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Abstract

Cellular decision-making help cells to infer functionally different phenotypes in re-sponse to microenvironmental cues and noise present in the system and the envi-ronment, with or without genetic change.
In Cellular Biology, there exists a list of open questions such as, how individualcell decisions influence the dynamics at the population level (an organization of in-distinguishable cells) and at the tissue level (a group of nearly identical cells andtheir corresponding extracellular matrix which simultaneously accomplish a setof biological operations)? As collective cell migration originates from local cellu-lar orientation decisions, can one generate a mathematical model for collectivecell migration phenomena without elusive undiscovered biophysical/biochemicalmechanisms and further predict the pattern formationswhich originates inside thecollective cell migration? how optimal microenvironmental sensing is related to dif-ferentiated tissue at the spatial scale ? How cell sensing radius and total entropyproduction (which precisely helps us to understand the operating regimes wherecells can take decisions about their future fate) is correlated, and how can one un-derstand the limits of sensing radius at robust tissue development ? To partiallytackle these sets of questions, the LEUP (Least microEnvironmental UncertaintyPrinciple) hypothesis has been applied to different biological scenarios.
At first, the LEUP has been enforced to understand the spatio-temporal behaviorof a tissue exhibiting phenotypic plasticity (it is a prototype of cell decision-making).Here, two cases have been rigorously studied i.e., migration/resting and migra-tion/proliferation plasticity which underlie the epithelial-mesenchymal transition(EMT) and the Go-or-Grow dichotomy. On the one hand, for the Go-or-Rest plas-ticity, a bistable switching mechanism between a diffusive (fluid) and an epithelial(solid) tissue phase has been observed from an analogous mean-field approxima-tion which further depends on the sensitivity of the phenotypes to the microenvi-ronment. However, on the other hand, for the Go-or-Grow plasticity, the possibilityof Turing pattern formation is inspected for the “solid” tissue phase and its relationto the parameters of the LEUP-driven cell decisions.
Later, LEUP hypothesis has been suggested in the area of collective cell migra-tion such that it can provide a tool for a generative mathematical model of collec-tive migration without precise knowledge about themechanistic details, where thefamous Vicsek model is a special case. In this generative model of collective cellmigration, the origin of pattern formation inside collective cell migration has beeninvestigated. Moreover, this hypothesis helps to construct a mathematical modelfor the collective behavior of spherical Serratiamarcescensbacteria, where the basic
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understanding of migration mechanisms remain unknown.
Furthermore, LEUP has been applied to understand tissue robustness, which inturn shows the way how progenitor cell fate decisions are associated with environ-mental sensing. The regulation of environmental sensing drives the robustness ofthe spatial and temporal order in which cells are generated towards a fully differ-entiating tissue, which are verified later with the experimental data. LEUP drivenstochastic thermodynamic formalism also shows that the thermodynamic robust-ness of differentiated tissues depends on cell metabolism, cell sensing propertiesand the limits of the cell sensing radius, which further ensures the robustness ofdifferentiated tissue spatial order.
Finally, all important results of the thesis have been encapsulated and the exten-sion of the LEUP has been discussed.
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Part I.

Introduction to cell decision-making

1





1. What is cell decision-making ?

1.1. Introduction

Decision-making is a way of finding optimal alternatives based on some certainobjectives. The objectives can depend on multiple factors, and it can be relativeas well. In this same way, one can define the decision-making at the cellular level.Cells not only follow their genetic wiring, but also sense their microenvironment,which helps them to make important decisions and change their behavior. So, theinformation between environmental factors and intrinsic factors (e.g., metabolitesconcentration, genetic network etc.) are entangled or coupled to each other ina complicated fashion. Cell decision-making is a recipe of changing phenotypesaccording to the intrinsic programming, noise (extrinsic and intrinsic) and give re-sponse to the micro environmental cues [66]. The environmental factors (e.g., lig-ands, density of cells etc.) attach to the receptors of the cell and triggers a chain ofbiochemical reactions to give a response to the environment. The phenomena ofcell decision-making is a broad topic. The three key factors for cell decision-makingare (I) internal factors, (II) external/microenvironmental factors and (III) the noisepresent in the environment as well as inside the cell. If someone thinks about ex-amples, the processes such as cell differentiation, cell migration, apoptosis, metas-tasis and more can be thought as a decision-making processes for each individualcell. The cell decision-making phenomena arewell studied at the level of single cells.The unknown part is how cells make a decision in a complex, multicellular microen-vironment. In the next section the important aspect of cell decision-making in thePhenotypic plasticity, collective cell migration and cell differentiation phenomenaat the multicellular level will be discussed.
3



1. What is cell decision-making ?

1.2. Examples of cell decision-making

Here, I am going to present paradigms of cell decision-making that are investigatedin this thesis.

1.2.1. Phenotypic Plasticity

Cell differentiation is a way of development from one cell type to the other celltype. As time prolongs, immature or less specialized cells (i.e., stem cell) turned tomoremature or specialized cells. So, on one hand cells gained irreversibility in newfates/phenotype by a successive hierarchical descent, where the pluripotent stemcells can be seen in a proper microenvironment (stem cell niche) are turning intoe.g., bone, muscle, epithelial and further more specialized cells. But, on the otherhand, one can observe a non-genetic plasticity in the phenotype which allows areversible adaptation to different sets of microenvironmental signals [128]. Theplasticity in the phenotype or phenotypic plasticity is a particular process wherethe particular form of life (e.g., cells, tissues, animals, plants, fungus etc.) switchtheir actions on the basis of the environment [83]. It plays a huge role in adapta-tion and evolution, which can be seen from individual cells regulatory networks tocell–cell and cell-microenvironment communication. It can be demonstrated fromindividual molecules to cells [69]. Cell decision-making plays a key role in the main-tenance of phenotypic plasticity. Although, the subject phenotypic plasticity is averse field, in this thesis, the phenotypic plasticity or switching at the level of cellsare mostly concerned. The idea or the concept behind the phenotypic plasticity atcellular scale was first originated when biologists observed non-genetic variationsin cellular phenotypes. It precisely tells us how same genetic pattern can influencemultiple phenotype based on the set of microenvironment and the noise (i.e., in-ternal and external). Two key examples of phenotypic plasticity are (a) Epithelial-Mesenchymal transition or the migration/resting plasticity and (b) Go-or-Grow ormigration/proliferation plasticity phenomena.

Epithelial-Mesenchymal transition

Epithelial cells are immotile, attached by strong adhesion bonds, display regularshapes and exhibits a strong apico-basal cell polarity, on the other handMesenchy-mal cells can be identified morphologically as a small cell body with a few cellprocesses that are long and thin, which accommodates large, spherical nucleuswith a prominent nucleolus. Epithelial and mesenchymal phenotypes can be il-lustrated by the representation of two migration modes, i.e., resting and motile,respectively. Epithelial-Mesenchymal transition is a phenomenon where Epithelialcells lose their epithelial phenotype (i.e., cell–cell adhesion and apico-basal polar-ity) and obtain Mesenchymal properties (i.e., migratory and invasive traits) [157].One can see this kind of transitions (EMT and MET) mainly in embryonic develop-
4



1.2. Examples of cell decision-making

ment, cellular reprogramming and cancer. In particular in this biological processalso play a key role in Cancer invasions. From the view of biochemistry there ex-ists multiple signaling biochemical pathways that control of EMT-HGF, TGF-β, p53,HIF-1α, EGF, FGF, Hedgehog, Wnt, and Notch signaling [119, 169]. Interestingly, ex-periments (in vivo and in vitro) andmathematical modelling suggests that there ex-ists another state between Epithelial andMesenchymal phenotype which is knownas hybrid EMT state [83]. It has been shown that at a single cell level, EMT dy-namics can show rich nongenetic heterogeneity. Single-cell immunofluorescenceanalysis helps us to understand the emergence of hybrid EMT state at the level ofpopulation average[138]. To characterize the dynamics of EMT, the informationis needed at different level from individual cells regulatory networks to cell–celland cell–microenvironment communication. The migration/resting type of plastic-ity has been detected during the epithelial-mesenchymal transition (EMT/MET)[86,131, 156].

Migration/ proliferation plasticity or Go-or-Grow

Tumor is an abnormal development of somatic cells found in organisms. In tumorsone can observe two important tumor cell features i.e., (i) irregular cell migrationand (ii) unconstrained growth. During the cancer development, phenotypic plas-ticity (i.e., the transition from benign neoplasmas to malignant intrusive tumors)can be observed. Typically, tumor cell alterations have been attributed to somaticmutations. Recently, it is discovered that the phenotypic plasticity largely accountto seek phenotypic changes. Go-or-Grow or Migration/ proliferation plasticity [57,58] is a paradigm of the latter. This dichotomy is an out-turn of usual biological sig-nalling pathways, present inside the tumor cells, which has been observed exper-imentally [56]. Another experimental result [59] also recognized a particular pro-tein which participates in the regulation ofmigration and proliferation phenomenaas per metabolic stresses. Interestingly, from mathematical models [65] one canshow that how the lack of oxygen or hypoxia circumstances become a key playerto understand the transition between highly proliferative phenotype and an inva-sive phenotype inside a growing tumor. The migration/proliferation plasticity canbe seen in different types of cancers, such as glioblastoma or breast cancer, butalso during normal development [65, 79, 71, 91]. The dichotomy also indicates themutual exclusive events of cell migration and proliferation, which can lead to thesurvivability of proliferative/immotile and nonproliferative/mobile cell phenotypes.

1.2.2. Cellular migration: orientation decisions

Cell migration is an important process in the maintenance and development ofmulti-cellular organisms. This phenomenon occurs with respect to two kinds of sig-nals i.e., (A) Mechanical signals and (B) chemical signals which often comes froman externalmicroenvironmental source [101]. Membrane based integrin receptorsattach to the extra-cellular matrix (ECM) ligand which further forms local adhesion
5



1. What is cell decision-making ?

points or bond clusters to create force [66]. The process of cell migration at sin-gle cell level starts when the force in the front is greater than the force generatesin the back. This disbalance in force later causes the fracture in the cell bonds atthe back [139]. On the other hand, collective cell migration characterizes groupsof migrating cells, such as swarms or cell aggregates. In biological cells, cellularmigration involves a diverse set of biophysical mechanisms such as actin polymer-ization, receptor recruitment, or in bacteria, flagella motor reversal mechanisms,to name a few [143]. On a coarse-grained level, collective cell migration can bethought as a collective motion of self-propelled particles, which can be defined asthe casual emergence of a many body particles/agents inside a system. Usually, in-dividual agents drive themselves in an independent fashion and interact with otheragents inside the neighborhood. These agents sometimes move in an organizedor synchronized (like similar individuals are brought together) way, and sometimesthey move in a chaotic or untidy manner. In nature, one can also monitor thiskind of collective motion quite often. Examples can be seen across the scales ofBiology, i.e., from massive migration of mammals ([13]) to cells during embryoge-nesis ([136]). Despite the diversity of collective motion examples, many of theseprocesses are important in human activity. Due to the ubiquitous and universalnature of collective motion, there is always a need for quantitative understandingof collective migration. In this thesis, the collective motion of self-propelled par-ticles will be discussed specifically at the cellular scale level. Here one can thinkas the collective cell migration is emergent result of cellular orientation decisions.The biological mechanism behind cell migration at single cell level has been wellstudied experimentally, but the set of biological mechanisms about the collectivecell migration world is partially known. One of the central question in collective cellmigration is that how biological mechanisms are correlated with the pattern forma-tion. Sometimes we see universality in the pattern formation, though the biologicalmechanisms behind the pattern is way different. If one can make a coarse-grainedmodel based on a principle from the partial biological knowledge, few questionscan be answered about the origin of pattern formation. From theoretical mod-elling aspect, if one review literature of collective cell migrations, he can find that
Mechanistic models have been seen to be very effective in analyzing collective cellmigration. Such models rely on either explicitly granted phenomenological forces,which can be involved in the interaction and movement of individuals, or definesome artificial rules or laws such that the system will mimic or act like the exper-imental behavior of real cells. Collective migration mechanisms are diverse andtypically depend on the cell type. Additionally, the precise and complete regulationof many important chemo-mechanical factors influencing cell movement (from sig-nalling pathways to substrate sensing) are typically either too complex or largelyunknown. To address this situation, several mathematical models moderately in-troduce a phenomenological short-range bias that every individual feels. One of themost significant work on collective migration models ([162]) the so-called Viscekmodel, say that the direction of migration of particles shifts towards the mean ve-locity of individuals in a local neighborhood, and later at a temporal scale these rulepromote a long-range swarming behavior at the level of population. Such modelscan be further clarified into mechanistic models, where individual particle dynam-ics are obeying a set of Langevin’s equations. Specifically, the Langevin equationmodels, the reorientation of individual particle velocities is characterized by the
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1.3. Challenges and open questions

presence of a local interaction or coupled potential, which is resolved by the ef-fects of neighboring particles. Collective migration has been realized through theglasses of a ferromagnetic-like interaction potential, which locally aligns particlevelocities in a polar way, or a liquid-crystal-like interaction potential, which alignsparticle velocities in a nematic way([124]).

1.2.3. Cell differentiation

Cell differentiation can be thought as a decision-making process, which is an eventwhere one cell type evolve to another cell type [147]. In the continuation of time,one can find that stem cells kick off their odyssey and differentiate to other celltypes. This kind of biological phenomena involves the substantial changes of ge-ometry, shape, gene expression inside the cell, etc. [2]. Though we have a largeset of multi-omics data for cell differentiation process, the difficulty is to under-stand the robustness of tissue differentiation from the mechanism point of view.The theoretical understanding of cell differentiation has been understood a longbefore in a metaphorical path due to C. H. Waddington landscape [60, 3, 29] (byC. H. Waddington) which has been used to study cell differentiation, in particularlythe mathematical framework of dynamical systems, concerning single-cell fate de-cisions [48, 121, 82]. From this school of thoughts provoke an understanding aboutthe mean-field dynamics of cell differentiation processes. It describes a situationwhere a cell differentiates in a well-mixed environment, but it does not explainthe pivotal role of microenvironmental components. On the con side this schoolof thought can be problematic because it needs detailed information of the un-derlying genetic networks and other internal components (e.g., metabolites, cellsignaling molecules, transcription factors, etc.) network which is hard to find ex-perimentally. To handle these complications, statistical mechanics structure anddata-driven perspectives [100, 165, 61, 68, 41, 123] have been recently suggested.
Finally, cell sensing is the central of cell decision-making. The ability of cells toperceive their microenvironment is known as cell sensing. It is a theme of basic re-search in biophysics since a long time, see for example [164] and references therein.Cells can realize frequent changes in their vicinity, by mainly utilizing two ways todecline their sensing errors: (1) to escalate the number of receptors and (2) to in-crease the number of measurements per receptors over a definite span, whichare commanded by the downstream signaling pathways [14]. There exists an ex-tensive literature on fundamental limits of cell sensing in both static and dynamicenvironments [164, 17, 112].

1.3. Challenges and open questions

If someone dives deep inside into Biology will find that phenotypic switching, cellu-lar orientation biochemical decisions and cell differentiation involve numerous bio-physical processes such as signalling pathways, genetic network regulation, recep-
7



1. What is cell decision-making ?

tor dynamics, actin polymerization, receptor recruitment, or in bacteria, flagellarmotor reversalmechanisms, to name a few [143]. However, in aforementioned bio-logical events the precise knowledgeof all coupled interacting biophysical/chemicalmechanisms aremostly unknown. If the biophysicalmechanisms are still unknown,the broad question is how to predict biological experimental results through theeye of mathematical modelling and biophysical principles. The key challenges ofcell decision-making (in a broad picture) are:
• Calculation of cell’s states need a proper knowledge of intrinsic dynamics
• As the information in cell’s intrinsic states are entangled with extrinsic states, the
relative contribution coming from both factors is partially known.

• In cell decision-making, particularly in cellular differentiation problem, on one
hand the directionality and robustness can be observed in an irreversible man-
ner but on the other hand in phenotypic plasticity and cellular reprogramming
phenomena directionality and robustness can be observed in a reversible manner
which mainly depends on the microenvironmental factors. The question is, how
can we unify both observations through a single theory.

and for more specific cases one can write the questions in the following way:
• Cellular decision-making has been precisely studied at the single cell level, but
how individual cell decisions (e.g., phenotypic switching, cell differentiation etc.)
has been guided by the dynamics at the level of tissue ?

• Can one predict the origin of pattern formations in collective cell migration case if
one don’t know the precise knowledge about all corresponding biophysical/biochemical
mechanisms ?

• How optimal microenvironmental sensing is related with differentiated tissue at
the spatial scale ? Can one understand the limits of sensing radius at robust tissue
development ?

In this thesis, my approach is to tackle the first (i.e., understanding cell’s statesrequire the proper knowledge of intrinsic dynamics) and third challenge (i.e., theunifying theory behind the directionality of phenotypes) through LEUP frameworkto answer the subsequent questions mentioned above.

1.4. Solution strategy

Here, my strategy is to understand biological challenges the set of open ques-tions in a mathematical framework based on premises of assumed biological prin-ciples. The mathematical framework used is based on the theory of Bayesian in-ference [24], stochastic thermodynamics [141, 140] and the Maximum EntropyPrinciple [76, 77]. It uses the statistical inference tool to bypass the details ofintra-cellular regulation, while keeping the dynamic aspect.The logic behind visu-
8



1.5. Structure of thesis

alizing cells as Bayesian decision-makers below the tree of microenvironmentalentropic/energetic constraints and the partial knowledge about internal states asa constraint can be formulated into a free-energy like principle. This free-energylike principle later can be translated to a statistical mechanics formulation for celldecision-making known as LEUP [66]. Following this formulation, cells will try toenhance their internal priors (e.g., genes, RNA molecules, translational proteins,metabolites, membrane receptors, etc.) such that there will be a maximization intheir joint entropy (i.e., internal states and the microenvironmental states aroundthe cellular vicinity). From this point of view, one can understand cell decision-making in a following manner :
• From LEUP, biological mechanisms can be understood through a coarse-grained
manner, which offers a low-dimensional mathematical description to circumvent
the uncertainty about the underlying mechanisms. Further, it helps to study the
complex system in a simplified way to predict experimental results.

• The origin of biological pattern formation can be figured out in terms of local
information and adaptation. Specifically, one can observe the correlation among
the magnitude of sensitivity, sensing radius and the emergence of global pattern.

• The switching between Epithelial andMesenchymal cell can be well explained from
microscopic and mesoscopic picture with the help of LEUP without knowing the
biological details. It also shows how “fluid”-like to “solid”-like structures can be
formed during the EMT.

• Using this principle, the spatio-temporal robustness of the tissue can be demon-
strated. One can also unfold the cause of irreversibility in tissue differentiation
through LEUP driven fluctuation theorem.

This principle has been applied in different biological systems single cell migration[66], collective cell migration [11], Epithelial-Mesenchymal transition [12] and in celldifferentiation [10]. In this thesis, the LEUP theory is further discussed in chapter2 and later continued in chapter 3, 4 and 5.

1.5. Structure of thesis

In chapter 2, the theory behind LEUP have been presented where the motivationsand hypothesis are presented. In turn, it helps us to derive the mathematical for-mulation.
In chapter 3, the mathematical model based on LEUP is applied on the migra-tion/resting plasticity. At first, a stochastic individual-based model (IBM) has beenestablished for moving and resting cells where cells can switch their phenotypescorrespondingly according to the LEUP framework and precisely tells the formationof aggregates of resting cells in corresponding simulations. Then, a macroscopicmean-field approximation is derivedof the correspondingmicroscopicmodel, whichhelps to understand the formation of aggregates in the microscopic model. Later,

9



1. What is cell decision-making ?

the stability of the steady states and the pattern formation potential of the macro-scopic Go-or-Grow model is calulated. Finally, the biological conclusions of the re-sults in terms of multicellular growth and pattern control is explained.
In chapter 4, the simplest LEUP-driven Langevinmodel of swarming has beenpre-sented, where individuals can sense the velocity orientations of other individuals intheir neighbthehood. All the individuals present inside the system act as Bayesianinferred and switch their own orientation to optimize their prior, according to mi-croenvironmental orientation information. Under these set of assumptions, indi-viduals reorient themselves in agreement with the microenvironmental entropygradient. The sensitivity parameter, controls the strength and directionality of thereorientation with respect to the local gradient. On one hand the system adoptsa steady and polar-ordered state for negative values of the sensitivity and on theother hand, the system remains out of equilibrium, but partially nematic-orderedwhen the sensitivity is positive. After that the qualitative behavior of the modeldepends on various factors i.e., the values of the particle density, noise strength,sensitivity, and size of the interaction neighborhood. At last, the LEUP principle canmimic the collective behavior of spherical S. marcescens bacteria.
In chapter 5, the basic concepts of the LEUP has been used to understand celldifferentiation phenomena. After that, the answer to the question of how optimalmicroenvironmental sensing is relatedwith differentiated tissue at the spatial scale? has been answered. In particular example, the LEUP framework is studied usingthe experimental data achieved from the avian photoreceptor mosaics. Then, thefluctuation theorem of cell differentiation has been derived, which in turn exhibitthe thermodynamic robustness of this biological process in the case of the avianretina development. Later, the answer to the question of how cell sensing radiusand total entropy production are correlated to understand the limits of sensingradius at robust tissue development ? has been explicitly discussed.
In chapter 6, the major results of the thesis are summed up. Extensions in theLEUP theory has been introduced in the thesis are explained.

10
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Part II.

Least microEnvironmental
Uncertainty Principle (LEUP)
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2. Least microEnvironmental
Uncertainty Principle (LEUP)

In this chapter, the concept of LeastmicroEnvironmental Uncertainty Principle (LEUP)will be introduced. Additional supplement to the LEUP frameworkwill be presentedin chapters 3, 4 and 5.
LEUP-based coarse-grained low-dimensionalmathematicalmodel can help to an-alyze and understand the synergistic effects of cell decision-making, phenotypicswitching and the robustness of cell differentiation phenomena which is the mainaim/objective of the thesis. Please note that, the LEUP theory is still a hypothesiswhich currently undergoes experimental validation. LEUP suggested recently tounderstand the cell decision-making phenomena in multicellular systems and par-ticularly applied in cell migration force distribution [66], collective cell migration[11], phenotypic plasticity [12] and tissue differentiation [10]. In this thesis, thebasic theory of LEUP and its corresponding applications will be explained.

2.1. Hypothesis behind LEUP

The hypothesis behind the LEUP is hidden inside the Bayesian inference and learn-ing, which helps to take a decision about their internal states while circumventingthe details of the intra-cellular knowledge. Further, one can show that the atten-uation of microenvironmental entropy over time happens for a specific sensitivityregime. So, the main idea of cell decision-making is based on the entropy maxi-mization approach. Fabricating an accurate specific microenvironmental sensingdistribution is energetically expensive, if one think from cell’s prospect, cells gatherknowledge from their vicinity implementing different biological processes, such aspolymerizing pseudopodia, translocating receptor molecules or modifying its cy-toskeleton according to bio-mechanical signals [149, 159]. However, when cellsconstruct informative priors about their microenvironment, then energetically cost
13



2. Least microEnvironmental Uncertainty Principle (LEUP)

can be minimized. For example, in the advancement of cell polarization along,the employment of actin related proteins [132] during cell migration allows cellsto spare the energy from building extra sensory processes. At the same time,in many biological processes such as, cell polarization, development and woundhealing, cell phenotypic decisions, tissue differentiation effectively promote the co-evolution of the cellular microenvironment over time into more organized states,leading to a decrease of the microenviromental entropy from high to low overtime. In turn, it helps cells to adapt and learn from their microenvironment. Later,the simultaneous resolution of the cellular state and its corresponding microenvi-ronment terminates toward the reduction of the microenvironmental uncertaintytends to an optimum/target value correlated to a given tissue, phenotype or bacte-ria (e.g., biofilm). The basic challenges are the (i) uncertainty of high-dimensionalsubcellular regulatory cell decision-making mechanisms, and the (ii) the lack ofknowledge in the relative contribution of intrinsic and extrinsic cell decision-makingfactors to multicellular spatio-temporal dynamics. In Fig. 2.1, how LEUP is posi-tioned in terms of model interpretability and knowledge of biophysical details incomparison the afore-mentioned modelling/computational approaches has beenillustrated. Interestingly, LEUP proposes a balanced solution for problems of lowmechanistic knowledge and satisfactory interpretability. Akin notions (using infor-mation theoreticmeasures) can be observed, which have been suggested in crucialworks by W.Bialek [16].

2.2. Mathematical formulation

2.2.1. Cell as Bayesian decision maker

Let’s presume that the cell reacts to the environmental information, Yi, by adaptingits own states, Xi. The cell then reacts as a Bayesian decision-maker, such that

P (Xi | Yi) =
P (Yi | Xi)P (Xi)

P (Yi)
. (2.1)

Here internal variables are defined asXi ∈ {[0, 1], θi, vi,xs,xd} andexternal variablesare defined as Yi ∈ {[N1
i | NT ] , Θi,Vi, ys, yd}. Where P (Yi | Xi) can be understood asthe perfection with which a cell can precept other environmental factors in theircircumference and respond accordingly, and P (Xi) is the probability distributionof the cell’s intrinsic states (or prior). Although, detecting neighborhood cells andcalculating P (Yi | Xi) implies a cost for energy. It is valid to take this assumptionthat the cell will try to improve its prior P (Xi) due to the economic cost of energy.Respecting cells as Bayesian decision-makers under entropic/energetic constraints,one can come up that cell decisions are dominated by a ‘Least microEnvironmentalUncertainty Principle (LEUP)’.
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2.2. Mathematical formulation

Biophysical mechanism 
knowledge

Low High

Model 
interpretability

Lo
w

H
ig

h

Mechanistic 
models 

(Biophysical)

Phenomenological 
 models 

(e.g. Vicsek model)

Machine 
learning

LEUP 
models

Unknown 
interaction 
potential 

Assumed 
interaction 
potential 

Known interaction 
potential 

Figure 2.1.. In the figure, the applicability of different modelling/computational ap-proaches are described according to their biological interpretability and the correspond-ing knowledge of biophysical migration mechanisms. The latter is typically encoded as thedegree of interaction potential knowledge in Langevin equations (see text). In the case ofextended biophysical mechanism knowledge, mechanistic models are the natural choice.When the effects of cell-cell interaction on cell migration are only partially understood, phe-nomenological models can be typically used. Finally, when data do not suffice to formulatean interaction potential, machine learning allows for the quantitative reproduction of ex-perimental data. However, this has a toll in the interpretability of the resultingmodel, sincemachine learning methods are typically “black boxes”. LEUP models offer a compromisethat allows for quantitative predictions under lack of mechanism knowledge and satisfac-tory biological interpretability.
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2. Least microEnvironmental Uncertainty Principle (LEUP)

2.2.2. Variational principle for LEUP

To construct a variational principle for cell decision-making, the prior probabilities
P (Xi) should accomplish certain premises of LEUP. (a) Prior probabilities shouldbe normalized, i.e.,∫ P (Xi) dXi = 1, integrating over all possible values of inter-nal cellular states. (b) A biological cell acts as an immature sensor. Therefore, theunpredictability arises during sensing accuracy S (Yi | Xi), should grasp a definitelevel in average, which is species-dependent or cell type-dependent. This set of as-sumptions are the heart of the LEUP formalism. An essential ingredient part of theLEUP formalism is the entropy maximization principle which, in general, has its ap-plicability when every other mechanistic detail of the system is unknown or failedto explain the experimental data. This kind of formalism helps to carry out the-oretical predictions when very few things from experiments are known. Entropyis a measure of uncertainty or unpredictability and inversely proportional to theinformation gain. According to information theory, thus entropy should be maxi-mized, in order to follow the lack of mechanistic knowledge of the phenomenon,and to circumvent any kind of artificial prejudice in the model which can be ap-peared from a set of particular choices of P (Xi)[127]. From the definition of theinternal Shannon entropy is given by S (Xi) = −

∫
P (Xi) lnP (Xi) dXi, entropy max-imization subjected to probability normalization and the objective mean sensingaccuracy deciphers into an optimization problem which reads as

δ

δP (Xi)

{
−
∫
P (Xi) lnP (Xi) dXi ± β

[∫
P (Xi)S (Yi | Xi) dXi − S̄ (Yi | Xi)

]
−λ
[∫

P (Xi) dXi − 1
]}

= 0,
(2.2)

where δ
δP (Xi)

is the functional derivative, S̄ (Yi | Xi) is the target sensing accuracy,and λ and β are Lagrange multipliers. Taking into account the relations amongentropy and probability, Eq. (2.2) can be written as
P (Xi) =

e±βS(Yi|Xi)

Z
, (2.3)

where Z =
∫
e±βS(Yi|Xi)dXi is a normalization constant or like a partition functionand β is the responsiveness or the sensitivity about the environment of the cell. Us-ing Eq. (2.3), the internal entropy of the cell, defined asS (Xi) = −

∫
P (Xi) lnP (Xi) dXi,is given by

S (Xi) = ∓βS (Yi | Xi) + lnZ. (2.4)
Using the relation between thermodynamic-like potentials, it is evident that themean internal energy is given by

U (Yi,Xi) = S (Yi | Xi) = 〈S(| Xi 6= α)〉 (2.5)
and for a particular realization of Xi can write the internal energy as

Ui (Yi,Xi) = S (Yi | Xi) (2.6)
Now, one can also write the Helmholtz-like free energy as

F = − 1
±β

lnZ. (2.7)
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3. Phenotypic plasticity : dynamics
at the level of tissue from
individual cell decisions

In this chapter,1 phenotypic plasticity has been studied from the eye of LEUP. It isstill an open question, how individual cell decisions influence the dynamics at thetissue level. Here, the implications of phenotypic plasticity on spatio-temporal pat-tern formation in the cell population have been analysed and themigration/restingand migration/proliferation plasticity have been examined. A biological examplei.e., the EMT/MET mechanism has been used to study the role of LEUP in pheno-typic plasticity. Interestingly, it has been shown that there exists a tight interac-tion of EMT decisions and the Notch-Jagged-Delta pathway [19]. It is known thatEMT/MET is extremely important in development. For instance in the context ofneural crest cells during embryonic development [107], the activation of EMT inpluripotent neural crest cells, migrating away from the embryonic ectoderm, istightly connected with the binary cell decisions towards neurons, glia, melanocytesand other cell types [148]. These binary cell fate decisions are typically regulatedby signalling pathways such as the infamous Notch-Delta pathway [5]. Therefore,the collective dynamics of these individual cell decision to activate the EMT pro-gram and migrate promote the organization and maturation of a multitude of ver-tebrate tissues, such as the brain. Thus, the EMT/MET decision-making leads mul-ticellular ensembles to low entropy mircoenvironmental states, e.g., differentiatedtissues. In order to understand the EMT/MET decision-making, a preliminary as-sumption has been taken i.e., cells change their phenotype in order to decreasetheir microenvironmental entropy over time following the LEUP (Least microEnvi-ronmental Uncertainty Principle) hypothesis which also help to study the impact
1This chapter includes text and figures from the publication and corresponding supplementaryinformation: Arnab Barua, Simon Syga, Pietro Mascheroni, Nikos Kavallaris, Michael Meyer-Hermann, Andreas Deutsch andHaralamposHatzikirou,New Jthenal of Physics (2020) 22: 123034.Author contribution: Arnab Barua, Simon Syga and Nikos Kavallaris have performed the analy-sis, Arnab Barua and Pietro Mascheroni did the simulations of the model, and Arnab Barua andSimon Syga wrote the manuscript. All authors interpreted the results. Haralampos Hatzikirou ,Michael Meyer-Hermann and Andreas Deutsch supervised the study.

19



3. Phenotypic plasticity : dynamics at the level of tissue from individual cell decisions

of the LEUP-driven migration/resting andmigration/proliferation plasticity on thecorresponding multicellular spatio-temporal dynamics with a stochastic cell-basedmathematical model for the spatio-temporal dynamics of the cell phenotypes. Inthe case of the Go-or-Rest plasticity, a corresponding mean-field approximation al-lows to identify a bistable switching mechanism between a diffusive (fluid) and anepithelial (solid) tissue phasewhich depends on the sensitivity of the phenotypes tothe environment. At last, Go-or-Grow plasticity has been studied, which shows thepossibility of Turing pattern formation for the “solid” tissue phase and its relationwith the parameters of the LEUP-driven cell decisions.

3.1. Mathematical framework

A mathematical model is defined for LEUP-based switching between moving andresting phenotypes. An assumption has been taken such that cells can sense theirmicroenvironment and can change their own phenotype Xi on a domain L ⊂ R2

accordingly, where Xi = 0, 1 corresponds to the resting and migrating state, re-spectively. Themicroenvironment of the cell i is denoted as the numberN0
i of cellshaving phenotype Xi = 0 and by the number N1

i of cells having phenotype Xi = 1.By assuming a maximum cell capacityN of the microenvironment , one can define
N = N1

i +N0
i +Nφ

i , (3.1)
where Nφ

i are the free spaces/slots. The total number of cells NT is defined as thesum of cells having phenotype (Xi = 1) and cells having phenotype (Xi = 0). So,
NT = N1

i +N0
i . (3.2)

Cells will select their phenotype in a Bayesian fashion according to Eq. (2.1). It isreasonable to assume that the cell will try to optimize its prior P (Xi) for the sakeof energetic frugality. Here Yi is defined as the extrinsic random variable of the i-thcell, where Yi = NXi
i | NT ,Xi = 0, 1 represents the number of cells of phenotype Xigiven the total local number of cellsNT . The conditional probability of havingN1

i thenumber of cells present in the microenvironment follows a binomial distribution
(B) (for the derivation details, see the Supplementary Material 7):

P
(
N1
i | NT

)
= P

(
Yi = N1

i | NT

)
= B (NT , p1) , (3.3)

where p1 is the probability ofN1
i number of cells having phenotypeXi = 1 out ofNTcells: eqn.

p1 =
N1
i

NT

. (3.4)
Taking into account the relations between entropies, Eq. (2.2) (using +ve sign of β)yields

P (Xi) =
eβS(Yi|Xi)

Z
=

1
1 + eβ∆S

, (3.5)
where Z is the normalization factor

Z =
∑
α=0,1

eβS(Yi|Xi=α) = eβS(Yi|Xi=0) + eβS(Yi|Xi=1). (3.6)
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3.1. Mathematical framework

Please note that the parameter β has a biological interpretation, since it quantifiesthe intensity with which a cell senses and complies to the microenvironment. Tofacilitate the evaluation of the entropy distribution of the microenvironment, haveused a Gaussian distribution, which approximates the binomial distribution (for
NT > 5), i.e.,

P (N1
i , p1)→N (NTp1,NTp1(1− p1)), (3.7)

for the microenvironment [24]. Now one can evaluate the equilibrium distribution
P (Xi = 0) as

P (Xi = 0) =
eβS(Yi=[N1

i |NT ]|Xi=0)

Z
=

1
1 + eβ∆S

=

=
1

1 +
[
N0
i (N1

i −1)
N1
i (N0

i −1)

]β
2

=
1

1 +
[
ρ0i (ρ1i− 1

V )
ρ1i (ρ0i− 1

V )

]β
2

, (3.8)

with the cell densities ρ0,1
i := N0,1

i

V
(in the SupplementaryMaterial 7 Fig. (7.4), it can beshown that the dependency of P (Xi = 0) on resting density ρ0 and β). Accordingly,the probability of a i-th cell’s phenotype P (Xi = 1) reads as

P (Xi = 1) =
eβS(Yi=[N1

i |NT ]|Xi=1)

Z
= 1− 1

1 + eβ∆S
=

= 1− 1

1 +
[
N0
i (N1

i −1)
N1
i (N0

i −1)

]β
2

=

[
ρ0i (ρ1i− 1

V )
ρ1i (ρ0i− 1

V )

]β
2

1 +
[
ρ0i (ρ1i− 1

V )
ρ1i (ρ0i− 1

V )

]β
2

.
(3.9)

Please note that, the difference between the microenvironmental entropy of the
i-th cell is

∆S = S(Yi= [N1
i | NT ]|Xi = 1)− S(Yi= [N1

i | NT ]|Xi = 0) =
1
2

ln
[
N0
i (N1

i − 1)

N1
i (N0

i − 1)

]
,

(3.10)
N0
i and N1

i are the number of cell of phenotype (Xi = 0) and phenotype (Xi = 1) inthe microenvironment of i-th cell, respectively (See Supplementary Material 7 fordetails).
Fig. (3.1i), shows a sketch of themodel. In short, make the following assumptions

(A1) The microenvironment is defined by the numbers of two phenotypes only.
(A2) A binomial distribution is assumed for the occurrence of the two pheno-types.
(A3) Cells are making decisions at a fast timescale. This justifies to assume anequilibrium distribution for the different phenotypes.
In this section, one can define aminimal LEUP-driven cell decision-makingmodeland derived the corresponding phenotypic steady states. Based on this, subse-quently develop a cell-basedmodel to understand the resultingmulticelluar spatio-temporal dynamics.
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3. Phenotypic plasticity : dynamics at the level of tissue from individual cell decisions
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Figure 3.1.. Schematic diagram of (a) the microenvironment of a motile cell, where ` is thesensing radius. The sensed number of cells is proportional to the volume of the sensedmicroenvironment, i.e.,N ∝ `d, where d is the dimension. (b) Transitions in the “Go-or-Grow” model [65]. The switching between motile (Xi = 1) and resting (Xi = 0) phenotypeis shown, where the transition probabilities are defined asW10 andW01. The proliferationrate is defined by r.

3.2. Individual based model (IBM)

A discrete stochastic, spatio-temporal IBM has been presented such that it canincorporate the phenotypic switch dynamics according to LEUP. To this end, themovement of single cells have been modelled with Langevin equations. Langevinequations are well-suited tomodel cell-cell interactions and cell migration [63, 137].
The Langevin’s equation is defined on a domain L ⊂ R2 with periodic boundaryconditions. Define an interaction radius ` ∈ R around the i-th cell at position xi ∈ L.The expected interaction volume is V ∝ `2. The time evolution of the model isdefined by the following rules:
• (R1) Cells change their phenotype by sensing their microenvironment withinthe interaction radius ` according to LEUP.
• (R2) Moving cells change their orientations randomly (random walk).
• (R3) Once cells become migratory, they move with a constant speed v̄.
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3.2. Individual based model (IBM)

The above are translated to the following Langevin’s equations,
dxi

dt
= v̄vi(θi),

dθi
dt

=
1
v̄
ξθi (t),

dpi
dt

= −1
τ
(pi − peqi ),

vi =

{
v̄, if Xi = 1,
0, if Xi = 0,

(3.11)

where vi = (cos θi, sin θi)
T is the direction ofmovement of the cell i. For the temporalevolution of the probability pi of themotile state, the BGK (Bhatnagar–Gross–Krook)operator technique [15] has been used. The assumption is that the probability pievolves weakly out of its equilibrium probability peqi , which is the LEUP steady stateprobability P (Xi = 1) (see Eq. (3.9)). In turn, the parameter τ is the relaxation timetowards the corresponding probability distribution peqi . Here the noise is assumedto have a zero-mean, white noise term, which has the statistical properties 〈ξθi (t)〉 =

0 and 〈ξθi (t1) ξ
θ
j (t2)

〉
= 2Dθδ (t1 − t2) δij , where t1 and t2 are two time points,Dθ ∈ R+is the angular diffusion coefficient, δ(t) is the Dirac delta, and δij is the Kroneckerdelta. Parameter v̄ is the constant speed of every motile cell.

Simulate the Langevin model, on a two-dimensional domain, with a varying in-teraction radius `, mean cell density and sensitivity β. The assumption is that aninitial state that is approximately homogeneous in space and that each of the initial1000 cells is in the resting/migratory state with equal probability. In Figures (3.2i)and (3.2ii), showcase simulations that exhibit clustering and random spatial con-figurations, respectively. One can consider a density regime which is compatiblewith typical situations during cancer invasion. In particular, the densities in Fig. 2correspond to 1000 glioma cancer cells in a 2.5×104µm2 domain, which agrees withthe typical glioma cell density 4.5× 10−3 µm−2 [81].
To quantify cell clustering, the radial distribution function has been calculatedfor different sensitivities and different interaction radii, as shown in Figures (3.3i)and (3.3ii). The key observations from the simulation study are:
1. There is a critical threshold for the parameter β > 0, where clustering of rest-ing cells occurs (Fig. 3.3i). This is rather expected, since a sufficient sensing ofthe microenvironment is required.
2. For an intermediate interaction radius `, observe cell clusters as shown inFig. 3.3ii. Very high ` corresponds to a large number of sensed cells. Thisleads to also equal steady state probabilities, as the entropy difference in themicroenvironment, associated with the single cell states, becomes negligible.On the other hand, the lower bound of ` is expected, since enough samplingsize of cellular microenvironment is required to induce aggregation patterns.
3. In Fig. 3.3iv, show the phase diagram of the system, when parameter β andthe average density are varied. In particular, one can observe that there is aparametric regime where clustering behavior is emerging. Interestingly, high
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3. Phenotypic plasticity : dynamics at the level of tissue from individual cell decisions

(i) (ii)

Figure 3.2.. Clustering of resting cells in the IBM. (a) Snapshot of an example realization at
t = 100, where the total number of cells is fixed at 1000 and β = 40. The spatial configurationshows the clustering of resting cells andmotile cells moving in the free space. (b) Snapshotof the realization at t = 100, where the total number of cells is fixed at 1000 and β = 5.Here, one observe a completely random spatial configuration. Resting cells are shown inblue and migrating cells are marked by red arrows indicating their direction of movement.

densities do not always imply patterning and require higher values of β tosupport cluster emergence (see Fig. 3.3iii). Finally, as expected, low densitiesalso reduce the area of the patterning regime for low β.
Interestingly, existing radial distribution function data from patient-derived gliomatumors show also a “flat” behavior, i.e., they do not exhibit any clustering [81]. Inparticular, the configuration in Figure (3.2ii) corresponds to such a “flat” radial dis-tribution function, for β = 5, at densities relevant to real glioma tumors. However,there are some extra cell-cell interactions mechanisms acting in glioma cells, i.e., arepulsive force conferring a large volume exclusion effect. Studying effects of theseadditional mechanisms is the topic of current research.

3.3. Mean-field approximation

In this section, A continuous approximation is derived of the aforementioned dis-crete model using a mean-field approach. The goal is to shed light on the patternformation mechanisms, i.e., cell clustering, as observed in the microscopic simula-tions. The main idea of the mean-field approximation is to replace the descriptionof many-particle interactions by a single particle description based on an averageor effective interaction. Thereby, any multi-particle problem can be replaced by aneffective description, that can be stated in the form of an ordinary (ODE) or par-tial differential equation (PDE). In order to proceed, one will first treat the switchdynamics and the migration process separately.
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Figure 3.3.. Quantification of cell clustering. (a) Radial distribution function with standarddeviation for different values of β, for a fixed interaction radius ` = 6. The number ofcells was fixed at 1000, corresponding to a mean cell density of 0.4. (b) Radial distributionfunction with standard deviation for varying interaction radius ` at fixed sensitivity β = 100.There is an optimal sensing radius for a given mean cell density, so that interaction radiithat are too large or too low do not lead to aggregation, indicated by an almost flat radialdistribution, see purple and blue lines. (c) Radial distribution function with standard devi-ation for different mean densities, at β = 20 and ` = 4. When the mean density becomestoo large, no clustering can be observed. The inlets in (a - c) show the corresponding frac-tions of motile (checkerboard bars) and resting (filled bars) cells. (d) Phase space diagramfor cluster pattern formation. Here define clustering when maxr (g(r) > 1.09) (see text forexplanation). The interaction radius is fixed at ` = 4. All data points in (a - d) correspond tothe mean of 20 independent simulations at t = 100.
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3. Phenotypic plasticity : dynamics at the level of tissue from individual cell decisions

3.3.1. Phenotypic switching dynamics

Now consider cell i at position xi with states Xi = 0, 1. The cell changes its statein dependence on the local microenvironment according to the LEUP with rates
W01,W10 and the probabilities to be in either state are denoted by p0,1. One assumethat the system is always close to the steady state, so the master equation reads

d

dt
p0 = W10p1 −W01p0 ≈ 0, (3.12)

and p0,1 are given by eq. (3.5). By rearranging the terms, obtain for the switchingrates
W10

W01
=
p0

p1
. (3.13)

For simplicity, one can setW01 = p1 where the transition probability towards motilephenotypes equals to the moving steady state probability p1. This coincides withthe “detailed balance condition”. The steady state probabilities p0,1 depend on thenumber of cells N0,1
i in the respective phenotypes in the microenvironment. Cell iat position xi senses

NX
i (x1, . . . ,xi, . . . ,xi, t) :=

N∑
j=1

ξ(xj(t)− xi(t), t)δXj ,X , X = 0, 1. (3.14)
Here, sum over all cells j, and ξ(xj(t)− xi(t), t) is a Boolean stochastic variable thatserves as the sensing function of a cell at xi. It depends on the distance betweencells and time, and ξ = 1 indicates that the cell j at xj is sensed by cell i at position
xi. To match the IBM, assume that

ξ(xj(t)− xi(t), t) = Θ(`− |xj(t)− xi(t)|), ` > 0, (3.15)
with the Heaviside step function Θ(x), so that all cells in a ball of radius ` around xiare sensed.
To proceed, a mean-field approximation is applied to calculate the expectedswitching rate 〈W10(N0

i ,N1
i )〉 ≈ W01(〈N0

i 〉 , 〈N1
i 〉). Note that the dependence onspace and time is dropped for better readability. Let φi(X,x, t) denote the prob-ability of finding a cell i in a small volume dV around x at time twith the phenotype

X = 0, 1. Formally have
φi(X,x, t) = 〈δ(x− xi(t))δX,Xi〉 , (3.16)

where the average is the ensemble average, and the total densities of resting/migratingcells are
Φ(x, t) :=

∑
i

φi(0,x, t), (3.17)
Ψ(x, t) :=

∑
i

φi(1,x, t). (3.18)
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3.3. Mean-field approximation

For the expected density of sensed cells in the microenvironment around x obtain
ρ0(x, t) :=

〈N0
i (x, t)〉
V

=
1
V

∫
B`(x)

Φ(y, t) dV , (3.19)
ρ1(x, t) :=

〈N1
i (x, t)〉
V

=
1
V

∫
B`(x)

Ψ(y, t) dV , (3.20)
where V ∝ `d, and where have already used eq. (3.15). Consequently, to obtain theapproximate switching rate

W̄10 = p0(ρ0, ρ1), (3.21)
and the switch dynamics is (dropping dependencies on space and time for simplic-ity)

∂

∂t
φi(0) = p0φi(1)− p1φi(0). (3.22)

Summing over all cells, obtain for the total density of resting cells
∂

∂t
Φ = p0Ψ− p1Φ. (3.23)

Note that this is a non-local, non-linear set of PDEs, which are difficult to treat ana-lytically. However, one can further simplify the analysis by making another approx-imation, assuming that the sensing radius ` is much smaller than the total domainsize. Then, one can replace the non-local sensing function ξ(xj(t)− xi(t), t) by alocal delta distribution
ξ(xj(t)− xi(t), t)→ δ(xj(t)− xi(t)). (3.24)

In this case, the expected number of sensed cells in the microenvironment around
x simply becomes the local density of the respective phenotype

ρ0(x, t) :=
〈
N0
i (x, t)

〉
=

Φ(x, t)
`d

, (3.25)
ρ1(x, t) :=

〈
N1
i (x, t)

〉
=

Ψ(x, t)
`d

. (3.26)
Finally, the rate W̄10 reduces to

W̄10 = p0(ρ0, ρ1) =
1

1 + eβ∆S
=

1

1 +
[
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

]β
2

, (3.27)

and the reversed transition probability W̄01 is
W̄01 = p1(ρ0, ρ1) = 1− 1

1 + eβ∆S
= 1− 1

1 +
[
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

]β
2

, (3.28)

where the volume is defined as V = `d.
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3. Phenotypic plasticity : dynamics at the level of tissue from individual cell decisions

3.3.2. Cell migration dynamics

In this section, the macroscopic equation has been derived in two spatial dimen-sions for themotile cell population. As before it can bewritten in the correspondingstochastic Langevin’s equations as
d

dt
xi = v̄vi(θi),

d

dt
θi =

1
v̄
ξθi (t).

(3.29)
This process can be considered as a special kind of active Brownian motion. Inthis kind of Langevin’s equation, the stochastic force creates variations of orienta-tion. According to [108] one can derive the corresponding Fokker-Planck equationfor migrating cells using adiabatic elimination and averaging it over different noiserealizations obtaining the following diffusion equation

∂ρ1(x, t)
∂t

=
v̄4

2Dθ

∇2ρ1(x, t). (3.30)
Here D1 is denoted as diffusion coefficient which is v̄4

2Dθ
.

3.3.3. Superposition of phenotypic switching dynamics and cell
migration

Combining the results in the previous sections, someone can easily formulate asystem of PDEs as
∂tρ0(x, t) = νE(ρ0, ρ1) (3.31)
∂tρ1(x, t) = D1∇2ρ1 − νE(ρ0, ρ1) (3.32)
E(ρ0, ρ1) = W̄10(ρ0, ρ1)ρ1 − W̄01(ρ0, ρ1)ρ0 (3.33)

whereE(ρ0, ρ1) is the phenotypic exchange termand ν is the corresponding timescaleratio of the switching and diffusion processes, i.e.,ν = τS
τD
. To ensure the numeri-cal consistency of the above system, resting cells diffuse in a very slow manneri.e.,D0 � D1 has been assumed, which results in the following reaction-diffusionsystem of equations

∂tρ0(x, t) = D0∇2ρ0 + νE(ρ0, ρ1), (3.34)
∂tρ1(x, t) = D1∇2ρ1 − νE(ρ0, ρ1). (3.35)

3.4. Spatio-temporal dynamics of cell
migration/proliferation plasticity

In this section, the mean-field approximation is studied of the aforementionedstochastic plasticity dynamics for different regimes of the sensitivity β and the inter-
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3.4. Spatio-temporal dynamics of cell migration/proliferation plasticity

action radius `. In particular, when cells have a very large interaction radius (`� 1)and then a finite one, one can study the system dynamics. Finally, the special case
β = 0 has examined, i.e., cells decide independently of their microenvironment.

3.4.1. Case I : Large interaction radius

Here, the very large interaction radius system (` � 1 =⇒ V � 1) is focused.Although, this parameter regime is not biologically relevant, it is very instructivesince it allows us to derive analytical estimates for the system’s dynamics. Here,the macroscopic system is generalized by adding proliferation dynamics (logisticgrowth). the phenotypic switch dynamics are recapitulated by setting the prolifer-ation rate to zero, i.e.,r = 0. The full system reads
∂ρ0

∂t
= D0∇2ρ0 + νE0 (ρ0, ρ1) + rρ0 (1− ρ1 − ρ0) ,

∂ρ1

∂t
= D1∇2ρ1 − νE0 (ρ0, ρ1) .

(3.36)

In turn, a non-dimensionalization of eqns. (3.36) is conducted to identify the vari-ables. Moreover, this helps us to gain a knowledge about the relationships betweenthe different model parameters. By assuming that the system size is fixed at L thenon-dimensional quantities read
x∗ =

x

L
=⇒ ∂2

∂x∗2
= L2 ∂

2

∂x2 ,

t∗ =
D0t

L2 =⇒ ∂

∂t∗
=
L2

D0

∂

∂t
,

γ =
L2ν

D0
,

D =
D1

D0
,

r
′
=
r

ν
.

(3.37)

In the limit V � 1, the Eq. (3.36) can also be written as
∂ρ0

∂t∗
= ∇∗2ρ0 + γ

(
(ρ1 − ρ0)

(
1
2
− β̃ (ρ1 + ρ0)

ρ1ρ0

)
+ r

′
ρ0 (1− ρ1 − ρ0)

)
,

∂ρ1

∂t∗
= D∇∗2ρ1 − γ

(
(ρ1 − ρ0)

(
1
2
− β̃ (ρ1 + ρ0)

ρ1ρ0

))
.

(3.38)

To understand the behavior of the system at long times, a fixed point analysis hasconducted. Initially, one assume a well-stirred system, i.e., no spatial interactions.Then, Eqs. (3.38) can be written as coupled non-linear ODEs which have three fixed
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points
(
ρA∗0 , ρA∗1

)
=

(
1
2
,
1
2

)
,

(
ρB∗0 , ρB∗1

)
=

(
1
2

(
1 +

√
1− 8β̃

)
,
1
2

(
1−

√
1− 8β̃

))
,

(
ρC∗0 , ρC∗1

)
=

(
1
2

(
1−

√
1− 8β̃

)
,
1
2

(
1 +

√
1− 8β̃

))
.

(3.39)

The above imply a pitchfork bifurcation for the β̃ = β
8V parameter, i.e., there

exists a critical value β̃c that introduces the bistable state. From Eqs.(3.39), one caneasily deduce that the critical sensitivity value
1− 8β̃c = 0⇐⇒ βc = V . (3.40)

This is an acceptable approximation even for the finite interaction radius system(see next section). In the following, the system is analyzed if it is able to producespatial patterns. Applying linear stability analysis for the spatially resolved systemEqs. (3.38), one can deduce that no pattern formation is possible (for details checknext section). Any perturbations to the homogeneous state lead always to a spa-tially homogeneous steady state. When r = 0 this result is consistent with the find-ings in discrete IBM simulations where very large interaction radii do not conferany clustering, as shown in Fig. 3.3ii.

3.4.2. Case II : Finite interaction radius

Now let’s turn to the full system for intermediate interaction radius (also assumingproliferation). This implies a finite interaction volume, V and for analytical feasi-bility are interested in the Gaussian approximation of the switching probabilitiesand their corresponding mean-field terms. The full system of PDEs assuming alsoproliferation reads

∂ρ0

∂t∗
= ∇∗2ρ0 + γ


ρ1 − ρ0

(
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

)β
2

1 +
(
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

)β
2

+ r
′
ρ0 (1− ρ1 − ρ0)

 ,

∂ρ1

∂t∗
= D∇∗2ρ1 − γ

ρ1 − ρ0

(
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

)β
2

1 +
(
ρ0(ρ1− 1

V )
ρ1(ρ0− 1

V )

)β
2

.

(3.41)

Since closed expression of steady states are not analytically feasible, one obtainthe bifurcation diagram numerically, see Fig (3.4i). The existence of a supercriticalpitchfork bifurcation and the existence of a critical βc can be observed. For β ≥ βc,
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Figure 3.4.. (a) Bifurcation diagram for moving cells in the finite interaction radius limitwith respect to β, where proliferation rate r is fixed to 0 and V −1 at 0.02. The bifurcationdiagram is symmetric for resting cells, i.e.,ρ∗0. (b) The critical point value of the bifurcationdiagram (where the solution splits in two branches) is plotted against the inverse volume
1
V .

the systems depart from balanced state (ρ0 = ρ1 = 1
2) to the coexistence of a “fluid”(most cells migrate) and a “solid” (most cells are resting) phase. The switch is con-trolled by the perturbation on the ratio of migratory and resting cells. Interestingly,someone can compare the analytic estimate of βc = V , from the V � 1 case, withthe one calculated for the finite V system. Fig. (3.4ii) shows that the infinite systemapproximation provides an upper bound for βc, which is not too far from the realvalue of finite systems. The existence of a critical βc with respect to the two phasesis evident in the IBM simulations as well. In particular, if the ratio of stationary overmotile cells is quantified, a similar behavior of the critical sensitivity for increasing

V is observed, since it decreases (see Fig.7.5 in SI). However, one cannot conduct astrict quantitative comparison since the bifurcation analysis does not involve anydiffusion, as opposed to the IBM simulation.
In turn, linear stability analysis is applied to identify parameter regimes that pro-mote diffusion driven pattern formation or Turing instability. To analyze the Turinginstability [115] have to find the system’s steady state, (i.e., when diffusion is notpresent in the systems of Eq.(3.36)). It has been shown that d = D1

D0
� 1 is a neces-sary condition for the emergence of spatially heterogeneous solution, i.e., patterns.Now, the system of PDEs (i.e., Eq.(3.36)) can be written in a generalizedmatrix form

∂ρ

∂t
= D∇2ρ+ γRρ, D =

(
1 0
0 d

)
,

R =

(
∂E0(ρ0,ρ1)

∂ρ0
+ r

′
(1− ρ1 − ρ0)− r

′
ρ0

∂E0(ρ0,ρ1)
∂ρ1

− r′ρ0

−∂E0(ρ0,ρ1)
∂ρ0

−∂E0(ρ0,ρ1)
∂ρ1

)
(ρ∗0,ρ∗1)

,

=

(
fu fv
gu gv

)
(ρ∗0,ρ∗1)

,

(3.42)
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Figure 3.5.. Spatio-temporal pattern formation in dependence of sensitivity β/2, prolifer-ation rate r′ and inverse sensing volume a = 1
V . (a - c) The critical diffusion coefficient

dc = D1/D0 decreases for increasing sensitivity or increasing proliferation rate. (d - f) Thecritical wave number kc of the observed pattern increases for an increasing sensitivity.
where ρ is defined as (ρ0 − ρ∗0, ρ1 − ρ∗1)

T andR is the Jacobian at ρ∗ = (ρ∗0, ρ∗1). Usingthe Turing conditions of instability [115], patterns can be found when N is finitein zero-flux boundary conditions. All the Turing instability conditions have beenchecked using the given relations:
fu + gv < 0, fugv − fvgu > 0,
Dfu + gv > 0, (Dfu + gv)2 − 4D(fugv − fvgu) > 0.

(3.43)
Interestingly, only when the density of resting cells is larger than that of themovingcells, patterns are formed under Turing instability conditions. In order to investi-gate the system’s potential to exhibit pattern formation, the range of validity of theTuring instability criteria (3.43) is checked. Diffusion-driven instability conditionsare satisfied for a large portion of the parameter space. In turn, for these param-eters, calculate the critical diffusion coefficient dc. For values d > dc are able toobserve patterns. This condition is generally fulfilled as the resting cells are onlymoving passively due to external noise and cell-cell interactions like cell-cell adhe-sion, while the migratory cells also move actively. The existence of dc is associatedwith the existence of a critical wave number kc [115].

dc =
−2(2fvgu − fugv)±

√
(2(2fvgu − fugv))2 − 4f 2

ug
2
v

2f 2
u

,

kc = γ

[
Det(A)
dc

] 1
2

.

(3.44)
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A B(a) (b)

Figure 3.6.. Pattern formation in the mean-field model. Densities of proliferating (a) andmigrating (b) cells at t = 50000. Starting from an almost homogeneous initial state witha sinusoidal perturbation, the resting cells form a periodic pattern of high-density spikes,while the density of moving cells has minima at the position of the high-density spikes ofthe resting cells.

In Fig. (3.5) the parameter regime is identified such that it allows observing patternsand then corresponding dc and kc.
By fixing the initial conditions to a cosinewave, one canobserve in onedimensionthe existence of regular spikes as shown in Fig (3.6). Please note that the exactpattern is sensitive to the initial conditions. In turn, the system in 2D is simulatedand for the sameparameters andpatterning in the formof dots is observed. Finally,one can investigate if the type of patterns changes for variations in parameters βand r′ (see Fig. (3.7)). If d > dc then need a large domain or size of the system toobserve the patterns. In the 2D case, the discoidal patterns of resting phenotypehave observed, which resemble the 1D case. So, the radius of the circles of thepatterns are increased if someone fixes the domain size. Moreover, one observesin both dimensions (i.e.,1D and 2D) the critical spatial frequency increases withdecreasing r′ .
In comparison with the discrete IBM simulations, the simulation clusters can beidentified by the discoidal mean-field patterns. Under this statement, one find that:
1. There exists a critical β that allows for the emergence of patterns, as in theIBM simulations.
2. For very low and very high interaction radius `, observe no patterns, which isconsistent with the IBM results (see Fig.3.3ii).
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TS2

TS1

B CA(a) (b) (c)

Figure 3.7.. Spatio-temporal pattern formation of the mean-field model. (a) Turing spaceand critical wave number. (b - c) Density of resting cells over time. (b) A single high-densityspike forms in agreement with the prediction of a small critical wave length for the givenparameters (red dot TS1 in (a)). (c) For a higher sensitivity and proliferation rate, a peri-odic pattern with smaller wave length emerges, corresponding to the prediction of a largercritical wave number (red dot TS2 in (a)). Here β′ = β
2 and a = 1

V .

t = 0 t = 2700 t = 10200

TS1, ρ0

A B C(a) (b) (c)

Figure 3.8.. Two-dimensional simulation of the mean-field approximation with finite inter-action radius. (a) Initial state, (b) t = 2700, (c) t = 10200 corresponding to a stable steadystate. Parameters refer to point (TS1) in the Turing space, as displayed in Fig. (3.7).
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3.5. Summary and outlook

3.4.3. Phenotypic switching dynamics in the absence of
microenvironmental sensing

Finally, the case β = 0 has been investigated where cells do not sense their microen-vironment. So, they end up with the following system,
∂ρ0

∂t∗
= ∇∗2ρ0 + γ

(
(ρ1 − ρ0)

2
+ r

′
ρ0 (1− ρ1 − ρ0)

)
,

∂ρ1

∂t∗
= D∇∗2ρ1 − γ

(ρ1 − ρ0)

2
.

(3.45)

If one do a fixed point analysis similar to equation (3.38). Assuming no spatial dy-namics, two fixed points can be found i.e.,
(
ρP∗0 , ρP∗1

)
=

(
1
2
,
1
2

)
,(

ρQ∗0 , ρQ∗1

)
= (0, 0).

(3.46)

For further details see Fig. 7.1 in Supplementary Material 7 It can be clearly shownthat the fixed point (0,0) is unstable and (1
2 ,

1
2

) is a saddle point. One can also writethe coupled PDE equations in a single PDE as ll, if ρ0 = ρ1 = ρ̃. Then the equationcan be obtained as
∂ρ̃

∂t∗
=

(1 +D)
2
∇∗2ρ̃+

r

2
ρ̃ (1− 2ρ̃) . (3.47)

Now, clearly it can be seen that the Eq.(3.47) is similar to the Fisher-Kolmogorovequation [115]. It is known that the Fisher-Kolmogorov equation does not exhibitany pattern formation instabilities. The latter observation is consistent with thediscrete IBM simulations, where no clustering is observed.

3.5. Summary and outlook

Recently, the Least microEnvironmental Uncertainty Principle (LEUP) has been pro-posed as an organization principle for cell decision-making inmulticellular systems.In this chapter, this principle has been applied to shed light on the effects of pheno-typic plasticity for tissue dynamics with a mathematical model. Two types of plas-ticity has been focused: a Go-or-Rest, and a Go-or-Grow phenotypic dichotomy,which play key roles in important processes in biological development and patho-logical situations as cancer invasion. Someone can take an assumption such thatin any given spatial mesoscopic sample, the presence of cell phenotypes follows abinomial distribution. Using this assumption, one can calculate the microenviron-mental entropy and the LEUP-driven probability distribution of each phenotype.On the basis of this distribution, an appropriate microscopic stochastic model hasbeen defined for the spatio-temporal dynamics of both phenotypes, and in turnderived the corresponding mean-field description resulting in a system of coupledreaction-diffusion equations. The main results of the study are: (i) in the case of
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Go-or-Rest plasticity, there exists a supercritical pitchfork bifurcation that definesa switch between a “fluid” and a “solid” phase, and (ii) in the case of Go-or-Growplasticity, for the “solid” phase, one can derive conditions for the emergence of Tur-ing patterns. Interestingly, the existence of Turing patterns requires a critical LEUPsensitivity to themicroenvironment and aminimum interaction range. Please note,that in this work a clustered, immobile configuration is defined as “solid” and thehomogeneous mobile configuration is defined as “fluid”. In physics, solid statesare characterized by deep “valleys” in their radial distribution function, separatedby characteristic distances controlled by the underlying repulsive and adhesiveforces. Here, the radial distribution function of the “solid” state does not like phys-ical analogs because cell-cell adhesions and volume exclusions are not included inthe cell dynamics. Adding such interaction forces to the corresponding IBM can beincluded which would result in classical solid and fluid radial distribution functions,and subject to future work.
The model assumes binary transitions between two discrete phenotypes, whichis an extreme simplification of biological reality. Certainly, one could include acontinuous spectrum of motile/proliferative phenotypes that is expected to implyeven richer spatio-temporal dynamics. Indeed, assuming a continuous state (ve-locity) space would potentially lead to further interesting bifurcations, such as themetastable EMT state as found in [84, 19], or complex spatio-temporal patterns asindicated in [11].
Interestingly, the LEUP-driven IBM is an extension of a Vicsek-type model [162],which was formulated in the context of self-propelled particles [62]. This modelexhibits a novel collective behavior when compared to the past published resultsfrom Vicsek-type ofmodels. In particular, to the knowledge it is the first time to pro-duce with such models Turing patterns, i.e.,dynamics clusters of non-motile cellsof specific characteristic wavelength. Typically, in Viscek-type models may observemoving clusters of swirling cells (e.g. themilling Viscekmodel) but never static ones.
At this point, one can focus on the biological assumptions and implications ofthe study. The molecular regulatory mechanisms involved in EMT or GoG remainlargely unknown, where the latter can be viewed as an EMT with proliferation con-strained to the epithelial/resting phase. Here, the phenotypic regulation of bothmechanisms is based on the decreasing of microenvironmental entropy in physio-logical tissues is assumed precisely, which helps to predict the multicellular spatio-temporal dynamics. This assumption is supported by the fact that healthy physio-logical processes, biological development or processes like wound healing, whereEMT/MET or GoG are present, typically lead to an ordered (low entropy) tissue froma disordered initial condition. On the other hand, deregulation of EMT and GoGhave been already identified as pivotal elements in invading cancers [6, 65], wheregenetic and phenotypic heterogeneity, characterized by high entropy, is a key char-acteristic. Assuming a LEUP-driven migration/proliferation, phenotypic regulationhelps to understand how cells control multicellular dynamics in terms of growthand patterning.
Implications inmulticellular growth control: The central finding of this study is asso-ciated with the bifurcation diagram of the LEUP sensitivity parameter β in Fig. 3.4i.
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As stated before, the parameter β quantifies how prone cells are in sensing andresponding to their microenvironmental stimuli. When β = 0 cells migrate andproliferate independent of their microenvironmental cues, which corresponds toone of the cancer hallmarks [64]. In this case, the systems grows uncontrollably,resembling a cancerous tissue [64]. The resulting Fisher-Kolmogorov macroscopicbehavior has been prototypically used to model invading tumors [39]. Moreover,for low β LEUP theory predicts no spatial order, in terms of clustering implying “flat”radial distribution functions (see Figure (3.2ii)). This finding is confirmed by the spa-tial analysis of patient glioma biopsy samples in Jiao et al. [81]. On the other hand,by adding a death process for any motility state in the GoG model, one can re-capitulate the Allee effect (bistability between extinction and growth) as found inBoettger et al. [22]. A cell population in the “fluid” state will go extinct (motile cellsdo not proliferate but still have a probability to die) whereas systems in the “solid”state will always grow until carrying capacity. Therefore, in the bistability regime,cell sensing properties lead to multicellular growth control.
Implications in multicellular pattern control: Increased cell sensing β representsthe physiological tissue dynamics, since it allows the system to control its behav-ior. By tuning β and the ratio of motile/resting cells, the system exhibits a bistablebehavior between a “fluid”/mesenchymal-type and a “solid”/epithelial-type tissuephase. This kind of tissue level switch is of utmost importance in physiological pro-cesses such as wound healing or embryogenesis [8]. After a tissue injury, the heal-ing is characterized by a “fluid” diffusive expansion of fibroblast cells, that adopta migratory phenotype via EMT [167]. After covering the wound, the “solid” phaseemerges as cells stop the migration program and proliferate to finalize tissue re-pair. In the absence of proliferation, the bistable switch from the “solid” to the“fluid” state could potentially explain the jamming phase transition observed in ep-ithelial colonies, under EGF modulation and Rab5a knock-out [102]. Typically, the“solid” multicellular phase is prone to the emergence of pattern formation, whichfrequently occurs in physiological epithelial tissues [167, 67]. When EMT is com-binedwith a Notch-Delta cell-cell communication, then epithelial/immotile cell clus-ters emerge [19], as observed in the IBM andmean-field simulations. Adding prolif-eration in the GoG model, the type and the size of such emerging patterns requirea tight regulation of microenvironmental sensing β and proliferation rate r, as in-dicated by Fig. 7.3i, since the critical wavelength kc depends on the ratio β

r′
. SuchTuring patterns are in agreement with previous GoG studies [125], where Turingpatterns are emerging. At this point, onewould like to outline some ideas on the ex-perimental validation of LEUP. An ideal experimental system would involve a cellpopulation exhibiting either EMT/MET or migration/proliferation plasticity. As anexample of EMT/MET plasticity, an epithelial cell colony can be choosen. The mainpremise of LEUP is that cells equip Bayesian inference to decide over their pheno-types, expressed as a combination of a sensed microenvironmental distributionof external variables and a phenotypic prior (cell intrinsic variable). As internalvariables can choose the cell motility and proliferation rates. The former can bemeasured by particle image velocimetry (PIV) and the latter by live imaging or Ki67(or BrdU) staining. Also, one could pharmacologically control cell proliferation. Asextrinsic variables, one can assume the local cell density and in particular the cor-responding fluctuations. The second moment of the local cell density depends on
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the average local cell density (first moment) and can be manipulated by localizedcell ablation or by mixing with non-cellular material, such as collagen, thus creat-ing different spatial cell distributions. After splitting the experiments in trainingand test data, one needs to fit the LEUP parameters, i.e., the sensitivity to the mi-croenvironment and the interaction radius, according to training data in order topredict the experimentally measured test data. A good basis for the approach areexperiments by Puliafito [129], which show that increasing density in a colony ofepithelial kidney cells may induce transitions from the mesenchymal to the epithe-lial phenotype (MET). In the future, one could also investigate the inverse transitionand control the changes in the local cell density distribution. Such an experimentalsetting would allow us to support the LEUP hypothesis.
The focus of this chapter is the application of the LEUP idea to study collectiveeffects of different types of phenotypic plasticity allowing reversible adaptations tochange environmental conditions. However, the LEUP idea can also be applied toanalyze collective effects of irreversible cell fate determination playing a key rolein cell differentiation and development. In particular, early embryonic tissue con-sists of a mix of proliferating pluripotent progenitor cells [94].]. In this case, thecellular microenvironment possesses a high phenotypic entropy, since all possiblephenotypes are still equiprobable. Subsequently, spatial mechanochemical per-turbations produce appropriate microenvironmental changes leading to so-calledstem cell niches that allow for cell differentiation [85]. Pluripotent cells sense abroad spectrum of microenvironmental cues aiming to find an appropriate differ-entiation niche. As pluripotent cells further specialize, they irreversibly fine-tunetheir sensing machinery to adapt to the corresponding microenvironment, whichfurther differentiates to a specific tissue (implying decreasing of microenvironmen-tal entropy over time). A particularly important cell fate specification mechanismis the Notch-Delta interaction [5], where neighboring cells use lateral inhibition toadapt distinct fates (high Delta low Notch and vice versa). The collective effect ofthis mechanism is the evolution of the system to low entropy organized patterns[21].
In conclusion, this study shows how individual LEUP-driven cell decisions the dy-namics at the tissue level and how knowledge of collective cell decision-making canbe used to control of growth and pattern.
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4. Cellular orientation decisions:
origin of pattern formations in
collective cell migrations

In this chapter, 1 the LEUP based theory on collective cell migration has been rep-resented. One can think of migration as an active decision-making process. Of-ten, neither biophysical nor phenomenological models are able to provide a plausi-ble explanation or quantitative reproduction of collective migration patterns, dueto the lack of complete mechanistic knowledge. Such an example is the spatio-temporal dynamics of spherical S. marcescens bacteria. Interestingly, prior model-ing works ([4]) were able to partially reproduce the experimental results, since theunderlying biophysical mechanisms are still unclear. In such cases, one could relyon machine/statistical learning methods that circumvent the biophysical details([117];[170];[120]). However, such methods are typically of high accuracy but lowinterpretability, i.e., they are “black boxes” that do not offer mechanistic insights,and prone to overfitting. Applying the LEUP to collective cell migration, one canaspire (i) to provide a low-dimensional statistical mechanics description, (ii) circum-vent the uncertainty about the underlying biophysical mechanisms and (iii) providea relationship to phenomenological models (e.g., the Vicsek model).

1This chapter includes text and figures from the publication and corresponding supplementaryinformation: Arnab Barua, Josué Manik Nava-Sedeño and Haralampos Hatzikirou, Scientific Re-
ports (2020) 10: 22371. Author contribution: Haralampos Hatzikirou and Arnab Barua formu-lated the mathematical model and conceptualized the project. Arnab Barua and Josué ManikNava-Sedeño performed the analysis and simulations. All authors interpreted the results. JosuéManik Nava-Sedeño wrote the manuscript with contributions from all authors. All authors readand approved the final manuscript.
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4. Cellular orientation decisions: origin of pattern formations in collective cell
migrations

4.1. Mathematical framework

Moving and interacting cells are modeled by a two-dimensional self-propelled par-ticle model (SPP). In this model, N ∈ N cells move on a two-dimensional area. The
i-th cell is characterized by its position, ~ri ∈ R2, speed, vi ∈ [0,∞) ⊂ R, and an ori-entation θi ∈ [0, 2π) ⊂ R. Due to the small size of cells, it is assumed that viscousforces dominate. Changes in speed and orientation result from local potentials,
Uθ (~rm, θm, vm) ,Uv (~rm, θm, vm) : R2 × [0, 2π) × [0,∞) 7→ R which depend on the posi-tions and polar velocity components of cells within a radius R ∈ R+. The bias ofthe cell to follow the potential gradients is regulated by the parameters βθ, βv ∈ R,called angular and radial sensitivities, respectively. Additionally, velocity fluctua-tions occur due to stochastic noise terms ξαi (t) ∈ [0, 2π), α ∈ {θ, v} where t ∈ R+denotes time. The noise will be assumed to be a zero-mean, white noise term,which has the statistical properties 〈ξαi (t)〉 = 0 and 〈ξαi (t1) ξ

α
m (t2)〉 = 2Dαδ (t1 − t2) δim,where t1 and t2 are two time points, Dα ∈ R+ is either the angular (α = θ) or radial(α = v) diffusion coefficient, δ(t) is the Dirac delta, and δim is the Kronecker delta.Finally, the radial acceleration will be assumed to be damped by a density depen-dent friction, ψ (ρi). In the following, it will be assumed that the density-dependentfriction is given by ψ (ρi) = ρi − ρ̄, where ρi is the local cell density within the i-thcell’s interaction radius, and ρ̄ is the global average cell density. Taking everythinginto account, the stochastic equations of motion of the i-th cell reads as [135]

d

dt
~ri = vi~v (θi) (4.1a)

d

dt
θi = −βθ

∂

∂θi
Uθ (~rm, θm,~vm) + g(~vi)ξθi (t) (4.1b)

d

dt
vi = −βv

∂

∂vi
Uv (~rm, θm,~vm)− εψ (ρi) vi + ξvi (t). (4.1c)

where ~v (θi) is the normalized velocity of the cell and ε is a parameter. A repre-sentation of the SPP model is shown in Fig. 4.1. The function g(~vi) modulates thenoise variance and allows us to model certain distributions (such as the Rayleighdistribution in Section 5).
The interaction potentials Ui (~rm, θm,~vm), which dictate the velocity dynamics ofcells, need to be specified. Biophysically, the potentials should encompass steric ef-fects, hydrodynamic interactions, chemotactic effects, and terms arising from inter-nal cellular processes, for example, flagella motor dynamics, actin polymerization,receptor dynamics, etc. Finding such potentials is a formidable task, since not all ofthemechanisms and interactions involved are known. To circumvent this problem,a variational principle of cell decision-making related to entropy maximization [16],known as the least microenvironmental uncertainty principle (LEUP), will be used[66]. In the next section, such a case will be discussed.
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4.1. Mathematical framework

i
ii

Figure 4.1.. Graphic representation of the dynamics of the SPP model. The i-th cell isrepresented by a point particle with speed vi and orientation θi. Depending on the formof the interaction potential, the cell may feel a reorientation force −∂θUθ and a radial force
−∂vUv due to interaction with other cells inside the interaction neighborhood defined bythe radius R.
4.1.1. Self-propelled particle model with leup based

decision-making

The internal energy depends on the internal states of the cell, as well as the internalstates of other cells in the surroundings. Such internal states can be a vector ofphysical quantities (e.g., velocity, acceleration) and/or chemical variables such asintracellular proteins, genes and so on. An interaction potential that models theequations of motion has been defined.
By doing so, it is evident that the responsiveness of the cells to LEUP can bequantified by the sensitivity βα = −β. Analogically, the equations of motion of themodel can be written using Eq. (2.6) and Eq. (4.1c) as

d

dt
~ri = vi~v (θi) (4.2a)

d

dt
θi = βθ

∂

∂θi
S (Θi | θi) + g(~vi)ξθi (t) (4.2b)

d

dt
vi = βv

∂

∂vi
S (Vi | vi)− εψ (ρi) vi + ξvi (t). (4.2c)

To illustrate entropy calculation, it will be assumed that the orientations of cellswithin the interaction neighborhood are distributed according to
P (ϑ ∈ Θi | θi) =

sinh γ
2π [cosh (γ)− cos (ϑ− µ)]

, (4.3)
where µ is themean of the distribution and γ is a parameter related to the variance.This is a wrapped Cauchy distribution, periodic over the interval [0, 2π]. Similarly,
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cell velocities will be assumed to be distributed half-normally,
P (v ∈ vi | vi) =

√
2
σ2π

exp
(
− v2

2σ2

)
, (4.4)

where σ2 is proportional to the variance of the distribution. Accordingly, the angularentropy is
S (Θi | θi) = ln (2π) + ln

(
1− e−2γ) , (4.5)

while the velocity entropy is
S (Vi | vi) =

1
2

ln
(
πσ2

2

)
+

1
2
. (4.6)

The parameter σ can be determined from the local speed variance, while the pa-rameter γ depends on the local polar order (i.e., the degree of parallel alignment)of cell velocities in the neighborhood. It should be noted that the qualitative be-havior of the model is independent of the particular choice of distributions, andthe distributions considered here are suggested only for ease of calculation. Be-fore defining γ, first the observables will be defined to characterize the order ofthe velocity field.

4.1.2. Order parameters and observables

The normalized complex velocity of the i-th cell is denoted by zi ∈ C as zi = eiθi ,where i is the imaginary unit. The k-th moment of the velocity over an area A isgiven by 〈zk〉
A

= 1
NA

∑
m∈A z

k
m, where the sum is over all cells in area A, and NA isthe total number of cells in A. The polar order parameter in the area A is given by

S1
A = |〈z〉A| , (4.7)

which is the modulus of the first moment of the complex velocity in A, while thenematic order parameter in the area A is given by
S2
A =

∣∣〈z2〉
A

∣∣ , (4.8)
which is themodulus of the secondmoment of the complex velocity inA. The orderparameters are bounded, i.e.,

0 ≤ S1
A,S2

A ≤ 1, (4.9)
due to the complex velocities zi being normalized. The parameter γ for the distri-bution of orientations in the neighborhood of the i-th cell is given by,

γ = − ln
(
S1
CR,i

)
, (4.10)

where the subindices CR,i indicate a circular area of radius R centered at ~ri. Thelatter directly stems from the properties of the wrapped Cauchy distribution.
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4.2. Comparison with Vicsek model

While global polar and/or nematic order are characteristic of steady flows, rotat-ing flow fields are commonly observed in out-of-equilibrium systems. The vorticityis an observable which is equal to twice the local angular velocity, and is thus ameasure of the local strength and direction of rotation of the field. The vorticity ωis defined as
ω (~r) = [∇× ~vmean (~r)] · ~k, (4.11)

where ~vmean (~r) is the mean velocity field at a point ~r, and ~k is the vector normal tothe plane where cells move.

4.1.3. Statistical test

For the statistical evaluation of the results, the χ2-test has been used. The testinghypothesis is that the experimental data are explained by the model predictions.To test it, one can construct
χ2
j =

N∑
i=1

(Ô(j)
i −O

(j)
i

σ̂
(j)
i

)2
, (4.12)

where O(j)
i is the experimental values of a certain observable j, being either speed

or vorticity, and the Ô(j)
i and σ̂(j)

i is the corresponding mean value of the stochasticmodel predictions, based on an ensemble of 50 simulations for each density point
i = 1...N , N = 11. The quantity Ô

(j)
i −O

(j)
i

σ̂
(j)
i

can be viewed as a z-score for each, Ô(j)
iand for a large enough simulation ensemble should converge to a normal distri-bution. The total degrees of freedom for both observables is 2N = 22. The cal-culate the reduced χ2−statistic, or χ2 per degree of freedom, which is defined as

χ2
2N = (2N)−1∑

j χ
2
j = 1.97 being close enough to 1. This suggests that the fitting issatisfactory, since values χ2

2N � 1 indicate a bad fit to the experimental data.

4.2. Comparison with Vicsek model

By using the LEUP, interaction as a change in velocity dictated by the local entropygradient has modeled. The modulation of βα parameters modulates the responseof cells to the local entropy gradient and gives rise to relationships with knownphenomenological models, such as the Vicsek model. The absolute value |βα| isproportional to the likelihood of the cell to change its velocity according to a givenentropy gradient. For βα < 0, cells tend to go against the local entropy gradienttowards the entropy minimum. In the specific case of α = θ, a negative sensitivitywould restrict the distribution of angles to a narrow selection. Conversely, βα > 0forces cells to follow the entropy gradient towards the entropy maximum, broad-ening the distribution. From here on, the effect of cell interactions is assumed, andit will be averaging the radial component, therefore βv < 0.
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To evaluate the effect of these two opposite migration strategies, the angularsteady states are analyzed in the two parameter regimes. Without loss of gener-ality, assume that, in the steady state, the mean velocity is v̄ = 1. By expanding
S1
CR,i

using Eq. (4.7), defining the components of the mean neighborhood velocityas v̄y,i =
∑

CR,i3m 6=i sin θm and v̄x,i =
∑

CR,i3m6=i cos θm, and differentiating Eq. (4.5),find that the orientation of θi at the entropy extrema must be such that (see Sup-plementary Material 7)
tan θi =

v̄y,i
v̄x,i

,

but v̄y,i
v̄x,i

= tan θ̄, the tangent of themean orientation of the neighbors, excluding the
i-th cell. This results in two extremum points θi = θ̄ and θi = θ̄ + π, one where thevelocity of the i-th cell is parallel to the average velocity of its neighbors, and onewhen it is antiparallel. In the first case,

sin θi ∝ v̄y,i and (4.13a)
cos θi ∝ v̄x,i, (4.13b)

while in the second case
sin θi ∝ −v̄y,i and (4.14a)

cos θi ∝ −v̄x,i. (4.14b)
It can be shown (see Supporting information) that θi = θ̄ corresponds to an entropyminimum, while θi = θ̄ + π corresponds to an entropy maximum. Consequently,the behavior of the regime βθ < 0 is analogous to that of the Vicsekmodel [162].Conversely, the regime βθ > 0 corresponds to an anti-ferromagnetic analog of
the Vicsek model.
Next, it has been assumed that themodel has a steady state, where theHelmholtzfree energy per cell is given by Eq. (2.7). Due to its extensivity, the Helmholtz freeenergy of complete, non-interacting, steady state system is

FT ≈ −
1
βθ

N∑
i=1

lnZi = − 1
βθ

ln

(
N∏
i=1

Zi

)
,

where Zi is the normalization constant of Eq. (2.3) for the i-th cell. For a weaklyinteracting system, the mean-field effective normalization constant ZT :=
∏N

i=1 Ziis given by,
ZT =

∫
e−βθ

∑N
i=1[ln(2π)+ln(1−e−2γi)]dϑi. (4.15)

Note that this is only valid in the limit βθ → 0. Integrating and substituting theresultingZT into Eq. (2.7) (see Supporting information), yields theHelmoltz-like freeenergy
F = N

[(
1− 1

βθ

)
ln (γi) + ln(4π) +

ln (1− βθ)
βθ

]
. (4.16)

Eq. (4.16) is well-defined only for βθ < 1. This indicates that no steady state exists for
βθ ≥ 1, hinting at an out-of-equilibrium regime [133]. The present model belongsto the class of models with logarithmic potentials (see Eqs. (2.6) and (4.5)). Theexistence of a non-normalizable state in certain parameter regimes is a staple ofsystems with logarithmic potentials [87].
44



4.2. Comparison with Vicsek model

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(i) βθ > 0

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(ii) βθ < 0

Figure 4.2.. Simulation snapshots of the velocity field at long times. Arrows show thedirection andmagnitude of the velocity field. The snapshots re taken after 1000 time steps.1000 particles re simulated, with an interaction radius of 3, and noise standard deviationof angles and speeds equal to 0.01. Here g = 1,βv = −5 and ε = 0. In (i) the value of theangular sensitivity was equal to, 18 while in (ii) the angular sensitivity was equal to −0.25.Periodic boundaries re employed.

4.2.1. Patterns in different parameter regimes

The model was implemented computationally to characterize the model and theeffects of the different parameters on the resultingmacroscopic behavior. The gen-eral qualitative behavior of the model can be observed in Fig. 4.2. In the regime
βθ < 0, cells tend to travel in a single direction after some time has elapsed, similarto the Vicsek model. Conversely, in the βθ > 0 regime, cells are seen to move collec-tively in transient vortex-like structures, even after long times have elapsed. Quali-tatively, the patterns resulting from different parameter combinations are summa-rized in Table 4.1. Analyzing simulations, two important phenomena are observed.First, there is a critical parametric regime ΩC := {(βθ,R) : S1

A,S2
A > 0} where pat-terns emerge. Specifically, for low values of interaction radius, R no structures canbe formed. This indicates that medium-to-long range spread of information is nec-essary for ordering. On the other hand, for βθ > 0 for large values of R, outsideof ΩC , again no patterns occur. This implies that for large interaction radii, thereis a destructive interference of the travelling information. A second important ob-servation is that patterns do not depend on the choice of βv when this is differentthan zero. For βv 6= 0, LEUP dynamics divide the population into fast and slow cells.While fast cells are useful for spreading information (and therefore, increasing theeffective interaction range), slow cells are necessary for maintaining local order-ing. On the other hand, if one fix the initial speed distribution and assume βv = 0,then different patterns can be found shown in Table 1 (also see in SupplementaryMaterial 7). Furthermore, global ordering at long times has been characterized in-terestingly. The global polar order parameter, given by Eq. (4.7), for the completesimulation domain, measures the global degree of polar alignment, or polarization.
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Table 4.1.. Qualitative description of the observed patterns for different angular sensitivityand interaction radius regimes, as well as radial sensitivity. The patterning regimeΩC is theblue area in Fig. 4.3i,4.3ii.

βθ < 0

Radial Sensitiv-ity (βv)
R /∈ ΩC R ∈ ΩC

βv 6= 0 Polar alignedstreets of cells Scattered polaraligned cells
βv = 0 (foruniform distri-bution)

Compact polaraligned cluster Compact polaraligned cluster

βθ > 0

Radial Sensitiv-ity (βv)
R /∈ ΩC R ∈ ΩC

βv 6= 0 No order orpatterns Vortices
βv = 0 (foruniform distri-bution)

No order orpatterns Nematicstreamingand vorticules
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Figure 4.3.. Pattern formation regimes ΩC in the interaction radius - sensitivity plane forpositive and negative values of angular sensitivity. In (a) there exists an optimal regimewhere one canfindpattern formation. But in (b) for negative values of beta can see patternsat smaller values of interaction radius and at smaller values of angular sensitivity.
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4.3. Application : the spherical bacteria case

The global nematic order parameter, given by Eq. (4.8) for the complete simulationdomain, measures the tendency of all cells to align nematically, or along a singleaxis. These order parameters take a value of one when there is global order, whiletaking a value of zerowhen the system is completely disordered. It should be notedthat polar order implies nematic order, but the reverse is not true.
Similarly to other velocity alignment models [124], the model shows an order-disorder transition with increasing noise amplitude and decreasing density (in Sup-plementary Material 7). More importantly, in the regime βθ < 0, the system alsoundergoes a transition towards polar order with decreasing βθ. After the transi-tion, most particles have a similar orientation (Figs. 4.4i and 4.4iii). In the regime

βθ > 0, a phase transition is also observed towards nematic order with increasing
βθ. In this case, However, the nematic ordering is not perfect, as evidenced by thenematic order parameter reaching values of around 0.35 after transition (Fig. 4.4ii)compared to the value of 0.9 of the polar order parameter after transition in the
βθ < 0 regime. This is further evidenced by the bimodal distribution of orientationswith peak separation of approximately π radians (Fig. 4.4iv). These simulation re-sults further corroborate the previous theoretical results.
In turn, the effect of speed sensitivity βv in terms of phase transitions has studied.Fix the angular sensitivity βθ, either positive or negative, thus the speed distributionwill only depend on βv values.
When βv is positive then speed distribution become bimodal and for βv < 0the speed distribution becomes unimodal (see Fig.10 in Supplementary Material7). Moreover, one can observe that if the radial sensitivity βv < 0 decreases, thenthe average speed increases. On the other hand, for any value of βv > 0, the firstand the second moments of the speed distribution cannot be defined, since this isbimodal. Finally, for increasing cell densities, the average speed increases as well(see Supplementary Material 7).

4.3. Application : the spherical bacteria case

Collectivemotion of bacteria has been extensively studied andmodeled. Most stud-ies have focused on the collective properties of S. enterica, E. coli, and M. xanthus.These species of bacteria are similar since they have a high aspect ratio. It hasbeen shown that volume exclusion, coupled with a high aspect ratio, is sufficientto induce velocity alignment in the system [124], and accordingly, ordered clustersof bacteria are observed at high densities.
However, it has been recently shown [130] that even spherical S. marcescens bac-teria do display collective migration for experimental details please see SI section).The biophysical mechanism whereby spherical bacteria interact with one anothermust be different from the high body aspect ratio volume exclusion mechanismproposed for elongated bacterial species.
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Figure 4.4.. Order-disorder phase transitions and orientation distributions in two param-eter regimes. Here g = 1, βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 . (i) In the regime βθ < 0, aphase transition towards polar order occurs at a critical value of the sensitivity. (iii) Afterthe phase transition, polar order arises, and all cells have roughly the same orientation. (ii)In the regime βθ > 0, the phase transition towards nematic order occurs at critical valueof the sensitivity. (iv) There is partial nematic order after the phase transition. Accordingly,several cells have opposite orientations. (i) and (ii) The number of particles was fixed at 103,noise standard deviation at 0.01, and interaction radius at 3. Values of the order param-eters re averaged over 50 realizations after 1000 time steps. (iii) and (iv) The number ofparticles was fixed at 1000, noise standard deviation at 0, and interaction radius at 3. Thehistogram was created with data from 50 realizations after 1000 time steps.

48



4.4. Summary and outlook

Recently, a combination of biophysical agent-based and hydrodynamics modelhas been proposed to describe these experiments. In this study, the experimentalobservations re only partially reproduced. Therefore, the biophysical mechanismsunderlying collective migration in spherical bacteria are still not well understood.An important aspect to consider is the bacterial speed vi. It was found experimen-tally [130] that bacterial speed followed a Rayleigh distribution, dependent on bac-terial density. Collective effects on cell orientations, on the other hand, re studiedby observing the vortical behavior of the population [130].
To reproduce the experimentally Rayleigh distribution for cell speed, one choosethe function g(vi) = v−1

i as shown in [135]. It is important to note that this term is notimpacting the qualitative behavior of the average bacteria speed, but only its vari-ance (see Supplementary Material 7). Moreover, the interested reader could seethe impact of the friction term in the average cell velocity in Supplementary Mate-rial 7. As shown in Fig. 4.5, the model qualitatively and quantitatively reproducesboth the speed distribution and vorticity behavior of the experimental system. In-terestingly, the behavior of the experimental systemwas replicated for high valuesof the sensitivities βv and βθ, and large interaction radii R.
The LEUP model not only allows for a quantitative reproduction of the experi-ments, but also provides insight into the potential biophysical mechanisms. Suchvalues of the sensitivities and interaction radii indicate far-reaching, strong tenden-cies of bacteria to average their speeds while reorienting and traveling differentlyfrom their neighbors. Spherical, rear-propelled particles have been shown to de-stroy polar order as a result of hydrodynamic interactions [45], similarly to themodel. Considering that S. marcescens is an example of a spherical, rear-propelledparticle [75], the results agree with previous findings indicating that S. marcescensinteracts through long-range hydrodynamics [153]. The long range interaction ra-dius suggests the existence of hydrodynamically induced interaction (which hasbeen suggestedbyAriel et al. aswell as by other studies ([75], [citesteager2008dynamics))or self avoiding interaction [134].

4.4. Summary and outlook

In this work, an off-lattice model of LEUP-induced collective migration has intro-duced, based on the self-propelled particles modeling framework. It was assumedthat individuals changed their radial and angular velocity components indepen-dently through LEUP. Reorientation is governed by a stochastic differential equa-tion depending on a white noise term and a force arising from an interaction po-tential.
The exact form of the interaction potential can be very complex, and its specificform is dependent on particular mechanochemical details of the modeled system.While it has been shown that, in general, interactions between individuals can ef-fectively drive the entropy of the entire system towards an extremumpoint [37, 62],here do the opposite. Instead of modeling the interaction potential biophysically,
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Figure 4.5.. Comparison between vorticity trends in experiments and in simulations. (i)Relation between the average speed and the density. The simulation values shown areaveraged over fifty realizations. (ii) Dependence of the spatially normalized averaged ab-solute value of vorticity on the density. The simulation values shown are averaged overfifty realizations (iii) Relation between average speed versus mean absolute vorticity fromsimulations for various densities over fifty realizations. Experimental values re taken from[130]. Throughout all simulations, the standard deviation of the noise was set at 0.0001,interaction radius at R = 10, proportionality constant ε = 0.008, radial sensitivity βv = −20,
g = 1

vi
and angular sensitivity at βθ = 5. Data was obtained after 500 time steps.
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4.4. Summary and outlook

it was assumed that particles followed the LEUP, which dictates that cells changetheir internal states in order to minimize the uncertainty of the internal states ofcells in their surroundings. Although LEUP has been conceptualized to deal withhigh-dimensional internal states involved in cell decision-making, here on physicalinternal states one restricts such as speed and orientation. While cell speed wasassumed to always minimize uncertainty, there was no assumption made on thecell orientation. Particles are therefore free to reorient either towards or againstthe gradient of entropy of the orientation distribution of particles in their neigh-borhood, depending on the sign of the sensitivity parameter, which also dictatesthe strength of the interaction. The orientation distribution in the neighborhoodwas assumed to be wrapped Cauchy distributed. Such a distribution facilitates themathematical analysis of the model. However, the usage of other wrapped dis-tributions does not qualitatively change the general behavior of the model (seeSupplementary Material 7). Please note that non-parametric methods for estimat-ing entropies without assuming any underlying parametric distributions exist. Forinstance, such methods employ kernel density estimation, k−nearest neighbthesor regression methods [70].
It has been shown that when the parameter βθ is negative, the model producessteady-state polar alignment patterns. Interestingly, that the classical formulationof Vicsek model [162] is a special case of LEUP. Conversely, when the parameteris βθ is positive, particles tend to reorient against the mean velocity of their neigh-borhood. In this regime, the free energy diverges, indicating an out-of-equilibriumparameter regime. This kind of parameter-dependent dichotomy is similarly ob-served in systems with logarithmic potentials [40], involved in processes such aslong range-interacting gases [23], optical lattices [99], and DNA denaturation [7].The dichotomy arises from the logarithmic form of the entropy driving interactionin the model. It has been shown that, due to the non-normalizability of the steadystate solution, such systems require a time-dependent expression for their analy-sis [87]. Therefore, an in-depth theoretical analysis of the model would require asimilar multiparticle, time-dependent expression of the angular probability densi-ties.
However, the LEUP migration model may go beyond the observed patterns inpast Viscek-type models. In particular, in Barua et al. [12] have developed a dis-crete speed version of the LEUP migration model, where cells can have only zeroor a finite speed. This model exhibits Turing patterns, i.e., dynamics clusters ofnon-motile cells of specific characteristic wavelength, where previously publishedViscek-like models cannot may produce moving clusters of swirling cells (e.g., themilling Viscek model [34]) but never static ones.
As a proof of principle, one show that the model replicates the collective vorticalbehavior of spherical motile particles. Recently, the collective behavior of sphericalparticles been modeled as a combination of steric repulsion and hydrodynamicinteractions [98]. Hydrodynamics and steric interactions has shown induce long-range microenvironmental entropy maximization, which coincides with the βθ >

0 LEUP regime. This generalizes the type of biophysical mechanisms required toproduce vortical patterns.
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It should be noted that, while spherical S. marcescens bacteria have been mod-eled biophysically, their collective behavior was partially reproduced [4]. This hintsat an additional biological and/or biochemical interaction between cells. While theLEUP-based model is coarse-grained in terms of specific biophysical /biochemicalinteractions, it allows for a plausible reproduction of the experimentally observedcollective velocity behavior by fitting a only few parameters. The application tospherical bacteria allows us to showcase the potential of the LEUP principle whenthe precise interaction mechanisms are not known.
As already mentioned, some assumptions can be made to simplify the model.Here, the model assumes a Gaussian, white noise term in the SDEs. This results innormal diffusive behavior in the absence of interactions. It has been observed ex-perimentally, However, that in some conditions, cells perform Lévy walks resultingin superdiffusive behavior [106]. By changing the distribution or time correlationsof the noise [30, 117], it would be possible to both replicate the non-Gaussian dy-namics of single cells, and investigate the effect of single anomalous dynamics oncollective behavior.
Another assumption has been taken i.e., particle velocities are the only internalstates relevant for reorientation, for simplicity and as a proof of concept of theLEUP principle. However, it is reasonable to think that other states, such as rela-tive position or adhesive state, may be relevant to include when modeling specificsystems. This reveals an interesting point in the application of LEUP-drivenmodels,which is the selection of the most relevant/dominant internal variables. Althoughexperimental intuition could be the easiest approach, are currently developing aspatial principal component analysis method that would allow to select the mostrelevant internal variables using spatial data such as multiplexing biopsies or spa-tial RNA sequencing.
As stated above, LEUP circumvents the biophysical details of cell migration. Theneed tomodel systemsof interacting agentswithout previous knowledge of the bio-physicalmechanisms involved has sparked at least another agent basedmodel[43].In thismodel, similarly to LEUPmodel, agents actwithout amechanistic rule. Rather,they consider every possible action and penalize those which are not favorable totheir internal standards. While both the aforementioned model and LEUP are de-fined in a similar spirit, modeling under LEUP consists in correctly identifying therelevant internal cellular states for entropy optimization, while in [43] modeling isconcerned with defining suitable penalization for each possible decision scenario.
LEUP has additional appealing features. For instance, LEUP allows for replicatinga plethora of collective migration patterns. In this particular case, have analyticallyderived the polar and nematic alignment Vicsek models for LEUP arguments. Inthis sense, LEUP acts as a generative model for collective migration mechanisms.This is particularly useful upon limited knowledge of such mechanisms, a problemcalled structural model uncertainty. Another advantage of LEUP is the mapping ofbiophysical mechanism combination to the β > 0 or β < 0 regimes. This allowsfor unifying the model analysis but for a better classification of migration mecha-nisms. Finally, known mechanisms or data could be easily integrated to the pro-posed framework by further constraining the LEUP dynamics.
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5. Cell differentiation and sensing:
tissue robustness from optimal
environmental sensing

In this chapter 1 the LEUP based theory on cell differentiation phenomena at thelevel of tissue has been represented. Cell differentiation phenomena as a collectivecell decision-making and tissue robustness will be discussed briefly in this chapter.
Decision-making is a process to identify important choices and responses whichdepends on some basic criteria [146]. Cell decision-making is a process where cellsselect a new state, such as cell fates or phenotypes, in response to their microen-vironmental milieu. In this regard, pluripotent cell differentiation can be viewedas cell decision-making of inheritable fates. Typically, cells irreversibly acquire newfates by following a hierarchical lineage, where pluripotent stem cells in a propermicroenvironment (stem cell niche) differentiate into, for example, bone, muscle,epithelial, and further specialized cells. The cell differentiation process encom-passes the dramatic change of geometry, shape, gene expression inside the cell,etc. [147, 2]. It is yet to be fully understood how the information available to pluripo-tent progenitors, including its intrinsically determined state and extrinsic microen-vironmental signals, is encoded andprocessed by progenitors to generate differentdifferentiated cell types.
In 2006, Takahashi and Yamanaka [155] discovered that almost any differenti-ated cell can be sent back in time to a state of pluripotency by expressing appropri-ate transcription factors (the Nobel Prize in Medicine 2012). Cell reprogrammingcan be externally induced via the delivery of transcription factors, naturally or in-vitro [49, 154]. Such a reversion of a differentiated to a pluripotent state is the idea

1This chapter includes text and figures from the publication and corresponding supplementaryinformation: Arnab Barua, Alireza Beygi and Haralampos Hatzikirou, Entropy 2021, 23(7), 86.Author contribution: Haralampos Hatzikirou conceptualized the project. Arnab Barua, AlirezaBeygi and Haralampos Hatzikirou formulated themathematical model. Arnab Barua and AlirezaBeygi performed the analysis. All authors interpreted the results and wrote the manuscript. Allauthors read and approved the final manuscript.
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behind cancer stem cells (CSC). The CSC theory proposes that, among all cancerouscells, a few act as stem cells that reproduce themselves and sustain cancer, muchlike normal stem cells that renew and sustain organs and tissues of the body. Theprocess of somatic reprogramming using Yamanaka factors, where many of themare oncogenes, offers a glimpse into how cancer stem cells may originate. In par-ticular, neurological cancers such as primary glioblastomas [126] and retinoblas-tomas [92] are resulting from dedifferentiation of the glial and photoreceptor (reti-nal) cells, respectively. In particular, retinoblastoma tumor cells lose their photore-ceptorness and become malignant plastic cells, i.e., CSC [92]. Xu et al. also haveshown that the cell of origin for retinoblastoma is a committed cone precursor analmost terminally differentiated photoreceptor that has lost an Rb gene, and nota pluripotent progenitor [166, 25]. Here, the example of photoreceptor mosaic ofavian retina has been used to shed light on the following questions: (Q1) how docell intrinsic dynamics and microenvironmental factors coordinate during develop-ment to produce organized tissues such as photoreceptor mosaics [26]; and (Q2)why is the differentiatedmosaic so stable or how probable is the reversal of retinaltissue back to a pluripotent one, e.g., retinoblastoma?
The theory behind cell differentiation has been formalized in a metaphoricalway by C. H. Waddington [60, 3, 29], which allows for developing a dynamical sys-tem’s framework for modeling single-cell fate decisions [48, 121, 82]. Wadding-ton has depicted the developmental process as a series of cell decisions that canbe represented as bifurcations towards a differentiated state/phenotype. Practi-cally, cell states, also called microstates, can be viewed as a vector of molecular ex-pressions that are experimentally measured via high-throughput omics data, FACS,immunohistochemistry markers, etc. [54, 100, 29]. Please note that such cellularmicrostates are technically different from the classical statistical mechanics defi-nition of microstates. In general, differentiated states can be viewed as the fixedpoint(s) of microstate attractors [74, 110]. Typically, these states can be associ-ated with an appropriate probability distribution peaked around the fixed point,which is the deepest point of the valley in the Waddington potential. The situa-tion is much more intricate in the case of pluripotent, stem cell-like states, whereWaddington has also depicted them as attractors around a fixed point. However,this has been recently challenged by Furusawa and Kaneko [52], where they haveshown that stem cell-like attractors can be viewed as limit-cycle attractors and notas stable fixed points. Biological observations of dynamic variability of single cellswithin pluripotent cell populations distinguish between pluripotency as a molecu-lar state and pluripotency as a function, indicating that a pluripotent state is notunique but rather appears to be compatible with a wide variety of interchange-able molecular microstates (patterns of gene or protein expressions) [28, 18]. Inthis view, pluripotent cells independently explore a variety ofmolecular expressionstates, and this phenotypic/state exploration transiently primes each individual cellto respond to a range of various differentiation-inducing stimuli, depending uponits instantaneous molecular state [126]. Finally, Waddington theory does not takeinto account cell sensing and the corresponding interactions that take place in a tis-sue. The aforementioned limitations of the Waddington approach require furthertheoretical development to answer the questions (Q1) and (Q2).
In order to answer (Q1), in this paper, one employ the recently proposed the
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Least microEnvironmental Uncertainty Principle (LEUP)—which is essentially a sta-tistical mechanical theory for cell decision-making [66, 11, 12]—and apply it to theproblem of cell differentiation. The LEUP is inspired by the theories of Bayesianbrain hypothesis [90], the free-energy principle [50], and other dynamic Bayesianinference theories that try to explain human brain cognitive dynamics. Similarideas have also been proposed in the influential work by Bialek [16]. Similar tothese theories, the LEUP is based on the premise that cell internal molecular net-works adapt to the sensed microenvironmental data and subsequently determinethe relevant decisions. In turn, cells are encoding sensed information in genetic,epigenetic, translational, or transcriptional levels, where different timescales arerelated to each of these encoding levels, depending on the persistence of the mi-croenvironmental stimuli. The reason to propose a theory such as the LEUP is thefact that the complexity of molecular networks does not allow us to know the exactinvolved dynamics, thus one use the LEUP as a kind of dynamic Bayesian inferenceto circumvent this complexity and to make predictions. The LEUP theory also im-plies a decrease in the localmicroenvironmental entropy of the cell decision-maker,which biologically translates into the actions of differentiating cells, which lead tomore organized tissues during development.
The central cellular process related to the LEUP is cell sensing. Cells can ac-quire knowledge about their microenvironment by various sensing mechanismssuch as the binding of their receptors to diffusible ligands [95], pseudopodia ex-tension [88], mechanosensing [104], proton-pump channels [96], gap junctions, etc.Cells can sense rapid changes of their milieus, where they mainly exploit two waysto decrease sensing errors: (1) by increasing the number of receptors or the re-sponses of the downstream signaling pathways [14], and/or (2) by increasing sens-ing area [97]. The latter can be spanned from the resting cell size to extensionsvia pseudopodia, blabbing, and other cell size regulation mechanisms. Pseudopo-dia or blebs can act as sensors, via a pressure sensing mechanism mediated byPiezo channels, allowing cells to decide when and where to migrate [152]. In thisregard, the second question(Q2) is further specified as: can one calculate the limitsof the cell sensing radius that ensure the robustness of differentiated tissue spatialorder?
To answer (Q2), thedevelop a thermodynamic-like theory using the tools of stochas-tic thermodynamics for a generic cell differentiation process. The main biologi-cal assumption is that differentiated cells can reverse to an undifferentiated state,for instance, by the process of carcinogenesis, see also Refs. [166, 92, 33]; a recentreview on the latest advances in research on the process of dedifferentiation bothat cell and tissue levels can be found in [168]. Stochastic thermodynamics allowsus to understand the conditions that, even though single-cell dedifferentiation ispossible (microscopic reversibility), the system (tissue) is still able to be robust, andit maintains its spatial order and differentiation integrity (macroscopic irreversibil-ity). Stochastic thermodynamics is a suitable tool for systems where small scale dy-namics matters (e.g., soft matters, active matters, and biological systems); in suchcases, the higher-order moments dominate [141, 140, 160, 89, 142]; for differentexperimental applications of stochastic thermodynamics, see Refs. [31, 32]. In addi-tion, formulating the laws of thermodynamics in the mesoscopic scale (specifically,at the level of trajectory) has also been investigated recently [161]. To describe the
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Figure 5.1.. Schematic diagramof themicroenvironment of a differentiated cell, whereR isthe sensing radius. Microenvironment is being composed fromadistribution of pluripotentprogenitors and differentiated cells.

cell-level dedifferentiation process in the context of stochastic thermodynamics,the fluctuation theorem, specifically the Crooks’ relation [35, 44] is being applied.The fluctuation theorem, which can be considered as the heart of stochastic ther-modynamics, initially had been derived to explain how irreversibility at the macro-scopic level emerges from the underlying reversible dynamics and to estimate theprobability of the violation of the second law of thermodynamics within a shortamount of time for systems at small scales [46, 47, 144].
By combining elements of stochastic thermodynamics with the LEUP, the Aspireto approach questions (Q1) and (Q2) within the context of the avian photorecep-tor mosaic. This paper is organized as follows: in Section 5.1, the basic conceptsof the LEUP is reviewed and its connection to statistical mechanics. In Section 5.2,how optimal microenvironmental sensing is associated with differentiated tissuespatial configuration is demonstrated; therein, examine the theory using the dataobtained from the (avian) photoreceptor mosaic. The theory of fluctuation theo-rem is applied to cell differentiation in Section 5.3 and demonstrate the thermo-dynamic robustness of this process in the case of the avian retina development.In Section 5.4, how cell sensing radius and total entropy production are relatedand determine the limits of the sensing radius in order for the tissue developmentto be robust is shown. Finally, the conclusion and discussion of the results arepresented in Section 5.5.

5.1. LEUP based mathematical model for cell
differentiation

The cell collects information from its microenvironment and based on that it takesactions (phenotypic decisions). In other words, the cell reacts to the environmen-
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tal information by changing its own state. By adopting the notations of Ref. [66],internal variables (such as gene expression, RNA molecules, metabolites, etc.) aredenoted of the i-th cell as xi and external variables (such as chemical signals, lig-ands, homotypic or heterotypic interactions, cellular densities, translational pro-teins, etc.) of the i-th cell as yi. The latter includes all the different extrinsic variableswithin the interaction radius of the i-th cell, i.e., yi = {y(r) : r ∈ (ri, ri +R]}, where
ri is the position vector of the i-th cell, and R is the maximummicroenvironmentalsensing radius of the i-th cell. Cell sensing radius is a tunable variable controlledby cell and is regulated by various biophysical mechanisms, as stated in the Intro-duction. This is precisely what R is modeling, where it has been considered as anintrinsic cell variable dictated by the LEUP dynamics. Please note that assumptionof sensing radius can be identified with the typical interaction radius considered inagent-based models. In Fig. 5.1,the schematic diagram of the microenvironmenthas been shown of a differentiated cell as is being composed of both pluripotentprogenitors and differentiated cells.
The behavior of a cell is considered as a Bayesian decision-maker that reacts toits microenvironment [1, 66], such that

P (xi (t+ τdecis.) | yi (t)) =
P (yi (t) | xi (t))P (xi (t))

P (yi (t))
, (5.1)

where τdecis. is the time needed that the cell makes a decision. The distribution
P (yi (t) | xi (t)) is the probability ofmicroenvironmental information/data being col-lected by cell at time t. In other words, it is the probability that the cell perceives allother cells, chemicals, and nutrients in its surrounding. The distribution P (xi (t)) isthe prior probability of the cell current internal states. If these two distributions aremultiplied and be divided by the probability of external states P (yi (t)), then (5.1)implies that the resulting quantity is the posterior probability distribution of inter-nal states P (xi (t+ τdecis.) | yi (t)). The latter describes themost likely decision to bemade by cell over the internal variables after processing the available informationin the time period of τdecis..
As stated in the Introduction, the cell prior is assumed to continually being up-dated by the previous time step posterior, in the sense of Bayesian learning. Wealso have assumed a perfect transfer of the prior to the next time step posterior,although this process is highly noisy. Now, by taking the logarithm of (5.1) andintegrating over the joint probability distribution P (xi (t) , yi (t)), for small decisiontimes, we obtain:

∂S (xi | yi)
∂t

=
1

τdecis.
[
S (yi | xi)− S (yi)

]
= − 1

τdecis. I (xi, yi) , (5.2)
where for simplicity we have dropped t as an argument and I (xi, yi) is themutual in-formation. The above equation reaches equilibrium when the mutual informationvanishes. Now, the first crucial assumption is made of the work (A1) that the celldecision time is much smaller than the asymmetric division time, i.e., τdecis. � τdiv..This can be justified as cell division which is a prerequisite for differentiation takesaround ∼ 24h; on the other hand, the relaxation timescale of the molecular net-works responsible for deciding a new state is much shorter (∼ 1h). This implies
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that the dynamics of internal variables xi’s are much faster than the microenviron-mental dynamics of yi’s. According to this timescale separation, can be assumed thatvariations of S (yi | xi) and S (yi) belong to the slowmanifold of the system. In turn,one observe that in order Eq. (5.2) reaches an equilibrium, themicroenvironmentalentropy sensed by cells S (yi | xi) should be inevitably a decreasing quantity with re-spect to time. This fact can be interpreted as the entropy of cell sensing distributionshould become more focused and more independent of the microenvironment astime goes on, since this information –microenvironmental data – has already beenencoded in the cell prior. The latter is valid within biophysical context because ofthe following reasons: first, the collection of microenvironmental data, that is, theprecise evaluation of P (yi | xi) is energetically expensive, thus it is not favorable ascellswould like to be energetically efficient; and second, fully differentiated cells areperfectly adapted to their microenvironment and the corresponding fluctuationsimplying an optimal prior distribution P (xi).
Now, let’s generalize (2.3) a biologically relevant scenario of cell differentiation.It is well known that differentiation takes place during asymmetric divisions ofpluripotent progenitor cells [113]. Let assume that µ ∝ τdiv. is the asymmetricdivision probability of a pluripotent cell. In a mesoscopic microenvironmental en-semble of N (yi | xi) cells around the i-th cell, the probability of the central i-th cellis calculated to change its phenotype. This probability reads as

P (xi) =Prob.{to select the i-th cell out of N cells}×
Prob.{the i-th cell divides asymmetrically once}
× Prob.{the i-th cell decides over its phenotype}.

(5.3)

The latter probability happens according to the LEUP, and it is the same as (2.3).Now, as the probability of asymmetric divisions is assumed within an ensemble of
N cells follows a Poisson distribution Pois[µN (yi | xi)], which is a limit of the Binomialdistribution B[N (yi | xi) ,µ] for a small proliferation probability µ. Putting all thesetogether, one can write:

P (xi) ∝
1

N (yi | xi)
×N (yi | xi) e−µN(yi|xi) × e−βS(yi|xi) =

e−βS(yi|xi)−µN(yi|xi)

Zp (β,µ)
, (5.4)

where thenormalization factor ofP (xi) is defined asZp (β,µ) =
∫
e−βS(yi|xi)−µN(yi|xi)dxi.

To illustrate the above with a concrete example: if themicroenvironmental prob-ability distribution sensed by the i-th cell follows a Gaussian distribution with thevariance σ2
n, assuming that yi is scalar, and hence

S (yi | xi) = (1/2) ln[2πeσ2
n (yi | xi)] and by considering µ = 0, then (5.4) reduces to

P (xi) =
σ−βn (yi | xi)∑
j σ
−β
j (yj | xj)

. (5.5)

Now, an explicit formula is established for cell internal entropy. To this end, byexploiting (5.4), we obtain
S (xi) = −

∫
P (xi) lnP (xi) dxi = β〈S (yi | xi)〉xi + µ〈N (yi | xi)〉xi + lnZp, (5.6)
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where 〈...〉denotes the expectation value. Bymaking usage of the notionswhich aredeveloped within the context of thermodynamics, one can also define phenotypicinternal energy sensed by cell as
Uint. (xi, yi) = 〈S (yi | xi)〉xi +

µ

β
〈N (yi | xi)〉xi . (5.7)

Please note that for µ = 0, the internal energy is the same as entropy for a particularrealization. Thus, (5.4) resembles the Boltzmann distribution.
Interestingly, since themicroenvironmental entropy S (yi | xi) acts as an effectiveinternal energy, it is expected to be a decreasing quantity in time. This result is inagreement with the discussion which follows (5.2). Thus, the LEUP is consistentwith its premises.

5.1.1. Statistical results from LEUP

The steady-state distribution of (5.5) which is derived by the LEUP, under the as-sumption of Gaussian distributed microenvironment and µ = 0, can be associatedwith different established statistical results. Here, several cases have been distin-guished for specific values of β, which have particular meanings in statistics. Forinstance, when β = 1, one can reproduce distributions proportional to the well-known Jeffreys prior, see also Ref. [66]. Jeffreys prior is known as the most typicaluninformative prior used in Bayesian inference [78].
Interestingly, if β = 2 is assumed, then one recovers the so-called minimum vari-

ance estimator when fusing multiple scalar estimates. Following [122], let us as-sume extrinsic variables y1, y2, ..., yi, such as ligand concentrations, cell densities,etc., that are pairwise statistically uncorrelated and are normally distributed, i.e.,
yi ∼ N (µi,σ2

i (xi)), where 1 ≤ i ≤ n. In turn, the assumptions of intrinsic variables
x1,x2, ...,xi, correspond to cellular sensors and downstream process of the afore-mentioned microenvironmental variables. The average sensed microenvironmentis defined as the average of the extrinsic signals yi’s weighted by the distribution ofthe cell sensors xi’s, i.e., Z(y1, y2, ..., yi) =

∑n
j=1 Pjyj , where∑n

j=1 Pj = 1. The distri-bution of internal variables Pi that minimizes the variance, aka noise of the sensedmicroenvironment, is given by the following formula:
Pi =

σ−2
i (xi)∑
j σ
−2
j (xj)

, (5.8)
which has the same form as the steady state of the LEUP (5.5), for β = 2. In thefollowing, the latter part of the result is connected with a specific cell sensing sce-nario.
In this section, first the connection between theory of LEUP and cell sensing ismade with respect to receptor-ligand binding. Then, one can apply the theory toavian photoreceptor mosaic and fit the parameter β to recover the photoreceptorpercentages in retina.
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5.2. Relation between LEUP and cell sensing

In this subsection, the relevance of the LEUP is shownwithin the context of cell sens-ing mechanisms. Here, the receptor-ligand sensing is focused as an apparatus ofcell, where complexes are formed at cell membrane and subsequently internalizedvia endocytosis [95]. This sort of sensing mechanism is also relevant in the caseof photoreceptors [151]. Receptors act as sensors for specific microenvironmentalmolecules (ligands) that bind together with a certain affinity to form complexes. Of-ten different ligands may bind to the same receptor, for instance, the Notch-Delta-Jagged system where Notch receptor can bind to either Delta or Jagged molecules[20, 157]. The sensed information can be quantified by the concentration of inter-nalized complex molecules. For simplicity, x is denoted as receptor concentrationat the cell membrane and y1 and y2 as the corresponding ligands concentrations,which it is assumed that they are statistically independent. Moreover, the ligandsconcentrations are consumed by cells, since they bind to receptors and thereforedepend on the concentration x (we omit this dependence for the sake of simplicity).Typical dynamics of such systems reads as
dc

dt
= k1xy1 + k2xy2 − dc. (5.9)

Under the assumption of fast decay rates d� 1, which is consistent with (A1), thesystem behaves as in a steady state, that is,
cEq. =

k1

d
xy1 +

k2

d
xy2. (5.10)

The terms, (ki/d)x, i = 1, 2, define the percentage of receptors bound to ligands
yi’s. In the context of the LEUP, (ki/d)x corresponds to P (x | yi), which under theassumption of Gaussian microenvironment – in a steady state – is:

Pi =
σ−βi (xi)

σ−β1 (x1) + σ−β2 (x2)
, i = 1, 2, (5.11)

which for β = 2 coincides with (5.8). Taking all the above together, the receptor-ligand cell sensing system is translated as a linear combination of complex forma-tion estimates yi’s, where the LEUP probabilities Pi’s are the corresponding coeffi-cients/proportions of complexes bound to ligands yi’s, that is,
cEq. =

σ−β1 (x1)
σ−β1 (x1) + σ−β2 (x2)

y1 +
σ−β2 (x2)

σ−β1 (x1) + σ−β2 (x2)
y2, (5.12)

which coincides with the definition of Z(y1, y2, ..., yi), for n = 2, defined in the previ-ous section.
At this point, a sanity test for the results are tested. For simplicity, consider asingle type of ligand concentration y that binds to a receptor of concentration x.Then, the complex formation dynamics is described as

dc

dt
= k+xy − dc. (5.13)
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At the equilibrium, the steady-state complex concentration cEq. reads
cEq. =

k+

d
xy. (5.14)

As before, the probability Px = (k+/d)x is defined as the proportion of bindingreceptors. Then from (5.14), one observe that:
Px ∝

1
y
. (5.15)

The ligand concentration, y = 〈Y 〉, is the expected value of the number of ligandmolecules within the cell volume, which is denoted as Y . Using arguments similarto that of Berg and Purcell in their seminal paper [14], the ligand molecules arediffusing, and therefore it can be assumed that Y follows a Poisson distribution,thus σ2
Y = y, where the ligand variance is denoted as σ2

Y . Now, by combining thelatter with (5.15), one recover the non-normalized LEUP result for β = 2:
Px ∝ σ−2

y (x). (5.16)
This specific value of β complies with the perfect monitoring/sensing assumptions(for details, see [14]). Please note that in (5.16), the dependence of diffusible ligandconcentration on the receptor concentration x is explicitly denoted. As a side re-mark, if one change the receptor-ligand binding term by introducing, for instance,finite number of receptors or covalent bonds, then the parameter β will be modi-fied.
The above result is pivotal since it connects the cell fate decision-making with op-timalmicroenvironmental sensing in terms ofminimization of sensing noise, whichresults into a specific spatial phenotypic distribution. In the following, the validityof these results is explored in the case of the avian photoreceptor mosaic.

5.3. LEUP driven fluctuation theorem : confirms the
thermodynamic robustness of differentiated
tissues

In this section, the thermodynamic constraints are determinedof two coarse-grainedcell states that correspond to pluripotent (s) and differentiated (d) state. Then ap-ply the resulting theory to the particular case of the avian cone cells differentiation.To this end, first it has been shown that how microstates (internal variables) arerelated to the microenvironmental information and heat transfer.
In this context, a cellular microstate corresponds to a cell’s phenotype that livesin a tissue, which could be gene expression, RNA molecules, receptor distributionetc. In other words, microstate gives information about the internal states of thecell. label these internal variables as xs and xd corresponding to pluripotent anddifferentiated cells, respectively. A cellular macrostate is defined as a statistical
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Figure 5.2.. In the left panel, the Kullback-Leibler divergenceDKL is depicted as a functionof β. DKL reaches its minimum of ≈ 0.004 at β ≈ 1.754. The experimentally obtainedphotoreceptor fate ratios is compared to the LEUP for this particular β, in the right panel.
observable (e.g., average) of a cell’s microenvironment that involves multiple cellsof different phenotypes. Macrostates contain information about the external vari-ables, which are labeled as ys and yd. The former macrostate ys is assumed todescribe a microenvironment of pluripotent progenitor or stem cells, i.e., charac-terized by the microstate xs; the macrostate yd accordingly describes a microenvi-ronment of differentiated cells characterized by the microstate xd. The number ofpluripotent cells neighboring to a cell is definedwithmicrostate xs as,N(ys | xs) andthe number of differentiated cells neighboring to a cell is definedwithmicrostate xdas N(yd | xd). The total number of pluripotent cells and differentiated cells insidethe system are denoted as N(s) and N(d), respectively. Now based on (5.4), theprobability of the cell can be written as the microstate xs with the correspondingmacrostate s as

P (xs) =
e−βsS(ys|xs)−µsN(ys|xs)

Z1
, (5.17)

and the probability of being in themicrostate xdwith the correspondingmacrostate
d as

P (xd) =
e−βdS(yd|xd)−µdN(yd|xd)

Z2
. (5.18)

It is known that for a system which is coupled to a set of heat baths and is in atime-symmetrically driven nonequilibrium state, the Crooks’ theorem is applicable[35, 44]. In this case, the dynamics follow Brownian motion, i.e., there are no ex-treme “jumps” in the system state. For any trajectory to be initially at xs(0) and isgoing through microstates xs(t) over time τ , the Crooks’ theorem implies that [44],
β
′
∆Q = ln

[
w[xs(t)]

w[xs(τ − t)]

]
, (5.19)

where β ′ ≡ 1/T , which T is the temperature of the heat bath, ∆Q is the total heatreleased into the bath over the trajectory of xs(t), and w[xs(t)] is the probabilityof the trajectory xs(t). Eq. (5.19) demonstrates that when there is a forward statechange, the system loses heat to the reservoir and in the case of the time-reversedpath, there is a heat gain from the reservoir; this, in turn, implies that a forward
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trajectory is more probable than the time-reversed one, thus, (5.19) substantiatesa relation between heat and irreversibility at the microscopic level.As is demon-strated in Ref. [44], (5.19) is also valid for other kind of steady-state probabilitydistributions besides the classical Boltzmann distribution. Here, such as Brown-ian “jumps” are interpreted as changes in the phenotype and the associated heatlosses are assumed to be due to the cell metabolism. However, there are manyother heat loss schemes that are disregarded such as physical friction, changes inthe cytoskeleton etc.
By fixing the starting point of the trajectory as xs(0) = xs and the ending point as

xs(τ) = xd, then taking the average over all trajectories from xs to xd, results in
w(xs → xd; τ)
w(xd → xs; τ)

= 〈exp
[
β
′
∆Qτ

xs→xd

]
〉xs→xd , (5.20)

where w(xs → xd; τ) is the transition probability that the system is found to be inthe microstate xd at time τ , given that the system was initially in the microstate xs(for the proof please see Supplementary Material 7).
Now, with the microscopic relation of (5.20), one can study the macroscopic (tis-sue) consequences of that. Indeed, the probabilistic description of macroscopicstates of two distinct cell types, from which one can understand the phenomenonof irreversibility at the macroscopic level, can be constructed as in [44],

W (s→ d) =

∫
d

dxd

∫
s

dxs P (xs | s)w(xs → xd), (5.21)
and

W (d→ s) =

∫
s

dxs

∫
d

dxd P (xd | d)w(xd → xs), (5.22)
where P (xs | s) is the probability of the system to be in the microstate xs, giventhat it is observed in the macrostate s, and w(xs → xd) is defined as before, where
τ is omitted for the notational convenience. The transition probabilityW (s→ d) in
(5.21) implies the likelihood of the cell to be observed in the macrostate d while itwas initially prepared in the macrostate s. Accordingly, Eq. (5.22) is understood inthe same fashion, i.e., the likelihood that a microenvironment being prepared inthe state d to satisfy the microenvironment s after another time interval τ . Theseprocesses are illustrated in Fig. 5.3.
By taking the ratio of (5.21) and (5.22), obtain

W (d→ s)
W (s→ d)

=

∫
s
dxs

∫
d

dxd[P (xd | d)/P (xd)]P (xd)w(xd → xs)∫
d

dxd
∫
s
dxs[P (xs | s)/P (xs)]P (xs)w(xs → xd)

, (5.23)
where the numerator and the denominator have been multiplied and divided by
P (xd) and P (xs), respectively. The point wisemutual information is defined for theindividual trajectories as i1 = ln[P (xs | s)/P (xs)] and i2 = ln[P (xd | d)/P (xd)], andthen by taking these definitions into account and replacing P (xd) by its correspond-
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Figure 5.3.. Microscopic and macroscopic transitions between two distinct cell types.
ing relation in (5.18), (5.23) reduces to

W (d→ s)
W (s→ d)

=

∫
s
dxs

∫
d

dxde
i2 [e−βdS(yd|xd)−µdN(yd|xd)/Z2]w(xd → xs)∫

d
dxd

∫
s
dxsei1P (xs)w(xs → xd)

=

∫
s
dxs

∫
d

dxde
Gei2+i1−i1(Z1/Z2)[e−βsS(ys|xs)−µsN(ys|xs)/Z1]w(xd → xs)∫

d
dxd

∫
s
dxsei1P (xs)w(xs → xd)

,

(5.24)
where

G ≡ −[βdS (yd | xd)− βsS (ys | xs)]− [µdN (yd | xd)− µsN (ys | xs)]. (5.25)
By exploiting (5.17) and (5.20), it is rewritten (5.24) as
W (d→ s)
W (s→ d)

=

∫
s
dxs

∫
d

dxde
Gei1e∆i(Z1/Z2)P (xs)〈e−β

′
∆Qτxs→xd 〉xs→xdw(xs → xd)∫

d
dxd

∫
s
dxsei1P (xs)w(xs → xd)

, (5.26)
where ∆i ≡ i2 − i1.
Now, (5.26) can be expressed in terms of the average over all trajectories fromthe ensemble of microstates xs which correspond to the macrostate s to the en-semble of microstates xd which correspond to the macrostate d while each path isweighted by its probability as

W (d→ s)
W (s→ d)

= 〈〈exp
[
−β ′∆Qτ

xs→xd

]
〉xs→xd exp[−∆SLEUP] exp[−∆N ] exp[∆i] exp[ln(Z1/Z2)]〉s→d,

(5.27)
where

∆SLEUP ≡ βdS(yd | xd)− βsS(ys | xs),
∆N ≡ µdN(yd | xd)− µsN(ys | xs).

(5.28)
By rearranging (5.27) as
〈〈exp

[
−β ′∆Qτ

xs→xd

]
〉xs→xd exp[−∆SLEUP] exp[−∆N ]

× exp[∆i] exp[ln(Z1/Z2)] exp[ln{W (s→ d)/W (d→ s)}]〉s→d = 1,(5.29)
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and using the Jensen’s inequality, i.e., exp[〈X〉] ≤ 〈exp[X]〉, and the fact that ex ≥
1 + x, arrive at
〈β ′∆Qτ

xs→xd〉s→d + 〈∆SLEUP〉s→d + 〈∆N〉s→d − 〈∆i〉s→d − ln
[
Z1

Z2

]
+ ln

[
W (d→ s)
W (s→ d)

]
≥ 0.

(5.30)note that if s and d correspond to the same identical classes, i.e., W (d → s) =
W (s → d), then the last term of (5.30) vanishes. Now, by defining the remainingterms as the total entropy production, that is,

f ≡ 〈β ′∆Qτ
xs→xd〉s→d + 〈∆SLEUP〉s→d + 〈∆N〉s→d − 〈∆i〉s→d − ln

[
Z1

Z2

]
, (5.31)

then (5.30) implies that the total entropy production is always non-negative, inother words, (5.30) can be considered as a generalized Second Law of Thermody-namics (see also Ref. [44]). The above inequality constitutes a fluctuation theoremfor tissue differentiation.
The inequality of (5.30) relates thermodynamic properties of the system to theLEUP; and as it is obtained under general assumptions, it is applicable to a generalcell and tissue differentiation process. In the next subsection, it is shown how (5.30)implies the robustness of cell differentiation for the particular case of the aviancone photoreceptors.

5.3.1. Application: differentiated photoreceptor mosaics are
thermodynamically robust

In this subsection, the fluctuation theorem has been used, culminated in (5.30), toillustrate the robustness of cell differentiation in the case of the avian cone pho-toreceptors differentiating process from progenitor cells. In particular, By defining
s → d as progenitor cell differentiates to cone cell and denoting its correspondingforward transition probability as pf , i.e., W (s → d) = pf , and d → s as cone celldedifferentiates to progenitor cell with its backward transition probability of pb, i.e.,
W (d→ s) = pb, can rewrite (5.30) in terms of pf and pb as
pf
pb
≤ exp

[
〈β ′∆Qτ

xs→xd〉s→d + 〈∆SLEUP〉s→d + 〈∆N〉s→d − 〈∆i〉s→d − ln
[
Z1

Z2

]]
, (5.32)

where the exponent of the exponential is already defined in the right-hand side of(5.32) as the total entropy production, see (5.31).
In order to obtain a thermodynamic constraint which ensures the robustness ofcell differentiation, first assume that there exists a maximum forward transitionprobability from s to d in such a way that
pfmax
pb

= exp

[
〈β ′∆Qτ

xs→xd〉s→d + 〈∆SLEUP〉s→d + 〈∆N〉s→d− 〈∆i〉s→d− ln
[
Z1

Z2

]]
. (5.33)
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To simplify (5.33) more, note that based on (5.6), it can be written as
S (xs) = βs〈S (ys | xs)〉xs + µs〈N (ys | xs)〉xs + lnZ1,
S (xd) = βd〈S (yd | xd)〉xd + µd〈N (yd | xd)〉xd + lnZ2,

(5.34)
and then by subtracting these two and taking the average over all trajectories from
s to d, obtain

〈∆S〉s→d ≡ 〈S(xd)− S(xs)〉s→d = 〈∆SLEUP〉s→d + 〈∆N〉s→d − ln
[
Z1

Z2

]
, (5.35)

where the definitions of ∆SLEUP and ∆N has been used as given in (5.28). Now,(5.33) can be written as
pfmax
pb

= exp

[
〈β ′∆Qτ

xs→xd〉s→d + 〈∆S〉s→d − 〈∆i〉s→d

]
. (5.36)

The immediate implication of (5.36) is that the cell differentiation is robust if
〈β ′∆Qτ

xs→xd〉s→d + 〈∆S〉s→d > 〈∆i〉s→d. (5.37)
In the following, the avian cone cell differentiation is presented as an example ofwhich the above inequality is satisfied, in other words, the robustness of the avianretina is demonstrated in development and the irreversibility of the time arrow forthis particular process.
First, note that as the heat dissipation (the first term in the left-hand side of (5.37))depends on themetabolic pathways, this implies the crucial role of cell metabolismin the process of cell differentiation. In addition, consumption of glucose dependsupon cell types. Progenitor or pluripotent stem cells use glucose as the primarymetabolites for anaerobic glycolysis (fermentation) pathway: Glucose + 2 ADP + 2Phosphate→ 2 Lactate + 2 H+ + 2 ATP, whereas a result of the breakdown of glu-cose to lactic acid the amount of energy around 109.4 kJ/mol is released [103].Differentiated cells use glucose to produce carbon dioxide and water by using aer-obic glycolysis (respiration) reaction: Glucose + 6 O2 + 36 ADP + 36 Phosphate→ 6CO2 + 6 H2O + 36 ATP, where the released energy is around 2820 kJ/mol [103].Thus, 〈∆Qτ

xs→xd〉s→d which is the total heat released during the journey from s to d is
2929.4 kJ/mol. As these reactions have takenplace in T = 310K, have: 〈β ′∆Qτ

xs→xd〉s→d ≈
9.450, where the dimension has dropped as the Boltzmann constant is set to 1, i.e.,
kB = 1.
Now, in order to verify (5.37) for the avian cone cell differentiation, one can calcu-late the value of 〈∆S〉s→d for this particular process. As previouslymentioned, Kramet al. [93] have reported the different color percentages of the green, red, blue, vi-olet, and double avian cone cells inside the retina. By assuming these numbers asthe probabilities of the corresponding colors, one can write: Pg ≈ 0.204, Pr ≈ 0.160,

Pb ≈ 0.133, Pv ≈ 0.094, and Pδ ≈ 0.409. Thus, the entropies can be calculated for theindividual cone cells and as a result that of S(xd) as
S(xd) = −

∑
ip

Pip lnPip

≈ 0.324 + 0.293 + 0.268 + 0.222 + 0.366
= 1.473.

(5.38)
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Now, the entropy difference between differentiated and stem cells reads
〈∆S〉s→d = 〈S(xd)− S(xs)〉s→d = −0.136, (5.39)

where S(xs) behaves as the entropy of a uniform distribution, i.e.,
S(xs) = −

5∑
ip=1

(1/5) ln(1/5) = ln 5 (5.40)
this is due to the fact that for pluripotent stem cells there are no yet color prefer-ences.
In order cell differentiation to be robust, (5.37) imposes a lower bound on theheat dissipation, as

〈β ′∆Qτ
xs→xd〉s→d > −〈∆S〉s→d, (5.41)

where have set 〈∆i〉s→d → 0 for simplicity. (5.41) is strongly holding for the valuesobtained here, that is, 9.450� 0.136. This implies that the development of the avianretina is highly robust, in other words, the arrow of time is almost irreversible inthis process.

5.4. The limit for cell sensing radius

In this section, a relationship between total entropy production and sensing radiusis derived and, in turn, it is applied in the particular case of progenitor cell differ-entiation into the avian cone photoreceptors. The limits of cell sensing radius iscalculated and in the parametric space of the LEUP parameters suggest physicallyacceptable regions for robust tissue differentiation.
In (5.31), the total entropy production is introduced as,

f = 〈β ′∆Qτ
xs→xd〉s→d + 〈∆SLEUP〉s→d + 〈∆N〉s→d − 〈∆i〉s→d − ln

[
Z1

Z2

]
, (5.42)

where the thermodynamic properties of the system are related to the LEUP quan-tities.In order to calculate 〈∆SLEUP〉s→d, the microenvironmental probability distributionsare assumed as Gaussians, thus
〈∆SLEUP〉s→d =

βd
2

ln[2πeσ2
d]−

βs
2

ln[2πeσ2
s ], (5.43)

where (5.28) is used. The above can be simplified to
〈∆SLEUP〉s→d = (βd − βs) ln[2πe]1/2 +

βd
2

lnσ2
d −

βs
2

lnσ2
s . (5.44)

Now, the forms of σ2
d, σ2

s and their scaling with the corresponding cell sensing ra-dius are postulated.
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Jiao et al. in [80] have found that the differentiated retina mosaic is hyperuniform,that is, σ2
d = V RA, where A < D, and D = 2, 3; on the other hand, for the pro-genitor cells, assume a Poisson distribution, i.e., σ2

s = URD. Here, R is the sensingradius, and V and U are the densities of the cone and progenitor cells’ neighbors,respectively. Plugging these formulas in (5.44) leads to
〈∆SLEUP〉s→d = (βd − βs) ln[2πe]1/2 +

1
2

ln
[
V βd

Uβs

]
+
Aβd −Dβs

2
lnR. (5.45)

Another term of (5.42) which needs to be dealt with is 〈∆N〉s→d. From (5.28), have
〈∆N〉s→d = 〈Σ5

i=1(µi,dNi,d − µi,sNi,s)〉s→d, (5.46)
where i counts different types of cones: green, red, blue, violet, and double. notethat the population at each tissue reads as Ni,j = ρi,jR

D, where ρi,j is the density ofthe microenvironment and j ∈ {s, d}. Thus, (5.46) reduces to
〈∆N〉s→d = 〈Σ5

i=1(µi,dρi,d − µi,sρi,s)〉s→dRD ≡ ∆µ̃RD. (5.47)
putting all the terms together, the total entropy production (5.42) becomes

f(R, βd, βs) = C0 + C1(βd − βs) +
1
2

ln
[
V βd

Uβs

]
+
Aβd −Dβs

2
lnR + ∆µ̃RD, (5.48)

where it is assumed that 〈β ′∆Qτ
xs→xd〉s→d, −〈∆i〉s→d, and − ln(Z1/Z2) are constantsand have grouped them together as C0, and C1 ≡ (1/2) ln(2πe).

An explicit formula for the total entropy production is written, which can be ob-tainedby the optimal sensing radius forwhich the total entropy production reachesits extrema. To this end, note that the first derivative of (5.48) vanishes at
Rc =

(
−Γ

∆µ̃D

)1/D

, (5.49)
where Γ ≡ (Aβd −Dβs)/2. As Rc is a positive quantity, the following should alwaysbe satisfied: Γ/∆µ̃ < 0.In order to determine the conditions for whichRcminimizes ormaximizes the totalentropy production, calculate the second derivative of (5.48) at (5.49), and obtain

∂2f

∂R2

∣∣∣
Rc

= −ΓD

R2
c

. (5.50)
Thus, Rc minimizes the total entropy production if Γ < 0 and it maximizes if Γ > 0.
In the left panel of Fig. 5.4, have illustrated the total entropy production (5.48)as a function of R for a particular set of the LEUP parameters which minimizesthe total entropy production based on (5.50). The values of the curve above the R-axis (gray line) are biologically relevant as the total entropy production is positive,i.e., it ensures the robustness of the differentiation process. Moreover, this plotshows that as move away fromRc, the (positive) total entropy production is rapidlyincreasing. The right panel of the figure illustrates, f as a function of R and βd,where the acceptable regions lie above the dark brown surface.
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Figure 5.4.. The left panel shows the total entropy production as a function of the sensingradius for C0 = −1, βd = βs = 3, V = U = 1, A = 1, D = 2, and ∆µ̃ = 0.3. Based on (5.50),this specific set of parameters leads to a total entropy production which has a minimumof ≈ −0.937 at Rc ≈ 1.581. In the right panel, βd is also treated as a variable. Due to thefact that the total entropy production is always positive, the curve/surface above the grayline/plane is only physically acceptable.

In Fig. 5.5, the case for which the total entropy production reaches its maximumis shown. This figure illustrates that the total entropy production is bounded in thiscase. The immediate implication of this is tissue de-differentiation is possible (neg-ative entropy production) for large sensing radii. If one want to have a positive to-tal entropy production, in order to avoid reversibility of differentiated tissue, musthave some sort of fine-tuning in order to restrict the values of R in such a way thatthey lead to a positive f . According to Bialek’s postulated Biophysical principles,[16] fine-tuning in Nature is not favorable. In the case of avian photoreceptors, theparameters can be further constrained and can be identified further arguments toexclude this case.

5.4.1. Application: The average sensing radius of the avian cone
cell

In this subsection, the average sensing radii of the avian cone photoreceptors iscalculated and by exploiting (5.48) the regions can be seen in the parametric spaceof (βs, βd) and (βs, βd, ∆µ̃) which result in a positive total entropy production andensure the robustness of the differentiated tissue.
In the retina of a bird, as explained in the previous sections, the five types of pho-toreceptor cells, namely, green, red, blue, violet, and double cones, form mosaicstructures. From the experimental data (see Supporting Information of [93]), havethe information about the average standard deviation of the Nearest Neighbor Dis-tribution (NND) for each color as: σg ≈ 1.248, σr ≈ 1.548, σb ≈ 1.729, σv ≈ 2.292, and

σδ ≈ 0.948.In addition, Jiao et al. [80] have found how the variance of an avian cone σ2 is related
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Figure 5.5.. The total entropy production f as a function of R and (R,βd) is shown in theleft and right panels, respectively. In the left panel, have fixed the parameters as: C0 = −1,
βd = 3, βs = 1, V = U = 1, A = 1, D = 2, and ∆µ̃ = −0.3. f(R) reaches its maximumof ≈ 1.542 at Rc ≈ 0.913. In the right panel, βd is also considered as a variable. In bothpanels, the only physically acceptable regions lie above the gray line and the gray surface,as the total entropy production should be positive; thismakes the total entropy productiona bounded function in contrast to the case depicted in Fig. 5.4.
to its sensing radius R as

σ2(R) = M1R
2 +M2R lnR +M3R, (5.51)

whereM1,M2, andM3 have been calculated for each color (see Table I of Ref. [80]).By having this information at the disposal, are able to calculate the average sensingradius for each color as
Rδ ≈ 0.786, Rg ≈ 1.426, Rr ≈ 2.006, Rb ≈ 2.288, Rv ≈ 3.553. (5.52)

In the beginning of this section, the variance of the differentiated cells are intro-duced as σ2
d = V RA; now, by approximating (5.51) to have such a particular formand setting V = 1, and using the values of (5.52), can find A for each color as

Aδ ≈ 0.440, Ag ≈ 1.247, Ar ≈ 1.256, Ab ≈ 1.322, Av ≈ 1.308, (5.53)
where they are in agreementwith the assumption of hyperuniformity, that is,A < 2.
As an illustration, based on the values of (5.52) and (5.53), the physically accept-able regions of the total entropy production (5.48) are illustrated as in the paramet-ric space of the LEUP parameters: (βs, βd) and (βs, βd, ∆µ̃) in Fig. 5.6 for the case ofthe double cone photoreceptor.

5.5. Summary and outlook

In this chapter, LEUP is used as a starting point which later leads to the resultsof generalised cell differentiation phenomena and apply it in the differentiation of
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Figure 5.6.. The physically acceptable total entropy production (shaded regions) for thedouble cone photoreceptor of the avian retina. In the left panel, have fixed: C0 = −1,
V = U = 1,D = 2, and∆µ̃ = 0.3. This plot demonstrates the regions where (5.48) is positivein the parametric space of the LEUP parameters (βs,βd). note that have also imposed thecondition regarding the existence of the optimal sensing radiusRc, which in this case readsas Γ < 0, see also (5.49) and (5.50). In the right panel, have relaxed the restriction on ∆µ̃.

avian photoreceptor mosaics. the question (Q1) is posed on how cells coordinateintrinsic and extrinsic variables to determine cell decisions that eventually lead toorganized and stable tissues. To tackle this problem, the Least microEnvironmen-tal Uncertainty Principle (LEUP) is employed, which has been recently proposed tounderstand cell decision-making in multicellular systems, and so far it has beenapplied to cell migration force distribution [66], collective cell migration [11], andbinary phenotypic plasticity [12]. In the context of the LEUP, one can regard differ-entiation as a sort of Bayesian decision-making, where cells update their intrinsicvariables by encoding microenvironmental information and producing relevant re-sponses. This provides a distribution of internal states that depends explicitly onthe information of the cell current microenvironment, which is represented by amesoscopic microenvironmental entropy. Interestingly, it is shown here that localmicroenvironmental entropy should decrease in time leading to more organizedcellular microenvironment, which is the case in differentiated tissues. As a proofof principle, the LEUP challenges the predictions to reproduce differentiated avianphotoreceptor mosaics. Although, by fitting a single parameter β, the photorecep-tor statistics is successfully reproduced, still this cannot be considered as a rigorousvalidation. To this end, recently an inter-species collection of photoreceptor mo-saics was gathered to further investigate the potential of the LEUP to reproducethese tissues and possibly classify them.
By using the aforementioned results, one can attempt to shed light on themacro-scopic transition between pluripotent and differentiated tissues and have specifiedit to the formation of photoreceptor mosaics, which is related to the question (Q2)posed in the Introduction. In this respect, a stochastic thermodynamic-like theoryis developed, based on the Crooks’ theorem, for a general cell and tissue differen-tiation process. It is shown that differentiated tissues are highly robust to dedif-
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ferentiation, even though individual cells are allowed to go back into pluripotentphenotypes. Biologically, the robustness of differentiated tissues depends on re-duced proliferation, change from anaerobic to aerobic metabolism, and increasedcell sensing that leads to higher order of microenvironmental organization. In par-ticular, the critical sensing radii of photoreceptor cones are estimated that ensurethe thermodynamic robustness of differentiated mosaics, which turns out to be inthe range of 0.8µm to 3.5µm, see (5.52). Please note that the critical radius is theminimal radius required to ensure tissue robustness, and therefore should serveas a lower bound for the real values. Now, if one assume that the minimum sens-ing radius is equal to the cone size, then the predicted range correlates with theaverage cone size 2.59±1.05µm (here, the±3σ rule was used for the data presentedin Fig. 5A of Kram et al. [93]).
In summary, the LEUP-driven model is based on the four crucial assumptions:

(A1) there is a timescale separation between the internal and microenvironmentalvariables dynamics, (A2) the multicellular system (tissue), where cell is differentiat-ing, follows aMarkovian dynamics with the assumption ofmicroscopic reversibility,
(A3) a flat cell state distribution is assumed for pluripotent cell states, and (A4) thespatial distribution of the earlymicroenvironmental pluripotent cells follows a Pois-son distribution. Based on these assumptions, one can arrive at three importantresults: (I) predicting the color percentage of the cone cells in the avian retina with-out any knowledge about the underlying biophysical and biochemical mechanisms,
(II) demonstrating the robustness of cell-tissue differentiation in thermodynamicterms, and (III) determining the limits of the cell sensing radius by establishing arelation between total entropy production andmicroenvironmental sensing. In thefollowing, these results are further elaborated.
Prediction of the cone color distribution: By calibrating a single parameter in theLEUP, one can predict the cone color percentage in the avian retina accurately. Thefinding regarding the LEUP parameter which reads as β ≈ 1.754 (close to 2), givesa strong indication that cells sense their environment quasi-optimally when choos-ing a particular cell fate during differentiation process. For future study and inves-tigation, someone can further examine the validity of this result for photoreceptormosaics of other species [38, 53, 109, 27].
Robustness and measurement of information gain in differentiation: The fluctuationtheorem is constructed for tissue differentiation and have derived a generalizationof the second law of thermodynamics for this process based on a Markovian dy-namics. It would be interesting and more realistic to relax this assumption andto analyze the problem using the LEUP on the basis of non-Markovian or memoryprocesses [150], which can lead to different results. The only requirement is thatsystem should have a unique stationary state. Please note that the LEUP-driven sec-ond law of thermodynamics can also be seen as a generalization of the Bayesiansecond law of thermodynamics [9] and the conditional second law of thermody-namics in a strongly coupled system [36].
The theory, which in the current paper has been applied to the specific case of theavian photoreceptormosaics, suggests that differentiated tissue is (highly) thermo-dynamically robust, that is, the arrow of time is almost irreversible, and this robust-
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ness depends on microenvironmental sensing and cell metabolism. It should beremarked that, as is demonstrated in (5.37), if one has the values of 〈β ′∆Qτ
xs→xd〉s→dand 〈∆S〉s→d, then someone can determine the upper bound of point wise mutualinformation difference which is denoted as 〈∆i〉s→d within the context of the LEUP.However, in the present work, transitions between equilibrium end-states wereconsidered and have set 〈∆i〉s→d = 0. In a future study, it is a plan to investigatenonequilibrium dynamics of transitions between progenitor and differentiated cellstates and establish the upper bound of information gain in cell differentiation.(please note that the value of 〈∆i〉s→d can also be obtained directly from experi-ments, see Refs. [51, 73, 72, 158].)

Limits of sensing radius: By studying total entropy production as a function of cellsensing radius and the LEUP parameters, an understanding of how a cell regulatesits sensing radius according to itsmicroenvironment is provided to ensure the ther-modynamic robustness of differentiated tissue. Two cases were shown where (a)the entropy production goes to infinity beyond a certain threshold radius whichis depicted in Fig. 5.4 and (b) the entropy production goes to a maximum valueas in Fig. 5.5. Interestingly, it is concluded that the former is the most biologicallyrelevant case since it requires the division time of differentiated cells to be largerthan that of the pluripotent ones and biologically systems operate away from fine-tuned parameter regimes to withstand noisy perturbations. On the technical side,one assumption was taken such that the spatial distribution of pluripotent tissueresembles a Poisson distribution. It would be interesting to relax this assumptionand to derive this distribution from real tissue data.
One important issue is the range of validity of (A1) regarding the timescale sep-aration between cell decision and cell cycle characteristic times. Although cell deci-sions may seem happening within one cell cycle, the underlying molecular expres-sions may evolve over many cell cycles [145, 118]. When these molecular expres-sions cross a threshold, then cell decision emerges very fast. Therefore, the defini-tion of cell decision should be treated with care. In our case, it is specified that thecell decision is considered only when the cell state switches to another dynamic at-tractor, that induces at the same time some noticeable phenotypic changes. Suchattractor transitions are manifested as switches with much shorter characteristictimes than a cell cycle [74].
a brief comment on the relation of our theory is made to the commonly usedapproach of themaximum entropy production (MEP). TheMEP formalism explainsonly the transition from a pluripotent state to a differentiating one, without real-izing the corresponding dynamics. To build a connection between these two, onehas to construct the LEUP theory for transition paths like maximum caliber princi-ple [55]. Instead of internal and external variables, one uses internal and externalpaths of the corresponding evolution. Then, by exploiting the formulation of maxi-mum caliber, one canwrite the time evolution ofmicroenvironmental path entropy– as a conservation equation – in terms of sources and fluxes and subsequently interms of path action and entropy production [42, 105]. In this regard, one can usemaximum caliber principle to construct appropriate transition probabilities andeven understand the spatio-temporal dynamics [116]. Finally, one should maxi-mize the internal path entropy, which resembles the MEP approach. Working out

73



5. Cell differentiation and sensing: tissue robustness from optimal environmental
sensing

the details of this connection remains for a future work.
The proposed theory has important and interesting implications for cancer re-search and therapy. In particular, (5.42) states that the balance of metabolic, prolif-erative, and tissue organization changes (the LEUP term), needed to be taken placein order to destabilize the differentiated state, that is, to promote carcinogenesis.Until now, the majority of the therapies were focused on antiproliferative strate-gies, such as chemotherapy and radiotherapy, and more seldom to the metabolicconditions such as vasculature normalization. Here, that changes were proposedin the tissue organization, which plays a critical role. This fact has been very re-cently identified in the context of tumor evolution by West et al. [163]. Please notethat in [114], it is realized that microenvironment normalization might be the keyfor immunotherapeutic success. The mechanistic connection between tissue ar-chitecture and cell sensing mechanisms is established in the context of our theory.Strikingly, the experimental work of M. Levin’s group [111] shows that disruptingthe ion channel sensing in a tissue can induce tumorigenesis. In this regard, onecan put forward that investigating changes in the cell sensory processes deservemore attention andmight be pivotal in treating cancers. The goal is to calibrate theexisting theory to human photoreceptors data, thus one could apply these ideasto retinoblastoma tumors.
In a nutshell, how the LEUP facilitates the inference of cellular intrinsic states (or,cell phenotypes) by means of local microenvironmental entropies or fluctuationswas shown. This allows the evaluation of cellular states without the detailed graspof the underlying mechanisms. The sole knowledge about extrinsic variables distri-butions (or, collective cell decision-making) suffices. Therefore, one can apply theLEUP to cell differentiation problemswhere the biological or biophysical knowledgeis unclear or unknown.
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Overall in this thesis, Least microEnvironmental Uncertainty Principle (LEUP) hasbeen applied to understand open biological problems which had been discussedin the previous chapters. The internal and microenvironmental variables in theLEUP depend on the set of biological settings or interests.
In summary, in this thesis, LEUP was used to construct the set of mathematicalmodels for different scenarios of cell decision-making to perceive the dynamics ofcells at the tissue level. At first, this theory had been used in the area of pheno-typic plasticity, which is the archetype for cell decision-making phenomena can bedirectly seen in chapter 3. The important findings are “Solid” and “Liquid” phaseswhich can be distinguished through supercritical pitchfork in the “go-or-rest” caseand the phases later can lead to Turing patterns in the “Go-or-Grow” case. In thischapter, one can understand how individual cell decision influences the tissue dy-namics at the macroscopic level. Specifically, LEUP helps here to figure out thecoarse-grained switching mechanism in Epithelial-Mesenchymal transition, whichwas driven by the microenvironment. After that, LEUP was used to understand col-lective cell migration mechanisms, which is the paradigm of collective orientationdecision-making. To further figure out, a set of Langevin’s equations for collectivecell migration was built in chapter 4 to explain the emergence of pattern forma-tions when the interactions among the cells are unknown. One can understandthe influence and the adaptation of the neighbouring cells in the role of patternformation. In addition, the aspect of the magnitude of sensitivity and sensing ra-dius on pattern formation was examined. The macroscopic observables from themathematical model were verified with experimental data sets. Interestingly, Vic-sek model can be seen as a special case of LEUP driven mathematical model. Atlast, the tissue robustness at the thermodynamic level had been explained fromthe combined theory of arrow of time and LEUP in chapter 5. The probability dis-tribution for each avian photoreceptor has been calculated from the LEUP theory,which later verified with respect to the experimental data sets. Also, the thermody-namic feasibility of cell differentiation can be figured out through themathematicalrelation between entropy production and sensing radius. Subsequently, one canverify the notion of coarse-grained sensing radius with the spatial correlation func-
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tion of external states around the cell. It can assist to observe the structure of themicroenvironment.
The LEUP framework is a coarse-grainedmodel which can be used to understandunknownbiological factswhen themechanismbehind the phenomenabecame illu-sive. Specifically, this framework can be used to understand biological phenomenawhen the precision about biophysical knowledge and inter-pretablity is fractional.The framework helps to find a mapping to phenomenological models which fur-ther connect the mechanistic models. In the future, one can connect this schemewithmachine learningmodels to figure out the areaswhich contain less biophysicalknowledge and less inter-pretablity.
It will be interesting to see if the non-ergodic recipe for microenvironmetal canmake an influence on cell decision-making phenomena. Because of the size of themicroenvironment and strong coupling between neighboring cells, the ergodicityof the microenvironment breaks. Due to this reason, one can formulate the LEUPframework using different definitions of entropy (i.e., Tsallis entropy, Renyi entropyetc.). This can be examined in future to gain a better understanding of cellulardynamics at the tissue level.
From an algorithmic point of view, one can find this groundwork as a strategy todevelop the local search based algorithms which calculate the information of theirneighborhood/microenvironment to update their knowledge for future decisions.Due to the local nature of the algorithm, the corresponding performance woulddepend on the interaction radius of the cell.
It will be fascinating in the future, if one can measure the minimum number ofneighboring cells and their corresponding states which are responsible tomake op-timal decisions. Dynamics in cell decision-making play a huge role in understand-ing the robustness of decision-making. For further explanation, one can constructa Fokker-Planck equations from the microenvironmental entropy to see the evo-lution of time-dependent probability distribution of the internal states. In spatio-temporal cellular decisions, mutations can bring an extra piece of complexity. Theappearance of mutations is sometimes beneficial and sometimes obnoxious. Thissupplementary piece of information can be used inside the variational principle asa constraint to figure out the rare decisions taken by the cell.
Another alluring point is that when the complexmicroenvironment in the vicinityof the cell is dynamic and fluctuating. In this special scenario, cells can grasp a deci-sion in amemory dependent manner. So, the role of non-Markovian processes willcome to the current coarse-grained framework. Memories can help cells to makebetter decisions. It can be hidden in the intra-cellular biological processes (i.e., His-tone modifications, gene regulations etc.) and/or inter-cellular processes (i.e., themedia/microenvironment where the cells take a decision is visco-elastic). It pre-cisely tells us that there exists a lag in time during the flow of information throughthe cell while gathering information from the microenvironment. In a more pre-cise way, one can say that the feedback between the microenvironment to cell andfrom cell to the microenvironment consists of a time difference. To test this lag,one can experimentally verify the response functions of the cell over time.
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7. Supplementary Material

Symbol Explanation
Xi Phenotype of i-th cell
Yi Phenotype of i-th neighbthehood cells
N0
i Number of cells in i-th cell’s microenvironment having phenotype (Xi = 0)

N1
i Number of cells in i-th cell’s microenvironment having phenotype (Xi = 1)

Nφ
i Number of free slots in i-th cell’s microenvironment
V Total capacity
NT Total number of phenotypes
` Radius of the microenvironment
ν Exchange rate
r Growth rate
β LEUP sensitivity

ρ0(x) Mean density of the resting cells at position x
ρ1(x) Mean density of the migratory cells at position x
D0 Diffusion coefficient of resting cells
D1 Diffusion coefficient of migratory cells

S.1. Calculation of microenvironmental entropy

Let assume that amaximumnumber of N cells is present inside the cell’smicroenvi-ronment, where ` is the radius of themicroenvironment (Fig.3.1i). Since there is thepossibility of free slots, if there are less than N cells in the cell neighbthehood, have
started by assuming a trinomial distribution for the i-th cell isP (N1

i ,N
φ
i

)where the
number N0

i of cells having phenotype Xi = 0 and by the number N1
i of cells havingphenotype Xi = 1. In addition, a number Nφ

i of empty slots are included inside the
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microenvironment. The joint probability is defined by
P
(
N1
i ,N

φ
i

)
=

N !

N1
i !N

φ
i !
(
N −Nφ

i −N1
i

)
!
pN

1
i θN

φ
i (1− p− θ)(N−N

φ
i −N

1
i ) , (7.1)

where p and θ are the probabilities of having a number N1
i of cells with phenotype

(Xi = 1) out of N cells and having a number Nφ
i of free slots. The conditionalprobability of having a number N1

i of cells present in the microenvironment givena number Nφ
i of free slots is

P
(
N1
i | Nφ

i

)
=
P
(
N1
i ,N

φ
i

)
P
(
Nφ
i

)
=

N !
N1
i !Nφ

i !(N−Nφ
i −N1

i )!
pN

1
i θN

φ
i (1− p− θ)(N−N

φ
i −N

1
i )
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Nφ
i !(N−Nφ
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θN

φ
i (1− θ)(N−N
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=
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i

N1
i

)(
p

1− θ

)N1
i
(

1− p

1− θ

)N−N1
i −N

φ
i

= B

(
N −Nφ

i ,
p

1− θ

)
= B

(
NT ,

p

1− θ

)

(7.2)

Now, one can use the form of binomial distribution to calculate the entropy of theBinomial distribution. Please note that P (N1
i | Nφ

i ) can be written as P (N1
i | NT )due to Binomial distribution.

S
(
N1
i | NT

)
= S

(
Yi= [N1

i | NT ]
)

=
1
2

log2

(
2πe

NTp

1− θ

(
1− p

1− θ

))
, (7.3)

where
p

1− θ
=
N1
i

N

1

1− Nφ
i

N

=
N1
i

N −Nφ
i

=
N1
i

NT

,

1− p

1− θ
=

N0
i

N −Nφ
i

=
N0
i

NT

.
(7.4)

According to LEUPhave to evaluate themicroenvironmental entropy ofS (Yi | Xi = 0)and S (Yi | Xi = 1) to calculate the probability of the internal states (Xi = 0) and
(Xi = 1)

S
(
Yi= [N1

i | NT ] | Xi = 1
)

=
1
2

log2

(
2πe

(
(NT − 1) (N1

i − 1)

(NT − 1)

)(
N0
i

(NT − 1)

))
,

S
(
Yi= [N1

i | NT ] | Xi = 0
)

=
1
2

log2

(
2πe

(
(NT − 1) (N1

i )

(NT − 1)

)(
N0
i − 1

(NT − 1)

))
.

(7.5)

From the Gaussian approximation can write the entropy difference as
∆S = S(Yi= [N1

i | NT ]|Xi = 1)− S(Yi= [N1
i | NT ]|Xi = 0),

=
1
2

ln
[
N0
i (N1

i − 1)

N1
i (N0

i − 1)

]
.

(7.6)
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S.2. Calculation of cell proliferation rate

In the Go-or-Grow model, only resting cells are allowed to proliferate but not themoving cells. The growth rate depends in a specific way on the number of movingand resting cells in themicroenvironment. In particular, assume that the per- capitagrowth rate for resting cells is a linearly decreasing function of N0
i and N1

i , and isalso decreasing with the number ofmigratory cells and a constant per-capita deathrate d1. Accordingly,
d〈N0

i 〉
dt

=
(
〈W+〉N0

i ,N1
i
− 〈W−〉N0

i ,N1
i

)
= h1ρ0 − q (ρ0 + ρ1) ρ0 − d1ρ0

= rρ0 (1− ρ0 − ρ1)

(7.7)

where q
r

= 1 and r = h1 − d1.
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S.4. Phase space diagram for null sensitivity case
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Figure 7.1.. Phase space diagram of ρ∗0 and ρ∗1 for, r = 1where two fixed points are marked by red circles.
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S.5. Turing space for pattern formation

 a = 0.05, Turing space
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(i) a is fixed at 0.05.

 a = 0.065, Turing space
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(ii) a is fixed at 0.065.
 a = 0.08, Turing space
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(iii) a is fixed at 0.08.
Figure 7.2.. Phase space diagram of β vs. r′ for different values of a (a-c), where the Turingspace is marked in blue. a is defined by 1

V .
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S.6. Critical wavelengths inside the Turing space for
pattern formation

 a = 0.05, c
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(i) a is fixed at 0.05.

 a = 0.065, c
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(ii) a is fixed at 0.065.
 a = 0.08, c
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(iii) a is fixed at 0.08.
Figure 7.3.. Phase space diagram of β vs. r′ for different values of a (a-c), where criticalwavelengths (ωc) have been plotted inside the Turing space. a is defined by 1

V .
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S.7. Plot of resting probability
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Figure 7.4.. Plot of resting probability with respect to β and ρ0. have fixed the value of 1
Vto 0.01.

S.8. Critical sensitivity vs. inverse capacity graph from
IBM
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0
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Figure 7.5.. Critical sensitivity with respect to the inverse capacity of the IBM over 5 simu-lations. Throughout the simulations, kept the total density at 0.2 and the total number ofcells was 500.
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S.9. Calculation of the curvature of
microenvironmental entropy and Helmholtz free
energy

The entropy of the wrapped Cauchy distribution is
S (Θi | θi) = ln (2π)

+ ln

{
1− 1

N2
CR,n

[
v̄2
y,n + v̄2

x,n + 2 (v̄y,n sin θi + v̄x,n cos θi)
]}

.

(7.8)

To discriminate the maximum from the minimum point, the value of ∂2

∂θ2i
S (Θi | θi)must be evaluated at each extremum point. The second derivative is given by

∂2

∂θ2
i

S (Θi | θi) =

2
N2
CR,i

(v̄y,i sin θi + v̄x,i cos θi)

1− 1
N2
CR,i

[
v̄2
y,i + v̄2

x,i + 2 (v̄y,i sin θi + v̄x,i cos θi)
]

−


2

N2
CR,i

(v̄y,i cos θi − v̄x,i sin θi)

1− 1
N2
CR,i

[
v̄2
y,i + v̄2

x,i + 2 (v̄y,i sin θi + v̄x,i cos θi)
]


2

.

(7.9)

In an extremum point, ∂
∂θi
S (Θi | θi) = 0, therefore

∂2

∂θ2
i

S (Θi | θi)
∣∣∣∣
ext

=

2
N2
CR,i

(v̄y,i sin θi + v̄x,i cos θi)

1− 1
N2
CR,i

[
v̄2
y,i + v̄2

x,i + 2 (v̄y,i sin θi + v̄x,i cos θi)
] . (7.10)

defining κ as the proportionality constant relating sin θi and cos θi with v̄y,i and v̄x,i,respectively, the second derivative evaluated at θi = θ̄ is
∂2

∂θ2
i

S (Θi | θi)
∣∣∣∣
θi=θ̄

=

2κ
N2
CR,i

(
v̄2
y,i + v̄2

x,i

)
1−

(
S1
CR,i

)2 > 0, (7.11)

because the numerator is positive definite, and the denominator is positive giventhe bounds of the order parameters. The extremum point θi = θ̄ therefore corre-sponds to an entropy minimum. Consequently, the behavior of the regime β < 0is analogous to that of the Vicsek model. Conversely, at θi = θ̄ + π find that
∂2

∂θ2
i

S (Θi | θi)
∣∣∣∣
θi=θ̄

=

−2κ
N2
CR,i

(
v̄2
y,i + v̄2

x,i

)
1−

(
S1
CR,i

)2 < 0, (7.12)

using the same arguments as for the θi = θ̄ point. Therefore, the point θi = θ̄ + πcorresponds to the entropy maximum. Then, the regime β > 0 corresponds toa nematic analog of the Vicsek model. Next, one can assume that the model has
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a steady state, where the Helmholtz free energy per bacterium is given by F =
− 1
β̃θ

lnZ. Due to its extensivity, the Helmholtz free energy of the complete system
is

FT = − 1
βθ

N∑
i=1

lnZi = − 1
βθ

ln

(
N∏
i=1

Zn

)
,

where Zn is the normalization constant of i-th cell( see Eq.(3) in chapter 2 ).
The effective normalization constant ZT :=

∏N
i=1 Zi is given by

ZT =

∫
e−βθ

∑N
i=1[ln(2π)+ln(1−e−2γi)]dϑi. (7.13)

The integration is performed over the orientations of all cells in the system. More-over, the dependency of each γi on all angles θi is complex and makes integrationchallenging. However, variation of θi for all i translates into a variation in all γi.Therefore, Eq. 7.13 is equivalent to
ZT =

∫
e−βθ

∑N
i=1[ln(2π)+ln(1−e−2γi)]dγi. (7.14)

expanding up to linear terms around γi = 0 yields
ZT =

∫
e−βθ

∑N
i=1[ln(2π)+ln(2γi)]dγi,

which after rearranging terms and integrating reduces to
ZT =

[
1

(4π)βθ
γ1−βθ
i

1− βθ

]N
. (7.15)

Substituting Eq. 7.15 into the expression of the Helmholtz free energy (Eq. (6) inthe main text), and rearranging terms, yields the Helmholtz free energy
F = N

[(
1− 1

βθ

)
ln (γi) + ln(4π) +

ln (1− βθ)
βθ

]
. (7.16)

Eq. 7.16 is well-defined only for βθ < 1. This indicates that no steady state existsfor βθ ≥ 1, hinting at an out-of-equilibrium regime. The present model belongs tothe class of models with logarithmic potentials.The existence of a non-normalizable state in certain parameter regimes is a stapleof systems with logarithmic potentials.
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7. Supplementary Material

S.10. Pattern formation in different βθ regime (see
Table 1) (βv = 0)

(i) Polar aligned street cells(P=0.6 to 0.7, N=0.5 to 0.7, V=0to 0.04)
(ii) Compact polar alignedcells (P=0.8 to 1.0, N=0.7 to1.0, V=0 to 0.065)

(iii) Scattered polar alignedcells (P=0.7 to 1.0, N=0.7 to1.0, V=0 to 0.05)
(iv) No order or patterns (P=0to 0.09, N=0 to 0.07, V=0 to0.065)

(v) Nematic streaming (P=0to 0.05, N=0.3 to 0.5, V=0 to0.065)
(vi) Nematic streaming andvorticules (P=0 to 0.03, N=0.2to 0.4, V=0 to 0.04)

(vii) Vortices (P=0 to 0.03,N=0.2 to 0.4, V=0.1 to 0.35)
Figure 7.6.. The range of the polar order parameter is defined as P, nematic order param-eter as N and mean absolute vorticity as V. All type of patterns are captured for different
βθ values. Patterns have been changed due to velocity distributions and interaction radius.
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S.11. Polar order parameter in angular sensitivity
(βθ < 0) regime

Figure 7.7.. Polar order parameter vs. angular sensitivity graph. Where interaction radiusis at 3, and standard deviation of noise is at 0.1. Density is fixed at 1.0. Here, microenvi-ronmental entropy has been taken from wrapped Cauchy distribution. Here g = 1,βv = 0,
ε = 0 and 〈ξvi (t)2〉 = 0 . All the order parameters re averaged over 5 realizations after 103

time steps.
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7. Supplementary Material

S.12. Polar order parameter vs. angular noise graph

Figure 7.8.. Polar order parameter vs. angular noise graph. Where interaction radius isat 3 and angular sensitivity is at -0.2. Density is fixed at 1.0. Here, microenvironmentalentropy has been taken from wrapped Cauchy distribution. Here g = 1,βv = 0, ε = 0 and
〈ξvi (t)2〉 = 0 . All the order parameters re averaged over 5 realizations after 103 time steps.

102



S.13. Nematic order parameter in angular sensitivity
(βθ > 0) regime

Figure 7.9.. Nematic order parameter vs. angular sensitivity graph. Where interactionradius is at 3 and standard deviation of angular noise is at 0.05. Density is fixed at 2.5. Here,microenvironmental entropy has been taken from wrapped Cauchy distribution. Here g =
1,βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 . All the order parameters re averaged over 20 realizationsafter 103 time steps.
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7. Supplementary Material

S.14. Nematic order parameter vs. angular noise
graph

Figure 7.10.. Nematic order parameter vs. angular noise graph. Where interaction radiusis at 3 and sensitivity is at 20.Density is fixed at 2.5. Here, microenvironmental entropy hasbeen taken from wrapped Cauchy distribution. Here g = 1,βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 .All the order parameters re averaged over 20 realizations after 103 time steps.
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S.15. Order parameters vs. density graph

Figure 7.11.. Polar order parameter and nematic order parameter vs. density graph.Where interaction radius is at 3 and sensitivity is fixed at 15(for nematic order parameter)and -0.2 (for polar order parameter). Here, microenvironmental entropy has been takenfrom wrapped Cauchy distribution. Here g = 1,βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 . All the orderparameters re averaged over 20 realizations after 103 time steps.
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7. Supplementary Material

S.16. Polar order parameter and nematic order
parameter in angular sensitivity (βθ < 0) regime

One can take microenvironmental entropy from a wrapped exponentialdistribution, any qualitative change can not be observed in phase transitionphenomena in βθ < 0 the regime.

Figure 7.12.. Polar order parameter and nematic order parameter vs. angular sensitivity(βθ < 0) graph. Where interaction radius is at 3, and standard deviation of noise is at 0.05.Density is fixed at 2.5. Here, microenvironmental entropy has been taken from a wrappedexponential distribution. Here g = 1,βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 . All the order parametersre averaged over 5 realizations after 250 time steps.
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S.17. Polar order parameter and nematic order
parameter in angular sensitivity (βθ > 0) regime

One can take microenvironmental entropy from a wrapped exponentialdistribution, any qualitative change can not be observed in phase transitionphenomena in βθ > 0 regime.

Figure 7.13.. Polar order parameter and nematic order parameter vs. angular sensitivity(β > 0) graph. Where interaction radius is at 3, and standard deviation of noise is at 0.05.Density is fixed at 2.5. Here, microenvironmental entropy has been taken from a wrappedexponential distribution. Here g = 1,βv = 0, ε = 0 and 〈ξvi (t)2〉 = 0 . All the order parametersre averaged over 20 realizations after 103 time steps.
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7. Supplementary Material

S.18. Average speed vs. radial sensitivity
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Figure 7.14.. Average speed vs. radial sensitivity (βv) for different densities. The standarddeviation of angular noise was fixed at 0.01, βθ = 20, ψ = 0, the box size has been fixed to30 and the interaction radius was R = 10.

S.19. Probability distributions for speed
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Figure 7.15.. The number of particles was fixed at 200, noise standard deviation at 0.05,
βθ is at -2 and interaction radius at 4. For (i) and (ii) βv re fixed at 25 and -10. Simulationsre averaged over 15 realizations after 200 time steps.
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S.20. Average speed vs. density graph (depends on
multiplicative noise)
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Fig. 3: Difference of average speed simulations including or not 
the multiplicative noise term . g(un)Figure 7.16.. Difference of average speed simulations, including or not the multiplicativenoise term g(~vi) .
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7. Supplementary Material

S.21. Averagve value of the friction term vs density
graph
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Figure 7.17.. Average value of the friction term in different densities. Throughout all simu-lations, the standard deviation of the noise was set at 0.0001, interaction radius at R = 10,proportionality constant ε = 0.008, radial sensitivity βv = −20, g = 1
vn
and angular sensitivityat βθ = 20. Data was obtained after 500 time steps.

110



S.22. Details on the experimental setup of Serratia
marcescens

The experiment [130] has beendonewith gramnegative bacteria Serratiamarcescens274. In the exponential growth phase at low density (i.e.,1× 107 cells) the geometryof bacteria was rod shaped but due to starvation the geometry of the bacteria be-come spherical. The bacteria were grown to an OD650 of 2.0, corresponding to ap-proximately 2×109 bacteria/ml. A 5-µl drop of an overnight (18 h) WT S. marcescens274 culture have been placed on the glass slide. The density of the bacteria wasfixed at 2×109 cells/ml initially and the aspect ratio was smaller than 1.1. Cells werecoming and swimming on the upper surface of the drop. Surface density were in-creased fromminimal to maximal, lasted approximately 20min. Themotion of thebacteria was independent of geometry of the drop, buyoancy, and gravity.
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7. Supplementary Material

S.23. The proof of differentiation microreversibility
relation

Figure 7.18.. Schematic transitions between pluripotent and differentiated microstates.
One can assume that a particular differentiated state belongs to the correspond-ing fixedpoint attractorwhich involves a number of realizations, xdj ∈ Ωd = {xd1 ,xd2 , ...,xdm}.A pluripotent cell state belongs to an attractor – but not to a fixed point as isdiscussed in the main text – that involves the following realizations, xsi ∈ Ωs =

{xs1 ,xs2 , ..., xsn}, where n � m. The transition probability between a pluripotent
xsi and a differentiated xdj microstate can be denoted as w(k)(xsi → xdj), where
k ∈ {1, ...,K} represents a possible path between the two states, see also Fig. 7.18.Now, by invoking the Crooks’ theorem, the condition of microscopic reversibilitycan be written for a single path k as

w(k)(xsi → xdj)
w(k)(xdj → xsi)

= exp
[
β
′
Q

(k)
ij

]
, (7.17)

where β ′ ≡ 1/T , which T is the temperature of the heat bath. The quantity Q(k)
ij isthe heat dissipation in the k-th path during the transition from xsi to xdj . Now, byaveraging over all paths, the path-independent transition probability is written as

w(xsi → xdj)
w(xdj → xsi)

=

〈
w(k)(xsi → xdj)
w(k)(xdj → xsi)

〉
k

= 〈exp
[
β
′
Q

(k)
ij

]
〉k ≥ exp

[
β
′
Qij

]
, (7.18)

where Qij = 〈Q(k)
ij 〉k is the total heat dissipation over all paths (the lower bound isbased on Jensen’s inequality). The transition between a pluripotent state, xs, to anydifferentiated state, xd, can be interpreted as a transition from any xsi to any xdj .Therefore, one can write:

w(xs → xd) =
n∑
i=1

m∑
j=1

w(xsi → xdj), (7.19)
where the average over the corresponding paths is assumed. Now, the ratio of theforward/differentiation over the backward/dedifferentiation transition probability
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reads
w(xs → xd)
w(xd → xs)

=

∑n
i=1
∑m

j=1w(xdj → xsi)
w(xsi→xdj )
w(xdj→xsi )∑n

i=1
∑m

j=1w(xdj → xsi)
=

∑n
i=1
∑m

j=1w(xdj → xsi)〈exp
[
β
′
Q

(k)
ij

]
〉k∑n

i=1
∑m

j=1w(xdj → xsi)
.

(7.20)The last term in (7.20) can be viewed as a weighted average over all possible dedif-ferentiation paths between pluripotent and differentiated states, that is,
w(xs → xd)
w(xd → xs)

=
〈
〈exp

[
β
′
Q

(k)
ij

]
〉k
〉
xdj→xsi

= 〈exp
[
β
′
∆Qτ

xs→xd

]
〉xd→xs , (7.21)

where the latter has been used for notational simplicity. This is the microreversibil-ity relation for a general differentiation process that corresponds to (5.20) in themain text.
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