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Abstract

This paper present a new mathematical model to describe colloidal particles in a flowing polymer

solution. In contrast to former models this method is based on a partial differential equation for

the interacting polymer coils and potential and diffuse domain based descriptions of the colloids.

The model is applied to the calculation of depletion forces between two particles that are very

close to each other. Simulations of flowing interacting particles around some spherical obstacles are

performed and compared to Brownian dynamics simulations qualitatively. The model is comparable

to dynamic density functional type models but it has the advantage of less computational effort due

to local equations. Therefore it is now possible to solve bigger systems for longer periods of time

and the coupling to other phenomena, other differential equations.

Zusammenfassung

In dieser Arbeit wird ein neues Modell zur Beschreibung von Kolloiden, die sich in einer fließen-

den Lösung von Polymer-Knäulen befinden, hergeleitet und analysiert. Die Methode basiert auf

der Lösung einer partiellen Differentialgleichung für die interagierenden Teilchen in der Lösung und

einer Diffuse-domain Methode zusammen mit Potentialfeldern zur Beschreibung der Kolloidteilchen

in der Flüssigkeit. Angewendet wird das Modell auf die Berechnung von Depletion-Kräften zwis-

chen zwei Partikeln, die sich sehr nahe kommen, und zur Untersuchung von Partikeldichten in einer

Umströmung von runden Hindernissen. Letzteres wird mit anderen Brownsche-dynamik Simulatio-

nen verglichen, bezüglich dem qualitativen Verhalten in der Nähe der Kugeln. Außerdem ist das

Modell vergleichbar zu dynamischer Dichtefunktional Theorie, hat der gegenüber den Vorteil, dass

es weniger rechenintensiv ist, aufgrund des lokalen Charakters der Differentialgleichung. Dies führt

dazu, dass Simulationen von größeren Systemen und über einen längeren Zeitraum durchgeführt

werden können und eine Kopplung an andere Phänomene vergleichsweise einfach realisierbar ist.
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Studium überhaupt erst ermöglicht haben, mich finanziell unterstützt, aber mich auch motiviert und

mir viel Geduld entgegen gebracht haben. Viele aus meiner Arbeitsgruppe haben mir ganz praktisch
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Chapter 1

Introduction

1.1 Motivation

In 1991 Pierre-Gilles de Gennes gave his Nobel lecture1 on a topic referred to as Soft Matter . He

explained an early experiment initiated by the Indians of the Amazon basin, who collected the sap

from the hevea tree (rubber tree) and spread it onto their feet. The liquid reacted with the oxygen

in the air, hardened and resulted in some kind of rubbery ”boots”. This experiment shows a typical

property of a soft material, i.e. mild chemical action can introduce a significant change in mechanical

properties.

De Gennes was not the first one to analyze these Soft Matter systems, but he was the most

prominent one, sometimes called the ”founding father of Soft Matter”, who has achieved the Nobel

price for his work. Today soft materials appear in a wide range of every day products, for example

structural and packaging materials, foams and adhesives, detergents and cosmetics, paints, food

additives, lubricants and fuel additives, rubber in tires, in biological materials, e.g. blood, muscle,

milk, yogurt or Jell-o. Liquid Crystals, i.e. are one category of Soft Matter systems that are applied

in display devices (LCDs).

Polymers and colloids are prominent ingredients to Soft Matter systems. The analysis of one-

component systems, i.e. consisting of polymers or colloidal particles, is quite interesting but recently

the combination of different basic elements was put more focus on. These mixtures exhibit new

properties, which are not found in either system separately. The character of particle interactions

can often be controlled and tuned by additives to the suspension and thus gel or glass formation can

be found in these systems.

1[dG92] College de France, Paris
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The analysis of multi-component systems, using physical models and mathematical descriptions

became important, since simulation methods were developed. It can predict the behavior of dif-

ferent model systems in reasonable time and with qualitative agreement with experimental studies.

All former methods, e.g. molecular dynamics, Brownian dynamics, (dynamic) density functional

methods, have different drawbacks, computational expense due to solution of different time-scales,

or due to difficult mathematical equations, i.e. integro-differential equations. In this thesis we want

to introduce a new mathematical model to describe interacting Brownian particles –the Phase-Field

Crystal model –that was used to describe nucleation and grows of crystalline patterns, for example,

in the last years, and provides a tool to simulate configurations of colloids and polymers in a solvent.

1.1.1 Soft Matter systems

Classical fluids, like water, consist of molecules or particles of a size of about one angstrom. The

structure is very homogeneous if you look at them from a mesoscopic point of view. The properties

of these fluids depend heavily on the properties of the molecules or molecular particles. On the

other hand, take a look at a liquid with solved latex molecules or at a mixture of oil and water.

The structure becomes inhomogeneous there. Particles of a size of about 104 times the size of an

angstrom (i.e. 1nm to 10µm) build structures that are coarser than in classical fluids. The particles

are referred to as macro molecules . Since these structures are easily deformable, they are termed

Soft Matter systems.

Basic elements to Soft Matter systems are colloids or polymers , upon others. Colloids are rigid

particles with spherical or other convex shapes, dispersed in a liquid. They are small enough to

exhibit thermal motion. Since these particles are thousand times larger than the solvent molecules,

that have a typical size of 1 Å, they can be regarded as macroscopic objects on the liquid length

scale. The behavior of these dispersions, are comparable to that of molecular systems in some

aspects and are thus an interesting model to study fundamental processes, like crystallization or

glass formation. Due to their large size and slow dynamics, i.e. relaxation times are on the order

of seconds compared to time-scales of about 10−15s for the solvent, experimental studies of such

systems can be done easily by direct techniques, such as confocal microscopy, or indirect techniques,

like light-scattering and rheology. The interaction of colloidal particles is, in the simplest form, hard

sphere interaction, which is zero at all separations and infinitely repulsive at contact. This can be

modified by grafting polymers or varying solvent temperature or salinity, for example.

Polymers are, in principle, very large molecules, consisting of many basic units, i.e. monomers,
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that are bound together by covalent bonds. Chains of monomers often build polymer coils of the

same order of magnitude as that of classical colloidal particles but with a very large number of

internal degrees of freedom, several orders of magnitude larger than what is needed for the colloids.

In [LBHM00, LBF+02] a coarse-graining of polymers as soft particles is motivated and explained to

be a good model system that can reflect basic properties of the polymer coils. Since the polymers

can interpenetrate, soft interaction of the model particles is expected, with a range in the region of

the radius of gyration of individual coils.

The interaction of repulsive colloids can be modified by introducing polymers in the solution. This

mixture is additionally driven by depletion interaction, which can be understood as entropic forces.

Two colloidal particles, that are close to each other, so that polymers do not fit between them, are

forced by an attraction potential that comes from a possible increase of entropy in the system. These

depletion forces are analyzed in several ways, by different approximations of particle correlations or

particle densities and for different repulsive potentials of the colloidal particles. In [GED97] hard

colloidal particles immersed in a hard sphere fluid, i.e. the polymer coils were approximated by

hard spheres, were analyzed with respect to depletion forces and it was found that this entropic

force is attractive for distances of the colloids smaller than the twice the gyration radius. There the

depletion interaction comes from a volume exclusion mechanism. The authors of [DLL03] used a

superposition argument and simulation of non-interacting particles to get a profile of depletion forces

depending on the distance of the colloidal particles. Colloid-colloid and colloid-wall interactions in

driven suspensions were analyzed in [KR07], where macroscopic spherical obstacles are mediated

by non-interacting solvent particles. The authors compared superposition approximations with a

method of reflection and solution of a Smoluchowki equation to calculate the forces between two

colloids and one colloid and a wall. In the case of ellipsoidal solvent particles in [KGG+04] a

molecular simulation and mesoscale study can be found to calculate interactions between dilute

spherical particles. Coarse-grained simulations of depletion forces induced by interacting Brownian

particles in the presents of two nearly approaching spherical obstacle were not found in literature.

This study is the main goal of this thesis.

Hartmut Löwen visualized the grade of difficulty and complexity to model such Soft Matter

systems in diagram 1.1. In this thesis a mixture of spheres with different properties in full and

steady-state non-equilibrium is considered. An extension to rod-like/ellipsoidal particles will be

given in the outlook of the paper and thus nearly the most complex systems of this diagram can be

simulated. Here we are interested in basic properties of the solvent, the particle density of Brownian

particles around spherical obstacles, and change in the interaction properties of colloids mediated

3



Figure 1.1: Diagram found in [L0̈9], simulation and modeling complexity of Soft Matter systems. Green
arrows point in the direction of higher complexity.

by this particles, i.e. depletion forces for dilute spheres.

1.1.2 Structure of this thesis

After some mathematical preliminaries at the end of this introduction, the Phase-Field Crystal model

will be derived from other physical equation in chapter 2, starting from an equation of motion for

the particles solved in a fluid. The dealing with the colloidal particles immersed in the fluid that act

as macroscopic obstacles will be described in the second part of that chapter. A repulsive potential

function is introduced to handle these obstacles.

Chapter 3 deals with the solution of the Phase-Field Crystal equations. Hence the partial dif-

ferential equation must be discretization in time and space. We consider the minimization of an

appropriate energy and mathematical description of the obstacles. A solution of the partial dif-

ferential equation in a complex domain can be approximated by a diffuse domain method that is

applied to the Phase-Field Crystal equations as well as to the Navier-Stokes equations. For the

discretization in time a semi-implicit Euler discretization and a Rosenbrock-method is described.
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The discretization in space is done using the Finite-Element Method.

In chapter 4 simulations of a system of Brownian particles that flow around spherical obstacles

are presented. Starting from simulations of one colloid in a polymer solution, that can be compared

to Brownian dynamics and density functional simulations qualitatively, we add a second colloid to

the system, to calculate depletion forces between these particles.

In the Outlook in chapter 5 some extensions of the proposed model, are displayed. There a

conclusion is drawn as to whether the proposed model is an appropriate simulation of Soft Matter

systems.

1.2 Mathematical preliminaries

In this section some mathematical objects, notations and denotations are clarified. The examples

given here are related to the Phase-Field Crystal model that is described in chapter 2.1 and analyzed

throughout this paper.

1.2.1 Fourier transform and delta function

Definition 1.2.1. (from [Kab99], Definition 41.2)

Let f ∈ L1(R
d) be an integrable function, then the mapping F : f 7→ f̂ , defined by

F[f ](k) := f̂(k) := (2π)−d/2

∫

Rd

f(x)e−ix·kdx, k ∈ Rd

is called Fourier transform and the vector k wave number .

The Fourier transform can also be defined for square integrable functions, sometimes called

Fourier-Planchel transform, by

Theorem 1.2.1. Let f ∈ L2(R
d) be a square integrable function, then the mapping

F2[f ](k) := lim
R→∞

(2π)−d/2

∫

‖x‖≤R

f(x)e−ix·kdx

is defined, where convergence in the sense of ‖ · ‖L2 is given. It then holds F2[f ](k) = F[f ](k) almost

everywhere.

Proof. see [Wer06], Theorem V.2.9
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Example 1.2.1. For Fourier transform of derivatives of functions f where Dα
xf ∈ L1(R

d) holds,

with α is a multiindex, one can derive

F[Dα
xf ](k) = i|α|kαf̂(k) . (1.1)

Especially for the Laplacian ∆f the Fourier transform is given by

F[∆f ](k) = −k2f̂(k), with k2 :=
∑

i

k2i .

Same results can be obtained for rapidly decreasing functions f ∈ S(Rd) (see [Wer06], Lemma V.2.4)

or weakly differential functions f ∈W l(Rd) for |α| ≤ l (see [Wer06], Lemma V.2.11).

Example 1.2.2. The duality of products and convolutions by Fourier transform is based on

F[f · g](k) = 1
√
2π

d
{f̂ ∗ ĝ}(k)

F[f ∗ g](k) = 1
√
2π

d
f̂(k)ĝ(k)

where f, g ∈ L1(R
d).

Definition 1.2.2. (from [Kab99], Definition 10.9.a)

A sequence (δǫ) in L1(R
d) (ǫ > 0) is called sequence of nascent delta functions , or approximation to

the identity, if the following properties hold

a) δǫ ≥ 0

b)
∫
Rd δǫ(x) dx = 1

c) limǫ→0

∫
‖x‖≥R δǫ(x) dx = 0, ∀R > 0.

The limit of such a sequence

δ(x) := lim
ǫ→0

δǫ(x)

is called delta distribution (sometimes (Dirac) delta function), since the limit is considered in a

distributional sense, either that

lim
ǫ→0

∫

Rd

δǫ(x)f(x) dx = f(0)

6



for all smooth functions f with compact support.

Some examples of nascent delta functions are given in chapter 3.1.2 and 3.1.3 where the Levelset-

approach and Phase-field approach are described. Integration over the boundary of a domain in Rd

are approximated by multiplication with an approximation to a delta function. This situation occurs

when the PDE is written in weak form and boundary terms are included in the equations. Since

the integration over the whole domain is approximated in these methods, too, an approximation of

a characteristic function that describes the domain is introduced. Here the relation of characteristic

function and delta function is given. This works similarly for the approximated version of both

”functions”.

Example 1.2.3. For the Heaviside step function H := χ[0,∞) ∈ Lloc
1 (R) the weak derivative H ′ can

be calculated by

〈H ′, ϑ〉 = −〈H,ϑ′〉 = −
∫

[0,∞)

ϑ′(x) dx = ϑ(0)

since ϑ ∈ C∞
0 , because H has no compact support, where 〈a, b〉 :=

∫
R
a · b dx. This gives the

distributional representation H ′ = δ.

Example 1.2.4. Weak gradients of multidimensional characteristic functions can also be expressed

by multidimensional delta functions δΓ, with respect to a manifold Γ, defined by

∫

Rd

δΓ(x)f(x) dx =

∫

Γ

f(x) ds

for all test functions f .

For the derivative of a characteristic function χΩ := {1 for x ∈ Ω; 0 otherwise }, where Ω is a

bounded domain subset of Rd, a weak formulation leads to

∫

Rd

∇χΩϑ dx = −
∫

Rd

χΩ∇ϑ dx = −
∫

Ω

∇ϑ dx = −
∫

∂Ω

nϑ ds = −
∫

Rd

nδ∂Ωϑ dx

where ϑ is a test function and n is the perpendicular to ∂Ω pointing outwards of Ω. This leads to a

distributional formulation

∇χΩ = −nδ∂Ω (1.2)

7



Example 1.2.5. The delta distribution can be represented by inverse Fourier transform, using

δ(x) = F−1[(2π)−1/2] ,

since F[δ(x)](k) = (2π)−1/2
∫
Rd e

−ik·xδ(x) dx = 1√
2π

. Also (weak) derivatives of the delta distribu-

tion can be described by Fourier transform:

F[xn](k) = in
√
2πδ(n)(k)

where n ∈ N and δ(n) the nth (weak) derivative of the delta distribution.

1.2.2 Sobolev space and gradient flow

Definition 1.2.3. (Sobolev spaces, [Kab99, GR05])

Let Ω ⊆ Rd be an open set, k ∈ N≥0. One defines the space

Wk,2(Ω) :=
{
f ∈ L2(Ω) : D

αf ∈ L2(Ω), for |α| ≤ k
}

of L2-functions with L2 derivatives up to order k in Ω, with the norm

‖f‖Wk,2 :=




∑

|α|≤k

∫

Ω

‖Dαf(x)‖2 dx




1/2

.

This gives a Hilbert space. We define the Sobolev spaces W k,2(Ω) and W k,2
0 (Ω) as the closure

of C∞
(Ω) and accordingly C∞

0 (Ω) in Wk,2. The spaces will also be denoted by Hk := W k,2 and

Hk
0 :=W k,2

0 .

Example 1.2.6. Denoting the dual space to a Hilbert space H by H∗. Consider the Sobolev space

Ḣ1
0 (Ω) of functions in H1(Ω) with compact support and zero average, the dual Ḣ1

0 (Ω)
∗ will be

denoted by H−1(Ω). For u, v ∈ Ḣ1
0 (Ω) the inner product is defined by (u, v)Ḣ1

0 (Ω) := (∇u,∇v)L2(Ω)

and accordingly the norm as ‖u‖Ḣ1
0(Ω) := ‖∇u‖L2(Ω). We can derive the inner product of the dual

space H−1 (see [Emm03]), as

(u∗, v∗)H−1(Ω) = (u, v)Ḣ1
0 (Ω) = (∇u,∇v)L2(Ω) = −

∫

Ω

∆−1(u∗)v∗ dx

8



where u, v are the associates to u∗, v∗, and are related via the Poisson equation

−∆u = u∗ in Ω, s.t. ∂nu = 0 on ∂Ω,

∫

Ω

u dx = 0 .

Example 1.2.7. Let M(x) > 0 be a positive definite function that acts as a weight function. One

can modify the L2 and H−1 space, including this weight, by modifying the inner products

(u, v)L2(Ω),M :=

∫

Ω

M−1uv dx

(u, v)H−1(Ω),M := −
∫

Ω

(∇ · (M∇·))−1(u)v dx .

(1.3)

Definition 1.2.4. Let H be a real Hilbert space with norm ‖ · ‖, inner product (·, ·) and duality

pairing 〈·, ·〉H∗×H . Given a functional F : H → R and a function φ ∈ H , we say that F is

differentiable at φ, if exists δφF ∈ H∗ there, so that

〈δφF , ϑ〉 =
d

dε
F [φ+ εϑ]

∣∣∣
ε=0

, ∀ϑ ∈ H

i.e. the limit exists. The functional δφF is then called functional derivative (or variational derivative)

of F with respect to φ. Sometimes the derivative will be denoted by δF [φ]
δφ .

If F is differentiable at φ ∈ H , a unique w ∈ H exists (Riesz Representation Theorem), such

that

〈δφF , ϑ〉 = (w, ϑ), ∀ϑ ∈ H .

This w is denoted by gradH F [φ] as the gradient of the functional F . By limiting the direction of

the derivative, i.e. ϑ ∈ X ⊂ H , the gradient might not be unique anymore. Taking the set

G(F , H,X, φ) :=
{
w ∈ H : lim

ε→0

1

ε

(
F [φ+ εϑ]−F [φ]) = (w, ϑ), ∀ϑ ∈ X

}

where X denotes the limiting directions and G the set of candidates for the gradient, one can select

the element of G with least norm and denote it by gradXH F [φ]. G is closed and convex and if X is

dense subspace of H , it can be shown that G is empty or a singleton. So for appropriate spaces X

we get a good choice of a gradient of F . Details and proof of the above statements can be found in

[Cow04].

Example 1.2.8. The simplified Phase-Field Crystal functional in Ginzburg-Landau form, related
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to later studies (see chapter 2.1.4), is given by

F [φ] :=

∫

Ω

1

2
‖∆φ‖2 − ‖∇φ‖2 + f(φ) dx

where f is a differentiable function. The functional can be differentiated with respect to φ in direction

ϑ as

d

dε
F [φ+ εϑ]

∣∣∣
ε=0

=
d

dε

∫

Ω

1

2
‖∆(φ+ εϑ)‖2 − ‖∇(φ+ εϑ)‖2 + f(φ+ εϑ) dx

∣∣∣
ε=0

=

∫

Ω

∆φ∆ϑ − 2∇φ∇ϑ+ f ′(φ)ϑ dx

=

∫

Ω

∆2φ ϑ+ 2∆φ ϑ+ f ′(φ)ϑ dx

where we assume appropriate boundary conditions.

a) The gradient with respect to L2 is then simply given by

gradL2
F [φ] = ∆2φ+ 2∆φ+ f ′(φ) . (1.4)

b) Now consider the Hilbert space H−1 of example 1.2.6. We derive formally:

∫

Ω

∆2φ ϑ+ 2∆φ ϑ+ f ′(φ)ϑ dx =

∫

Ω

(
∆2φ+ 2∆φ+ f ′(φ)

)
︸ ︷︷ ︸

=:g

ϑ dx

=

∫

Ω

g ϑ dx
!
=

∫

Ω

−∆−1(g∗)ϑ dx ⇔ g∗ = −∆g

⇒ 〈δφF , ϑ〉 = (−∆(∆2φ+ 2∆φ+ f ′(φ)), ϑ)H−1(Ω)

and this takes us to

gradH−1 F [φ] = −∆(∆2φ+ 2∆φ+ f ′(φ)) . (1.5)

An analogy to a gradient descent method for functions in Rd, can now be defined for functionals

in a Hilbert space setting. The motivation is to be consistent with the laws of thermodynamics, in

the sense of decreasing an energy (functional) as much as possible at a given time step. In the finite

dimensional case, this can be done by going in the negative gradient direction. Something similar is

considered for the functional gradients.

Definition 1.2.5. (Gradient flow, e.g. [Dro05, Cow04])

Let H be a Hilbert space, F ∈ H∗ a functional, gradH F its gradient and M > 0. An evolution
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equation, starting from an initial value φ(t = 0) = φ0, that is defined by

∂tφ = −M gradH F [φ]

and has to be understood in the sense

(∂tφ, ϑ)H = −M〈δφF [φ], ϑ〉H∗×H , ∀ϑ ∈ H

is called gradient flow of the functional F , and M is called the mobility of the flow.

Remark. A gradient flow is a descent method, since − gradH F [φ] is a descent direction:

∂tF [φ] = 〈δφF [φ], ∂tφ〉 = (gradH F [φ],−M gradH F [φ]) = −M‖ gradH F [φ]‖ ≤ 0 .

Example 1.2.9. The gradient flow of the functional defined in example 1.2.8 is derived. The

L2-gradient flow simply gives

∂tφ = −M gradL2
F [φ] = −M(∆2φ+ 2∆φ+ f ′(φ)) .

This equation, a fourth order parabolic partial differential equation, is related to the so called Swift-

Hohenberg equation (e.g. [SH77, WWL09]).

The H−1-gradient flow of the same functional gives a six-order PDE:

∂tφ = −M gradH−1 F [φ] =M∆(∆2φ+ 2∆φ+ f ′(φ))

and is related to the Phase-Field Crystal equations which we derive and explain in the next chapters.
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Chapter 2

Modeling

2.1 Physical derivation of Phase-Field Crystal equation

In the work about relaxation dynamics of an assembly of interacting particles by Tarazona and

Marconi [MT99], the authors introduce a theory that was developed further in many directions for

few years. They assume that an ensemble of identical, spherical particles, that do not interact via

hydrodynamic forces, can be modeled as Brownian particles with stochastic equations of motion.

Later different approaches are presented to include hydrodynamic interactions (e.g. [Arc09], [RL08],

[RL09], [PRDK07])

Starting from Newton’s equation of motion, we want to sketch the derivation of dynamic density

functional theory and from there the derivation of the Phase-Field Crystal equations that are used

in the study of particle interactions.

2.1.1 Brownian motion

Consider N identical spherical colloidal particles with position coordinates ~r = {r1, r2, . . . , rN}, and

massm, immersed in an incompressible fluid acting as a heat reservoir with well-defined temperature.

Then the equation of motion of the ith particle, with velocity ∂tri =
1
mpi, reads

∂tpi = −γ(pi − u(ri, t)) + Fi(~r, t) + ηi(t) (2.1)

where γ = 2dπη0a is the friction coefficient, with d the space-dimension, η0 the shear viscosity of the

solvent and a the radius of the colloidal particles. The sum of all forces acting on the particle i is

solved in Fi. We assume that the forces contain contributions to an external potential and particle
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interactions only. This force-term can then be expressed as

Fi(~r, t) = −∇riV (~r, t)

V (~r, t) =
∑

i

V1(ri, t) +
1

2

∑

ij

V2(ri, rj) +
1

6

∑

ijk

V3(ri, rj , rk) + . . .

where V1 is the external one-particle potential, V2 the pair-interaction potential and where V3 rep-

resents the interaction of three particles and so on. In the case of homogeneous, isotropic fluids the

pair-interaction function is a function of the distance of two particles ([Dho98]) ‖ri−rj‖. For systems

that are dilute, events where three or more particles interact simultaneously are unlikely. Therefore

we can neglect all interaction-potentials Vn with n ≥ 3 and approximate V2 by V̄2(‖ri−rj‖). Because

of the symmetry of V̄2 in i, j we get

V (~r, t) ≈
∑

i

V1(ri, t) +
∑

i<j

V̄2(‖ri − rj‖) .

If the mass of the colloidal particles is small compared to macroscopic objects, thermal fluc-

tuations insert a velocity in the evolution. This is approximated by the random force ηi(t) =

(ηxi (t), η
y
i (t), η

z
i (t)). By assuming that different collisions with fluid molecules are approximately

independent, we get an average description of the fluctuations by its first two moments

〈ηαi (t)〉 = 0 and

〈ηαi (t)ηβj (s)〉 = qδijδαβδ(t− s), ∀α, β ∈ {x, y, z}

where the term q ≈ 2γkBT describes the fluctuation strength, kB is Bolzmann’s constant, T the

temperature, δij the Kronecker delta and δ(·) the (Dirac) delta function (see (1.2.2) for description).

Remark. Fluctuation η represents stochastic white noise that is characterized by the spectral density

S(ω) = 2

∫

R

e−iωτ 〈η(τ)η′(0)〉dτ = 2

∫

R

e−iωτ qδ(τ) dτ = 2q .

The noise is called white noise because S(ω) is independent of the frequency ω, i.e. the spectral

density is flat, like the optical spectrum of white light (within the visible range) ([Gar96], [Ris89]).

Hydrodynamic interactions, i.e. one particle induces a fluid flow that affects another particle,

are approximately neglected. In general this is only reasonable for very dilute suspension (very large

distances between particles). The friction force can then simply be written as − γ
mpi and is extended

to − γ
m (pi − u), because we have to use the velocity of the particles relative to the local velocity u
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of the solvent instead of the absolute velocity of the Brownian particles. Throughout this paper we

assume the velocity u to be seloidal, i.e. ∇ · u = 0.

Remark. In less dilute suspensions the friction coefficient depends on the momentum and position

coordinates of all Brownian particles and can be described through friction matrices D(~r). This

linear form occurs due to very low Reynolds numbers and the reduction of Navier-Stokes to simple

Stokes flow, induced by the particles. (see [Dho98] for further explanations).

If the friction coefficient γ is large (overdamped dynamics, i.e. the system returns to equilibrium

without oscillating), we can neglect the second derivative of the position, i.e. ∂tpi = 0. By putting

the mass m into the timescale and 1
γ into the random force η̄i := 1

γηi we obtain the Langevin

equation of motion considered in this work

∂tri = u(ri, t) +
1

γ
(Fi(~r, t) + ηi(t))

= u(ri, t)−
1

γ

(
∇ri

[∑

i

V1(ri, t) +
∑

i<j

V̄2(‖ri − rj‖)
])

+ η̄i(t) .
(2.2)

2.1.2 Fokker-Planck equation

The equation of motion (2.2) is a stochastic differential equation for each particle in the system.

For many particles this coupled system becomes more and more complex. One attempt to describe

the particle motion by only one equation, is the Fokker-Planck equation, that gives a probability

density W (~r, t) that determines the probability to find the set of N particles around the positions

r1, . . . , rN .

Focker-Planch’s equations, or commonly called Smoluchowski equations in this case, for the N -

particle probability density W (~r, t) that are equivalent to the equation of motion (2.2) can be found

in [Dho98] or [Ris89] for example, and are given by

∂tW (~r, t) = LSW (~r, t)

with LS(·) =
∑

i

∇ri ·
[(

− u(ri, t)−
1

γ
F (~r, t) + kBT∇ri

)
(·)

] (2.3)

with initial conditions W (~r, t = t0) = δ(~r − ~r0) and appropriate boundary conditions. By defining

the probability current J = (Ji)i=1,...,N

Ji(~r, t) :=
1

γ
F (~r, t)W (~r, t)− kBT∇riW (~r, t)
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we can set, for example, periodic boundary conditions for the boundary of a box-domain Ω = [a, b]3:

lim
α→b−

W ( ~rα, t) = lim
α→a+

W ( ~rα, t)

lim
α→b−

J( ~rα, t) = lim
α→a+

J( ~rα, t), for α ∈ {x, y, z}

where ~rα = (rα1 , r
α
2 , . . . , r

α
N ) represents the vector of one component of the coordinates.

Remark. The operator LS is called Smoluchowski-operator .

The Fokker-Planck equation can be seen as an abstract advection-diffusion equation with the

current J, using the identity ∇~r · (. . .) =
∑

i∇ri · (. . .)

∂tW (~r, t) +∇~r · (u(~r, t)W (~r, t)) = −∇~r · J(~r, t) (2.4)

with u(~r, t) = (u(ri, t))i=1,...,N

Since it is not of any interest where all the individual particles can be found at a time, but rather

what is the probability to find any particle at a given position, we can integrate the Smoluchowski

equation (2.3) over N − 1 of the N variables to obtain a one-particle density distribution. Therefore

we introduce the n-particle density ρ(n) by integrating the Smoluchowski equation (2.3) (N − n)-

times, using the (n)-particle density

ρ(n)(r1, . . . , rn, t) =
N !

(N − n)!

∫
W (~r, t) drn+1 . . . drN

we obtain the continuity equation

∂tρ(r, t) +∇ ·
(
ρ(r, t) u(r, t)

)
= −∇ · j(r, t)

γ j(r, t) = −ρ(r, t)∇V1(r, t)− kBT∇ρ(r, t)

−
∫
ρ(2)(r, r′, t)∇V̄2(‖r− r′‖) dr′

(2.5)

where we have dropped the superscript for the one-particles density ρ(1) =: ρ and the subscript in

the positions. Detailed calculations can be found in [Löw09].

Neglecting the pair-interaction term containing the two-particle density ρ(2), the equation (2.5)

reduces to Fick’s diffusion equation in a flowing heat bath with an external potential U1 := (kBT )
−1V1

and diffusion coefficient D := kBTγ
−1.
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Problem 1. Let Ω ⊂ Rd and D > 0. Find ρ(r, t) for (r, t) ∈ Ω× [0,∞) with

∂tρ(r, t) +∇ ·
(
ρ(r, t) u(r, t)

)
= −∇ · j(r, t)

D−1 j(r, t) = −ρ(r, t)∇U1(r, t) −∇ρ(r, t) in Ω

subject to initial and boundary conditions

ρ(r, 0) = ρ0(r) in Ω̄

ρ(r, t) = 0 in ∂Ω× [0,∞)

with compatibility condition ρ0(r) = 0 in ∂Ω.

2.1.3 Dynamic density functional theory

In the equation of the noise averaged one-particle density (2.5) the interaction-term depends on the

time and the aim is to approximate this by an interaction term in equilibrium (time-independent).

If we apply an additional external potential Ψ(r) to our Fokker-Planck equation, we can achieve a

system with equilibrium density distribution ρ∗(r) = ρ(r, t). The existence of such a potential is

proven by density functional theory but requires some properties of the equilibrium state.

For flows that are not curl-free (e.g. shear-flow, stokes-flow) no reversibility condition (detailed

balance) for the Fokker-Planck equation is satisfied, as is described in [VR07] or [PRDK07]. So the

restriction of the following derivation to simple potential flows is necessary. The velocity field can

then be written as the gradient of a scalar field, u(r) = − 1
γ∇Φ(r). Driven steady states are currently

under massive research, e.g. by R. Evans, who pronounced that ”Detailed balance has a counterpart

in non-equilibrium steady states” ([Eva05]). Density functional theory requires an equilibrium state

where detailed balance is satisfied. So in the future it is unavoidable to extend the density function

theory to driven steady states (if possible) and to include this extension in the following derivation.

Replacing the external potential V1 by U∗(r) = V1(r) + Φ(r) + Ψ(r) in the particle-density

equation (2.5), where we assume that V1(r, t) = V1(r) in equilibrium, and taking the stationary
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state, with necessarily ∂tρ(r, t) = 0, implies the following so called Yvon-Born-Green-hirarchy

0 = ∇ ·
[
ρ(r, t)∇(V1(r, t) + Φ(r)) + kBT∇ρ(r, t) +

∫
ρ(2)(r, r′, t)∇V̄2(‖r− r′‖) dr′

]

= ∇ ·
[
ρ(r)∇(V1(r) + Φ(r)) + kBT∇ρ(r) +

∫
ρ(2)(r, r′)∇V̄2(‖r− r′‖) dr′

]

= ∇ ·
[
ρ∗(r)∇U∗(r) + kBT∇ρ∗(r) +

∫
ρ∗(2)(r, r′)∇V̄2(‖r− r′‖) dr′

]

︸ ︷︷ ︸
=const, must vanish for r→∞

⇒ 0 = ρ∗(r)∇U∗(r) + kBT∇ρ∗(r) +
∫
ρ∗(2)(r, r′)∇V̄2(‖r− r′‖) dr′

γu(r)ρ∗ = ρ∗(r)∇(V1(r) + Ψ(r)) + kBT∇ρ∗(r) +
∫
ρ∗(2)(r, r′)∇V̄2(‖r− r′‖) dr′ (2.6)

with an equilibrium two-particle density ρ∗(2)(r, r′) for the modified system. Density functional the-

ory states, that the equilibrium density distribution is a minimizer of the grand canonical functional

F∗[ρ(r)] := Fid[ρ(r)] + F∗
ext[ρ(r)] + Fex[ρ(r)]

with the ideal solution part Fid[ρ(r)] =
∫
kBTρ(r)(ln(ρ(r)Λ

d)− 1) dr, where Λ is the thermal wave-

length, a description for an external potentials F∗
ext[ρ(r)] =

∫
ρ(r)U∗(r) dr and the excess free energy

for particle interactions Fex[ρ(r)], that is unknown for general systems.

The Euler-Lagrange equation for F is given by

γu(r) = ∇(V1(r) + Ψ(r)) +
kBT

ρ∗(r)
∇ρ∗(r) +∇δFex[ρ]

δρ

∣∣∣
ρ∗(r)

. (2.7)

Compared with the last equation of (2.6), this results in an equation for the interaction-term

∫
ρ∗(2)(r, r′)∇V̄2(‖r− r′‖) dr′ = ρ∗(r)∇δFex[ρ]

δρ

∣∣∣
ρ∗(r)

= −kBTρ∗(r)∇c(1)(r, ρ∗(r)) .

If we now assume that the density correlations c(1) at time t in non-equilibrium, with density ρ(r, t),

are the same as in an equilibrium system with additional potential Ψ(r) and mean density ρ∗(r), we

get a compact form of the density evolution

∂tρ(r, t) +∇ · (ρ(r, t) u(r)) = ∇ ·
(
1

γ
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

)
(2.8)

17



with the free energy functional

F [ρ(r, t)] := Fid[ρ(r, t)] + Fext[ρ(r, t)] + Fex[ρ(r, t)]

with Fext[ρ(r, t)] =
∫
ρ(r, t)V1(r, t) dr.

2.1.4 Phase-Field Crystal model

The dynamic density functional evolution equation (2.8) still contains the unknown free energy part

Fex. Further approximations are necessary to solve this equation and different approaches were

proposed in the past, e.g. mean-field approximation for very soft interactions

Fex[ρ] ≈
1

2

∫∫
ρ(r)ρ(r′)∇V̄2(‖r− r′‖) drdr′ .

Other approximations (for hard particles) are based on the Rosenfeld fundamental measure theory

[Löw09, Eva09], or weighted density approximations [GL99]. The third well-known ansatz is a

Rumakrishnan-Yussouff (RY) approximation [RY79], that will be explained in more detail, since it

is the base for further approximations in the Phase-Field Crystal theory.

Consider the relative density deviation from a constant reference liquid density: △ρ(r) := ρ(r)−

ρL. The excess free part of the energy must be approximated in the RY-approximation by expansion

around the liquid density ρL up to second order, in the sense of generalized gradient expansions

Fex[ρ(r)]−Fex[ρL] =: △Fex[ρ(r)] ≈
∫

△ρ(r)
δFex[ρL]

δρ(r)
dr+

1

2

∫∫
△ρ(r) △ρ(r′)

δ2(Fex[ρL])

δρ(r)δρ(r′)
drdr′

= −kBT
∫

△ρ(r)c(1)(r, ρL) dr−
kBT

2

∫∫
△ρ(r)c(2)(r, r′, ρL) △ρ(r

′) drdr′

(2.9)

with the direct (two point) correlation function, given by

c(2)(r1, r2, ρ) =
δc(1)(r1, ρ)

δρ(r2)
= − 1

kBT

δ2(Fex[ρ])

δρ(r1)δρ(r2)
.

In [Jaa06] another form of c(1) in the liquid reference fluid is explained to be equal to the above

definition:

c(1)(r, ρL) = ln(ρLΛ
d)− µL

kBT
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with µL the constant chemical potential of the reference liquid.

The ideal gas part Fid of the energy can be rewritten as

Fid[ρ(r)]−Fid[ρL] =: △Fid[ρ(r)] = kBT

∫
△ρ

(
ln(ρLΛ

d)− 1
)
+ ρ(r) ln

(ρ(r)
ρL

)
dr .

Combining both, ideal gas end excess free part of the energy (relative to the reference liquid state)

results in

△Fid[ρ(r)] +△Fex[ρ(r)] = kBT

∫
△ρ(r)

( µL

kBT
− 1

)

︸ ︷︷ ︸
f1(ρ(r))

+ ρ(r) ln
(ρ(r)
ρL

)

︸ ︷︷ ︸
f2(ρ(r))

− 1

2

∫
△ρ(r)c̄(2)(r, r′, ρL) △ρ(r) dr

′

︸ ︷︷ ︸
f3(ρ(r′))

dr .

Since V̄2 depends on the distance ‖r − r′‖ only, this property is assumed to be true for the direct

pair correlation function also, especially in the liquid phase, so c(2)(r, r′, ρ) = c̄(2)(‖r − r′‖, ρ) and

the rotational symmetry of c̄(2) follows immediately.

Now consider the Fourier transformed correlation function, by rewriting f3(ρ) as

f3(ρ(r)) =
1

2
△ρ(r)

[
c̄(2)(‖ ◦ ‖, ρ)∗ △ρ

]
(r)

where (a ∗ b)(r) :=
∫
a(r− r′)b(r′)dr′ is the convolution of a and b and ◦ the multiplication-operator

◦(k) = k. Since the correlation-function is rotational symmetric the Fourier-cosine-transform of c̄(2)

is sufficient:

F[c̄(2)] =: ĉ(k, ρ) =
1

√
2π

d

∫

Rd

c̄(2)(‖r‖, ρ) cos(k · r) dr .

Expanding ĉ around k0 = 0 [EPB+07] leads to

ĉ(k, ρ) = ĉ(0, ρ)︸ ︷︷ ︸
Ĉ0

+k2 1

2
ĉ′′(0, ρ)

︸ ︷︷ ︸
Ĉ2

+k4 1

24
ĉ(4)(0, ρ)

︸ ︷︷ ︸
Ĉ4

+ . . .

with km :=
∑

i k
m
i . The coefficients with odd derivatives vanish, because

ĉ(m)(k0, ρ) = ± 1
√
2π

d

∫

Rd

rmc̄(2)(‖r‖, ρ) sin(k0 · r)︸ ︷︷ ︸
=0 for k0=0

dr, for odd m .
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We can now write the Fourier transform of f3 as

F[f3(ρ)](k) =
1

2
√
2π

d

[
△̂ρ ∗ (

√
2π

d
ĉ(◦, ρ)△̂ρ)

]
(k)

=
1

2

[
△̂ρ ∗ (Ĉ0 + Ĉ2 ◦2 +Ĉ4 ◦4 + . . .)△̂ρ)

]
(k) =: f̂3(ρ) .

The inverse Fourier transform leads to the real space analogy

F−1[f̂3(ρ)](r) =

√
2π

d

2
△ρ(r)(Ĉ0 − Ĉ2∆+ Ĉ4∆

2 −+ . . .) △ρ(r)

=:
1

2
△ρ(r)(C0 − C2∆+ C4∆

2 −+ . . .) △ρ(r)

≈ 1

2
△ρ(r)(C0 − C2∆+ C4∆

2) △ρ(r)

where this gradient-expansion was truncated at fourth order.

Remark. In the literature, e.g. [vTBVL09, EPB+07, Jaa06], often a non-unitary Fourier transform

is used, so that the coefficients of the expansion in Fourier space change to Ĉi := Ci. This has to be

taken into account when concrete values are compared.

To obtain the standard form of the PFC model we assume constant mobility in equation (2.8)

on the right-hand side. This leads to a more complex ideal solution term in the evolution, since it

can not be simplified to ∆ρ any more. The key to this difficulty is an expansion of the logarithmic

term in the energy around the mean density ρ̄. Therefore we introduce a new variable φ(r, t) :=

(ρ(r, t) − ρ̄)/ρ̄ = (△ρ(r, t) − ρ̄)/ρ̄ + ρL/ρ̄, the dimensionless density modulation, and truncate the

expansions at fourth order. For φ the property
∫
φ(r, t) dr = 0 holds. The expansions of fi(ρ) in

terms of φ, neglecting all linear terms, since they vanish due to integration, yield

1

ρ̄

(
f1(ρ(r)) − f1(ρ̄)

)
= φ(r, t)

( µL

kBT
− 1

)
= (linear term)

1

ρ̄

(
f2(ρ(r)) − f2(ρ̄)

)
≈ 1

2
φ(r, t)2 − 1

6
φ(r, t)3 +

1

12
φ(r, t)4 + (linear terms)

1

ρ̄

(
f3(ρ(r)) − f3(ρ̄)

)
≈ ρ̄

2
φ(r, t)(C0 − C2∆+ C4∆

2)φ(r, t) + (linear terms) .

The third term in the energy, containing the external potentials, △Fext[ρ] =
∫
△ρV1 =:

∫
f4(ρ), can

also be expressed in terms of φ, as

1

ρ̄

(
f4(ρ(r)) − f4(ρ̄)

)
= φ(r, t)V1(r, t) .

In conclusion we can define the total free energy relative to the mean density by summation of the
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energy parts

1

ρ̄

(
△F [ρ(r, t)]−△F [ρ̄]

)
=

1

ρ̄

(
F [ρ(r, t)]−F [ρ̄]

)
≈ F2[φ(r, t)]

:= kBT

∫
1

2
φ(r, t)2 − 1

6
φ(r, t)3 +

1

12
φ(r, t)4 dr

− kBT ρ̄

2

∫
φ(r, t)(C0 − C2∆+ C4∆

2)φ(r, t) dr

+

∫
φ(r, t)V1(r, t) dr

(2.10)

where the denotation F2 comes from the original name PFC2-model in [vTBVL09]. The evolution

equation with respect to φ(r, t) with constant mobility ρ̄ can now be written as

∂tφ(r, t) +∇ · (φ(r, t) u(r)) = ρ̄

γ
∆
δF2[φ(r, t)]

δφ(r, t)

=
kBT ρ̄

γ
∆
(
φ(r, t)− 1

2
φ(r, t)2 +

1

3
φ(r, t)3

+ (kBT )
−1V1(r, t) − ρ̄

(
C0 − C2∆+ C4∆

2)φ(r, t)
)

(2.11)

and is an approximation, due to the expansion of the correlation function, of the dynamic density

functional evolution equation (2.8).

PFC in standard-form

The simplest form of the phase-field crystal energy was proposed by Swift and Hohenberg in 1977

[SH77], but the relation to molecular dynamics or dynamic density functional theory was currently

shown by [EPB+07, Jaa06] and others. Swift and Hohenberg introduced a functional, nowadays

often called Swift-Hohenberg energy, extended by contribution to an external potential, given by

FSH[ψ(r, t)]

kBT
=

∫
1

2
ψ(r, t)

(
α∆T + λ(q20 +∆)2

)
ψ(r, t) +

g

4
ψ(r, t)4 + ψ(r, t)

V1(r, t)

kBT
dr (2.12)

where α,∆T, λ, q0 and g are phenomenological constants. To get a connection of (2.12) to the energy

(2.10) we rewrite the latter in terms of bulk-modulus and lattice constants which are relations to

basic properties of a material to simulate [EPB+07]:

BL := 1− ρ̄C0 . . . liquid phase isothermal compressibility

BS := ρ̄
C2

2

4|C4|
. . . bulk modulus of the crystal

1

R
:=

√
2|C4|
C2

. . . lattice constant .

(2.13)
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The energy can be reformulated with the new parameters

F2[φ(r, t)]

kBT
=

∫
1

2
BLφ(r, t)

2 − 1

6
φ(r, t)3 +

1

12
φ(r, t)4 dr

+

∫
1

2
BSφ(r, t)(2R

2∆+R4∆2)φ(r, t) dr

+

∫
φ(r, t)

V1(r, t)

kBT
dr .

(2.14)

For a special choice of parameters one can obtain the standard Swift-Hohenberg energy.

α∆T = BL −BS − 1

4
, q0 =

1

R
, λ = BSR

4, g =
1

3
(2.15)

with the new variable ψ := φ− 1
2 , where linear and constant terms are ignored. The relation between

the energies can be written as F2[φ] = FSH[ψ(φ)] + const. .

Elder and Grant [EG05] derived another form of the PFC-equation by phenomenological con-

siderations. They took a Ginzburg-Landau energy which describes phase-transitions, e.g. spinodal

decomposition among other phenomena and tried to modify the functional so that fast phase changes

can be solutions to an energy-minimization. Ginzburg-Landau functional with bulk free energy f ,

e.g. a double-well, for the order parameter field ̺ is a nonlinear Dirichlet-energy

FGL[̺] =

∫
K1‖∇̺‖2 + f(̺) dx (2.16)

where K1 is a phenomenological constant. A typical example of such a functional is the Cahn-

Hilliard energy, where f is similar to f(̺) = 1
4ǫ2 (̺

2−1)2, that forces the quantity ̺ to have ‖̺‖ ≈ 1.

Minimization of (2.16) leads to a phase-field ̺ with regions nearly constant, since gradients in the

quantity ̺ are energetically unfavorable. Only a transition area between two phases with different

values of ̺ of width O(ǫ) has a positive value of the gradient ‖∇̺‖.

Periodic system can be achieved by changing the sign of the gradient term to minus. So phase

changes are preferred. But this leads to an unbounded energy, since this change generates infinite

gradients in ̺. To overcome this problem Elder and Grant regularized the functional by introducing

the next higher order term ‖∆̺‖2. This leads to an energy of the form

FPFC(GL)[̺] =

∫
−K1‖∇̺‖2 +K2‖∆̺‖2 + f(̺) dx (2.17)

Specification of f to f(̺) := (1 + r)̺+ ̺3 makes this energy related to the Swift-Hohenberg energy
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in the following way.

By changing the length-scale of (2.12) to x := q0r and defining new parameters, a dimensionless

form of this energy will be obtained

r :=
α∆T

λq40
. . .undercooling

̺ := ψ

√
g

λq40
. . .normed density

(2.18)

This provides the necessity to define a new external potential and velocity field, by

U(x, t) :=

√
g

λ3q120
(kBT )

−1 V1(q
−1
0 x, t)

u(x, t) := q0u(q
−1
0 x, t)

All derivatives have to be modified, like ∆r → q20∆x. The Swift-Hohenberg-energy can then be

written as

F [̺(x, t)]

kBT
=
λ2q8−d

0

g

∫
1

2
̺(x, t)

(
r + (1 +∆x)

2
)
̺(x, t) +

1

4
̺(x, t)4 + ̺(x, t)U(x, t) dx (2.19)

This gives, after scaling and partial integration, the Phase-Field Crystal functional FPFC(GL) of

Elder and Grant, extended by an external potential.

In the following evolution equation, all derivatives are interpreted with respect to the scaled

variable x, so the subscript will be dropped. For the variational derivative, the chain-rule has to be

considered, as

δF2[φ]

δφ
=
δF2[φ]

δ̺

δ̺

δψ

δψ

δφ
=
δF [̺]

δ̺

√
g

λq40

Then the Phase-Field Crystal equation with mobility M follows, by variable transform (2.18)

∂t̺(x, t) +∇ ·
(
u(x, t)̺(x, t)

)
=
ρ̄kBTλq

6−d
0

γ
∆µ =:M∆µ

µ = (r + (1 +∆)2)̺(x, t) + ̺(x, t)3 + U(x, t) .

(2.20)

Conservation Law

Equation (2.20) shows the structure of a general continuity equation ∂t̺+∇ · j = 0 , that is a local

form of a conservation law . A quantity ̺ is conserved as it evolves under the flow j of a conservation

law if the total amount of the substance contained in any fixed volume Ω can only change by the
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amount that passes through the boundary ∂Ω of the domain. For the concrete flux that defines the

PFC-equation, j := ̺u−M∇µ, we find that

d

dt

∫

Ω

̺ dx = −
∫

Ω

∇·j dx =

∫

Ω

∇·(M∇µ)−∇·(̺u) dx =

∫

∂Ω

M∂nµ−̺u·n ds =

∫

∂Ω

−̺u·n ds .

To obtain conservation of density, the amount of quantity that is transported into the domain must

equal the amount that flows out. So the last boundary integral must vanish, i.e. the additional

coupling constrained

∫

∂Ω

̺u · n ds = 0 (2.21)

must be fulfilled.

The complete Phase-Field Crystal problem, including initial and boundary conditions, can be

formulated

Problem 2. Let Ω ⊂ R3, M > 0. Find ̺ := ̺(x, t), µ := µ(x, t) and ν := ν(x, t) for (x, t) ∈

Ω× (0, T ] with T > 0 that fulfill the evolution equation

∂t̺+∇ ·
(
̺u

)
= ∆µ

M−1 µ = (1 + r)̺ + ̺3 + 2ν +∆ν + U in Ω

ν = ∆̺

(2.22)

subject to initial and boundary conditions

̺(x, 0) = ̺0(x) in Ω̄

∂n̺(x, t) = ∂nµ(x, t) = ∂nν(x, t) = 0 in ∂Ω× (0, T ]

with compatibility conditions ∂n|∂Ω̺0 = 0, ∂n|∂Ω(∆̺0) = 0 and ∂n|∂Ω(∆
2̺0) = 0.

Selection of parameters

In the final form of the PFC model (2.20) there is only one parameter left that describes the general

behavior of the system: r. The mobility M can be put into the time-scale and is, thus, only

responsible for the speed of relaxation/minimization of the energy. To get an idea of a good choice

of the parameter r to simulate specific states of a material, a stability analysis of the equation can

be performed. In liquids a constant density profile is expected, since the particles can move more
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freely than in a solid state. A steady solution of the differential equation (2.20) has to be stable in

the sense that small perturbations of the solution tend to zero. In Appendix B.2 a linear stability

analysis of the PFC equation is performed to obtain the relation

3¯̺2 + r > 0

that is fulfilled when small perturbations of a constant solution ¯̺ vanish during the evolution. This

relation is visualized in figure 2.1.
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Figure 2.1: Stability-diagram depending on the parameters ¯̺ and r of the PFC model. The stable regions
are called liquid and the unstable solid .

Using this inequality for the parameters ¯̺ and r we take

¯̺ = −0.3, rsolid = −0.4, rliquid = −0.1

as parameters for the simulations. The solid state describes crystallization/solidification of colloidal

crystals and is analyzed in [BRV07, vTBVL09, CW08] among many others. In figure 2.2 a sequence

of snapshot of such a simulation is shown. The final state is a hexagonal configuration of maxima

in the density profile, that can be interpreted as the positions of the individual particles.

An appropriate initial value for Problem P2 can be a perturbation around the mean density ¯̺,

that is a conserved quantity and stays fixed during the evolution. For solved particles the temperature

parameter for liquid rliquid is convenient and without obstacles or walls, that change the behavior

of the system, we would get a constant density field. Including an external potential that models

obstacles, like big colloidal particles in the solution of small particles, will lead to qualitatively other

density profiles. First simulations using density-functional theory, or for non-interacting particles a
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Figure 2.2: Solidification of particle density profile, using parameters ¯̺ = −0.3 and r = −0.4, at different
simulation times, starting from perturbed constant density. Result is a hexagonal pattern, where the maxima
(red) indicate positions of particles.

diffusion model, were performed by [PDT03, PRDK07], for example.

2.2 Colloids in polymer solution

Polymer coils and colloids are assumed to swim in a bath of Brownian particles that collide randomly

and are transported by a flow-field u. This leads to the transportation of big particles. In comparison

to the colloids the polymer coil are rather small. This is the reason why we assume that the latter do

not interact via hydrodynamic forces. However, the colloids do effect the flow-field. If the colloids

Rp

Rc
abb

Rp

Rc

Rh

abb

Figure 2.3: Left: hard colloidal particle, right: slightly soft colloidal particle, with the hydrodynamic
interaction radius Rh smaller than Rc = Rp − a.

were soft particles, the interaction with the flowing solvent would be active in a region defined by a

hydrodynamic interaction radius Rh only. The polymer coils, with interaction radius a, can approach

the colloidal particles up to a distance Rp and the colloids themselves have a radius of Rc. Hard

colloidal particles are characterized by Rh = Rc. In figure 2.3 the interaction radii for two different

systems are plotted.

The interaction of colloids and polymer coils is modeled by an external potential of the general
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form

U(x) = C1 · exp
(
−‖x‖p

Cp
2

)
(2.23)

0
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-20 -15 -10 -5 0 5 10 15 20
domain Ω

U(x)

Rc

Rp

Figure 2.4: Plot of 1d potential function U(x) for R∗ = 0.7

with parameters C1, C2 and p subject to a specific interaction model (e.g. (ultra-)soft interaction,

hard interaction). These parameters should be chosen in such a way that the limit Rc = Rh defines

a hard sphere interaction potential

UHS(x) =






∞ for ‖x‖ ≤ Rc

0 otherwise
.

Furthermore the slope of U in the interval [Rc, Rp] should be approximately independent of the

colloid radius Rc. To obtain such parameters the following conditions were introduced, depending

on a ”hardness” function f that is up to some constraints arbitrary. C2 and p should be determined

so that

U(x; ‖x‖ = Rp) = f(Rc, Rh)

U(x; ‖x‖ = Rc) = C1 − f(Rc, Rh)

is fulfilled. Hardness f must be chosen so that it is monotone in both of its arguments and

f(Rc, Rh = Rc) = 0 and f(Rc, Rh < Rc) ∈ (0, C3]
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for some scaling factor C3 > 0. A simple choice of f that we have used to model hard and soft

colloidal interactions can be written as a linear relation

f(Rc, Rh) = C3(1−
Rc

Rh
) .

The limit Rc = Rh that results in an hard interaction potential will be obtained by defining C1 by

C1 := C4

f(Rc,Rh)
. In our model the new parameters C3 and C4 were chosen as C3 = 10 and C4 = 20.

Now we can calculate values for C2 and p, assuming Rh < Rc, with

p = ln

[
ln

(
f(Rc, Rh)

2

C4

)
/ ln

(
(C4 − f(Rc, Rh)

2)

C4

)]
/ ln

[
Rp

Rc

]

C2 = Rp

[
− ln

(
f(Rc, Rh)

2

C4

)]− 1
p

.

By the fraction
Rp

Rc
=: R∗ a characteristic length is set. This is used by the authors of [PRDK07].

More than one colloid with potential Ui that interacts with the particles in the environment can

simply be superposed to get the entire external potential, by

U(x) =
∑

i

Ui(x) .

Colloids act as hard spherical obstacles with radius Rh in the flow-field. For these objects no-

slip boundary conditions were used to avoid flow into the colloids. Each colloid i is a part of the

simulation domain Ω, called Ωci ⊂ Ω, with
⋂

iΩci = ∅ and
⋃

iΩci =: Ωc. Because of some numerical

reasons we assume, that ∂Ωc ∩ ∂Ω = ∅.

2.2.1 Moving colloids

The colloids immersed in an aqueous solution move due to different local and global forces. In chapter

2.1 an equation of motion was derived for small colloidal particles. Since thermal fluctuation induce

small oscillations of the particles, equation (2.2) describes the Brownian motion. If we assume that

the colloidal particles are bigger than the particles in the solvent, i.e. the diameter in the range

of 100nm − 10µm, then the random fluctuations can be neglected and the particles move due to

inter-particle interactions, global potential fields or transport in a flow, only with an equation of

motion, that can be derived from (2.2) by crossing out some terms:

γ∂tri = Fi(~r, t) . (2.24)
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Figure 2.5: Five colloidal particles in a flow field. The fluid flows from left to right with a parabolic inflow
profile with maximum in the center of the left side of the simulation box. Very low Reynolds numbers do not
lead to turbulence behind the colloids. Top and bottom boundary of simulation box are physical boundaries
with no-slip boundary condition.

For more than one colloid the external potentials are positioned with respect to ri, i.e. Ui(x, t) =

U(x− ri(t)). The equation of motion for this potential function can be written as

∂tUi(x, t) = −∇Ui(x, t) · ∂tr(t) .
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Chapter 3

Numerics

3.1 Description of complex geometries

For a long time different methods to describe geometries in two or three dimensions have been

known. One main difficulty is the representation of the domain of interest in a discrete way, e.g. by

triangulation. Further difficulties arise when the domain is allowed to evolve in time, move, shrink

or expand and sometimes change its topology, i.e. collapse or merge. In the most simple case the

translation of the domain is the only aspect considered. Let Ω0(t) be a domain in Rd at time t and

x ∈ Ω0, then

∂tx = y, with x(t = 0) = x0 ⇒ ∂tΩ0 = y, with Ω0(t = 0) = Ω0
0

where y the velocity of Ω0, that is constant in the whole domain. This situation can be handled by

the following methods by translation of the coordinate system.

The aim of this section is to introduce and compare several methods that can describe N colloids

as macroscopic objects in a bounded finite size simulation box (see figure 3.1 for a box with one

colloid modeled as a circular object). If there is one colloid it would be sufficient to translate a

domain only. However, if we deal with more than one colloid, more complex methods are needed.

3.1.1 Explicit triangulations

The standard approach decomposes a polygonal domain into simple elements, like triangles or

quadruples. Curved boundaries can be replaced by polygonal chains or must be handled by curved

triangles and parametrization of the boundary curves. In two dimensions this gives quite reason-
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Ω0

Ω1

Γ0

Γ1n0

n1

Figure 3.1: Ω0 and Ω1 are embedded in simpler domain Ω := Ω0 ∪ Ω1 with boundary ∂Ω = Γ1. Normal
vectors n0 and n1 on the boundaries Γ0 and Γ1 point out of the domain Ω1.

able results. An example of such a triangulation of a rectangular domain with circular hole that is

approximated by a polygonal chain can be seen in figure 3.2. A polygonal chain that approximates

Figure 3.2: Left: coarse mesh with nearly equal sized elements, right: mesh refined on the boundary of
the circular hole.

the boundary very closely can be achieved by the refinement of the mesh around this boundary.

The appropriate triangulation can be obtained in two dimensions by mesh relaxation, for instance.

Per-Olof Persson and Gilbert Strang [PS04] have written a simple mesh generator in MATLAB that

produced the two shown examples in figure 3.2.

Motion of the domain Ω0 translates into the motion of the boundary Γ0. The polygonal chain

that describes this boundary changes and thus, re-meshing or relaxing of the mesh are necessary.

Shrinking or expanding boundaries need re-parametrization and topological changes often need a

complete new build-up of data structures and management of several separate boundaries that can

be merged or broken up again. So moving boundaries are rather difficult to implement. If this was
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done, it would give a method that only needs triangulation points inside the domain of interest and

thus the algebraic systems would be small accordingly.

3.1.2 Levelset method

In 1988 Osher and Sethian proposed [OS88] a method for front-propagation called Levelset-method

that found many applications in image processing and two-phase flows in recent years. It is an

implicit sharp interface approach where the boundary of the geometry Ω0 is treated as a levelset of a

function φ : Rd → R, commonly the zero levelset. The levelset-function φ is embedded in a domain

Ω and will be propagated during the evolution of the interface of Ω0 by a simple transport-equation

∂tφ+ u · ∇φ = 0 .

An implicit description of domains, which is often used, is a signed distance-function, that has some

convenient properties concerning the extraction of the zero-levelset, for example.

Definition 3.1.1. A function d : Rd → R is called signed distance-function for a domain Ω0 ⊂ Rd

if it is a distance-function, i.e. |d(x)| := dist(x,Ω0) with signum

sign[d(x)] =






1 if x 6∈ Ω0

0 if x ∈ ∂Ω0

−1 if x ∈ Ω0

.

In [SS03] an example is given for using the levelset-method in two-phase-flow problems. The

main idea is to replace normal vectors and delta-functions in the boundary conditions in terms of

the levelset-function φ. Smeared out delta-functions can be expressed as

δǫ(x) :=





1
2ǫ

(
1 + cos(πφ(x)/ǫ)

)
for − ǫ ≤ φ(x) ≤ ǫ

0 otherwise

where ǫ is a small parameter that defines the width of the smeared out region of the delta-function.

In a similar manner the characteristic function that represents the domain Ω0 can be smeared out,

32



e.g. by

χǫ(x) :=






0 if φ(x) < −ǫ
1
2

(
1 + φ(x)

ǫ + 1
π sin(πφ(x)/ǫ)

)
if − ǫ ≤ φ(x) ≤ ǫ

1 if φ(x) > ǫ

. (3.1)

For the normal vector and the mean curvature of the levelset curve a direct representation with the

implicit function φ can be written as

n :=
∇φ

‖∇φ‖ , κ := ∇ · ∇φ
‖∇φ‖ .

The advantages of levelset-methods include the ability to compute geometric properties of the domain

Ω0 easily. The extension to higher dimensions can be done without many difficulties. A main

advantage in comparison to explicit geometric descriptions and parametrization of the boundary is

the possibility to allow topological changes without any extra carefulness in implementation.

Since one is interested in the signed distance values, some careful strategies are necessary to

preserve the distance property and often a re-distancing step and some smoothing of norms are

inevitable. These are some disadvantages of the methods that can be worked out but produce a

higher computational effort.

3.1.3 Phase-Field method

The Phase-Field approach takes a quite similar way. Domains will be defined implicitly by a signed

distance-functions d(x) like in the levelset-method. Nevertheless we are not interested in the distance

property but in the sign of the distance-function. The main ingredient to phase-field methods is a

smeared out characteristic function that can be transformed and transported during the evolution

of the domain.

Definition 3.1.2. Let ǫ > 0 and Ω0 ⊂ Ω a domain in Rd, that can be described by a signed

distance-function d with sign so that d(x) < 0 ⇔ x ∈ Ω0. Then the function

ϕǫ(x) :=
1

2

(
1− tanh(3d(x)/ǫ)

)
(3.2)

will be called phase-field function.

The phase-field function can be compared to the smeared out characteristic function of the
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levelset-framework (3.1). Similar to the levelset-method one can derive approximations of the delta-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
x

ϕǫ

χǫ

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
x

δpǫ
δlǫ

Figure 3.3: Left: Comparison of phase-field function to smeared out characteristic function of levelset-
method, right: delta-function δlǫ of levelset-method and delta-function δpǫ of phase-field method.

function from the phase-field variable ϕ

δ(x) = lim
ǫ→0

‖∇ϕǫ(x)‖ = lim
ǫ→0

ǫ−1B(ϕǫ), with B(ϕ) := Cϕ2(1− ϕ)2

where B(ϕ) is called double-well of ϕ and C = 36 is a scaling-factor depending on the scaling of x in

the tanh-function. These approximations are indeed nascent delta-functions as defined in definition

1.2.2. In figure 3.4 the phase-field function and delta-function approximation are plotted using the

double-well for different band-widths ǫ.
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Figure 3.4: Phase-field ϕǫ and delta-function approximation δǫ :=∼ B(ϕǫ) for different values of ǫ in the
interval x ∈ [0, 1]
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Since the domain Ω1 is not discretized explicitly but embedded in a bigger domain Ω, the complete

domain must be discretized and thus, a local refinement is necessary to preserve computational

resources. It is also necessary to solve the ǫ-band around the interface very finely. In the domain

Ω1 the discretization needs to solve the PFC-solution. Outside Ω1, in the domain Ω0, a coarse

discretization is sufficient. Figure 3.5 shows an example of a discretization of a domain where a

spherical obstacle is included in the center of the box.

Figure 3.5: Mesh used to discretize spherical obstacle. Number of points: 320729, number of elements:
639408. The width of the ǫ-band around the phase-change is discretized by approximately 10 degrees of
freedom and in the region Ω1 a grid-size of approximately h = a

5
, where a is the half distance of particles

in the solvent. The domain Ω0, the interior of the obstacle, is discretized as coarse as possible, since this
region has no contribution to the solution of the differential equations.

Remark. The phase-field function that separates two domains is highly related to a stationary

solution of the Cahn-Hilliard equation

∂tc = ∆
(1
ǫ
W (c)− ǫ∆c

)

that minimizes the Cahn-Hilliard energy similar to (2.16). c describes a concentration field and W

a double-well. The evolution produces separated regions with constant concentration and transition

areas of width proportional to ǫ. In figure 3.6 a stationary solution of a Cahn-Hilliard evolution is

compared to the tanh function, that is the base for the phase-field approach.

3.2 Diffuse-Domain approach

Solutions of evolution equations in complex geometries with standard types of boundary conditions,

i.e. Dirichlet, Neumann and Robin boundary conditions, and diffuse description of the domains by

phase-field functions was described by the authors of [LLVAR09]. The base of their approach is a

modification of a partial differential equation using characteristic and delta functions to include the
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Figure 3.6: A numerically solved Cahn-Hilliard equation in 1d is compared to a tanh-function.

boundary conditions in the equations and to extend the equations to a bigger, simpler domain. The

second step is an approximation of the characteristic function by a phase-field function and of the

delta function by a double-well or an other nascent delta-function. To conclude that the approx-

imated equations tend to the sharp ones for the diffuseness parameter ǫ tend to zero, asymptotic

analysis is performed. This method is based on the matching of outer and inner expansions. A

detailed description can be found in [Emm03].

The considered domain Ω1 of the PDEs in [LLVAR09] has the property to be embedded strictly

in the bigger domain Ω, i.e. Ω1 ( Ω and ∂Ω1 ∩ ∂Ω = ∅, and thus, the boundary of Ω and boundary

conditions to ∂Ω do not influence the solution of embedded PDEs. In the case of colloids in the

simulation domain, that are cut out of Ω, this property does not hold any more. So the derivation

of the equations for the inclusion of boundary conditions must be changed slightly. It turns out that

the resulting equations are in fact the same as in the original ones but, in addition, the boundary

conditions to ∂Ω must be set to the one of ∂Ω1 ∩ ∂Ω = Γ1. The derivation of these equations are

performed here.

A general parabolic partial differential equation of second order is considered for the derivation

of the diffuse domain method:

H∂ty −∇ · (A∇y) + (b · ∇)y + cy = f, in Ω1(t) (3.3)

with H ∈ R≥0 a positive constant, A = A(x, t, y,∇y) ∈ Rd×d a positive definite matrix function,

b = b(x, t, y,∇y) ∈ Rd a vector function, c = c(x, t, y,∇y) ∈ R and f = f(x, t). The equation
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is considered with respect to boundary conditions on Γ0/1(t), not necessary the same on both

boundaries. For i ∈ {0, 1}

a) Dirichlet boundary condition

y = g, on Γi(t) (3.4)

b) Neumann boundary condition

A∇y · ni −HyVni
= g, on Γi(t) (3.5)

where Vni
is the normal velocity of Γi(t) pointing in the direction of ni

c) Robin boundary condition

A∇y · ni −HyVni
= k(y − g), on Γi(t) (3.6)

for k ∈ R

Multiplying equation (3.3) by a time and space dependent test function ϑ(x, t) and integrating over

Ω1(t) and over the time interval [0, T ] the weak form of the equation can be obtained

∫ T

0

∫

Ω1(t)

Hϑ∂ty dxdt+

∫ T

0

∫

Ω1(t)

{
−∇·(A∇y)+b ·∇y+cy

}
ϑ dxdt =

∫ T

0

∫

Ω1(t)

fϑ dxdt . (3.7)

In the following some identities are used. We assume that the domain Ω is fixed but Ω0 can change

in time, so Vn1 = 0

∇χΩ1 = −δ∂Ω1n = −(δΓ0n0 + δΓ1n1)

dχΩ1

dt
= ∇χΩ1 ẋ = −δΓ0n0V = −δΓ0Vn0 .

(3.8)

Partial integration of (3.7) in time can be done, using

∫ T

0

∫

Ω1(t)

ϑ∂ty + y∂tϑ dxdt =

∫ T

0

∫

Ω1(t)

∂t(yϑ) dxdt =

∫ T

0

∫

Ω

∂t(yϑ)χΩ1(t) dxdt

=

∫ T

0

∫

Ω

yϑδΓ0(t)Vn0 dxdt+
[ ∫

Ω

y(t)ϑ(t)χΩ1(t) dx
]T
t=0

=

∫ T

0

∫

Γ0(t)

yϑVn0 dsdt+
[ ∫

Ω1(t)

y(t)ϑ(t) dx
]T
t=0

.

37



Since in the final PFC and Navier-Stokes equations only Dirichlet and Neumann boundary conditions

are considered, the derivation of embedded formulas can be restricted to these two cases. Robin

boundary conditions can be included in a similar manner.

a) For Neumann boundary conditions we consider

[
(A∇y) · n0 −HyVn0

]
|Γ0 = g and

[
(A∇y) · n1

]
|Γ1 = h .

Partial integration in space and time of (3.7) leads to

−
∫ T

0

∫

Ω1(t)

Hy∂tϑ dxdt+

∫ T

0

∫

Ω1(t)

∇ϑ · (A∇y) dxdt+
∫ T

0

∫

Ω1(t)

{
b · ∇y + cy − f

}
ϑ dxdt

=

∫ T

0

∫

Γ0(t)

[
(A∇y) · n0 −HyVn0

]
︸ ︷︷ ︸

g

ϑ dsdt+

∫ T

0

∫

Γ1

(A∇y) · n1︸ ︷︷ ︸
h

ϑ dsdt−
[ ∫

Ω1(t)

y(t)ϑ(t) dx
]T
t=0

.

Replacing integration in the domain
∫
Ω1

by
∫
Ω
χΩ1 and on the boundary

∫
Γ
by

∫
Ω
δΓ gives

−
∫ T

0

∫

Ω

HχΩ1(t)y∂tϑ dxdt+

∫ T

0

∫

Ω

χΩ1(t)∇ϑ · (A∇y) dxdt+
∫ T

0

∫

Ω

χΩ1(t)

{
b · ∇y + cy − f

}
ϑ dxdt

−
∫ T

0

∫

Ω

δΓ0(t)gϑ dxdt =

∫ T

0

∫

Γ1

hϑ dsdt−
[ ∫

Ω1(t)

y(t)ϑ(t) dx
]T
t=0

.

Again partial integration in space and time leads to

∫ T

0

∫

Ω

Hϑ∂t(χΩ1(t)y) dxdt−
∫ T

0

∫

Ω

ϑ∇ · (χΩ1(t)A∇y) dxdt+
∫ T

0

∫

Ω

χΩ1(t)

{
b · ∇y + cy − f

}
ϑ dxdt

−
∫ T

0

∫

Ω

δΓ0(t)gϑ dxdt = −
∫ T

0

∫

Γ1

χΩ1(t)︸ ︷︷ ︸
=1 on Γ1

hϑ dsdt+

∫ T

0

∫

Γ1

hϑ dsdt .

This integral equation is equivalent to the strong formulation

H∂t(χΩ1(t)y)−∇·(χΩ1(t)A∇y)+χΩ1(t)

{
b ·∇y+cy

}
−δΓ0(t)g = χΩ1(t)f s.t.

[
(A∇y) ·n1

]
|Γ1 = h

(3.9)

that has to be understood in the sense of distributions.

b) Dirichlet boundary conditions y|Γ0 = g, y|Γ1 = h can be included in the same manner. The

following derivation only considers the Laplace term, since the time derivative and first/zero order

terms are not related to these boundary conditions. The time-dependency of the domain will be

ignored in this derivation, too. Consider the weak form of the Poisson equation ∆v = f in Ω1 and
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perform partial integration twice:

∫

Ω1

ϑ∆y dx =

∫

Ω1

ϑf dx

∫

Ω1

∆ϑy dx+

∫

Γ0

ϑ∂n0y − g∂n0ϑ ds+

∫

Γ1

ϑ∂n1y − h∂n1ϑ ds =

∫

Ω1

ϑf dx

∫

Ω

χΩ1∆ϑy

︸ ︷︷ ︸
A

+δΓ0

(
ϑ∂n0y − g∂n0ϑ

)
dx+

∫

Γ1

ϑ∂n1y − h∂n1ϑ ds =

∫

Ω

χΩ1ϑf dx .

Further calculations lead to

A = −
∫

Ω

∇(χΩ1y) · ∇ϑ dx
︸ ︷︷ ︸

B

+

∫

Γ1

χΩ1h∂n1ϑ ds

B =

∫

Ω

∆(χΩ1y)ϑ dx−
∫

Γ1

ϑ∂n1(χΩ1y) ds .

With ∂n1χΩ1 |Γ1 = 0 and χΩ1 |Γ1 = 1, we get the equation

∫

Ω

∆(χΩ1y)ϑ+ δΓ0

(
ϑ∂n0y − g∂n0ϑ

)
dx =

∫

Ω

χΩ1ϑf dx .

Splitting the Laplace term in ∆(χΩ1y) = ∇χΩ1 ·∇y+y∆χΩ1+∇·(χΩ1∇y), using (3.8) and assuming

∂n0g|Γ0 = 0 gives two replacements for the boundary-terms

∫

Ω

ϑ∇χΩ1 · ∇y dx = −
∫

Ω

ϑδΓ0∂n0y dx

∫

Ω

ϑg∆χΩ1 dx =

∫

Ω

∂n0(ϑg)δΓ0 dx−
∫

Γ1

ϑgδΓ0

︸ ︷︷ ︸
=0 since Γ0∩Γ1=∅

=

∫

Ω

δΓ0g∂n0ϑ dx .

In the conclusion this leads us to the associated strong formulation

∇ · (χΩ1∇y) + (y − g)∆χΩ1 = χΩ1f, s.t. y|Γ1 = h . (3.10)

The inclusion of time-derivatives and first/zero order terms leads to a formula similar to (3.9) where

the boundary term δΓ0g is replaced by (y − g)∆χΩ1 .

Replacing χΩ1 by the phase-field function ϕǫ and δΓ0 by δǫ gives the approximation of (3.9) and

(3.10). Boundary terms like (y − g)∆χΩ1 or δΓ0g are inserted in the abstract expression BC, that
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is used to encapsulate all kinds of boundary conditions.

H∂t(ϕǫy)−∇ · (ϕǫA∇y) + ϕǫb · ∇y + ϕǫcy +BC = ϕǫf in Ω

s.t.
[
(A∇y) · n1

]
|Γ1 = h or y

∣∣
Γ1

= h .

(3.11)

In [LLVAR09] other forms of BC than the one we obtained above are described and justified by

asymptotic analysis. Especially the inclusion of Dirichlet boundary conditions by (y − g)∆χΩ1

appears to be numerically very unstable and unfavorable. The authors proposed some penalty

terms to force the solution to fulfill the Dirichlet boundary conditions. In table 3.1 some of the

boundary terms used are listed. Using (3.11) and boundary conditions in table 3.1 we can rewrite

Dirichlet boundary conditions BC = ǫ−3(1 − ϕǫ)(y − g)
Neumann boundary conditions BC = −ǫg‖∇ϕǫ‖2
Robin boundary conditions BC = −ǫk(y − g)‖∇ϕǫ‖2

Table 3.1: Boundary terms for the diffuse domain method

the PFC equations (2.20) in terms of the diffuse domain approach. The boundary conditions ∂n̺ = 0,

∂nµ = 0 and ∂nν = 0 produce no boundary term, since g and h can be set to zero. We arrive at the

diffuse domain Phase-Field Crystal model:

Problem 3. PFC problem: Let Ω ⊂ Rd, M > 0 and ϕǫ described by (3.2) for ǫ > 0 sufficiently

small, r > −1. Find ̺ := ̺(x, t), µ := µ(x, t) and ν := ν(x, t) for (x, t) ∈ Ω× (0, T ] with T > 0 that

fulfill the evolution equation

∂t(ϕǫ̺) + ϕǫu · ∇̺ = ∇ · (ϕǫ∇µ)

M−1 ϕǫµ = (1 + r)ϕǫ̺+ ϕǫ̺
3 + 2ϕǫν +∇ · (ϕǫ∇ν) + ϕǫU in Ω

ϕǫν = ∇ · (ϕǫ∇̺)

(3.12)

subject to initial and boundary conditions

̺(x, 0) = ̺0(x) in Ω̄

∂n̺(x, t) = ∂nµ(x, t) = ∂nν(x, t) = 0 in ∂Ω× (0, T ]

with compatibility conditions ∂n|∂Ω̺0 = 0, ∂n|∂Ω(∆̺0) = 0 and ∂n|∂Ω(∆
2̺0) = 0.

The transport term in the first equation in (3.12) has been modified in comparison to the sharp

interface equation (2.22), to be consistent with the diffuse domain ansatz of equation (3.3). Since
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the velocity field is incompressible, we find

∇ · (u̺) = u · ∇̺+ ̺∇ · u = u · ∇̺ .

The integral coupling-constrained (2.21) leads to a diffuse domain constrained

∫

∂Ω

̺u · n ds =

∫

Ω

̺u|Γ0 · ∇ϕǫ dx (3.13)

where u|Γ0 indicates an extension of u|Γ0 to Ω.

3.3 Navier-Stokes equations in diffuse domain

For viscous incompressible fluids the motion is governed by the Navier-Stokes equations

∂tu+ (u · ∇)u = −∇p+ η∆u

∇ · u = 0

(3.14)

where u(x, t) =
(
ui(x, t)

)
i=1,...,d

is the velocity vector, p the scaled pressure variable and η the

kinematic viscosity of the fluid. The derivative operators ∂t,∇⊤ and ∆ have to be understood

component-wise. By specifying initial and boundary conditions, the statement of the problem can

be made complete. Taking the equations (3.14) in a domain Ω1 with boundary ∂Ω1 = Γ0 ∪ Γ1, one

can set boundary conditions of Dirichlet type:

u
∣∣
Γ0

= g and u
∣∣
Γ1

= h, for all t ∈ (0, T ]

where g : Γ0 × (0, T ] → Rd and h : Γ1 × (0, T ] → Rd, for T > 0, define the boundary velocities. The

initial condition specifies a velocity field u0 at time t = 0:

u
∣∣
t=0

= u0 in Ω̄ .

Compatibility of initial and boundary conditions has to be guaranteed. First of all, we assume that

u0 is solenoidal, i.e. ∇ · u0 = 0 in Ω1, then the initial velocity field must be consistent with the

boundary conditions

u0

∣∣
Γ0

= g
∣∣
t=0

and u0

∣∣
Γ1

= h
∣∣
t=0

.

41



By integrating the continuity equation over Ω1, we obtain a condition on the boundary functions

0 =

∫

Ω1

∇ · u dx =

∫

∂Ω1

u · n ds =

∫

Γ0

g · n0 ds+

∫

Γ1

h · n1 ds . (3.15)

The case of fixed colloids in a flowing solvent can be handled by

u|Γ0 = 0 and u|Γ1 = h .

Moving colloids in a closed box are described by

u|Γ0 = g and u|Γ1 = 0 .

Both cases set one boundary function to zero, so we get only one integral constrained like

0 =

∫

Γ0

g · n0 ds or 0 =

∫

Γ1

h · n1 ds .

On the one hand these constraints can be understood as that the amount of fluid that flows into the

domain equals the amount that flows out. On the other hand that the velocity of a colloid is equal

all over the surface of the colloid.

To extend the Navier-Stokes equations to a simpler domain Ω with ∂Ω = Γ1 we apply the general

diffuse domain equation for parabolic PDEs (3.11) to the first set of equations, using the Dirichlet

boundary expression of table 3.1 for the boundary Γ0:

∂t(ϕǫuj) + ϕǫ u · ∇uj = ϕǫ∇p− η∇ · (ϕǫ∇uj)−
β

ε3
(1 − ϕǫ)(uj − ḡj) j = 1, . . . , d

where β is an additional scaling factor for the penalty term. Writing the incompressibility condition

0 = ∇ · u in a weak form, we obtain

0 =

∫

Ω1

ϑ∇ · u dx = −
∫

Ω1

u · ∇ϑ dx+

∫

Γ0

g · n0ϑ ds+

∫

Γ1

h · n1ϑ ds

= −
∫

Ω

χΩ1u · ∇ϑ dx−
∫

Ω

∇(1− χΩ0) · gϑ dx+

∫

Γ1

h · n1ϑ ds

=

∫

Ω

∇ · (χΩ1u)ϑ dx−
∫

Ω

∇(1− χΩ0) · gϑ dx−
∫

Γ1

χΩ1h · n1ϑ ds+

∫

Γ1

h · n1ϑ ds

=

∫

Ω

∇ · (χΩ1u)ϑ−∇(1− χΩ0) · gϑ dx

≈
∫

Ω

∇ · (ϕǫu)ϑ−∇ϕǫ · gϑ dx
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for test functions ϑ. We arrive formally at the strong formulation

∇ · (ϕǫu) = ∇ϕǫ · g . (3.16)

This results in the diffuse-domain Navier-Stokes formulation:

Problem 4. Navier-Stokes problem: Let Ω ⊂ Rd and ϕǫ be described by (3.2) for ǫ > 0 sufficiently

small, η > 0 and β > 0. Furthermore let the boundary function g,h fulfill the integral condition

(3.15) and let ḡ : Ω× [0, T ]→ Rd be the extension of g to Ω and h : ∂Ω× [0, T ]→ Rd. Find velocity

u := (uj(x, t))j=1,...,d and pressure p := p(x, t) for (x, t) ∈ Ω × (0, T ] with T > 0 that fulfill the

diffuse domain Navier-Stokes equations

∂t(ϕǫuj) + ϕǫ u · ∇uj = ϕǫ∇p− η∇ · (ϕǫ∇uj)−
β

ε3
(1− ϕǫ)(uj − ḡj) j = 1, . . . , d

∇ · (ϕǫ u) = ∇ϕǫ · ḡ in Ω

(3.17)

subject to initial and boundary conditions

u(x, 0) = u0(x) in Ω̄

u(x, t) = h(x, t) in ∂Ω× (0, T ]
∫

Ω

ϕǫ(x, t)p(x, t) dx = 0 in [0, T ]

with compatibility conditions u0|Γ1 = h and ∇ · (ϕǫ u0) = ∇ϕǫ · ḡ.

Here we have set the integral condition on the pressure, to define the constant that makes the

pressure variable unique.

3.4 Energy-Minimization

Starting from the principle of energy dissipation we want to show that the PFC-energy (2.19) is

decreasing in time, using a H−1-gradient-flow approach and the mentioned approximation of a

characteristic function, to describe the energy evolution in a complex domain.

F(̺) =

∫

Ω1

1

4
̺4 +

1

2
(1 + r)̺2 + ̺∆̺+

1

2
(∆̺)2 + ̺U dx

≈
∫

Ω

ϕǫ

{
1

4
̺4 +

1

2
(1 + r)̺2 +

̺

ϕǫ
∇ · (ϕǫ∇̺) +

1

2

(
1

ϕǫ
∇ · (ϕǫ∇̺)

)2

+ ̺U

}
dx

=: Fǫ(̺)

(3.18)
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where we have approximated the integration over the domain Ω1 by multiplication with a phase-field

function. The Laplace operators have been replaced by a restriction of the second order operator to

a (smaller) domain:

(∆̺)Ω1 ≈ 1

ϕǫ
∇ · (ϕǫ∇̺)

that comes from a weak diffuse domain Poisson equation. We can write the evolution of the energy

∂tF =
∫
∂t̺ · δ̺F dx with first variation of F . To show that the energy is decreasing for our choice

of ∂t̺ we have to prove the energy-decreasing property ∂tF ≤ 0.

Remark. The property ∂tF ≤ 0 is required to characterize F as Lyapunov function to the continuous

dynamical system ∂t̺ = ∆µ, with µ = δ̺F defined as above. In Appendix B.1 this property is proved

to hold also for a time-discrete dynamical system if the discretization is done with care, since F is

not a convex functional but consists of convex and concave parts.

Starting with the exact PFC-energy F in Ω1, we can make the ansatz to use a continuity equation

∂t̺ = ∇ · J in Ω1 with a flux J proportional to the gradient of the variational derivative of F :

J =M∇δ̺F , with M > 0. The variational derivative of F can be found as

δ̺F = ̺3 + (1 + r)̺+ 2∆̺+∆(∆̺) + U . (3.19)

This results in the energy-decreasing inequality for the exact PFC-energy:

∂tF =

∫

Ω1

∂t̺ · δ̺F dx =

∫

Ω1

∇ · {M∇δ̺F} · δ̺F dx

= −M
∫

Ω1

∇δ̺F · ∇δ̺F dx

= −M (gradH−1 F , gradH−1 F)H−1(Ω1)
= −M ‖gradH−1 F‖H−1(Ω1)

≤ 0

(3.20)

where (·, ·)H−1(Ω1) is a product defined in Ω1 by

(a∗, b∗)H−1(Ω1) :=

∫

Ω1

∇a · ∇b dx

with a∗, b∗ associated to a, b by the Riesz-mapping theorem. This is a real scalar-product indeed

and ‖a‖H−1(Ω1) := (a, a)H−1(Ω1) defines the associated norm (see introduction for some details).
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For the approximated energy Fǫ the variational derivative can be calculated as

δ̺Fǫ = ϕǫ̺
3 + ϕǫ(1 + r)̺ + 2∇ · (ϕǫ∇̺) +∇ ·

(
ϕǫ∇

( 1

ϕǫ
∇ · (ϕǫ∇̺)

))
+ ϕǫU . (3.21)

If we us the continuity equation ∂t̺ = ∇ · Jǫ in Ω with the current Jǫ proportional to the gradient

of the variational derivative of the energy: Jǫ =M∇δ̺Fǫ, and assuming ∂tϕǫ = 0, we find that the

energy is also decreasing in time:

∂tFǫ =

∫

Ω

∂t̺ · δ̺Fǫ dx =

∫

Ω

∇ · (M∇δ̺Fǫ) · δ̺Fǫ dx

= −M
∫

Ω

∇δ̺Fǫ · ∇δ̺Fǫ dx

= −M (gradH−1 Fǫ, gradH−1 Fǫ)H−1(Ω) = −M ‖gradH−1 Fǫ‖H−1(Ω) ≤ 0 .

(3.22)

On the one hand we can start with the exact PFC-energy, derive the evolution equation and

then do the approximation of the domain, on the other hand we can do the approximation first and

continue the derivation with Fǫ. Both approaches give different evolution equations. For (3.20) we

get

ϕǫ∂t̺ = ∇ · (ϕǫM∇µ)

ϕǫµ = ϕǫ̺
3 + ϕǫ(1 + r)̺+ 2ϕǫν +∇ · (ϕǫ∇ν) + ϕǫU

ϕǫν = ∇ · (ϕǫ∇̺)

(3.23)

but for the other approach (3.22) we get the slightly altered system

∂t̺ = ∇ · (M∇µ)

µ = ϕǫ̺
3 + ϕǫ(1 + r)̺+ 2ϕǫν +∇ · (ϕǫ∇ν) + ϕǫU

ϕǫν = ∇ · (ϕǫ∇̺)

(3.24)

Since both approaches tend to the same equilibrium configuration we use the equation (3.23) that

approximates the differential equation as described in (3.12). It is supposed that this leads to more

stable numerical simulations.

The key point of this section is, that we only approximate the gradient flow by a diffuse domain

ansatz. This could cause some trouble in the energy minimization, since it is not clear whether

the diffuse PFC equation is a decent direction any more. But for small ǫ it seems to be a small

perturbance of the original direction and thus, a good choice for minimizing the PFC functional.
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Taking an approximated energy from the beginning leads to a system with well defined gradient

direction, but the resulting PDE is not conform to the diffuse domain approach and could cause

some trouble in numerical considerations. The left hand side of equation (3.24) does not require a

fine mesh around the interface, but the right hand side does. The first equation does not contain any

contribution to the phase-field variable and thus, the mobility is positive everywhere in the domain.

Regions that are not of interest, e.g. Ω0, are driven by this system, as well as the original domain

Ω1. So the system, if it is solvable, needs much more computational effort than the equation (3.23)

that we will use throughout this paper.

3.5 Time-discretization

In order to solve the initial boundary value problem P3 numerically one has to discretize the partial

differential equation in space and time. The space-discretization is considered in chapter 3.6. Here

we will have a look at the semi-discretization in time.

Two strategies are well known to split the discretizations in space and time. If the discretization

with respect to the spacial variable is done first, the method will be called (vertical) method of

lines . Consider a domain Ω ⊆ Rd with smooth boundary ∂Ω and the abstract parabolic initial

boundary-value problem

∂tY = F [x, t, Y, Z] in Ω× [0, T ]

G[x, t, Y, Z] = 0 in Ω× [0, T ]

B[t, Y ] = 0 on ∂Ω× [0, T ]

Y (x, 0) = Y0(x) in Ω̄

(3.25)

where F and G are differential operators and B a boundary (differential) operator that defines the

boundary condition of the problem. By discretizing (3.25) with respect to the space variable x, e.g.

by Finite-Differences, Finite-Volume method or Finite-Element method, we arrive at an ordinary

initial value problem. Writing this with discretized operators Fh, Gh, where the boundary conditions

are solved, and space-discrete variants of the data and unknowns Yh(t), Zh(t) in a strong formulation:

∂tYh = Fh[x, t, Yh, Zh] in (0, T ]

Gh[x, t, Yh, Zh] = 0 in (0, T ]

Yh(0) = Y0

(3.26)
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this leads to an initial-value problem of differential-algebraic equations that has to be solved. Now an

integrator for DAEs can be applied to (3.26), like a Rung-Kutta method, a Rosenbrock method or a

modified multi-step solver. Since the number of degrees of freedom, i.e. the dimension of the solution-

vector Yh, is in general fixed, problems arise when the mesh is to be refined adaptively over time.

This situation occurs in moving front propagation, structure-coarsening or diffuse-domain problems

with moving boundaries, for example. The requirement for this problems is a globally refined

grid, that solves all front positions or phase boundary geometries from the beginning. Alternatively

interpolation techniques and careful implementations could be used to save computational resources.

This can be interpreted as perturbations to the ODE in each time step.

Another strategy discretizes in the time variables first and solves an elliptic boundary value

problem in each time step. This method is called Rothe-method or horizontal method of lines. In

this paper two discretizations in time direction are presented: an (semi) implicit Euler-method and

a Rosenbrock method.

3.5.1 Semi-implicit discretization

If we split the time-interval [0, T ] in intervals 0 = t0 < t1 < . . . < tN = T and define the discrete

time step τk := tk+1 − tk and the values ̺k := ̺(tk), µ
k := µ(tk), ν

k := ν(tk), ϕ
k := ϕ(tk), u

k =

(uki )i := u(tk), we can rewrite the PFC-equation (2.20) with an Euler-method for the time-derivative

as

̺k+1 − ̺k

τk
+uk+1·∇̺k+1 = ∇·

{
M∇

[
(1+r)̺k+1+2(λ∆̺k+1+(1−λ)∆̺k)+∆2̺k+1+f̃(̺k, ̺k+1)+U

]}

where λ ∈ [0, 1] and the function f̃ stands for a discretization of the non-linear term f(̺) := ̺3.

The treatment of this cubic term is handled differently in literature. Cheng and Warren [CW08]

use f̃ := ̺k in their analysis. Wise, Wang and Lowengrub [WWL09] in contrast analyze an implicit

scheme f̃ := ̺k+1. Backofen, Rätz and Voigt [BRV07] introduce a linearization of f as

f̃ := 3(̺k)2̺k+1 − 2(̺k)3 .

In the following we will use the linearized version of the non-linear term in the time-discretization

since numerical tests show good performance of the scheme.

The parameter λ defines the treatment of the Laplace term, that causes some discussion in the

literature. Wise et.al. [WWL09] expect that the implicit treatment, i.e. λ = 1, leads to a system,

47



that is not unconditionally uniquely solvable. Their convex splitting scheme takes λ = 0, as it is

done by [CW08]. The authors of [BRV07], however, claim good behavior for λ = 1, i.e. the ability

to take large time steps and numerically analyzed energy decreasing property.

For the explicit treatment a linear stability analysis is performed by Cheng and Warren and

is extended to an implicit cubic term in the Appendix B.2. Since the linearized version is in be-

tween explicit and implicit discretization, the same stability-analysis should also hold for the most

restrictive result of explicit and implicit stability analysis.

Wise et.al. analyzes the energy-stability of their scheme, i.e. that the discrete energy-evolution

decreases the energy in each time step: F [̺k] ≥ F [̺k+1]. This analysis could not be applied to the

explicit or linearized treatment of the non-linear term, so it is not clear whether this property holds

for these schemes, too. In Appendix B.1 this stability analysis is extended to include the external

potential and a transport by potential flow of the density.

Now consider the diffuse-domain PFC-equation (3.12) in a non-stationary domain Ω = Ω(t)

described by the phase-field function ϕǫ(x, t). Time-derivative and differential-operators contain this

phase-field function as well as the non-linear term. The latter can be handled by Taylor expansion

of f̃ϕ(ϕ, ̺) := ϕ̺3 around (ϕk, ̺k) by

f̃ϕ(ϕ
k+1, ̺k+1) ≈ 3ϕk+1(̺k)3 + ϕk̺k+1(̺k)2 − 3ϕk(̺k)3

or, if ϕk+1 is known before ̺k+1 is calculated, an expansion around (ϕk+1, ̺k)

f̃ϕ(ϕ
k+1, ̺k+1) ≈ 3ϕk+1̺k+1(̺k)2 − 2ϕk+1(̺k)3 .

The discretized evolution equation in time can then be written as

ϕk+1̺k+1 − ϕk̺k

τk
+ ϕk+1u(tk+1) · ∇̺k+1 = ∇ ·

{
Mϕk+1∇µk+1

}

ϕk+1µk+1 = (1 + r)ϕk+1̺k+1 + 2ϕk+1νk+1 +∇ · (ϕk+1∇νk+1)

+ 3ϕk+1̺k+1(̺k)2 − 2ϕk+1(̺k)3 + U(tk+1)

ϕk+1νk+1 = ∇ · (ϕk+1∇̺k+1) .

(3.27)
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3.5.2 Rosenbrock method

An alternative to semi-implicit time-discretization (3.27) is a time-stepping method of Rosenbrock

type for nonlinear parabolic partial differential equation systems (see [Lan01]) of the abstract form

H∂tY (x, t) = F [x, t, Y ] in Ω× (0, T ]

B[x, t, Y ] = 0 on ∂Ω× (0, T ]

Y (x, 0) = Y0(x) on Ω̄

(3.28)

with H a constant real-valued matrix that may be singular, Y the (vector-valued) unknown and F

is supposed to be sufficiently differentiable. The domain Ω ⊂ Rd is a bounded open domain with

smooth boundary ∂Ω and T > 0. B is a boundary operator that implies boundary conditions to Y .

The PFC-equation (2.20) can be put into this form, using Y = (ν, ̺, µ), H = diag(0, 1, 0) and

F [x, t, Y ] = F [x, t, ν, ̺, µ] given by

F [x, t, ν, ̺, µ] :=




ν −∆̺

∆µ− u(x, t) · ∇̺

µ− (1 + r)̺− 2ν −∆ν − ̺3 − U(x, t)




. (3.29)

Furthermore the boundary-operator is given by

B[x, t, ν, ̺, µ] :=




∂n|∂Ων

∂n|∂Ω̺

∂n|∂Ωµ




.

In order to integrate (3.28) in time semi implicit methods, like (3.27), or fully implicit discretiza-

tion methods coupled with a Newton-like iteration for the nonlinear equation can be applied. By

working the exact Jacobian directly into a discretization-formula one obtains an efficient integrator

for stiff problems that arise in discretizations of partial differential equations using fine meshes. The

method described here is a linearly implicit method of Rosenbrock type, introduced by [Ros63] to

solve nonlinear ordinary differential equations.

Rosenbrock methods are usually implemented in a form which is different to the original one. By

that some matrix-vector multiplications can be avoided. A slightly modified procedure of the one

described in [Lan01] is presented now.

Definition 3.5.1. Let τ > 0 be the step size and tk := kτ for 0 < k < N the discrete time with
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tN = T . The so-called s-stage Rosenbrock method in transformed form reads

(
1

τγ
H − FY [x, tk, Y

k]

)
Xk

i = F
[
x, tk + αiτ, Y

k +
∑i−1

j=1aijX
k
j

]
+H

i−1∑

j=1

cij
τ
Xk

j

+ τγiFt[x, tk, Y
k] i = 1, . . . , s

Y k+1 = Y k +
s∑

i=1

miX
k
i

(3.30)

where γ > 0, αi, aij , cij , γi and mi are coefficients that should be chosen to guarantee consistency

and stability of the scheme and that define the order of convergence. The operators FY and Ft name

the derivatives of F with respect to Y and time. Xk
i is called the ith stage solutions at time step k.

The solution procedure consists of the iterative solution of elliptic partial differential equations

in each time step. It is shown that for coefficients that are chosen well Y k is an approximation to

the solution Y (tk). This approximation is called to be of order p if the local error satisfies

Y (tk + τ)− Y k+1 = O(τp+1), for Y k = Y (tk) .

In [Lan01] a proof for convergence of the discretization in time and space, using Finite Element

discretization in space, is given and some sets of parameters for different approximation orders are

displayed.

Time step control can be used in Rosenbrock methods and is described in [Lan01] and [EG96].

The basic idea is to use two Rosenbrock schemes that differ only in coefficients mi. Thus a solution

of different order can be calculated simply by summing up the stage solutions with different weights.

Using two solutions of different approximation order a new time step can be calculated.

Derivatives of the system function F with respect to Y and time t for the PFC-equation can be

found as:

FY [x, t, Y,X ] =




n−∆r

∆m− u(x, t) · ∇r

m− (1 + r)r − 2n−∆n− 3̺2r



, Ft[x, t, Y ] =




0

−∂tu(x, t) · ∇̺

−∂tU(x, t)




with X = (n, r,m).
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3.5.3 Time-discretization of Navier-Stokes equations

Navier-Stokes equations are nonlinear and this nonlinearity is not as ”harmless” as it is in the

Phase-Field Crystal equations. Especially for high Reynolds numbers nonlinear effects make the

Navier-Stokes equations very hard to solve. Since we are in a regime of very low Reynolds numbers

an approximation as Stokes-flow is possible and the nonlinearity does not cause too much difficulty.

This gives the reason to apply simple linearization to the non-linear term by treating it explicitly.

For time-discrete variables uk = (uki )i := (ui(tk))i and p
k := p(tk) a discretization of the diffuse

domain Navier-Stokes equations by semi-implicit Euler method is given by

ϕk+1
ǫ uk+1

j − ϕk
ǫu

k
j

τk
+ ϕk+1

ǫ uk · ∇uk+1
j = ϕk+1

ǫ ∇pk+1 − η∇ · (ϕk+1
ǫ ∇uk+1

j )

− β

ε3
(1− ϕk+1

ǫ )(uk+1
j − ḡj(tk+1)) j = 1, . . . , d

∇ · (ϕk+1
ǫ uk+1) = ∇ϕk+1

ǫ · ḡ(tk+1) in Ω.

(3.31)

The authors of [JMR06], [JR10] and [IJ08] appliy Rosenbrock schemes to the incompressible

Navier-Stokes equations and compare it to other time-discretization methods. The system function

FNS[x, t, Y ] for the Navier-Stokes equations (3.14) in two dimensions and its derivative reads

FNS[x, t, Y ] =




η∆u1 − (u · ∇)u1 − ∂1p

η∆u2 − (u · ∇)u2 − ∂2p

∇ · u




Y = (u, p)

FNS
Y [x, t, Y,X ] =




η∆v1 − (v · ∇)u1 − (u · ∇)v1 − ∂1q

η∆v2 − (v · ∇)u2 − (u · ∇)v2 − ∂2q

∇ · v




X = (v, q)

(3.32)

using H = diag(1, 1, 0).

Since the Navier-Stokes equations are differential algebraic equations of index 21, special Rosen-

brock schemes for such systems must be applied.

3.6 Space-discretization

In addition to the time step method, the discretization of the differential operators in space must

be performed, to obtain a fully discrete system. Therefore a weak formulation of the differential

1See [EG96, JR10] for proof of this statement
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equations must be derived. Set V := H1(Ω) the Sobolev space of weakly differential functions that

are square integrable in Ω and have square integrable derivatives and W := L2(Ω). We exploit the

notation

〈f, v〉 :=
∫

Ω

f v dx, ‖f‖ =
√
〈f, f〉 .

3.6.1 Semi-implicit time-discretization

At first the transport term in the Phase-Field Crystal equation must be modified to obtain the

conservative form of the equation. Therefore we use the relation (3.16) and obtain

ϕǫu · ∇̺ = ∇ · (ϕǫu̺)− ̺∇ϕǫ · ḡ .

The last term vanishes due to partial integration of the first one combined with coupling constrained

(3.13), that gives conservation of the density. For an arbitrary test function ϑ we can write the

transport-term in a weak form

〈ϕǫu · ∇̺, ϑ〉 = 〈∇ · (ϕǫu̺), ϑ〉 − 〈̺∇ϕǫ · ḡ, ϑ〉

= −〈ϕǫu̺, ∇ϑ〉+
∫

∂Ω

ϕǫ̺u · nϑ ds− 〈̺∇ϕǫ · ḡ, ϑ〉

= −〈ϕǫu̺, ∇ϑ〉+ 〈̺∇ϕǫ · u|Γ0︸︷︷︸
ḡ

, ϑ〉 − 〈̺∇ϕǫ · ḡ, ϑ〉

= −〈ϕǫu̺, ∇ϑ〉

(3.33)

Problem (3.27), the semi-implicit Euler discretization of the PFC equations, can be written in

variational form:

Problem 5. Let Ω ⊂ Rd, M > 0 and ϕǫ be described by (3.2) for ǫ > 0 sufficiently small, r > −1.

Find ϕk+1 ∈ V, ̺k+1 ∈ V, µk+1 ∈ V and νk+1 ∈ V for k = 0, . . . , N − 1, such that

ϕk+1 = f(ϕk, ̺k)

52



where f describes the evolution of the phase-field, depending on the density ̺, and

〈
ϕk+1̺k+1 − ϕk̺k

τk
, ϑ

〉
=

〈
ϕk+1̺k+1u(tk+1), ∇ϑ

〉
−
〈
Mϕk+1∇µk+1, ∇ϑ

〉

〈
ϕk+1µk+1, ϑ

〉
=

〈
(1 + r)ϕk+1̺k+1 + 2ϕk+1νk+1, ϑ

〉
−
〈
ϕk+1∇νk+1, ∇ϑ

〉

+
〈
3ϕk+1̺k+1(̺k)2 − 2ϕk+1(̺k)3 + U(tk+1), ϑ

〉

〈
ϕk+1νk+1, ϑ

〉
=

〈
ϕk+1∇̺k+1, ∇ϑ

〉

(3.34)

for all ϑ ∈ V , subject to initial condition

〈
ϕ0, ϑ

〉
= 〈ϕǫ, ϑ〉

〈
̺0, ϑ

〉
= 〈̺0, ϑ〉 ∀ϑ ∈ W .

(3.35)

The variational form of the equations conserves the quantity ̺ over time as it is constructed, because

we obtain the conservation relation

∫

Ω

ϕk+1̺k+1 − ϕk̺k

τk
dx = 0 ⇒

∫

Ω1(tk+1)

̺k+1 dx =

∫

Ω1(tk)

̺k dx

by using a test function ϑ ≡ 1 and testing the first equation in (3.34). Now let Ω be a bounded,

open and connected domain in Rd, with Lipschitz continuous boundary ∂Ω, that can be described

by a polygonal chain and Th be a conforming triangulation of Ω with respect to the grid size h,

equal to the maximal diameter of simplices K ∈ Th. We use the following Finite Element space to

approximate V

V ⊃ Vh := {vh ∈ V : vh|K ∈ Pm for all K ∈ Th,m ≥ 1} (3.36)

consisting of all globally continuous piecewise polynomials of degree m or less. Let Πh : V → Vh be

a projection operator that satisfies

‖Πhv‖ ≤ C‖v‖

‖v −Πhv‖ ≤ C inf
vh∈Vh

‖v − vh‖
(3.37)

for all v ∈ V , with constants C independent of v and h. That means Πhv is quasi-optimal with

respect to the best approximation in Vh. We can rewrite the problem P5 with discretization in

space:
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Problem 6. Let Ω ⊂ Rd, M > 0 and ϕǫ be described by (3.2) for ǫ > 0 sufficiently small, r > −1.

Find ϕk+1
h ∈ Vh, ̺

k+1
h ∈ Vh, µ

k+1
h ∈ Vh and νk+1

h ∈ Vh for k = 0, . . . , N − 1, such that

ϕk+1
h = f(ϕk

h, ̺
k
h)

where f describes the evolution of the phase-field, depending on the density ̺, and

〈
ϕk+1
h ̺k+1

h − ϕk
h̺

k
h

τk
, ϑh

〉
=

〈
ϕk+1
h ̺k+1

h Πh[ui(tk+1)]i, ∇ϑh
〉
−
〈
Mϕk+1

h ∇µk+1
h , ∇ϑh

〉

〈
ϕk+1
h µk+1

h , ϑh
〉
=

〈
(1 + r)ϕk+1

h ̺k+1
h + 2ϕk+1

h νk+1
h , ϑh

〉
−
〈
ϕk+1
h ∇νk+1

h , ∇ϑh
〉

+
〈
3ϕk+1

h ̺k+1
h (̺kh)

2 − 2ϕk+1
h (̺kh)

3 +ΠhU(tk+1), ϑh
〉

〈
ϕk+1
h νk+1

h , ϑh
〉
=

〈
ϕk+1
h ∇̺k+1

h , ∇ϑh
〉

(3.38)

for all ϑh ∈ Vh, subject to initial condition

〈
ϕ0
h, ϑh

〉
= 〈Πhϕǫ, ϑh〉

〈
̺0h, ϑh

〉
= 〈Πh̺0, ϑh〉 ∀ϑh ∈ Vh .

(3.39)

This leads to a system of linear equations by expressing vh ∈ Vh by a linear combination of basis

functions of Vh:

vh(x) =

dim(Vh)∑

i=1

viφi(x)

with coefficients vi. Choosing {φi} as nodal basis in Vh, i.e. φi(xj) = δij , with δij denotes the Kro-

necker symbol and xj the grid points of the triangulation Th, this leads to vh(xj) = vj . Expressing

all variables of problem P6 with respect to the basis {φi}

ϕk
h(x) =

dim(Vh)∑

i=1

ϕk
i φi(x), ϕk := (ϕk

i )i ̺kh(x) =

dim(Vh)∑

i=1

̺ki φi(x), ̺k := (̺ki )i

µk
h(x) =

dim(Vh)∑

i=1

µk
i φi(x), νk := (µk

i )i νkh(x) =

dim(Vh)∑

i=1

νki φi(x), νk := (νki )i
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and defining Uh := ΠhU , uh := Πhu, we arrive at the linear system

1

τ
M̺k+1 +MLµk+1 −Tu̺

k+1 =
1

τ
M′̺k

Mµk+1 − (1 + r)M̺k+1 − 2Mνk+1 + Lνk+1 − Fi̺
k+1 = Fe +U

Mνk+1 + L̺k+1 = 0

(3.40)

with sub-matrices that represent the individual (differential-) operators

M := 〈ϕk+1
h φi, φj〉ij M′ := 〈ϕk

hφi, φj〉ij

L := 〈ϕk+1
h ∇φi,∇φj〉ij Tu := 〈ϕk+1

h uh(tk+1)φi,∇φj〉ij

Fi := 〈3ϕk+1
h (̺kh)

2φi, φj〉ij Fe := 〈−2ϕk+1
h (̺kh)

3, φj〉j U := 〈Uh(tk+1), φj〉j .

The resulting system (3.40) can be solved iteratively by using Krylov subspace methods like BiCGStab(l)2,

or, as it was done for the two-dimensional case, by using a direct solver, e.g. UMFPACK3.

3.6.2 Rosenbrock method

As well as the semi-implicit time-discretization method, the Rosenbrock version can be discretized

in space, using Finite Elements, too. Therefore the system operator F (3.29) will be written in a

weak form. The new operators arise from integration of the vector components of F , multiplied with

a test function ϑ ∈ V , over Ω and partial integration, including the boundary conditions. For the

PFC equations we get

F̃ [x, t, Y ;ϑ] :=




〈ν, ϑ〉+ 〈∇̺, ∇ϑ〉

−〈M∇µ, ∇ϑ〉+ 〈u(x, t)̺, ∇ϑ〉

〈µ− (1 + r)̺− 2ν − U(x, t), ϑ〉+ 〈∇ν, ∇ϑ〉 − 〈̺3, ϑ〉




.

2A description can be found in [SF93].
3This method is based on [Dav04].
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Also the derivatives of F can be written in such a form:

F̃Y [x, t, Y,X ;ϑ] =




〈n, ϑ〉+ 〈∇r, ∇ϑ〉

〈−M∇m, ∇ϑ〉+ 〈u(x, t)r, ∇ϑ〉

〈m− (1 + r)r − 2n− 3̺2r, ϑ〉+ 〈∇n, ∇ϑ〉




F̃t[x, t, Y ;ϑ] =




0

〈∂tu(x, t)̺, ∇ϑ〉

−〈∂tU(x, t), ϑ〉




.

If we take the discrete subspace Vh ⊂ V similar to (3.36), the Rosenbrock method can be written in

a spatial discrete variational form

〈
1

τγ
HXk

i , ϑh

〉
− F̃Y [tk, Y

k, Xk
i ;ϑh] = F̃

[
tk + αiτ, Y

k +
∑i−1

j=1aijX
k
j ;ϑh

]
+

〈
H

i−1∑

j=1

cij
τ
Xk

j , ϑh

〉

+ τγiF̃t[tk, Y
k;ϑh] ∀ϑh ∈ Vh, i = 1, . . . , s

Y k+1 = Y k +

s∑

i=1

miX
k
i .

(3.41)

Again this results in a sequence of linear systems, when using the basis representation of the un-

knowns ̺, µ and ν as linear combinations of elements of a basis of Vh. The system matrices do not

change during the stage iterations, so that a factorization technique for the matrix is appropriate.

After the first stage all other stages can be solved with low computational effort.

For the expansion ̺0(x) =
∑dim(Vh)

i=1 ̺0,iφi(x) with respect to a basis {φi} of Vh the coefficient

vector is called ̺0 := (̺0,i)i. The Rosenbrock method to the initial value ̺0 = ̺0 can be written in

a stepwise solution procedure, as can be found in Algorithm 1. We use the notations

T′
u(t) := 〈ϕk

h(∂tu)h(t)φi,∇φj〉ij U′(t) := 〈ϕk
h(∂tU)h(t), φj〉j

F′
i := 〈3ϕk+1

h (̺kh)
2φi, φj〉ij F′

e[̺ = (̺i)i] :=
〈
ϕk
h

(∑dim(Vh)
i=1 ̺iφi

)3
, φj

〉
j

with

(∂tu)h := Πh(∂tu), (∂tU)h := Πh(∂tU) .
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Algorithm 1 Rosenbrock method

Set initial value ̺0 = ̺0.
Find initial values for µ0 and ν0, i.e. solve an initial problem for fixed ̺0.
for k = 0, . . . , N − 1 do

for i = 1, . . . , s do

Stage iteration: Find (nki , r
k
i ,m

k
i ) subject to




−M −L 0
0 1

τM−Tu ML

2M− L (1 + r)M + F′
i −M








nki
rki
mk

i



 =




0∑i−1
j=1

cij
τ Mrkj

−F′
e[̺

k +
∑i−1

j=1 aijr
k
j ]−U(tk + αiτ)




+




M L 0
0 Tu(tk + αiτ) −ML

−2M+ L −(1 + r)M M








νk +
∑i−1

j=1 aijn
k
j

̺k +
∑i−1

j=1 aijr
k
j

µk +
∑i−1

j=1 aijm
k
j


+




0
τγiT

′
u(tk)

−τγiU′(tk)





(3.42)

end for

Calculate new solution (νk+1,̺k+1,µk+1), by

νk+1 = νk +

s∑

j=1

mjn
k
j , ̺k+1 = ̺k +

s∑

j=1

mjr
k
j , µk+1 = µk +

s∑

j=1

mjm
k
j (3.43)

end for

3.6.3 Space-discretization of Navier-Stokes equations

The Navier-Stokes equations can be solved by discretization in space using Finite Elements like any

other second order PDE. As well as in the case of PFC we can write the equations in a weak form

by multiplication with test functions and integration over the domain Ω. By taking subsets of the

space of test functions with discrete base we arrive at a Finite Element formulation of the problem:

For k = 0, . . . , N find velocity uk+1
h = (uk+1

h,i )i ∈ (Vh)
d ⊂ H1(Ω)d with uk+1

h

∣∣
Γ1

= hh(tk+1) and

pressure pk+1
h ∈ Ph ⊂ L̇2(Ω) = {p ∈ L2(Ω) :

∫
Ω
p dx = 0} such that

〈
ϕk+1
h uk+1

h,j − ϕk
hu

k
h,j

τk
, ϑh

〉
= −

〈
ϕk+1
h uk

h · ∇uk+1
h,j , ϑh

〉
+
〈
η ϕk+1

h ∇uk+1
h,j ,∇ϑh

〉

−
〈
ϕk+1
h pk+1

h , ∂jϑh
〉
−
〈
∂j(ϕ

k+1
h )pk+1

h , ϑh
〉

−
〈
β

ε3
(1 − ϕk+1

h )(uk+1
h,j − gh,j(tk+1)), ϑh

〉
j = 1, . . . , d

〈
ϕk+1∇ · uk+1

h , θh
〉
=

〈
∇ϕk+1 · (gh(tk+1)− uk+1

h ), θh
〉

(3.44)

for every ϑ ∈ Vh with ϑh
∣∣
Γ1

= 0 and θh ∈ Ph, subject to initial conditions u0
h = Πhu0. The discrete

boundary functions are defined by gh,j = Πhḡj, with gh = (gh,j)j .
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For reasons of stability the selection of an appropriate Finite Element subspace is not arbitrary.

It has to fulfill the Ladyschenskaja-Babuska-Brezzi condition (LBB-condition)

inf
06=ph∈Ph

{
sup

06=ϑh∈Vh

{ 〈ph,∇ · ϑh〉
‖ph‖‖∇ϑh‖

}}
≥ β > 0

a sufficient condition for stability of mixed Finite Element problems with saddle-point structure. One

special choice is a triangular element, introduced by Hood and Taylor, with quadratic polynomials

for velocity and linear pressure (P2/P1-element).

Projection method

A projection method based on the ideas of Chorin (SIMPLE or SIMPLE-R, to be more precise) is

now introduced since the direct solution of the problem (3.44) still seems very difficult. The idea is

to make a prediction step without any pressure term and without conservation of mass at first, then

a pressure calculation is done and at the end a projection into the space of divergence-free velocities

is performed. The pressure variable looses its meaning during these steps. In Algorithm 2 these

steps are performed and in the Appendix C this algorithm is derived in more detail.

Algorithm 2 SIMPLE-R

for b = 0, 1 do

1.) prediction step (”Burgers equation”): Find ū ∈ (Vh)
d, with ū

∣∣
Γ1

= h s.t. for j = 1, . . . , d

〈
ϕk+1
h ūj − ϕk

hu
k
h,j

τk
, ϑh

〉
= −

〈
ϕk+1
h uk

h · ∇ūj , ϑh
〉
+
〈
η ϕk+1

h ∇ūj ,∇ϑh
〉

− b

( 〈
ϕk+1
h pk+1

h , ∂jϑh
〉
+
〈
∂j(ϕ

k+1
h )pk+1

h , ϑh
〉 )

−
〈
β

ε3
(1 − ϕk+1

h )(ūj − ḡh,j(tk+1)), ϑh

〉
(3.45)

for all ϑh ∈ Vh, subject to ϑh
∣∣
Γ1

= 0.

2.) pressure Poisson problem: Find pb ∈ Wh ⊂ Ḣ1(Ω) = {p ∈ H1(Ω) :
∫
Ω p dx = 0}, s.t.

−τk
〈
ϕk+1
h ∇pb,∇θ

〉
=

〈
∇ϕk+1

h · (ū− gh(tk+1)), θh
〉
+
〈
ϕk+1
h ∇ · ū, θh

〉
(3.46)

for all θh ∈Wh

end for

3.) projection step ū 7→ uk+1 : ∇ · uk+1 = 0 in Ω1:

uk+1
h = ū− τ ∇p1 (3.47)
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Chapter 4

Simulations

In order to solve the problem P6 for semi-implicit time discretization, or to process the Algorithm 1

we use the Finite Element toolbox AMDiS1. This toolbox provides functions for mesh refinement and

coarsening, depending on local error estimates or predefined requirements on the mesh structure near

obstacles, boundaries or regions of interest. The assemblage of the linear systems, using Lagrangian

Finite Elements of polynomial degree ≤ 4, can be performed and the linear systems can be solved

with various internal or external solvers. Iterative methods like BiCGStab(l)2 are found to produce

good results in admissible time for non-symmetric systems. The external tool UMFPACK [Dav04],

a method for sparse LU factorization using pre-ordering and pivoting strategies to preserve fill-in

upper bounds, can be used as direct solver. In two-dimensional simulations this solver is preferred

compared to iterative methods. It needs less time to solve the linear systems, but matrices from

the three-dimensional case produce a much higher fill-in that slows down the factorization process

of the direct solvers rapidly.

Simulations were performed on Quad-Core computer with 1.8 Ghz per core and 4 Gb memory

(called Q18), on a Quad-core with 4 times 3.2 Ghz CPU clock rate and 8 Gb memory (called Q32)

and on the PC-farm Deimos3 at TU-Dresden with 2.6 Ghz per core and maximum 2 Gb RAM each

process (called Deimos). Most of the simulations were done sequentially but tests with distributed

domains and parallel assembling were performed, as well.

1Adaptive Multi-Dimensional Simulation Toolbox [VV07]
2An improvement of stabilized bi-conjugate gradient method, [SF93]
32576 cores AMD Opteron 2.6 Ghz, 5.4 TB memory, 724 nodes with 1,2, or 4 Opteron dual-core CPUs each up to

32 Gb main memory, 68 TB SAN disk storage, 13.9 TFlops/s peak performance: [Dei]
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4.1 Validation

In the literature the problem of non-equilibrium Soft Matter systems - polymer solutions - and that

of of driven steady states is not analyzed much and, if at all, then often using molecular or Brownian

dynamic simulations, see e.g. [GKK+08, HZWH08]. Recently some simulations were published

[PDT03, PRDK07, DLL03], that make use of diffusion equations for non-interacting particles and

dynamic density functional theory for interacting particles. Spherical obstacles are included in the

polymeric solution.

Figure 4.1: polymer density around a colloidal particle. Left: Brownian dynamics simulation from
[HZWH08], average over 2000 snapshots, lighter colors indicate higher densities. Center: phase-field crystal
simulation with R∗ = 0.6, c∗ = 0.8 for the parameters r = −0.1, ¯̺ = −0.3, right: advection-diffusion simula-
tion with R∗ = 0.6, c∗ = 1.0 for parameter ¯̺ = −0.3. Red indicates high density whereas blue indicates low
density.

In figure 4.1 a result from Brownian dynamics simulation is compared to a solution of the PFC

problem P2 and to diffusion problem P1. The characteristic first density wave can be seen in each one

of the pictures above. Brownian dynamics indicate more than one such wave, but the second one is

less intensive, than the first one. Simple advection-diffusion does not produce further waves, though

the Phase-Field Crystal simulation does. This implies that a simulation of interacting particles using

the Phase-Field Crystal model reproduces more effects (properties) in the quality of the polymer

solution than a diffusion model does. Figure 4.2 shows a comparison of the plot over the x-axis.

There one can see the decay of density waves in the BD simulation as well as in the PFC simulation.

The authors of [PRDK07] analyze the dependency of density to radius of the colloid (R∗ :=

Rp/Rc), as well as density to Peclet number of the fluid (in my simulations defined as c∗ := cRpr/ ¯̺,

where c is the velocity of the fluid and r the temperature parameter of the PFC model). However,

this is only done for ideal polymers, i.e. the non-interacting situation. We have studied the same

relations for non- and interacting polymer particles. Peclet number dependency for ideal solutions

can be found in figure 4.3 and the same dependency for interacting particles - Phase-Field Crystal

simulations - is visualized in figure 4.4. We have plotted the density profile over the x-axis, since
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Figure 4.2: Plot over the x-axis. Left: Brownian dynamics simulation [GKK+08], right: Phase-Field
Crystal simulation. Parameter as above. Scaling of domain and density are different in both simulations.

the fluid flows through a channel in x direction. At the inflow boundary a parabolic velocity profile

is set with maximal velocity at the x-axis with norm depending of the Peclet number. The radius

of the obstacle is fixed at R∗ = 0.6, thus the colloid is bigger than the polymer coils.
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Figure 4.3: Density-profile of solution with non-interacting particles for different Peclet numbers of the
fluid, at fixed radius R∗ = 0.6 of the obstacle.

The other relation of density to radius is plotted in figure 4.5, where we fixed the Peclet number

at c∗ = 0.6. For radii bigger than the polymer coil radius, i.e. R∗ > 0.5, the density shows an

additional wave behind the obstacle, whereas for smaller radii one can not see such an effect. The

above simulations where performed on the Q32 computer. Since the lattice constant is fixed in the

PFC model, we scaled the domain. For simulations with one spherical obstacle, like above, a domain
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Figure 4.4: Density-profile of solution with interacting particles for different Peclet number of the fluid, at
fixed radius R∗ = 0.6 of the obstacle.

of size 120×80 was set up. Far away from the colloid - the inner boundary Γ1 - a grid size of a/5 was

used. For a = 2π/
√
3 this gives approximately h = 0.72. Near the interface the grid size must solve

the phase-transition area, that means h < ǫ/5 ≈ 0.06, for ǫ := 0.3. In an area between the interface

and a region ”far” away from it, we linearly interpolate between both grid size. Thus a number of

discretization points of about 80565 and a number of triangular elements of 160488 is obtained. It

turns out, that a discretization of polymeric particles with 10 grid points in each dimension, that is

used in [BRV07] upon others, is not sufficient to solve the first maxima near the obstacle. This first

peak is much steeper than the density waves in colloidal crystals, that are analyzed in their paper.

For more obstacles the domain size must be increased so that density waves around colloids near

the boundary of the domain can decay down to nearly constant density. In figure 4.6 the domain is

scaled up to include 5 obstacles. The number of degrees of freedom is now on the limit that can be

solved with a simple personal computer on one core. For bigger systems parallelization strategies,

like domain decomposition or matrix distribution are necessary.
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Figure 4.5: Density-profile of solution with interacting particles for different radii of the obstacle at constant
Peclet number c∗ = 0.6 of the fluid.

4.1.1 Validation of mathematical properties

The Phase-Field Crystal equations are an evolutionary system that minimizes the appropriate energy

functional. Minimization is done via a gradient descent method. So a crucial property of the

simulations is that the energy decreases over time. In figure 4.7 the energy-curve of a stationary

system is plotted, i.e. the transport velocity is zero. One can see that at the end decreasing slows

down very much and one has to take larger time steps to decrease the energy slightly in reasonable

time.

The second mathematical property that can be analyzed easily is the conservation of density (see

section 2.1.4). Due to numerical errors and the phase-field approximation we expect the density not

conserve absolutely, but with small deviation. In figure 4.8 the density deviation from initial density

is plotted for a system of particles in a flow field. The global deviation is of order 10−4 and linear

increasing is due to constant local deviations. For a system without flow field the deviation from

initial density is very small, of order 10−7.
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Figure 4.6: Five obstacles in flow field - Peclet number c∗ = 0.2, density profile of polymer solution plotted.
Around the spherical obstacles circles with radius Rp are plotted that indicate the area of repulsion. The
simulation are performed with a grid of 374069 points and 746901 elements.
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Figure 4.7: Energy evolution of system for c∗ = 0 and different radii R∗.

4.2 Modification of the model

As can be seen in figure 4.9 the density near the obstacle decrease deeply down to values less than

−0.9. This value, that is the minimum in all plots above, is a physical boundary on the density.

Since in the modeling of the PFC equations, the density is shifted and scaled, this value is negative.

Physical densities are greater than zeros. By performing the shifting and scaling on the boundary of

the original variable ρ one obtains the formula ̺min = 3¯̺ = −0.9 for ¯̺ = −0.3. In the modeling we

approximate the original evolution equation for the one-particle density (2.5) by an evolution with

constant mobility, that was one assumption to obtain the standard-form of the PFC equations. With

a mobility depending on the density, i.e. low mobility when density is low, the effect of unnatural
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Figure 4.8: Deviation of the density from the initial value: 1 − (
∫
Ω1

̺dx)/(
∫
Ω1

̺0 dx), left: R∗ = 0.7,

c∗ = 0.3, right: R∗ = 0.7, c∗ = 0

negative densities is avoided.

To modify the standard PFC model to guarantee physical densities (scaled and shifted), different

ideas can be implemented: non-constant mobility in the standard PFC model or a penalty term in

the energy minimization.

4.2.1 Non-constant mobility

The assumption of constant mobility enforces an approximation of the ideal solution part in the

energy by a Taylor expansion around a reference density. Since this approximation also leads to

comparable solutions of the diffusion part, one can perform the approximation if the mobility is

not constant, as well. All other approximations and transformations are similar to the modeling of

the standard equations. We obtain the PFC1-model introduced in [vTBVL09] but approximate the

ideal solution term:

∂t̺+∇ ·
(
̺u

)
= ∇ · (M(̺)∇µ)

µ = (1 + r)̺ + ̺3 + 2ν +∆ν + U

ν = ∆̺

(4.1)

whereM(̺) = 1
2

(
1−̺/ ¯̺

)
ρ̄+ρ̄. This non-constant mobility function leads to a different Jacobian that

must be used in the Rosenbrock method. For a system function F similar to (3.29), but including

the mobility depending on the density, the Jacobian matrix can be written as:

FY [x, t, Y,X ] =




n−∆r

∇ · (rM ′(̺)∇µ) +∇ · (M(̺)∇m) +∇ · (u(x, t)r)

m− (1 + r)r − 2n−∆n− 3̺2r
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with X = (n, r,m), Y = (ν, ̺, µ) and M ′(̺) = −ρ̄/(2¯̺). In the semi-implicit time-discretization one

can take the mobility function explicit and the other terms like in (3.27). Ignoring the phase-field

approximation, one can write the time-discrete system as

̺k+1 − ̺k

τk
= ∇ ·

{
M(̺k)∇µk+1

}
+∇ ·

(
u(tk+1)̺

k+1
)

µk+1 = (1 + r)̺k+1 + 2νk+1 +∆νk+1 + 3̺k+1(̺k)2 − 2(̺k)3 + U(tk+1)

νk+1 = ∆̺k+1 .

(4.2)

Phase-Field Crystal equations with non-constant mobility can be seen as a gradient flow subject to

a scalar-product with mobility, like (1.3). For the PFC energy F in (2.19) this gradient flow reads

∂t̺ = −C gradH−1,M(̺) F [̺]

where C is a constant depending on the scaling of the energy. For M(̺0) > 0 this gradient flow

is a descent method. The densities ̺ which approach the lower boundary are slowed down to

almost no movement and stay there. Numerically this is more tricky since the evolution of one

time step can violate the property M(̺) > 0. This has to be taken into account, e.g. by M(̺) :=

max{10−8, 12
(
1− ̺/ ¯̺

)
ρ̄+ ρ̄}, and we expect the density to be bounded by the analytic lower bound

only approximately.

4.2.2 Penalization of low densities

The PFC equations can be seen as a minimization evolution for the functional F in (2.19), using a

gradient flow approach (and additional transportation by a flow field). The idea of penalization is

to include an additional constrained to the problem of energy minimization, namely

̺ ≥ ̺min in Ω1 .

Different methods to penalize the violation of such a constrained are known. We use a barrier

function, that forces the density to be strictly greater than the lower bound. A logarithmic barrier

function subject to the constrained above reads

bη(̺) :=





−η log(̺− ̺min) for ̺ > ̺min

∞ otherwise
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with η a small parameter that can be decreased asymptotically to zero. The modified energy

functional, including the barrier function, is given by

F [̺] =

∫

Ω1

1

2
̺
(
r + (1 +∆)2

)
̺+

1

4
̺4 + ̺U + bη(̺) dx

with the variational derivative

δ̺F [̺] = (r + (1 +∆)2)̺+ ̺3 + U + b′η(̺)

where the derivative of the barrier function reads

b′η(̺) =






−η
̺−̺min

for ̺ > ̺min

∞ otherwise
.

In the Jacobian matrix of the Rosenbrock method the second derivative of b must be included in

the component of the chemical potential µ:

b′′η(̺) =






η
(̺−̺min)2

for ̺ > ̺min

∞ otherwise
.

Semi-implicit time-discretization takes this penalization explicitly or uses a linearization around the

old time step:

−η
̺k+1 − ̺min

≈ η
̺k+1

(̺k − ̺min)2
− η

2̺k − ̺min

(̺k − ̺min)2

The case of ∞ is handled numerically by high penalization around 106 − 1010. We arrive at a

semi-implicit scheme

̺k+1 − ̺k

τk
= ∆µk+1 +∇ ·

(
u(tk+1)̺

k+1
)

µk+1 = (1 + r)̺k+1 + 2νk+1 +∆νk+1 + 3̺k+1(̺k)2 − 2(̺k)3 + U(tk+1)

+ η
̺k+1

max{(̺k − ̺min)2, 10−8} − η
2̺k − ̺min

max{(̺k − ̺min)2, 10−8}

νk+1 = ∆̺k+1 .

(4.3)

Penalty-methods are known to produce bad conditioned linear systems. The iterative solvers need

more iterations to solve the linear system than without the penalty term.
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In figure 4.9 a comparison of both modifications to the original model is visualized. The modified

models produce different density profiles and maxima. Since the non-constant mobility method

relies on the more physical PFC1-model and uses fewer approximations than the standard model

(with(out) constraints), we would prefer this modification upon the other.
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Figure 4.9: Simulation with three different models for R∗ = 0.7, c∗ = 0.5: non-constant mobility, ̺-
constrained and without both modifications. As can be seen, some modification is necessary to enforce
density ' −0.9. In the standard-model the density falls far below the lower bound, mobility depending on
the density overcome this problem, but is slightly below −0.9 due to numerical reasons. The ̺-constrained
approaches the lower bound but never crosses it (in the domain outside the colloid). The maxima and
density profiles look quite different and it is not clear which modification is the best.

4.3 Depletion forces

r0 r1
b b

ξ

Figure 4.11: System of two colloidal par-
ticles with gap of width ξ. The third
smaller particle indicates the size of a poly-
mer coil.

Properties of colloid dispersion can be tuned and modified

by adding polymer particles to the solvent. One way of

changing the interaction between colloidal particles is by

adsorption. Coating the surface of the particles with a

polymer layer leads to steric repulsion. Another way of

tuning the interaction is by depletion interaction.

Non-adsorbing polymer particles, or other non-

adsorbing Brownian particles, are depleted in a zone

around the colloidal surface, due to a repulsive colloid-polymer interaction Ui. If the two deple-

tion zones overlap, i.e. two colloidal particles are positioned close to each other, a free energy gain
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Figure 4.10: Comparison of time step widths obtained by Rosenbrock time step control for the PFC
model with constant mobility, non-constant mobility modification and time step pre-selection used for semi-
implicit time-discretization, where the increase of time step is set by numerical experiment. All Rosenbrock
simulations were performed with the same time tolerance 10−4, for R∗ = 0.7, c∗ = 0.5. The scaling of
time step width in the non-constant mobility case is much worth than with constant mobility. Additional
techniques, e.g. combination of fixed time steps and automatic scaling, are necessary for an efficient method.

of the polymers relative to the situation with separated colloids results in an effective attraction be-

tween the particles. The region of depletion is of order a, the width of the colloid-polymer interaction

region. A system of two colloidal particles is visualized schematically in figure 4.11.

For positions ri, i = 0, 1 of the colloids, the width of the gap ξ between the particles is defined

by

ξ = ‖r1 − r0‖ − 2Rh .

The effective force between (soft interacting) colloids can be found as the integral expression for

each colloid i, as

Feff,i := −
∫

Ω1

ρ∇V1,i dx = −kBT ρ̄
144¯̺3

∫

Ω1

(
3− ̺

¯̺

)
∇Ui dx =

kBT ρ̄

144¯̺4

∫

Ω1

̺∇Ui dx

since Ui

∣∣
Γ1

≈ 0. The derivation can be found in [GED97] (equations 2.4 and A4). For the special

case of hard spherical particles, the gradient of the external potential is not defined in the classical

sense any more. In the limit one gets the formula

FHS
eff,i := kBT

∫

Si

ρn̂i ds =
kBT ρ̄

2

∫

Si

(
3− ̺

¯̺

)
n̂i ds
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where Si describes the surface of a sphere with radius Rp and center ri and n̂i the unit normal vector

pointing outwards from this sphere. In a model where we assume hard core interactions between

the colloids and between colloids and polymers and non-interacting spherical polymers, the effective

interaction can be described by the Asakura-Oosawa model and is proportional to the overlapping

volume of the depletion zones. The resulting force is attractive for ξ < 2a and repulsive otherwise.

The effective forces correspond to the so-called depletion forces in the equilibrium case, in absence

of a flow field. The authors of [DLL03] study the non-equilibrium case by subtracting the drift forces

induced by a flow field on a single colloid from the effective forces. The drift force can be calculated

by the same formula as above, but with only one colloid present in the system (see figure 4.14 for a

relation of Peclet number to drift force). As a result the depletion forces simplify to

Fdepl,i := Feff,i(̺)− Feff,i(̺
[1]) =

kBT ρ̄

144¯̺4

∫

Ω1

(̺− ̺[1])∇Ui dx

where ̺[1] is the density field, obtained by considering only one colloid. In a similar way the formula

for the hard sphere depletion force can be calculated.

In the article above an idealized case of non-interacting polymers was studied and density for a

system with two colloidal particles is calculated by a dynamical superposition approximation:

ρ(x) ≈ ρ[1](x− r0)ρ
[1](x− r1)/ρ̄

Figure 4.12: System of two colloidal par-
ticles in a flow field with direction from left
to right.

This principle of superposition is applicable for the

equilibrium case in absence of a flow field and used as

an approximation for the dynamical case, as well. It is

not clear whether this superposition works for interacting

bath particles also, obtained by our PFC simulation, so

we simulate a system with two obstacles directly and use

fewer approximations. In the figures 4.13, 4.15 and 4.16

the superposition method is compared to the case of direct

simulations. As can be seen in the plots of the depletion

forces, superposition and simulation results in similar curves but with different scalings. This leads to

qualitative different forces. Additional pass through the zero line, i.e. change in the direction of the

force, is not present in the simulation of depletion forces in equilibrium situation (figure 4.15). The

sum of the forces acting on both colloids separately shows a qualitative difference, too. But, since
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the simulation results do not produce a smooth curve, the values and the second conflict has to be

taken with a pinch of salt. The key conclusion of simulations of depletion forces in non-equilibrium

is the long-ranged structure of the attractive force.

Figure 4.13: Comparison of direct simulation and superposition of simulation with one colloid only, for
parameters R∗ = 0.7, c∗ = 0.3. Left: direct simulation, right: superposition, top and bottom: different
positions of colloidal particles.
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Figure 4.18: Maximal values of the density-field ̺ depending on the Peclet number of the fluid c∗ for
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

We have presented, derived and analyzed the Phase-Field Crystal model to describe interacting

particles in a flowing solvent. The interesting situation of additional obstacles in the domain was

treated by a diffuse domain ansatz and repulsive potentials in the equations. A weak coupling to

Navier-Stokes simulations for the flowing bath where the particles are immersed in and the coupling

to a motion of the obstacles was explained. Numerical solutions of the resulting equations were

obtained by different discretization schemes in time - semi-implicit Euler method and Rosenbrock-

method - and Finite Element discretization in space. Finally simulations were performed to validate

the model and compare results to a few calculations found in the literature.

In conclusion we can say that the Phase-Field Crystal model can describe some phenomena of

particles in flowing solvents in the presents of obstacles. However, the standard form of the PFC

equation can not be used to obtain quantitative results. Because of the external potential, the

density gets unphysical values near the obstacles that influence the complete density profile. The

further the lower the minima at the colloids fall, the higher is the next maxima. So no relations

between maxima, depending on different radii for the obstacles, make sense with the standard model.

The minima can not be controlled without further modifications. These changes in the model were

explained and added to the equations and simulations with more physical minima were performed.

Nevertheless, it remains unclear which model is the best since different modifications produce differ-

ent results. Further comparisons with own dynamic density functional simulations must be done, to

get more rigorous clarification. The mobility modifications lead to bad behavior of the time control
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of the Rosenbrock method. The mobility fluctuates at the beginning of the simulations through-

out the domain. This produces high time step errors or bad error estimates. Further studies and

modifications are necessary to obtain more efficient time stepping control mechanisms.

Diffuse domain approach was applied to both, Phase-Field Crystal equations and Navier-Stokes

equations, to describe the obstacles not part of the domain. This leads to fine meshes around the

colloids and coarse meshes inside the obstacles. The motion of the fluid can be described with this

phase-field approach and boundary conditions for moving obstacles can be included easily. In the

PFC model the colloids are described by a repulsive potential in addition to the cut out of the domain

via phase-field multiplication. So perhaps the diffuse domain extension is not necessary to describe

obstacles in the density field. An alternative to diffuse domain for the Navier-Stokes equation is an

immersed boundary method that seems to be an efficient method for complex (moving) domains. So

an extension of the proposed model could be the coupling of different meshes for Navier-Stokes and

Phase-Field Crystal and different techniques to describe the obstacles. This could possibly lead to

a more efficient solver. Recently an extension to the Finite-Element toolbox AMDiS was published

([VW10]), that implements a multi-mesh method to handle different meshes for different quantities

effectively. Further modifications could be to take different Finite Elements for Navier-Stokes and

Phase-Field Crystal equations, as it has been shown that for the PFC system higher order elements

lead to faster convergence.

Depletion forces were calculated using direct simulation of a flow field around two spherical

obstacles, i.e. colloidal particles, and simulation of interacting Brownian bath particles, i.e. soft

particles as an approximation to polymer coils, by Phase-Field Crystal equations. The results

were compared to a superposition approach, that uses calculation of flow field and density profile

around one obstacle and superposing this result at different distances of the obstacles. We found

qualitative differences to direct simulations in the equilibrium case, i.e. zero solvent velocity, and

assume qualitative differences in the non-equilibrium situation, as well. The last one needs additional

consideration, since the simulation results show errors in the calculation of the forces.

At the moment the simulation of a high number (N ≫ 100) of Brownian particles using the

Phase-Field Crystal method is quite expensive. Using domain-decomposition techniques (for AMDiS

see [VW10]) parallelization in space can lead to higher particle numbers. Parallelization of matrix

assemblage improves the performance not very much. The simulation of colloidal particles in the

polymer solution using diffuse domain methods is also not very efficient and restricted to a very small

number ob colloids. So only considerations of specific behavior, e.g. calculation of forces induced by

polymer particles on the colloids, make sense. The simulation of a system of many colloids mediated
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by Brownian particles need other methods, than the proposed ones.

5.2 Outlook

As it was stated in the physical modeling, different assumptions were necessary to obtain these

simple Phase-Field Crystal equations. Hydrodynamic interactions were neglected completely, for

example. Recently the dynamic density functional theory was extended to include approximations

to the hydrodynamic interactions ([RL08]), that could lead more realistic behavior than no such

influence. To include this derivations in the Phase-Field Crystal approximations, some work has to

be done. Their main idea is to extend the evolution equation (2.8) of density functional theory by

two terms including two hydrodynamic interaction tensors ω11,ω12, that approximate the diffusion

tensor

Dij(~r) ≈ D0

(
Iδij + (1− δij)ω12(ri − rj) + δij

∑

k 6=i

ω11(ri − rk)
)

where D0 denotes the diffusion constant of a single particle. For the Rothne-Prager approximation

we could write

ω11(r) = 0, ω12(r) =
3

8

σ

‖r‖(I+ r⊗ r) +
1

16

(
σ

‖r‖

)3

(I− 3r⊗ r)

with σ the hydrodynamic diameter and ⊗ the dyadic product. The evolution equation for the

one-particle density can then be written as

kBT

D0
∂tρ(r, t) = ∇ ·

(
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)
+ j2 + j3

)
(5.1)

where we have neglected the advection term, with additional fluxes

j2 =

∫
ρ(2)(r, r′, t)ω11(r− r′) · ∇δF [ρ(r, t)]

δρ(r, t)
dr′

≈
∫
ρ(r, t)ρ(r′, t)g(‖r− r′‖, ρ̄)ω11(r − r′) · ∇δF [ρ(r, t)]

δρ(r, t)
dr′

j3 =

∫
ρ(2)(r, r′, t)ω12(r− r′) · ∇δF [ρ(r′, t)]

δρ(r′, t)
dr′

≈
∫
ρ(r, t)ρ(r′, t)g(‖r− r′‖, ρ̄)ω12(r − r′) · ∇δF [ρ(r′, t)]

δρ(r′, t)
dr′ .
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Here g(‖r−r′‖, ρ̄) denotes the pair correlation function for a system with average density ρ̄. Analytic

expressions for g are available in the literature (see the references in [RL08]).

For the extension of Phase-Field Crystal equations to hydrodynamic interactions, we have to

find good approximations to the integral expressions in j2, j3, maybe similar to the approximation

of the direct correlation function c(2) in the original model.

5.3 Anisotropic PFC

Recently extensions to the classical PFC model were proposed in the direction of oriented, ellipsoidal

particles. Phenomenological description, by coordinate-transformation of the derivatives, was done

by Backofen and Voigt et.al., whereas Löwen et.al. [Löw10, WLB10] derived a Phase-Field Crystal

model for liquid crystals from density functional theory for liquid crystals that has been known for

a while. Both ideas are based on the relaxation of an orientation field and couple this with the

PFC energy minimization. For the dynamics of rod-like particles see [Dho98], for example. Liquid

crystals were studied in [PJ95] among many others and a summary can be found in [And06].

5.3.1 Transformed PFC-energy

First results were obtained with the method of Backofen, that is described here. The basic idea is a

coordinate-transform of the Laplacian in direction d with ‖d‖ = 1. A general Laplace-Beltrami op-

erator can be written in the form 1√
g∇· (√g G−1∇·). Consider stretching and rotation as coordinate

transform T := R(d) ◦ S(k), with scaling-matrix S and rotation-matrix R: i.e.

S(k) :=



1 0

0 k


 , R(d) := ‖d‖−1



d1 d0

−d0 d1




the inverse transformation T−1 defines a mapping x 7→ T−1x with image t(x). A metric tensor

defined by this transformation can be obtained

G := (∂itk∂jtk)ij

G−1 =
1

‖d‖2




k2d20 + d21 d0d1(k
2 − 1)

d0d1(k
2 − 1) d20 + k2d21




g := | det(G)| = 1

k2
.

(5.2)
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The anisotropic PFC-energy is made up of the PFC-energy by transformation of ∆ to ∇ · (G−1∇◦):

Fapfc[̺, d] :=

∫

Ω

1

4
̺4 +

1

2
̺[r + (1 +∇ · (G(d)−1∇◦))2]̺+ ̺U dx .

It follows for the variational derivative of Fapfc with respect to ̺:

δ̺Fapfc[̺, d] = ̺3 + (r + 1)̺+ 2∇ ·
(
G(d)−1∇̺

)
+∇ ·

(
G(d)−1∇

(
∇ ·

(
G(d)−1∇̺

)))
+ U

= ̺3 + (r + 1)̺+ 2∆G̺+∆2
G̺+ U with ∆G := ∇ ·

(
G(d)−1∇◦

)
.

(5.3)

5.3.2 Modeling of nematic liquid crystals

Oseen and Frank introduced the following energy-density to describe the orientation of liquid crystals

(e.g. [AG97],[And06],[MZ10]):

fOF (d) :=
1

2
κ1(∇ · d)2 + 1

2
κ2(d× (∇× d))2 +

1

2
κ3(d · (∇× d))2 with ‖d‖ = 1 (5.4)

where κ1, κ2 and κ3 are (positive) material constants for influence of different types of deformations,

that can occur: splay, bend and twist.

For the special case κ1 = κ2 = κ3 =: κ the energy-density fOF reduces to the one constant

approximation, the so-called Harmonic mapping case, that has been studied in great depth in [Alo97,

Shk02, Ura93, AG97].

f (1)

OF
(d) :=

κ

2
‖∇d‖2F =

κ

2
tr
(
∇d · ∇d⊤

)
. (5.5)

This is also known as Dirichlet energy density for the director d. If we want to handle the constraints

of the Oseen-Frank-functional ‖d‖ = 1, we could do this with a penalty-approach. We get an energy

similar to Ginzburg-Landau-functional:

FOF ,ǫ =

∫

Ω

κ

2
‖∇d‖2 + 1

4ǫ2
(‖d‖2 − 1)2 dx, ǫ ∈ R+ .

The L2-gradient flow of this energy is a system of equations with parameter ǫ > 0

∂td = −δdFOF ,ǫ[d] = κ∆d− 1

ǫ2
(‖d‖2 − 1) d . (5.6)

The existence of critical points of FOF ,ǫ on more general Riemannian manifolds with ǫ sufficiently
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small and the convergence FOF ,ǫ
ǫ→0−−−→ FOF =

∫
Ω

κ
2 ‖∇d‖2 dx is shown in [Mes09]. The last equation

(5.6) contains a nonlinear term that will be linearized in order to solve this evolution equation

numerically

1

ǫ2
(‖d‖2 − 1) d ≈ 3

ǫ2
‖dold‖2d− 2

ǫ2
‖dold‖2dold − 1

ǫ2
d . (5.7)

Combination of Fapfc and Ginzburg-Landau energy FOF ,ǫ gives new ”weak” energy of anisotropic

Phase-Field Crystals

Fapfc
ǫ [̺, d] =

∫

Ω

κ

2
‖∇d‖2 + 1

4ǫ2
(‖d‖2 − 1)2 +

1

4
̺4 +

1

2
̺[r + (1 +∆G)

2]̺+ ̺U dx .

Variational derivatives of this energy with respect to ̺ are similar to (5.3), for derivative with respect

to d one gets

δdFapfc
ǫ [̺, d] = −κ∆d+ 1

ǫ2
(
‖d‖2 − 1

)
d− [∇̺ · ([Gdi

](∇̺+∇ν))]i . (5.8)

The derivative of G−1 in direction d is a tensor of grade 3:

∂d(G
−1) =

[
∂di

(G−1)
]
i
=: [Gdi

]i

Gd0 =
k2 − 1

‖d‖4





2d0d21 −d1(d20 − d2
1
)

−d1(d20 − d2
1
) 2d0d21



 ,

Gd1 =
k2 − 1

‖d‖4





−2d20d1 d0(d20 − d21)

d0(d20 − d2
1
) 2d2

0
d1





and multiplied by the vector ∇̺ gives a matrix.

The evolution equation that follows from this variational derivative, using an L2-gradient flow

approach gives the system

∂td = κ∆d− 1

ǫ2
(
‖d‖2 − 1

)
d+ [∇̺ · ([Gdi

(d)](∇̺ +∇ν))]i . (5.9)

A first discretization approach uses semi-implicit Euler method for time-discretization, where the

nonlinear term is treated by the (5.7) and the matrices Gdi
are taken explicitly. We arrive at

dk+1 − dk

τk
= κ∆dk+1 − 3

ǫ2
‖dk‖2dk+1 +

2

ǫ2
‖dk‖2dk + 1

ǫ2
dk+1 +

[
∇̺k ·

(
[Gdi

(dk)](∇̺k +∇νk)
)]

i
.

(5.10)
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Depending on the coupling to the evolution of ̺ in the last term ̺k or νk can be replaced by ̺k+1

or νk+1 accordingly.

5.3.3 Simulation of stretched particles

Some simulations were done using the anisotropic PFC model but the results need further consider-

ation. The first example in figure 5.1 shows a Phase-Field Crystal simulation in a circle Ω1 described

as diffuse domain using boundary conditions to force normal orientation on the boundary ∂Ω1.

Figure 5.1: Snapshots of anisotropic Phase-Field Crystal simulation in solid parameter regime for different
scaling factors k. Left: k = 1, center: k = 1.5, right: k = 2.

Performing similar simulations in a liquid parameter regime, this time the domain Ω1 is similar

to the one in figure 3.1, gives different behavior for normal and tangential oriented particles at the

boundary. Snapshots of the density profile can be seen in figure 5.2 and a comparison using different

scaling factors k of plots of the x-axis is shown in figure 5.3.

Flowing liquid crystal particles can be modeled by liquid crystal flows (e.g. [LSY07]) by including

a transport term in the evolution equation (5.9):

∂td+ u · ∇d = κ∆d− 1

ǫ2
(
‖d‖2 − 1

)
d+ [∇̺ · ([Gdi

](∇̺+∇ν))]i . (5.11)

First results for a flow around a spherical obstacle can be seen in figure 5.4.

The extension of the Phase-Field Crystal model to stretched particles is very new. Various

interesting questions arise, for example dependency of orientation, stretching factor to depletion

forces between obstacles, defect dynamic in the liquid crystal field depending on Phase-Field Crystal

particle interactions and obstacles. A more rigorous modeling of rigid particles was done by [Löw10]

recently and includes an additional order parameter. Since modeling of liquid crystals without

coupling to Phase-Field Crystal equations is yet a difficult and complex problem, this coupling
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Figure 5.2: Simulation of liquid crystal particles with normal (left) or tangential (right) orientation on the
boundary of the colloid. Top: liquid parameter regime, bottom: solid parameter regime.

-1

-0.5

0

0.5

1

-40 -30 -20 -10 0 10 20 30 40

d
en
si
ty
̺

x-axis

orientation normal to obstacle

pfc
apfc k=1.5
apfc k=2.0
apfc k=2.5

Figure 5.3: Comparison between isotropic and anisotropic PFC solution for different stretching parameters
k, with normal director-field.

needs to be done very carefully and many questions concerning boundary conditions near obstacles,

influence of attractive or repulsive potentials for the obstacles to the orientation of the liquid crystals,

has to be answered. So it remains open for further research.
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Figure 5.4: Simulation of liquid crystal particles flowing around spherical obstacle. Defects in the director
field are highlighted.
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Appendix A

Solution Theory

For existence and uniqueness of solutions of evolutionary equations a wide range of theories is

available in literature. One class of equations, called linear material laws , is analyzed by Rainer

Picard in [Pic10, Pic09] recently and his solution theory is quoted here for the analysis of a diffusion

advection equation.

Definition A.0.1. A Hilbert space, called weighted L2-space and denoted by Hν,0, is defined as the

completion of C∞
0 (R) with respect to the inner product

(f, g)ν,0 :=

∫

R

f(t)∗g(t)e−2νt dt

where t 7→ e−2νt is called exponential weight function of the space, and ∗ denoted the conjugated

complex. The associated norm will be denoted by ‖ · ‖ν,0.

Theorem A.0.1. (Solution theory)

Let H be a complex Hilbert space, (M(z))z∈BC(r,r) be a holomorphic family of uniformly bounded

linear operators on H, ν ≥ 1
2r , satisfying the condition

∃c ∈ R : ∀z ∈ BC(r, r) :
1

2

(
z−1M(z) + (z∗)−1M(z)∗

)
> c > 0 (A.1)

and A be skew-self-adjoint in H, then we have for every f ∈ Hν,0 ⊗H a unique solution (U, V ) ∈

(Hν,0 ⊗H)2 of the problem

(∂tM(∂−1
t ) +A)U = f, V =M(∂−1

t )U (A.2)
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Moreover, the solution depends continuously on the data in Hν,0 ⊗H.

Proof. see [Pic10]

Now consider the evolutionary problem P1 of the advection diffusion system. We can show

existence and uniqueness properties and the relation to initial and boundary data. Similar results

can be obtained using other theorems and techniques, too.

Example A.0.1. Let (0,∇U0) be in the tensor-product space Hν,0 ⊗ H , then Problem P1 has a

unique solution ρ ∈ Hν,0 ⊗H and the solution depends continuously on the data in Hν,0 ⊗H where

ν > 0 depends on u and D.

Proof. The proof based on Theorem A.0.1. Therefore we rewrite the equation into the standard

form of the material laws and see that the requirements of the theorem are fulfilled. The equation

now reads

(∂tM(∂−1
t ) +A)X = f, with X = (ρ, j)⊤

where M(z) =M0 + zM1 with

M0 =



1 0

0 0


 , M1 = D−1




0 0

−u 1


 , A =




0 ∇·
◦
∇ 0


 , f =




0

−∇U0


 .

We are in the (P)-Degenerate case as M0 is self-adjoint and M0 > 0. On the range M0[H ] it holds

M0 > 1 > 0 and we see thatM1 is positive definite on the null space N [M0] since D
−1 > 0. SoM(z)

is (holomorphic), uniformly bounded and ∃c, r > 0 s.t. Re
(
z−1M(z)

)
> c > 0 for all z ∈ BC(r, r)

(see [Pic09] for derivation of the last implication and explanation of the (P)-Degenerate case).

The operator-matrix A is skew-self-adjoint, because the operator
◦
∇ is the gradient including

homogeneous Dirichlet boundary conditions.

All requirements are fulfilled and for ν ≥ 1
2r the theorem A.0.1 of Picard states the existence

and continuous dependence on the data in Hν,0 ⊗H what completes the proof.
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Appendix B

Stability analysis

B.1 Energy-stability

In [WWL09] an energy-stable time-discretization scheme for the standard PFC-model in Ω ⊂ R2

has been derived. The basic ideas from this paper are extended to the case of PFC with external

potentials here.

The following Energy-splitting is proposed by different authors (e.g. [WWL09]). They split the

energy (2.19) in a purely convex (”contractive”) and concave (”expansive”) part: F = Fc−Fe, with

Fc =
∫
fc dx, Fe =

∫
fe dx defined by the free energies

fc :=
1

4
̺4 +

1

2
(1 + r)̺2 +

1

2
(∆̺)2 + ̺U ′, fe := ‖∇̺‖2 .

Remark. For r < −1 one can find an other splitting of the energy in a convex and concave part so

that the following calculations can be done in similar way.

In the following we rewrite the Theorem 1.1 from [WWL09] for the slightly altered PFC-equation

including an external potential U ′ = U +Ψ that contains a contribution to a transport by potential-

flow u ∼ −∇Ψ. We follow the argumentation used in the paper.

Theorem B.1.1. Let Ω ⊆ Rd be a simply connected domain and φ, ψ : Ω → R sufficiently smooth,

and let r > −1. Consider the canonical splitting of the PFC-energy F into F = Fc −Fe. Then

F(φ)−F(ψ) ≤ (δ̺Fc(φ) − δ̺Fe(ψ), φ− ψ)L2(Ω)

where δ̺ denotes the variational derivative and (·, ·)L2(Ω) the L2-scalar product in Ω.
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Proof. Consider the (abstract) free energy-functions f̃c/e(φ) with φ = (φ1, φ2,φ3) and

f̃c(φ) =
1

4
φ41 +

1

2
(1 + r)φ21 +

1

2
φ22 + φ1U

′, f̃e(φ) := φ3 · φ3 .

Since f̃c/e are both convex in all of its arguments the following statements hold:

f̃c(ψ)− f̃c(φ) ≥∇f̃c(φ)⊤ (ψ − φ)

f̃e(φ)− f̃e(ψ) ≥∇f̃e(ψ)⊤ (φ−ψ)

for any φ,ψ ∈ R×R×Rn. Following the argumentation in [WWL09], by setting φ := (φ,∆φ,∇φ)

and ψ := (ψ,∆ψ,∇ψ) and integrating over Ω, one gets

Fc(ψ)−Fc(φ) ≥
∫

Ω

∂1f̃c(φ,∆φ,∇φ)(ψ − φ) + ∂2f̃c(φ,∆φ,∇φ)(∆ψ −∆φ) dx

=

∫

Ω

(φ3 + (1 + r)φ + U ′)(ψ − φ) + ∆φ(∆ψ −∆φ) dx

=

∫

Ω

(φ3 + (1 + r)φ + U ′ +∆2φ)(ψ − φ) dx

Fe(φ)−Fe(ψ) ≥
∫

Ω

∂3f̃e(ψ,∆ψ,∇ψ) · (∇φ−∇ψ) dx

=

∫

Ω

∇ψ · ∇φ−∇ψ · ∇ψ dx

=

∫

Ω

(−2∆ψ)(φ− ψ) dx

for appropriate boundary conditions. With the variational derivatives of the energies δ̺Fc(̺) =

̺3 + (1 + r)̺+ U ′ +∆2̺ and δ̺Fe(̺) = −2∆̺ one obtains

F(ψ)−F(φ) = Fc(ψ)−Fe(ψ)−Fc(φ) + Fe(φ)

≥ (δ̺Fc(φ), ψ − φ)L2(Ω) + (δ̺Fe(ψ), φ− ψ)L2(Ω)

= (δ̺Fc(φ) − δ̺Fe(ψ), ψ − φ)L2(Ω) .

Energy-stable time discretization

We consider the gradient flow of F for conserved dynamics, i.e. the H−1-gradient flow with mobility-

term M :

∂t̺ = ∇ · {M∇µ} = ∇ · {M∇δ̺F} .
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An energy-stable time-discretization uses a semi-implicit discretization of the convex-splitting scheme

by taking the contractive-part implicitly and the expanding-part explicitly. The discretization of

time t0 < t1 < . . . < tk < . . . gives a time step size τk := tk+1−tk for k = 0, 1, . . . and function-values

at specific time: ̺k := ̺(tk). So we get the discretization-scheme:

̺k+1 − ̺k = τk∇ ·
{
M∇

[
δ̺Fc(̺

k+1)− δ̺Fe(̺
k)
]}

. (B.1)

Theorem B.1.2. Let M > 0. Then the proposed discretization-scheme in (B.1) is unconditionally

energy-stable, i.e. non-increasing in time, regardless of time step size:

F(̺k+1) ≤ F(̺k), ∀k .

Proof. We use theorem B.1.1 by setting φ := ̺k+1, ψ := ̺k. Additionally we define the discrete

potential µ̃(̺k+1, ̺k) := δ̺Fc(̺
k+1)− δ̺Fe(̺

k) and find:

F(̺k+1)−F(̺k) ≤ (δ̺Fc(̺
k+1)− δ̺Fe(̺

k), ̺k+1 − ̺k)L2(Ω)

= τk(µ̃,∇ · {M∇µ̃})L2(Ω)

= −τk
∫

Ω

M∇µ̃ · ∇µ̃ dx ≤ 0 .

B.2 Linear stability analysis

The choice of parameters for the PFC model, to obtain an evolution that ends in a liquid or

solid/crystalline structure, depends on the stability of a constant phase. A constant density profile

is characteristic for the liquid phase. If we start our evolution in this phase and add some perturba-

tions, we expect that on the one hand this perturbations decrease and we end up with the original

constant phase (then we are in a liquid parameter regime). On the other hand the perturbance

grows and build a crystalline structure, we speak of solidification.

The discrete evolution equation should be consistent with these phenomena and should adopt the

stability properties. One way to get a basic idea of the parameters is a linear stability analysis that

is done for the PFC equation by [CW08]. We adopt their derivation and apply it to the PFC model,

but without including external potentials. This potential-terms changes the constant (meta-)stable

liquid phase to a solution that oscillates near high potential values. Transport terms are neglected
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in this first analysis, as well since they lead to complicated terms that can not be handled directly

by the proposed analysis.

Theorem B.2.1. The Phase-Field Crystal equations are unstable with respect to small perturbations

of a constant phase ¯̺, if the following inequality holds for the parameters r and ¯̺

3 ¯̺2 + r < 0 .

Necessary for stability is 3¯̺2 + r > 0.

Proof. To derive the stability statements, we write the density-field as ̺ = ¯̺+ η. By linearization

of the PFC equation in η = η(x, t) we get the evolution equation for the perturbation

∂tη = ∇ ·M∇
({

3¯̺2 + r + (1 +∆)2
}
η
)

. (B.2)

This can be Fourier transformed using η̂ := η̂(k, t) = F(η)(k, t) to the evolution equation in Fourier

space

∂tη̂ = −Mk2
{
3¯̺2 + r + (1− k2)2

}
︸ ︷︷ ︸

A

η̂ =: −Aη̂ . (B.3)

The stability condition, to ensure that the perturbation tends to zero, is known to be σ(A) ∈

R>0 + iR. This is equivalent to 3¯̺2 + r + (1 − k2)2 > 0 for k 6= 0 since M > 0 and in the limit

k → 0 we obtain the relation 3¯̺2 + r > 0. For 3¯̺2 + r < 0 there exists a k such that the stability

condition does not hold anymore. Thus the equation is unstable due to small perturbations.

Similar analysis can be done for the discrete version of the evolution equation (B.2) for a general

splitting scheme (with a1, a2, a3 ∈ R)

̺k+1 − τk∆
[{

(1− a1)(1 + r) + 2(1− a2)∆ + (1 − a3)∆
2
}
̺k+1 +

(
̺k+1

)3]

= ̺k + τk∆
[{
a1(1 + r) + 2a2∆+ a3∆

2
}
̺k
]

.

(B.4)

This leads to a discretization scheme for the perturbation ηk = η(tk) after construction of ̺k = ¯̺+ηk

and linearization around ¯̺

ηk+1 − τk∆
[{

(1 − a1)(1 + r) + 2(1− a2)∆ + (1− a3)∆
2 + 3¯̺2

}
ηk+1

]

= ηk + τk∆
[{
a1(1 + r) + 2a2∆+ a3∆

2
}
ηk

]
.

(B.5)
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The aim is to obtain the same stability properties like in the continuous version for the same model

parameters ¯̺ and r.

Theorem B.2.2. Let r > −1 and let the discrete scheme adopt the stability of the continuous

system, i.e. (B.4) is stable as to small perturbations of a constant phase if and only if 3¯̺2 + r > 0

and unstable otherwise, then it holds for the parameters of the time-discretization scheme (B.4)

a1 <
1

2
+

3¯̺2

2(1 + r)
, a2 ≥ 1

2
, a3 ≤ 1

2
.

Proof. The spitting scheme for the perturbation (B.5) can also be Fourier transformed to

η̂k+1
[
1 + τkMk2

{
(1− a1)(1 + r)− 2(1− a2)k

2 + (1 − a3)k
4 + 3¯̺2

}
︸ ︷︷ ︸

Lk

]

= η̂k
[
1 + τk (−Mk2)

{
a1(1 + r)− 2a2k

2 + a3k
4
}

︸ ︷︷ ︸
Rk

]

with η̂k = η̂k(k) = F(ηk)(k). One can write this equation more short:

η̂k+1
[
1 + τkLk

]
= η̂k

[
1 + τkRk

]
.

Note that A = Lk − Rk of proof to Theorem B.2.1. Recognize that the scheme should be stable

iff A > 0 and unstable iff A < 0. The discrete system is stable if |η̂k+1| < |η̂k| and unstable for

|η̂k+1| > |η̂k|. We get conditions for stable and unstable systems

[
1 + τkLk

]2
>

[
1 + τkRk

]2
for A > 0

[
1 + τkLk

]2
<

[
1 + τkRk

]2
for A < 0

We get restrictions independent of time step τk by dividing both by A: Lk +Rk > 0. Using r > −1

and mode independent considerations this results in conditions for a1, a2 and a3:

a1 <
1

2
+

3¯̺2

2(1 + r)
, a2 ≥ 1

2
, a3 ≤ 1

2
.

Remark. In contrast to the work of [CW08], we take the nonlinear term implicitly in the stability
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analysis. For an explicit treatment the inequality for a1 changes to

a1 <
1

2
− 3¯̺2

2(1 + r)

that is more restrictive. Linearization of the nonlinear term ̺3 by Taylor expansion around ¯̺

for a better approximation of ̺ is justified in our analysis since this leads to the same linearized

perturbation equation (B.5).

Remark. The splitting scheme obtained by convex splitting of the energy in (B.1) is conform to this

parameter restrictions by taking a1 = 0, a2 = 1 and a3 = 0.
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Appendix C

Derivation of SIMPLE-R algorithm

Pressure-projection methods to solve the Navier-Stokes equations are introduced by Chorin and are

developed further by Prohl, Liu and others. A collection of some ideas is given by [Ran99]. The

following derivation is based on [Im05, Bar98, Iss84] upon others.

We start from the velocity uk at time t = tk and want to calculate values uk+1 after on time step

at time t = tk+1. The velocity and pressure can be split into a predicted value and the remaining

difference

uk+1 = u1 + δu1, u1 = u0 + δu0, p = p0 + δp .

The SIMPLE-R algorithm starts with a prediction equation for the velocity where we neglect the

pressure and the incompressibility condition:

ϕk+1 u0 − ϕk uk

τ
+ ϕk+1 (uk · ∇)u0 = η∇ · (ϕk+1∇u0)−

β

ε3
(1− ϕk+1) (u0 − ḡ) . (C.1)

Take the same equation, but with a predicted pressure term, for the wanted u1, that is the first

approximation to uk+1:

ϕk+1 u1 − ϕk uk

τ
+ϕk+1 (uk ·∇)u1+ϕ

k+1 ∇p0 = η∇·(ϕk+1∇u1)−
β

ε3
(1−ϕk+1) (u1− ḡ) . (C.2)
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Subtract (C.2) from (C.1) where we assume that the following identities hold:

∇ · (ϕk+1∇u0) = ∇ · (ϕk+1∇u1) = ∇ · (ϕk+1∇uk+1)

ϕk+1 (uk · ∇)u0 = ϕk+1 (uk · ∇)u1 = ϕk+1 (uk · ∇)uk+1

(1 − ϕk+1)u0 = (1− ϕk+1)u1 = (1− ϕk+1)uk+1 .

(C.3)

These are the main assumptions/approximations in the projection method of SIMPLE-R. Other

methods like SIMPLE-C try to improve these approximations. The last assumption comes from the

boundary conditions where we assume that this must be fulfilled in both, the predicted and final

velocity field. We get an equation for δu0:

(C.1)− (C.2) ⇒ 1

τ
ϕk+1 (u0 − u1︸ ︷︷ ︸

−δu0

) = ϕk+1 ∇p0 . (C.4)

Additionally we want to get divergence-free velocity ∇ · u1 = 0 in Ω1:

∇ · (ϕk+1u1) = ∇ϕk+1 · u1︸ ︷︷ ︸
∇ϕk+1·g, since ∇ϕ 6=0 in ∂Ω1

.

So we take the divergence on both sides of (C.4)

∇ · (ϕk+1 u0)−∇ϕk+1 · ḡ = τ∇ · (ϕk+1 ∇p0) . (C.5)

This is an equation for the predicted pressure p0. Now repeat the calculation of (C.1), including

this predicted pressure (solution will be called u1) and do the same procedure with the difference

to final pressure p in (C.2) to get the pressure difference δp in (C.5) and the velocity difference

uk+1 = u1 + δu1 in (C.4). We get the following equations by requiring ∇ · uk+1 = 0 in Ω1

1

τ
ϕk+1 (u1 − uk+1

︸ ︷︷ ︸
−δu1

) = ϕk+1 ∇(p− p0︸ ︷︷ ︸
δp

),
1

τ
∇ · (ϕk+1 u1)−∇ϕk+1 · g = ∇ · (ϕk+1 ∇δp) . (C.6)

The solution-procedure can be described schematically by

uk u0 p0 u1 δp uk+1

p

(C.1) (C.5) (C.2) (C.6)2 (C.6)1
.
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[Löw10] Hartmut Löwen. Phase-field-crystal model for liquid crystals. preprint, 2010.

[LSY07] Chun Liu, Jie Shen, and Xiaofeng Yang. Dynamics of Defect Motion in Nematic Liquid
Crystal Flow: Modeling and Numerical Simulation. preprint submitted to Elsevier, 2007.

[Mes09] Jeff Mesaric. Existence of Critical Points for the Ginzburg-Landau Functional on Rie-
mannian Manifolds. PhD thesis, Department of Mathematics University of Toronto,
2009.

[MT99] Umberto Marini Bettolo Marconi and Petro Tarazona. Dynamic density functional
theory of fluids. Journal of Chemical Physics, 110(16), 1999. 8032.

[MZ10] Apala Majumdar and Arghir Zarnescu. Landau-de gennes theory of nematic liquid crys-
tals: The oseen-frank limit and beyond. Archive for Rational Mechanics and Analysis,
196(1):227–280, 2010.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature dependent
speed: algorithms based on hamilton-jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

[PDT03] Florencia Penna, Joachim Dzubiella, and Pedro Tarazona. Dynamic density functional
study of a driven colloidal particle in polymer solutions. Physical Review E, 68, 2003.

[Pic09] Rainer Picard. A structural observation for linear material laws on classical mathemat-
ical physics. Math.Meth.Appl.Sci., 32:1768–1803, 2009.

[Pic10] Rainer Picard. On a comprehensive class of linear material laws in classical mathematicla
physics. Discrete and Continuous Dynamical Systems Series S, 3(2):339–349, 2010.

[PJ95] P.G. de Gennes and J. Prost. The Physics of Liquid Crystals, volume 2. Clarendon
Press, Oxford, paperback edition edition, 1995.

96



[PRDK07] Florencia Penna, Markus Rauscher, Alvaro Domı́nguez, and Matthias Krüger. A dy-
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