Nt−Z)2] = E[((Nt−Z0) + (Z0−Z))2]

= E[(Nt−Z0)
2] + E[(Z0−Z)2] .

The last expression attains its minimum for Z := Z0. 2

Thus, for a claim number process having independent increments and finite second
moments, the best prediction under expected squared error loss of Nt by a random
variable depending only on the history of the claim number process up to time s is
given by Ns + E[Nt−Ns].

As an immediate consequence of the previous result, we have the following:

2.3.6 Corollary (Prediction). Assume that the claim number process {Nt}t∈R+

is a Poisson process with parameter α. Then the inequality

E[(Nt−(Ns+α(t−s)))2] ≤ E[(Nt−Z)2]

holds for all s, t ∈ R+ such that s ≤ t and for every random variable Z satisfying
E[Z2] < ∞ and σ(Z) ⊆ Fs.

As in the case of Corollary 2.3.3, the previous result can be considerably improved:
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2.3.7 Theorem (Prediction). Let α∈(0,∞). Then the following are equivalent :
(a) The claim number process {Nt}t∈R+

has finite second moments and the inequal-
ity

E[(Nt−(Ns+α(t−s)))2] ≤ E[(Nt−Z)2]

holds for all s, t ∈ R+ such that s ≤ t and for every random variable Z satisfying
E[Z2] < ∞ and σ(Z) ⊆ Fs.

(b) The claim number process {Nt}t∈R+
is a Poisson process with parameter α.

6

0 T1(ω) T2(ω) s T3(ω) T4(ω) T5(ω)

n

0 -

1

2

3

4

5

t

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

""
Ns(ω) + α(t−s)

•

•

•

•

•

• Nt(ω)

Claim Arrival Process and Claim Number Process

Proof. • Assume that (a) holds and consider s, t ∈ R+. For A ∈ Fs satisfying
P [A] > 0, define Z := Ns + α(t−s) + cχA. Then we have σ(Z) ⊆ Fs, and hence

E[(Nt−(Ns+α(t−s)))2]

≤ E[(Nt−Z)2]

= E[(Nt−(Ns+α(t−s)+cχA))2]

= E[(Nt−(Ns+α(t−s))−cχA)2]

= E[(Nt−(Ns+α(t−s)))2]− 2cE[(Nt−(Ns+α(t−s)))χA] + c2P [A] .

Letting

c :=
1

P [A]
E[(Nt−(Ns+α(t−s)))χA] ,

we obtain

E[(Nt−(Ns+α(t−s)))2]

≤ E[(Nt−(Ns+α(t−s)))2]− 1

P [A]

(
E[(Nt−(Ns+α(t−s)))χA]

)2

,
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hence

E[(Nt−(Ns+α(t−s)))χA] = 0 ,

and thus ∫

A

((
Nt−αt

)− (
Ns−αs

))
dP =

∫

A

(
Nt − (Ns+α(t−s))

)
dP

= 0 .

Of course, the previous identity is also valid for A ∈ Fs satisfying P [A] = 0.
This shows that the process {Nt−αt}t∈R+

is a martingale, and it now follows from
Theorem 2.3.4 that the claim number process {Nt}t∈R+

is a Poisson process with
parameter α. Therefore, (a) implies (b).
• The converse implication is obvious from Corollary 2.3.6. 2

Problems
2.3.A Discrete Time Model: Adopt the definitions given in this section to the dis-

crete time model. The claim number process {Nl}l∈N0
is a binomial process

or Bernoulli process with parameter ϑ ∈ (0, 1) if it has stationary independent
increments such that PNl

= B(l, ϑ) holds for all l ∈ N.

2.3.B Discrete Time Model: Assume that the claim number process {Nl}l∈N0
has in-

dependent increments. Then the centered claim number process {Nl−E[Nl]}l∈N0

is a martingale.

2.3.C Discrete Time Model: Let ϑ ∈ (0, 1). Then the following are equivalent:
(a) The claim number process {Nl}l∈N0

satisfies

PNl
= B(l, ϑ)

for all l ∈ N as well as

P




m⋂

j=1

{Nj−Nj−1 = kj}
∣∣∣∣∣∣
{Nm = n}


 =

(
m

n

)−1

for all m∈N and for all n∈N0 and k1, . . . , km∈{0, 1} such that
∑m

j=1 kj = n.
(b) The claim number process {Nl}l∈N0

satisfies

PNl
= B(l, ϑ)

for all l ∈ N as well as

P




m⋂

j=1

{Nlj−Nlj−1 = kj}
∣∣∣∣∣∣
{Nlm = n}


 =

m∏

j=1

(
lj − lj−1

kj

)
·
(

lm
n

)−1

for all m ∈ N and l0, l1, . . . , lm ∈ N0 such that 0 = l0 < l1 < . . . < lm
and for all n ∈ N0 and k1, . . . , km ∈ N0 such that kj ≤ lj − lj−1 for all
j ∈ {1, . . . ,m} and

∑m
j=1 kj = n.

(c) The claim number process {Nl}l∈N0
is a binomial process with parameter ϑ.
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2.3.D Discrete Time Model: Let ϑ ∈ (0, 1). Then the following are equivalent:
(a) The sequence of claim interarrival times {Wn}n∈N is independent and satis-

fies PWn = Geo(ϑ) for all n ∈ N.
(b) The claim number process {Nl}l∈N0

is a binomial process with parameter ϑ.
(c) The claim number process {Nl}l∈N0

has independent increments and satis-
fies E[Nl] = ϑl for all l ∈ N0.

(d) The process {Nl−ϑl}l∈N0
is a martingale.

Hint : Prove that (a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d).

2.3.E Discrete Time Model: Assume that the claim number process {Nl}l∈N0
has

independent increments. Then the inequality

E[(Nm−(Nl+E[Nm−Nl]))2] ≤ E[(Nl−Z)2]

holds for all l, m ∈ N0 such that l ≤ m and for every random variable Z satisfying
σ(Z) ⊆ Fl.

2.3.F Discrete Time Model: Let ϑ ∈ (0, 1). Then the following are equivalent:
(a) The inequality

E[(Nm−(Nl+ϑ(m−l)))2] ≤ E[(Nm−Z)2]

holds for all l, m ∈ N0 such that l ≤ m and for every random variable Z
satisfying σ(Z) ⊆ Fl.

(b) The claim number process {Nl}l∈N0
is a binomial process with parameter ϑ.

2.3.G Multiple Life Insurance: Adopt the definitions given in this section to multiple
life insurance. Study stationarity and independence of the increments of the
process {Nt}t∈R+

as well as the martingale property of {Nt−E[Nt]}t∈R+
.

2.3.H Single Life Insurance:
(a) The process {Nt}t∈R+

does not have stationary increments.
(b) The process {Nt}t∈R+

has independent increments if and only if the distri-
bution of T is degenerate.

(c) The process {Nt−E[Nt]}t∈R+
is a martingale if and only if the distribution

of T is degenerate.

2.4 Remarks

The definition of the increments of the claim number process suggests to define, for
each ω ∈ Ω and all B ∈ B(R),

N(ω)(B) :=
∞∑

n=1

χ{Tn∈B}(ω) .

Then, for each ω ∈ Ω, the map N(ω) : B(R) → N0∪{∞} is a measure, which is σ–
finite whenever the probability of explosion is equal to zero. This point of view leads
to the theory of point processes ; see Kerstan, Matthes, and Mecke [1974], Grandell
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[1977], Neveu [1977], Matthes, Kerstan, and Mecke [1978], Cox and Isham [1980],
Brémaud [1981], Kallenberg [1983], Karr [1991], König and Schmidt [1992], Kingman
[1993], and Reiss [1993]; see also Mathar and Pfeifer [1990] for an introduction into
the subject.

The implication (a) =⇒ (b) of Theorem 2.3.4 can be used to show that the Poisson
process does exist: Indeed, Kolmogorov’s existence theorem asserts that, for any
sequence {Qn}n∈N of probability measures B(R) → [0, 1], there exists a probability
space (Ω,F , P ) and a sequence {Wn}n∈N of random variables Ω → R such that the
sequence {Wn}n∈N is independent and satisfies PWn = Qn for all n ∈ N. Letting
Tn :=

∑n
k=1 Wk for all n ∈ N0 and Nt :=

∑∞
n=1 χ{Tn≤t} for all t ∈ R+, we obtain a

claim arrival process {Tn}n∈N0
and a claim number process {Nt}t∈R+

. In particular,
if Qn = Exp(α) holds for all n ∈ N, then it follows from Theorem 2.3.4 that
{Nt}t∈R+

is a Poisson process with parameter α. The implication (d) =⇒ (b) of
Theorem 2.3.4 is due to Watanabe [1964]. The proof of the implications (d) =⇒ (e)
and (e) =⇒ (a) of Theorem 2.3.4 follows Letta [1984].

Theorems 2.3.2 and 2.3.4 are typical examples for the presence of martingales in
canonical situations in risk theory; see also Chapter 7 below.

In the case where the claim interarrival times are independent and identically (but
not necessarily exponentially) distributed, the claim arrival process or, equivalently,
the claim number process is said to be a renewal process ; see e. g. Gut [1988],
Alsmeyer [1991], Grandell [1991], and Resnick [1992]. This case will be considered,
to a limited extent, in Chapter 7 below.

The case where the claim interarrival times are independent and exponentially (but
not necessarily identically) distributed will be studied in Section 3.4 below.

We shall return to the Poisson process at various places in this book: The Poisson
process occurs as a very special case in the rather analytical theory of regular claim
number processes satisfying the Chapman–Kolmogorov equations, which will be
developed in Chapter 3, and it also occurs as a degenerate case in the class of
mixed Poisson processes, which will be studied in Chapter 4. Moreover, thinning,
decomposition, and superposition of Poisson processes, which are important with
regard to reinsurance, will be discussed in Chapters 5 and 6.



Chapter 3

The Claim Number Process as a
Markov Process

The characterizations of the Poisson process given in the previous chapter show that
the Poisson process is a very particular claim number process. In practical situations,
however, the increments of the claim number process may fail to be independent or
fail to be stationary or fail to be Poisson distributed, and in each of these cases the
Poisson process is not appropriate as a model. The failure of the Poisson process
raises the need of studying larger classes of claim number processes.

The present chapter provides a systematic discussion of claim number processes
whose transition probabilities satisfy the Chapman–Kolmogorov equations and can
be computed from a sequence of intensities. The intensities are functions of time, and
special attention will be given to the cases where they are all identical or constant.

We first introduce several properties which a claim number process may possess,
which are all related to its transition probabilities, and which are all fulfilled by the
Poisson process (Section 3.1). We next give a characterization of regularity of claim
number processes satisfying the Chapman–Kolmogorov equations (Section 3.2). Our
main results characterize claim number processes which are regular Markov processes
with intensities which are all identical (Section 3.3) or all constant (Section 3.4).
Combining these results we obtain another characterization of the Poisson process
(Section 3.5). We also discuss a claim number process with contagion (Section 3.6).

3.1 The Model

Throughout this chapter, let {Nt}t∈R+
be a claim number process, let {Tn}n∈N0

be
the claim arrival process induced by the claim number process, and let {Wn}n∈N be
the claim interarrival process induced by the claim arrival process.

In the present section we introduce several properties which a claim number process
may possess and which are all fulfilled by the Poisson process. We consider two
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lines of extending the notion of a Poisson process: The first one is based on the
observation that, by definition, every Poisson process has independent increments,
and this leads to the more general notion of a Markov claim number process and
to the even more general one of a claim number process satisfying the Chapman–
Kolmogorov equations. The second one, which has a strongly analytical flavour
and is quite different from the first, is the notion of a regular claim number process.
Regular claim number processes satisfying the Chapman–Kolmogorov equations will
provide the general framework for the discussion of various classes of claim number
processes and for another characterization of the Poisson process.

The claim number process {Nt}t∈R+
is a Markov claim number process, or a Markov

process for short, if the identity

P

[
{Ntm+1 = nm+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = nj}
]

= P [{Ntm+1 = nm+1}|{Ntm = nm}]

holds for all m ∈ N, t1, . . . , tm, tm+1 ∈ (0,∞), and n1, . . . , nm, nm+1 ∈ N0 such
that t1 < . . . < tm < tm+1 and P [

⋂m
j=1{Ntj = nj}] > 0; the conditions imply that

n1 ≤ . . . ≤ nm. Moreover, if the claim number process is a Markov process, then
the previous identity remains valid if t1 = 0 or nj = ∞ for some j ∈ {1, . . . ,m}.
3.1.1 Theorem. If the claim number process has independent increments, then it
is a Markov process.

Proof. Consider m ∈ N, t1, . . . , tm, tm+1 ∈ (0,∞), and n1, . . . , nm, nm+1 ∈ N0

such that t1 < . . . < tm < tm+1 and P [
⋂m

j=1{Ntj = nj}] > 0. Define t0 := 0 and
n0 := 0. Since P [{N0 = 0}] = 1, we have

P

[
{Ntm+1 = nm+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = nj}
]

=

P

[
m+1⋂
j=1

{Ntj = nj}
]

P

[
m⋂

j=1

{Ntj = nj}
]

=

P

[
m+1⋂
j=1

{Ntj−Ntj−1
= nj−nj−1}

]

P

[
m⋂

j=1

{Ntj−Ntj−1
= nj−nj−1}

]

=

m+1∏
j=1

P [{Ntj−Ntj−1
= nj−nj−1}]

m∏
j=1

P [{Ntj−Ntj−1
= nj−nj−1}]

= P [{Ntm+1−Ntm = nm+1−nm}]
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as well as

P [{Ntm+1 = nm+1}|{Ntm = nm}] = P [{Ntm+1−Ntm = nm+1−nm}] ,

and thus

P

[
{Ntm+1 = nm+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = nj}
]

= P [{Ntm+1 = nm+1}|{Ntm = nm}] .

Therefore, {Nt}t∈R+
is a Markov process. 2

3.1.2 Corollary. If the claim number process is a Poisson process, then it is a
Markov process.

We shall see later that the claim number process may be a Markov process without
being a Poisson process.

In the definition of a Markov claim number process we have already encountered
the problem of conditional probabilities with respect to null sets. We now introduce
some concepts which will allow us to avoid conditional probabilities with respect to
null sets:

A pair (k, r) ∈ N0×R+ is admissible if either (k, r) = (0, 0) or (k, r) ∈ N0×(0,∞).

Let A denote the set consisting of all (k, n, r, t) ∈ N0×N0×R+×R+ such that (k, r)
is admissible, k ≤ n, and r ≤ t. A map

p : A → [0, 1]

is a transition rule for the claim number process {Nt}t∈R+
if it satisfies

∞∑

n=k

p(k, n, r, t) ≤ 1

for each admissible pair (k, r) and all t ∈ [r,∞) as well as

p(k, n, r, t) = P [{Nt = n}|{Nr = k}]

for all (k, n, r, t) ∈ A such that P [{Nr = k}] > 0. It is easy to see that a transition
rule always exists but need not be unique. However, all subsequent definitions and
results involving transition rules will turn out to be independent of the particular
choice of the transition rule.

Comment: The inequality occurring in the definition of a transition rule admits
strictly positive probability for a jump to infinity in a finite time interval. For
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example, for each admissible pair (k, r) and all t ∈ [r,∞) such that P [{Nr = k}] > 0,
we have

P [{Nt = ∞}|{Nr = k}] = 1−
∞∑

n=k

p(k, n, r, t) .

Also, since every path of a claim number process is increasing in time, there is no
return from infinity. In particular, for all r ∈ (0,∞) and t ∈ [r,∞) such that
P [{Nr = ∞}] > 0, we have

P [{Nt = ∞}|{Nr = ∞}] = 1 .

These observations show that, as in the definition of Markov claim number processes,
infinite claim numbers can be disregarded in the definitions of admissible pairs and
transition rules.

For a transition rule p : A → [0, 1] and (k, n, r, t) ∈ A, define

pk,n(r, t) := p(k, n, r, t) .

The pk,n(r, t) are called the transition probabilities of the claim number process
{Nt}t∈R+

with respect to the transition rule p. Obviously, the identity

pn,n(t, t) = 1

holds for each admissible pair (n, t) satisfying P [{Nt = n}] > 0.

The claim number process {Nt}t∈R+
satisfies the Chapman–Kolmogorov equations

if there exists a transition rule p such that the identity

pk,n(r, t) =
n∑

m=k

pk,m(r, s) pm,n(s, t)

holds for all (k, n, r, t) ∈ A and s ∈ [r, t] such that P [{Nr = k}] > 0. The validity of
the Chapman–Kolmogorov equations is independent of the particular choice of the
transition rule: Indeed, for m∈{k, . . . , n} such that P [{Ns = m}∩{Nr = k}] > 0,
we have P [{Ns = m}] > 0, and thus

pk,m(r, s) pm,n(s, t) = P [{Nt = n}|{Ns = m}] · P [{Ns = m}|{Nr = k}] ;
also, for m∈{k, . . . , n} such that P [{Ns = m}∩{Nr = k}] = 0, we have pk,m(r, s) =
P [{Ns = m}|{Nr = k}] = 0, and thus

pk,m(r, s) pm,n(s, t) = 0 ,

whatever the value of pm,n(s, t) was defined to be.

3.1.3 Theorem. If the claim number process is a Markov process, then it satisfies
the Chapman–Kolmogorov equations.
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Proof. Consider (k, n, r, t) ∈ A and s ∈ [r, t] such that P [{Nr = k}] > 0. Then
we have

pk,n(r, t) = P [{Nt = n}|{Nr = k}]

=
n∑

m=k

P [{Nt = n}∩{Ns = m}|{Nr = k}]

=
n∑

m=k

(
P [{Nt = n}|{Ns = m}∩{Nr = k}] · P [{Ns = m}|{Nr = k}]

)

=
n∑

m=k

(
P [{Nt = n}|{Ns = m}] · P [{Ns = m}|{Nr = k}]

)

=
n∑

m=k

pk,m(r, s) pm,n(s, t) ,

where the second and the third sum are to be taken only over those m ∈ {k, . . . , n}
for which P [{Ns = m}∩{Nr = k}] > 0. 2

3.1.4 Corollary. If the claim number process has independent increments, then it
satisfies the Chapman–Kolmogorov equations.

3.1.5 Corollary. If the claim number process is a Poisson process, then it satisfies
the Chapman–Kolmogorov equations.

The claim number process {Nt}t∈R+
is homogeneous if there exists a transition rule

p such that the identity

pn,n+k(s, s+h) = pn,n+k(t, t+h)

holds for all n, k ∈ N0 and s, t, h ∈ R+ such that (n, s) and (n, t) are admissible and
satisfy P [{Ns = n}] > 0 and P [{Nt = n}] > 0. Again, homogeneity is independent
of the particular choice of the transition rule.

3.1.6 Theorem. If the claim number process has stationary independent incre-
ments, then it is a homogeneous Markov process.

Proof. By Theorem 3.1.1, the claim number process is a Markov process.
To prove homogeneity, consider k ∈ N0 and h ∈ R+ and an admissible pair (n, t)
satisfying P [{Nt = n}] > 0. Then we have

pn,n+k(t, t+h) = P [{Nt+h = n+k}|{Nt = n}]
= P [{Nt+h−Nt = k}|{Nt−N0 = n}]
= P [{Nt+h−Nt = k}]
= P [{Nh−N0 = k}]
= P [{Nh = k}] .

Therefore, {Nt}t∈R+
is homogeneous. 2
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3.1.7 Corollary. If the claim number process is a Poisson process, then it is a
homogeneous Markov process.

The relations between the different classes of claim number processes considered so
far are presented in the following table:

Chapman–Kolmogorov

Markov

Independent Increments Homogeneous Markov

Stationary

Independent Increments

Poisson

Claim Number Processes

We now turn to another property which a claim number process may possess:

The claim number process {Nt}t∈R+
is regular if there exists a transition rule p

and a sequence {λn}n∈N of continuous functions R+ → (0,∞) such that, for each
admissible pair (n, t),
(i)

P [{Nt = n}] > 0 ,

(ii) the function R+ → [0, 1] : h 7→ pn,n(t, t+h) is continuous,
(iii)

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= λn+1(t)

= lim
h→0

1

h
pn,n+1(t, t+h) .
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In this case, {λn}n∈N is said to be the sequence of intensities of the claim number
process. Because of (i), regularity is independent of the particular choice of the
transition rule.

Comment:
– Condition (i) means that at any time t ∈ (0,∞) every finite number of claims is

attained with strictly positive probability.
– Condition (ii) means that, conditionally on the event {Nt = n}, the probability of

no jumps in a finite time interval varies smoothly with the length of the interval.
– Condition (iii) means that, conditionally on the event {Nt = n}, the tendency for

a jump of any height is, in an infinitesimal time interval, equal to the tendency
for a jump of height one.

3.1.8 Theorem. If the claim number process is a Poisson process with para-
meter α, then it is a homogeneous regular Markov process with intensities {λn}n∈N
satisfying λn(t) = α for all n∈N and t∈R+.

Proof. By Corollary 3.1.7, the claim number process is a homogeneous Markov
process.
To prove the assertion on regularity, consider an admissible pair (n, t).
First, since

P [{Nt = n}] = e−αt (αt)n

n!
,

we have P [{Nt = n}] > 0, which proves (i).
Second, since

pn,n(t, t+h) = e−αh ,

the function h 7→ pn,n(t, t+h) is continuous, which proves (ii).
Finally, we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= lim

h→0

1

h

(
1− e−αh

)

= α

as well as

lim
h→0

1

h
pn,n+1(t, t+h) = lim

h→0

1

h
e−αh αh

= α .

This proves (iii).
Therefore, {Nt}t∈R+

is regular with intensities {λn}n∈N satisfying λn(t) = α for all
n ∈ N and t ∈ R+. 2

The previous result shows that the properties introduced in this section are all
fulfilled by the Poisson process.
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Problems

3.1.A Discrete Time Model: Adopt the definitions given in this section, as far as
this is reasonable, to the discrete time model.

3.1.B Discrete Time Model: If the claim number process has independent incre-
ments, then it is a Markov process.

3.1.C Discrete Time Model: If the claim number process is a binomial process, then
it is a homogeneous Markov process.

3.1.D Multiple Life Insurance: Adopt the definitions given in the section to mul-
tiple life insurance. Study the Markov property and regularity of the process
{Nt}t∈R+

.

3.1.E Single Life Insurance: The process {Nt}t∈R+
is a Markov process.

3.1.F Single Life Insurance: Assume that P [{T > t}] ∈ (0, 1) holds for all t ∈ (0,∞).
Then every transition rule p satisfies p0,0(r, t) = P [{T > t}]/P [{T > r}] as well
as p0,1(r, t) = 1− p0,0(r, t) and p1,1(r, t) = 1 for all r, t ∈ R+ such that r ≤ t.

3.1.G Single Life Insurance: Assume that the distribution of T has a density f with
respect to Lebesgue measure and that f is continuous on R+ and strictly positive
on (0,∞). For all t ∈ R+, define

λ(t) :=
f(t)

P [{T > t}] .

(a) The process {Nt}t∈R+
is regular with intensity λ1 = λ.

(b) There exists a transition rule p such that the differential equations

d

dt
p0,n(r, t) =

{
− p0,0(r, t) λ1(t) if n = 0

p0,0(r, t) λ1(t) if n = 1

with initial conditions

p0,n(r, r) =

{
1 if n = 0

0 if n = 1

for all r, t ∈ R+ such that r ≤ t.
(c) There exists a transition rule p such that the integral equations

p0,n(r, t) =





e−
∫ t
r λ1(s) ds if n = 0

∫ t

r
p0,0(r, s) λ1(s) ds if n = 1

for all r, t ∈ R+ such that r ≤ t.
(d) Interpret the particular form of the differential equations.
The function λ is also called the failure rate of T .
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3.2 A Characterization of Regularity

The following result characterizes regularity of claim number processes satisfying
the Chapman–Kolmogorov equations:

3.2.1 Theorem. Assume that the claim number process {Nt}t∈R+
satisfies the

Chapman–Kolmogorov equations and let {λn}n∈N be a sequence of continuous func-
tions R+ → (0,∞). Then the following are equivalent :
(a) {Nt}t∈R+

is regular with intensities {λn}n∈N.
(b) There exists a transition rule p such that the differential equations

d

dt
pk,n(r, t) =

{
− pk,k(r, t) λk+1(t) if k = n

pk,n−1(r, t) λn(t)− pk,n(r, t) λn+1(t) if k < n

with initial conditions

pk,n(r, r) =

{
1 if k = n

0 if k < n

hold for all (k, n, r, t) ∈ A.
(c) There exists a transition rule p such that the integral equations

pk,n(r, t) =





e−
∫ t

r
λk+1(s) ds if k = n

∫ t

r

pk,n−1(r, s) λn(s) pn,n(s, t) ds if k < n

hold for all (k, n, r, t) ∈ A.

Proof. We prove the assertion according to the following scheme:

(a) =⇒ (b) =⇒ (c) =⇒ (a)

• Assume first that (a) holds and consider a transition rule p and (k, n, r, t) ∈ A.
(1) By the Chapman–Kolmogorov equations, we have

pk,k(r, t+h)− pk,k(r, t) = pk,k(r, t) pk,k(t, t+h)− pk,k(r, t)

= −pk,k(r, t)
(
1− pk,k(t, t+h)

)
,

and hence

lim
h→0

1

h

(
pk,k(r, t+h)− pk,k(r, t)

)
= −pk,k(r, t) lim

h→0

1

h

(
1− pk,k(t, t+h)

)

= −pk,k(r, t) λk+1(t) .

Thus, the right derivative of t 7→ pk,k(r, t) exists and is continuous, and this implies
that the derivative of t 7→ pk,k(r, t) exists and satisfies the differential equation

d

dt
pk,k(r, t) = −pk,k(r, t) λk+1(t)

with initial condition pk,k(r, r) = 1.
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In particular, we have

pk,k(r, t) = e−
∫ t

r
λk+1(s) ds

> 0 .

(2) Assume now that k < n. Then we have

pk,n(r, t+h)− pk,n(r, t) =
n∑

m=k

pk,m(r, t) pm,n(t, t+h)− pk,n(r, t)

=
n−2∑

m=k

pk,m(r, t) pm,n(t, t+h)

+ pk,n−1(r, t) pn−1,n(t, t+h)

− pk,n(r, t)
(
1− pn,n(t, t+h)

)
.

For m ∈ {k, . . . , n−2}, we have pm,n(t, t+h) ≤ 1 − pm,m(t, t+h) − pm,m+1(t, t+h),
hence

lim
h→0

1

h
pm,n(t, t+h) = 0 ,

and this identity together with

lim
h→0

1

h
pn−1,n(t, t+h) = λn(t)

and

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= λn+1(t)

yields

lim
h→0

1

h

(
pk,n(r, t+h)− pk,n(r, t)

)
=

n−2∑

m=k

pk,m(r, t) lim
h→0

1

h
pm,n(t, t+h)

+ pk,n−1(r, t) lim
h→0

1

h
pn−1,n(t, t+h)

− pk,n(r, t) lim
h→0

1

h

(
1− pn,n(t, t+h)

)

= pk,n−1(r, t) λn(t)− pk,n(r, t) λn+1(t)) .

Thus, the right derivative of t 7→ pk,n(r, t) exists, and it follows that the function
t 7→ pk,n(r, t) is right continuous on [r,∞). Moreover, for t ∈ (r,∞) the Chapman–
Kolmogorov equations yield, for all s ∈ (r, t),

∣∣pk,n(r, s)− pk,n(r, t)
∣∣ =

∣∣∣∣∣pk,n(r, s)−
n∑

m=k

pk,m(r, s) pm,n(s, t)

∣∣∣∣∣
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≤
n−1∑

m=k

pk,m(r, s) pm,n(s, t) + pk,n(r, s)
(
1−pn,n(s, t)

)

≤
n∑

m=k

(
1− pm,m(s, t)

)

=
n∑

m=k

(
1− pm,m(r, t)

pm,m(r, s)

)
,

and thus

lim
s→t

∣∣pk,n(r, s)− pk,n(r, t)
∣∣ = 0 ,

which means that the function t 7→ pk,n(r, t) is also left continuous on (r,∞) and
hence continuous on [r,∞). But then the right derivative of t 7→ pk,n(r, t) is con-
tinuous, and this implies that the derivative of t 7→ pk,n(r, t) exists and satisfies the
differential equation

d

dt
pk,n(r, t) = pk,n−1(r, t) λn(t)− pk,n(r, t) λn+1(t)

with initial condition pk,n(r, r) = 0.
(3) Because of (1) and (2), (a) implies (b).
• Assume now that (b) holds and consider a transition rule p satisfying the differ-
ential equations and (k, n, r, t) ∈ A.
(1) We have already noticed in the preceding part of the proof that the differential
equation

d

dt
pk,k(r, t) = −pk,k(r, t) λk+1(t)

with initial condition pk,k(r, r) = 1 has the unique solution

pk,k(r, t) = e−
∫ t

r
λk+1(s) ds .

(2) Assume now that k < n. Then the function t 7→ 0 is the unique solution of the
homogeneous differential equation

d

dt
pk,n(r, t) = −pk,n(r, t) λn+1(t)

with initial condition pk,n(r, r) = 0. This implies that the inhomogeneous differential
equation

d

dt
pk,n(r, t) = pk,n−1(r, t) λn(t)− pk,n(r, t) λn+1(t)

with initial condition pk,n(r, r) = 0 has at most one solution.
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Assume that the function t 7→ pk,n−1(r, t) is already given (which because of (1) is
the case for n = k + 1) and define

p̂k,n(r, t) :=

∫ t

r

pk,n−1(r, s) λn(s) pn,n(s, t) ds .

Since

d

dt
p̂k,n(r, t) =

∫ t

r

pk,n−1(r, s) λn(s)

(
d

dt
pn,n(s, t)

)
ds + pk,n−1(r, t) λn(t)

=

∫ t

r

pk,n−1(r, s) λn(s) (−pn,n(s, t) λn+1(t)) ds + pk,n−1(r, t) λn(t)

=

∫ t

r

pk,n−1(r, s) λn(s) pn,n(s, t) ds · (−λn+1(t)) + pk,n−1(r, t) λn(t)

= p̂k,n(r, s) (−λn+1(t)) + pk,n−1(r, t) λn(t)

= pk,n−1(r, t) λn(t)− p̂k,n(r, s) λn+1(t)

and p̂k,n(r, r) = 0, the function t 7→ p̂k,n(r, t) is the unique solution of the differential
equation

d

dt
pk,n(r, t) = pk,n−1(r, t) λn(t)− pk,n(r, t) λn+1(t) ,

with initial condition pk,n(r, r) = 0, and we have

pk,n(r, t) :=

∫ t

r

pk,n−1(r, s) λn(s) pn,n(s, t) ds .

(3) Because of (1) and (2), (b) implies (c).
• Assume finally that (c) holds and consider a transition rule p satisfying the integral
equations. For n ∈ N and r, t ∈ R+ such that r ≤ t, define

Λn(r, t) :=

∫ t

r

λn(s) ds .

Then we have

pn,n(r, t) = e−
∫ t

r
λn+1(s) ds

= e−Λn+1(r,t)

> 0

for each admissible pair (n, r) and all t ∈ [r,∞).
First, for all t ∈ R+, we have

P [{Nt = 0}] = P [{Nt = 0}|{N0 = 0}]
= p0,0(0, t)

> 0 .
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Consider now t ∈ (0,∞) and assume that p0,n−1(0, t) = P [{Nt = n−1}] > 0 holds
for some n ∈ N and all t ∈ R+ (which is the case for n = 1). Then we have

P [{Nt = n}] = P [{Nt = n}|{N0 = 0}]
= p0,n(0, t)

=

∫ t

0

p0,n−1(0, s) λn(s) pn,n(s, t) ds

> 0 .

This yields

P [{Nt = n}] > 0

for each admissible pair (n, t), which proves (i).
Second, for each admissible pair (n, t) and for all h ∈ R+, we have

pn,n(t, t+h) = e−Λn+1(t,t+h) ,

showing that the function h 7→ pn,n(t, t+h) is continuous, which proves (ii).
Finally, for each admissible pair (n, t), we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= lim

h→0

1

h

(
1− e−Λn+1(t,t+h)

)

= λn+1(t) ,

and because of

pn,n+1(t, t+h) =

∫ t+h

t

pn,n(t, u) λn+1(u) pn+1,n+1(u, t+h) du

=

∫ t+h

t

pn,n(t, u) λn+1(u) e−Λn+2(u,t+h) du

= e−Λn+2(t,t+h)

∫ t+h

t

pn,n(t, u) λn+1(u) eΛn+2(t,u) du

we also have

lim
h→0

1

h
pn,n+1(t, t+h)

= lim
h→0

1

h

(
e−Λn+2(t,t+h)

∫ t+h

t

pn,n(t, u) λn+1(u) eΛn+2(t,u) du

)

= e−Λn+2(t,t) · pn,n(t, t) λn+1(t) eΛn+2(t,t)

= λn+1(t) .

This proves (iii).
Therefore, (c) implies (a). 2

Since regularity is independent of the particular choice of the transition rule, every
transition rule for a regular claim number process satisfying the Chapman–Kolmo-
gorov equations fulfills the differential and integral equations of Theorem 3.2.1.
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3.3 A Characterization of the Inhomogeneous
Poisson Process

In the present section, we study claim number processes which are regular Markov
processes with intensities which are all identical.

3.3.1 Lemma. Assume that the claim number process {Nt}t∈R+
satisfies the

Chapman–Kolmogorov equations and is regular. Then the following are equivalent :
(a) The identity

p0,k(t, t+h) = pn,n+k(t, t+h)

holds for all n, k ∈ N0 and t, h ∈ R+ such that (n, t) is admissible.
(b) The intensities of {Nt}t∈R+

are all identical.

Proof. • It is clear that (a) implies (b).
• Assume now that (b) holds.
(1) For each admissible pair (n, t) and all h ∈ R+, we have

p0,0(t, t+h) = e−
∫ t+h

t
λ1(s) ds

= e−
∫ t+h

t
λn+1(s) ds

= pn,n(t, t+h) .

(2) Assume now that the identity

p0,k(t, t+h) = pn,n+k(t, t+h)

holds for some k ∈ N0 and for each admissible pair (n, t) and all h ∈ R+ (which
because of (1) is the case for k = 0). Then we have

p0,k+1(t, t+h) =

∫ t+h

t

p0,k(t, u) λk+1(u) pk+1,k+1(u, t+h) du

=

∫ t+h

t

pn,n+k(t, u) λn+k+1(u) pn+k+1,n+k+1(u, t+h) du

= pn,n+k+1(t, t+h) .

for each admissible pair (n, t) and all h ∈ R+.
(3) Because of (1) and (2), (b) implies (a). 2

Let λ : R+ → (0,∞) be a continuous function. The claim number process {Nt}t∈R+

is an inhomogeneous Poisson process with intensity λ if it has independent incre-
ments satisfying

PNt+h−Nt = P
(∫ t+h

t
λ(s) ds

)
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for all t ∈ R+ and h ∈ (0,∞). Thus, the claim number process is an inhomogeneous
Poisson process with constant intensity t 7→ α if and only if it is a Poisson process
with parameter α.

3.3.2 Theorem. Let λ : R+ → (0,∞) be a continuous function. Then the
following are equivalent :
(a) The claim number process {Nt}t∈R+

is a regular Markov process with intensities
{λn}n∈N satisfying λn(t) = λ(t) for all n∈N and t∈R+.

(b) The claim number process {Nt}t∈R+
has independent increments and is regular

with intensities {λn}n∈N satisfying λn(t) = λ(t) for all n∈N and t∈R+.
(c) The claim number process {Nt}t∈R+

is an inhomogeneous Poisson process with
intensity λ.

Proof. Each of the conditions implies that the claim number process satisfies the
Chapman–Kolmogorov equations. Therefore, Theorem 3.2.1 applies.
For all r, t∈R+ such that r ≤ t, define

Λ(r, t) :=

∫ t

r

λ(s) ds .

We prove the assertion according to the following scheme:

(a) =⇒ (c) =⇒ (b) =⇒ (a)

• Assume first that (a) holds.
(1) For each admissible pair (n, r) and all t ∈ [r,∞), we have

pn,n(r, t) = e−
∫ t

r
λn+1(s) ds

= e−
∫ t

r
λ(s) ds

= e−Λ(r,t) .

(2) Assume now that the identity

pn,n+k(r, t) = e−Λ(r,t) (Λ(r, t))k

k!

holds for some k ∈ N0 and for each admissible pair (n, r) and all t ∈ [r,∞) (which
because of (1) is the case for k = 0). Then we have

pn,n+k+1(r, t) =

∫ t

r

pn,n+k(r, s) λn+k+1(s) pn+k+1,n+k+1(s, t) ds

=

∫ t

r

e−Λ(r,s) (Λ(r, s))k

k!
λ(s) e−Λ(s,t) ds

= e−Λ(r,t)

∫ t

r

(Λ(r, s))k

k!
λ(s) ds

= e−Λ(r,t) (Λ(r, t))k+1

(k+1)!

for each admissible pair (n, r) and all t ∈ [r,∞).
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(3) Because of (1) and (2), the identity

pn,n+k(r, t) = e−Λ(r,t) (Λ(r, t))k

k!

holds for all n, k ∈ N0 and r, t ∈ R+ such that (n, r) is admissible and r ≤ t.
(4) Because of (3), we have

P [{Nt = n}] = p0,n(0, t)

= e−Λ(0,t) (Λ(0, t))n

n!

for all t ∈ R+ and n ∈ N0 such that (n, t) is admissible, and thus

PNt = P(Λ(0, t)) .

for all t ∈ (0,∞).
(5) The identity

PNt−Nr = P(Λ(r, t))

holds for all r, t ∈ R+ such that r < t.
In the case r = 0, the assertion follows from (4).
In the case r > 0, it follows from (4) that the probability of explosion is equal to
zero and that P [{Nr = n}] > 0 holds for all n ∈ N0. Because of (3), we obtain

P [{Nt−Nr = k}] =
∞∑

n=0

P [{Nt−Nr = k}∩{Nr = n}]

=
∞∑

n=0

(
P [{Nt = n + k}|{Nr = n}] · P [{Nr = n}]

)

=
∞∑

n=0

pn,n+k(r, t) p0,n(0, r)

=
∞∑

n=0

e−Λ(r,t) (Λ(r, t))k

k!
e−Λ(0,r) (Λ(0, r))n

n!

= e−Λ(r,t) (Λ(r, t))k

k!
·
∞∑

n=0

e−Λ(0,r) (Λ(0, r))n

n!

= e−Λ(r,t) (Λ(r, t))k

k!

for all k ∈ N0, and thus

PNt−Nr = P(Λ(r, t)) .
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(6) The claim number process {Nt}t∈R+
has independent increments :

Consider m ∈ N, t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm, and
k1, . . . , km ∈ N0. For j ∈ {0, 1, . . . ,m}, define

nj :=

j∑
i=1

ki .

If P [
⋂m−1

j=1 {Ntj−Ntj−1
= kj}] = P [

⋂m−1
j=1 {Ntj = nj}] > 0, then the Markov property

together with (3) and (5) yields

P

[
{Ntm = nm}

∣∣∣∣∣
m−1⋂
j=1

{Ntj = nj}
]

= P [{Ntm = nm}|{Ntm−1 = nm−1}]

= pnm−1,nm(tm−1, tm)

= e−Λ(tm−1,tm) (Λ(tm−1, tm))nm−nm−1

(nm−nm−1)!

= P [{Ntm−Ntm−1 = nm−nm−1}]
= P [{Ntm−Ntm−1 = km}]

and hence

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
= P

[
m⋂

j=1

{Ntj = nj}
]

= P

[
{Ntm = nm}

∣∣∣∣∣
m−1⋂
j=1

{Ntj = nj}
]
· P

[
m−1⋂
j=1

{Ntj = nj}
]

= P [{Ntm−Ntm−1 = km}] · P
[

m−1⋂
j=1

{Ntj = nj}
]

= P [{Ntm−Ntm−1 = km}] · P
[

m−1⋂
j=1

{Ntj−Ntj−1
= kj}

]
.

Obviously, the identity

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
= P [{Ntm−Ntm−1 = km}] · P

[
m−1⋂
j=1

{Ntj−Ntj−1
= kj}

]

is also valid if P [
⋂m−1

j=1 {Ntj−Ntj−1
= kj}] = 0.

It now follows by induction that {Nt}t∈R+
has independent increments.

(7) Because of (5) and (6), {Nt}t∈R+
is an inhomogeneous Poisson process with

intensity λ. Therefore, (a) implies (c).
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• Assume now that (c) holds. Of course, {Nt}t∈R+
has independent increments.

Furthermore, for each admissible pair (n, r) and all k ∈ N0 and t ∈ [r,∞), we have

pn,n+k(r, t) = P [{Nt = n+k}|{Nr = n}]
= P [{Nt−Nr = k}|{Nr−N0 = n}]
= P [{Nt−Nr = k}]

= e−Λ(r,t) (Λ(r, t))k

k!
.

For k = 0, this yields

pn,n(r, t) = e−Λ(r,t)

= e−
∫ t

r
λ(s) ds ,

and for k ∈ N we obtain

pn,n+k(r, t) = e−Λ(r,t) (Λ(r, t))k

k!

= e−Λ(r,t)

∫ t

r

(Λ(r, s))k−1

(k−1)!
λ(s) ds

=

∫ t

r

e−Λ(r,s) (Λ(r, s))k−1

(k−1)!
λ(s) e−Λ(s,t) ds

=

∫ t

r

pn,n+k−1(r, s) λ(s) pn+k,n+k(s, t) ds .

It now follows from Theorem 3.2.1 that {Nt}t∈R+
is regular with intensities {λn}n∈N

satisfying λn(t) = λ(t) for all n ∈ N and t ∈ R+. Therefore, (c) implies (b).
• Assume finally that (b) holds. Since {Nt}t∈R+

has independent increments, it
follows from Theorem 3.1.1 that {Nt}t∈R+

is a Markov process. Therefore, (b) im-
plies (a). 2

The following result is a partial generalization of Lemma 2.3.1:

3.3.3 Lemma (Multinomial Criterion). If the claim number process {Nt}t∈R+

is an inhomogeneous Poisson process with intensity λ, then the identity

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]

=
n!∏m

j=1 kj!

m∏
j=1

(∫ tj
tj−1

λ(s) ds
∫ tm

0
λ(s) ds

)kj

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm and
for all n ∈ N0 and k1, . . . , km ∈ N0 such that

∑m
j=1 kj = n.
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Proof. For all r, t ∈ R+ satisfying r ≤ t, define

Λ(r, t) :=

∫ t

r

λ(s) ds .

Then we have

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]

=

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]

P [{Ntm = n}]

=

m∏
j=1

P [{Ntj−Ntj−1
= kj}]

P [{Ntm = n}]

=

m∏
j=1

e−Λ(tj−1,tj)
(Λ(tj−1, tj))

kj

kj!

e−Λ(0,tm) (Λ(0, tm))n

n!

=
n!∏m

j=1 kj!

m∏
j=1

(
Λ(tj−1, tj)

Λ(0, tm)

)kj

,

as was to be shown. 2

Problems
3.3.A Assume that the claim number process has independent increments and is regular.

Then its intensities are all identical.

3.3.B The following are equivalent:
(a) The claim number process is a regular Markov process and its intensities are

all identical.
(b) The claim number process has independent increments and is regular.
(c) The claim number process is an inhomogeneous Poisson process.

3.3.C Consider a continuous function λ : R+ → (0,∞) satisfying
∫∞
0 λ(s) ds = ∞. For

all t ∈ R+, define

%(t) :=
∫ t

0
λ(s) ds

as well as
N.

t := N%(t)

and
N/

t := N%−1(t) .

(a) If the claim number process {Nt}t∈R+
is a Poisson process with parameter 1,

then {N.
t }t∈R+

is an inhomogeneous Poisson process with intensity λ.
(b) If the claim number process {Nt}t∈R+

is an inhomogeneous Poisson process
with intensity λ, then {N/

t }t∈R+
is a Poisson process with parameter 1.
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3.3.D Consider a continuous function λ : R+ → (0,∞) satisfying
∫∞
0 λ(s) ds = ∞. For

all t ∈ R+, define

%(t) :=
∫ t

0
λ(s) ds .

Then the following are equivalent:
(a) The claim number process {Nt}t∈R+

is an inhomogeneous Poisson process
with intensity λ.

(b) The claim number process {Nt}t∈R+
has independent increments and satis-

fies E[Nt] = %(t) for all t ∈ R+.
(c) The process {Nt − %(t)}t∈R+

is a martingale.

3.3.E Prediction: If the claim number process {Nt}t∈R+
is an inhomogeneous Poisson

process with intensity λ, then the inequality

E

[(
Nt+h −

(
Nt+

∫ t+h

t
λ(s) ds

))2
]
≤ E[(Nt+h − Z)2]

holds for all t, h ∈ R+ and for every random variable Z satisfying E[Z2] < ∞
and σ(Z) ⊆ Ft.

3.4 A Characterization of Homogeneity

In the present section, we study claim number processes which are regular Markov
processes with intensities which are all constant.

3.4.1 Lemma. Assume that the claim number process {Nt}t∈R+
satisfies the

Chapman–Kolmogorov equations and is regular. Then the following are equivalent :

(a) {Nt}t∈R+
is homogeneous.

(b) The intensities of {Nt}t∈R+
are all constant.

Proof. • Assume first that (a) holds and consider n ∈ N0. For all s, t ∈ (0,∞),
we have

λn+1(s) = lim
h→0

1

h
pn,n+1(s, s+h)

= lim
h→0

1

h
pn,n+1(t, t+h)

= λn+1(t) .

Thus, λn+1 is constant on (0,∞) and hence, by continuity, on R+. Therefore,
(a) implies (b).
• Assume now that (b) holds and consider a sequence {αn}n∈N in (0,∞) such that
λn(t) = αn holds for all n ∈ N and t ∈ R+.
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(1) For all n ∈ N0 and s, t, h ∈ R+ such that (n, s) and (n, t) are admissible, we
have

pn,n(s, s+h) = e−
∫ s+h

s
λn+1(u) du

= e−
∫ s+h

s
αn+1 du

= e−αn+1h ,

and hence

pn,n(s, s+h) = pn,n(t, t+h) .

(2) Assume now that the identity

pn,n+k(s, s+h) = pn,n+k(t, t+h)

holds for some k ∈ N0 and for all n ∈ N0 and s, t, h ∈ R+ such that (n, s) and (n, t)
are admissible (which because of (1) is the case for k = 0). Then we have

pn,n+k+1(s, s+h) =

∫ s+h

s

pn,n+k(s, u) λn+k+1(u) pn+k+1,n+k+1(u, s+h) du

=

∫ s+h

s

pn,n+k(t, t−s+u) αn+k+1 pn+k+1,n+k+1(t−s+u, t+h) du

=

∫ t+h

t

pn,n+k(t, v) αn+k+1 pn+k+1,n+k+1(v, t+h) dv

=

∫ t+h

t

pn,n+k(t, v) λn+k+1(v) pn+k+1,n+k+1(v, t+h) dv

= pn,n+k+1(t, t+h)

for all n ∈ N0 and s, t, h ∈ R+ such that (n, s) and (n, t) are admissible.
(3) Because of (1) and (2), (b) implies (a). 2

The main result of this section is the following characterization of homogeneous
regular Markov processes:

3.4.2 Theorem. Let {αn}n∈N be a sequence of real numbers in (0,∞). Then the
following are equivalent :
(a) The claim number process {Nt}t∈R+

is a regular Markov process with intensities
{λn}n∈N satisfying λn(t) = αn for all n∈N and t∈R+.

(b) The sequence of claim interarrival times {Wn}n∈N is independent and satisfies
PWn = Exp(αn) for all n∈N.

Proof. For n ∈ N, let Tn and Wn denote the random vectors Ω → Rn with
coordinates Ti and Wi, respectively, and let Mn denote the (n×n)–matrix with
entries

mij :=

{
1 if i ≥ j
0 if i < j .
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Then Mn is invertible and satisfies

detMn = 1 .

Moreover, we have Tn = Mn ◦Wn and hence

Wn = M−1
n ◦Tn

as well as T−1
n = W−1

n ◦M−1
n . Furthermore, let 1n denote the vector in Rn with all

coordinates being equal to one, and let 〈. , .〉 denote the inner product on Rn.
• Assume first that (a) holds. Since the claim arrival process is more directly related
to the claim number process than the claim interarrival process is, we shall first
determine the finite dimensional distributions of the claim arrival process and then
apply the identity Wn = M−1

n ◦Tn to obtain the finite dimensional distributions of
the claim interarrival process.
Consider two sequences {rj}j∈N and {tj}j∈N0

of real numbers satisfying t0 = 0 and
tj−1 ≤ rj < tj for all j ∈ N. We first exploit regularity and then the Markov property
in order to determine the finite dimensional distributions of the claim arrival process.
(1) For each admissible pair (j, r) and all t ∈ [r,∞), we have

pj,j(r, t) = e−αj+1(t−r) .

Indeed, regularity yields

pj,j(r, t) = e−
∫ t

r
λj+1(s) ds

= e−
∫ t

r
αj+1 ds

= e−αj+1(t−r) .

(2) For all j ∈ N and r, t ∈ (0,∞) such that r ≤ t, we have

pj−1,j(r, t) =





αj

αj+1−αj

(
e−αj(t−r) − e−αj+1(t−r)

)
if αj 6= αj+1

αj(t−r) e−αj(t−r) if αj = αj+1 .

Indeed, if αj 6= αj+1, then regularity together with (1) yields

pj−1,j(r, t) =

∫ t

r

pj−1,j−1(r, s) λj(s) pj,j(s, t) ds

=

∫ t

r

e−αj(s−r) αj e−αj+1(t−s) ds

= αj e(αjr−αj+1t)

∫ t

r

e(αj+1−αj)s ds

= αj e(αjr−αj+1t) 1

αj+1−αj

(
e(αj+1−αj)t − e(αj+1−αj)r

)

=
αj

αj+1−αj

(
e−αj(t−r) − e−αj+1(t−r)

)
;
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similarly, if αj = αj+1, then

pj−1,j(r, t) =

∫ t

r

pj−1,j−1(r, s) λj(s) pj,j(s, t) ds

=

∫ t

r

e−αj(s−r) αj e−αj+1(t−s) ds

=

∫ t

r

e−αj(s−r) αj e−αj(t−s) ds

=

∫ t

r

αj e−αj(t−r) ds

= αj(t−r) e−αj(t−r) .

(3) For all j ∈ N and h ∈ (0,∞), we have

pj−1,j−1(h, h+rj) pj−1,j(rj, tj) pj,j(tj, rj+1)

=

∫ tj

rj

αj e(αj+1−αj)sj dsj · pj,j(h, h+rj+1) .

Indeed, if αj 6= αj+1, then (1) and (2) yield

pj−1,j−1(h, h+rj) pj−1,j(rj, tj) pj,j(tj, rj+1)

= e−αjrj · αj

αj+1−αj

(
e−αj(tj−rj) − e−αj+1(tj−rj)

)
· e−αj+1(rj+1−tj)

=
αj

αj+1−αj

(
e(αj+1−αj)tj − e(αj+1−αj)rj

)
· e−αj+1rj+1

=

∫ tj

rj

αj e(αj+1−αj)sj dsj · pj,j(h, h+rj+1) ;

similarly, if αj = αj+1, then

pj−1,j−1(h, h+rj) pj−1,j(rj, tj) pj,j(tj, rj+1)

= e−αjrj · αj(tj−rj) e−αj(tj−rj) · e−αj+1(rj+1−tj)

= e−αjrj · αj(tj−rj) e−αj(tj−rj) · e−αj(rj+1−tj)

= αj(tj−rj) · e−αjrj+1

=

∫ tj

rj

αj dsj · pj,j(h, h+rj+1)

=

∫ tj

rj

αj e(αj+1−αj)sj dsj · pj,j(h, h+rj+1) .
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(4) For all n ∈ N, we have

P

[
{Nrn = n−1} ∩

n−1⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]
> 0

and

P

[
n⋂

j=1

{Ntj = j}∩{Nrj
= j−1}

]
> 0 .

This follows by induction, using (1) and (2) and the Markov property:
For n = 1, we have

P [{Nr1 = 0}] = P [{Nr1 = 0}|{N0 = 0}]
= p0,0(0, r1)

> 0

and

P [{Nt1 = 1}∩{Nr1 = 0}] = P [{Nt1 = 1}|{Nr1 = 0}] · P [{Nr1 = 0}]
= p0,0(0, r1) p0,1(r1, t1)

> 0 .

Assume now that the assertion holds for some n ∈ N. Then we have

P

[
{Nrn+1 = n} ∩

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= P

[
{Nrn+1 = n}

∣∣∣∣∣
n⋂

j=1

{Ntj = j}∩{Nrj
= j−1}

]

·P
[

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= P [{Nrn+1 = n}|{Ntn = n}]

·P
[

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= pn,n(tn, rn+1) · P
[

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

> 0
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and

P

[
n+1⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= P

[
{Ntn+1 = n+1}

∣∣∣∣∣{Nrn+1 = n} ∩
n⋂

j=1

{Ntj = j}∩{Nrj
= j−1}

]

·P
[
{Nrn+1 = n} ∩

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= P [{Ntn+1 = n+1}|{Nrn+1 = n}]

·P
[
{Nrn+1 = n} ∩

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= pn,n+1(rn+1, tn+1) · P
[
{Nrn+1 = n} ∩

n⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

> 0 .

(5) For all n ∈ N, we have

P

[
n⋂

j=1

{rj < Tj ≤ tj}
]

=
n−1∏
j=1

∫ tj

rj

αje
(αj+1−αj)sj dsj ·

∫ tn

rn

αneαnsn dsn .

Indeed, using (4), the Markov property, (3), and (1), we obtain, for all h ∈ (0,∞),

P

[
n⋂

j=1

{rj < Tj ≤ tj}
]

= P

[
n⋂

j=1

{Nrj
< j ≤ Ntj}

]

= P

[
{Ntn ≥ n}∩{Nrn = n−1} ∩

n−1⋂
j=1

{Ntj = j}∩{Nrj
= j−1}

]

= P [{Ntn ≥ n}|{Nrn = n−1}]

·
n−1∏
j=1

(
P [{Nrj+1

= j}|{Ntj = j}] · P [{Ntj = j}|{Nrj
= j−1}]

)

· P [{Nr1 = 0}|{N0 = 0}]

= p0,0(0, r1) ·
n−1∏
j=1

pj−1,j(rj, tj) pj,j(tj, rj+1) ·
(
1− pn−1,n−1(rn, tn)

)
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= p0,0(h, h+r1) ·
n−1∏
j=1

pj−1,j(rj, tj) pj,j(tj, rj+1) ·
(
1− pn−1,n−1(rn, tn)

)

=
n−1∏
j=1

∫ tj

rj

αj e(αj+1−αj)sj dsj · pn−1,n−1(h, h+rn) ·
(
1− pn−1,n−1(rn, tn)

)

=
n−1∏
j=1

∫ tj

rj

αj e(αj+1−αj)sj dsj · e−αnrn ·
(
1− e−αn(tn−rn)

)

=
n−1∏
j=1

∫ tj

rj

αj e(αj+1−αj)sj dsj ·
(
e−αnrn − e−αntn

)

=
n−1∏
j=1

∫ tj

rj

αj e(αj+1−αj)sj dsj ·
∫ tn

rn

αn e−αnsn dsn .

(6) Consider n ∈ N and define fn : Rn → R+ by letting

fn(w) :=
n∏

j=1

αj e−αjwjχ(0,∞)(wj) .

Define s0 := 0 and A :=×n
j=1(rj, tj]. Because of (5), we obtain

P [{Tn ∈ A}] = P

[
n⋂

j=1

{rj < Tj ≤ tj}
]

=
n−1∏
j=1

∫ tj

rj

αj e(αj+1−αj)sj dsj ·
∫ tn

rn

αn e−αnsn dsn

=
n−1∏
j=1

∫

(rj ,tj ]

αj e(αj+1−αj)sj dλ(sj) ·
∫

(rn,tn]

αn e−αnsn dλ(sn)

=

∫

A

(
n−1∏
j=1

αj e(αj+1−αj)sj

)
αn e−αnsn dλ

n

(s)

=

∫

A

(
n∏

j=1

αj e−αj(sj−sj−1)χ(0,∞)(sj−sj−1)

)
dλ

n

(s)

=

∫

A

fn(M−1
n (s)) dλ

n

(s) .

(7) Since the sequence {Tn}n∈N0
is strictly increasing with T0 = 0, it follows from (6)

that the identity

P [{Tn ∈ A}] =

∫

A

fn(M−1
n (s)) dλ

n

(s)

holds for all A ∈ B(Rn).



3.4 A Characterization of Homogeneity 69

(8) Consider B1, . . . , Bn ∈ B(R) and let B :=×n
j=1Bj. Since Wn = M−1

n ◦Tn, the
identity established in (7) yields

PWn
[B] = P [{Wn ∈ B}]

= P [{M−1
n ◦Tn ∈ B}]

= P [{Tn ∈ Mn(B)}]

=

∫

Mn(B)

fn(M−1
n (s)) dλ

n

(s)

=

∫

B

fn(w) dλ
n

M−1
n

(w)

=

∫

B

fn(w)
1

| detM−1
n | dλ

n

(w)

=

∫

B

fn(w) dλ
n

(w)

=

∫

B

(
n∏

j=1

αj e−αjwjχ(0,∞)(wj)

)
dλ

n

(w)

=
n∏

j=1

∫

Bj

αj e−αjwjχ(0,∞)(wj) dλ(wj) .

(9) Because of (8), the sequence {Wn}n∈N is independent and satisfies

PWn = Exp(αn)

for all n ∈ N. Therefore, (a) implies (b).
• Assume now that (b) holds.
(1) To establish the Markov property, consider m ∈ N, t1, . . . , tm, tm+1 ∈ (0,∞),
and k1, . . . , km ∈ N0 such that t1 < . . . < tm < tm+1 and P [

⋂m
j=1{Ntj = kj}] > 0.

In the case where km = 0, it is clear that the identity

P

[
{Ntm+1 = km+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = kj}
]

= P [{Ntm+1 = l}|{Ntm = km}]

holds for all km+1 ∈ N0 such that km ≤ km+1.
In the case where km ∈ N, define k0 := 0 and n := km, and let l ∈ {0, 1, . . . ,m−1}
be the unique integer satisfying kl < kl+1 = km = n. Then there exists a rectangle
B ⊆×n

j=1(0, tl+1] such that

(
l⋂

j=1

{Tkj
≤ tj < Tkj+1}

)
∩{Tn ≤ tl+1} = T−1

n (B) .
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Letting A := M−1
n (B), we obtain

(
l⋂

j=1

{Tkj
≤ tj < Tkj+1}

)
∩{Tn ≤ tl+1} = T−1

n (B)

= W−1
n (M−1

n (B))

= W−1
n (A) .

Using independence of Wn and Wn+1, the transformation formula for integrals, and
Fubini’s theorem, we obtain

P

[
m⋂

j=1

{Ntj = kj}
]

= P

[(
l⋂

j=1

{Ntj = kj}
)
∩{Ntl+1

= n}∩{Ntm = n}
]

= P

[(
l⋂

j=1

{Tkj
≤ tj < Tkj+1}

)
∩{Tn ≤ tl+1}∩{tm < Tn+1}

]

= P [W−1
n (A) ∩{tm−Tn < Wn+1}]

= P [W−1
n (A) ∩{tm−〈1n,Wn〉 < Wn+1}]

=

∫

A

(∫

(tm−〈1n,s〉,∞)

dPWn+1(w)

)
dPWn

(s)

=

∫

A

(∫

(tm−〈1n,s〉,∞)

αn+1 e−αn+1w dλ(w)

)
dPWn

(s)

=

∫

A

eαn+1〈1n,s〉
(∫

(tm,∞)

αn+1 e−αn+1v dλ(v)

)
dPWn

(s)

=

∫

A

eαn+1〈1n,s〉 dPWn
(s) ·

∫

(tm,∞)

dPWn+1(v) .

Also, using the same arguments as before, we obtain

P [{Ntm = km}] = P [{Ntm = n}]
= P [{Tn ≤ tm < Tn+1}]
= P [{Tn ≤ tm}∩{tm−Tn < Wn+1}]

=

∫

(−∞,tm]

(∫

(tm−s,∞)

dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,tm]

(∫

(tm−s,∞)

αn+1 e−αn+1w dλ(w)

)
dPTn(s)

=

∫

(−∞,tm]

eαn+1s

(∫

(tm,∞)

αn+1 e−αn+1v dλ(v)

)
dPTn(s)

=

∫

(−∞,tm]

eαn+1s dPTn(s) ·
∫

(tm,∞)

dPWn+1(v) .
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Consider now k ∈ N0 such that km < k, and define U := Tk−Tn+1 = Tk−Tn−Wn+1.
Then we have

P

[
{Ntm+1 ≥ k} ∩

m⋂
j=1

{Ntj = kj}
]

= P

[(
l⋂

j=1

{Ntj = kj}
)
∩{Ntl+1

= n}∩{Ntm = n}∩{Ntm+1 ≥ k}
]

= P

[(
l⋂

j=1

{Tkj
≤ tj < Tkj+1}

)
∩{Tn ≤ tl+1}∩{tm < Tn+1}∩{Tk ≤ tm+1}

]

= P [W−1
n (A) ∩{tm−Tn < Wn+1}∩{U ≤ tm+1−Tn−Wn+1}]

= P [W−1
n (A) ∩{tm−〈1n,Wn〉 < Wn+1}∩{U ≤ tm+1−〈1n,Wn〉−Wn+1}]

=

∫

A

(∫

(tm−〈1n,s〉,∞)

(∫

(−∞,tm+1−〈1n,s〉−w]

dPU(u)

)
dPWn+1(w)

)
dPWn

(s)

=

∫

A

(∫

(tm−〈1n,s〉,∞)

P [{U ≤ tm+1−〈1n, s〉−w}] dPWn+1(w)

)
dPWn

(s)

=

∫

A

(∫

(tm−〈1n,s〉,∞)

P [{U ≤ tm+1−〈1n, s〉−w}] αn+1 e−αn+1w dλ(w)

)
dPWn

(s)

=

∫

A

eαn+1〈1n,s〉
(∫

(tm,∞)

P [{U ≤ tm+1−v}] αn+1 e−αn+1v dλ(v)

)
dPWn

(s)

=

∫

A

eαn+1〈1n,s〉 dPWn
(s) ·

∫

(tm,∞)

P [{U ≤ tm+1−v}] dPWn+1(v)

as well as

P [{Ntm+1 ≥ k}∩{Ntm = km}]
= P [{Ntm+1 ≥ k}∩{Ntm = n}]
= P [{Tn ≤ tm < Tn+1}∩{Tk ≤ tm+1}]
= P [{Tn ≤ tm}∩{tm−Tn < Wn+1}∩{U ≤ tm+1−Tn−Wn+1}]
=

∫

(−∞,tm]

(∫

(tm−s,∞)

(∫

(−∞,tm+1−s−w]

dPU(u)

)
dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,tm]

(∫

(tm−s,∞)

P [{U ≤ tm+1−s−w}] dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,tm]

(∫

(tm−s,∞)

P [{U ≤ tm+1−s−w}] αn+1 e−αn+1w dλ(w)

)
dPTn(s)

=

∫

(−∞,tm]

eαn+1s

(∫

(tm,∞)

P [{U ≤ tm+1−v}] αn+1 e−αn+1v dλ(v)

)
dPTn(s)

=

∫

(−∞,tm]

eαn+1s dPTn(s) ·
∫

(tm,∞)

P [{U ≤ tm+1−v}] dPWn+1 .
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This yields

P

[
{Ntm+1 ≥ k}

∣∣∣∣∣
m⋂

j=1

{Ntj = kj}
]

=

P

[
{Ntm+1 ≥ k} ∩

m⋂
j=1

{Ntj = kj}
]

P

[
m⋂

j=1

{Ntj = kj}
]

=

∫

A

eαn+1〈1n,s〉 dPWn
(s) ·

∫

(tm,∞)

P [{U ≤ tm+1−v}] dPWn+1(v)

∫

A

eαn+1〈1n,s〉 dPWn
(s) ·

∫

(tm,∞)

dPWn+1(v)

=

∫

(tm,∞)

P [{U ≤ tm+1−v}] dPWn+1(v)

∫

(tm,∞)

dPWn+1(v)

=

∫

(−∞,tm]

eαn+1s dPTn(s) ·
∫

(tm,∞)

P [{U ≤ tm+1−v}] dPWn+1(v)

∫

(−∞,tm]

eαn+1s dPTn(s) ·
∫

(tm,∞)

dPWn+1(v)

=
P [{Ntm+1 ≥ k} ∩ {Ntm = km}]

P [{Ntm = km}]
= P [{Ntm+1 ≥ k}|{Ntm = km}] .

Therefore, we have

P

[
{Ntm+1 ≥ k}

∣∣∣∣∣
m⋂

j=1

{Ntj = kj}
]

= P [{Ntm+1 ≥ k}|{Ntm = km}]

for all k ∈ N0 such that km < k.
Of course, the previous identity is also valid if km = k, and it thus holds for all
k ∈ N0 such that km ≤ k. But this implies that the identity

P

[
{Ntm+1 = km+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = kj}
]

= P [{Ntm+1 = km+1}|{Ntm = km}]

holds for all km+1 ∈ N0 such that km ≤ km+1, which means that {Nt}t∈R+
is a

Markov process.
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(2) To prove the assertion on regularity, consider an admissible pair (n, t). As before,
we obtain

P [{Nt+h = n}∩{Nt = n}] = P [{Tn ≤ t}∩{t+h < Tn+1}]
= P [{Tn ≤ t}∩{t+h−Tn < Wn+1}]

=

∫

(−∞,t]

(∫

(t+h−s,∞]

dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,t]

(∫

(t+h−s,∞]

αn+1 e−αn+1w dλ(w)

)
dPTn(s)

=

∫

(−∞,t]

e−αn+1(t+h−s) dPTn(s)

= e−αn+1(t+h)

∫

(−∞,t]

eαn+1s dPTn(s)

for all h ∈ R+, hence

P [{Nt = n}] = e−αn+1t

∫

(−∞,t]

eαn+1s dPTn(s)

> 0 ,

and thus

pn,n(t, t+h) = P [{Nt+h = n}|{Nt = n}]

=
P [{Nt+h = n}∩{Nt = n}]

P [{Nt = n}]

=

e−αn+1(t+h)

∫

(−∞,t]

eαn+1s dPTn(s)

e−αn+1t

∫

(−∞,t]

eαn+1s dPTn(s)

= e−αn+1h

for all h ∈ R+.
By what we have shown so far, we have

P [{Nt = n}] > 0 ,

which proves (i).
It is also clear that the function h 7→ pn,n(t, t+h) is continuous, which proves (ii).
Furthermore, we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= lim

h→0

1

h

(
1− e−αn+1h

)

= αn+1 .
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Also, we have

P [{Nt+h = n+1}∩{Nt = n}]
= P [{Tn ≤ t < Tn+1 ≤ t+h < Tn+2}]
= P [{Tn ≤ t}∩{t−Tn < Wn+1 ≤ t+h−Tn}∩{t+h−Tn−Wn+1 < Wn+2}]

=

∫

(−∞,t]

(∫

(t−s,t+h−s]

(∫

(t+h−s−w,∞]

dPWn+2(u)

)
dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,t]

(∫

(t−s,t+h−s]

(∫

(t+h−s−w,∞]

αn+2 e−αn+2u dλ(u)

)
dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,t]

(∫

(t−s,t+h−s]

e−αn+2(t+h−s−w) dPWn+1(w)

)
dPTn(s)

=

∫

(−∞,t]

(∫

(t−s,t+h−s]

e−αn+2(t+h−s−w) αn+1 e−αn+1w dλ(w)

)
dPTn(s)

=

∫

(−∞,t]

(∫

(t,t+h]

e−αn+2(t+h−v) αn+1 e−αn+1(v−s) dλ(v)

)
dPTn(s)

= αn+1 e−αn+2(t+h)

∫

(−∞,t]

eαn+1s dPTn(s)

∫

(t,t+h]

e(αn+2−αn+1)v dλ(v) ,

and thus

P [{Nt+h = n+1}|{Nt = n}]

=
P [{Nt+h = n+1}∩{Nt = n}]

P [{Nt = n}]

=

αn+1 e−αn+2(t+h)

∫

(−∞,t]

eαn+1s dPTn(s)

∫

(t,t+h]

e(αn+2−αn+1)v dλ(v)

e−αn+1t

∫

(−∞,t]

eαn+1s dPTn(s)

= αn+1 eαn+1t e−αn+2(t+h)

∫

(t,t+h]

e(αn+2−αn+1)v dλ(v) .

In the case αn+1 6= αn+2, we obtain

pn,n+1(t, t+h) = P [{Nt+h = n+1}|{Nt = n}]

= αn+1 eαn+1t e−αn+2(t+h)

∫

(t,t+h]

e(αn+2−αn+1)v dλ(v)

= αn+1 eαn+1t e−αn+2(t+h) eαn+2−αn+1)(t+h) − e(αn+2−αn+1)t

αn+2 − αn+1

=
αn+1

αn+2−αn+1

(
e−αn+1h − e−αn+2h

)
,



3.4 A Characterization of Homogeneity 75

and thus

lim
h→0

1

h
pn,n+1(t, t+h) = lim

h→0

1

h

αn+1

αn+2−αn+1

(
e−αn+1h − e−αn+2h

)

= αn+1 ;

in the case αn+1 = αn+2, we obtain

pn,n+1(t, t+h) = P [{Nt+h = n+1}|{Nt = n}]

= αn+1 eαn+1t e−αn+2(t+h)

∫

(t,t+h]

e(αn+2−αn+1)v dλ(v)

= αn+1 eαn+1t e−αn+1(t+h)

∫

(t,t+h]

dλ(v)

= αn+1h e−αn+1h ,

and thus

lim
h→0

1

h
pn,n+1(t, t+h) = lim

h→0

1

h
αn+1h e−αn+1h

= αn+1 .

Thus, in either case we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= αn+1

= lim
h→0

1

h
pn,n+1(t, t+h) .

This proves (iii).
We have thus shown that {Nt}t∈R+

is regular with intensities {λn}n∈N satisfying
λn(t) = αn for all n ∈ N and t ∈ R+. Therefore, (b) implies (a). 2

In the situation of Theorem 3.4.2, explosion is either certain or impossible:

3.4.3 Corollary (Zero–One Law on Explosion). Let {αn}n∈N be a sequence
of real numbers in (0,∞) and assume that the claim number process {Nt}t∈R+

is a
regular Markov process with intensities {λn}n∈N satisfying λn(t) = αn for all n∈N
and t∈R+.
(a) If the series

∑∞
n=1 1/αn diverges, then the probability of explosion is equal to

zero.
(b) If the series

∑∞
n=1 1/αn converges, then the probability of explosion is equal to

one.

This follows from Theorems 3.4.2 and 1.2.1.
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Problems
3.4.A The following are equivalent:

(a) The claim number process is a regular Markov process and its intensities are
all constant.

(b) The claim interarrival times are independent and exponentially distributed.

3.4.B Let % : R+ → R+ be a continuous function which is strictly increasing and
satisfies %(0) = 0 and limt→∞ %(t) = ∞. For all t ∈ R+, define

N%
t := N%−1(t) .

Then {N%
t }t∈R+

is a claim number process. Moreover, if {Nt}t∈R+
has indepen-

dent increments or is a Markov process or satisfies the Chapman-Kolmogorov
equations or is regular, then the same is true for {N%

t }t∈R+
.

3.4.C Operational Time: A continuous function % : R+ → R+ which is strictly
increasing and satisfies %(0) = 0 and limt→∞ %(t) = ∞ is an operational time for
the claim number process {Nt}t∈R+

if the claim number process {N%
t }t∈R+

is
homogeneous.
Assume that the claim number process {Nt}t∈R+

satisfies the Chapman–Kolmo-
gorov equations and is regular with intensities {λn}n∈N, and let {αn}n∈N be a
sequence of real numbers in (0,∞). Then the following are equivalent:
(a) There exists an operational time % for the claim number process {Nt}t∈R+

such that λ%
n(t) = αn holds for all n ∈ N and t ∈ R+.

(b) There exists a continuous function λ : R+ → (0,∞) satisfying
∫∞
0 λ(s) ds =

∞ and such that λn(t) = αnλ(t) holds for all n ∈ N and t ∈ R+.
Hint : Use Theorem 3.2.1 and choose λ and %, respectively, such that the identity
%(t) =

∫ t
0 λ(s) ds holds for all t ∈ R+.

3.4.D Operational Time: If {Nt}t∈R+
is an inhomogeneous Poisson process with

intensity λ satisfying
∫∞
0 λ(s) ds = ∞, then there exists an operational time %

such that {N%
t }t∈R+

is a homogeneous Poisson process with parameter 1.

3.4.E Operational Time: Study the explosion problem for claim number processes
which are regular Markov processes and possess an operational time.

3.5 A Characterization of the Poisson Process

By Theorem 3.1.8, the Poisson process is a regular Markov process whose intensities
are all identical and constant. By Theorems 3.3.2, 3.4.2, and 2.3.4, regular Markov
processes whose intensities are either all identical or all constant share some of the
characteristic properties of the Poisson process:

– For a regular Markov process whose intensities are all identical, the increments
of the claim number process are independent and Poisson distributed.

– For a regular Markov process whose intensities are all constant, the claim inter-
arrival times are independent and exponentially distributed.
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In the first case, the intensities are related to the parameters of the distributions of
the increments of the claim number process; in the second case, they are related to
the parameters of the distributions of the claim interarrival times. It is therefore
not surprising that the Poisson process is the only regular Markov process whose
intensities are all identical and constant:

3.5.1 Theorem. Let α ∈ (0,∞). Then the following are equivalent :
(a) The claim number process {Nt}t∈R+

is a regular Markov process with intensities
{λn}n∈N satisfying λn(t) = α for all n∈N and t∈R+.

(b) The claim number process {Nt}t∈R+
has independent increments and is regular

with intensities {λn}n∈N satisfying λn(t) = α for all n ∈ N and t ∈ R+.
(c) The claim number process {Nt}t∈R+

is a Poisson process with parameter α.
(d) The sequence of claim interarrival times {Wn}n∈N is independent and satisfies

PWn = Exp(α) for all n∈N.

Proof. The equivalence of (a), (b), and (c) follows from Theorem 3.3.2, and the
equivalence of (a) and (d) follows from Theorem 3.4.2. 2

The equivalence of (c) and (d) in Theorem 3.5.1 is the same as the equivalence of
(a) and (b) in Theorem 2.3.4, which was established by entirely different arguments;
in particular, Theorem 2.3.4 was not used in the proof of Theorem 3.5.1.

Problems
3.5.A Assume that the claim number process has stationary independent increments

and is regular. Then its intensities are all identical and constant.

3.5.B The following are equivalent:
(a) The claim number process is a regular Markov process and its intensities are

all identical and constant.
(b) The claim number process has stationary independent increments and is

regular.
(c) The claim number process is a Poisson process.
(d) The claim interarrival times are independent and identically exponentially

distributed.

3.6 A Claim Number Process with Contagion

In the present section we study a regular claim number process which is homogeneous
and satisfies the Chapman–Kolmogorov equations but need not be a Markov process
and fails to be a Poisson process. More precisely, the increments of this claim number
process fail to be independent, fail to be stationary, and fail to be Poisson distributed.
In other words, this claim number process lacks each of the defining properties of
the Poisson process.
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3.6.1 Theorem (Positive Contagion). Let α, β ∈ (0,∞). Then the following
are equivalent :
(a) The claim number process {Nt}t∈R+

satisfies the Chapman–Kolmogorov equa-
tions and is regular with intensities {λn}n∈N satisfying

λn(t) = (α + n− 1) β

for all n∈N and t∈R+.
(b) The identity

pn,n+k(t, t+h) =

(
α + n + k − 1

k

)(
e−βh

)α+n(
1− e−βh

)k

holds for each admissible pair (n, t) and all k∈N0 and h∈R+.
In this case, the claim number process is homogeneous and satisfies

PNt = NB
(
α, e−βt

)

for all t ∈ (0,∞), and the increments are neither independent nor stationary and
satisfy

PNt+h−Nt = NB

(
α,

1

1 + eβ(t+h) − eβt

)

for all t∈R+ and h∈(0,∞).

Proof. • Assume first that (a) holds.
(1) For each admissible pair (n, t) and all h ∈ R+, we have

pn,n(t, t+h) = e−
∫ t+h

t
λn+1(u) du

= e−
∫ t+h

t
(α+n)β du

=
(
e−βh

)α+n
.

(2) Assume now that the identity

pn,n+k(t, t+h) =

(
α + n + k − 1

k

)(
e−βh

)α+n(
1− e−βh

)k

holds for some k ∈ N0 and for each admissible pair (n, t) and all h ∈ R+ (which
because of (1) is the case for k = 0). Then we have

pn,n+k+1(t, t+h) =

∫ t+h

t

pn,n+k(t, u) λn+k+1(u) pn+k+1,n+k+1(u, t+h) du

=

∫ t+h

t

((
α + n + k − 1

k

)(
e−β(u−t)

)α+n(
1− e−β(u−t)

)k

·(α + n + k
)
β

(
e−β(t+h−u)

)α+n+k+1

)
du
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=

(
α + n + (k + 1)− 1

k + 1

)(
e−βh

)α+n

·
∫ t+h

t

(k + 1)
(
1− e−β(u−t)

)k (
e−β(t+h−u)

)k+1
β du

=

(
α + n + (k + 1)− 1

k + 1

)(
e−βh

)α+n

·
∫ t+h

t

(k + 1)
(
e−β(t+h−u) − e−βh

)k
e−β(t+h−u) β du

=

(
α + n + (k + 1)− 1

k + 1

)(
e−βh

)α+n(
1− e−βh

)k+1

for each admissible pair (n, t) and all h ∈ R+.
(3) Because of (1) and (2), (a) implies (b).
• Assume now that (b) holds.
(1) To verify the Chapman–Kolmogorov equations, consider (k, n, r, t) ∈ A and
s ∈ [r, t] such that P [{Nr = k}] > 0.
In the case r = t, there is nothing to prove.
In the case r < t, we have

n∑

m=k

pk,m(r, s) pm,n(s, t)

=
n∑

m=k

((
α + m− 1

m− k

)(
e−β(s−r)

)α+k(
1− e−β(s−r)

)m−k

·
(

α + n− 1

n−m

)(
e−β(t−s)

)α+m(
1− e−β(t−s)

)n−m

)

=
n∑

m=k

((
α + n− 1

n− k

)(
e−β(t−r)

)α+k (
1− e−β(t−r)

)n−k

·
(

n− k

m− k

)(
e−β(t−s) − e−β(t−r)

1− e−β(t−r)

)m−k (
1− e−β(t−s)

1− e−β(t−r)

)(n−k)−(m−k)
)

=

(
α + n− 1

n− k

)(
e−β(t−r)

)α+k (
1− e−β(t−r)

)n−k

·
n∑

m=k

(
n− k

m− k

)(
e−β(t−s) − e−β(t−r)

1− e−β(t−r)

)m−k (
1− e−β(t−s)

1− e−β(t−r)

)(n−k)−(m−k)

=

(
α + k + (n−k)− 1

n− k

)(
e−β(t−r)

)α+k (
1− e−β(t−r)

)n−k

= pk,n(r, t) .

Therefore, {Nt}t∈R+
satisfies the Chapman–Kolmogorov equations.
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(2) To prove the assertion on regularity, consider an admissible pair (n, t).
First, since

P [{Nt = n}] = p0,n(0, t)

=

(
α + n− 1

n

)(
e−βt

)α(
1− e−βt

)n
,

we have P [{Nt = n}] > 0, which proves (i).
Second, since

pn,n(t, t+h) =
(
e−βh

)α+n

= e−(α+n)βh ,

the function h 7→ pn,n(t, t+h) is continuous, which proves (ii).
Finally, we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= lim

h→0

1

h

(
1− e−(α+n)βh

)

=
(
α + n

)
β ,

as well as

lim
h→0

1

h
pn,n+1(t, t+h) = lim

h→0

1

h

(
α + n

)(
e−βh

)α+n(
1− e−βh

)

=
(
α + n

)
β .

This proves (iii).
We have thus shown that {Nt}t∈R+

is regular with intensities {λn}n∈N satisfying
λn(t) = (α + n− 1) β for all n ∈ N and t ∈ R+.
(3) Because of (1) and (2), (b) implies (a).
• Let us now prove the final assertions.
(1) Consider t ∈ R+. For all n ∈ N0, we have

P [{Nt = n}] = p0,n(0, t)

=

(
α + n− 1

n

)(
e−βt

)α(
1− e−βt

)n
.

This yields

PNt = NB
(
α, e−βt

)
.

(2) Consider now t, h ∈ R+. Because of (1), we have, for all k ∈ N0,

P [{Nt+h −Nt = k}]

=
∞∑

n=0

P [{Nt+h −Nt = k}∩{Nt = n}]
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=
∞∑

n=0

(
P [{Nt+h = n + k}|{Nt = n}] · P [{Nt = n}]

)

=
∞∑

n=0

pn,n+k(t, t+h) p0,n(0, t)

=
∞∑

n=0

((
α + n + k − 1

k

)(
e−βh

)α+n (
1− e−βh

)k

·
(

α + n− 1

n

)(
e−βt

)α (
1− e−βt

)n

)

=
∞∑

n=0

((
α + k − 1

k

)(
e−β(t+h)

1− e−βh + e−β(t+h)

)α (
1− e−βh

1− e−βh + e−β(t+h)

)k

·
(

α + k + n− 1

n

)(
1− e−βh + e−β(t+h)

)α+k(
e−βh − e−β(t+h)

)n

)

=

(
α + k − 1

k

)(
e−β(t+h)

1− e−βh + e−β(t+h)

)α (
1− e−βh

1− e−βh + e−β(t+h)

)k

·
∞∑

n=0

(
α + k + n− 1

n

)(
1− e−βh + e−β(t+h)

)α+k(
e−βh − e−β(t+h)

)n

=

(
α + k − 1

k

)(
e−β(t+h)

1− e−βh + e−β(t+h)

)α (
1− e−βh

1− e−βh + e−β(t+h)

)k

=

(
α + k − 1

k

)(
1

eβ(t+h) − eβt + 1

)α (
eβ(t+h) − eβt

eβ(t+h) − eβt + 1

)k

.

This yields

PNt+h−Nt = NB

(
α,

1

1 + eβ(t+h) − eβt

)
.

(3) It is clear that {Nt}t∈R+
is homogeneous.

(4) It is clear from the formula for the transition probabilities that {Nt}t∈R+
cannot

have independent increments. 2

Comment: The previous result illustrates the fine line between Markov claim
number processes and claim number processes which only satisfy the Chapman–
Kolmogorov equations: By Theorem 3.4.2, the sequence of claim interarrival times
{Wn}n∈N is independent and satisfies PWn = Exp((α+n−1) β) for all n ∈ N if
and only if the claim number process {Nt}t∈R+

is a regular Markov process with
intensities {λn}n∈N satisfying λn = (α + n − 1) β for all n ∈ N; in this case the
claim number process clearly satisfies the equivalent conditions of Theorem 3.6.1.
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On the other hand, the equivalent conditions of Theorem 3.6.1 involve only the
two–dimensional distributions of the claim number process, which clearly cannot
tell anything about whether the claim number process is a Markov process or not.

The following result justifies the term positive contagion:

3.6.2 Corollary (Positive Contagion). Let α, β ∈ (0,∞) and assume that the
claim number process {Nt}t∈R+

satisfies the Chapman–Kolmogorov equations and is
regular with intensities {λn}n∈N satisfying

λn(t) = (α + n− 1) β

for all n∈N and t∈R+. Then, for all t, h ∈ (0,∞), the function

n 7→ P [{Nt+h ≥ n+1}|{Nt = n}]

is strictly increasing and independent of t.

Thus, in the situation of Corollary 3.6.2, the conditional probability of at least one
claim occurring in the interval (t, t+h] increases with the number of claims already
occurred up to time t.

The claim number process considered in this section illustrates the importance of
the negativebinomial distribution.

Another regular claim number process which is not homogeneous but has station-
ary increments and which is also related to the negativebinomial distribution and
positive contagion will be studied in Chapter 4 below.

Problems
3.6.A Negative Contagion: For α ∈ N, modify the definitions given in Section 3.1

by replacing the set N0∪{∞} by {0, 1, . . . , α}.
Let α ∈ N and β ∈ (0,∞). Then the following are equivalent:
(a) The claim number process {Nt}t∈R+

satisfies the Chapman–Kolmogorov
equations and is regular with intensities {λn}n∈N satisfying

λn(t) = (α + 1− n) β

for all n ∈ {1, . . . , α} and t ∈ R+.
(b) The identity

pn,n+k(t, t+h) =
(

α− n

k

)(
1− e−βh

)k(
e−βh

)α−n−k

holds for each admissible pair (n, t) and all k ∈ {0, 1, . . . , α−n} and h ∈ R+.
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In this case, {Nt}t∈R+
is homogeneous, the increments are neither independent

nor stationary, and

PNt+h−Nt = B
(
α, e−βt

(
1−e−βh

))

holds for all t ∈ R+ and h ∈ (0,∞); in particular,

PNt = B
(
α, 1−e−βt

)

holds for all t ∈ (0,∞).

3.6.B Negative Contagion: Let α ∈ N and β ∈ (0,∞) and assume that the claim
number process {Nt}t∈R+

satisfies the Chapman–Kolmogorov equations and is
regular with intensities {λn}n∈N satisfying

λn(t) = (α + 1− n) β

for all n ∈ {1, . . . , α} and t ∈ R+. Then, for all t, h ∈ (0,∞), the function

n 7→ P [{Nt+h ≥ n+1}|{Nt = n}]

is strictly decreasing and independent of t.

3.6.C If the claim number process has positive or negative contagion, then

PW1 = Exp(αβ) .

Compare this result with Theorem 3.4.2 and try to compute PWn for arbitrary
n ∈ N or n ∈ {1, . . . , α}, respectively.

3.6.D If the claim number process has positive or negative contagion, change parameters
by choosing α′ ∈ (0,∞) and β′ ∈ R\{0} such that

λn(t) = α′ + (n−1)β′

holds for all n ∈ N0 and t ∈ R+. Interpret the limiting case β′ = 0.

3.6.E Extend the discussion of claim number processes with positive or negative con-
tagion to claim number processes which satisfy the Chapman–Kolmogorov equa-
tions and are regular with intensities {λn}n∈N satisfying

λn(t) = λ(t) (α+n−1)

or
λn(t) = λ(t) (α−n+1)

for some continuous function λ : R+ → (0,∞) and α ∈ (0,∞).
For a special case of this problem, see Problem 4.3.A.
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3.7 Remarks

The relations between the different classes of claim number processes studied in this
chapter are presented in the following table:

Chapman–Kolmogorov

λn(t)

Markov

λn(t)

Homogeneous C–K

λn(t) = αn

Inhomogeneous Poisson

λn(t) = λ(t)

Homogeneous Markov

λn(t) = αn

Positive Contagion

λn(t) = (α+n−1) β

Homogeneous Poisson

λn(t) = α

Regular Claim Number Processes

Of course, the different classes of regular claim number processes appearing in one
line are not disjoint.

In Chapter 4 below, we shall study another, and rather important, claim number
process which turns out to be a regular Markov process with intensities depending
on time and on the number of claims already occurred; this is an example of a claim
number process which is not homogeneous and has dependent stationary increments.

For a discussion of operational time, see Bühlmann [1970], Mammitzsch [1983, 1984],
and Sundt [1984, 1991, 1993].

Markov claim number processes can be generalized to semi–Markov processes which
allow to model multiple claims, to distinguish different types of claims, and to take
into account claim severities; see Störmer [1970] and Nollau [1978], as well as Janssen
[1977, 1982, 1984] and Janssen and DeDominicis [1984].



Chapter 4

The Mixed Claim Number
Process

The choice of appropriate assumptions for the claim number process describing a
portfolio of risks is a serious problem. In the present chapter we discuss a general
method to reduce the problem. The basic idea is to interpret an inhomogeneous
portfolio of risks as a mixture of homogeneous portfolios. The claim number process
describing the inhomogeneous portfolio is then defined to be a mixture of the claim
number processes describing the homogeneous portfolios such that the mixing distri-
bution represents the structure of the inhomogeneous portfolio. We first specify the
general model (Section 4.1) and then study the mixed Poisson process (Section 4.2)
and, in particular, the Pólya–Lundberg process (Section 4.3).

The prerequisites required for the present chapter exceed those for the previous ones
in that conditioning will be needed not only in the elementary setting but in full
generality. For information on conditioning, see Bauer [1991], Billingsley [1995], and
Chow and Teicher [1988].

4.1 The Model

Throughout this chapter, let {Nt}t∈R+
be a claim number process and let Θ be a

random variable.

Interpretation: We consider an inhomogeneous portfolio of risks. We assume that
this inhomogeneous portfolio is a mixture of homogeneous portfolios of the same size
which are similar but distinct, and we also assume that each of the homogeneous
portfolios can be identified with a realization of the random variable Θ. This means
that the distribution of Θ represents the structure of the inhomogeneous portfolio
under consideration. The properties of the (unconditional) distribution of the claim
number process {Nt}t∈R+

are then determined by the properties of its conditional
distribution with respect to Θ and by the properties of the distribution of Θ.
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Accordingly, the random variable Θ and its distribution PΘ are said to be the struc-
ture parameter and the structure distribution of the portfolio, respectively, and the
claim number process {Nt}t∈R+

is said to be a mixed claim number process.

The claim number process {Nt}t∈R+
has

– conditionally independent increments with respect to Θ if, for all m ∈ N and
t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm, the family of increments
{Ntj−Ntj−1

}j∈{1,...,m} is conditionally independent with respect to Θ, and it has
– conditionally stationary increments with respect to Θ if, for all m ∈ N and

t0, t1, . . . , tm, h ∈ R+ such that 0 = t0 < t1 < . . . < tm, the family of increments
{Ntj+h−Ntj−1+h}j∈{1,...,m} has the same conditional distribution with respect to
Θ as {Ntj−Ntj−1

}j∈{1,...,m}.
It is immediate from the definitions that a claim number process having condition-
ally independent increments with respect to Θ has conditionally stationary incre-
ments with respect to Θ if and only if the identity PNt+h−Nt|Θ = PNh|Θ holds for all
t, h ∈ R+.

4.1.1 Lemma. If the claim number process has conditionally stationary increments
with respect to Θ, then it has stationary increments.

Proof. For all m∈N and t0, t1, . . . , tm, h ∈ R+ such that 0= t0 <t1 < . . . <tm and
for all k1, . . . , km ∈ N0, we have

P

[
m⋂

j=1

{Ntj+h−Ntj−1+h = kj}
]

=

∫

Ω

P

(
m⋂

j=1

{Ntj+h−Ntj−1+h = kj}
∣∣∣∣∣ Θ(ω)

)
dP (ω)

=

∫

Ω

P

(
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣ Θ(ω)

)
dP (ω)

= P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
,

as was to be shown. 2

By contrast, a claim number process having conditionally independent increments
with respect to Θ need not have independent increments; see Theorem 4.2.6 below.

The following lemma is immediate from the properties of conditional expectation:

4.1.2 Lemma. If the claim number process {Nt}t∈R+
has finite expectations, then

the identities
E[Nt] = E[E(Nt|Θ)]

and
var [Nt] = E[var (Nt|Θ)] + var [E(Nt|Θ)]

hold for all t ∈ R+.

The second identity of Lemma 4.1.2 is called the variance decomposition.
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4.2 The Mixed Poisson Process

The claim number process {Nt}t∈R+
is a mixed Poisson process with parameter Θ if

Θ is a random variable satisfying PΘ[(0,∞)] = 1 and if {Nt}t∈R+
has conditionally

stationary independent increments with respect to Θ such that PNt|Θ = P(tΘ) holds
for all t ∈ (0,∞).

We first collect some basic properties of the mixed Poisson process:

4.2.1 Lemma. If the claim number process {Nt}t∈R+
is a mixed Poisson process,

then it has stationary increments and satisfies

P [{Nt = n}] > 0

for all t ∈ (0,∞) and n ∈ N0.

Proof. By Lemma 4.1.1, the claim number process {Nt}t∈R+
has stationary

increments. Moreover, we have

P [{Nt = n}] =

∫

Ω

e−tΘ(ω) (tΘ(ω))n

n!
dP (ω)

=

∫

R
e−tϑ (tϑ)n

n!
dPΘ(ϑ) ,

and thus P [{Nt = n}] > 0. 2

An obvious question to ask is whether or not a mixed Poisson process can have
independent increments. We shall answer this question at the end of this section.

The following result is a partial generalization of Lemma 2.3.1:

4.2.2 Lemma (Multinomial Criterion). If the claim number process {Nt}t∈R+

is a mixed Poisson process, then the identity

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣{Ntm = n}
]

=
n!∏m

j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm and
for all n ∈ N0 and k1, . . . , km ∈ N0 such that

∑m
j=1 kj = n.

Proof. We have

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj} ∩ {Ntm = n}

]

= P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
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=

∫

Ω

P

(
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣ Θ(ω)

)
dP (ω)

=

∫

Ω

m∏
j=1

P ({Ntj−Ntj−1
= kj}|Θ(ω)) dP (ω)

=

∫

Ω

m∏
j=1

e−(tj−tj−1)Θ(ω) ((tj−tj−1)Θ(ω))kj

kj!
dP (ω)

=
n!∏m

j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

·
∫

Ω

e−tmΘ(ω) (tmΘ(ω))n

n!
dP (ω)

as well as

P [{Ntm = n}] =

∫

Ω

e−tmΘ(ω) (tmΘ(ω))n

n!
dP (ω) ,

and thus

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

∣∣∣∣∣ {Ntm = n}
]

=

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj} ∩ {Ntm = n}

]

P [{Ntm = n}]

=

n!∏m
j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

·
∫

Ω

e−tmΘ(ω) (tmΘ(ω))n

n!
dP (ω)

∫

Ω

e−tmΘ(ω) (tmΘ(ω))n

n!
dP (ω)

=
n!∏m

j=1 kj!

m∏
j=1

(
tj−tj−1

tm

)kj

,

as was to be shown. 2

In the case m = 2, the multinomial criterion is called Lundberg’s binomial criterion.

The multinomial criterion allows to check the assumption that the claim number
process is a mixed Poisson process and is useful to compute the finite dimensional
distributions of a mixed Poisson process.

As a first consequence of the multinomial criterion, we show that every mixed Poisson
process is a Markov process:

4.2.3 Theorem. If the claim number process is a mixed Poisson process, then it
is a Markov process.
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Proof. Consider m ∈ N, t1, . . . , tm, tm+1 ∈ (0,∞), and n1, . . . , nm, nm+1 ∈ N0

such that t1 < . . . < tm < tm+1 and P [
⋂m

j=1{Ntj = nj}] > 0. Define t0 := 0 and
n0 := 0. Because of the multinomial criterion, we have

P

[
{Ntm+1 = nm+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = nj}
]

=

P

[
m+1⋂
j=1

{Ntj = nj}
]

P

[
m⋂

j=1

{Ntj = nj}
]

=

P

[
m+1⋂
j=1

{Ntj−Ntj−1
= nj−nj−1}

]

P

[
m⋂

j=1

{Ntj−Ntj−1
= nj−nj−1}

]

=

P

[
m+1⋂
j=1

{Ntj−Ntj−1
= nj−nj−1}

∣∣∣∣∣ {Ntm+1 = nm+1}
]
· P [{Ntm+1 = nm+1}]

P

[
m⋂

j=1

{Ntj−Ntj−1
= nj−nj−1}

∣∣∣∣∣ {Ntm = nm}
]
· P [{Ntm = nm}]

=

nm+1!∏m+1
j=1 (nj−nj−1)!

m+1∏
j=1

(
tj − tj−1

tm+1

)nj−nj−1

· P [{Ntm+1 = nm+1}]

nm!∏m
j=1(nj−nj−1)!

m∏
j=1

(
tj − tj−1

tm

)nj−nj−1

· P [{Ntm = nm}]

=

(
nm+1

nm

)(
tm

tm+1

)nm
(

tm+1 − tm
tm+1

)nm+1−nm

· P [{Ntm+1 = nm+1}]
P [{Ntm = nm}]

as well as

P [{Ntm+1 = nm+1}|{Ntm = nm}]
= P [{Ntm = nm}|{Ntm+1 = nm+1}] ·

P [{Ntm+1 = nm+1}]
P [{Ntm = nm}]

=

(
nm+1

nm

)(
tm

tm+1

)nm
(

tm+1 − tm
tm+1

)nm+1−nm

· P [{Ntm+1 = nm+1}]
P [{Ntm = nm}] ,

and hence

P

[
{Ntm+1 = nm+1}

∣∣∣∣∣
m⋂

j=1

{Ntj = nj}
]

= P [{Ntm+1 = nm+1}|{Ntm = nm}] .

This proves the assertion. 2
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4.2.4 Theorem. If the claim number process is a mixed Poisson process with
parameter Θ such that Θ has finite moments of any order, then it is regular and
satisfies

pn,n+k(t, t+h) =
hk

k!
· E[e−(t+h)Θ Θn+k]

E[e−tΘ Θn]

for each admissible pair (n, t) and all k ∈ N0 and h ∈ (0,∞) and with intensities
{λn}n∈N satisfying

λn(t) =
E[e−tΘ Θn]

E[e−tΘ Θn−1]

for all n ∈ N and t ∈ R+.

Proof. Because of the multinomial criterion, we have

pn,n+k(t, t+h) = P [{Nt+h = n + k}|{Nt = n}]
= P [{Nt = n}|{Nt+h = n + k}] · P [{Nt+h = n + k}]

P [{Nt = n}]

=

(
n + k

n

)(
t

t + h

)n (
h

t + h

)k

·

∫

Ω

e(t+h)Θ ((t+h)Θ)n+k

(n+k)!
dP

∫

Ω

etΘ (tΘ)n

n!
dP

=
hk

k!
· E[e−(t+h)Θ Θn+k]

E[e−tΘ Θn]
.

Let us now prove the assertion on regularity.
First, Lemma 4.2.1 yields P [{Nt = n}] > 0, which proves (i).
Second, since

pn,n(t, t+h) =
E[e−(t+h)Θ Θn]

E[e−tΘ Θn]
;

the function h 7→ pn,n(t, t+h) is continuous, which proves (ii).
Finally, we have

lim
h→0

1

h

(
1− pn,n(t, t+h)

)
= lim

h→0

1

h

(
1− E[e−(t+h)Θ Θn]

E[e−tΘ Θn]

)

=
E[e−tΘ Θn+1]

E[e−tΘ Θn]

as well as

lim
h→0

1

h
pn,n+1(t, t+h) = lim

h→0

1

h
h

E[e−(t+h)Θ Θn+1]

E[e−tΘ Θn]

=
E[e−tΘ Θn+1]

E[e−tΘ Θn]
.

This proves (iii).



4.2 The Mixed Poisson Process 91

We have thus shown that {Nt}t∈R+
is regular with intensities {λn}n∈N satisfying

λn(t) =
E[e−tΘ Θn]

E[e−tΘ Θn−1]

for all n ∈ N and t ∈ R+. 2

The following result provides another possibility to check the assumption that the
claim number process is a mixed Poisson process and can be used to estimate the
expectation and the variance of the structure distribution of a mixed Poisson process:

4.2.5 Lemma. If the claim number process {Nt}t∈R+
is a mixed Poisson process

with parameter Θ such that Θ has finite expectation, then the identities

E[Nt] = t E[Θ]

and
var [Nt] = t E[Θ] + t2 var [Θ]

hold for all t∈R+; in particular, the probability of explosion is equal to zero.

Proof. The identities for the moments are immediate from Lemma 4.1.2, and the
final assertion follows from Corollary 2.1.5. 2

Thus, if the claim number process {Nt}t∈R+
is a mixed Poisson process such that

the structure distribution is nondegenerate and has finite expectation, then, for all
t ∈ (0,∞), the variance of Nt strictly exceeds the expectation of Nt; moreover, the
variance of Nt is of order t2 while the expectation of Nt is of order t.

We can now answer the question whether a mixed Poisson process can have inde-
pendent increments:

4.2.6 Theorem. If the claim number process {Nt}t∈R+
is a mixed Poisson pro-

cess with parameter Θ such that Θ has finite expectation, then the following are
equivalent :
(a) The distribution of Θ is degenerate.
(b) The claim number process {Nt}t∈R+

has independent increments.
(c) The claim number process {Nt}t∈R+

is an inhomogeneous Poisson process.
(d) The claim number process {Nt}t∈R+

is a (homogeneous) Poisson process.

Proof. Obviously, (a) implies (d), (d) implies (c), and (c) implies (b).
Because of Lemma 4.2.5 and Theorem 2.3.4, (b) implies (d).
Assume now that {Nt}t∈R+

is a Poisson process. Then we have

E[Nt] = var [Nt]

for all t ∈ R+, and Lemma 4.2.5 yields var [Θ] = 0, which means that the structure
distribution is degenerate. Therefore, (d) implies (a). 2



92 Chapter 4 The Mixed Claim Number Process

Problems
4.2.A Assume that the claim number process is a mixed Poisson process with parameter

Θ such that Θ has finite moments of any order. Then it has differentiable inten-
sities {λn}n∈N satisfying

λ′n(t)
λn(t)

= λn(t)− λn+1(t)

for all n ∈ N and t ∈ R+.

4.2.B Assume that the claim number process is a mixed Poisson process with parameter
Θ such that Θ has finite moments of any order. Then the following are equivalent:
(a) The intensities are all identical.
(b) The intensities are all constant.
(c) The claim number process is a homogeneous Poisson process.

4.2.C Estimation: Assume that the claim number process {Nt}t∈R+
is a mixed

Poisson process with parameter Θ such that Θ has a nondegenerate distribution
and a finite second moment, and define α = E[Θ]/var [Θ] and γ = E[Θ]2/var [Θ].
Then the inequality

E

[(
Θ− γ + Nt

α + t

)2
]
≤ E[(Θ− (a + bNt))2]

holds for all t ∈ R+ and for all a, b ∈ R.

4.2.D Operational Time: If the claim number process is a mixed Poisson process for
which an operational time exists, then there exist α, γ ∈ (0,∞) such that the
intensities satisfy

λn(t) =
γ + n− 1

α + t

for all n ∈ N and t ∈ R+.
Hint : Use Problems 4.2.A and 3.4.C.

4.2.E Discrete Time Model: The claim number process {Nl}l∈N0
is a mixed binomial

process with parameter Θ if PΘ[(0, 1)}] = 1 and if {Nl}l∈N0
has conditionally

stationary independent increments with respect to Θ such that PNl
= B(l, Θ)

holds for all l ∈ N.
If the claim number process is a mixed binomial process, then it has stationary
increments.

4.2.F Discrete Time Model: If the claim number process {Nl}l∈N0
is a mixed bino-

mial process, then the identity

P




m⋂

j=1

{Nlj−Nlj−1
= kj}

∣∣∣∣∣∣
{Nlm = n}


 =

m∏

j=1

(
lj − lj−1

kj

)
·
(

lm
n

)−1

holds for all m ∈ N and l0, l1, . . . , lm ∈ N0 such that 0 = l0 < l1 < . . . < lm and
for all n ∈ N0 and k1, . . . , km ∈ N0 such that kj ≤ lj− lj−1 for all j ∈ {1, . . . , m}
and such that

∑m
j=1 kj = n.
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4.2.G Discrete Time Model: If the claim number process is a mixed binomial pro-
cess, then it is a Markov process.

4.2.H Discrete Time Model: If the claim number process {Nl}l∈N0
is a mixed bino-

mial process with parameter Θ, then the identities

E[Nl] = l E[Θ]

and
var [Nl] = l E[Θ−Θ2] + l2 var [Θ]

hold for all l ∈ N0.

4.2.I Discrete Time Model: If the claim number process {Nl}l∈N0
is a mixed bino-

mial process with parameter Θ, then the following are equivalent:
(a) The distribution of Θ is degenerate.
(b) The claim number process {Nl}l∈N0

has independent increments.
(c) The claim number process {Nl}l∈N0

is a binomial process.

4.2.J Discrete Time Model: Assume that the claim number process {Nl}l∈N0
is a

mixed binomial process with parameter Θ such that Θ has a nondegenerate dis-
tribution, and define α = E[Θ−Θ2]/var [Θ] and γ = α E[Θ]. Then the inequality

E

[(
Θ− γ + Nl

α + l

)2
]
≤ E[(Θ− (a + bNl))2]

holds for all l ∈ N0 and for all a, b ∈ R.

4.3 The Pólya–Lundberg Process

The claim number process {Nt}t∈R+
is a Pólya–Lundberg process with parameters

α and γ if it is a mixed Poisson process with parameter Θ such that PΘ = Ga(α, γ).

4.3.1 Theorem. If the claim number process {Nt}t∈R+
is a Pólya–Lundberg

process with parameters α and γ, then the identity

P

[
m⋂

j=1

{Ntj = nj}
]

=
Γ(γ + nm)

Γ(γ)
∏m

j=1(nj−nj−1)!

(
α

α + tm

)γ m∏
j=1

(
tj−tj−1

α + tm

)nj−nj−1

holds for all m ∈ N, for all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm,
and for all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ . . . ≤ nm; in particular, the
claim number process {Nt}t∈R+

has stationary dependent increments and satisfies

PNt = NB

(
γ,

α

α + t

)

for all t ∈ (0,∞) and

PNt+h−Nt|Nt = NB

(
γ + Nt,

α + t

α + t + h

)

for all t, h ∈ (0,∞).
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Proof. Because of Lemma 4.2.1 and Theorem 4.2.6, is it clear that the claim
number process has stationary dependent increments.
Let us now prove the remaining assertions:
(1) We have

P [{Nt = n}]

=

∫

Ω

P ({Nt = n}|Θ(ω)) dP (ω)

=

∫

Ω

e−tΘ(ω) (tΘ(ω))n

n!
dP (ω)

=

∫

R
e−tϑ (tϑ)n

n!
dPΘ(ϑ)

=

∫

R
e−tϑ (tϑ)n

n!

αγ

Γ(γ)
e−αϑ ϑγ−1 χ(0,∞)(ϑ) dλ(ϑ)

=
Γ(γ + n)

Γ(γ) n!

(
α

α + t

)γ (
t

α + t

)n

·
∫

R

(α + t)γ+n

Γ(γ + n)
e−(α+t)ϑ ϑγ+n−1 χ(0,∞)(ϑ) dλ(ϑ)

=

(
γ + n− 1

n

)(
α

α + t

)γ (
t

α + t

)n

,

and hence

PNt = NB

(
γ,

α

α + t

)
.

(2) Because of the multinomial criterion and (1), we have

P

[
m⋂

j=1

{Ntj = nj}
]

= P

[
m⋂

j=1

{Ntj = nj}
∣∣∣∣∣{Ntm = nm}

]
· P [{Ntm = nm}]

= P

[
m⋂

j=1

{Ntj−Ntj−1
= nj−nj−1}

∣∣∣∣∣{Ntm = nm}
]
· P [{Ntm = nm}]

=
nm!∏m

j=1(nj−nj−1)!

m∏
j=1

(
tj−tj−1

tm

)nj−nj−1

·
(

γ + nm−1

nm

)(
α

α + tm

)γ(
tm

α + tm

)nm

=
Γ(γ + nm)

Γ(γ)
∏m

j=1(nj−nj−1)!

(
α

α + tm

)γ m∏
j=1

(
tj−tj−1

α + tm

)nj−nj−1

.
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(3) Because of (2) and (1), we have

P [{Nt+h = n + k} ∩ {Nt = n}]

=
Γ(γ + n + k)

Γ(γ) n! k!

(
α

α + t + h

)γ (
t

α + t + h

)n (
h

α + t + h

)k

and

P [{Nt = n}] =
Γ(γ + n)

Γ(γ) n!

(
α

α + t

)γ (
t

α + t

)n

,

hence

P [{Nt+h−Nt = k}|{Nt = n}]

=
P [{Nt+h−Nt = k} ∩ {Nt = n}]

P [{Nt = n}]
=

P [{Nt+h = n+k} ∩ {Nt = n}]
P [{Nt = n}]

=

Γ(γ + n + k)

Γ(γ) n! k!

(
α

α + t + h

)γ (
t

α + t + h

)n (
h

α + t + h

)k

Γ(γ + n)

Γ(γ) n!

(
α

α + t

)γ (
t

α + t

)n

=

(
γ + n + k − 1

k

)(
α + t

α + t + h

)γ+n (
h

α + t + h

)k

,

and thus

PNt+h−Nt|Nt = NB

(
γ + Nt,

α + t

α + t + h

)
.

This completes the proof. 2

By Theorem 4.3.1, the Pólya–Lundberg process is not too difficult to handle since
its finite dimensional distributions are completely known although its increments
are not independent.

As an immediate consequence of Theorem 4.3.1, we see that the Pólya–Lundberg
process has positive contagion:

4.3.2 Corollary (Positive Contagion). If the claim number process {Nt}t∈R+

is a Pólya–Lundberg process, then, for all t, h ∈ (0,∞), the function

n 7→ P [{Nt+h ≥ n+1}|{Nt = n}]
is strictly increasing.
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Thus, for the Pólya–Lundberg process, the conditional probability of at least one
claim occurring in the interval (t, t+h] increases with the number of claims already
occurred up to time t.

We complete the discussion of the Pólya–Lundberg process by showing that it is a
regular Markov process which is not homogeneous:

4.3.3 Corollary. If the claim number process {Nt}t∈R+
is a Pólya–Lundberg

process with parameters α and γ, then it is a regular Markov process satisfying

pn,n+k(t, t+h) =

(
γ + n + k − 1

k

)(
α + t

α + t + h

)γ+n (
h

α + t + h

)k

for each admissible pair (n, t) and all k ∈ N0 and h ∈ R+ and with intensities
{λn}n∈N satisfying

λn(t) =
γ + n− 1

α + t
for all n ∈ N and t ∈ R+; in particular, the claim number process {Nt}t∈R+

is not
homogeneous.

Proof. By Theorems 4.2.3 and 4.2.4, the Pólya–Lundberg process is a regular
Markov process.
By Theorem 4.3.1, we have

pn,n+k(t, t+h) = P [{Nt+h = n+k}|{Nt = n}]
= P [{Nt+h−Nt = k}|{Nt = n}]

=

(
γ + n + k − 1

k

)(
α + t

α + t + h

)γ+n (
h

α + t + h

)k

.

This yields

λn+1(t) = lim
h→0

1

h
pn,n+1(t, t+h)

= lim
h→0

1

h
(γ + n)

(
α + t

α + t + h

)γ+n
h

α + t + h

=
γ + n

α + t
,

and thus

λn(t) =
γ + n− 1

α + t
.

Since the intensities are not constant, it follows from Lemma 3.4.1 that the claim
number process is not homogeneous. 2

In conclusion, the Pólya–Lundberg process is a regular Markov process which is
not homogeneous and has stationary dependent increments. The discussion of the
Pólya–Lundberg process thus completes the investigation of regular claim number
processes satisfying the Chapman–Kolmogorov equations.
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Problems
4.3.A Let α, γ ∈ (0,∞). Then the following are equivalent:

(a) The claim number process {Nt}t∈R+
satisfies the Chapman–Kolmogorov

equations and is regular with intensities {λn}n∈N satisfying

λn(t) =
γ + n− 1

α + t

for all n∈N and t∈R+.
(b) The identity

pn,n+k(t, t+h) =
(

γ + n + k − 1
k

) (
α + t

α + t + h

)γ+n (
h

α + t + h

)k

holds for each admissible pair (n, t) and all k∈N0 and h∈R+.
In this case, the claim number process satisfies

PNt = NB
(

γ,
α

α + t

)

for all t∈(0,∞),

PNt+h−Nt = NB
(

γ,
α

α + h

)

for all t, h∈(0,∞), and

P [{Nt+h−Nt = k}|{Nt = n}] =
(

γ + n + k − 1
k

)(
α + t

α + t + h

)γ+n(
h

α + t + h

)k

for all t, h ∈ (0,∞) and all n, k ∈ N0; in particular, the claim number process
has dependent increments and is not homogeneous.
Compare the result with Theorem 4.3.1 and Corollary 4.3.3.

4.3.B If the claim number process {Nt}t∈R+
is a Pólya–Lundberg process with para-

meters α and γ, then
PW1 = Par(α, γ) .

Try to compute PWn and PTn for arbitrary n ∈ N.

4.3.C Prediction: If the claim number process {Nt}t∈R+
is a Pólya–Lundberg process

with parameters α and γ, then the inequality

E

[(
Nt+h −

(
Nt +

α

α + t
· γ

α
+

t

α + t
· Nt

t

)
h

)2
]
≤ E[(Nt+h − Z)2]

holds for all t, h ∈ (0,∞) and for every random variable Z satisfying E[Z2] < ∞
and σ(Z) ⊆ Ft.
Interpret the quotient γ/α and compare the result with Theorem 2.3.5.
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4.3.D Prediction: If the claim number process {Nt}t∈R+
is a Pólya–Lundberg process

with parameters α and γ, then the identity

E(Nt+h−Nt|Nt) =
(

α

α + t
· γ

α
+

t

α + t
· Nt

t

)
h

holds for all t, h ∈ (0,∞).
Interpret the expression in brackets and compare the result with Problem 4.3.C.

4.3.E Estimation: If the claim number process {Nt}t∈R+
is a Pólya–Lundberg process

with parameters α and γ, then the identity

PΘ|Nt
= Ga(α + t, γ + Nt)

and hence
E(Θ|Nt) =

γ + Nt

α + t

holds for all t ∈ R+.
Compare the result with Problems 4.3.D and 4.2.C.

4.3.F Assume that PΘ = Ga(α, γ, δ) with δ ∈ (0,∞). If the claim number process
{Nt}t∈R+

is a mixed Poisson process with parameter Θ, then the identity

P




m⋂

j=1

{Ntj = nj}

 =

nm!∏m
j=1(nj−nj−1)!

·
m∏

j=1

(tj−tj−1)nj−nj−1 · e−δtm

(
α

α + tm

)γ

·
nm∑

k=0

δk

k!

(
γ + nm − k − 1

nm − k

)(
1

α + tm

)nm−k

holds for all m ∈ N, for all t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm
and for all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ . . . ≤ nm; in particular,
the claim number process {Nt}t∈R+

has stationary dependent increments and
satisfies

PNt = Del
(

δt, γ,
α

α + t

)

for all t ∈ (0,∞).

4.3.G Assume that PΘ = Ga(α, γ, δ) with δ ∈ (0,∞). If the claim number process
{Nt}t∈R+

is a mixed Poisson process with parameter Θ, then it is a regular
Markov process satisfying

pn,n+k(t, t+h) =
(

n + k

k

)
hk e−δh

(
α + t

α + t + h

)γ

·

n+k∑

j=0

δj

j!

(
γ + n + k − j − 1

n + k − j

) (
1

α + t + h

)n+k−j

n∑

j=0

δj

j!

(
γ + n− j − 1

n− j

)(
1

α + t + h

)n−j
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for each admissible pair (n, t) and all k ∈ N0 and h ∈ R+ and with intensities
{λn}n∈N satisfying

λn(t) = n ·

n∑

j=0

δj

j!

(
γ + n− j − 1

n− j

)(
1

α + t

)n−j

n−1∑

j=0

δj

j!

(
γ + n− 1− j − 1

n− 1− j

)(
1

α + t

)n−1−j

for all n ∈ N and t ∈ R+; in particular, the claim number process {Nt}t∈R+
is

not homogeneous.

4.3.H Assume that {N ′
t}t∈R+

and {N ′′
t }t∈R+

are independent claim number processes
such that {N ′

t}t∈R+
is a homogeneous Poisson process with parameter δ and

{N ′′
t }t∈R+

is a Pólya–Lundberg process with parameters α and γ. For all t ∈ R+,
define

Nt := N ′
t + N ′′

t .

Show that {Nt}t∈R+
is a claim number process and compute its finite dimensional

distributions.

4.3.I Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number
process {Nl}l∈N0

is a mixed binomial process with parameter Θ, then the identity

P




m⋂

j=1

{Nlj = nj}

 =

m∏

j=1

(
lj − lj−1

nj − nj−1

)

(
lm
nm

) ·

(
α + nm − 1

nm

)(
β + lm − nm − 1

lm − nm

)

(
α + β + lm − 1

lm

)

holds for all m ∈ N, for all l0, l1, . . . , lm ∈ N0 such that 0 = l0 < l1 < . . . < lm,
and for all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ . . . ≤ nm and such
that nj ≤ lj holds for all j ∈ {1, . . . ,m}; in particular, the claim number process
{Nl}l∈N0

has stationary dependent increments and satisfies

PNm = NH(m,α, β)

for all m ∈ N, and

PNm+l−Nm|Nm
= NH(l, α+Nm, β+m−Nm)

for all m ∈ N0 and l ∈ N.

4.3.J Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number
process {Nl}l∈N0

is a mixed binomial process with parameter Θ, then the identity

PW1 [{k}] =
B(α+1, β+k−1)

B(α, β)

holds for all k ∈ N.
Try to compute PWn and PTn for arbitrary n ∈ N.
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4.3.K Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number
process {Nl}l∈N0

is a mixed binomial process with parameter Θ, then it is a
Markov process satisfying

pn,n+k(m,m+l) =

(
α + n + k − 1

k

)(
β + m− n + l − k − 1

l − k

)

(
α + β + m + l − 1

l

)

for all m, l ∈ N0, n ∈ {0, 1, . . . ,m} and k ∈ {0, 1, . . . ,m + l − n}; in particular,
the claim number process {Nl}l∈N0

is not homogeneous.

4.3.L Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number pro-
cess {Nl}l∈N0

is a mixed binomial process with parameter Θ, then the inequality

E

[(
Nm+l −

(
Nm +

α+β

α+β+m
· E[Θ] +

m

α+β+m
· Nm

m

)
l

)2
]
≤ E[(Nm+l−Z)2]

holds for all m, l ∈ N and for every random variable Z satisfying E[Z2] < ∞ and
σ(Z) ⊆ Fm.
Compare the result with Problem 2.3.F.

4.3.M Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number
process {Nl}l∈N0

is a mixed binomial process with parameter Θ, then the identity

E(Nm+l−Nm|Nm) =
(

α + β

α + β + m
· E[Θ] +

m

α + β + m
· Nm

m

)
l

holds for all m, l ∈ N.

4.3.N Discrete Time Model: Assume that PΘ = Be(α, β). If the claim number
process {Nl}l∈N0

is a mixed binomial process with parameter Θ, then the identity

PΘ|Nm
= Be(α + Nm, β + m−Nm)

and hence
E(Θ|Nm) =

α + Nm

α + β + m

holds for all m ∈ N0.

4.4 Remarks

The background of the model discussed in this chapter may become clearer if we
agree to distinguish between insurer’s portfolios and abstract portfolios. An insurer’s
portfolio is, of course, a group of risks insured by the same insurance company; by
contrast, an abstract portfolio is a group of risks which are distributed among one or
more insurance companies. Homogeneous insurer’s portfolios tend to be small, but
homogeneous abstract portfolios may be large. Therefore, it seems to be reasonable
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to combine information from all insurance companies engaged in the same insurance
business in order to model the claim number processes of homogeneous abstract
portfolios. This gives reliable information on the conditional distribution of the
claim number process of each insurer’s portfolio. The single insurance company is
then left with the appropriate choice of the structure distribution of its own portfolio.

The interpretation of the mixed claim number process may be extended as follows:
Until now, we have assumed that an inhomogeneous insurer’s portfolio is a mixture
of abstract portfolios which are homogeneous. In some classes of nonlife insurance
like industrial fire risks insurance, however, it is difficult to imagine portfolios which
are homogeneous and sufficiently large to provide reliable statistical information. It
is therefore convenient to modify the model by assuming that a rather inhomoge-
neous insurer’s portfolio is a mixture of rather homogeneous abstract portfolios – the
mathematics of mixing does not change at all. Once this generalization is accepted,
we may also admit more than two levels of inhomogeneity and mix rather homoge-
neous portfolios to describe more and more inhomogeneous portfolios. In any case,
the level of inhomogeneity of a portfolio is reflected by the variance of the structure
distribution, which is equal to zero if and only if the portfolio is homogeneous.

There is still another variant of the interpretations given so far: The mixed claim
number process may interpreted as the claim number process of a single risk selected
at random from an inhomogeneous portfolio of risks which are similar but distinct
and which can be characterized by a realization of the structure parameter which is
not observable. This interpretation provides a link between claim number processes
or aggregate claims processes and experience rating – a theory of premium calculation
which, at its core, is concerned with optimal prediction of future claim numbers or
claim severities of single risks, given individual claims experience in the past as well
as complete or partial information on the structure of the portfolio from which the
risk was selected. An example of an optimal prediction formula for future claim
numbers is given in Problem 4.3.C. For an introduction to experience rating, see
Sundt [1984, 1991, 1993] and Schmidt [1992].

According to Seal [1983], the history of the mixed Poisson process dates back to
a paper of Dubourdieu [1938] who proposed it as a model in automobile insurance
but did not compare the model with statistical data. Two years later, the mixed
Poisson process became a central topic in the famous book by Lundberg [1940]
who developed its mathematical theory and studied its application to sickness and
accident insurance. Still another application was suggested by Hofmann [1955] who
studied the mixed Poisson process as a model for workmen’s compensation insurance.

For further details on the mixed Poisson process, it is worth reading Lundberg
[1940]; see also Albrecht [1981], the surveys by Albrecht [1985] and Pfeifer [1986],
and the recent manuscript by Grandell [1995]. Pfeifer [1982a, 1982b] and Gerber
[1983] studied asymptotic properties of the claim arrival process induced by a Pólya–
Lundberg process, and Pfeifer and Heller [1987] and Pfeifer [1987] characterized the



102 Chapter 4 The Mixed Claim Number Process

mixed Poisson process in terms of the martingale property of certain transforms of
the claim arrival process. The mixed Poisson process with a structure parameter
having a three–parameter Gamma distribution was first considered by Delaporte
[1960, 1965], and further structure distributions were discussed by Tröblinger [1961],
Kupper [1962], Albrecht [1981], and Gerber [1991]. These authors, however, studied
only the one–dimensional distributions of the resulting claim number processes.

In order to select a claim number process as a model for given data, it is useful to
recall some criteria which are fulfilled for certain claim number processes but fail for
others. The following criteria refer to the inhomogeneous Poisson process and the
mixed Poisson process, each of them including the homogeneous Poisson process as
a special case:
– Independent increments : The inhomogeneous Poisson process has independent

increments, but the mixed Poisson process with a nondegenerate structure dis-
tribution has not.

– Stationary increments : The mixed Poisson process has stationary increments,
but the inhomogeneous Poisson process with a nonconstant intensity has not.

– Multinomial criterion: The multinomial criterion with probabilities propertional
to time intervals holds for the mixed Poisson process, but it fails for the inhomo-
geneous Poisson process with a nonconstant intensity.

– Moment inequality : The moment inequality,

E[Nt] ≤ var [Nt]

for all t ∈ (0,∞), is a strict inequality for the mixed Poisson process with a
nondegenerate structure distribution, but it is an equality for the inhomogeneous
Poisson process.

Once the type of the claim number process has been selected according to the
previous criteria, the next step should be to choose parameters and to examine the
goodness of fit of the theoretical finite dimensional distributions to the empirical
ones.

Automobile insurance was not only the godfather of the mixed Poisson process when
it was introduced in risk theory by Dubourdieu [1938] without reference to statistical
data; it still is the most important class of insurance in which the mixed Poisson
process seems to be a good model for the empirical claim number process. This is
indicated in the papers by Thyrion [1960], Delaporte [1960, 1965], Tröblinger [1961],
Derron [1962], Bichsel [1964], and Ruohonen [1988], and in the book by Lemaire
[1985]. As a rule, however, these authors considered data from a single period only
and hence compared one–dimensional theoretical distributions with empirical ones.
In order to model the development of claim numbers in time, it would be necessary
to compare the finite dimensional distributions of selected claim number processes
with those of empirical processes.



Chapter 5

The Aggregate Claims Process

In the present chapter we introduce and study the aggregate claims process. We first
extend the model considered so far (Section 5.1) and then establish some general
results on compound distributions (Section 5.2). It turns out that aggregate claims
distributions can be determined explicitly only in a few exceptional cases. However,
the most important claim number distributions can be characterized by a simple
recursion formula (Section 5.3) and admit the recursive computation of aggregate
claims distributions and their moments when the claim size distribution is discrete
(Section 5.4).

5.1 The Model

Throughout this chapter, let {Nt}t∈R+
be a claim number process and let {Tn}n∈N0

be the claim arrival process induced by the claim number process. We assume that
the exceptional null set is empty and that the probability of explosion is equal to
zero.

Furthermore, let {Xn}n∈N be a sequence of random variables. For t ∈ R+, define

St :=
Nt∑

k=1

Xk

=
∞∑

n=0

χ{Nt=n}
n∑

k=1

Xk .

Of course, we have S0 = 0.

Interpretation:
– Xn is the claim amount or claim severity or claim size of the nth claim.
– St is the aggregate claims amount of the claims occurring up to time t.
Accordingly, the sequence {Xn}n∈N is said to be the claim size process, and the
family {St}t∈R+

is said to be the aggregate claims process induced by the claim
number process and the claim size process.
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For the remainder of this chapter, we assume that the sequence {Xn}n∈N is i. i. d.
and that the claim number process {Nt}t∈R+

and the claim size process {Xn}n∈N
are independent.

0 -

s

6

0 T1(ω) T2(ω) T3(ω) T4(ω) T5(ω)

t•
•

•

•

•
• St(ω)

Claim Arrival Process and Aggregate Claims Process

Our first result gives a formula for the computation of aggregate claims distributions:

5.1.1 Lemma. The identity

P [{St ∈ B}] =
∞∑

n=0

P [{Nt = n}] P
[{

n∑

k=1

Xk ∈ B

}]

holds for all t ∈ R+ and B ∈ B(R).

Proof. We have

P [{St ∈ B}] = P

[{
Nt∑

k=1

Xk ∈ B

}]

= P

[ ∞∑
n=0

{Nt = n}∩
{

n∑

k=1

Xk ∈ B

}]

=
∞∑

n=0

P [{Nt = n}] P
[{

n∑

k=1

Xk ∈ B

}]
,

as was to be shown. 2
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For s, t ∈ R+ such that s ≤ t, the increment of the aggregate claims process
{St}t∈R+

on the interval (s, t] is defined to be

St − Ss :=
Nt∑

k=Ns+1

Xk .

Since S0 = 0, this is in accordance the definition of St; in addition, we have

St(ω) = (St−Ss)(ω) + Ss(ω) ,

even if Ss(ω) is infinite. For the aggregate claims process, the properties of having
independent or stationary increments are defined in the same way as for the claim
number process.

5.1.2 Theorem. If the claim number process has independent increments, then
the same is true for the aggregate claims process.

Proof. Consider m ∈ N, t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm, and
B1, . . . , Bm ∈ B(R). For all n0, n1, . . . , nm ∈ N0 such that 0 = n0 ≤ n1 ≤ . . . ≤ nm,
we have

P

[(
m⋂

j=1

{
Ntj = nj

}
)
∩

(
m⋂

j=1

{
nj∑

k=nj−1+1

Xk ∈ Bj

})]

= P

[
m⋂

j=1

{
Ntj = nj

}
]
· P

[
m⋂

j=1

{
nj∑

k=nj−1+1

Xk ∈ Bj

}]

= P

[
m⋂

j=1

{Ntj−Ntj−1
= nj−nj−1}

]
· P

[
m⋂

j=1

{
nj∑

k=nj−1+1

Xk ∈ Bj

}]

=
m∏

j=1

P [{Ntj−Ntj−1
= nj−nj−1}] ·

m∏
j=1

P

[{
nj∑

k=nj−1+1

Xk ∈ Bj

}]

=
m∏

j=1

(
P [{Ntj−Ntj−1

= nj−nj−1}] P

[{
nj−nj−1∑

k=1

Xk ∈ Bj

}])
.

This yields

P

[
m⋂

j=1

{
Stj−Stj−1

∈ Bj

}
]

= P

[
m⋂

j=1

{ Ntj∑

k=Ntj−1+1

Xk ∈ Bj

}]
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= P

[ ∞∑
n1=0

∞∑
n2=n1

· · ·
∞∑

nm=nm−1

(
m⋂

j=1

{
Ntj = nj

}
)
∩

(
m⋂

j=1

{
Nj∑

k=Nj−1+1

Xk ∈ Bj

})]

=
∞∑

n1=0

∞∑
n2=n1

· · ·
∞∑

nm=nm−1

P

[(
m⋂

j=1

{
Ntj = nj

}
)
∩

(
m⋂

j=1

{
nj∑

k=nj−1+1

Xk ∈ Bj

})]

=
∞∑

n1=0

∞∑
n2=n1

· · ·
∞∑

nm=nm−1

m∏
j=1

(
P [{Ntj−Ntj−1

= nj−nj−1}] P

[{
nj−nj−1∑

k=1

Xk ∈ Bj

}])

=
∞∑

l1=0

∞∑

l2=0

· · ·
∞∑

lm=0

m∏
j=1

(
P [{Ntj−Ntj−1

= lj}] P

[{
lj∑

k=1

Xk ∈ Bj

}])

=
m∏

j=1

( ∞∑

lj=0

P [{Ntj−Ntj−1
= lj}] P

[{
lj∑

k=1

Xk ∈ Bj

}])
.

The assertion follows. 2

5.1.3 Theorem. If the claim number process has stationary independent incre-
ments, then the same is true for the aggregate claims process.

Proof. By Theorem 5.1.2, the aggregate claims process has independent incre-
ments.
Consider t, h ∈ R+. For all B ∈ B(R), Lemma 5.1.1 yields

P
[{

St+h−St ∈ B
}]

= P

[{
Nt+h∑

k=Nt+1

Xk ∈ B

}]

= P

[ ∞∑
n=0

∞∑
m=0

{Nt = n}∩{Nt+h−Nt = m}∩
{

n+m∑

k=n+1

Xk ∈ B

}]

=
∞∑

n=0

∞∑
m=0

P [{Nt = n}] P [{Nt+h−Nt = m}] P
[{

n+m∑

k=n+1

Xk ∈ B

}]

=
∞∑

n=0

P [{Nt = n}]
∞∑

m=0

P [{Nh = m}] P
[{

m∑

k=1

Xk ∈ B

}]

=
∞∑

m=0

P [{Nh = m}] P
[{

m∑

k=1

Xk ∈ B

}]

= P [{Sh ∈ B}] .

Therefore, the aggregate claims process has also stationary increments. 2
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The assumption of Theorem 5.1.3 is fulfilled when the claim number process is
a Poisson process; in this case, the aggregate claims process is also said to be a
compound Poisson process.

Interpretation: For certain claim size distributions, the present model admits
interpretations which differ from the one presented before. Of course, if the claim
size distribution satisfies PX [{1}] = 1, then the aggregate claims process is identical
with the claim number process. More generally, if the claim size distribution satisfies
PX [N] = 1, then the following interpretation is possible:
– Nt is the number of claim events up to time t,
– Xn is the number of claims occurring at the nth claim event, and
– St is the total number of claims up to time t.
This shows the possibility of applying our model to an insurance business in which
two or more claims may occur simultaneously.

Further interesting interpretations are possible when the claim size distribution is a
Bernoulli distribution:

5.1.4 Theorem (Thinned Claim Number Process). If the claim size dis-
tribution is a Bernoulli distribution, then the aggregate claims process is a claim
number process.

Proof. Since PX is a Bernoulli distribution, there exists a null set ΩX ∈ F such
that

Xn(ω) ∈ {0, 1}

holds for all n ∈ N and ω ∈ Ω\ΩX . Furthermore, since E[X] > 0, the Chung–Fuchs
theorem yields the existence of a null set Ω∞ ∈ F such that

∞∑
n=1

Xk(ω) = ∞

holds for all ω ∈ Ω \ Ω∞. Define

ΩS := ΩX ∪ Ω∞ .

It now follows from the properties of the claim number process {Nt}t∈R+
and the

previous remarks that the aggregate claims process {St}t∈R+
is a claim number

process with exceptional null set ΩS. 2

Comment: Thinned claim number processes occur in the following situations:
– Assume that PX = B(η). If η is interpreted as the probability for a claim to

be reported, then Nt is the number of occurred claims and St is the number of
reported claims, up to time t.
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– Consider a sequence of random variables {Yn}n∈N which is i. i. d. and assume
that {Nt}t∈R+

and {Yn}n∈N are independent. Consider also c ∈ (0,∞) and
assume that η := P [{Y > c}] ∈ (0, 1). Then the sequence {Xn}n∈N, given by
Xn := χ{Yn>c}, is i. i. d. such that PX = B(η), and {Nt}t∈R+

and {Xn}n∈N are
independent. If Yn is interpreted as the size of the nth claim, then Nt is the
number of occurred claims and St is the number of large claims (exceeding c),
up to time t. This is of interest in excess of loss reinsurance, or XL reinsurance
for short, where the reinsurer assumes responsibility for claims exceeding the
priority c.

A particularly interesting result on thinned claim number processes is the following:

5.1.5 Corollary (Thinned Poisson Process). If the claim number process is
a Poisson process with parameter α and if the claim size distribution is a Bernoulli
distribution with parameter η, then the aggregate claims process is a Poisson process
with parameter αη.

Proof. By Theorem 5.1.3, the aggregate claims process has stationary independent
increments.
Consider t ∈ (0,∞). By Lemma 5.1.1, we have

P [{St = m}] =
∞∑

n=0

P [{Nt = n}] P
[{

n∑

k=1

Xk = m

}]

=
∞∑

n=m

e−αt (αt)n

n!

(
n

m

)
ηm(1−η)n−m

=
∞∑

n=m

e−αηt (αηt)m

m!
e−α(1−η)t (α(1−η)t)n−m

(n−m)!

= e−αηt (αηt)m

m!

∞∑
j=0

e−α(1−η)t (α(1−η)t)j

j!

= e−αηt (αηt)m

m!

for all m ∈ N0, and hence PSt = P(αηt).
Therefore, the aggregate claims process is a Poisson process with parameter αη. 2

We shall return to the thinned claim number process in Chapter 6 below.

Problem
5.1.A Discrete Time Model (Thinned Binomial Process): If the claim number

process is a binomial process with parameter ϑ and if the claim size distribution
is a Bernoulli distribution with parameter η, then the aggregate claims process
is a binomial process with parameter ϑη.



5.2 Compound Distributions 109

5.2 Compound Distributions

In this and the following sections of the present chapter we shall study the problem
of computing the distribution of the aggregate claims amount St at a fixed time t.
To this end, we simplify the notation as follows:

Let N be a random variable satisfying PN [N0] = 1 and define

S :=
N∑

k=1

Xk .

Again, the random variables N and S will be referred to as the claim number and
the aggregate claims amount, respectively.

We assume throughout that N and {Xn}n∈N are independent, and we maintain
the assumption made before that the sequence {Xn}n∈N is i. i. d. In this case, the
aggregate claims distribution PS is said to be a compound distribution and is denoted
by

C(PN , PX) .

Compound distributions are also named after the claim number distribution; for
example, if PN is a Poisson distribution, then C(PN , PX) is said to be a compound
Poisson distribution.

The following result is a reformulation of Lemma 5.1.1:

5.2.1 Lemma. The identity

PS[B] =
∞∑

n=0

PN [{n}] P ∗n
X [B]

holds for all B ∈ B(R).

Although this formula is useful in certain special cases, it requires the computa-
tion of convolutions which may be difficult or at least time consuming. For the
most important claim number distributions and for claim size distributions satis-
fying PX [N0] = 1, recursion formulas for the aggregate claims distribution and its
moments will be given in Section 5.4 below.

In some cases, it is also helpful to look at the characteristic function of the aggregate
claims distribution.

5.2.2 Lemma. The characteristic function of S satisfies

ϕS(z) = mN(ϕX(z)) .
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Proof. For all z ∈ R, we have

ϕS(z) = E
[
eizS

]

= E
[
eiz

∑N

k=1
Xk

]

= E

[ ∞∑
n=0

χ{N=n}e
iz

∑n

k=1
Xk

]

= E

[ ∞∑
n=0

χ{N=n}
n∏

k=1

eizXk

]

=
∞∑

n=0

P [{N = n}]
n∏

k=1

E
[
eizXk

]

=
∞∑

n=0

P [{N = n}] E[
eizX

]n

=
∞∑

n=0

P [{N = n}] ϕX(z)n

= E
[
ϕX(z)N

]

= mN(ϕX(z)) ,

as was to be shown. 2

To illustrate the previous result, let us consider some applications.

Let us first consider the compound Poisson distribution.

5.2.3 Corollary. If PN = P(α), then the characteristic function of S satisfies

ϕS(z) = eα(ϕX(z)−1) .

If the claim number distribution is either a Bernoulli distribution or a logarithmic
distribution, then the computation of the compound Poisson distribution can be
simplified as follows:

5.2.4 Corollary. For all α ∈ (0,∞) and η ∈ (0, 1),

C
(
P(α),B(η)

)
= P(αη) .

5.2.5 Corollary. For all α ∈ (0,∞) and η ∈ (0, 1),

C
(
P(α),Log(η)

)
= NB

(
α

| log(1−η)| , 1−η

)
.
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Thus, the compound Poisson distributions of Corollaries 5.2.4 and 5.2.5 are nothing
else than a Poisson or a negativebinomial distribution, which are easily computed
by recursion; see Theorem 5.3.1 below.

Let us now consider the compound negativebinomial distribution.

5.2.6 Corollary. If PN = NB(α, ϑ), then the characteristic function of S satisfies

ϕS(z) =

(
ϑ

1− (1−ϑ)ϕX(z)

)α

.

A result analogous to Corollary 5.2.4 is the following:

5.2.7 Corollary. For all α ∈ (0,∞) and ϑ, η ∈ (0, 1),

C
(
NB(α, ϑ),B(η)

)
= NB

(
α,

ϑ

ϑ + (1−ϑ)η

)
.

For the compound negativebinomial distribution, we have two further results:

5.2.8 Corollary. For all m ∈ N, ϑ ∈ (0, 1), and β ∈ (0,∞),

C
(
NB(m,ϑ),Exp(β)

)
= C

(
B(m, 1−ϑ),Exp(βϑ)

)
.

5.2.9 Corollary. For all m ∈ N and ϑ, η ∈ (0, 1),

C
(
NB(m,ϑ),Geo(η)

)
= C

(
B(m, 1−ϑ),Geo(ηϑ)

)
.

Corollaries 5.2.8 and 5.2.9 are of interest since the compound binomial distribution
is determined by a finite sum.

Let us now turn to the discussion of moments of the aggregate claims distribution:

5.2.10 Lemma (Wald’s Identities). Assume that E[N ] < ∞ and E|X| < ∞.
Then the expectation and the variance of S exist and satisfy

E[S] = E[N ] E[X]

and

var [S] = E[N ] var [X] + var [N ] E[X]2 .
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Proof. We have

E
[
S
]

= E

[
N∑

k=1

Xk

]

= E

[ ∞∑
n=1

χ{N=n}
n∑

k=1

Xk

]

=
∞∑

n=1

P [{N = n}] E
[

n∑

k=1

Xk

]

=
∞∑

n=1

P [{N = n}] nE[X]

= E[N ] E[X] ,

which is the first identity.
Similarly, we have

E
[
S2

]
= E



(

N∑

k=1

Xk

)2



= E




∞∑
n=1

χ{N=n}

(
n∑

k=1

Xk

)2



=
∞∑

n=1

P [{N = n}] E


(

n∑

k=1

Xk

)2



=
∞∑

n=1

P [{N = n}]

var

[
n∑

k=1

Xk

]
+

(
E

[
n∑

k=1

Xk

])2



=
∞∑

n=1

P [{N = n}]
(
n var [X] + n2 E[X]2

)

= E[N ] var [X] + E[N2] E[X]2 ,

and thus

var [S] = E[S2]− E[S]2

=
(
E[N ] var [X] + E[N2] E[X]2

)
−

(
E[N ] E[X]

)2

= E[N ] var [X] + var [N ] E[X]2 ,

which is the second identity. 2
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5.2.11 Corollary. Assume that PN = P(α) and E|X| < ∞. Then

E[S] = α E[X]

and
var [S] = α E[X2] .

The following general inequalities provide upper bounds for the tail probabilities
P [{S ≥ c}] of the aggregate claims distribution:

5.2.12 Lemma. Let Z be a random variable and let h : R → R+ be a measurable
function which is strictly increasing on R+. Then the inequality

P [{Z ≥ c}] ≤ E[h(|Z|)]
h(c)

holds for all c ∈ (0,∞).

Proof. By Markov’s inequality, we have

P [{Z ≥ c}] ≤ P [{|Z| ≥ c}]
= P [{h(|Z|) ≥ h(c)}]

≤ E[h(|Z|)]
h(c)

,

as was to be shown. 2

5.2.13 Lemma (Cantelli’s Inequality). Let Z be a random variable satisfying
E[Z2] < ∞. Then the inequality

P [{Z ≥ E[Z] + c}] ≤ var [Z]

c2 + var [Z]

holds for all c ∈ (0,∞).

Proof. Define Y := Z −E[Z]. Then we have E[Y ] = 0 and var [Y ] = var [Z]. For
all x ∈ (−c,∞), Lemma 5.2.12 yields

P
[{Z ≥ E[Z] + c}] = P

[{Y ≥ c}]

= P
[{Y + x ≥ c + x}]

≤ E
[
(Y + x)2

]

(c + x)2

=
E[Y 2] + x2

(c + x)2

=
var [Y ] + x2

(c + x)2

=
var [Z] + x2

(c + x)2
.
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The last expression attains its minimum at x = var [Z]/c, and this yields

P
[{Z ≥ E[Z] + c}] ≤

var [Z] +

(
var [Z]

c

)2

(
c +

var [Z]

c

)2

=
c2 var [Z] +

(
var [Z]

)2

(
c2 + var [Z]

)2

=
var [Z]

c2 + var [Z]
,

as was to be shown. 2

Problems
5.2.A Let Q denote the collection of all distributions Q : B(R) → [0, 1] satisfying

Q[N0] = 1. For Q, R ∈ Q, define C(Q,R) by letting

C(Q, R)[B] :=
∞∑

n=0

Q[{n}] R∗n[B]

for all B ∈ B(R). Then C(Q,R) ∈ Q. Moreover, the map C : Q×Q → Q turns
Q into a noncommutative semigroup with neutral element δ1.

5.2.B Ammeter Transform: For all α ∈ (0,∞) and ϑ ∈ (0, 1),

C
(
NB(α, ϑ), PX

)
= C

(
P(α |log(ϑ)|),C(Log(1−ϑ), PX)

)
.

5.2.C Discrete Time Model: For all m ∈ N and ϑ, η ∈ (0, 1),

C
(
B(m,ϑ),B(η)

)
= B(m,ϑη) .

5.2.D Discrete Time Model: For all m ∈ N, ϑ ∈ (0, 1), and β ∈ (0,∞),

C
(
B(m,ϑ),Exp(β)

)
=

m∑

k=0

(
m

k

)
ϑk(1−ϑ)m−k Ga(β, k) ,

where Ga(β, 0) := δ0. Combine the result with Corollary 5.2.8.

5.2.E If E[N ] < ∞ and E|X| < ∞, then

min{E[N ], var [N ]} · E[X2] ≤ var [S] ≤ max{E[N ], var [N ]} · E[X2] .

If PN = P(α), then these lower and upper bounds for var [S] are identical.

5.2.F If E[N ] ∈ (0,∞), PX [R+] = 1 and E[X] ∈ (0,∞), then

v2[S] = v2[N ] +
1

E[N ]
v2[X] .

5.2.G If PN = P(α), PX [R+] = 1 and E[X] ∈ (0,∞), then

v2[S] =
1
α

(
1 + v2[X]

)
.
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5.3 A Characterization of the Binomial, Poisson,
and Negativebinomial Distributions

Throughout this section, let Q : B(R) → [0, 1] be a distribution satisfying

Q[N0] = 1 .

For n ∈ N0, define

qn := Q[{n}] .

The following result characterizes the most important claim number distributions
by a simple recursion formula:

5.3.1 Theorem. The following are equivalent :
(a) Q is either the Dirac distribution δ0 or a binomial, Poisson, or negativebinomial

distribution.
(b) There exist a, b ∈ R satisfying

qn =

(
a +

b

n

)
qn−1

for all n ∈ N.
Moreover, if Q is a binomial, Poisson, or negativebinomial distribution, then a < 1.

Proof. The first part of the proof will give the following decomposition of the
(a, b)–plane, which in turn will be used in the second part:

0 - a

@
@
@

@
@
@
@
@
@
@
@
@
@
@
@
@

b

6

0 1

δ0 B(m,ϑ) P(α) NB(α, ϑ)

Claim Number Distributions
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• Assume first that (a) holds.
If Q=δ0, then the recursion holds with a = b = 0.
If Q=B(m,ϑ), then the recursion holds with a = −ϑ/(1−ϑ) and b = (m+1) ϑ/(1−ϑ).
If Q=P(α), then the recursion holds with a = 0 and b = α.
If Q=NB(α, ϑ), then the recursion holds with a = 1−ϑ and b = (α−1)(1−ϑ).
Therefore, (a) implies (b).
• Assume now that (b) holds. The assumption implies that q0 > 0.
Assume first that q0 = 1. Then we have

Q = δ0 .

Assume now that q0 < 1. Then we have 0 < q1 = (a + b) q0, and thus

a + b > 0 .

The preceding part of the proof suggests to distinguish the three cases a < 0, a = 0,
and a > 0.
(1) The case a < 0 : Since a+ b > 0, we have b > 0, and it follows that the sequence
{a + b/n}n∈N decreases to a. Therefore, there exists some m ∈ N satisfying qm > 0
and qm+1 = 0, hence 0 = qm+1 = (a + b/(m+1)) qm, and thus a + b/(m+1) = 0.
This yields

m =
a + b

−a

and b = (m+1)(−a). For all n ∈ {1, . . . ,m}, this gives

qn =

(
a +

b

n

)
qn−1

=

(
a +

(m+1)(−a)

n

)
qn−1

=
m + 1− n

n
(−a) qn−1 ,

and thus

qn =

(
n∏

k=1

m + 1− k

k

)
(−a)n q0

=

(
m

n

)
(−a)n q0 .

Summation gives

1 =
m∑

n=0

qn

=
m∑

n=0

(
m

n

)
(−a)n q0

= (1− a)m q0 ,
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hence q0 = (1− a)−m, and thus

qn =

(
m

n

)
(−a)n q0

=

(
m

n

)
(−a)n (1− a)−m

=

(
m

n

)( −a

1− a

)n(
1

1− a

)m−n

for all n ∈ {0, . . . ,m}. Therefore, we have

Q = B

(
a + b

−a
,
−a

1− a

)
.

(2) The case a = 0 : Since a + b > 0, we have b > 0. For all n ∈ N, we have

qn =
b

n
qn−1 ,

and thus

qn =
bn

n!
q0 .

Summation gives

1 =
∞∑

n=0

qn

=
∞∑

n=0

bn

n!
q0 ,

hence q0 = e−b, and thus

qn = e−b bn

n!

for all n ∈ N0. Therefore, we have

Q = P(b) .

(3) The case a > 0 : Define c := (a+b)/a. Then we have c > 0 and b = (c−1) a. For
all n ∈ N, this gives

qn =

(
a +

b

n

)
qn−1

=

(
a +

(c−1)a

n

)
qn−1

=
c + n− 1

n
a qn−1 ,
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and thus

qn =

(
n∏

k=1

c + k − 1

k

)
anq0

=

(
c + n− 1

n

)
anq0 .

In particular, we have qn ≥ (1/n)canq0. Since
∑∞

n=0 qn = 1, we must have a < 1.
Summation yields

1 =
∞∑

n=0

qn

=
∞∑

n=0

(
c + n− 1

n

)
anq0

= (1− a)−c q0 ,

hence q0 = (1− a)c, and thus

qn =

(
c + n− 1

n

)
anq0

=

(
c + n− 1

n

)
(1− a)c an .

Therefore, we have

Q = NB

(
a + b

a
, 1− a

)
.

We have thus shown that (b) implies (a).
• The final assertion has already been shown in the preceding part of the proof. 2

Theorem 5.3.1 and its proof suggest to consider the family of all distributions Q
satisfying Q[N0] = 1 and for which there exist a, b ∈ R satisfying −b < a < 1 and

qn =

(
a +

b

n

)
qn−1

for all n ∈ N as a parametric family of distributions which consists of the binomial,
Poisson, and negativebinomial distributions. Note that the Dirac distribution δ0 is
excluded since it does not determine the parameters uniquely.
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Problems
5.3.A Let Q be a nondegenerate distribution satisfying Q[N0] = 1 and

qn =
(

a +
b

n

)
qn−1

for suitable a, b ∈ R and all n ∈ N. Then the expectation and the variance of Q
exist and satisfy

E[Q] =
a + b

1− a

and
var [Q] =

a + b

(1− a)2
,

and hence
var [Q]
E[Q]

=
1

1− a
.

Interpret this last identity with regard to Theorem 5.3.1 and its proof, and illus-
trate the result in the (a, b)–plane. Show also that

v2[Q] =
1

a + b
.

and interpret the result.

5.3.B If Q is a geometric or logarithmic distribution, then there exist a, b ∈ R satisfying

qn =
(

a +
b

n

)
qn−1

for all n ∈ N such that n ≥ 2.

5.3.C If Q is a Delaporte distribution, then there exist a1, b1, b2 ∈ R satisfying

qn =
(

a1 +
b1

n

)
qn−1 +

b2

n
qn−2

for all n ∈ N such that n ≥ 2.

5.3.D If Q is a negativehypergeometric distribution, then there exist c0, c1, d0, d1 ∈ R
satisfying

qn =
c0 + c1n

d0 + d1n
qn−1

for all n ∈ N.

5.4 The Recursions of Panjer and DePril

The aim of this section is to prove that the recursion formula for the binomial,
Poisson, and negativebinomial distributions translates into recursion formulas for
the aggregate claims distribution and its momemts when the claim size distribution
is concentrated on N0.
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Throughout this section, we assume that

PX [N0] = 1 .

Then we have PS[N0] = 1.

Comment: At the first glance, it may seem a bit confusing to assume PX [N0] = 1
instead of PX [N] = 1. Indeed, claim severities should be strictly positive, and this is
also true for the number of claims at a claim event. However, our assumption allows
PX to be an aggregate claims distribution, and this opens the possibility of applying
Panjer’s recursion repeatedly for a class of claim number distributions which are
compound distributions; see Problem 5.4.D below.

For all n ∈ N0, define

pn := P [{N = n}]
fn := P [{X = n}]
gn := P [{S = n}] .

Then the identity of Lemma 5.2.1 can be written as

gn =
∞∑

k=0

pk f ∗kn .

Note that the sum occurring in this formula actually extends only over a finite
number of terms.

5.4.1 Lemma. The identities

f ∗nm =
m∑

k=0

f
∗(n−1)
m−k fk

and

f ∗nm =
n

m

m∑

k=1

k f
∗(n−1)
m−k fk

hold for all n,m ∈ N.

Proof. For all j ∈ {1, . . . , n} and k ∈ {0, 1, . . . ,m}, we have

P

[{
n∑

i=1

Xi = m

}
∩{Xj = k}

]
= P

[{
n∑

j 6=i=1

Xi = m−k

}
∩{Xj = k}

]

= P

[{
n∑

j 6=i=1

Xi = m−k

}]
· P [{Xj = k}]

= f
∗(n−1)
m−k fk .
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This yields

f ∗nm = P

[{
n∑

i=1

Xi = m

}]

=
m∑

k=0

P

[{
n∑

i=1

Xi = m

}
∩{Xj = k}

]

=
m∑

k=0

f
∗(n−1)
m−k fk ,

which is the first identity, as well as

E

[
χ{∑n

i=1
Xi=m}Xj

]
=

m∑

k=0

E

[
χ{∑n

i=1
Xi=m}∩{Xj=k}Xj

]

=
m∑

k=1

E

[
χ{∑n

i=1
Xi=m}∩{Xj=k}k

]

=
m∑

k=1

k P

[{
n∑

i=1

Xi = m

}
∩{Xj = k}

]

=
m∑

k=1

k f
∗(n−1)
m−k fk

for all j ∈ {1, . . . , n}, and hence

f ∗nm = P

[{
n∑

i=1

Xi = m

}]

= E

[
χ{∑n

i=1
Xi=m}

]

= E

[
χ{∑n

i=1
Xi=m}

1

m

n∑
j=1

Xj

]

=
1

m

n∑
j=1

E

[
χ{∑n

i=1
Xi=m}Xj

]

=
1

m

n∑
j=1

m∑

k=1

k f
∗(n−1)
m−k fk

=
n

m

m∑

k=1

k f
∗(n−1)
m−k fk ,

which is the second identity. 2
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For the nondegenerate claim number distributions characterized by Theorem 5.3.1,
we can now prove a recursion formula for the aggregate claims distribution:

5.4.2 Theorem (Panjer’s Recursion). If the distribution of N is nondegenerate
and satisfies

pn =

(
a +

b

n

)
pn−1

for some a, b ∈ R and all n ∈ N, then

g0 =





(1− ϑ + ϑf0)
m if PN = B(m,ϑ)

e−α(1−f0) if PN = P(α)(
ϑ

1− f0 + ϑf0

)α

if PN = NB(α, ϑ)

and the identity

gn =
1

1− af0

n∑

k=1

(
a + b

k

n

)
gn−k fk

holds for all n ∈ N; in particular, if f0 = 0, then g0 = p0.

Proof. The verification of the formula for g0 is straightforward. For m ∈ N,
Lemma 5.4.1 yields

gm =
∞∑

j=0

pj f ∗jm

=
∞∑

j=1

pj f ∗jm

=
∞∑

j=1

(
a +

b

j

)
pj−1 f ∗jm

=
∞∑

j=1

a pj−1 f ∗jm +
∞∑

j=1

b

j
pj−1 f ∗jm

=
∞∑

j=1

a pj−1

m∑

k=0

f
∗(j−1)
m−k fk +

∞∑
j=1

b

j
pj−1

j

m

m∑

k=1

k f
∗(j−1)
m−k fk

=
∞∑

j=1

a pj−1 f ∗(j−1)
m f0 +

∞∑
j=1

m∑

k=1

(
a + b

k

m

)
pj−1 f

∗(j−1)
m−k fk

= af0

∞∑
j=0

pj f ∗jm +
m∑

k=1

(
a + b

k

m

) ( ∞∑
j=0

pj f ∗jm−k

)
fk

= af0 gm +
m∑

k=1

(
a + b

k

m

)
gm−k fk ,

and the assertion follows. 2
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An analogous result holds for the moments of the aggregate claims distribution:

5.4.3 Theorem (DePril’s Recursion). If the distribution of N is nondegenerate
and satisfies

pn =

(
a +

b

n

)
pn−1

for some a, b ∈ R and all n ∈ N, then the identity

E[Sn] =
1

1− a

n∑

k=1

(
n

k

) (
a + b

k

n

)
E[Sn−k] E[Xk]

holds for all n ∈ N.

Proof. By Theorem 5.4.2, we have

(1−af0) E[Sn] = (1−af0)
∞∑

m=0

mn gm

=
∞∑

m=1

mn (1−af0) gm

=
∞∑

m=1

mn

m∑

k=1

(
a + b

k

m

)
gm−k fk

=
∞∑

m=1

m∑

k=1

(
amn + bkmn−1

)
gm−k fk

=
∞∑

k=1

∞∑

m=k

(
amn + bkmn−1

)
gm−k fk

=
∞∑

k=1

∞∑

l=0

(
a(k+l)n + bk(k+l)n−1

)
gl fk ,

and hence

E[Sn] = af0 E[Sn] + (1−af0) E[Sn]

= af0

∞∑

l=0

ln gl +
∞∑

k=1

∞∑

l=0

(
a(k+l)n + bk(k+l)n−1

)
gl fk

=
∞∑

k=0

∞∑

l=0

(
a(k+l)n + bk(k+l)n−1

)
gl fk

=
∞∑

k=0

∞∑

l=0

(
a

n∑
j=0

(
n

j

)
ln−jkj + b

n−1∑
j=0

(
n− 1

j

)
ln−1−jkj+1

)
gl fk
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= a

n∑
j=0

(
n

j

)
E[Sn−j] E[Xj] + b

n−1∑
j=0

(
n− 1

j

)
E[Sn−1−j] E[Xj+1]

= aE[Sn] + a

n∑
j=1

(
n

j

)
E[Sn−j] E[Xj] + b

n∑
j=1

(
n− 1

j − 1

)
E[Sn−j] E[Xj]

= aE[Sn] +
n∑

j=1

(
n

j

)(
a + b

j

n

)
E[Sn−j] E[Xj] ,

and the assertion follows. 2

In view of Wald’s identities, DePril’s recursion is of interest primarily for higher
order moments of the aggregate claims distribution.

Problems
5.4.A Use DePril’s recursion to solve Problem 5.3.A.

5.4.B Use DePril’s recursion to obtain Wald’s identities in the case where PX [N0] = 1.

5.4.C Discuss the Ammeter transform in the case where PX [N0] = 1.

5.4.D Assume that PX [N0] = 1. If PN is nondegenerate and satisfies PN = C(Q1, Q2),
then

PS = C(PN , PX) = C(C(Q1, Q2), PX) = C(Q1,C(Q2, PX)) .

In particular, if each of Q1 and Q2 is a binomial, Poisson, or negativebinomial
distribution, then PS can be computed by applying Panjer’s recursion twice.
Extend these results to the case where PN is obtained by repeated compounding.

5.5 Remarks

Corollary 5.2.5 is due to Quenouille [1949].

Corollary 5.2.8 is due to Panjer and Willmot [1981]; for the case m = 1, see also
Lundberg [1940].

For an extension of Wald’s identities to the case where the claim severities are not
i. i. d., see Rhiel [1985].

Because of the considerable freedom in the choice of the function h, Lemma 5.2.12
is a flexible instrument to obtain upper bounds on the tail probabilities of the
aggregate claims distribution. Particular bounds were obtained by Runnenburg and
Goovaerts [1985] in the case where the claim number distribution is either a Poisson
or a negativebinomial distribution; see also Kaas and Goovaerts [1986] for the case
where the claim size is bounded. Under certain assumptions on the claim size
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distribution, an exponential bound on the tail probabilities of the aggregate claims
distribution was obtained by Willmot and Lin [1994]; see also Gerber [1994], who
proved their result by a martingale argument, and Michel [1993a], who considered
the Poisson case.

The Ammeter transform is due to Ammeter [1948].

Theorem 5.3.1 is well–known; see Johnson and Kotz [1969] and Sundt and Jewell
[1981].

Theorem 5.4.2 is due to Panjer [1981]; for the Poisson case, see also Shumway and
Gurland [1960] and Adelson [1966]. Computational aspects of Panjer’s recursion
were discussed by Panjer and Willmot [1986], and numerical stability of Panjer’s
recursion was recently studied by Panjer and Wang [1993], who defined stability in
terms of an index of error propagation and showed that the recursion is stable in
the Poisson case and in the negativebinomial case but unstable in the binomial case;
see also Wang and Panjer [1994].

There are two important extensions of Panjer’s recursion:
– Sundt [1992] obtained a recursion for the aggregate claims distribution when the

claim number distribution satisfies

pn =
k∑

i=1

(
ai +

bi

n

)
pn−i

for all n ∈ N such that n ≥ m, where k, m ∈ N, ai, bi ∈ R, and pn−i := 0 for
all i ∈ {1, . . . , k} such that i > n; see also Sundt and Jewell [1981] for the case
m = 2 and k = 1, and Schröter [1990] for the case m = 1, k = 2, and a2 = 0.
Examples of claim number distributions satisfying the above recursion are the
geometric, logarithmic, and Delaporte distributions. A characterization of the
claim number distributions satisfying the recursion with m = 2 and k = 1 was
given by Willmot [1988].

– Hesselager [1994] obtained a recursion for the aggregate claims distribution when
the claim number distribution satisfies

pn =

l∑
j=0

cjn
j

l∑
j=0

djn
j

pn−1

for all n∈N, where l∈N and cj, dj ∈R such that dj 6= 0 for some j∈{0, . . . , l};
see also Panjer and Willmot [1982] and Willmot and Panjer [1987], who intro-
duced this class and obtained recursions for l = 1 and l = 2, and Wang and
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Sobrero [1994], who extended Hesselager’s recursion to a more general class of
claim number distributions. An example of a claim number distribution satisfying
the above recursion is the negativehypergeometric distribution.

A common extension of the previous classes of claim number distributions is given
by the class of claim number distributions satisfying

pn =
k∑

i=1

l∑
j=0

cijn
j

l∑
j=0

dijn
j

pn−i

for all n ∈ N such that n ≥ m, where k, l, m ∈ N, cij, dij ∈ R such that for each
i ∈ {1, . . . , k} there exists some j ∈ {0, . . . , l} satisfying dij 6= 0, and pn−i := 0 for all
i ∈ {1, . . . , k} such that i > n. A recursion for the aggregate claims distribution in
this general case is not yet known; for the case l = m = 2, which applies to certain
mixed Poisson distributions, see Willmot [1986] and Willmot and Panjer [1987].

Further important extensions of Panjer’s recursion were obtained by Kling and
Goovaerts [1993] and Ambagaspitiya [1995]; for special cases of their results, see
Gerber [1991], Goovaerts and Kaas [1991], and Ambagaspitiya and Balakrishnan
[1994].

The possibility of evaluating the aggregate claims distribution by repeated recursion
when the claim number distribution is a compound distribution was first mentioned
by Willmot and Sundt [1989] in the case of the Delaporte distribution; see also
Michel [1993b].

Theorem 5.4.3 is due to DePril [1986]; for the Poisson case, see also Goovaerts,
DeVylder, and Haezendonck [1984]. DePril actually obtained a result more general
than Theorem 5.4.3, namely, a recursion for the moments of S−c with c ∈ R. Also,
Kaas and Goovaerts [1985] obtained a recursion for the moments of the aggregate
claims distribution when the claim number distribution is arbitrary.

For a discussion of further aspects concerning the computation or approximation of
the aggregate claims distribution, see Hipp and Michel [1990] and Schröter [1995]
and the references given there.

Let us finally remark that Scheike [1992] studied the aggregate claims process in the
case where the claim arrival times and the claim severities may depend on the past
through earlier claim arrival times and claim severities.
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The Risk Process in Reinsurance

In the present chapter we introduce the notion of a risk process (Section 6.1) and
study the permanence properties of risk processes under thinning (Section 6.2),
decomposition (Section 6.3), and superposition (Section 6.4). These problems are
of interest in reinsurance.

6.1 The Model

A pair ({Nt}t∈R+
, {Xn}n∈N) is a risk process if

– {Nt}t∈R+
is a claim number process,

– the sequence {Xn}n∈N is i. i. d., and
– the pair ({Nt}t∈R+

, {Xn}n∈N) is independent.
In the present chapter, we shall study the following problems which are of interest
in reinsurance:

First, for a risk process ({Nt}t∈R+
, {Xn}n∈N) and a set C ∈ B(R), we study the

number and the (conditional) claim size distribution of claims with claim size in C.
These quantities, which will be given an exact definition in Section 6.2, are of interest
in excess of loss reinsurance where the reinsurer is concerned with a portfolio of large
claims exceeding a priority c ∈ (0,∞).

Second, for a risk process ({Nt}t∈R+
, {Xn}n∈N) and a set C ∈ B(R), we study the

relation between two thinned risk processes, one being generated by the claims with
claim size in C and the other one being generated by the claims with claim size in
the complement C. This is, primarily, a mathematical problem which emerges quite
naturally from the problem mentioned before.

Finally, for risk processes ({N ′
t}t∈R+

, {X ′
n}n∈N) and ({N ′′

t }t∈R+
, {X ′′

n}n∈N) which are
independent, we study the total number and the claim size distribution of all claims
which are generated by either of these risk processes. These quantities, which will
be made precise in Section 6.4, are of interest to the reinsurer who forms a portfolio
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by combining two independent portfolios obtained from different direct insurers in
order to pass from small portfolios to a larger one.

In either case, it is of interest to know whether the transformation of risk processes
under consideration yields new risk processes of the same type as the original ones.

6.2 Thinning a Risk Process

Throughout this section, let ({Nt}t∈R+
, {Xn}n∈N) be a risk process and consider

C∈B(R). Define

η := P [{X∈C}] .

We assume that the probability of explosion is equal to zero and that η ∈ (0, 1).

Let us first consider the thinned claim number process:

For all t ∈ R+, define

N ′
t :=

Nt∑
n=1

χ{Xn∈C} .

Thus, {N ′
t}t∈R+

is a particular aggregate claims process.

6.2.1 Theorem (Thinned Claim Number Process). The family {N ′
t}t∈R+

is
a claim number process.

This follows from Theorem 5.1.4.

Let us now consider the thinned claim size process, that is, the sequence of claim
severities taking their values in C.

Let ν0 := 0. For all l ∈ N, define

νl := inf{n ∈ N | νl−1 < n, Xn ∈ C}
and let H(l) denote the collection of all sequences {nj}j∈{1,...,l}⊆N which are strictly
increasing. For H = {nj}j∈{1,...,l} ∈ H(l), define J(H) := {1, . . . , nl}\H.

6.2.2 Lemma. The identities

l⋂
j=1

{νj = nj} =
⋂
n∈H

{Xn∈C} ∩
⋂

n∈J(H)

{Xn /∈C}

and

P

[
l⋂

j=1

{νj = nj}
]

= ηl(1−η)nl−l

hold for all l ∈ N and for all H = {nj}j∈{1,...,l} ∈ H(l).
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It is clear that, for each l ∈N, the family {⋂l
j=1{νj = nj}}H∈H(l) is disjoint. The

following lemma shows that it is, up to a null set, even a partition of Ω:

6.2.3 Corollary. The identity

∑

H∈H(l)

P

[
l⋂

j=1

{νj = nj}
]

= 1

holds for all l ∈ N.

Proof. By induction, we have
∑

H∈H(l)

ηl(1−η)nl−l = 1

for all l ∈ N. The assertion now follows from Lemma 6.2.2. 2

The basic idea for proving the principal results of this section will be to compute
the probabilities of the events of interest from their conditional probabilities with
respect to events from the partition {⋂l

j=1{νj = nj}}H∈H(l) with suitable l ∈ N.

By Corollary 6.2.3, each νn is finite. For all n ∈ N, define

X ′
n :=

∞∑

k=1

χ{νn=k}Xk .

Then we have σ({X ′
n}n∈N) ⊆ σ({Xn}n∈N).

The following lemma provides the technical tool for the proofs of all further results
of this section:

6.2.4 Lemma. The identity

P

[
k⋂

i=1

{X ′
i∈Bi} ∩

l⋂
j=1

{νj = nj}
]

=
k∏

i=1

P [{X∈Bi}|{X∈C}] · ηl(1−η)nl−l

holds for all k, l ∈ N such that k ≤ l, for all B1, . . . , Bk ∈ B(R), and for every
sequence {nj}j∈{1,...,l} ∈ H(l).

Proof. For every sequence H = {nj}j∈{1,...,l} ∈ H(l), we have

P

[
k⋂

i=1

{X ′
i∈Bi} ∩

l⋂
j=1

{νj = nj}
]

= P

[
k⋂

i=1

{Xni
∈Bi} ∩

l⋂
j=1

{νj = nj}
]
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= P

[
k⋂

i=1

{Xni
∈Bi} ∩

l⋂
j=1

{Xnj
∈C} ∩

⋂

n∈J(H)

{Xn /∈C}
]

= P

[
k⋂

i=1

{Xni
∈Bi∩C} ∩

l⋂

j=k+1

{Xnj
∈C} ∩

⋂

n∈J(H)

{Xn /∈C}
]

=
k∏

i=1

P [{X∈Bi∩C}] ·
l∏

j=k+1

P [{X∈C}] ·
∏

n∈J(H)

P [{X /∈C}]

=
k∏

i=1

P [{X∈Bi}|{X∈C}] ·
l∏

j=1

P [{X∈C}] ·
∏

n∈J(H)

P [{X /∈C}]

=
k∏

i=1

P [{X∈Bi}|{X∈C}] · ηl(1−η)nl−l ,

as was to be shown. 2

6.2.5 Theorem (Thinned Claim Size Process). The sequence {X ′
n}n∈N is

i. i. d. and satisfies
P [{X ′∈B}] = P [{X∈B}|{X∈C}]

for all B ∈ B(R).

Proof. Consider k ∈ N and B1, . . . , Bk ∈ B(R). By Lemmas 6.2.4 and 6.2.2, we
have, for every sequence {nj}j∈{1,...,k} ∈ H(k),

P

[
k⋂

i=1

{X ′
i∈Bi} ∩

k⋂
j=1

{νj = nj}
]

=
k∏

i=1

P [{X∈Bi}|{X∈C}] · ηk(1−η)nk−k

=
k∏

i=1

P [{X∈Bi}|{X∈C}] · P
[

k⋂
j=1

{νj = nj}
]

.

By Corollary 6.2.3, summation over H(k) yields

P

[
k⋂

i=1

{X ′
i∈Bi}

]
=

k∏
i=1

P [{X∈Bi}|{X∈C}] .

The assertion follows. 2

We can now prove the main result of this section:

6.2.6 Theorem (Thinned Risk Process). The pair ({N ′
t}t∈R+

, {X ′
n}n∈N) is a

risk process.

Proof. By Theorems 6.2.1 and 6.2.5, we know that {N ′
t}t∈R+

is a claim number
process and that the sequence {X ′

n}n∈N is i. i. d.
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To prove that the pair ({N ′
t}t∈R+

, {X ′
n}n∈N) is independent, consider m,n ∈ N,

B1, . . . , Bn ∈ B(R), t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm, and
k0, k1, . . . , km ∈ N0 such that 0 = k0 ≤ k1 ≤ . . . ≤ km.
Consider also l0, l1, . . . , lm ∈ N0 satisfying 0 = l0 ≤ l1 ≤ . . . ≤ lm as well as
kj − kj−1 ≤ lj − lj−1 for all j∈{1, . . . , m}. Define n0 := 0 and l := max{n, km+1},
and let H denote the collection of all sequences {nj}j∈{1,...,l} ∈ H(l) satisfying
nkj

≤ lj < nkj+1 for all j ∈ {1, . . . ,m}. By Lemma 6.2.4 and Theorem 6.2.5, we
have

P

[
n⋂

i=1

{X ′
i∈Bi} ∩

m⋂
j=1

{
lj∑

h=1

χ{Xh∈C} = kj

}]

= P

[
n⋂

i=1

{X ′
i∈Bi} ∩

m⋂
j=1

{νkj
≤ lj < νkj+1}

]

=
∑
H∈H

P

[
n⋂

i=1

{X ′
i∈Bi} ∩

l⋂
j=1

{νj = nj}
]

=
∑
H∈H

(
n∏

i=1

P [{X∈Bi}|{X∈C}]
)

ηl(1−η)nl−l

=
∑
H∈H

P

[
n⋂

i=1

{X ′
i∈Bi}

]
ηl(1−η)nl−l

= P

[
n⋂

i=1

{X ′
i∈Bi}

]
·
∑
H∈H

ηl(1−η)nl−l ,

hence

P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{N ′
tj

= kj} ∩
m⋂

j=1

{Ntj = lj}
]

= P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{Ntj∑

h=1

χ{Xh∈C} = kj

}
∩

m⋂
j=1

{Ntj = lj}
]

= P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{
lj∑

h=1

χ{Xh∈C} = kj

}
∩

m⋂
j=1

{Ntj = lj}
]

= P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{
lj∑

h=1

χ{Xh∈C} = kj

}]
· P

[
m⋂

j=1

{Ntj = lj}
]

= P

[
n⋂

i=1

{X ′
i∈Bi}

]
·
∑
H∈H

ηl(1−η)nl−l · P
[

m⋂
j=1

{Ntj = lj}
]

,
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and thus

P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{N ′
tj

= kj} ∩
m⋂

j=1

{Ntj = lj}
]

= P

[
n⋂

i=1

{X ′
i∈Bi}

]
· P

[
m⋂

j=1

{N ′
tj

= kj} ∩
m⋂

j=1

{Ntj = lj}
]

.

Summation yields

P

[
n⋂

i=1

{X ′
i ∈ Bi} ∩

m⋂
j=1

{N ′
tj

= kj}
]

= P

[
n⋂

i=1

{X ′
i∈Bi}

]
· P

[
m⋂

j=1

{N ′
tj

= kj}
]

.

Therefore, the pair ({N ′
t}t∈R+

, {X ′
n}n∈N) is independent. 2

6.2.7 Corollary (Thinned Risk Process). Let h : R → R be a measurable
function. Then the pair ({N ′

t}t∈R+
, {h(X ′

n)}n∈N) is a risk process.

This is immediate from Theorem 6.2.6.

As an application of Corollary 6.2.7, consider c ∈ (0,∞), let C := (c,∞), and define
h : R → R by letting

h(x) := (x− c)+ .

In excess of loss reinsurance, c is the priority of the direct insurer, and the reinsurer
is concerned with the risk process ({N ′

t}t∈R+
, {(X ′

n−c)+}n∈N).

More generally, consider c, d ∈ (0,∞), let C := (c,∞), and define h : R → R by
letting

h(x) := (x− c)+∧ d .

In this case, the reinsurer is not willing to pay more than d for a claim exceeding
c and covers only the layer (c, c+d ]; he is thus concerned with the risk process
({N ′

t}t∈R+
, {(X ′

n−c)+∧ d}n∈N).

Problems
6.2.A The sequence {νl}l∈N0

is a claim arrival process (in discrete time) satisfying

Pνl
= Geo(l, η)

for all l ∈ N. Moreover, the claim interarrival times are i. i. d. Study also the
claim number process induced by the claim arrival process {νl}l∈N0

.

6.2.B For c ∈ (0,∞) and C := (c,∞), compute the distribution of X ′ for some specific
choices of the distribution of X.

6.2.C Discrete Time Model: The risk process ({Nl}l∈N0
, {Xn}n∈N) is a binomial

risk process if the claim number process {Nl}l∈N0
is a binomial process.

Study the problem of thinning for a binomial risk process.
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6.3 Decomposition of a Poisson Risk Process

Throughout this section, let ({Nt}t∈R+
, {Xn}n∈N) be a risk process and consider

C∈B(R). Define

η := P [{X∈C}] .

We assume that the probability of explosion is equal to zero and that η ∈ (0, 1).

Let us first consider the thinned claim number processes generated by the claims
with claim size in C or in C, respectively.

For all t ∈ R+, define

N ′
t :=

Nt∑
n=1

χ{Xn∈C}

and

N ′′
t :=

Nt∑
n=1

χ{Xn∈C} .

By Theorem 6.2.1, {N ′
t}t∈R+

and {N ′′
t }t∈R+

are claim number processes.

The following result improves Corollary 5.1.5:

6.3.1 Theorem (Decomposition of a Poisson Process). Assume that
{Nt}t∈R+

is a Poisson process with parameter α. Then the claim number processes
{N ′

t}t∈R+
and {N ′′

t }t∈R+
are independent Poisson processes with parameters αη and

α(1−η), respectively.

Proof. Consider m ∈ N, t0, t1, . . . , tm ∈ R+ such that 0 = t0 < t1 < . . . < tm, and
k′1, . . . , k

′
m ∈ N0 and k′′1 , . . . , k

′′
m ∈ N0.

For all j ∈ {1, . . . ,m}, define kj := k′j + k′′j and nj :=
∑j

i=1 ki. Then we have

P

[
m⋂

j=1

{N ′
tj
−N ′

tj−1
= k′j}∩{N ′′

tj
−N ′′

tj−1
= k′′j }

∣∣∣∣∣
m⋂

j=1

{Ntj−Ntj−1
= kj}

]

= P




m⋂
j=1





Ntj∑

h=Ntj−1+1

χ{Xh∈C} = k′j



∩





Ntj∑

h=Ntj−1+1

χ{Xh∈C} = k′′j





∣∣∣∣∣∣

m⋂
j=1

{Ntj = nj}



= P




m⋂
j=1





nj∑

h=nj−1+1

χ{Xh∈C} = k′j



∩





nj∑

h=nj−1+1

χ{Xh∈C} = k′′j





∣∣∣∣∣∣

m⋂
j=1

{Ntj = nj}
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= P




m⋂
j=1





nj∑

h=nj−1+1

χ{Xh∈C} = k′j



∩





nj∑

h=nj−1+1

χ{Xh∈C} = k′′j








=
m∏

j=1

(
kj

k′j

)
ηk′j(1−η)k′′j

as well as

P

[
m⋂

j=1

{Ntj−Ntj−1
= kj}

]
=

m∏
j=1

P [{Ntj−Ntj−1
= kj}]

=
m∏

j=1

e−α(tj−tj−1) (α(tj−tj−1))
kj

kj!
,

and hence

P

[
m⋂

j=1

{N ′
tj
−N ′

tj−1
= k′j} ∩ {N ′′

tj
−N ′′

tj−1
= k′′j }

]

= P

[
m⋂

j=1

{N ′
tj
−N ′

tj−1
= k′j} ∩ {N ′′

tj
−N ′′

tj−1
= k′′j }

∣∣∣∣∣
m⋂

j=1

{Ntj−Ntj−1
= kj}

]

·P
[

m⋂
j=1

{Ntj−Ntj−1
= kj}

]

=
m∏

j=1

(
kj

k′j

)
ηk′j(1−η)k′′j ·

m∏
j=1

e−α(tj−tj−1) (α(tj−tj−1))
kj

kj!

=
m∏

j=1

e−αη(tj−tj−1) (αη(tj−tj−1))
k′j

k′j!
·

m∏
j=1

e−α(1−η)(tj−tj−1) (α(1−η)(tj−tj−1))
k′′j

k′′j !
.

This implies that {N ′
t}t∈R+

and {N ′′
t }t∈R+

are Poisson processes with parameters
αη and α(1−η), respectively, and that {N ′

t}t∈R+
and {N ′′

t }t∈R+
are independent. 2

Let us now consider the thinned claim size processes.

Let ν ′0 := 0 and ν ′′0 := 0. For all l ∈ N, define

ν ′l := inf{n ∈ N | ν ′l−1 < n, Xn ∈ C}
and

ν ′′l := inf{n ∈ N | ν ′′l−1 < n, Xn ∈ C} .

For m,n ∈ N0 such that m + n ∈ N, let D′(m,n) denote the collection of all pairs
of strictly increasing sequences {mi}i∈{1,...,k} ⊆ N and {nj}j∈{1,...,l} ⊆ N satisfying
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k = m and l ≥ n as well as nl < mk = k + l (such that one of these sequences may
be empty and the union of these sequences is {1, . . . , k + l}); similarly, let D′′(m, n)
denote the collection of all pairs of strictly increasing sequences {mi}i∈{1,...,k} ⊆ N
and {nj}j∈{1,...,l} ⊆ N satisfying l = n and k ≥ m as well as mk < nl = k + l, and
define

D(m, n) := D′(m,n) +D′′(m,n) .

The collections D(m,n) correspond to the collectionsH(l) considered in the previous
section on thinning.

6.3.2 Lemma. The identities
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj} =
k⋂

i=1

{Xmi
∈ C} ∩

l⋂
j=1

{Xnj
∈ C}

and

P

[
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

= ηk(1−η)l

hold for all m,n ∈ N0 such that m+n ∈ N and for all ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈
D(m, n).

It is clear that, for every choice of m,n ∈ N0 such that m + n ∈ N, the family
{⋂k

i=1{ν ′i = mi} ∩
⋂l

j=1{ν ′′j = nj}}D∈D(m,n) is disjoint; the following lemma shows
that it is, up to a null set, even a partition of Ω:

6.3.3 Corollary. The identity

∑

D∈D(m,n)

P

[
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

= 1

holds for all m,n ∈ N0 such that m + n ∈ N.

Proof. For m,n ∈ N0 such that m + n = 1, the identity

∑

D∈D(m,n)

P

[
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

= 1

follows from Corollary 6.2.3.
For m,n∈N, we split D(m,n) into two parts: Let D1(m,n) denote the collection of
all pairs ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(m,n) satisfying m1 = 1, and let D2(m, n)
denote the collection of all pairs ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(m,n) satisfying
n1 = 1. Then we have

D(m,n) = D1(m,n) +D2(m, n) .

Furthermore, there are obvious bijections between D1(m,n) and D(m−1, n) and
between D2(m,n) and D(m,n−1).
Using Lemma 6.3.2, the assertion now follows by induction over m + n ∈ N. 2
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By Corollary 6.2.3, each ν ′n and each ν ′′n is finite. For all n ∈ N, define

X ′
n :=

∞∑

k=1

χ{ν′n=k}Xk

and

X ′′
n :=

∞∑

k=1

χ{ν′′n=k}Xk .

Then we have σ({X ′
n}n∈N) ∪ σ({X ′′

n}n∈N) ⊆ σ({Xn}n∈N).

6.3.4 Lemma. The identity

P

[
n⋂

h=1

{X ′
h∈B′

h} ∩
n⋂

h=1

{X ′′
h ∈B′′

h} ∩
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

=
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] · P
[

k⋂
i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

holds for all n∈N, for all B′
1, . . . , B

′
n ∈ B(R) and B′′

1 , . . . , B′′
n ∈ B(R), and for every

pair ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(n, n).

Proof. By Lemma 6.3.2 and Theorem 6.2.5, we have

P

[
n⋂

h=1

{X ′
h∈B′

h} ∩
n⋂

h=1

{X ′′
h ∈B′′

h} ∩
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

= P

[
n⋂

h=1

{Xmi
∈B′

h} ∩
n⋂

h=1

{Xnj
∈B′′

h} ∩
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

= P

[
n⋂

h=1

{Xmi
∈B′

h} ∩
n⋂

h=1

{Xnj
∈B′′

h} ∩
k⋂

i=1

{Xmi
∈C} ∩

l⋂
j=1

{Xnj
∈C}

]

= P

[
n⋂

h=1

{Xmi
∈B′

h∩C} ∩
n⋂

h=1

{Xnj
∈B′′

h∩C} ∩
k⋂

i=n+1

{Xmi
∈C} ∩

l⋂
j=n+1

{Xnj
∈C}

]

=
n∏

h=1

P [{X∈B′
h∩C}] ·

n∏

h=1

P [{X∈B′′
h∩C}]

·
k∏

i=n+1

P [{X∈C}] ·
l∏

j=n+1

P [{X∈C}]

=
n∏

h=1

P [{X∈B′
h}|{X∈C}] ·

n∏

h=1

P [{X∈B′′
h}|{X∈C}]

·
k∏

i=1

P [{X∈C}] ·
l∏

j=1

P [{X∈C}]
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=
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] · ηk(1−η)l

=
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] · P
[

k⋂
i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

,

as was to be shown. 2

6.3.5 Theorem (Decomposition of a Claim Size Process). The claim size
processes {X ′

n}n∈N and {X ′′
n}n∈N are independent.

Proof. Consider n ∈ N, B′
1, . . . , B

′
n ∈ B(R), and B′′

1 , . . . , B′′
n ∈ B(R). By Lemma

6.3.4, we have, for every pair ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(n, n),

P

[
n⋂

h=1

{X ′
h∈B′

h} ∩
n⋂

h=1

{X ′′
h ∈B′′

h} ∩
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

=
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] · P
[

k⋂
i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

.

By Corollary 6.3.3, summation over D(n, n) yields

P

[
n⋂

h=1

{X ′
h∈B′

h} ∩
n⋂

h=1

{X ′′
h ∈B′′

h}
]

=
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] .

The assertion follows. 2

The risk process ({Nt}t∈R+
, {Xn}n∈N) is a Poisson risk process if the claim number

process {Nt}t∈R+
is a Poisson process.

We can now prove the main result of this section:

6.3.6 Theorem (Decomposition of a Poisson Risk Process). Assume that
({Nt}t∈R+

, {Xn}n∈N) is a Poisson risk process. Then ({N ′
t}t∈R+

, {X ′
n}n∈N) and

({N ′′
t }t∈R+

, {X ′′
n}n∈N) are independent Poisson risk processes.

Proof. By Theorems 6.3.1 and 6.3.5, we know that {N ′
t}t∈R+

and {N ′′
t }t∈R+

are
independent Poisson processes and that {X ′

n}n∈N and {X ′′
n}n∈N are independent

claim size processes.
To prove that the σ–algebras σ({N ′

t}t∈R+
∪{N ′′

t }t∈R+
) and σ({X ′

n}n∈N∪{X ′′
n}n∈N)

are independent, consider m,n∈N, B′
1, . . . , B

′
n ∈B(R) and B′′

1 , . . . , B′′
n ∈B(R), as

well as t0, t1, . . . , tm∈R+ such that 0 = t0 < t1 < . . . < tm and k′1, . . . , k
′
m∈N0 and

k′′1 , . . . , k
′′
m∈N0 such that k′1 ≤ . . . ≤ k′m and k′′1 ≤ . . . ≤ k′′m. For all j ∈ {1, . . . , m},

define kj = k′j + k′′j .
Furthermore, let p := max{n, k′m, k′′m}, and let D denote the collection of all pairs
({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(p, p) satisfying max{mk′j , nk′′j } = kj for all j ∈
{1, . . . ,m}. By Lemma 6.3.4 and Theorem 6.3.5, we have
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P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{
kj∑

r=1

χ{Xr∈C} = k′j

}]

=
∑
D∈D

P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{max{ν ′k′j , ν
′′
k′′j
} = kj}

]

=
∑
D∈D

P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
k⋂

i=1

{ν ′i = mi} ∩
l⋂

j=1

{ν ′′j = nj}
]

=
∑
D∈D

(
n∏

h=1

P [{X ′
h∈B′

h}] ·
n∏

h=1

P [{X ′′
h ∈B′′

h}] · ηk(1−η)l

)

=
∑
D∈D

P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h}
]
ηk(1−η)l

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h}
]
·
∑
D∈D

ηk(1−η)l ,

hence

P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{N ′
tj

= k′j}∩{N ′′
tj

= k′′j }
]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{N ′
tj

= k′j}∩{Ntj = kj}
]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{Ntj∑
r=1

χ{Xr∈C} = k′j

}
∩{Ntj = kj}

]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{
kj∑

r=1

χ{Xr∈C} = k′j

}
∩{Ntj = kj}

]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{
kj∑

r=1

χ{Xr∈C} = k′j

}
· P

[
m⋂

j=1

{Ntj = kj}
]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h}
]
·
∑
D∈D

ηk(1−η)l · P
[

m⋂
j=1

{Ntj = kj}
]

,

and thus

P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h} ∩
m⋂

j=1

{N ′
tj

= k′j}∩{N ′′
tj

= k′′j }
]

= P

[
n⋂

h=1

{X ′
h∈B′

h}∩{X ′′
h ∈B′′

h}
]
· P

[
m⋂

j=1

{N ′
tj

= k′j}∩{N ′′
tj

= k′′j }
]

.
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Therefore, the σ–algebras σ({N ′
t}t∈R+

∪{N ′′
t }t∈R+

) and σ({X ′
n}n∈N∪{X ′′

n}n∈N) are
independent.
The assertion follows. 2

Let {S ′t}t∈R+
and {S ′′t }t∈R+

denote the aggregate claims processes induced by the
risk processes ({N ′

t}t∈R+
, {X ′

n}n∈N) and ({N ′′
t }t∈R+

, {X ′′
n}n∈N), respectively. In the

case where ({Nt}t∈R+
, {Xn}n∈N) is a Poisson risk process, one should expect that

the sum of the aggregate claims processes {S ′t}t∈R+
and {S ′′t }t∈R+

agrees with the
aggregate claims process {St}t∈R+

. The following result asserts that this is indeed
true:

6.3.7 Theorem. Assume that ({Nt}t∈R+
, {Xn}n∈N) is a Poisson risk process.

Then the aggregate claims processes {S ′t}t∈R+
and {S ′′t }t∈R+

are independent, and
the identity

St = S ′t + S ′′t

holds for all t ∈ R+.

Proof. By Theorem 6.3.6, the aggregate claims processes {S ′t}t∈R+
and {S ′′t }t∈R+

are independent.
For all ω ∈ {N ′

t = 0} ∩ {N ′′
t = 0}, we clearly have

S ′t(ω) + S ′′t (ω) = St(ω) .

Consider now k′, k′′ ∈ N0 such that k′ + k′′ ∈ N. Note that max{ν ′k′ , ν ′′k′′} ≥ k′+k′′,
and that

{N ′
t = k′} ∩ {N ′′

t = k′′} = {max{ν ′k′ , ν ′′k′′} = k′+k′′} ∩ {Nt = k′+k′′} .

Thus, for ({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(k′, k′′) satisfying max{mk′ , nk′′} > k′+k′′

the set {N ′
t = k′} ∩ {N ′′

t = k′′} ∩⋂k
i=1{ν ′i = mi} ∩

⋂l
j=1{ν ′′j = nj} is empty, and for

({mi}i∈{1,...,k}, {nj}j∈{1,...,l}) ∈ D(k′, k′′) satisfying max{mk′ , nk′′} = k′+k′′ we have,

for all ω ∈ {N ′
t = k′} ∩ {N ′′

t = k′′} ∩⋂k
i=1{ν ′i = mi} ∩

⋂l
j=1{ν ′′j = nj},

S ′t(ω) + S ′′t (ω) =

N ′
t(ω)∑
i=1

X ′
i(ω) +

N ′′
t (ω)∑
j=1

X ′′
j (ω)

=
k′∑

i=1

X ′
i(ω) +

k′′∑
j=1

X ′′
j (ω)

=
k′∑

i=1

Xmi
(ω) +

k′′∑
j=1

Xnj
(ω)

=
k′+k′′∑

h=1

Xh(ω)
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=
Nt∑

h=1

Xh(ω)

= St(ω) .

This yields

S ′t(ω) + S ′′t (ω) = St(ω)

for all ω ∈ {N ′
t = k′} ∩ {N ′′

t = k′′}.
We conclude that

S ′t + S ′′t = St ,

as was to be shown. 2

Problems
6.3.A Let ({Nt}t∈R+

, {Xn}n∈N) be a Poisson risk process satisfying PX = Exp(β),
and let C := (c,∞) for some c ∈ (0,∞).
Compute the distributions of X ′ and X ′′, compare the expectation, variance and
coefficient of variation of X ′ and of X ′′ with the corresponding quantities of X,
and compute these quantities for S′t, S′′t , and St (see Problem 5.2.G).

6.3.B Extend the results of this section to the decomposition of a Poisson risk process
into more than two Poisson risk processes.

6.3.C Let ({Nt}t∈R+
, {Xn}n∈N) be a Poisson risk process satisfying PX [{1, . . . ,m}] = 1

for some m ∈ N. For all j ∈ {1, . . . ,m} and t ∈ R+, define

N
(j)
t :=

Nt∑

n=1

χ{Xn=j} .

Then the claim number processes {N (1)
t }t∈R+

, . . . , {N (m)
t }t∈R+

are independent,
and the identity

St =
m∑

j=1

j N
(j)
t

holds for all t ∈ R+.

6.3.D Extend the results of this section to the case where the claim number process is
an inhomogeneous Poisson process.

6.3.E Discrete Time Model: Study the decomposition of a binomial risk process.

6.3.F Discrete Time Model: Let ({Nl}l∈N0
, {Xn}n∈N) be a binomial risk process

satisfying PX = Geo(η), and let C := (m,∞) for some m ∈ N.
Compute the distributions of X ′ and X ′′, compare the expectation, variance and
coefficient of variation of X ′ and of X ′′ with the corresponding quantities of X,
and compute these quantities for S′l, S′′l , and Sl.
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6.4 Superposition of Poisson Risk Processes

Throughout this section, let ({N ′
t}t∈R+

, {X ′
n}n∈N) and ({N ′′

t }t∈R+
, {X ′′

n}n∈N) be
risk processes, let {T ′

n}n∈N0
and {T ′′

n}n∈N0
denote the claim arrival processes in-

duced by the claim number processes {N ′
t}t∈R+

and {N ′′
t }t∈R+

, and let {W ′
n}n∈N

and {W ′′
n}n∈N denote the claim interarrival processes induced by the claim arrival

processes {T ′
n}n∈N0

and {T ′′
n}n∈N0

, respectively.

We assume that the risk processes ({N ′
t}t∈R+

, {X ′
n}n∈N) and ({N ′′

t }t∈R+
, {X ′′

n}n∈N)
are independent, that their exceptional null sets are empty, and that the claim
number processes {N ′

t}t∈R+
and {N ′′

t }t∈R+
are Poisson processes with parameters

α′ and α′′, respectively.

For all t ∈ R+, define

Nt := N ′
t + N ′′

t .

The process {Nt}t∈R+
is said to be the superposition of the Poisson processes

{N ′
t}t∈R+

and {N ′′
t }t∈R+

.

The following result shows that the class of all Poisson processes is stable under
superposition:

6.4.1 Theorem (Superposition of Poisson Processes). The process {Nt}t∈R+

is a Poisson process with parameter α′ + α′′.

Proof. We first show that {Nt}t∈R+
is a claim number process, and we then prove

that it is indeed a Poisson process. To simplify the notation in this proof, let

α := α′ + α′′ .

(1) Define

ΩN :=
⋃

n′,n′′∈N0

{T ′
n′ = T ′′

n′′} .

Since the claim number processes {N ′
t}t∈R+

and {N ′′
t }t∈R+

are independent and
since the distributions of their claim arrival times are absolutely continuous with
respect to Lebesgue measure, we have

P [ΩN ] = 0 .

It is now easy to see that {Nt}t∈R+
is a claim number process with exceptional null

set ΩN .
(2) For all t ∈ R+, we have

E[Nt] = E[N ′
t ] + E[N ′′

t ]

= α′t + α′′t

= αt .
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(3) Let {F ′
t}t∈R+

and {F ′′
t }t∈R+

denote the canonical filtrations of {N ′
t}t∈R+

and
{N ′′

t }t∈R+
, respectively, and let {Ft}t∈R+

denote the canonical filtration of {Nt}t∈R+
.

Using independence of the pair ({N ′
t}t∈R+

, {N ′′
t }t∈R+

) and the martingale property
of the centered claim number processes {N ′

t − α′t}t∈R+
and {N ′′

t − α′′t}t∈R+
, which

is given by Theorem 2.3.4, we see that the identity

∫

A′∩A′′
(Nt+h−Nt−αh) dP

=

∫

A′∩A′′

(
(N ′

t+h+N ′′
t+h)− (N ′

t +N ′′
t )− (α′+α′′)h

)
dP

=

∫

A′∩A′′
(N ′

t+h−N ′
t−α′h) dP +

∫

A′∩A′′
(N ′′

t+h−N ′′
t −α′′h) dP

= P [A′′]
∫

A′
(N ′

t+h−N ′
t−α′h) dP + P [A′]

∫

A′′
(N ′′

t+h−N ′′
t −α′′h) dP

= 0

holds for all t, h ∈ R+ and for all A′ ∈ F ′
t and A′′ ∈ F ′′

t . Thus, letting

Et := {A′ ∩ A′′ | A′ ∈ F ′
t, A′′ ∈ F ′′

t } ,

the previous identity yields

∫

A

(Nt+h − α(t+h)) dP =

∫

A

(Nt − αt) dP

for all t, h ∈ R+ and A ∈ Et. Since Et is stable under intersection and satisfies
Ft ⊆ σ(Et), we conclude that the identity

∫

A

(Nt+h − α(t+h)) dP =

∫

A

(Nt − αt) dP

holds for all t, h ∈ R+ and A ∈ Ft. Therefore, the centered claim number process
{Nt−αt}t∈R+

is a martingale, and it now follows from Theorem 2.3.4 that the claim
number process {Nt}t∈R+

is a Poisson process with parameter α. 2

Let {Tn}n∈N0
denote the claim arrival process induced by the claim number pro-

cess {Nt}t∈R+
and let {Wn}n∈N denote the claim interarrival process induced by

{Tn}n∈N0
.

To avoid the annoying discussion of null sets, we assume henceforth that the excep-
tional null set of the claim number process {Nt}t∈R+

is empty.

The following result shows that each of the distributions PW ′ and PW ′′ has a density
with respect to PW :
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6.4.2 Lemma. The distributions PW ′ and PW ′′ satisfy

PW ′ =

∫
α′

α′ + α′′
eα′′w dPW (w)

and

PW ′′ =

∫
α′′

α′ + α′′
eα′w dPW (w) .

Proof. Since PW ′ = Exp(α′) and PW = Exp(α′+α′′), we have

PW ′ =

∫
α′e−α′w χ(0,∞)(w) dλ(w)

=

∫
α′

α′ + α′′
eα′′w (α′+α′′) e−(α′+α′′)w χ(0,∞)(w) dλ(w)

=

∫
α′

α′ + α′′
eα′′w dPW (w) ,

which is the first identity. The second identity follows by symmetry. 2

For l ∈ N and k ∈ {0, 1, . . . , l}, let C(l, k) denote the collection of all pairs of strictly
increasing sequences {mi}i∈{1,...,k}⊆N and {nj}j∈{1,...,l−k}⊆N with union {1, . . . , l}
(such that one of these sequences may be empty).

For l ∈ N, define

C(l) =
l∑

k=0

C(l, k) .

The collections C(l) correspond to the collections H(l) and D(m,n) considered in
the preceding sections on thinning and decomposition.

For l ∈ N, k ∈ {0, 1, . . . , l}, and C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l, k), let

AC :=
⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j } .

We have the following lemma:

6.4.3 Lemma. The identity

P [AC ] =

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

holds for all l ∈ N and k ∈ {0, 1, . . . , l} and for all C ∈ C(l, k).
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Proof. Consider C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l, k). We prove several
auxiliary results from which the assertion will follow by induction over l ∈ N.
(1) If l = 1 and mk = l, then

P [{T1 = T ′
1}] =

α′

α′ + α′′
.

We have

{T1 < T ′
1} =

⋃

t∈Q
{T1 ≤ t < T ′

1}

=
⋃

t∈Q
{Nt ≥ 1}∩{N ′

t = 0}

=
⋃

t∈Q
{N ′′

t ≥ 1}∩{N ′
t = 0}

=
⋃

t∈Q
{T ′′

1 ≤ t < T ′
1}

= {T ′′
1 < T ′

1}
as well as, by a similar argument,

{T1 > T ′
1} = ∅ ,

and thus

{T1 = T ′
1} = {T ′

1 ≤ T ′′
1 }

= {T ′
1 < T ′′

1 }
= {W ′

1 < W ′′
1 } .

(In the sequel, arguments of this type will be tacitly used at several occasions.) Now
Lemma 6.4.2 yields

P [{T1 = T ′
1}] = P [{W ′

1 < W ′′
1 }]

=

∫

R
P [{w < W ′′

1 }] dPW ′
1
(w)

=

∫

R
e−α′′w α′

α′ + α′′
eα′′w dPW (w)

=
α′

α′ + α′′
,

as was to be shown.
(2) If l = 1 and nl−k = l, then

P [{T1 = T ′′
1 }] =

α′′

α′ + α′′
.

This follows from (1) by symmetry.
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(3) If l ≥ 2 and mk = l, then

P

[ ⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]

=
α′

α′ + α′′
· P

[ ⋂

i∈{1,...,k−1}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]
.

This means that elimination of the event {Tmk
= T ′

k} produces the factor α′/(α′+α′′).
To prove our claim, we consider separately the cases mk−1 < l−1 and mk−1 = l−1.
Let us first consider the case mk−1 < l−1. For all s, t ∈ (0,∞) such that s ≤ t,
Lemma 6.4.2 yields
∫

(t−s,∞)

∫

(s+v−t,∞)

dPW ′′(w) dPW ′(v) =

∫

(t−s,∞)

e−α′′(s+v−t) dPW ′(v)

=

∫

(t−s,∞)

e−α′′(s+v−t) α′

α′ + α′′
eα′′v dPW (v)

=
α′

α′ + α′′
e−α′′(s−t)

∫

(t−s,∞)

dPW (v)

=
α′

α′ + α′′
e−α′′(s−t) e−(α′+α′′)(t−s)

=
α′

α′ + α′′
e−α′(t−s)

=
α′

α′ + α′′

∫

(t−s,∞)

dPW ′(v) .

For integration variables v1, . . . , vk−1 ∈ R and w1, . . . , wl−k ∈ R, define

s :=
k−1∑

h=1

vh

and

t :=
l−k∑

h=1

wh .

With suitable domains of integration where these are not specified, the identity
established before yields

P

[ ⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]

= P [{. . . < T ′
k−1 . . . < T ′′

l−k < T ′
k < T ′′

l−k+1}]
= P [{. . . < T ′

k−1 . . . < T ′′
l−k < T ′

k−1 + W ′
k < T ′′

l−k + W ′′
l−k+1}]
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= . . .

∫
. . .

∫ ∫

(t−s,∞)

∫

(s+v−t,∞)

dPW ′′
l−k+1

(w) dPW ′
k
(v) dPW ′′

l−k
(wl−k) . . . dPW ′

k−1
(vk−1) . . .

= . . .

∫
. . .

∫ (
α′

α′ + α′′

∫

(t−s,∞)

dPW ′
k
(v)

)
dPW ′′

l−k
(wl−k) . . . dPW ′

k−1
(vk−1) . . .

=
α′

α′ + α′′
·
(

. . .

∫
. . .

∫ ∫

(t−s,∞)

dPW ′
k
(v) dPW ′′

l−k
(wl−k) . . . dPW ′

k−1
(vk−1) . . .

)

=
α′

α′ + α′′
· P [{. . . < T ′

k−1 . . . < T ′′
l−k < T ′

k−1 + W ′
k}]

=
α′

α′ + α′′
· P [{. . . < T ′

k−1 . . . < T ′′
l−k < T ′

k}]

=
α′

α′ + α′′
· P

[ ⋂

i∈{1,...,k−1}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]
.

Let us now consider the case mk−1 = l−1. For all s, t ∈ (0,∞) such that t ≤ s,
Lemma 6.4.2 yields

∫

(0,∞)

∫

(s+v−t,∞)

dPW ′′(w) dPW ′(v) =

∫

(0,∞)

e−α′′(s+v−t) dPW ′(v)

=

∫

(0,∞)

e−α′′(s+v−t) α′

α′ + α′′
eα′′v dPW (v)

=
α′

α′ + α′′
e−α′′(s−t)

=
α′

α′ + α′′

∫

(s−t,∞)

dPW ′′(w) .

This yields, as before,

P

[ ⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]

= P [{. . . < T ′′
l−k . . . < T ′

k−1 < T ′
k < T ′′

l−k+1}]
= P [{. . . < T ′′

l−k . . . < T ′
k−1 < T ′

k−1 + W ′
k < T ′′

l−k + W ′′
l−k+1}]

= . . .

∫
. . .

∫ ∫

(0,∞)

∫

(s+v−t,∞)

dPW ′′
l−k+1

(w) dPW ′
k
(v) dPW ′

k−1
(vk−1) . . . dPW ′′

l−k
(wl−k) . . .

= . . .

∫
. . .

∫ (
α′

α′ + α′′

∫

(s−t,∞)

dPW ′′
l−k+1

(v)

)
dPW ′

k−1
(vk−1) . . . dPW ′′

l−k
(wl−k) . . .

=
α′

α′ + α′′
·
(

. . .

∫
. . .

∫ ∫

(s−t,∞)

dPW ′′
l−k+1

(v) dPW ′
k−1

(vk−1) . . . dPW ′′
l−k

(wl−k) . . .

)
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=
α′

α′ + α′′
· P [{. . . < T ′′

l−k . . . < T ′
k−1 < T ′′

l−k + W ′′
l−k+1}]

=
α′

α′ + α′′
· P [{. . . < T ′′

l−k . . . < T ′
k−1 < T ′′

l−k+1}]

=
α′

α′ + α′′
· P

[ ⋂

i∈{1,...,k−1}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tj = T ′′

j }
]

.

This proves our claim.
(4) If l ≥ 2 and nl−k = l, then

P

[ ⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k}
{Tnj

= T ′′
j }

]

=
α′′

α′ + α′′
· P

[ ⋂

i∈{1,...,k}
{Tmi

= T ′
i} ∩

⋂

j∈{1,...,l−k−1}
{Tnj

= T ′′
j }

]
.

This means that elimination of {Tnl−k
= T ′′

l } produces the factor α′′/(α′+α′′). The
identity follows from (3) by symmetry.
(5) Using (1), (2), (3), and (4), the assertion now follows by induction over l∈N. 2

It is clear that, for each l ∈ N, the family {AC}C∈C(l) is disjoint; we shall now show
that it is, up to a null set, even a partition of Ω.

6.4.4 Corollary. The identity

∑

C∈C(l)
P [AC ] = 1

holds for all l ∈ N.

Proof. By Lemma 6.4.3, we have

∑

C∈C(l)
P [AC ] =

l∑

k=0

∑

C∈C(l,k)

P [AC ]

=
l∑

k=0

(
l

k

)(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

= 1 ,

as was to be shown. 2
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6.4.5 Corollary. The identities

l∑

k=1

P [{Tl = T ′
k}] =

α′

α′ + α′′

and
l∑

k=1

P [{Tl = T ′′
k }] =

α′′

α′ + α′′

hold for all l ∈ N.

Proof. For l ∈ N and k ∈ {1, . . . , l}, let C(l, k, k) denote the collection of all pairs
({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l) satisfying mk = l. Then we have

l∑

k=1

P [{Tl = T ′
k}] =

l∑

k=1

∑

C∈C(l,k,k)

P [AC ]

=
l∑

k=1

∑

C∈C(l,k,k)

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

=
l∑

k=1

(
l − 1

k − 1

)(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

=
α′

α′ + α′′

l−1∑
j=0

(
l − 1

j

)(
α′

α′ + α′′

)j(
α′′

α′ + α′′

)(l−1)−j

=
α′

α′ + α′′
,

which is the first identity. The second identity follows by symmetry. 2

For all n ∈ N, define

Xn :=
n∑

k=1

(
χ{Tn=T ′

k
}X

′
k + χ{Tn=T ′′

k
}X

′′
k

)
.

The sequence {Xn}n∈N is said to be the superposition of the claim size processes
{X ′

n}n∈N and {X ′′
n}n∈N.

6.4.6 Theorem (Superposition of Claim Size Processes). The sequence
{Xn}n∈N is i. i. d. and satisfies

PX =
α′

α′ + α′′
PX′ +

α′′

α′ + α′′
PX′′ .
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Proof. Consider l ∈ N and B1, . . . , Bl ∈ B(R).
For C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l), Lemma 6.4.3 yields

P [AC ] =

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

,

and hence

P

[
l⋂

h=1

{Xh∈Bh} ∩ AC

]

= P

[ ⋂

i∈{1,...,k}
{X ′

mi
∈Bmi

} ∩
⋂

j∈{1,...,l−k}
{X ′′

nj
∈Bnj

} ∩ AC

]

=
∏

i∈{1,...,k}
P [{X ′

mi
∈Bmi

}] ·
∏

j∈{1,...,l−k}
P [{X ′′

nj
∈Bnj

}] · P [AC ]

=
∏

i∈{1,...,k}
PX′ [Bmi

] ·
∏

j∈{1,...,l−k}
PX′′ [Bnj

] ·
(

α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

=
∏

i∈{1,...,k}

α′

α′ + α′′
PX′ [Bmi

] ·
∏

j∈{1,...,l−k}

α′′

α′ + α′′
PX′′ [Bnj

] .

By Corollary 6.4.4, summation over C(l) yields

P

[
l⋂

h=1

{Xh∈Bh}
]

=
∑

C∈C(l)
P

[
l⋂

h=1

{Xh∈Bh} ∩ AC

]

=
∑

C∈C(l)

( ∏

i∈{1,...,k}

α′

α′ + α′′
PX′ [Bmi

] ·
∏

j∈{1,...,l−k}

α′′

α′ + α′′
PX′′ [Bnj

]

)

=
l∏

h=1

(
α′

α′ + α′′
PX′ [Bh] +

α′′

α′ + α′′
PX′′ [Bh]

)
,

and the assertion follows. 2

We can now prove the main result of this section:

6.4.7 Theorem (Superposition of Poisson Risk Processes). The pair
({Nt}t∈R+

, {Xn}n∈N) is a Poisson risk process.

Proof. Consider l ∈ N, B1, . . . , Bl ∈ B(R), and a disjoint family {Dh}h∈{1,...,l} of
intervals in (0,∞) with increasing lower bounds. Define

η :=
l−1∏

h=1

(α′+α′′) λ[Dh] · PW [Dl] .
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If we can show that

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh}
]

= P

[
l⋂

h=1

{Xh∈Bh}
]
· η ,

then we have

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh}
]

= P

[
l⋂

h=1

{Xh∈Bh}
]
· P

[
l⋂

h=1

{Th∈Dh}
]

.

We proceed in several steps:
(1) The identity

P

[
l⋂

h=1

{Th∈Dh} ∩ AC

]
= η ·

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

holds for all C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l).
Assume that l = mk. For integration variables v1, . . . , vk ∈ R and w1, . . . , wl−k ∈ R
and for i ∈ {0, 1, . . . , k} and j ∈ {0, 1, . . . , l−k}, define

si :=
i∑

h=1

vh

and

tj :=

j∑

h=1

wh .

Using translation invariance of the Lebesgue measure, we obtain

∫

Dn1−t0

. . .

∫

Dnl−k
−tl−k−1

eα′′tl−kdPW ′′
l−k

(wl−k) . . . dPW ′′
1
(w1) =

l−k∏
j=1

α′′ λ[Dnj
] ,

also, using the transformation formula, we obtain∫

Dmk
−sk−1

e−α′′sk dPW ′
k
(vk)

=

∫

Dmk
−sk−1

e−α′′sk α′e−α′vk χ(0,∞)(vk) dλ(vk)

=
α′

α′ + α′′
eα′sk−1

∫

Dmk
−sk−1

(α′+α′′) e−(α′+α′′)(sk−1+vk) χ(0,∞)(vk) dλ(vk)

=
α′

α′ + α′′
eα′sk−1

∫

Dmk

(α′+α′′) e−(α′+α′′)sk χ(0,∞)(sk) dλ(sk)

=
α′

α′ + α′′
eα′sk−1PW [Dmk

]

=
α′

α′ + α′′
eα′sk−1PW [Dl] ,



6.4 Superposition of Poisson Risk Processes 151

and hence

∫

Dm1−s0

. . .

∫

Dmk
−sk−1

e−α′′skdPW ′
k
(vk) . . . dPW ′

1
(v1) =

α′

α′ + α′′
PW [Dl]

k−1∏
i=1

α′λ[Dmj
] .

This yields

P

[
l⋂

h=1

{Th∈Dh} ∩ AC

]

= P

[
k⋂

i=1

{T ′
i ∈Dmi

} ∩
l−k⋂
j=1

{T ′′
j ∈Dnj

} ∩ {T ′
k ≤ T ′′

l−k+1}
]

= P

[
k⋂

i=1

{T ′
i ∈Dmi

} ∩
l−k⋂
j=1

{T ′′
j ∈Dnj

} ∩ {T ′
k ≤ T ′′

l−k + W ′′
l−k+1}

]

=

∫

Dm1−s0

. . .

∫

Dmk
−sk−1

∫

Dn1−t0

. . .

∫

Dnl−k
−tl−k−1

∫

(sk−tl−k,∞)

dPW ′′
l−k+1

(wl−k+1)

dPW ′′
l−k

(wl−k) . . . dPW ′′
1
(w1) dPW ′

k
(vk) . . . dPW ′

1
(v1)

=

∫

Dm1−s0

. . .

∫

Dmk
−sk−1

∫

Dn1−t0

. . .

∫

Dnl−k
−tl−k−1

e−α′′(sk−tl−k)

dPW ′′
l−k

(wl−k) . . . dPW ′′
1
(w1) dPW ′

k
(vk) . . . dPW ′

1
(v1)

=

∫

Dm1−s0

. . .

∫

Dmk
−sk−1

e−α′′sk

(∫

Dn1−t0

. . .

∫

Dnl−k
−tl−k−1

eα′′tl−k

dPW ′′
l−k

(wl−k) . . . dPW ′′
1
(w1)

)
dPW ′

k
(vk) . . . dPW ′

1
(v1)

=

∫

Dm1−s0

. . .

∫

Dmk
−sk−1

e−α′′sk

(
l−k∏
j=1

α′′ λ[Dnj
]

)
dPW ′

k
(vk) . . . dPW ′

1
(v1)

=
α′

α′ + α′′
PW [Dl]

k−1∏
i=1

α′λ[Dmj
] ·

l−k∏
j=1

α′′ λ[Dnj
]

=

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

·
l−1∏

h=1

(α′+α′′) λ[Dh] · PW [Dl]

=

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

· η .

By symmetry, the same result obtains in the case l = nl−k.
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(2) The identity

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh} ∩ AC

]

=
k∏

i=1

α′

α′ + α′′
PX′ [Bmi

] ·
l−k∏
j=1

α′′

α′ + α′′
PX′′ [Bnj

] · η

holds for all C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l).
Because of (1), we have

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh} ∩ AC

]

= P

[
k⋂

i=1

{X ′
mi
∈Bmi

} ∩ {T ′
mi
∈Dmi

} ∩
l−k⋂
j=1

{X ′′
nj
∈Bnj

} ∩ {T ′′
nj
∈Dnj

} ∩ AC

]

= P

[
k⋂

i=1

{X ′
mi
∈Bmi

} ∩
l−k⋂
j=1

{X ′′
nj
∈Bnj

}
]

· P
[

k⋂
i=1

{T ′
mi
∈Dmi

} ∩
l−k⋂
j=1

{T ′′
nj
∈Dnj

} ∩ AC

]

=
k∏

i=1

PX′ [Bmi
]

l−k∏
j=1

PX′′ [Bnj
] · P

[
l⋂

h=1

{Th∈Dh} ∩ AC

]

=
k∏

i=1

PX′ [Bmi
]

l−k∏
j=1

PX′′ [Bnj
] ·

(
α′

α′ + α′′

)k(
α′′

α′ + α′′

)l−k

η

=
k∏

i=1

α′

α′ + α′′
PX′ [Bmi

] ·
l−k∏
j=1

α′′

α′ + α′′
PX′′ [Bnj

] · η ,

as was to be shown.
(3) We have

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh}
]

= P

[
l⋂

h=1

{Xh∈Bh}
]
· η .

By Corollary 6.4.4 and because of (2) and Theorem 6.4.6, we have

P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh}
]

=
∑

C∈C(l)
P

[
l⋂

h=1

{Xh∈Bh} ∩ {Th∈Dh} ∩ AC

]
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=
∑

C∈C(l)

(
k∏

i=1

α′

α′ + α′′
PX′ [Bmi

] ·
l−k∏
j=1

α′′

α′ + α′′
PX′′ [Bnj

] · η
)

= η ·
∑

C∈C(l)

(
k∏

i=1

α′

α′ + α′′
PX′ [Bmi

] ·
l−k∏
j=1

α′′

α′ + α′′
PX′′ [Bnj

]

)

= η ·
l∏

h=1

(
α′

α′ + α′′
PX′ [Bh] +

α′′

α′ + α′′
PX′′ [Bh]

)

= η ·
l∏

h=1

P [{Xh∈Bh}]

= η · P
[

l⋂

h=1

{Xh∈Bh}
]

,

as was to be shown.
(4) We have

P

[
l⋂

h=1

{Xh∈Bh} ∩
l⋂

h=1

{Th∈Dh}
]

= P

[
l⋂

h=1

{Xh∈Bh}
]
· P

[
l⋂

h=1

{Th∈Dh}
]

.

This follows from (3).
(5) The previous identity remains valid if the sequence {Dh}h∈{1,...,l} of intervals
is replaced by a sequence of general Borel sets. This implies that {Xn}n∈N and
{Tn}n∈N0

are independent. 2

Let us finally consider the aggregate claims process {St}t∈R+
induced by the Poisson

risk process ({Nt}t∈R+
, {Xn}n∈N). If the construction of the claim size process

{Xn}n∈N was appropriate, then the aggregate claims process {St}t∈R+
should agree

with the sum of the aggregate claims processes {S ′t}t∈R+
and {S ′′t }t∈R+

induced by
the original Poisson risk processes ({N ′

t}t∈R+
, {X ′

n}n∈N) and ({N ′′
t }t∈R+

, {X ′′
n}n∈N),

respectively. The following result asserts that this is indeed true:

6.4.8 Theorem. The identity

St = S ′t + S ′′t

holds for all t∈R+.

Proof. For all ω ∈ {Nt = 0}, we clearly have

St(ω) = S ′t(ω) + S ′′t (ω) .

Consider now l ∈ N. For C = ({mi}i∈{1,...,k}, {nj}j∈{1,...,l−k}) ∈ C(l), we have

{Nt = l} ∩ AC = {Tl ≤ t < Tl+1} ∩ AC

= {T ′
k ≤ t < T ′

k+1} ∩ {T ′′
l−k ≤ t < T ′′

l−k+1} ∩ AC

= {N ′
t = k} ∩ {N ′′

t = l−k} ∩ AC
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and hence, for all ω ∈ {Nt = l} ∩ AC ,

St(ω) =

Nt(ω)∑

h=1

Xh(ω)

=
l∑

h=1

Xh(ω)

=
k∑

i=1

Xmi
(ω) +

l−k∑
j=1

Xnj
(ω)

=

N ′
t(ω)∑
i=1

X ′
i(ω) +

N ′′
t (ω)∑
j=1

X ′′
j (ω)

= S ′t(ω) + S ′′t (ω) .

By Corollary 6.4.4, this yields

St(ω) = S ′t(ω) + S ′′t (ω)

for all ω ∈ {Nt = l}.
We conclude that

St = S ′t + S ′′t ,

as was to be shown. 2

Problems
6.4.A Extend the results of this section to more than two independent Poisson risk

processes.

6.4.B Study the superposition problem for independent risk processes which are not
Poisson risk processes.

6.4.C Discrete Time Model: The sum of two independent binomial processes may
fail to be a claim number process.

6.5 Remarks

For theoretical considerations, excess of loss reinsurance is probably the simplest
form of reinsurance. Formally, excess of loss reinsurance with a priority held by the
direct insurer is the same as direct insurance with a deductible to be paid by the
insured.

For further information on reinsurance, see Gerathewohl [1976, 1979] and Dienst
[1988]; for a discussion of the impact of deductibles, see Sterk [1979, 1980, 1988].

The superposition problem for renewal processes was studied by Störmer [1969].



Chapter 7

The Reserve Process and the
Ruin Problem

In the present chapter we introduce the reserve process and study the ruin problem.
We first extend the model considered so far and discuss some technical aspects of
the ruin problem (Section 7.1). We next prove Kolmogorov’s inequality for positive
supermartingales (Section 7.2) and then apply this inequality to obtain Lundberg’s
inequality for the probability of ruin in the case where the excess premium process
has a superadjustment coefficient (Section 7.3). We finally give some sufficient
conditions for the existence of a superadjustment coefficient (Section 7.4).

7.1 The Model

Throughout this chapter, let {Nt}t∈R+
be a claim number process, let {Tn}n∈N0

be
the claim arrival process induced by the claim number process, and let {Wn}n∈N be
the claim interarrival process induced by the claim arrival process. We assume that
the exceptional null set is empty and that the probability of explosion is equal to
zero.

Furthermore, let {Xn}n∈N be a claim size process, let {St}t∈R+
be the aggregate

claims process induced by the claim number process and the claim size process, and
let κ ∈ (0,∞). For u ∈ (0,∞) and all t ∈ R+, define

Ru
t := u + κt− St .

Of course, we have Ru
0 = u.

Interpretation:
– κ is the premium intensity so that κt is the premium income up to time t.
– u is the initial reserve.
– Ru

t is the reserve at time t when the initial reserve is u.
Accordingly, the family {Ru

t }t∈R+
is said to be the reserve process induced by the
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claim number process, the claim size process, the premium intensity, and the initial
reserve.

u »»»»»»»»»»»»»»»»»»»»»»»»»»»»» u + κt

0 -

s

6

0 T1(ω) T2(ω) T3(ω) T4(ω) T5(ω)

t•
•

•

•

•
• St(ω)

Claim Arrival Process and Aggregate Claims Process

We are interested in the ruin problem for the reserve process. This is the problem of
calculating or estimating the probability of the event that the reserve process falls
beyond zero at some time.
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u

r

6
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t

»»»»»»»»»»»»»»»»»»»»»»»»»»»»» u + κt
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���
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�

•����•���� Ru
t (ω)

Claim Arrival Process and Reserve Process
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In order to give a precise formulation of the ruin problem, we need the following
measure–theoretic consideration:

Let {Zt}t∈R+
be family of measurable functions Ω → [−∞,∞]. A measurable

function Z : Ω → [−∞,∞] is said to be an essential infimum of {Zt}t∈R+
if it has

the following properties:
– P [{Z ≤ Zt}] = 1 holds for all t ∈ R+, and
– every measurable function Y : Ω → [−∞,∞] such that P [{Y ≤ Zt}] = 1 holds

for all t ∈ R+ satisfies P [{Y ≤ Z}] = 1.
The definition implies that any two essential infima of {Zt}t∈R+

are identical with
probability one. The almost surely unique essential infimum of the family {Zt}t∈R+

is denoted by inft∈R+
Zt.

7.1.1 Lemma. Every family {Zt}t∈R+
of measurable functions Ω → [−∞,∞]

possesses an essential infimum.

Proof. Without loss of generality, we may assume that Zt(ω) ∈ [−1, 1] holds for
all t ∈ R+ and ω ∈ Ω.
Let J denote the collection of all countable subsets of R+. For J ∈ J , consider the
measurable function ZJ satisfying

ZJ(ω) = inft∈J Zt(ω) .

Define

c := infJ∈J E[ZJ ] ,

choose a sequence {Jn}n∈N satisfying

c = infn∈N E[ZJn ] ,

and define J∞ :=
⋃

n∈N Jn. Then we have J∞ ∈ J . Since c ≤ E[ZJ∞ ] ≤ E[ZJn ]
holds for all n ∈ N, we obtain

c = E[ZJ∞ ] .

For each t ∈ R+, we have ZJ∞∪{t} = ZJ∞ ∧ Zt, hence

c ≤ E[ZJ∞∪{t}]

= E[ZJ∞ ∧ Zt]

≤ E[ZJ∞ ]

= c ,

whence

P [{ZJ∞∧Zt = ZJ∞}] = 1 ,

and thus

P [{ZJ∞ ≤ Zt}] = 1 .

The assertion follows. 2
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Let us now return to the reserve process {Ru
t }t∈R+

. By Lemma 7.1.1, the reserve
process has an essential infimum which is denoted by

inft∈R+
Ru

t .

In particular, we have {inft∈R+
Ru

t < 0} ∈ F . The event {inft∈R+
Ru

t < 0} is called
ruin of the reserve process and its probability is denoted by

Ψ(u) := P [{inft∈R+
Ru

t < 0}]
in order to emphasize the dependence of the probability of ruin on the initial reserve.

In practice, an upper bound Ψ∗ for the probability of ruin is given in advance and
the insurer is interested to choose the initial reserve u such that

Ψ(u) ≤ Ψ∗ .

In principle, one would like to choose u such that

Ψ(u) = Ψ∗ ,

but the problem of computing the probability of ruin is even harder than the problem
of computing the accumulated claims distribution. It is therefore desirable to have
an upper bound Ψ′(u) for the probability of ruin when the initial reserve is u, and
to choose u such that

Ψ′(u) = Ψ∗ .

Since

Ψ(u) ≤ Ψ′(u) ,

the insurer is on the safe side but possibly binds too much capital.

It is intuitively clear that the time when the reserve process first falls beyond zero for
the first time must be a claim arrival time. To make this point precise, we introduce
a discretization of the reserve process: For n ∈ N, define

Gn := κWn −Xn ,

and for n ∈ N0 define

Uu
n := u +

n∑

k=1

Gk .

Of course, we have Uu
0 = u.

The sequence {Gn}n∈N is said to be the excess premium process , and the sequence
{Uu

n}n∈N0
is said to be the modified reserve process.
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The following result shows that the probability of ruin is determined by the modified
reserve process:

7.1.2 Lemma. The probability of ruin satisfies

Ψ(u) = P [{infn∈N0
Uu

n < 0}] .

Proof. Define A := {supN0
Tn < ∞}. For each ω ∈ Ω\A, we have

inft∈R+
Ru

t (ω) = inft∈R+

(
u + κt−

Nt(ω)∑

k=1

Xk(ω)

)

= infn∈N0
inft∈[Tn(ω),Tn+1(ω))

(
u + κt−

Nt(ω)∑

k=1

Xk(ω)

)

= infn∈N0
inft∈[Tn(ω),Tn+1(ω))

(
u + κt−

n∑

k=1

Xk(ω)

)

= infn∈N0

(
u + κTn(ω)−

n∑

k=1

Xk(ω)

)

= infn∈N0

(
u + κ

n∑

k=1

Wk(ω)−
n∑

k=1

Xk(ω)

)

= infn∈N0

(
u +

n∑

k=1

(κWk(ω)−Xk(ω))

)

= infn∈N0

(
u +

n∑

k=1

Gk(ω)

)

= infn∈N0
Uu

n (ω) .

Since the probability of explosion is assumed to be zero, we have P [A] = 0, hence

inft∈R+
Ru

t = infn∈N0
Uu

n ,

and thus

Ψ(u) = P [{inft∈R+
Ru

t < 0}]
= P [{infn∈N0

Uu
n < 0}] ,

as was to be shown. 2
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In the case where the excess premiums are i. i. d. with finite expectation, the previous
lemma yields a first result on the probability of ruin which sheds some light on the
different roles of the initial reserve and the premium intensity:

7.1.3 Theorem. Assume that the sequence {Gn}n∈N is i. i. d. with nondegenerate
distribution and finite expectation. If E[G] ≤ 0, then, for every initial reserve, the
probability of ruin is equal to one.

Proof. By the Chung–Fuchs Theorem, we have

1 = P

[{
lim infn∈N

n∑

k=1

Gk = −∞
}]

≤ P

[{
lim infn∈N

n∑

k=1

Gk < −u

}]

≤ P

[{
infn∈N

n∑

k=1

Gk < −u

}]

= P [{infn∈N Uu
n < 0}] ,

and thus

P [{infn∈N Uu
n < 0}] = 1 .

The assertion now follows from Lemma 7.1.2. 2

7.1.4 Corollary. Assume that the sequences {Wn}n∈N and {Xn}n∈N are inde-
pendent and that each of them is i. i. d. with nondegenerate distribution and finite
expectation. If κ ≤ E[X]/E[W ], then, for every initial reserve, the probability of
ruin is equal to one.

It is interesting to note that Theorem 7.1.3 and Corollary 7.1.4 do not involve any
assumption on the initial reserve.

In the situation of Corollary 7.1.4 we see that, in order to prevent the probability of
ruin from being equal to one, the premium intensity must be large enough to ensure
that the expected premium income per claim, κE[W ], is strictly greater than the
expected claim size E[X]. The expected claim size is called the net premium, and
the expected excess premium,

E[G] = κE[W ]− E[X] ,

is said to be the safety loading of the (modified) reserve process. For later reference,
we note that the safety loading is strictly positive if and only if the premium intensity
safisfies

κ >
E[X]

E[W ]
.

We shall return to the situation of Corollary 7.1.4 in Section 7.4 below.
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7.2 Kolmogorov’s Inequality for Positive
Supermartingales

Our aim is to establish an upper bound for the probability of ruin under a suitable
assumption on the excess premium process. The proof of this inequality will be
based on Kolmogorov’s inequality for positive supermartingales which is the subject
of the present section.

Consider a sequence {Zn}n∈N0
of random variables having finite expectations and

let {Fn}n∈N0
be the canonical filtration for {Zn}n∈N0

.

A map τ : Ω → N0 ∪{∞} is a stopping time for {Fn}n∈N0
if {τ =n} ∈ Fn holds for

all n ∈ N0, and it is bounded if supω∈Ω τ(ω) < ∞. Let T denote the collection of all
bounded stopping times for {Fn}n∈N0

, and note that N0 ⊆ T.

For τ ∈ T, define

Zτ :=
∞∑

n=0

χ{τ=n}Zn .

Then Zτ is a random variable satisfying

|Zτ | =
∞∑

n=0

χ{τ=n}|Zn|

as well as

E[Zτ ] =
∞∑

n=0

∫

{τ=n}
Zn dP .

Note that the sums occurring in the definition of Zτ and in the formulas for |Zτ |
and E[Zτ ] actually extend only over a finite number of terms.

7.2.1 Lemma (Maximal Inequality). The inequality

P [{supn∈N0
|Zn| > ε}] ≤ 1

ε
supτ∈T E|Zτ |

holds for all ε ∈ (0,∞).

Proof. Define

An := {|Zn| > ε} ∩
n−1⋂

k=1

{|Zk| ≤ ε} .
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Then we have {supN0
|Zn| > ε} =

∑∞
n=0 An and hence

P [{supn∈N0
|Zn| > ε}] =

∞∑
n=0

P [An] .

Consider r ∈ N0, and define a random variable τr by letting

τr(ω) :=

{
n if ω ∈ An and n∈{0, 1, . . . , r}
r if ω ∈ Ω \∑r

n=0 An .

Then we have τr ∈ T, and hence

r∑
n=0

P [An] ≤
r∑

n=0

1

ε

∫

An

|Zn| dP

=
1

ε

r∑
n=0

∫

An

|Zτr | dP

≤ 1

ε

∫

Ω

|Zτr | dP

≤ 1

ε
supτ∈T E|Zτ | .

Therefore, we have

P [{supn∈N0
|Zn| > ε}] =

∞∑
n=0

P [An]

≤ 1

ε
supτ∈T E|Zτ | ,

as was to be shown. 2

7.2.2 Lemma. The following are equivalent :

(a) {Zn}n∈N0
is a supermartingale.

(b) The inequality E[Zσ] ≥ E[Zτ ] holds for all σ, τ ∈ T such that σ ≤ τ.

Proof. Assume first that (a) holds and consider σ, τ ∈ T such that σ ≤ τ . For all
k, n ∈ N0 such that n ≥ k, we have {σ = k}∩{τ ≥ n+1} = {σ = k}\{τ ≤ n} ∈ Fn,
and thus

∫

{σ=k}∩{τ≥n}
Zn dP =

∫

{σ=k}∩{τ=n}
Zn dP +

∫

{σ=k}∩{τ≥n+1}
Zn dP

≥
∫

{σ=k}∩{τ=n}
Zn dP +

∫

{σ=k}∩{τ≥n+1}
Zn+1 dP .
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Induction yields

∫

{σ=k}
Zk dP =

∫

{σ=k}∩{τ≥k}
Zk dP

≥
∞∑

n=k

∫

{σ=k}∩{τ=n}
Zn dP ,

and this gives

∫

Ω

Zσ dP =
∞∑

k=0

∫

{σ=k}
Zk dP

≥
∞∑

k=0

∞∑

n=k

∫

{σ=k}∩{τ=n}
Zn dP

=
∞∑

n=0

n∑

k=0

∫

{σ=k}∩{τ=n}
Zn dP

=
∞∑

n=0

∫

{τ=n}
Zn dP

=

∫

Ω

Zτ dP .

Therefore, (a) implies (b).
Assume now that (b) holds. Consider n ∈ N0 and A ∈ Fn, and define a random
variable τ by letting

τ(ω) :=

{
n + 1 if ω ∈ A
n if ω ∈ Ω\A .

Then we have n ≤ τ ∈ T, hence

∫

A

Zn dP +

∫

Ω\A
Zn dP =

∫

Ω

Zn dP

≥
∫

Ω

Zτ dP

=

∫

A

Zn+1 dP +

∫

Ω\A
Zn dP ,

and thus
∫

A

Zn dP ≥
∫

A

Zn+1 dP .

Therefore, (b) implies (a). 2
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7.2.3 Lemma. The following are equivalent :
(a) {Zn}n∈N0

is a martingale.
(b) The identity E[Zσ] = E[Zτ ] holds for all σ, τ ∈ T.

The proof of Lemma 7.2.3 is similar to that of Lemma 7.2.2.

The sequence {Zn}n∈N0
is positive if each Zn is positive.

7.2.4 Corollary (Kolmogorov’s Inequality). If {Zn}n∈N0
is a positive super-

martingale, then the inequality

P [{supn∈N0
Zn > ε}] ≤ 1

ε
E[Z0]

holds for all ε ∈ (0,∞).

This is immediate from Lemmas 7.2.1 and 7.2.2.

7.3 Lundberg’s Inequality

Throughout this section, we assume that the sequence of excess premiums {Gn}n∈N
is independent.

A constant % ∈ (0,∞) is a superadjustment coefficient for the excess premium process
{Gn}n∈N if it satisfies

E
[
e−%Gn

] ≤ 1

for all n ∈ N, and it is an adjustment coefficient for the excess premium process if
it satisfies

E
[
e−%Gn

]
= 1

for all n ∈ N. The excess premium process need not possess a superadjustment
coefficient; if the distribution of some excess premium is nondegenerate, then the
excess premium process has at most one adjustment coefficient.

Let {Fn}n∈N0
denote the canonical filtration for {Uu

n}n∈N0
.

7.3.1 Lemma. For % ∈ (0,∞), the identity

∫

A

e−%Uu
n+1 dP =

∫

A

e−%Uu
n dP ·

∫

Ω

e−%Gn+1 dP

holds for all n ∈ N0 and A ∈ Fn.
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Proof. For all n ∈ N0, we have

Fn = σ
({Uu

k }k∈{0,1,...,n}
)

= σ
({Gk}k∈{1,...,n}

)
.

Since the sequence {Gn}n∈N is independent, this yields∫

A

e−%Uu
n+1 dP =

∫

Ω

χAe−%(Uu
n+Gn+1) dP

=

∫

Ω

χAe−%Uu
n e−%Gn+1 dP

=

∫

Ω

χAe−%Uu
n dP ·

∫

Ω

e−%Gn+1 dP

=

∫

A

e−%Uu
n dP ·

∫

Ω

e−%Gn+1 dP ,

for all n ∈ N0 and A ∈ Fn. The assertion follows. 2

As an immediate consequence of Lemma 7.3.1, we obtain the following characteri-
zations of superadjustment coefficients and adjustment coefficients:

7.3.2 Corollary. For % ∈ (0,∞), the following are equivalent :
(a) % is a superadjustment coefficient for the excess premium process.
(b) For every u ∈ (0,∞), the sequence {e−%Uu

n}n∈N0
is a supermartingale.

7.3.3 Corollary. For % ∈ (0,∞), the following are equivalent :
(a) % is an adjustment coefficient for the excess premium process.
(b) For every u ∈ (0,∞), the sequence {e−%Uu

n}n∈N0
is a martingale.

The main result of this section is the following:

7.3.4 Theorem (Lundberg’s Inequality). If % ∈ (0,∞) is a superadjustment
coefficient for the excess premium process, then the identity

P [{infn∈N0
Uu

n < 0}] ≤ e−%u

holds for all u ∈ (0,∞).

Proof. By Corollaries 7.3.2 and 7.2.4, we have

P [{infn∈N0
Uu

n < 0}] = P
[{

supn∈N0
e−%Uu

n > 1
}]

≤ E
[
e−%Uu

0
]

= E
[
e−%u

]

= e−%u ,

as was to be shown. 2

The upper bound for the probability of ruin provided by Lundberg’s inequality
depends explicitly on the initial reserve u. Implicitly, it also depends, via the super-
adjustment coefficient %, on the premium intensity κ.
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Problem
7.3.A Assume that the sequence {Xn}n∈N is independent. If there exists some %∈(0,∞)

satisfying E[e%Xn ] ≤ 1 for all n ∈ N, then the inequality

P [supt∈R+
St > c] ≤ e−%c

holds for all c ∈ (0,∞).
Hint: Extend Lemma 7.1.2 and Lundberg’s inequality to the case κ = 0.

7.4 On the Existence of a Superadjustment
Coefficient

In the present section, we study the existence of a (super)adjustment coefficient.

We first consider the case where the excess premiums are i. i. d. According to the
following result, we have to assume that the safety loading is strictly positive:

7.4.1 Theorem. Assume that the sequence {Gn}n∈N is i. i. d. with nondegenerate
distribution and finite expectation. If the excess premium process has a superadjust-
ment coefficient, then E[G] > 0.

Proof. The assertion follows from Theorems 7.3.4 and 7.1.3. 2

7.4.2 Corollary. Assume that the sequences {Wn}n∈N and {Xn}n∈N are inde-
pendent and that each of them is i. i. d. with nondegenerate distribution and finite
expectation. If the excess premium process has a superadjustment coefficient, then
κ > E[X]/E[W ].

The previous result has a partial converse:

7.4.3 Theorem. Assume that
(i) {Wn}n∈N and {Xn}n∈N are independent,
(ii) {Wn}n∈N is i. i. d. and satisfies sup{z ∈ R+ |E[ezW ] < ∞} ∈ (0,∞], and
(iii) {Xn}n∈N is i. i. d. and satisfies sup{z ∈ R+ |E[ezX ] < ∞} ∈ (0,∞) as well as

PX [R+] = 1.
If κ > E[X]/E[W ], then the excess premium process has an adjustment coefficient.

Proof. By assumption, the sequence {Gn}n∈N is i. i. d. For all z ∈ R, we have

E
[
e−zG

]
= E

[
e−zκW

]
E

[
ezX

]
,

and hence

MG(−z) = MW (−κz) MX(z) .
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By assumption, there exists some z′ ∈ (0,∞) such that the moment generating
functions of W and of X are both finite on the interval (−∞, z′). Differentiation
gives

−M ′
G(z) = −κM ′

W (−κz) MX(z) + MW (−κz) M ′
X(z)

for all z in a neighbourhood of 0, and thus

M ′
G(0) = κE[W ]− E[X] .

By assumption, there exists some z∗ ∈ (0,∞) satisfying MX(z∗) = ∞ and hence
MG(−z∗) = ∞. Since MG(0) = 1 and M ′

G(0) > 0, it follows that there exists
some % ∈ (0, z∗) satisfying E[e−%G] = MG(−%) = 1. But this means that % is an
adjustment coefficient for the excess premium process. 2

In Corollary 7.4.2 and Theorem 7.4.3, the claim interarrival times are i. i. d., which
means that the claim number process is a renewal process. A particular renewal
process is the Poisson process:

7.4.4 Corollary. Assume that
(i) {Nt}t∈R+

and {Xn}n∈N are independent,
(ii) {Nt}t∈R+

is a Poisson process with parameter α, and
(iii) {Xn}n∈N is i. i. d. and satisfies sup{z ∈ R+ |E[ezX ] < ∞} ∈ (0,∞) as well as

PX [R+] = 1.
If κ > αE[X], then the excess premium process has an adjustment coefficient.

Proof. By Lemmas 2.1.3 and 1.1.1, the claim interarrival process {Wn}n∈N and
the claim size process {Xn}n∈N are independent.
By Theorem 2.3.4, the sequence {Wn}n∈N is i. i. d. with PW = Exp(α), and this
yields sup{z ∈ R+ |E[ezW ] < ∞} = α and E[W ] = 1/α.
The assertion now follows from Theorem 7.4.3. 2

In order to apply Lundberg’s inequality, results on the existence of an adjustment
coefficient are, of course, not sufficient; instead, the adjustment coefficient has to be
determined explicitly. To this end, the distributions of the excess premiums have
to be specified, and this is usually done by specifying the distributions of the claim
interarrival times and those of the claim severities.

7.4.5 Theorem. Assume that
(i) {Nt}t∈R+

and {Xn}n∈N are independent,
(ii) {Nt}t∈R+

is a Poisson process with parameter α, and
(iii) {Xn}n∈N is i. i. d. and satisfies PX = Exp(β).
If κ > α/β, then β−α/κ is an adjustment coefficient for the excess premium process.
In particular,

P [{infn∈N Uu
n < 0}] ≤ e−(β−α/κ)u .
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Proof. By Theorem 2.3.4, the sequence {Wn}n∈N is i. i. d. with PW = Exp(α).
Define

% := β − α

κ
.

Then we have

E
[
e−%G

]
= E

[
e−%κW ] E[e%X

]

= MW (−%κ) MX(%)

=
α

α + %κ

β

β − %

= 1 ,

which means that % is an adjustment coefficient for the excess premium process.
The inequality for the probability of ruin follows from Theorem 7.3.4. 2

In the previous result, the bound for the probability of ruin decreases when either
the initial reserve or the premium intensity increases.

Let us finally turn to a more general situation in which the excess premiums are still
independent but need not be identically distributed. In this situation, the existence
of an adjustment coefficient cannot be expected, and superadjustment coefficients
come into their own right:

7.4.6 Theorem. Let {αn}n∈N and {βn}n∈N be two sequences of real numbers in
(0,∞) such that α := supn∈N αn < ∞ and β := infn∈N βn > 0. Assume that
(i) {Nt}t∈R+

and {Xn}n∈N are independent,
(ii) {Nt}t∈R+

is a regular Markov process with intensities {λn}n∈N satisfying
λn(t) = αn for all n ∈ N and t ∈ R+, and

(iii) {Xn}n∈N is independent and satisfies PXn = Exp(βn) for all n ∈ N.
If κ > α/β, then β−α/κ is a superadjustment coefficient for the excess premium
process. In particular,

P [{infn∈N Uu
n < 0}] ≤ e−(β−α/κ)u .

Proof. By Theorem 3.4.2, the sequence {Wn}n∈N is independent and satisfies
PWn = Exp(αn) for all n ∈ N. Define

% := β − α

κ
.

As in the proof of Theorem 7.4.5, we obtain

E
[
e−%Gn

]
= E

[
e−%κWn

]
E

[
e%Xn

]
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= E
[
e−%κW ] E[e%X

]

=
αn

αn + %κ

βn

βn − %

=
αnβn

αnβn + %(βnκ− %κ− αn)

=
αnβn

αnβn + %((βn−β)κ + (α−αn))

≤ 1 ,

which means that % is a superadjustment coefficient for the excess premium process.
The inequality for the probability of ruin follows from Theorem 7.3.4. 2

The previous result, which includes Theorem 7.4.5 as a special case, is a rather
exceptional example where a superadjustment coefficient does not only exist but
can even be given in explicit form.

Problems
7.4.A In Theorem 7.4.3 and Corollary 7.4.4, the condition on MX is fulfilled whenever

PX = Exp(β), PX = Geo(η), or PX = Log(η).

7.4.B Discrete Time Model: Assume that
(i) {Nl}l∈N0

and {Xn}n∈N are independent,
(ii) {Nl}l∈N0

is a binomial process with parameter ϑ, and
(iii) {Xn}n∈N is i. i. d. and satisfies sup{z ∈ R+ |E[ezX ] < ∞} ∈ (0,∞) as well

as PX [R+] = 1.
If κ > ϑE[X], then the excess premium process has an adjustment coefficient.

7.5 Remarks

In the discussion of the ruin problem, we have only considered a fixed premium
intensity and a variable initial reserve. We have done so in order not to overburden
the notation and to clarify the role of (super)adjustment coefficients, which depend
on the premium intensity but not on the initial reserve. Of course, the premium
intensitiy may be a decision variable as well which can be determined by a given
upper bound for the probability of ruin, but the role of the initial reserve and the
role of the premium intensity are nevertheless quite different since the former is
limited only by the financial power of the insurance company while the latter is to
a large extent constrained by market conditions.

The (super)martingale approach to the ruin problem is due to Gerber [1973, 1979]
and has become a famous method in ruin theory; see also DeVylder [1977], Delbaen
and Haezendonck [1985], Rhiel [1986, 1987], Björk and Grandell [1988], Dassios and
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Embrechts [1989], Grandell [1991], Møller [1992], Embrechts, Grandell, and Schmidli
[1993], Embrechts and Schmidli [1994], Møller [1995], and Schmidli [1995].

The proof of Kolmogorov’s inequality is usually based on the nontrivial fact that a
supermartingale {Zn}n∈N0

satisfies E[Z0] ≥ E[Zτ ] for arbitrary stopping times τ ;
see Neveu [1972]. The simple proof presented here is well–known in the theory of
asymptotic martingales; see Gut and Schmidt [1983] for a survey and references.

Traditionally, Lundberg’s inequality is proven under the assumption that % is an ad-
justment coefficient; the extension to the case of a superadjustment coefficient is due
to Schmidt [1989]. The origin of this extension, which is quite natural with regard
to the use of Kolmogorov’s inequality and the relation between (super)adjustment
coefficients and (super)martingales, is in a paper by Mammitzsch [1986], who also
pointed out that in the case of i. i. d. excess premiums a superadjustment coefficient
may exist when an adjustment does not exist.

For a discussion of the estimation problem for the (super)adjustment coefficient, see
Herkenrath [1986], Deheuvels and Steinebach [1990], Csörgö and Steinebach [1991],
Embrechts and Mikosch [1991], and Steinebach [1993].

Although Theorem 7.4.3 provides a rather general condition under which an adjust-
ment coefficient exists, there are important claim size distributions which do not
satisfy these conditions; an example is the Pareto distribution, which assigns high
probability to large claims. For a discussion of the ruin problem for such heavy tailed
claim size distributions, see Thorin and Wikstad [1977], Seal [1980], Embrechts and
Veraverbeke [1982], Embrechts and Villaseñor [1988], Klüppelberg [1989], and Beir-
lant and Teugels [1992].

A natural extension of the model considered in this chapter is to assume that the
premium income is not deterministic but stochastic; see Bühlmann [1972], DeVylder
[1977], Dassios and Embrechts [1989], Dickson [1991], and Møller [1992].

While the (homogeneous) Poisson process still plays a prominent role in ruin theory,
there are two major classes of claim number processes, renewal processes and Cox
processes, which present quite different extensions of the Poisson process and for
which the probability of ruin has been studied in detail. Recent work focusses on Cox
processes, or doubly stochastic Poisson processes, which are particularly interesting
since they present a common generalization of the inhomogeneous Poisson process
and the mixed Poisson process; see e. g. Grandell [1991] and the references given
there.

Let us finally remark that several authors have also studied the probability that the
reserve process attains negative values in a bounded time interval; for a discussion
of such finite time ruin probabilities, see again Grandell [1991].
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In this appendix we recall the definitions and some properties of the probability
distributions which are used or mentioned in the text. For comments on applications
of these and other distributions in risk theory, see Panjer and Willmot [1992].

Auxiliary Notions

The Gamma Function

The map Γ : (0,∞) → (0,∞) given by

Γ(γ) :=

∫ ∞

0

e−x xγ−1 dx

is called the gamma function. It has the following properties:

Γ(1/2) =
√

π

Γ(1) = 1

Γ(γ+1) = γ Γ(γ)

In particular, the identity

Γ(n+1) = n!

holds for all n∈N0. Roughly speaking, the values of the gamma function correspond
to factorials.

The Beta Function

The map B : (0,∞)×(0,∞) given by

B(α, β) :=

∫ 1

0

xα−1 (1−x)β−1 dx

is called the beta function. The fundamental identity for the beta function is

B(α, β) =
Γ(α) Γ(β)

Γ(α+β)
,
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showing that the properties of the beta function follow from those of the gamma
function. Roughly speaking, the inverted values of the beta function correspond to
binomial coefficients.

The Generalized Binomial Coefficient

For α ∈ R and m ∈ N0, the generalized binomial coefficient is defined to be
(

α

m

)
:=

m−1∏
j=0

α− j

m− j
.

For α ∈ (0,∞), the properties of the gamma function yield the identity
(

α + m− 1

m

)
=

Γ(α + m)

Γ(α) m!

which is particularly useful.

Measures

We denote by ξ : B(R) → R the counting measure concentrated on N0, and we
denote by λ : B(R) → R the Lebesgue measure. These measures are σ–finite, and
the most important probability measures B(R) → [0, 1] are absolutely continuous
wiht respect to either ξ or λ.

For n ∈ N, we denote by λn : B(Rn) → R the n–dimensional Lebesgue measure.

Generalities on Distributions

A probability measure Q : B(Rn) → [0, 1] is called a distribution.

A distribution Q is degenerate if there exists some y ∈ Rn satisfying

Q[{y}] = 1 ,

and it is nondegenerate if it is not degenerate.

In the remainder of this appendix, we consider only distributions B(R) → [0, 1].

For y ∈ R, the Dirac distribution δy is defined to be the (degenerate) distribution
Q satisfying

Q[{y}] = 1 .

Because of the particular role of the Dirac distribution, all parametric classes of
distributions considered below are defined as to exclude degenerate distributions.

Let Q and R be distributions B(R) → [0, 1].
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Expectation and Higher Moments

If

min

{∫

(−∞,0]

(−x) dQ(x),

∫

[0,∞)

x dQ(x)

}
< ∞ ,

then the expectation of Q is said to exist and is defined to be

E[Q] :=

∫

R
x dQ(x) ;

if

max

{∫

(−∞,0]

(−x) dQ(x),

∫

[0,∞)

x dQ(x)

}
< ∞

or, equivalently, ∫

R
|x| dQ(x) < ∞ ,

then the expectation of Q exists and is said to be finite. In this case, Q is said to
have finite expectation.

More generally, if, for some n ∈ N,∫

R
|x|n dQ(x) < ∞ ,

then Q is said to have a finite moment of order n or to have a finite n–th moment
and the n–th moment of Q is defined to be∫

R
xn dQ(x) .

If Q has a finite moment of order n, then it also has a finite moment of order k for
all k ∈ {1, . . . , n − 1}. The distribution Q is said to have finite moments of any
order if ∫

R
|x|n dQ(x) < ∞

holds for all n ∈ N.

Variance and Coefficient of Variation

If Q has finite expectation, then the variance of Q is defined to be

var [Q] :=

∫

R
(x− E[Q])2 dQ(x) .

If Q satisfies Q[R+] = 1 and E[Q] ∈ (0,∞), then the coefficient of variation of Q is
defined to be

v[Q] :=

√
var [Q]
E[Q]

.
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Characteristic Function

The characteristic function or Fourier transform of Q is defined to be the map
ϕQ : R → C given by

ϕQ(z) :=

∫

R
eizx dQ(x) .

Obviously, ϕQ(0) = 1. Moreover, a deep result on Fourier transforms asserts that
the distribution Q is uniquely determined by its characteristic function ϕQ.

Moment Generating Function

The moment generating function of Q is defined to be the map MQ : R → [0,∞]
given by

MQ(z) :=

∫

R
ezx dQ(x) .

Again, MQ(0) = 1. Moreover, if the moment generating function of Q is finite in a
neighbourhood of zero, then Q has finite moments of any order and the identity

dnMQ

dzn
(0) =

∫

R
xn dQ(x)

holds for all n ∈ N.

Probability Generating Function

If Q[N0] = 1, then the probability generating function of Q is defined to be the map
mQ : [−1, 1] → R given by

mQ(z) :=

∫

R
zx dQ(x)

=
∞∑

n=0

zn Q[{n}] .

Since the identity

1

n!

dnmQ

dzn
(0) = Q[{n}]

holds for all n ∈ N0, the distribution Q is uniquely determined by its probability
generating function mQ. The probability generating function has a unique extension
to the closed unit disc in the complex plane.
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Convolution

If + : R2 → R is defined to be the map given by +(x, y) := x + y, then

Q ∗R := (Q⊗R)+

is a distribution which is called the convolution of Q and R. The convolution satisfies

ϕQ∗R = ϕQ · ϕR ,

and hence Q ∗R = R ∗Q, as well as

MQ∗R = MQ ·MR ;

also, if Q[N0] = 1 = R[N0], then

mQ∗R = mQ ·mR .

If Q and R have finite expectations, then

E[Q ∗R] = E[Q] + E[R] ,

and if Q and R both have a finite second moment, then

var [Q ∗R] = var [Q] + var [R] .

Furthermore, the identity

(Q∗R)[B] =

∫

R
Q[B−y] dR(y)

holds for all B ∈ B(R); in particular, Q ∗ δy = δy ∗Q is the translation of Q by y.
If Q =

∫
f dν and R =

∫
g dν for ν∈{ξ, λ}, then Q ∗R =

∫
f∗g dν, where the map

f ∗g : R → R+ is defined by

(f ∗g)(x) :=

∫

R
f(x−y)g(y) dν(y) .

For n ∈ N0, the n–fold convolution of Q is defined to be

Q∗n :=

{
δ0 if n = 0
Q ∗Q∗(n−1) if n ∈ N

If Q =
∫

f dν for ν∈{ξ,λ}, then the density of Q∗n with respect to ν is denoted f ∗n.

Discrete Distributions

A distribution Q : B(R) → [0, 1] is discrete if there exists a countable set S ∈ B(R)
satisfying Q[S] = 1. If Q[N0] = 1, then Q is absolutely continuous with respect to ξ.
For detailed information on discrete distributions, see Johnson and Kotz [1969] and
Johnson, Kotz, and Kemp [1992].
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The Binomial Distribution

For m ∈ N and ϑ ∈ (0, 1), the binomial distribution B(m,ϑ) is defined to be the
distribution Q satisfying

Q[{x}] =

(
m

x

)
ϑx(1−ϑ)m−x

for all x ∈ {0, 1, . . . , m}.

Expectation:

E[Q] = mϑ

Variance:

var [Q] = mϑ(1−ϑ)

Characteristic function:

ϕQ(z) = ((1−ϑ) + ϑeiz)m

Moment generating function:

MQ(z) = ((1−ϑ) + ϑez)m

Probability generating function:

mQ(z) = ((1−ϑ) + ϑz)m

Special case: The Bernoulli distribution B(ϑ) := B(1, ϑ).

The Delaporte Distribution

For α, β ∈ (0,∞) and ϑ ∈ (0, 1), the Delaporte distribution Del(α, β, ϑ) is defined
to be the distribution

Q := P(α) ∗NB(β, ϑ) .

The Geometric Distribution

For m ∈ N and ϑ ∈ (0, 1), the geometric distribution Geo(m,ϑ) is defined to be
the distribution

Q := δm ∗NB(m,ϑ) .

Special case: The one–parameter geometric distribution Geo(ϑ) := Geo(1, ϑ).
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The Logarithmic Distribution

For ϑ ∈ (0, 1), the logarithmic distribution Log(ϑ) is defined to be the distribution
Q satisfying

Q[{x}] =
1

| log(1−ϑ)|
ϑx

x

for all x ∈ N.

Expectation:

E[Q] =
1

| log(1−ϑ)|
ϑ

1−ϑ

Variance:

var [Q] =
| log(1−ϑ)| − ϑ

| log(1−ϑ)|2
ϑ

(1−ϑ)2

Characteristic function:

ϕQ(z) =
log(1−ϑeiz)

log(1−ϑ)

Moment generating function for z ∈ (−∞,− log(ϑ)):

MQ(z) =
log(1−ϑez)

log(1−ϑ)

Probability generating function:

mQ(z) =
log(1−ϑz)

log(1−ϑ)

The Negativebinomial Distribution

For α ∈ (0,∞) and ϑ ∈ (0, 1), the negativebinomial distribution NB(α, ϑ) is defined
to be the distribution Q satisfying

Q[{x}] =

(
α + x− 1

x

)
ϑα(1−ϑ)x

for all x ∈ N0.

Expectation:

E[Q] = α
1−ϑ

ϑ
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Variance:

var [Q] = α
1−ϑ

ϑ2

Characteristic function:

ϕQ(z) =

(
ϑ

1− (1−ϑ)eiz

)α

Moment generating function for z ∈ (−∞,− log(1−ϑ)):

MQ(z) =

(
ϑ

1− (1−ϑ)ez

)α

Probability generating function:

mQ(z) =

(
ϑ

1− (1−ϑ)z

)α

Special case: The Pascal distribution NB(m,ϑ) with m ∈ N.

The Negativehypergeometric (or Pólya–Eggenberger) Distribution

For m ∈ N and α, β ∈ (0,∞), the negativehypergeometric distribution or Pólya–
Eggenberger distribution NH(m,α, β) is defined to be the distribution Q satisfying

Q[{x}] =

(
α + x− 1

x

)(
β + m− x− 1

m− x

)(
α + β + m− 1

m

)−1

for all x ∈ {0, . . . ,m}.
Expectation:

E[Q] = m
α

α + β

Variance:

var [Q] = m
αβ

(α + β)2

α + β + m

α + β + 1

The Poisson Distribution

For α ∈ (0,∞), the Poisson distribution P(α) is defined to be the distribution Q
satisfying

Q[{x}] = e−α αx

x!

for all x ∈ N0.
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Expectation:

E[Q] = α

Variance:

var [Q] = α

Characteristic function:

ϕQ(z) = eα(eiz−1)

Moment generating function:

MQ(z) = eα(ez−1)

Probability generating function:

mQ(z) = eα(z−1)

Continuous Distributions

A distribution Q : B(R) → [0, 1] is continuous if it is absolutely continuous with
respect to λ. For detailed information on continuous distributions, see Johnson and
Kotz [1970a, 1970b].

The Beta Distribution

For α, β ∈ (0,∞), the beta distribution Be(α, β) is defined to be the distribution

Q :=

∫
1

B(α, β)
xα−1 (1−x)β−1 χ(0,1)(x) dλ(x) .

Expectation:

E[Q] =
α

α + β

Variance:

var [Q] =
αβ

(α + β)2(α + β + 1)

Special case: The uniform distribution U(0, 1) := Be(1, 1).
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The Gamma Distribution (Two Parameters)

For α, β ∈ (0,∞), the gamma distribution Ga(α, β) is defined to be the distribution

Q :=

∫
αβ

Γ(β)
e−αx xβ−1 χ(0,∞)(x) dλ(x) .

Expectation:

E[Q] =
β

α

Variance:

var [Q] =
β

α2

Characteristic function:

ϕQ(z) =

(
α

α− iz

)β

Moment generating function for z ∈ (−∞, α):

MQ(z) =

(
α

α− z

)β

Special cases :
– The Erlang distribution Ga(α,m) with m ∈ N.
– The exponential distribution Exp(α) := Ga(α, 1).
– The chi–square distribution χ2

m := Ga(1/2,m/2) with m ∈ N.

The Gamma Distribution (Three Parameters)

For α, β ∈ (0,∞) and γ ∈ R, the gamma distribution Ga(α, β, γ) is defined to be
the distribution

Q := δγ ∗Ga(α, β) .

Special case: The two–parameter gamma distribution Ga(α, β) = Ga(α, β, 0).

The Pareto Distribution

For α, β ∈ (0,∞), the Pareto distribution Par(α, β) is defined to be the distribution

Q :=

∫
β

α

(
α

α + x

)β+1

χ(0,∞)(x) dλ(x) .
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Bull. Inst. Actu. Franç. 44, 79–126.
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