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Abstract

For a general class of finite element spaces based on local polynomial spaces E with Pp ⊂ E ⊂ Qp

we construct a vertex-edge-cell and point-value oriented interpolation operators that fulfil anisotropic
interpolation error estimates.

Using these estimates we prove ε-uniform convergence of order p for the Galerkin FEM and
the LPSFEM for a singularly perturbed convection-diffusion problem with characteristic boundary
layers.
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1. Introduction

We will consider the singularly perturbed convection-diffusion problem given by

−ε∆u − bux + cu = f in Ω = (0, 1)2, (1.1a)
u = 0 on Γ = ∂Ω, (1.1b)

under the assumption that b ∈ W1
∞(Ω) and c ∈ L∞(Ω). Additionally, let b ≥ β on Ω with some

positive constant β, while 0 < ε � 1 is a small perturbation parameter.
This combination gives rise to an exponential layer of width O (ε) near the outflow boundary

at x = 0 and to two parabolic layers of width O
(√
ε
)

near the characteristic boundaries at y = 0
and y = 1.

∗Corresponding author
Email addresses: sebastian.franz@ul.ie (Sebastian Franz), matthies@mathematik.uni-kassel.de

(Gunar Matthies)
1The author has been supported by Science Foundation Ireland under the Research Frontiers Programme 2008;

Grant 08/RFP/MTH1536

Preprint submitted to Applied Numerical Mathematics October 28, 2013



Furthermore, we assume that

c + 1
2bx ≥ c0 > 0. (1.2)

This ensures that problem (1.1) possesses a unique solution in H1
0(Ω) ∩ H2(Ω). Assumption (1.2)

can always be guaranteed by a simple transformation ũ(x, y) = u(x, y)eκx with a suitably chosen
constant κ.

The presence of layers causes that standard discretisations will not give accurate approxima-
tions on quasi uniform meshes except the mesh width is of the same order as the perturbation
parameter ε. That’s why layer-adapted meshes based on a priori knowledge of the solution be-
haviour have been constructed.

First ideas on layer-adapted meshes go back to Bakhvalov [5]. The piecewise uniform Shishkin
meshes [23] were proposed originally for finite difference methods. The first analysis of finite
element methods on Shishkin meshes was published in [25]. Linß combined Bakhvalov’s idea to
use uniform coarse meshes and graded fine meshes with Shishkin’s choice of the transition point,
see [16, 17].

Since the standard Galerkin methods lacks stability even on layer-adapted meshes, compare
the results presented in [18], a stabilisation term will be added to the standard discretisation.

We will consider the local projection stabilisation (LPSFEM). The method is only weakly
consistent, but the consistency error can be bounded such that the optimal convergence order is
preserved. The local projection method provides additional control on fluctuation of certain or all
derivatives and was originally proposed for the pressure stabilisation of the Stokes problem [6].
The analysis of local projection stabilisation is based on the existence of an interpolation operator
which provides not only the usual estimates for the interpolation error but an additional orthogo-
nality, see [21].

Originally, the local projection method was introduced as a two-level method. This causes the
discretisation stencil to increase since additional couplings are generated by the stabilisation term.
The abstract framework in [21] allows to consider also one-level local projection methods. In this
case the approximation space is enriched compared to standard spaces.

In the analysis of the one-layer approach of the local projection methods, enrichedQp-elements
are used in the definition of the approximation space [19–21]. The discrete spaces are subspaces
of Qp+1 and the purpose of the additional bubble functions is to ensure the existence of an inter-
polation operator with an additional orthogonality property. In [14] the authors showed that such
enriched elements provide ε-uniform convergence of the Galerkin FEM and the LPSFEM of order
p + 1. Moreover, the additional orthogonality property was not used in the proof and is therefore
not needed. Hence, the enrichment can be reduced as it will be done in this paper.

We will consider in this paper higher order finite elements. To this end, we will use p ≥ 2 to
indicate the polynomial degree of our ansatz functions. The case of bilinear elements (p = 1) was
already discussed in [14]. There it was shown that both Galerkin FEM and LPSFEM converge
ε-uniformly with order one while a recovery method can achieve superconvergence of order two.
Moreover, for enriched higher order elements the authors showed that the existence of suitable
anisotropic interpolation error estimates yields an optimal ε-uniform convergence order for the
standard Galerkin FEM and the LPSFEM on layer-adapted meshes.
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The present paper can be seen as extension and continuation of [14]. We will cite several of
the notations and results presented therein and consider the same class of meshes, so called S-type
meshes. The main objective of this paper is to show for a wide class of finite element spaces lying
between Pp and Qp that anisotropic error estimates for at least two different kind of interpolation
operators exist, one is the vertex-edge-cell interpolation while the second interpolation is based on
point evaluation where the points can be chosen almost arbitrarily.

The paper is organised as follows. In Section 2 we will define a solution decomposition and
the so called S-type meshes used for discretisation. The proof of ε-uniform convergence on those
meshes will be given in Section 3 using a few assumptions. In Section 4 we will present a general
class of finite element spaces fulfilling the assumptions of Section 3 and show the existence of
at least two suitable interpolation operators, the vertex-edge-cell interpolation operator and point-
value oriented interpolation operators. Moreover, we present examples of such spaces. Section 5
is devoted to numerical results confirming our theoretical results. Finally, Section 6 gives some
concluding remarks.

Notation. In this paper, C denotes a generic constant which is always independent of the
diffusion coefficient ε and the mesh parameter N. Although finite elements of arbitrary order are
considered, the dependence of any constant on the ansatz order will not be elaborated here.

The usual Sobolev spaces Wm
r (D) and Lr(D) on any measurable two-dimensional subset D ⊂ Ω

are used. We write Hm(D) instead of Wm
2 (D) in the case r = 2. The L2(D)-norm is denoted by

‖ · ‖0,D while the (·, ·)D is the L2(D)-inner product. The subscript D will always be dropped if
D = Ω.

By Pr(D) we denote the space of all polynomials with total degree less than or equal to r while
Qr(D) is the space of all polynomials with degree less than or equal to r in each variable separately.

Within the subsequent paper, we assume that p ≥ 2 is an arbitrary but fixed integer.

2. Solution Decomposition and Layer-adapted Meshes

We suppose there exists a decomposition of the solution u of (1.1) into a regular solution
component and various layer parts.

Assumption 1. The solution u of (1.1) can be decomposed as

u = v + w1 + w2 + w12

where v is the regular part, w1 is the exponential layer term of type e−βx/ε, w2 the parabolic layer
term of type e−y/

√
ε + e−(1−y)/

√
ε, and w12 the corner layer term of type e−βx/ε(e−y/

√
ε + e−(1−y)/

√
ε). We

assume to have pointwise bounds on all derivatives up to order p + 1; for a precise definition and
discussion of validity see [14, Ass. 1 and Rem. 2].

When discretising (1.1), we use in both x- and y-direction so called S-type meshes with N
mesh intervals each which are condensed in the layer regions and are equidistant outside the layer
region. We will define those meshes now. For this purpose let the mesh transition parameters be

λx := min
{

1
2
,
σε

β
ln N

}
and λy := min

{
1
4
, σ
√
ε ln N

}
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with some user-chosen positive parameter σ ≥ p + 1. For the mere sake of simplicity in our
subsequent analysis, we shall assume that

λx =
σε

β
ln N ≤

1
2

and λy = σ
√
ε ln N ≤

1
4
, (2.1)

as it is typically the case for (1.1). In the following, we assume that N is a multiple of 4.
The domain Ω will be dissected by a tensor product mesh according to

xi :=

σε
β
φ
(

i
N

)
, i = 0, . . . ,N/2,

1 − 2(1 − λx)(1 − i
N ), i = N/2, . . . ,N,

y j :=


σ
√
εφ

(
2 j
N

)
, j = 0, . . . ,N/4,

(1 − 2λy)(
2 j
N − 1) + 1

2 , j = N/4, . . . , 3N/4,
1 − σ

√
εφ

(
2 − 2 j

N

)
, j = 3N/4, . . . ,N,

where φ is a monotonically increasing mesh-generating function satisfying φ(0)=0 and φ(1/2)=ln N.
Given an arbitrary function φ fulfilling these conditions, an S-type mesh is defined.

The final mesh is constructed by drawing lines parallel to the coordinate axes through these
mesh points and is denoted by T N . Fig. 1 shows an example of such a mesh. The domain Ω is

00
λx

λy

1 − λy

1

1

Ω11 := [λx, 1] × [λy, 1 − λy],
Ω12 := [0, λx] × [λy, 1 − λy],
Ω21 := [λx, 1] ×

(
[0, λy] ∪ [1 − λy, 1]

)
,

Ω22 := [0, λx] ×
(
[0, λy] ∪ [1 − λy, 1]

)

Figure 1: Mesh T 8 of Ω, the bold lines indicate the boundaries of the subdomains.

divided into the subdomains Ω11, Ω12, Ω21, and Ω22 as shown in Fig. 1, with Ω12 covering the
exponential layer, Ω21 the parabolic layers, Ω22 the corner layers, and Ω11 the remaining non-layer
region. Moreover, the subdomain Ω11 is dissected uniformly while the dissection in the other
subdomains depends on φ.

Related to the mesh-generating function φ, we define by ψ = e−φ the mesh-characterising
function ψ which is monotonically decreasing with ψ(0) = 1 and ψ(1/2) = N−1. Tab. 1 gives some
examples of S-type meshes using the naming convention introduced in [24]. The polynomial
S-mesh has an additional parameter m > 0 to adjust the grading inside the layer.

The following assumptions on the mesh-generating function are needed when bounding the
interpolation error.
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Table 1: Some examples of mesh-generating functions φ and mesh-characterising functions ψ of S-type meshes, the
maximum is taken on the interval [0, 1/2].

Name φ(t) max φ′ ψ(t) max |ψ′|
Shishkin mesh 2t ln N 2 ln N N−2t 2 ln N
Bakhvalov–Shishkin mesh − ln(1 − 2t(1 − N−1)) 2N 1 − 2t(1 − N−1) 2
polynomial S-mesh (2t)m ln N 2m ln N N−(2t)m

C(ln N)1/m

modified Bakhvalov–
Shishkin mesh

t
q−t , q = 1

2 (1 + 1
ln N ) 3 ln2 N e−

t
q−t 3/(2q) ≤ 3

Assumption 2. Let the mesh-generating function φ be piecewise differentiable such that

max
t∈[0,1/2]

φ′(t) ≤ CN or equivalently max
t∈[0,1/2]

|ψ′(t)|
ψ(t)

≤ CN

is fulfilled. Moreover, let the condition

min
i=1,...,N/2

(
φ
( i
N

)
− φ

(
i − 1

N

))
≥ CN−1.

be fulfilled.

Remark 3. The second part of Assumption 2 restricts the use of S-type meshes from Tab. 1. The
original Shishkin mesh and both meshes of Bakhvalov–Shishkin type (B–S-mesh and modified B–
S-mesh) fulfil Assumption 2. Unfortunately, Assumption 2 fails for the polynomial S-type meshes
in the case m > 1.

Notation: Let hi := xi − xi−1 and k j := y j − y j−1. Denote the maximal mesh sizes inside the
layer regions by h := maxi=1,...,N/2 hi and k := max j=1,...,N/4 k j, by τi j = [xi−1, xi]× [y j−1, y j] a specific
cell and by τ a generic mesh rectangle. Note that the mesh cells are assumed to be closed.

3. Abstract Convergence Analysis

Without specifying the finite element space and the used interpolation operators exactly, we
derive in this section bounds on the interpolation error and prove convergence of the Galerkin
method and the LPSFEM based on one assumption. Let our discrete space be given by

VN :=
{
v ∈ H1

0(Ω) : v|τ ∈ E(τ) ∀τ ∈ T N
}

(3.1)

with yet unspecified local finite element spaces E(τ).
With the usual Galerkin bilinear form

aGal(u, v) := ε(∇u,∇v) + (cu − bux, v), u, v ∈ H1
0(Ω),
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associated with problem (1.1), a weak formulation of the convection-diffusion problem (1.1) reads:

Find u ∈ H1
0(Ω) such that

aGal(u, v) = ( f , v) ∀v ∈ H1
0(Ω) (3.2)

and the standard Galerkin formulation of (1.1) is given by

Find ũN ∈ VN such that

aGal(ũN , vN) = ( f , vN) ∀vN ∈ VN . (3.3)

Due to (1.2), problems (3.2) and (3.3) possess a unique solution each.
Since the standard Galerkin discretisation lacks stability even on S-type meshes, see the numer-

ical results given in [18], the local projection method is applied for stabilisation. To this end, we
introduce some more notation. Let πτ denote the L2-projection into the finite dimensional function
space D(τ) = Pp−2(τ). The fluctuation operator κτ : L2(τ)→ L2(τ) is defined by κτv := v − πτv. In
order to get additional control on the derivative in streamline direction, we define the stabilisation
term

s(u, v) :=
∑
τ∈T N

δτ
(
κτ(bux), κτ(bvx)

)
τ

with the nonnegative cell-dependent parameters δτ, τ ∈ T N , which will be specified later in the
analysis, see Theorem 6. The parameter will be constant inside each subdomain of Ω, i.e. δτ = δi j

for τ ⊂ Ωi j. It was stated in [11, 12] for different stabilisation methods that stabilisation is best if
only applied in Ω11 ∪Ω21. Therefore, we set δ12 = δ22 = 0 in the following.

An alternative way for stabilisation would be to add the term

g(u, v) =
∑
τ∈T N

δτ
(
κτ(∇u), κτ(∇v)

)
τ.

Using the stabilisation term g within a local projection method for problems with characteristic
layers would lead to a different scaling of the stabilisation parameter δ21 which would be propor-
tional to ε1/2 (using g) instead of ε−1/2 (using s). The scaling δ21 ∼ ε

−1/2 for the stabilisation term
s will be shown in Theorem 6, see (3.9b).

The stabilised bilinear form aLPS is defined by

aLPS (u, v) := aGal(u, v) + s(u, v), u, v ∈ H1
0(Ω),

and the stabilised discrete problem reads:

Find uN ∈ VN such that

aLPS (uN , vN) = ( f , vN) ∀vN ∈ VN . (3.4)

The subsequent analysis uses the ε-weighted energy norm

|||v|||ε :=
(
ε‖∇v‖20 + c0‖v‖20

)1/2
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and the LPS-norm

|||v|||LPS :=
(
ε‖∇v‖20 + c0‖v‖20 + s(v, v)

)1/2
.

We now come to the properties of the underlying discrete space VN . The following assumption
on our discrete space is the foundation of the interpolation error bounds and the convergence proof
later on.

Assumption 4. There exists an interpolation operator IN : C(Ω) → VN such that the stability
property ∥∥∥INw

∥∥∥
L∞(τ)
≤ C‖w‖L∞(τ) ∀w ∈ C(τ), ∀τ ⊂ Ω, (3.5)

and the anisotropic error estimates∥∥∥w − INw
∥∥∥

Lq(τi j)
≤ C

s∑
r=0

∥∥∥∥∥hs−r
i kr

j
∂sw

∂xs−r∂yr

∥∥∥∥∥
Lq(τi j)

, (3.6a)

∥∥∥(w − INw)x

∥∥∥
Lq(τi j)

≤ C
t∑

r=0

∥∥∥∥∥∥ht−r
i kr

j
∂t+1w

∂xt−r+1∂yr

∥∥∥∥∥∥
Lq(τi j)

(3.6b)

and similarly for the y-derivative hold true for τi j ⊂ Ω and q ∈ [1,∞], 2 ≤ s ≤ p + 1, 1 ≤ t ≤ p.

Remark 5. This assumption depends only on the definition of our local finite element space E(τ).
For the standard Qp-space, Assumption 4 holds for the vertex-edge-cell interpolation operator,
see [26]. Similar results using the standard Lagrange interpolation can be found in [2].

With these local assumptions we derive directly from [14, Theorem 12] interpolation error bounds
of order p + 1 in the L∞-norm and of order p in the energy norm, and convergence of order p for
the Galerkin FEM and the stabilised LPSFEM in the energy norm. Moreover, the LPSFEM shows
a convergence order p in the local projection norm for the closeness error. We cite [14, Theorems
13 and 15] here.

Theorem 6 (Convergence Galerkin FEM and LPSFEM). Let the solution u of (3.2) satisfy As-
sumption 1 and let ũN denote the Galerkin solution of (3.3). We set

Cψ := 1 + N−1/2 ln1/2 N max |ψ′|. (3.7)

Then, we have ∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣
ε
≤ CCψ

(
h + k + N−1 max |ψ′|

)p
. (3.8)

Let the LPSFEM solutions of (3.4) be denoted by uN and let the stabilisation parameters be
chosen according to

δ11 ≤ CN−2( max |ψ′|
)2p
, (3.9a)

δ21 ≤ Cε−1/2 ln−1 N
(
k + N−1 max |ψ′|

)2
, (3.9b)

δ12 = δ22 = 0. (3.9c)
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Then, we have ∣∣∣∣∣∣∣∣∣u − uN
∣∣∣∣∣∣∣∣∣
ε
≤ CCψ

(
h + k + N−1 max |ψ′|

)p (3.10)

and ∣∣∣∣∣∣∣∣∣INu − uN
∣∣∣∣∣∣∣∣∣

LPS
≤ CCψ

(
h + k + N−1 max |ψ′|

)p
. (3.11)

Remark 7. The factor Cψ defined in (3.7) is bounded by a constant for all meshes considered in
Table 1. Nevertheless, there are S-type meshes which fulfil Assumption 2 but provide Cψ → ∞ as
N → ∞. For example, let ξ0 := 1

2 (1 − N−1 ln N) and define for k > 2

φ(t) =


t ln N
kξ0

, 0 ≤ t ≤ ξ0,

N(2t − 1)(1 − 1/k) + ln N, ξ0 ≤ t ≤ 1
2 .

Here max |ψ′| ≥ |ψ′(ξ0+)| = 2(1 − 1/k)N1−1/k. Hence, Cψ will increase with increasing N for this
type of meshes.

4. Anisotropic Interpolation on Finite Element Spaces

In this section we will define a general finite element that allows us to generate finite element
spaces such that at least two different interpolation operators fulling Assumption 4 exist. More-
over, examples for the general finite element will be given.

We will make use of the approach in [2] to prove the anisotropic error estimates (3.6). For
this purpose, let τ̂ = [−1, 1]2 denote the reference element, Ê(τ̂) be the local polynomial element
space on the reference element, γ a multiindex, and Dγ the corresponding differential operator.
Moreover, we set m = |γ|, d = dim(DγÊ(τ̂)), and (ξ, η) denote the coordinates on the reference
element τ̂.

The task of proving Assumption 4 to be fulfilled reduces to finding sets F = {Fi} of d linearly
independent functionals such that

Fi ∈
(
W p+1−m

q (τ̂)
)′

∀i = 1, . . . , d, (4.1a)

Fi
(
Dγ(v̂ − Îv̂)

)
= 0 ∀i = 1, . . . , d,∀v̂ ∈ C(τ̂) : Dγv̂ ∈ W p+1−m

q (τ̂), (4.1b)

ŵ ∈ Ê(τ̂) and Fi(Dγŵ) = 0 ∀i = 1, . . . , d ⇒ Dγŵ = 0. (4.1c)

Assumption 4 then follows by [2, Lemma 2.15] for Pp(τ̂) ⊂ Ê(τ̂). Note that in [1, 26] for
Ê(τ̂) = Qp(τ̂) and a vertex-edge-cell interpolation operator such sets of functionals are given.
In [14, 19] an enriched Qp(τ̂)-element was studied and functionals were given.

Here we want to study finite element spaces that are subspaces ofQp(τ̂). Therefore the resulting
elements can be seen as reduced Qp-elements. Due to Pp(τ̂) ⊂ Ê(τ̂), they are also enriched Pp-
elements.
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Figure 2: General element space Q♣p(τ̂) with some arbitrary space Q̃(τ̂) for p = 9.

Note that all the following local function spaces can be combined in a continuous way to form
a continuous finite element space VN , see (3.1), since the restriction of the function spaces to an
edge E is always Pp(E).

Define the general element space by

Q♣p(τ̂) = span
{
{1, ξ} × {1, η, . . . , ηp} ∪ {1, ξ, . . . , ξp} × {1, η} ∪ ξ2η2Q̃(τ̂)

}
where the space Q̃(τ̂) ⊂ Qp−2(τ̂) is given by

Q̃(τ̂) = span
{
ξiη j : i = 0, . . . , p − 2, j = 0, . . . , ki

}
with ki ≥ ki+1, i = 0, . . . , p − 3. Hence, ξiη j ∈ Q̃(τ̂) implies ξaη j, ξiηb ∈ Q̃(τ̂) for 0 ≤ a < i and
0 ≤ b < j. Furthermore, the space Q♣p(τ̂) can be written as

Q♣p(τ̂) = span
{
{1, ξ} × {1, η, . . . , ηp} ∪ {1, ξ, . . . , ξp} × {1, η} ∪ (1 − ξ2)(1 − η2)Q̃(τ̂)

}
(4.2)

and its dimension is given by

∣∣∣Q̃(τ̂)
∣∣∣ =

p−2∑
i=0

(ki + 1)+, where (·)+ = max{·, 0}.

Figure 2 shows a graphical representation of an example of Q♣p(τ̂) in the case p = 9. A square at
position (i, j) represents a basis function ξiη j of Q♣p(τ̂). The darker squares correspond to those
functions present in all spaces we consider, while the lighter ones represent ξ2η2Q̃(τ̂). In order to
incorporate [2], we need Pp(τ̂) ⊂ Q♣p(τ̂) which is automatically satisfied for p ≤ 3. For p ≥ 4, the
inclusion Pp−4(τ̂) ⊂ Q̃(τ̂) has to be fulfilled.

9



4.1. Vertex-edge-cell interpolation operator
In this subsection, we consider a vertex-edge-cell interpolation operator which is based on

point evaluation at the vertices, line integrals along the edges and integrals over the cell interior.
Let âi and êi, i = 1, . . . , 4, denote the vertices and edges of τ̂, respectively. We define the

vertex-edge-cell interpolation operator Î : C(τ̂)→ Q♣p(τ̂) by

Îv̂(âi) = v̂(âi), i = 1, . . . , 4, (4.3a)∫
êi

(Îv̂)q̂ =

∫
êi

v̂q̂, i = 1, . . . , 4, q̂ ∈ Pp−2(êi), (4.3b)∫∫
τ̂

(Îv̂)q̂ =

∫∫
τ̂

v̂q̂, q̂ ∈ Q̃(τ̂). (4.3c)

Similar to [20, Lemma 3], it can be proved that this interpolation operator is uniquely defined and
can be extended to the global interpolation operator IN : C(Ω)→ VN by

(INv)|τ :=
(
Î(v ◦ Fτ)

)
◦ F−1

τ ∀τ ∈ T N , v ∈ C(Ω), (4.4)

with the bijective reference mapping Fτ : τ̂ → τ. Stability (3.5) can be proved similarly to [20].
For the anisotropic error estimates (3.6) we define two sets of functionals, one in the case γ = (0, 0)
and one for γ = (1, 0). The third case γ = (0, 1) follows analogously.

Functionals for γ = (0, 0)
Based on the definition (4.3) of the interpolation operator Î, let the functionals be given by

v̂ 7→ v̂(ai), i = 1, . . . , 4, (4.5a)

v̂ 7→
∫

êi

v̂q, i = 1, . . . , 4, q ∈ Pp−2(êi), (4.5b)

v̂ 7→
∫∫

τ̂

v̂q, q ∈ Q̃(τ̂). (4.5c)

We have 4 + 4(p − 1) + |Q̃(τ̂)| = |Q♣p(τ̂)| functionals. They are defined by point evaluation
and integrals, and therefore (4.1a) holds. Condition (4.1b) follows immediately since the used
functionals are covered by the point and integral evaluation given in the definition (4.3) of Î. For
(4.1c) assume w ∈ Q♣p(τ̂) with all above functionals applied to it being zero. By (4.5a) and (4.5b)
we obtain w|∂τ̂ ≡ 0. Thus, w = (1− ξ2)(1− η2)q with q ∈ Q̃(τ̂) due to (4.2). Then by (4.5c) follows
w ≡ 0.

Functionals for γ = (1, 0)
Let W = ∂ξ(Q♣p(τ̂)). Its dimension is given by |Q♣p(τ̂)| − (p + 1) = 3p − 1 + |Q̃(τ̂)|. For the definition
of the functionals we follow [1]. Let S be the set of the two edges of τ̂ parallel to the ξ-axis.
Consider the functionals

v̂ 7→
∫

ê
vq, q ∈ Pp−1(ê), ê ∈ S , (4.6a)

v̂ 7→
∫∫

τ̂

vq, q ∈ ∂ξ∂2
ηQ
♣
p(τ̂). (4.6b)
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We have 2p + |Q̃(τ̂)| + p − 1 = |W | functionals and similar arguments as before show (4.1a).
Adapting the method of [1, Section 2.4], using ∂ξ∂

2
ηQ
♣
p(τ̂) = span

{
1, η, . . . , ηp−2

}
∪ ξQ̃(τ̂) and

integration by parts shows (4.1b). For the linear independence consider v̂ ∈ ∂ξQ♣p(τ̂) with all above
functionals applied to it being zero. Then (4.6a) yields v̂ ≡ 0 for |η| = 1. Thus v̂ = (1 − η2)q with
q ∈ ∂ξ∂2

ηQ
♣
p(τ̂). Now (4.6b) gives v ≡ 0 in τ̂, which is (4.1c). Thus

Theorem 8. For the finite element space

VN =
{
v ∈ C(Ω) : v|τ ∈ Q♣p(τ) ∀τ ∈ T N}

and the vertex-edge-cell interpolation operator IN defined by (4.3) and (4.4), the Assumption 4
holds true.

4.2. Point-value oriented interpolation
In this subsection, we will show that also point-value oriented interpolation operators can

provide the anisotropic interpolation error estimates of Assumption 4.
Let −1 = ξ0 < ξ1 < · · · < ξp−1 < ξp = +1 and −1 = η0 < η1 < · · · < ηp−1 < ηp = +1 be

two increasing sequences of p + 1 points of [−1,+1] which include both end points. We define the
point-value oriented interpolation operator Ĵ : C(τ̂)→ Q♣p(τ̂) by values at the vertices

(Ĵv̂)(±1,−1) := v̂(±1,−1), (Ĵv̂)(±1,+1) := v̂(±1,+1) (4.7a)

values on the edges

(Ĵv̂)(ξi,±1) := v̂(ξi,±1), i = 1, . . . , p − 1,

(Ĵv̂)(±1, η j) := v̂(±1, η j), j = 1, . . . , p − 1,

 (4.7b)

and values in the interior

(Ĵv̂)(ξi+1, η j+1) := v̂(ξi+1, η j+1), i = 0, . . . , p − 2, j = 0, . . . , ki. (4.7c)

It remains to show that these interpolation conditions provide a uniquely determined interpolation
operator. To this end, let v̂ ∈ Q♣p(τ̂) be a polynomial which vanishes at all above points. The
restriction v̂|êi of v̂ onto an edge êi of the reference square belongs to Pp(êi) since Q♣p(τ̂) ⊂ Qp(τ̂).
However, the restriction vanishes in (p+1) points. Hence, the polynomial v̂ vanishes on each edge
êi of the boundary ∂τ̂ and with (4.2) holds

v̂ = (1 − ξ2)(1 − η2)ŵ, ŵ ∈ Q̃(τ̂),

where the polynomial ŵ vanishes at all interior interpolation points. If k0 < 0 we obtain Q̃(τ̂) = {0}
and therefore ŵ ≡ 0 which implies v̂ ≡ 0. Otherwise, from ki ≥ ki+1, i = 0, . . . , p − 3, we conclude
that the restriction of ŵ onto the line ξ = ξ1 is a polynomial of degree k0 ≥ 0 in η. This polynomial
vanishes at (k0 + 1) points and therefore

ŵ = (ξ − ξ1)ŵ1, ŵ1 ∈ Q̃1 = span

 p−2⋃
i=1

ki⋃
j=0

ξi − 1η j

 .
11



If k1 < 0 we obtain Q̃1 = {0} and therefore ŵ1 ≡ 0 which implies v̂ ≡ 0. Otherwise, ŵ1 vanishes
at all interior interpolation points (ξi, η j) with i > 2. The restriction of ŵ1 onto the line ξ = ξ2 is a
polynomial of degree at most k1 ≥ 0 in η vanishing at (k1 + 1) points. Hence,

ŵ1 = (ξ − ξ2)ŵ2, ŵ2 ∈ Q̃2 = span

 p−2⋃
i=2

ki⋃
j=0

ξi − 2η j

 .
The procedure is continued. Let m = max{i : ki ≥ 0} ≤ p − 2. We get for ` = 2, . . . ,m

ŵ` = (ξ − ξ`+1)ŵ`+1, ŵ`+1 ∈ Q̃`+1 = span

 p−2⋃
i=`+1

ki⋃
j=0

ξi − (` + 1)η j


and

ŵm+1 ∈ Q̃m+1 = span

 p−2⋃
i=m+1

ki⋃
j=0

ξi − (m + 1)η j

 = {0}.

Therefore ŵm+1 ≡ 0 which implies v ≡ 0. This means that the interpolation operator Ĵ is uniquely
determined.

The global interpolation operator JN : C(Ω)→ VN is given by

(JNv)|τ :=
(
Ĵ(v ◦ Fτ)

)
◦ F−1

τ , τ ∈ T N , v ∈ C(Ω), (4.8)

where Fτ is again the bijective reference mapping.
The anisotropic estimate for the interpolation error in the case γ = (0, 0) follows immediately

from the definition of Ĵ which is based on point evaluation.
We will prove the anisotropic error estimates for the case γ = (0, 1) only since the case

γ = (1, 0) follows in a similar way. Let W = ∂η(Q♣p(τ̂)) with |W | = |Q♣p(τ̂)|−(p+1) = 3p−1+ |Q̃(τ̂)|.
We define the set G by the functionals

v̂ 7→
∫ η j

−1
v̂(±1, η) dη, j = 1, . . . , p, (4.9a)

v̂ 7→
∫ η j+1

−1
v̂(ξi+1, η) dη, i = 0, . . . , p − 2, j = p and if ki ≥ 0 : j = 0, . . . , ki. (4.9b)

Note that

|G| = 2p +

p−2∑
i=0

((ki + 1)+ + 1) = 3p − 1 + |Q̃(τ̂)| = |W |.

All functionals in G are integrals along vertical lines and therefore condition (4.1a) is satisfied.
In order to prove (4.1b), let G ∈ G be an arbitrary functional. This means that

Gv̂ =

∫ b

−1
v̂(a, η) dη

12



where a = ξi for some i ∈ {0, . . . , p} and b = η j for some j ∈ {1, . . . , p}. Concerning (4.1b), we
obtain

G
(
(Ĵv̂ − v̂)η

)
=

∫ b

−1
(Ĵv̂ − v̂)η(a, η) dη = (Ĵv̂ − v̂)(a, η)

∣∣∣∣b
η=−1

= 0

since both points (a,−1) and (a, b) belong to the set of points which are used to define the inter-
polation operator. Hence, condition (4.1b). Since all nodal functionals in G are integrals along
different vertical lines they are linearly independent on C∞(τ̂). Hence, also condition (4.1c) is
fulfilled.

Theorem 9. The finite element space VN together with the point-value oriented interpolation op-
erator JN defined by (4.7) and (4.8) provides the anisotropic interpolation error estimates of As-
sumption 4.

Remark 10. In cases where Q̃(τ̂) cannot be represented by monomials in the assumed way, the
above proofs become more difficult. The main task will be the proof of the unisolvence of the
interpolation operators Î and Ĵ.

4.3. Examples of Polynomial Spaces
In the this subsection we will give several examples of polynomial spaces fitting in the frame-

work presented. In particular, the structural assumption on Q̃(τ̂) is fulfilled.

Full Space Qp

If we take
Q̃(τ̂) = Qp−2(τ̂)

then we have as local polynomial space

Qp(τ̂) = span
{
{1, ξ, . . . , ξp} × {1, η, . . . , ηp}

}
,

see Figure 3.
The proof that Assumption 4 is fulfilled can also be found in [26] for IN according to (4.3),

(4.4) and in [2] for JN according to (4.7), (4.8).

Enriched Space Q+
p

In [14] the standard Qp−1-space was enriched by 6 functions to form a space Q+
p . In terms of

the general definition it can be described using

Q̃(τ̂) = Qp−3(τ̂) ⊕ span
{
ξp−2, ηp−2

}
(4.10)

and therefore

Q+
p(τ̂) = Qp−1(τ̂) ⊕ span

{
(1 − ξ2)(1 − η2)ξp−2, (1 − ξ2)(1 − η2)ηp−2

}
⊕span

{
(1 + ξ)(1 − η2)ηp−2, (1 − ξ)(1 − η2)ηp−2,

(1 + η)(1 − ξ2)ξp−2, (1 − η)(1 − ξ2)ξp−2
}
,

13
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Figure 3: Full space Qp(τ̂) by choosing Q̃(τ̂) = Qp−2(τ̂) for p = 9.
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Figure 4: Enriched space Q+
p(τ̂) by choosing Q̃(τ̂) according to (4.10) for p = 9.

see also Figure 4.
This space yields

Pp ⊂ Q
+
p ⊂ Qp

and Assumption 4 holds true, see also [14] for IN according to (4.3), (4.4).

Reduced Enrichment Space Q∗p

We will now give a smaller enrichment of the space Qp−1(τ̂)—an enrichment with only 4
additional functions. In order to have Qp−1(τ̂) ⊂ E(τ̂) we take

Q̃(τ̂) = Qp−3(τ̂).
14
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Figure 5: Enriched space Q∗p(τ̂) by choosing Q̃(τ̂) = Qp−3(τ̂) for p = 9.

Then the enriched space Q∗p(τ̂) is given by

Q∗p(τ̂) = Qp−1(τ̂) ⊕ span
{
(1 + ξ)(1 − η2)ηp−2, (1 − ξ)(1 − η2)ηp−2,

(1 + η)(1 − ξ2)ξp−2, (1 − η)(1 − ξ2)ξp−2
}
,

see Figure 5. This enriched finite element space yields

Pp ⊂ Q
∗
p ⊂ Q

+
p ⊂ Qp

and
Qp−1 ⊂ Q

∗
p.

The space Q∗p is the smallest space having Qp−1 as subspace and fulfilling Assumption 4.

Serendipity Space Q⊕p

The minimal element space is governed by taking

Q̃(τ̂) = Pp−4(τ̂) for p ≥ 4

and Q̃(τ̂) = ∅ for p = 2, 3. It can be seen as enriching Pp with two edge-bubble functions,

Q⊕p(τ̂) = Pp(τ̂) ⊕ span
{
(1 + ξ)(1 − η2)ηp−2, (1 + η)(1 − ξ2)ξp−2

}
,

see also Figure 6.
This minimal element is known under different names, e.g. “trunk element” or “serendipity

element” [3, 4, 22, 27]. It is the continuous quadrilateral element with the fewest degrees of
freedom containing Pp.

It holds
Pp ⊂ Q

⊕
p ⊂ Q

∗
p ⊂ Q

+
p ⊂ Qp.

15



0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 6: Serendipity space Q⊕p(τ̂) by choosing Q̃(τ̂) = Pp−4(τ̂) for p = 9.

Remark 11. Consider an N × N S-type mesh. In Table 2 we compare the number of degrees of
freedom for the different spaces given. In the second column the number of degrees of freedom
(d.o.f.) for an arbitrary order p ≥ 3 on each element is given. For p = 2 the formulas are different
because Q+

2 = Q2 and Q∗2 = Q⊕2 . The overall number of d.o.f. on the mesh is given in the third
column. Due to continuity it is less than (N + 1)2 times the second column. We present only the
leading term in N; the remaining terms are 2pN + 1 for all spaces. Finally, the last two columns
show for the choices p = 3 and p = 5 the reduction in degrees of freedom. The serendipity space
Q⊕p needs about half the number compared to the space Qp.

Table 2: Comparing the number of degrees of freedom for the different finite element spaces

space d.o.f. per element d.o.f. on N × N-mesh p = 3 p = 5
Qp (p + 1)2 p2N2 9N2 25N2

Q+
p p2 + 6 (p2 − 2p + 5)N2 8N2 20N2

Q∗p p2 + 4 (p2 − 2p + 3)N2 6N2 18N2

Q⊕p
(p+1)(p+2)

2 + 2 p(p−1)+4
2 N2 5N2 12N2

5. Numerical Results

We consider as numerical example the singularly perturbed convection-diffusion problem

−ε4u − (2 − x)ux +
3
2

u = f in Ω = (0, 1)2,

u = 0 on ∂Ω,

16



where the right-hand side f is chosen such that

u(x, y) =

(
cos

πx
2
−

e−x/ε − e−1/ε

1 − e−1/ε

) (
1 − e−y/

√
ε
) (

1 − e−(1−y)/
√
ε
)

1 − e−1/
√
ε

is the solution. This problem was taken from [13] and considered also in [14]. The function u
shows an exponential boundary layer near x = 0 and two characteristic boundary layers near y = 0
and y = 1, respectively.

All calculations were performed with the finite element package MooNMD [15]. The sys-
tems of linear equations which arise from the discretised problems were solved directly by using
package UMFPACK [7–10].

In the following, ’order’ will always denote the exponent α in a convergence order of form
O(N−α) while ’ln-order’ corresponds to the exponent α in a convergence order given byO

(
(N−1 ln N)α

)
.

Table 3 shows for finite element spaces based on different finite elements the number of degrees
of freedom (d.o.f.) and the number of non-zero entries in the corresponding system matrix (nnz).
Since we are dealing with two-dimensional problems, both the number of degrees of freedom and
the number of non-zero matrix entries increase roughly by a factor of 4 if the mesh parameter N
is doubled.

All calculation have been performed with p = 5, i.e., the elements contain P5. All error norms
were calculated by using the Gaussian quadrature formula with 8 × 8 points. The constant σ for
defining the mesh transition points λx and λy was set to p + 1 = 6. The interpolation operator Ĵ on
the reference cell τ̂ is based on an equidistant distribution of the evaluation points on the edges of
τ̂.

In Tables 4 to 6 we present the results for the standard Galerkin discretisation and the local
projection stabilisation on Shishkin meshes and Bakhvalov–Shishkin meshes. We will use ε =

10−12 and the three finite element spaces based on Q+
5 , Q∗5, and Q⊕5 , respectively. The stabilisation

parameters δ11 and δ21 for the LPS method were chosen to the upper bound given by (3.9) with
C = 0.001, i.e., the setting

δ11 = 0.001N−2( max |ψ′|
)10
, δ21 = 0.001ε−1/2 ln−1 N

(
N−1 max |ψ′|

)2

was used since p = 5. We have chosen this constant C since larger values lead to worse results.
This might be due to the fact that the stabilisation term s then dominates the discretisation.

Table 3: Number of degrees of freedom (d.o.f.) and number of non-zero matrix entries (nnz) for finite element spaces
based on different finite elements.

Q+
5 Q∗5 Q⊕5

N d.o.f. nnz d.o.f. nnz d.o.f. nnz
8 1,361 52,021 1,233 44,717 849 25,877

16 5,281 217,861 4,769 187,901 3,233 110,309
32 20,801 891,301 18,753 769,949 12,609 455,045
64 82,561 3,605,221 74,369 3,116,765 49,793 1,848,005

128 328,961 14,501,221 296,193 12,541,277 197,889 7,447,877
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Table 4: Galerkin and LPS discretisation with Q+
5 and ε = 10−12.

∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣
ε

Galerkin method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
ε

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.262-03 7.017-05 9.355-04 5.186-05

16 2.127-04 2.57 3.79 3.022-06 4.54 1.534-04 2.61 3.85 2.174-06 4.58
32 2.348-05 3.18 4.31 1.100-07 4.78 1.675-05 3.20 4.34 7.836-08 4.79
64 1.953-06 3.59 4.61 3.708-09 4.89 1.388-06 3.59 4.62 2.633-09 4.90

128 1.355-07 3.85 4.77 1.206-10 4.94 9.613-08 3.85 4.77 8.566-11 4.94∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣

LPS LPS method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
LPS

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.818-03 1.559-04 1.611-03 1.483-04

16 3.275-04 2.47 3.65 4.725-06 5.04 2.924-04 2.46 3.63 4.207-06 5.14
32 3.490-05 3.23 4.38 1.419-07 5.06 3.060-05 3.26 4.42 1.187-07 5.15
64 2.356-06 3.89 5.00 4.512-09 4.97 1.895-06 4.01 5.16 3.677-09 5.01

128 1.538-07 3.94 4.88 1.415-10 5.00 1.194-07 3.99 4.94 1.132-10 5.02

As predicted by Theorem 6 the errors
∣∣∣∣∣∣∣∣∣u − ũN

∣∣∣∣∣∣∣∣∣
ε

for the Galerkin method and
∣∣∣∣∣∣∣∣∣u − uN

∣∣∣∣∣∣∣∣∣
ε

for
the LPS method converge with order 5 for all three elements. Although Theorem 6 gives error
estimates for

∣∣∣∣∣∣∣∣∣u − uN
∣∣∣∣∣∣∣∣∣
ε
, we show the results in the stronger norm

∣∣∣∣∣∣∣∣∣u − uN
∣∣∣∣∣∣∣∣∣

LPS
. Comparing the

results of the three different elements, we see that their differences are quite small. This means that
even with less degrees of freedom and less non-zero matrix entries the same accuracy is obtained.
Furthermore, it becomes obvious that the error norms on Bakhvalov–Shishkin meshes are much
smaller than the corresponding norms on Shishkin meshes. This is caused by the logarithmic
factor which is present only for Shishkin meshes.

For the closeness errors
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
ε

and
∣∣∣∣∣∣∣∣∣JNu − uN

∣∣∣∣∣∣∣∣∣
ε

the order 5 follows by combining the
interpolation error and the results of Theorem 6. Contrary to the case of bilinear ansatz functions,
see [14], the higher order case has no supercloseness property for the interpolation operator JN .

In order to check the robustness of the error estimates, we varied ε ∈
{
10−6, 10−8, 10−10, 10−12}

and fixed N = 128. Table 7 shows the errors
∣∣∣∣∣∣∣∣∣u − ũN

∣∣∣∣∣∣∣∣∣
ε

and
∣∣∣∣∣∣∣∣∣u − uN

∣∣∣∣∣∣∣∣∣
LPS

. It is obvious that the
error is robust with respect to ε → 0. Furthermore, the large difference between the results on
Shishkin meshes and Bakhvalov–Shishkin meshes can be seen once more. On the same mesh, the
differences between the results for the difference finite element spaces are again small.

Comparing the results obtained by the standard Galerkin discretisation and the local projection
stabilisation, one finds that the difference in the numbers is quite small. Nevertheless, the error
estimates for the local projection stabilisation are stronger since they provide additional control on
the fluctuation of the derivative in streamline direction in the subdomains Ω11 and Ω21.
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Table 5: Galerkin and LPS discretisation with Q∗5 and ε = 10−12.

∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣
ε

Galerkin method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
ε

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.262-03 7.018-05 1.282-03 1.696 7.238-05

16 2.127-04 2.57 3.79 3.022-06 4.54 2.194-04 2.547 3.76 3.153-06 4.52
32 2.348-05 3.18 4.31 1.100-07 4.78 2.453-05 3.161 4.29 1.156-07 4.77
64 1.953-06 3.59 4.61 3.708-09 4.89 2.054-06 3.578 4.60 3.908-09 4.89

128 1.355-07 3.85 4.77 1.204-10 4.94 1.429-07 3.846 4.76 1.271-10 4.94∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣

LPS LPS method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
LPS

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.818-03 1.559-04 1.903-03 1.66 1.605-04

16 3.275-04 2.47 3.65 4.725-06 5.04 3.498-04 2.44 3.60 4.864-06 5.04
32 3.490-05 3.23 4.38 1.419-07 5.06 3.754-05 3.22 4.37 1.469-07 5.05
64 2.356-06 3.89 5.00 4.512-09 4.98 2.562-06 3.87 4.98 4.685-09 4.97

128 1.433-07 4.04 5.00 1.412-10 5.00 1.548-07 4.05 5.01 1.472-10 4.99

Table 6: Galerkin and LPS discretisation with Q⊕5 and ε = 10−12.

∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣
ε

Galerkin method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
ε

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.267-03 7.106-05 9.540-04 5.362-05

16 2.144-04 2.56 3.78 3.058-06 4.54 1.578-04 2.60 3.83 2.264-06 4.57
32 2.381-05 3.17 4.30 1.113-07 4.78 1.745-05 3.18 4.31 8.195-08 4.78
64 1.991-06 3.58 4.60 3.749-09 4.89 1.465-06 3.57 4.60 2.760-09 4.89

128 1.389-07 3.85 4.76 1.217-10 4.94 1.023-07 3.84 4.76 8.967-11 4.94∣∣∣∣∣∣∣∣∣u − ũN
∣∣∣∣∣∣∣∣∣

LPS LPS method
∣∣∣∣∣∣∣∣∣JNu − ũN

∣∣∣∣∣∣∣∣∣
LPS

S-mesh B–S mesh S-mesh B–S mesh
N error order ln-order error order error order ln-order error order
8 1.819-03 1.562-04 1.608-03 1.481-04

16 3.279-04 2.47 3.65 4.752-06 5.04 2.926-04 2.46 3.63 4.232-06 5.13
32 3.502-05 3.23 4.38 1.430-07 5.05 3.077-05 3.25 4.41 1.209-07 5.13
64 2.383-06 3.88 4.99 4.546-09 4.97 1.941-06 3.99 5.13 3.767-09 5.00

128 1.461-07 4.03 4.99 1.423-10 5.00 1.119-07 4.12 5.10 1.161-10 5.02
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Table 7: Robustness of Galerkin and LPS discretisation with N = 128.

Galerkin method
Q+

5 Q∗5 Q⊕5
ε S-mesh BS-mesh S-mesh BS-mesh S-mesh BS-mesh
10−6 1.887-07 1.714-10 1.905-07 1.713-10 9.138-07 5.859-10
10−8 1.416-07 1.265-10 1.419-07 1.264-10 3.162-07 2.176-10
10−10 1.360-07 1.211-10 1.361-07 1.209-10 1.628-07 1.333-10
10−12 1.355-07 1.206-10 1.355-07 1.204-10 1.384-07 1.217-10

LPS method
Q+

5 Q∗5 Q⊕5
ε S-mesh BS-mesh S-mesh BS-mesh S-mesh BS-mesh
10−6 1.943-07 1.719-10 1.914-07 1.718-10 9.143-07 5.859-10
10−8 1.583-07 1.305-10 1.451-07 1.296-10 3.182-07 2.192-10
10−10 1.646-07 1.348-10 1.411-07 1.331-10 1.666-07 1.452-10
10−12 1.538-07 1.415-10 1.433-07 1.412-10 1.461-07 1.423-10

6. Conclusions

We have shown for a general class of finite element spaces based on local function spaces Ê(τ̂)
with Pp(τ̂) ⊂ Ê(τ̂) ⊂ Qp(τ̂) that local anisotropic error estimates exist for a vertex-edge-cell and
point-value oriented interpolation operators. This enabled us to apply already known convergence
results on S-type meshes to prove ε-uniformly convergence of order p of the Galerkin FEM and
the LPSFEM in the ε-weighted energy norm, and a robust supercloseness property of the LPSFEM
in the stronger LPS-norm.

The numerical results showed that the numerical errors of the different spaces on the same mesh
are comparable. However, the errors on Shishkin meshes are much larger than the corresponding
errors on Bakhvalov–Shishkin meshes. On the finest meshes in our calculations, the difference
was about three orders of magnitude.

We were using rectangular meshes. It is known for general quadrilateral meshes that the
convergence order of serendipity elements can decrease, see [4] for an approximation theory of
quadrilateral finite elements. Following this analysis our results should hold true for meshes of
parallelograms too.

The presented consideration for a singularly perturbed problem with one exponential and two
characteristic boundary layers can be extended with a few modifications to problems with expo-
nential boundary layers only. This will be subject of a forthcoming study.
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