Nonlinear Elasticity: Problem sheet 1 (This sheet will be discussed on Oct 21, 2019)

Exercise 1. Convince yourself that $\{e_i \otimes e_j : i = 1, ..., m, j = 1, ..., d\}$ – the standard basis of $\mathcal{L}(\mathbb{R}^d; \mathbb{R}^m)$ – is indeed a basis.

Exercise 2. Convince yourself that

- $\{e_i \otimes e_j : i = 1, \dots, m, j = 1, \dots, d\}$ is an orthormal basis of $\mathcal{L}(\mathbb{R}^d; \mathbb{R}^m);$
- for any $A \in \mathcal{L}(\mathbb{R}^d; \mathbb{R}^m)$, we have

$$A_{ij} = A \cdot (e_i \otimes e_j);$$

 the scalar product are independent of the choice of the orthonormal basis of ℝ^d (resp. ℝ^m): Let ē₁,..., ē_n and ẽ₁,..., ẽ_m denote orthonormal bases of ℝ^d and ℝ^m respectively; consider coordinate matrices A' = (A'_{ij}), B' = (B'_{ij}) ∈ ℝ^{m×n} and the linear mappings

$$A := \sum_{ij} A'_{ij}(\bar{e}_i \otimes \tilde{e}_j), \qquad B := \sum_{ij} B'_{ij}(\bar{e}_i \otimes \tilde{e}_j);$$

note that in general $A_{ij} \neq A'_{ij}$ and show that $A \cdot B = \sum_{ij} A'_{ij} B'_{ij}$.

- **Exercise 3.** Consider $f : \mathbb{R}^{n \times m} \to \mathbb{R}$, $f(A) := A_{11}^3 + A_{nm}^2$. Compute $\nabla f(A)$.
 - Consider $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, $f(A) := \det A$. Compute $\nabla f(Id)$, where Id denotes the identity matrix.
 - Let $g_1 : \mathbb{R}^d \to \mathbb{R}^m, g_2 : \mathbb{R}^d \to \mathbb{R}^m$ be differentiable, set $f(x) := g_1(x) \cdot g_2(x)$ and compute $\nabla f(x)$.
 - Let $g_1 : \mathbb{R}^d \to \mathbb{R}^m$, and $g_2 : \mathbb{R}^m \to \mathbb{R}$ be continuously differentiable. Define $f(x) := g_2(g_1(x))$ and express Df(x) (resp. $\nabla f(x)$) in terms Dg_1 , Dg_2 (resp. ∇g_2) in a coordinate wise and coordinate-free format.

$$Df(x)h = Dg_2(g_1(x))[Dg_1(x)[h]] = \nabla g_2(g_1(x)) \cdot (Dg_1(x)h) = \partial_i g_2(g_1(x))(Dg_1(x))_{ij}h_j \nabla f(x) = Dg_1(x)^t \nabla g_2(g_1(x)).$$

Plausibility test: $g_1(x) = Ax$ with $A \in \mathbb{R}^{m \times d}$, $g_2(y) = a \cdot y$ with $a \in \mathbb{R}^m$, $f(x) = a \cdot Ax = A^t a \cdot x$, and thus $\nabla f(x) = A^t a = (Dg_1)^t \nabla g_2$.

Exercise 4 (Outer unit normal). Let Ω be C^1 -domain, $x \in \partial \Omega$. Let (f, U) be as in Definition ?? (b), and (ϕ, V) a parametrization at x. Show that the outer unit normal $\nu(x)$ at x is unique and given by $\nu(x) = \frac{\nabla f(x)}{|\nabla f(x)|}$. Show that $\operatorname{span}(\nu(x)) = \{ v \in \mathbb{R}^d : D\phi(y)^t v = 0 \}$ where $y = \phi^{-1}(x)$.

Exercise 5 (Divergence theorem). Let $V \subset \mathbb{R}^{d-1}$ and $h \in C^1(\overline{V})$. Consider $\Omega := \{x = (x', x_d) : x' \in V, x_d < h(x')\}$ and set $\Gamma := \operatorname{graph}(h) \subset \partial \Omega$.

(a) Let $u: \Gamma \to \mathbb{R}$ be continuous, bounded, and compactly supported. Show that

$$\int_{\Gamma} u \, d\mathcal{H}^{d-1} = \int_{V} u(x', h(x'))\rho(x') \, dx',$$

for some $\rho: V \to \mathbb{R}$ and identify ρ .

(b) Compute the outer unit normal to $\Gamma \subset \partial \Omega$ for $x \in \Gamma$.

(c) Let $u \in C_c^1(\mathbb{R}^d; \mathbb{R}^d)$. Prove that

$$\int_{\Omega} \operatorname{div} u \, dx = \int_{\Gamma} u \cdot \nu \, d\mathcal{H}^{d-1}$$

Exercise 6 (Orientation preserving implies local injectivity). Let $\Omega \subset \mathbb{R}^d$ open, $\varphi \in C^1(\Omega; \mathbb{R}^d)$.

- Show: If det $D\varphi(x) \neq 0$ for some $x \in \Omega$, then there exists an open neighbourhood $U \subset \Omega$ of x and $\varphi: U \to \varphi(U)$ is a C^1 -diffeomorphism.
- Find an example for a non-injective $\varphi \in C^1(\Omega; \mathbb{R}^d)$ satisfying det $D\varphi > 0$ in Ω .