Problem sheet 2

Exercise 1. Consider the situation of Lemma 2.12 and check that

- 1. $\lambda_1^2, \ldots, \lambda_d^2$ are the Eigenvalues of $A^t A$
- 2. $|\lambda_1|, \ldots, |\lambda_d|$ are the singular values of A
- 3. det $A = \lambda_1 \cdots \lambda_d$
- 4. $|A|^2 = \sum_{i=1}^d \lambda_i^2$ and $||A|| = \lambda_d$
- 5. $A \in SO(d)$ if and only if $\{\lambda_1, \ldots, \lambda_d\} = \{1\}$.

Exercise 2. Let $A, B \in \mathbb{R}^{d \times d}$. Show that:

- (i) $(\det A)\mathbf{Id} = A^t \operatorname{cof} A$ (Cramer's rule),
- (*ii*) $\det(\operatorname{cof} A) = (\det A)^{d-1}$
- (iii) $\operatorname{cof} A = (\det A)A^{-t}$, if A is invertible,
- (iv) $\operatorname{cof} A = A$, if $A \in SO(d)$,
- $(v) \ \operatorname{cof}(AB) = (\operatorname{cof} A)(\operatorname{cof} B),$
- (vi) $\operatorname{cof}(A^t) = (\operatorname{cof} A)^t$,
- (vii) $\operatorname{cof}(A^{-1}) = (\operatorname{cof} A)^{-1}$ if A is invertible.

Exercise 3. Let Ω be a domain, $\varphi : \Omega \to \mathbb{R}^d$ a C^1 -deformation, and $U \subset \Omega$ a C^1 -domain. Then $U^{\varphi} := \varphi(U)$ is a C^1 -domain. Moreover, if $\nu(x)$ denotes the outer normal to ∂U at $x \in \partial U$, then $x^{\varphi} := \varphi(x) \in \partial \varphi(U)$ and

$$\nu^{\varphi}(x^{\varphi}) := \frac{(\mathrm{cof} D\varphi(x))\nu(x)}{|(\mathrm{cof} D\varphi(x))\nu(x)|},$$

is the outer normal to $\partial \varphi(U)$ at x^{φ} .

Exercise 4. Let $A \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^{d \times d})$ and $f \in C^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$. Show that

$$\operatorname{div}(A^t f) = (\operatorname{div} A) \cdot f + A \cdot Df$$

Exercise 5. Let $\Omega \subset \mathbb{R}^d$ be a C^1 -domain and consider a (countable) covering of $\partial\Omega$ by open balls $B_j \subset \mathbb{R}^d$, a subordinate partition of unity $\zeta_i \subset C_c^{\infty}(B_j)$ with $0 \leq \zeta_j \leq 1$ and $\sum_j \zeta_j = 1$ on $\partial\Omega$, and parametrizations (ϕ_j, V_j) with $B_j \subset \phi_j(V_j)$. Convince yourself (briefly) that these objects exist and recall that $f \in L^1(\partial\Omega)$ if and only if the functions $V_j \mapsto f(\phi_j(x))$ are measurable and

$$\int_{\partial\Omega} |f| \, d\mathcal{H}^{d-1} = \sum_j \int_{V_j} |f \circ \phi_j| \zeta_j \circ \phi_j \sqrt{\det D\phi_j^t D\phi_j} \, dx < \infty.$$

Show that there exists $\varepsilon > 0$ and a sequence $(f_k) \in C_c^1(U_{\varepsilon})$ where $U_{\varepsilon} := \{x \in \mathbb{R}^d : \operatorname{dist}(x, \partial \Omega) < \varepsilon\}$ denotes a small neighbourhood of $\partial \Omega$, s.t.

$$\lim_{k \to \infty} \|f - f_k\|_{L^1(\partial\Omega)} = 0.$$

Discuss and sketch the approximation argument in the proof of Theorem 2.24 (b).