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Abstract

The ability to use external magnetic fields to influence the microstructure in
polycrystalline materials has potential applications in microstructural engineer-
ing. To explore this potential and to understand the complex interactions
between electromagnetic fields and solid-state matter transport we consider a
phase-field-crystal (PFC) model that captures the basic physics of magnetocrys-
talline interactions. After investigations of a PFC model to study grain growth
without an external magnetic field, the thesis concentrates on the influence of
magnetic fields in the PFC model, to understand the basic phenomena. The
second part considers a coarse graining of the PFC model towards an amplitude
expansion (APFC) model to enable 3D simulations. The coupling with mag-
netic fields allows together with efficient and scalable numerical algorithms to
examine the role of external magnetic fields on the evolution of defect structures
and grain boundaries, on diffusion time scales. Large scale simulations in 2D
and 3D also allow to obtain statistical data on grain growth under the influence
of external fields and to validate with experimental data.
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Kurzfassung

Die Möglichkeit externe Magnetfelder zu nutzen um die Mikrostruktur in poly-
kristallienen Materialien zu beeinflussen, hat potentielle Anwendungen in der
Mikrostrukturierung. Um dieses Potential zu nutzen und die komplexen In-
teraktionen zwischen elektromagnetischen Feldern und Stofftransport in kon-
densierter Materie zu verstehen, wird ein Phasenfeldkristall(PFC)-Modell ver-
wendet, welches die wesentlichen physikalischen Gesetzmäßigkeiten der magne-
tokristallienen Interaktionen berücksichtigt. Nach der Untersuchung des PFC
Modelles zur Modellierung von Kornwachstum ohne externes Magnetfeld, konzen-
triert sich die Dissertation auf den Einfluß eines Magnetfeldes in dem PFC
Modell, um die grundlegenden Phänomene zu verstehen. Der zweite Teil be-
handelt ein vergröbertes Modell der PFC Modelles, die Amplituden Gleichungen
(APFC), welche auch 3D Simulationen ermöglichen. Die Kopplung mit Magnet-
feldern erlaubt mittels effizienter und skalierbarer numerischer Algorithmen die
Rolle von Magnetfeldern auf die Entwicklung von defektbehafteten Strukturen
und Korngrenzen auf diffusiven Zeitskalen zu untersuchen. Großskalige Simula-
tionen in 2D und 3D erlauben außerdem statistische Daten über Kornwachstum
unter dem Einfluß externer Magnetfelder zu erhalten und die Simulationsergeb-
nisse mit experimentellen Daten zu validieren.
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Statement on previously
published results

To a large extend this thesis contains material which has been published already.
Chapters 1 - 4 are taken from [6, 7, 9, 70] with small modifications to unify the
notation and avoid redundancy. Other contributions of the author to the broader
field of the thesis are [8, 10–14, 69, 70, 77]. These results are not discussed in
detail in the thesis. In most of these papers the author is the corresponding
author. Chapter 5 has not been published before. It introduces a new extended
magnetic coupling and extends work from [69, 70] to the magnetic case.
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1 Introduction

1.1 Grain growth

Most metals, ceramics and minerals are polycrystalline materials containing
grains of different crystal orientation. The size, shapes and arrangments of
these grains strongly affect macroscale material properties, such as fracture,
yield stress, coercivity and conductivity. In magnetic systems, for example, the
coercivity (or magnetic ’hardness’) can change by four or five orders of mag-
nitude with a change in grain size [45]. Thus, understanding and controlling
polycrystalline structures is of great importance in the production of many en-
gineering materials and has motivated numerous experimental and theoretical
studies of grain growth.
Grain growth in thin metallic films is one example where extensive research has
been conducted. One very interesting experimental finding in such systems is
that the grain size distributions and topological characteristics appear to be in-
dependent of many experimental conditions [15]. More specifically, it has been
found that for a large collection of Al and Cu thin films a universal grain size dis-
tribution emerges that is independent of the substrate, annealing temperature,
purity, thickness and annealing time. Unfortunately the universal distribution
is qualitatively and quantitatively different from the results of extensive com-
putational studies on grain growth, e.g. [33], which are based on the original
Mullins model [59]. In this model the problem is reduced to the evolution of
a two-dimensional grain boundary network by relating the normal velocity vn

to the curvature κ of the grain boundary, vn = Mγκ, with mobility M and
surface tension γ, and specifying the Herring condition [44] at triple junctions.
Various attempts have been made to extend the original Mullins model and to
include more realistic effects, such as interactions of the film with the substrate,
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1 Introduction

anisotropy in the grain boundary energy and mobility, grain boundary grooving,
and solute and triple junction drag, see [15] and the references therein. While
these extensions have in some cases been shown to significantly alter the grain
statistics no single cause has been able to explain all experimental measured
quantities as discussed in [15]. This discrepancy raises the question if the un-
derlying picture of an evolving smooth grain boundary network of the Mullins
curvature driven models is maybe oversimplified.
In addition to the grain size distribution, the rate of growth of the average grain
size has also been examined in detail. The original Mullins model and its exten-
sions all seem to predict that the average grain size, represented by its radius
r(t) has a power law behavior of the form ∼ t1/2, which follows immediately from
the linear relationship between grain boundary velocity and curvature. Exper-
imentally a much slower coarsening or even stagnation of grain growth in thin
films is observed. This may be due to the fact that the original Mullins model
and its extensions ignore the crystalline structure of the grains, the dissipation
due to lattice deformations and the Peierls barriers for dislocation motion. It
is difficult to reconcile Mullins type models with the atomistic features of grain
boundaries, which (for low angles) can be seen as an alignment of dislocations
where the driving force for grain growth is the stress associated with dislocation
motion. The differences of the description are shown schematically in Fig. 1.1.

Figure 1.1: Schematic comparison between atomistic description of polycrystalline
material and coarse grained picture of a smooth grain boundary network. Shown
is a low angle grain boundary with aligned dislocations and two high angle grain
boundaries in an otherwise hexagonal lattice.
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1.2 Atomistic modeling on diffusive time scales

1.2 Atomistic modeling on diffusive time scales

1.2.1 Phase field crystal model

A phase field crystal (PFC) model [30, 31], which considers the essential atomic
details but operates on diffusive time scales, was able to reproduce the universal
grain size distribution and showed similar scaling properties and stagnation as
in the experiments [6], which will be discussed in Chapter 2. With the achieved
agreement for various geometrical and topological properties it is time to use
the PFC model as a predictive tool to control grain growth in thin films under
the influence of external fields.
External magnetic fields during processing influence grain growth and as such
have been proposed as an additional degree of freedom to control the grain
structure, see [40, 66] for reviews. The PFC model has been extended to include
magnetic interactions in [35, 72] and was used in [7] to explain the complex
interactions between magnetic fields and solid-state matter transport. These
results are explained in Chapter 3 in detail. An applied magnetic field influences
the texture during coarsening due to the anisotropic magnetic properties of
the single grains. Grains with their easy axis aligned to the external field are
energetically preferred. They grow preferably at the expense of the other grains.
The mobility of grain boundaries in this model is found to be anisotropic with
respect to the applied magnetic field. Magnetostriction is naturally included
in the extended PFC model. All these effects already change texture on small
time scales. In [9] the long time scaling behavior and various geometrical and
topological properties in grain growth under the influence of a strong external
magnetic field are analysed. This is described in detail in Chapter 4.

1.2.2 Amplitude expansion

To overcome the length scale limitation of PFC models, the amplitude expan-
sion, also referred to as renormalization-group reduction, of the PFC model
(APFC) [4, 5, 37, 38] was developed. It is based on the idea that the continu-
ous density in PFC models can be described by the amplitude of the minimum
set of Fourier modes or wave vectors needed for a given crystal symmetry. To
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1 Introduction

allow for crystals in arbitrary orientations, strained systems, and/or defects,
the amplitudes are complex functions. Roughly speaking, the magnitude of the
amplitudes accounts for the liquid and solid phases, while the phase incorpo-
rates elasticity and crystal rotations. The combination of the magnitude and
phase allows for defects. In this approach, a coarser spatial resolution than stan-
dard PFC can be used, thus allowing for the simulation of much larger systems.
Simulations of the APFC model have been shown to be very useful for study-
ing a wide variety of phenomena. The method has been applied to the study
of polycrystalline films and the motion of grain boundaries (GBs) [5, 37, 38,
88], the study of heteroepitaxial ordering of ultrathin films [28, 29], structural
phase transitions [60], and grain-boundary energies in graphene [46]. While the
original APFC model was introduced for twodimensional systems with triangu-
lar symmetry, the method has been extended to fcc and bcc systems in three
dimensions [26, 27]. Most of these investigations were performed with simu-
lations using simple numerical methods on a fixed grid. Improvements on the
numerics, i.e., an adaptive finite-element method (FEM) with a semi-implicit
integration scheme has been introduced in [63, 70]. In Chapter 5 we will extend
this approach to study the influence of magnetic fields.

4



2 Modeling grain growth

This chapter is taken from [6]. Modifications are only made to unify notation
and avoid redundancy.

2.1 Atomic considerations

Atomistic descriptions can incorporate the important physical features missing
in the Mullins type models and have led to some important observations. It has
been shown that the complex dislocation structure along curved grain bound-
aries gives rise to a misorientation-dependent mobility [83]. Further studies
indicate that grain boundaries undergo thermal roughening associated with an
abrupt mobility change, leading to smooth (fast) and rough (slow) boundaries
[47], which can eventually lead to stagnation of the growth process. The defect
structure at triple junctions can lead to a sufficiently small mobility limiting the
rate of grain boundary migration [74, 81]. Also tangential motion of the lattices
are possible. For low-angle grain boundaries, normal and tangential motion
are strongly coupled as a result of the geometric constraint that the lattices of
two crystals change continuously across the interface while the grain boundary
moves [23]. As a consequence of this coupling, grains rotate as they shrink which
leads to an increase in the grain boundary energy per unit length, although the
overall energy decreases since the size of the boundary decreases [73, 79, 80].
Each of these phenomena can be simulated using molecular dynamics (MD), see
[52] for a review. However, to study the effect of these phenomena on scaling
laws, grain size distributions or stagnation of growth requires a method which
operates on diffusive time scales. For this reason we choose to study the phase
field crystal model (PFC) which incorporates atomistic details on diffusive time
scales.
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2 Modeling grain growth

2.2 Phase field crystal model

The phase field crystal (PFC) method [31] was introduced to model elasticity,
dislocations and grain boundaries in polycystalline systems in a simple and nat-
ural fashion. The model has been shown to successfully model grain boundary
energies as a function of misorientation [48] and non-classical grain rotation
during grain shrinkage and drag of triple junctions [85]. In addition lower coars-
ening exponents were already observed for hexagonal lattices [1, 22, 61] and even
stagnation of grain growth could be seen [21]. The aim of this paper is to use
the PFC model on large scales to obtain statistical data for grain size distribu-
tions and to compare them with prior experimental data for thin metallic films.
Since the experimental results in [15] seem to be universal, we do not fit the
PFC parameters to a specific material but consider an artificial setting within
the simplest PFC model introduced in [31]. In dimensionless form the equation
reads

∂ϕ

∂t
= Γ∇2 δF

δϕ
, (2.1)

where the order parameter ϕ, is related to the time-averaged atomic density, t
is time, Γ is the mobility and F is the free energy given by,

F =
∫
ϕ(−ε+ (∇2 + 1)2)ϕ2 + ϕ4

4 dr. (2.2)

where ε is a parameter related to temperature. The free energy functional is
constructed so that in the liquid state it is minimized by ϕ = constant and in
the solid crystalline state by a periodic function that has triangular symmetry
in two dimensions and a dimensionless lattice constant 4π/

√
3. The precise

phase diagram can be found in reference [31] and a small portion is shown in
Fig. 2.2. In the crystalline state F is minimized by a periodic function of
arbitrary orientation, making the model ideal for the study of polycrystalline
materials. Elasticity in naturally incorporated in this model as any deviation
from the equilibrium triangular structure increases the energy. The specific
elastic constants are controlled by the average density of ϕ, ϕ̄, and ε and can be
written C12 = C44 = C11/3, where C12 = [(3ϕ̄ +

√
15ε− 36ϕ̄2/75. This model

and the parameters that enter it can be related to more fundamental approaches
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2.3 Results

Figure 2.1: Grain structure obtained from postprocessing a PFC simulation at an
intermediate time. The color coding indicates the averaged local lattice orientation
for each of the maxima in the density field. An enlargement by a factor of four is used
for each figure. Animations of the grain growth process for the three enlargements are
provided in the supplememtary materials of [6], as movie 1-3, corresponding to case
”A1” in Fig. 2.2.

such as classical dynamic density functional theory (DDFT) [32, 48, 77, 84].

2.3 Results

Fig. 2.1 shows a snapshot of a typical simulation, the corresponding animations
of the growth process are shown in the supplementary material of [6], as movie
1-3. The movies allows to identify all mentioned effect resulting from the atom-
istic description, in particular fast and slow moving grain boundaries, pinned
triple junctions, rotating grains, elastic deformations within single grains and
the movement of isolated dislocations.

All simulations are performed in a periodic domain of square size L = 8, 192
starting from a randomly perturbed constant value of the particle density ϕ.
After an initiation phase in which the white noise is damped rapidly, grains
nucleate, grow and impinge on one another. Thereafter the number of maxima in
the particle density ϕ remains mainly constant and coarsening starts. Statistical
results are collected after grains have reached a minimal size of 100 atoms.

7



2 Modeling grain growth

2.3.1 Scaling results

Fig. 2.2 shows the obtained scaling results for the average domain area as a
power law in times, i.e., tq, where q is 1/2 in the Mullins type curvature driven
models. In our simulations it is not clear that this relationship is valid as the
value of q can be see to change in time and be dependent on the parameters of
the simulation and initial conditions. For case ”A”, we either obtain an initial
value of q = 1/3, which turns into q = 1/5, or a constant value of q = 1/5,
depending on the initial grain size. The constant scaling exponent is observed
for larger initial grains. For case ”B”, corresponding to a softer material, the
growth exponent increases to a value of q = 2/5, whereas for case ”C”, a harder
material it decreases to q = 1/20. For all three cases, the growth exponent
is significantly lower than the expected value q = 1/2 for the Mullins type
models. Similar low coarsening exponents have been found for hexagonal lattices
in [22, 61] and in experiments for thin films of CoPt and FePt [65]. Extensive
computational studies in [1, 61] further show a strong dependency of the scaling
exponent on additional noise, which enhances the coarsening process. It has also
been noted [1] that the addition of higher order time derivatives can change the
growth exponent, which may be appropriate for three-dimensional samples. In
two-dimensional thin films (i.e., films with columnar grain structures), however,
it is expected that the substrate/film coupling provides an effective friction for
rotation or translation that eliminates the need for such corrections. In either
case, it is likely that the growth exponents are transient, because for very large
gain sizes the Peierls-Nabarro barriers are likely to inhibit further coarsening.
This effect already occur at early times for quenches to lower temperatures,
as confirmed for points in the phase diagram in the solid region at (ϕ0, ε) =
(−0.31,−0.25), and (ϕ0, ε) = (−0.29,−0.18), which show a frozen configuration.

2.3.2 Grain-size distribution

While it is not entirely clear if there is a single, well-established dynamical
exponent, the grain size distribution functions appear to be much more robust.
Fig. 2.3 shows the averaged grain size distribution of the PFC simulations for the
considered points in the phase diagram, together with the experimental results
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2.3 Results

Figure 2.2: Mean area as a function of time together with the fitted scaling exponents
for various points in the phase diagram depicted in the inset. ”A1” and ”A2” have dif-
ferent initial grain sizes (A1 < A2), the parameters are ”A”: (ϕ0, ε) = (−0.29,−0.25);
”B”: (ϕ0, ε) = (−0.25,−0.18); ”C”: (ϕ0, ε) = (−0.31,−0.30).

and the results of the Mullins type model taken from [15].

A considerable discrepancy between the experimental results and the Mullins
type models is already discussed in [15, 16]. They differ in two important re-
spects. First, the experimental grain structures have a larger number of small
grains as evidenced by the peak of the experimental reduced area probability
density residing to the left of that for the simulations based on the Mullins type
models, a feature that has been termed the ”ear”. Second, the experimental
grain structures have ”tails” that extend to significantly larger sizes than those
seen in simulations based on the Mullins type models. While only very few
grains seen in simulations exceed 4 times (and only rarely do they exceed 5
times) the mean area, the experimental grain structures exhibit maximum grain
areas that are between 8 and 42 times the mean, with a sizable fraction of grains
whose areas exceed 4 times the mean grain area (∼ 3% by number, representing
∼ 18% of the total area). Various closed form distributions have been proposed
to fit the results of the Mullins type models, e.g. the Louat, Hillert, Rios and
Weibull distribution (see [33] and the references therein). They all not only differ
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2 Modeling grain growth

Figure 2.3: Grain size distribution with reference to radius (area in inlet). Shown is the
mean distribution, obtained as the average of the last time steps for cases ”A1”, ”A2”
and ”B” in Fig. 2.2. Case ”C” was not included as it still may contain remnants of
the initial condition. The curve is fitted to a lognormal distribution with parameters
(µ, σ) = (−0.13, 0.53). The experimental data and the results of the Mullins model
are taken from [15]

.

in the ”ear” and ”tail” region, but they also peak at r/〈r〉 > 1, again in dis-
agreement with the experimental results. The PFC simulations not only recover
the qualitative behaviour of the experimental results, they almost perfectly fit
the distribution, and can be very well described by a log-normal distribution.
The grain size distribution appears to be self-similar which is analysed in detail
for case ”A1” in Fig. 2.4. All results are obtained without additional noise.
However, simulations that included noise (not shown) produced grain distribu-
tions consistent with the zero noise case. Further analysis indicates that, also in
agreement with the experimental data, small grains are primarily 3 and 4-sided,
whereas large grains have primarily more than 6 sides.

10



2.4 Conclusions

Figure 2.4: top) Grain size distribution with reference to radius at the labled times in
the inlet, cooresponding to case ”A1” in Fig. 2.2 in comparison with the experimental
results from [15]. We choose the case with a ”fast” coarsening rate, to rule out any
dependency on the initial conditions. The evolution for case ”A2”, ”B” and ”C”
are similar. The initially narrow distribution broadens rapidly and its peak shifts
towards smaller grains. For large times the grain size distribution appears to be
self-similar which is further illustrated in (bottom) showing the time evolution of the
parameters σ and µ of a log-normal distribution fitted to the considered snapshots,
again in comparison with the experimental results from [15] shown as the horizontal
solid lines.

2.4 Conclusions

The importance and prevalence of the formation and properties of polycrys-
talline materials has lead to an enormous amount of theoretical and experimen-
tal research. Unfortunately theoretical progress has been hindered by the lack
of computational methods that can capture the essential physics on the time
and lengths that are appropriate for such phenomena. While MD simulations
are currently unable to reach time scales required to observe self-similar growth
regimes, coarse grained descriptions based on the Mullins model seem to lack the
essential atomistic features allowing for bulk dissipation during grain growth. In
this work large scale numerical simulations of the PFC model were used to ex-
amine the phenomenon of grain growth in two dimensional systems. The results
of these simulations are in remarkable agreement with universal aspects of the
geometric and topological characteristics of the grain structures in thin metallic
films. Among other features they capture both the ”ear” and ”tail” character-
istics of grain distributions that have proven difficult to obtain with previous
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2 Modeling grain growth

models and methods. Thus the PFC model provides a key resource for future
research in which realistic grain structures are required. Although not examined
in this work, the model also incorporates mechanical properties of the system
and thus can be used to study, for example, the relationship between growth
conditions and the structural stability of polycrystalline materials.
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3 Controlling grain boundaries
by magnetic fields

This chapter is taken from [7]. Modifications are only made to unify notation
and avoid redundancy.

3.1 Influence of magnetic fields

The use of external magnetic fields offers additional degrees of freedom to syn-
thesize materials and to tailor the grain structure and thus material properties.
Although evidence for the interactions between external magnetic fields, dif-
fusion and irreversible deformation mechanisms have been gathered over the
years, see the review [40], a global yet detailed understanding of the interac-
tions between magnetic fields and solid-state matter transport is far from being
reached. In this Letter we analyze the properties of a theoretical model, which
allows the description of the basic physics of magnetocrystalline interactions in
a multiscale approach, combining the dynamics of defects, dislocation networks
and grain boundaries with experimentally accessible microstructure evolution
on diffusive time scales.

The basic mechanisms of this interaction can be understood on thermodynamic
arguments. In magnetic materials the magnetic moments are aligned with a
sufficiently strong external magnetic field. If the magnetic properties of the
material are anisotropic, the bulk free energy differs for differently oriented
grains and the energy difference can influence grain boundary (GB) movement.

13



3 Controlling grain boundaries by magnetic fields

The dynamics of the GB can be described by Mullins-type models [59]

v = −M (γκ−∆f) (3.1)

extended by the bulk energy difference [3, 76], where v is the normal velocity
of the GB, M a mobility function, κ the mean curvature and ∆f the energy
density difference of the grains. Assuming two differently oriented grains in a
strong magnetic field in a circular and planar setting, see SI for details, the total
energy of the system and (3.1) lead to a critical grain size rc = −γ/∆f in the
circular and a constant v ∝ ∆f in the planar setting. Both cases demonstrate
the possibility to influence GB movement by external magnetic fields. However,
the description ignores the underlying crystalline lattice which can influence the
process.
It has been shown that the complex dislocation structure along curved GB
gives rise to a misorientation-dependent mobility [83]. Further studies indicate
that grain boundaries undergo thermal roughening associated with an abrupt
mobility change, leading to smooth (fast) and rough (slow) boundaries [47],
which can eventually lead to stagnation of the growth process. The defect
structure at triple junctions can lead to a sufficiently small mobility limiting the
rate of GB migration [74, 81]. Also, tangential motion of the lattices is possible.
For low-angle GB, normal and tangential motion are strongly coupled as a result
of the geometric constraint that the lattices of two crystals change continuously
across the interface while the GB moves [23]. As a consequence of this coupling,
grains rotate as they shrink, which leads to an increase in the GB energy per
unit length, although the overall energy decreases since the size of the boundary
decreases [43, 73, 79, 80, 85].

3.2 Modeling

3.2.1 Coupled equations

The phase field crystal (PFC) model [30–32, 77], captures all these complex
features and numerical simulations of the model have been shown to recover the
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3.2 Modeling

characteristic grain size distribution in agreement with detailed experimental
results [6]. Numerous publications have shown the model to capture the essen-
tial physics of atomic-scale elastic and plastic effects that accompany diffusive
phase transformations, such as solidification, dislocation kinetics and solid-state
precipitation, see [34] for a review.

In [35] the model is coupled with magnetization to generate a ferromagnetic solid
below a density-dependent Curie temperature. In [72] this model is extended
and used to demonstrate the influence of magnetic fields on the growth of crystal
grains. These results indicate that a greater portion of grains evolve to become
aligned along the easy direction of the crystal structure with respect to the
orientation of the external magnetic field. In this Letter we use it to predict the
influence of the magnetic field on grain coarsening in polycrystals. Consistent
with the thermodynamic arguments we find that when the magnetic field is
applied, the average grain size increases and the number of grain along the easy
direction with respect to the field increases. However, it is also found that the
grains become elongated when the field is applied. The elongation occurs due
to an anisotropic GB mobility in the presence of an applied field.

The model in [35, 72] combines the rescaled number density ϕ with a mean field
approximation for the averaged magnetization m. The energy

F [ϕ,m] =
∫
fPFC (ϕ) + ωBfm (m) + ωBfc (ϕ,m) dr (3.2)

with

fPFC (ϕ) = 1
2ϕ (r)2− t6ϕ (r)3+ v

12ϕ (r)4

−1
2ϕ (r)

∫
C2(r− r′)ϕ (r′) dr′

fm (m) = W 2
0

2 (∇·m)2+rm
m2

2 +γm
m4

4 −m ·B+ B2

2

fc (ϕ,m) = −ωmϕ2 m2

2 −
2∑
j=1

α2j

2j (m · ∇ϕ)2j , (3.3)

consists of contributions related to local ordering of the crystal, to local orien-
tation of the magnetic moment and to coupling between crystal structure and
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3 Controlling grain boundaries by magnetic fields

magnetization. ωB is a parameter to control the influence of the magnetic en-
ergy. In order to maximize the anisotropy in the 2D setting, a square ordering
of the crystal is preferred, which is realized within the XPFC formulation for
fPFC (ϕ), see [39, 60].
Magnetization in an isotropic and homogenous material is modeled by fm (m).
The first three terms define a mean field theory of a vector field which is mini-
mized by m = 0 for rm > 0 and m = −rm/γm for rm < 0. Thus, a negative rm
leads to ferromagnetic properties. The last two terms describe the interaction of
the magnetization with an external and a self-induced magnetic field, Bext and
Bind, respectively. The magnetic field is defined as B = Bext + Bind, where Bind

is defined with help of the vector potential: Bind = ∇×A and ∇2A = −∇×m.
The magnetic anisotropy of the material is due to the crystalline structure of
the material. Thus, the magnetization has to depend on the local structure
represented by ϕ and vice versa. The first term in fc (ϕ,m), changes the ferro-
magnetic transition in the magnetic free energy. On average ϕ2 is larger in the
crystal than in the homogeneous phase. Thus, ωm and rm can be chosen to real-
ize a paramagnetic homogeneous phase and a ferromagnetic crystal. The second
term depends on average on the relative orientation of the crystalline structure
with respect to the magnetization. In our case, it lead to an energetic minimum
if the magnetization is aligned with the diagonal of the square crystal. The
number density ϕ evolve according to conserved dynamics and magnetization
according to non-conserved dynamics,

∂ϕ

∂t
= Mn∇2 δF [ϕ,m]

δϕ
,

∂mi

∂t
= −Mm

δF [ϕ,m]
δmi

(3.4)

i = 1, 2, respectively.

3.2.2 Model properties

To measure the magnetic anisotropy we consider a single crystal and vary Bext.
The simulation domain perfectly fits the equilibrium crystal for Bext =0 and is
small enough to prevent the appearance of magnetic domains. The parameters
are chosen for a ferromagnetic material, see SI for details.
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3.2 Modeling

Figure 3.1: Energy density deviation in a single crystal induced by Bext and measured
relative to a crystal preferably aligned with Bext. The orientation with respect to the
crystal structure and strength of Bext is varied. Open symbols correspond to forced
alignment of magnetic moments with Bext, closed symbols show computed magnetic
moments, gray curves show fits by cosine-functions.

Fig. 3.1 shows the anisotropy of the bulk free energy with respect to the orien-
tation of the magnetic moments with and without an external magnetic field.
Restricting the magnetic moments to the direction of the external magnetic
field, leads to slightly larger bulk energies for orientations not along hard and
easy direction. This is due to the reduced degrees of freedom for energy mini-
mization and shows that in the full model in these cases the magnetic moments
are not perfectly aligned with Bext. However, the differences are small. The
magnetic anisotropy for both cases follows the 4-fold symmetry of the crystal
and the easy directions are along the 〈1 1〉-directions. Increasing Bext increases
the anisotropy as well as the mean magnetization. The model also includes mag-
netostriction effects [35]. The crystal slightly tends to elongate along the easy
direction aligned with Bext. Coupling local magnetization to the number density
breaks the fourfold symmetry of the number density distribution. Aligning the
magnetic moments along the easy direction of the crystal, the density tends to
elongate along the direction of the magnetic field, see Fig. 3.2.
The elongation increases with the strength of magnetization. Thus, the fourfold
symmetry of the crystal is broken by the magnetization induced by an external
magnetic field. The symmetry breaking due to external magnetic fields also
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3 Controlling grain boundaries by magnetic fields

Figure 3.2: Density of square ordering. The XPFC model (left, ωB = 0) is four fold
symmetric. In the magnetic XPFC model of a ferromagnetic material the magenti-
zation is aligned to a easy direction and the density peak becomes elongated in this
direction (Bext =0).

influence the elastic response of single crystal. In Fig. 3.3 the energy density
w.r.t to deformation of a single crystal is shown. The crystal is either compressed
or stretched along the easy [1 1] directions. The easy direction is aligned to
the external magnetic field. This leads to a deformed crystal. Due to the
interaction with the magnetic moments, the crystal becomes softer along Bext

and stiffer perpendicular to Bext. Thus, also the elastic properties are altered.
A minimum of the energy density is found at an expansion of about 1% for
B0 = 0.1. This shows that the aligned crystal in our simulations introduces
stress in the direction of the magnetic field and breaks the four fold symmetry.
The effect increases with Bext, see Fig. 3.4.
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3.2 Modeling

Figure 3.3: Energy density dependent on applied deformation of a single crystal. The
deformation dx (dy) is perpendicular (parallel) to Bext along a [1 1] direction. The
blue shapes show the type of applied deformations. The circle indicate the minimum
in the energy density. The crystal tends to elongate along Bext.

Figure 3.4: Deformation of minimum energy state dependent on Bext. With increasing
Bext the crystal tends to elongate.
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3 Controlling grain boundaries by magnetic fields

3.3 Simulation

3.3.1 Coarsening

To show the impact of external magnetic fields on the texture evolution dur-
ing coarsening we prepared a polycrystalline sample, see Fig. 3.5. An initially
randomly perturbated density field is evolved without magnetic interaction un-
til the fine polycrystalline structure appears. Any particle with four neighbors
is identified as a particle in a crystalline structure and the local orientation of
the crystal with respect to the external magnetic field is calculated and visu-
alized. Starting from this initial condition the evolution equations are solved
with small random magnetization for different external magnetic fields, applied
in x-direction. For Bext = 0 there is no energetically preferred orientation and
coarsening is only due to minimization of GB energy. Small grains vanish and
larger grains grow. The average grain size increases and the orientation distri-
bution stays isotropic. Applying an external field leads to a preferred growth
of grains which are aligned preferably with respect to the external magnetic
field, the easy direction (green). Thus, the not aligned grains (blue and red)
vanish and the orientation distribution peaks near the aligned grain orientation.
This is in qualitative agreement with experiments, e.g. on Zn and Ti sheets
[56], and classical grain growth simulations of Mullins type with an analytical
magnetic driving force [17]. The additional driving force, due to the external
magnetic field, also enhances the coarsening process, which can already be seen
by comparing the final textures in Fig. 3.5 and which has also been observed
experimentally, e.g. during annealing of FeCo under high steady magnetic fields
[66]. Increasing Bext leads to more pronounced grain orientation selection.
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3.3 Simulation

Figure 3.5: (left) Initial configuration for coarsening simulation. The color shows
the local orientation of the crystal with respect to the external magnetic field. The
direction of the external magnetic field is in x-direction and corresponds to grains
oriented in the easy direction (green). For the inlet the maxima of ϕ are visualized
as atoms. The orientation distribution is isotropic. (middle) Coarsening simulation
for different Bext (up-down) with snapshots in time (left-right). (right) Orientation
distribution at final time of coarsening process. For the used parameters see Chapter
2. The computational domain is 409.6× 409.6.
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3 Controlling grain boundaries by magnetic fields

Figure 3.6: A circular grain embedded in a matrix (red isoline). The external magnetic
filed is aligned with the easy direction of the circular grain. Dependent on strength
of Bext the grain shrinks, stagnates or grows.

3.3.2 Single grain

In order to analyze these results in more detail we consider the two settings
of a circular and a planar GB. We start with a rotated crystal embedded in a
matrix, see Fig. 3.6. For Bext = 0 the grain shrinks and vanishes in order to
minimize GB energy. Bext aligned with the easy direction of the rotated grain
induces an opposite driving force, which for Bext = 0.1 balances the GB energy,
while Increasing Bext above this threshold leads to growth of the grain. This is
in accordance with the continuous description.
However, for Bext = 0.2 the evolution is anisotropic, first a square like shape is
reached, resampling the 4-fold crystalline symmetry, while further growth breaks
this symmetry, the grain becomes elongated perpendicular to Bext. This may be
explained by thermodynamic or kinetic reasons [42, 71]. Within the continuous
description of eq. (3.1) the shape reached for Bext = 0.2 requires either the GB
energy γ parallel to Bext to be roughly twice the energy perpendicular to Bext

or the mobility M of parallel and perpendicular GB has to vary by a factor of
two or some combination of both.

3.3.3 Planar grain boundary

To separate thermodynamic (γ) and kinetic effects (M) of GB movement, we
consider a planar GB. According to the continuum description the velocity of
the planar GB is proportional to the driving force ∆f . Thus, the decay of total
energy is linear and the mobility can be extracted, M = −v/∆f . To maximize
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3.3 Simulation

Figure 3.7: Two setups of a symmetric tilt GB in a periodic domain, Bext = 0.1 is
aligned with the easy directions of the left grain. Both setups lead to the same driving
force, but the energy decay differs.

the influence of Bext two symmetric high angle GB are placed in an elongated
periodic domain. Bext is aligned with the easy direction of the left grain. Due
to symmetry the magnetic field can be rotated by π/2. In one situation the
magnetization is more aligned and in the other more perpendicular to the GB,
see Fig. 3.7, which shows the setup and the energy decay for both situations.
The initial condition is achieved by a purely structural relaxation with ωB = 0.
Then the coupling with Bext is switched on. After some initial reconfiguration,
which adjusts the density field ϕ, the energy decays on average linearly. The
GBs move with constant speed reducing the size of the grain not aligned with
Bext until they vanish. The final annihilation of the GB leads to a sudden drop
in energy, which is proportional to γ and equal in both cases. However, the
energy decays faster in the case of a more aligned Bext with the GB, implying
faster GB velocity and in turn a larger GB mobility.
A closer look at the energy decay shows a step like function. This reflects the
crystalline structure of the GB. In order to move the GB by a unit length it has
to pass some energetically unfavorable positions, see Fig. 3.8.
Varying the magnitude of Bext changes the driving force and the velocity of
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3 Controlling grain boundaries by magnetic fields

Figure 3.8: Particle picture of the GB during evolution over one unit length. The
particles are located according to maxima in the density field ϕ. The color is the
energy density at the position of the particle and serves as a measure of the local
energy, see [50]. During the slow evolution (0-2) the energy of the particles at the GB
increases until the energy barrier is overcome by the magnetic driving force leading to
a speed up of the GB and a decrease of the energy at the GB (2-3), before the next
barrier is reached (3-4) and the energy at the GB increases again (4-5).

the GB, see Fig. 3.9. For large driving forces the dependency of the velocity
is linear for both cases but by a factor two smaller for the case of Bext more
perpendicular to the GB. For a driving forces below a threshold the GB does
not move, indicating the presence of an activation barrier, which has also been
measured experimentally for planar GB in Zn bicrystals [41]. For intermediate
regimes the mobility increases. As a consequence, the anisotropy seen in Fig. 3.6
can be attributed to kinetics and not thermodynamic effects, which was also
claimed in [56] by interpreting the experiments on Zn and Ti.

3.4 Conclusion

In summary we have shown that an applied magnetic field can increase the
coarsening rate in grain growth processes, due to the lower energy of grains
with their easy axis in line with the applied field. We have also shown that the
mobility of GB is anisotropic with respect to the applied magnetic field. This
kinetic effect leads to elongated grains. Both of these influences are intimately
related to the magnetically anisotropic nature of the model studied. That is,
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Figure 3.9: Velocity extracted for the setups defined in Fig. 3.7. For small external
magnetic field the GB is pinned and does not move at all. High driving forces lead
to a linear increase of velocity with ∆f and an assumed mobility becomes constant.
The mobility differs by a factor of two.

the crystal reacts elastically on applied magnetic fields (magnetorestriction) and
additionally changes in the density field reflecting the two fold symmetry of
Bext may lead to preferred diffusion path and, thus, influence the mobility. It
should be noted that the study examined the influence of an applied field on
a ferromagnetic nano-crystalline system and did not examine the influence of
magnetic field on the initial nucleation stage. This is left for future study.
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4 Magnetically
induced/enhanced coarsening
in thin films

This chapter is taken from [9]. Modifications are only made to unify notation
and avoid redundancy.

4.1 Model and numerical approach

We consider the same model as in Chapter 3. However, in the limit of strong
external magnetic fields, Bext, the magnetization, m, can assumed to be homo-
geneous in the crystal. As shown in [7] the magnetization becomes perfectly
aligned with the external magnetic field and independent of the relative orienta-
tion of the crystal. For paramagnetic or ferromagnetic materials near the Curie
temperature, the magnitude of the magnetization m = |m| dependents on the
magnitude of the external magnetic field Bext. In this limit fm(m) is constant
and does not influence the dynamics. Furthermore, we are only concerned with
the crystal phase and assume ωm = 0. The remaining parameters are chosen
as in Table 4.1 and lead to a minimization of energy if the magnetization is
aligned with the 〈1 1〉-directions of the crystal, the easy axis. The hard axis
are the 〈1 0〉-directions. Thus, a preferably or perfectly aligned single crystal
has a 〈1 1〉-direction aligned with the external magnetic field. Due to the direct
relation between Bext and m, only the evolution equation for ϕ remains and
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4 Magnetically induced/enhanced coarsening in thin films

t v Mn ϕ̄ k0/1 ξ1/2 A0,1 ωB α2,4

1 1 1 0.05
(
2π,
√

22π
)

(1, 1) (1, 1) 1 (-0.001, 0)

Table 4.1: Modeling parameters. The parameters are inspired by [60] and chosen to
maximize the energetic difference between square and triangular phase.

reads:

∂ϕ

∂t
= Mn∇2

ϕ− t

2ϕ
2 + v

3ϕ
3 −

∫
C2(r− r′)ϕ (r′) dr′

+ωB∇
2∑
j=1

α2j(m∇ϕ)2j−1m

 , (4.1)

where m is considered as a parameter. Increasing m leads to increasing anisotropy
and magnetostriction [7]. The external magnetic field Bext and thus m is as-
sumed to be parallel to the thin film. Thus, in this limit of strong external
magnetic fields we can use m to vary the strength and direction of the influence
of the external magnetic field on the thin film. The magnitude of m is varied
between [0; 0.8] and varies the magnetic anisotropy.
In order to increase numerical stability, short wavelength in the solutions of
the density are gradually damped in k-space by adding −10−6(2k1 − k)2 to
Ck(k). The evolution equation is solved semi-implicitly in time with a pseudo-
spectral method. For numerical details we refer to [8, 64]. The reduced model
eq. (4.1) is numerically more stable and less costly compared to the full model
eq. (3.2)-(3.4). The timestep may be increased by an order of magnitude. Thus,
coarsening simulations for large times become feasible.
Here, the thin film is modeled by a two dimensional slab perpendicular to the
film height. The crystalline order is defined by the density wave, ϕ. The exter-
nal magnetic field is assumed parallel to the film and induces a homogeneous
magnetization. The magnetic driving force in the model is controlled by the
magnitude of the magnetic moments.
We choose a parameter set, which shows stagnation in coarsening to include the
effect of retarding forces and reflect the experimental findings. The simulation
domain has size L2 = 819.22. The mean distance of density peaks is one and
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4.2 Coarsening

is resolved by ten grid points, (dx=0.1). Thus, the whole systems consists of
6.7 · 105 density peaks, representing particles. A time step of dt=0.1 was used.

4.2 Coarsening

Eq. (4.1), is used to model magnetic assisted annealing of thin films. The
texture of the polycrystalline structure is monitored during annealing in order
to extract geometrical and topological properties over time and compare them
for different magnitudes m. To generate an appropriate initial condition we set
m = 0, start with a randomly perturbed density field ϕ, and solve eq. (4.1)
until we reach a polycrystalline structure with small crystallites with square
symmetry. The perturbation is a random distortion at every grid point. The
small wavelength perturbations are smoothed rapidly by the evolution equation,
but long wavelength perturbation act as nucleation centers. Thus, at random
positions grains with random orientation begin to grow until they touch and
from a network of grain boundaries. After impingement we got about 1,600
randomly oriented grains. This configuration is used as initial condition for all
simulations.

4.2.1 Scaling

Fig. 4.1 shows the evolution of the mean grain area, 〈A〉. Coarsening leads to
an increase of the mean grain area over time. The coarsening is enhanced by
increasing the magnetization and, thus, the magnetic anisotropy. We identify
scaling regimes by a power law, 〈A〉 ∝ tα, with a scaling exponent α. In all cases
a first scaling regime Fig. 4.1(B) is reached after an initial phase Fig. 4.1(A).
Without magnetization a scaling exponent of α = 1/3 is observed. Increasing
the magnetic influence increases the scaling exponent. The maximum scaling
exponent α = 1 is achieved for m = 0.8. However, this scaling regime ends.
For small magnetic influence below some threshold, it turns into stagnation,
Fig. 4.1(C). Above this threshold, here m ≥ 0.5, the scaling becomes indepen-
dent of magnetic interaction and we observe α = 1/3, Fig. 4.1(D).
It has been shown before that without magnetic driving force the scaling ex-
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4 Magnetically induced/enhanced coarsening in thin films

Figure 4.1: Long time evolution of mean grain area for different magnetization. Four
different regimes are identified: (A) towards scaling, an initial phase; (B) dependent
scaling, a magnetically enhanced scaling regime with the scaling exponent depending
on m; (C) towards stagnation, a regime which is only present without or with low
magnetic fields; and (D) independent scaling, a regime reached at late times, with
a scaling exponent independent of magnetic anisotropy. m is varied between [0; 0.8]
and models the strength of magnetic influence and anisotropy.

ponent depend on initial conditions and modeling parameters [6]. This also
remains if magnetic driving forces are included. The identified regimes (A), (B),
(C) and (D) thus also depend on initial conditions and modeling parameters.
Without magnetic driving force the texture becomes self similar during coars-
ening [6, 15]. This is not the case for magnetically enhanced coarsening due to
grain selection. In the following we analyze texture evolution during coarsening
in detail in order to understand the change of the scaling behavior.

4.2.2 Orientation selection

The magnetic driving force leads to preferable growth of grains, which are prefer-
ably aligned with respect to the external magnetic field. Fig. 4.2 shows typical
orientation distributions and how they evolve over time dependent on the mag-
netic influence. The color represents the local crystal orientation, θ. A preferably
aligned crystal corresponds to θ = 0 and, due to symmetry, the θ varies in the
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Figure 4.2: Grain structure during annealing. The color represents the local orien-
tation of the easy axis with respect to the external magnetic field. The area frac-
tion is shown as function of orientation for the initial and final configurations for
different magnetic fields m. The times for the snapshots for m=0, 0.5 and 0.7 are
(9 · 103, 2.7 · 104), (1 · 103, 1.1 · 104) and (4.1 · 103, 1.6 · 104), respectively.
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4 Magnetically induced/enhanced coarsening in thin films

range [−0.25π, 0.25π].
The initial orientation distribution is constructed without magnetization. Thus,
it is homogeneous, Fig. 4.2(a,b). There is no preferred orientation for the grains.
Without a magnetic driving force, m = 0, the orientation distribution stays ho-
mogeneous, Fig. 4.2(c,d,e). With a magnetic driving force this changes and well
aligned grains grow preferentially, Fig. 4.2(f,g,i,j). Grains with θ ≈ 0 (green)
grow at the expense of the other grains (blue, red). As already quantified in
Fig. 4.1, the enhanced grain growth with increasing m can be seen also by
larger grain sizes for increasing m, Fig. 4.2(d,g,j). However, we are here inter-
ested in the orientation distribution, which becomes sharply peaked at θ = 0,
Fig. 4.2(e,h,k). The effect increases with increasing magnetic driving force, as
already analyzed for the full model in [7].

Figure 4.3: Mean magnetic force during coarsening for different applied magnetic
fields m.

The narrowing in orientation distribution has an effect on the total impact of
the external magnetic field. As it reduces the mean orientation difference of
adjacent grains it also reduces the mean magnetic driving force. To measure
this effect we define the mean magnetic driving force as the average energy
difference due to magnetic anisotropy with respect to a perfectly aligned crystal.
Fig. 4.3 shows this quantity over time. Initially the mean magnetic driving force
strongly depends on the strength of the magnetic field. Large m lead to large
magnetic anisotropy and, thus, large magnetic driving forces. But over time the
mean magnetic driving force decreases as the mean orientation deviation from
a perfectly aligned crystal decreases due to grain selection. The strength of this
effect correlates with the strength of the magnetic field. At large times, the
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Figure 4.4: Log-normal distribution parameters exp(µ) (a) and σ (b) over time and
GSD (c) for final averaged values for m between [0; 0.8]. The data for m = 0 corre-
spond with [6] and the experimentally found universal GSD in [15].

mean magnetic driving force falls below a threshold. This large time behavior
correlates with the independent scaling regime in Fig. 4.1(D), which occurs,
when the mean magnetic driving force falls below ≈ 0.7 · 10−4. The time this
threshold is reached depends on m and is indicated by the dashed (red) line in
Fig. 4.1. Thus, orientation selection induced by the external magnetic field over
time decreases the influence of the magnetic field, which explains the transition
to the independent linear scaling (D) in Fig. 4.1. In the case of stagnation,
m < 0.5, the mean magnetic driving force never exceeds the defined threshold.

4.2.3 Grain size distribution

The external magnetic field does not only change the orientation distribution
but also the grain size distribution (GSD). Without external magnetic fields it
was shown in [6] that the coarsening becomes self similar and the GSD is well
described by a log-normal distribution: (

√
2πσx)−1 exp (− (log x−µ)2

2σ2 ), where x is
the scaled radius R

〈R〉 . We calculate the GSD for all coarsening simulations and fit
log-normal distributions to our results. In Fig. 4.4(a,b) the two values defining
the log-normal distribution, exp(µ) and σ are shown over time. During the
dependent (magnetically enhanced) scaling, Fig. 4.1(B), exp(µ) and σ change:
exp(µ) decreases, while σ increases. Thus, the GSD is not constant over time
and, thus, the coarsening is not self similar. Only within the independent scaling
regime and towards stagnation, Fig. 4.1(C,D), the GSD becomes stationary on
average. Thus, self similar growth is achieved.
As the number of grains is drastically decreased within this regime the GSD
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Figure 4.5: Log-normal description for next neighbor distribution (NND) (a), the
smoothed distribution should of course be interpreted in a discrete setting, axis ratio
distribution (ARD) (b) and cosine description for small axis orientation distribution
(SAOD) (c), obtained from late time coarsening regime. m is varied between [0;
0.8]. Note: the NND has only discrete values and isrepresented by a smooth density
distribution to show the influence on m.

statistics become more and more noisy. Fluctuations in the GSD approximation
increase for larger times and higher magnetic influence. In order to compare the
GSD for different external magnetic fields in the limit of large times, we average
exp(µ) and σ for large times and use the averaged value to reconstruct the log-
normal distribution, see Fig. 4.4(c). Large external magnetic fields, m > 0.5
shift the maximum of the GSD towards smaller sizes. But the tail becomes
wider. Thus, the number of large grains with respect to the average grain size
is increased. For smaller external magnetic fields, m < 0.5 the tendency is the
same but the difference is minor.

4.2.4 Grain coordination and shape

Various other geometrical and topological measures have been considered to de-
fine the grain structure. The next neighbor distribution (NND) or coordination
number of grains counts the number of neighboring grains. The shape of grains
can be quantified by approximating every grain by an ellipse. The ratio of the
axis of the ellipse then measure the elongation of grains. This leads to the axis
ratio distribution (ARD). Elongated grains my have preferred direction of elon-
gation. This is measured here by the angle of the small axis with the external
magnetic field and lead to a small axis orientation distribution (SAOD).
We concentrate on large times for which the coarsening is self similar. Fig. 4.5(a)
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shows the NND, which is also fitted by a log-normal distribution. With increas-
ing external magnetic field the distribution broadens and the maximum is shifted
to smaller values. This can already be related to the faster growth, which leads
to larger grains and thus also an increased difference in grain size. Classical em-
pirical laws for topological properties in grain structures, such as the Lewis’ law
and the Aboav-Weair’s law, see [24] for a review, show a linear relation between
the coordination number and the area of the grains and postulate that grains
with high (low) coordination number are surrounded by small (large) grains, re-
spectively. These effects are further enhanced by the elongation of grains, which
lead to more neighbors. Additionally, small grains between elongated grains
have less neighbors.
The ARD can also be approximated by a log-normal distribution, Fig. 4.5.
With increasing magnetic anisotropy the ratio increases and more and more
elongated grains are present. The orientation of the elongation is correlated
with the external magnetic field. In Fig. 4.5 the orientation distribution of the
small axes with the direction of the external magnetic field (SAOD) is shown.
Here the distribution is approximated by a cosine. The elongated grains become
more and more oriented perpendicular to the external magnetic field.

4.3 Discussion

Classical Mullins-like models for grain growth predict self similar growth and a
scaling law 〈A〉 ∝ tα with a scaling exponent α = 1 [58]. This also does not
change if external magnetic fields are introduced as an additional driving force.
In contrast to our simulation, see Fig. 4.1, no influence of the scaling behavior
is observed. Even though the texture depends on strength and direction of the
external magnetic field [2, 17, 36, 51, 54, 57]. In these simulations the increase
of growth of well aligned grains is leveled by the decrease of growth of not well
aligned grains. Thus, the scaling exponent is predicted to be independent of
the additional driving force. In these models, smaller exponents and stagna-
tion of grain growth, as observed in experiments [15], can only be achieved by
introducing additional retarding or pinning forces.
Within the considered PFC model triple point and orientational pinning are
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naturally present, which is one reason for the observed lower scaling exponent
and the stagnation [6]. External magnetic fields introduce an additional driving
force to the system. If large enough they can overcome the retarding forces
and enhance growth. This explains the dependent growth regime with scaling
exponents depending on the applied magnetic field. If the magnetic driving force
is large enough all retarding forces are overcome and an exponent of α = 1 is
reached.
Grain growth under an applied magnetic field leads to preferable growth of well
aligned grains. It is this grain selection which decreased the mean magnetic
driving force over time. If the texture is dominated by well aligned grains, the
magnetic driving force is no longer a function of the applied field but is lim-
ited by the texture, see Fig. 4.3. Only parts of the retarding forces can be
overcome and the scaling exponent becomes independent of the magnetic inter-
action. Turning off the magnetic field in this regime of well aligned grains leads
to stagnation. It can only be speculated about the origin of this retarding forces
and the mechanism they are overcome by the magnetic field. But, crystalline
defects and elastic properties are known to be modified by the local magnetiza-
tion [7] and lead to magnetization dependent mobilities. The same mechanism
may also open new reaction paths for defect movement which might remove the
retarding forces.
In the case of small magnetic field the coarsening stagnates. In this regime
the magnetic driving force is not large enough to overcome the retarding force
responsible for stagnation.
Within the independent scaling regime self similar growth is observed which
allows to compute various geometrical and topological properties of the grain
structure. Their dependence on the magnitude of the applied magnetic field
has been analyzed. The considered grain size distribution (GSD), next neighbor
distribution (NND) and axis ratio distribution (ARD) broaden with increasing
magnetic anisotropy, leading to larger grains, more grains with very few and
many neighbors, and more elongated grains, see Figs. 4.4 and 4.5. The shift in
the NND to smaller coordination number has also been reported for simulations
based on Mullins type models [54].
Even though, texture control by magnetic fields is of increasing interest [66] there
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Figure 4.6: GSD of Zr sheet after annealing with and without magnetic fields of
19 T. Data is extracted from Fig. 14 in [55]. The mean grain size 〈R〉 is 10µm for
the sample annealed without magnetic field and 18µm for the sample annealed with
magnetic field.

are not much data on the influence of magnetic fields on GSD in thin films avail-
able. In [55] the texture and grain size evolution of thin Zr sheets annealed with
and without magnetic fields at different temperatures are studied. Increasing
temperature and applying external magnetic fields lead to increasing mean size
of the grains. The orientation of the final grains are influenced by the magnetic
field and the orientation distribution becomes peaked at favorable orientations.
The same tendency as predicted by our simulations, Fig. 4.2. In Fig. 4.6 the
GSD are compared for these samples after annealing with and without magnetic
field. The magnetic field shifts the peak of the GSD towards smaller values lead-
ing to an increase of relatively small grains and relatively large grains. The GSD
also widens and the tail is increased by the magnetic field. Also these details
in the evolution follow qualitatively our simulation results, Fig. 4.4. But we
are not aware of an experimental study showing the increased elongation of the
grains perpendicular to the external magnetic field.

4.4 Conclusion

We studied magnetically enhanced coarsening with an extended PFC model.
The external magnetic field is assumed to be strong enough to prescribe the
magnetization of the thin film. That is, the magnetization is constant and per-
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fectly aligned with the external magnetic field. The anisotropy of the magnetic
properties of the crystal lead to a magnetic driving force. Well aligned crystals
grow at the expense of not well aligned crystals. Additionally, magnetostriction
leads to deformation of crystal and defect structures.
The magnetic driving force leads to grain selection and a texture dominated
by well aligned grains. As the amount of similar oriented grains increase, the
mean orientation difference between grains decreases. Thus, the mean magnetic
driving force also decreases with time due to texture change. The scaling expo-
nent becomes independent for large times and for large enough magnetization.
Stagnation and variation of scaling exponents is due to retarding and pinning
forces for grain boundary movement. There are two mechanisms in magnetically
enhanced coarsening, which change the effect of retarding forces. Firstly, the
magnetic driving force helps to overcome the retarding forces during coarsen-
ing. This explains the scaling regime dependent on the magnetic anisotropy.
Secondly, the change of structure of the crystal due to magnetostriction can
decrease the energy barriers representing the retarding force. Then the driving
force due to minimization of grain boundary energy may become large enough
to overcome the retarding forces. This could explain the independent scaling
regime.
But not only the scaling changes, characteristic geometric and topological prop-
erties are also influenced by the applied magnetic field. At least for GSD and
NND experiments show the same tendency as predicted by our simulations.
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anisotropy in PFC

5.1 Introduction

In the preceeding chapters a magnetic PFC model is used to study coarsening
of thin films. This model already includes magnetic anisotropy and magne-
tostriction. Thus, an applied magnetic field can change coarsening due to grain
selection [7, 9]. The model studied in the previous chapters have two main
limitations, which will be addressed in this chapter: Size limitations due to
the atomic resolution of the density wave defining PFC and efficient control of
magnetic anisotropy.
PFC is based on the density wave ϕ, which resolves the crystalline structure of
the material under consideration. Thus, the formation and dynamics of defects
are naturally described [18, 19, 30]. This is the key accomplishment of PFC. But
the spatial resolution on an atomic scale also limits its applicability. Even for
strained single crystals, without any defects, the density wave has to be resolved
numerically on the atomic scale. That is, a minimum of 5d grid points per
particle is needed for the numerical representation of ϕ, where d is the dimension.
Fortunately the main characteristics of grain growth in columnar thin films can
be modeled by 2-D set ups. We showed in Chapter 2-4 grain coarsening and
grain selection, but in 3 dimensions this approach becomes computationally
very costly. Nevertheless, there is some work studying grain growth [75], grain
shrinkage [87] and defect dynamics [20] in 3-D with PFC.
Additionally, a strained single crystal can be well described by a deformation
field applied to an unstrained reference crystal. The deformation varies typically
on scales larger than the atomic distance and quantifies the deviation from a
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5 Controlling magnetic anisotropy in PFC

reference crystal. This is the basic idea, that leads to the amplitude expansion of
PFC models (APFC) [4, 27, 60, 62]. APFC is shortly introduced in the following
section 5.2.
The other limitation of the current model is the magneto structural coupling.
The magneto structural interaction is modeled by energy terms coupling the
density wave with the local magnetization field, m. In Chapter 3 and 4 we
used the simplest coupling approach originally proposed in [72]. This model
has only one parameter, α2, in order to control the relevant magnetic phenom-
ena: strength of magnetic anisotropy, hard and easy direction of magnetization
and magnetostriction. Increasing the coupling strength α2 just increases mag-
netostriction and magnetic anisotropy altogether, but does not control the easy
and hard direction of magnetization. Thus, the applied model does not have
the flexibility to adapt the magnetic anisotropy to different materials. That is,
the approach does not allow to choose the easy direction freely. Unfortunately,
in 3-D the easy and hard direction in BCC and FCC does not resemble typical
magnetic materials: Iron and Nickel, see Chapter 5.4. In order to control the
easy direction of magnetization Seymour [72] propose an extension to achieve
better control of magnetic anisotropy. But this extension has highly nonlinear
coupling terms between the magnetization and density wave. The proposed
model is hard to interpret and becomes numerically more involved.
In section 5.3 we firstly introduce the few mode approximation to PFC (FMA) in
order to analyze the basic magneto-structural coupling. The FMA is simplifica-
tion of the amplitude expansion applicable for single crystals without any defects
or grain boundaries. The analysis of of the free energy allows us to identify the
core term controlling the magneto-structural interaction. The contribution of
this term to the total free energy can be visualized by the construction of the
minimum energy surface (MES), which will be defined there.
The MES is used to discuss the magneto-structural coupling for BCC and FCC
crystals in the simplest model for magneto-structural coupling in section 5.4.1.
In section 5.4.2 an extended magnetic coupling in PFC is proposed and analyzed.
Hard and easy directions of magnetization may be controlled in the extended
model. That is, the model can be adapted to qualitatively model the magnetic
properties of iron or nickel. It does not introduce highly nonlinear term and,
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5.2 Amplitude expansion of PFC (APFC)

thus, can be interpreted in terms of the MES. It does not introduce further
numerical difficulties.
In the next to last section of this Chapter 5.5 the amplitude expansion for the
extended PFC model is used to examine the magnetic influence on the evolution
of a spherical grain in 3-D.
We summarize our approach for controlling magneto-structural interaction in
PFC and APFC in the last section of this Chapter 5.6.

5.2 Amplitude expansion of PFC (APFC)

For the amplitude expansion we start from a slightly different parameterization
of the free energy for PFC than used in in Chapter 2-4. The free energy is
assumed to be [27, 70]:

F [ϕ] =
∫

Ω

Bx
0

2 ϕ(q2
0 +∇2)2ϕ+ ∆B0

2 ϕ2 − t

3ϕ
3 + v

4ϕ
4dr. (5.1)

q0 defines the lattice spacing in equilibrium. Bx
0 , ∆B0, t and v are modeling

parameter. Together with ϕ̄, as ϕ̄ is conserved over time, they define crystal
structure and properties [30, 49, 78]. The parmeters used in this work are listed
in table 5.1.

t v ϕ̄ Bx
0 ∆B0

1 1 0 0.98 0.02

Table 5.1: Modeling parameters for APFC.

This parameterization is easily transformed to the PFC energy used in the pre-
vious chapters by rescaling, b, and shifting, a, the density: ϕ → ϕ+a

b
. Such a

rescaling was used in the derivation of the PFC model from cDFT in order to
compare to remove the cubic term and compare to previous studies [34]. In our
amplitude expansion such a scaling is used to allow vanishing mean densities:
ϕ̄ = 0. This will simplify the amplitude expansion without loss of generality in
our case.
In APFC the density wave is expressed in terms of the deformation to an undis-
turbed reference crystal. The reference crystal is defined by a set of k vectors,
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5 Controlling magnetic anisotropy in PFC

{kj}. Every kj defines a single density wave. The combination of all density
waves lead to density peaks at the positions of the atoms in the reference crystal
[27]:

ϕref (r) = ϕ̄+
∑
j

Aref,j expikj ·r +c.c., (5.2)

where ϕ̄ is the mean density. The real amplitudes, Aref,j ∈ R, are chosen
to minimize the free energy for the chosen crystal structure. The amplitudes
describe the amount of ordering and vanish for homogeneous or liquid phases.
In APFC, the {kj} are a priory chosen to represent a crystal, e.g. BCC or FCC.
They are constant in space and time.

The local deviation from this reference structure can be described by extending
to complex and space dependent amplitudes, Aj(r) ∈ C:

ϕ(r) = ϕ̄+
∑
j

Aj(r) expikj ·r +c.c. (5.3)

= ϕ̄+
∑
j

Aref,j
|Aj(r)|
Aref,j

expi(kj ·r+Φj(r)) +c.c.,

where Φj(r) is the phase of Aj. The phase encodes the deformation of the crystal
and the norm of the amplitude, |Aj(r)|, the change in ordering. In this work
we are only interested in bulk crystals and polycrystaline structures. Thus, we
assume ϕ̄ to be constant in regions of interest. Then we can use rescaling of ϕ
to have ϕ̄ =0. An amplitude expansion including slowly varying mean density
of ϕ is reported in [60, 88]. Further on, the explicit space dependence for ϕ(r)
and Aj(r) will be omitted.

In order to derive the amplitude expansion of PFC, the ansatz, eq. 5.3, is plugged
in to the PFC energy assuming Aref,j =1. If we assume that the amplitudes,
Aj, vary on larger length scale, than the density wave, ϕ, the fluctuations on
small scales can be averaged [60], treated by multi scale analysis [4, 27] or
renormalization techniques [4, 62]. All techniques show that only resonant terms
contribute to the energy eq. 5.1 in this limit. That is, only terms, where the
phases of the reference density wave, kj · r , cancel each other remain. Then the
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free energy reads:

F [{Aj}] =
∫

Ω

N∑
j=1

(
Bx

0A
∗
jG2

jAj −
3v
2 |Aj|

4
)

+ ∆B0

2 A2 + 3v
4 A

4 + fS({Aj})dr,

(5.4)

where A2 ≡ 2∑j=1|Aj|2, A4 = (A2)2 and Gj ≡ q2
0 − k2

j +∇2 + 2ikj · ∇. Usually
the equilbrium crystal is chosen as a reference, which leads to |kj|= q0. f s is a
polynomial function in Aj and A∗j . It depends on the reference crystal structure
indicated by S, e.g. S=FCC or BCC. Dependent on the crystal structure differ-
ent sets of kj sum up to zero. Only this resonant terms contribute to the free
energy. For FCC and BCC the fS is listed in [70] or in Chapter 5.4, where the
magneto-structural interaction is analysed in detail.
The amplitude expansion of the free energy can be split in three characteristic
parts: The first part acts directly on deformation:

N∑
j=1

Bx
0A
∗
jG2

jAj. (5.5)

The second is independent on deformation and crystal structure:

N∑
j=1
−3v

2 |Aj|
4+∆B0

2 A2 + 3v
4 A

4, (5.6)

and the third part is independent on deformation but depends on the crystal
structure:

fS({Aj}) (5.7)

The first term in eq. 5.5 solely defines the mean distance of the particles and
dependents on local deformation of the crystal. It is the only term directly de-
pendent on the phases of Aj. It leads to the elastic properties of the model [30,
68]. This term is mainly1 due to the approximation of the correlation function

1There is an ambiguity in the quadratic terms of ϕ. Such terms are due to approximation
of entropic and excess free energy.
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in PFC [32, 77].
The second part only depends on |Aj|, eq. 5.6, and, thus, are independent on
crystal structure and deformation. The phases of Aj always annihilates with
the phase of A∗j . That is, A2 does not vary due to deformation unless Aj. That
is, A2

j does not vary due to the phase of Aj. It depends only on local ordering.
This property of |Aj| is used to identify grain boundaries and defect networks in
APFC [69, 70]. This term is due to the quadratic and higher order contribution
of the density ϕ in PFC energy.
The third characteristic term, eq. 5.7, is due to the cubic and higher order con-
tribution of the density ϕ in PFC energy. It depends on the reference crystal
assumed for the amplitude expansion of the density, eq. 5.3. Every crystal struc-
ture has different sets of kj’s that combine for resonant terms. Thus, different
combinations of Aj’s contribute to fS.
The last two discussed parts of the energy does not change due to deformation
directly, but their energy contribution varies indirectly, as stretch deformation
breaks the symmetry w.r.t. Aj in the first characteristic term. That is, |Aj|
changes under stretch deformation but pure rotation does not change Aj. The
free energy eq. 5.4 is independent on rotation.
The time evolution of the amplitudes is:

∂Aj
∂t

= −|kj|2
δF

δA∗j

= −|kj|2
[[

∆B0 +Bx
0G2

j + 3v
(
A2 − |Aj|2

)]
Aj + ∂f s({Aj})

∂A∗j

]
, (5.8)

if an long wavelength limit is assumed [88].
In fig. 5.1 the relation of density, amplitudes and A2 are shown. Fig. 5.1 a) is a
2-D example. A circular grain is constructed by cutting and rotating a circular
domain in a perfect triangular crystal and relaxing according eq. 5.8 until a
proper grain boundary is achieved. The density peaks represent the particles
and defect can be identified. The reference structure of the amplitude expansion
is chosen to conform to the initial triangular crystal. Thus, there is no rotation
outside of the grain w.r.t. reference structure and the amplitudes are constant
and real. Rotation w.r.t. the reference structure leads to periodically varying
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5.2 Amplitude expansion of PFC (APFC)

a) b)

Figure 5.1: Crystal and defect representation in APFC. a) A circular grain in
the center rotated w.r.t. the surrounding matrix (2-D). b) A spherical grain
(3-D). The defect network is identified by A2.

amplitudes inside the grain. However, additional deformations are located near
the defects. The defects easily located in the density representation are not
easily identified in the amplitudes representation . But A2 varies strongly at the
defects, as there the ordering changes rapidly. Away from the defects the defor-
mation and, thus, A2 becomes constant. The minima in A2 are used to identify
the defects in the amplitude expansion. The defects form defect networks in
3-D, see Fig. 5.1 b), and define the grain boundary.

A spherical grain is not stable and will shrink in order to minimize grain bound-
ary energy. Fig. 5.2 shows the shrinkage of a spherical grain [69]. FCC and
BCC crystals are considered with different axis of rotation. The defect network
depends on crystal structure and axis of rotation. The defect structure along
top view resembles the defect network of the corresponding planar twist grain
boundary. We showed in [69], that the amplitude expansion predicts the defect
network expected by PFC simulations, energy considerations and other simula-
tion methods. The shrinkage of the grain is not isotropic. It shrinks faster along
the axis of rotation as predicted by PFC simulations [87]. In Chapter 5.2 we will
examine the shrinkage of a spherical grain with and without magneto-structural
coupling in greater detail.
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5 Controlling magnetic anisotropy in PFC

Figure 5.2: Shrinkage of spherical GBs for different symmetries with θ = 5◦. The
views aligned (top) and perpendicular (bottom) to the rotation axis are shown (as
also illustrated by v̂). (a) fcc symmetry, rotation about the [111] direction. (b)
fcc symmetry, rotation about the [110] direction. (c) bcc symmetry, rotation about
the [111] direction. (d) bcc symmetry, rotation about the [110] direction. Panel (a)
illustrates also the width of the embedded crystal along different directions. Image
from [69].
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APFC replaces the density wave defined on atomistic scale in PFC by a set of
complex amplitudes, {Aj}, encoding the deviation of the crystal to its reference.
This amplitudes varies in space on a length scale dependent on the deviation to
the reference structure. Defects are still resolved at atomistic scale, but strained
or rotated single crystals are described by a set of slowly varying amplitudes.
That is, only at defects, resp. grain boundaries, the amplitudes have to be
resolved on the atomic scale. Although it is assumed that the amplitudes vary on
a length scale larger than a defect, details at defects are surprisingly well handled
by APFC [67, 68]. In this work, we apply spatial adaptive finite elements in
order to efficiently solve equation eq. 5.8 at defects and bulk using AMDiS [70,
82]. The APFC model is extended to include magneto structural interaction in
Chapter 5.2.
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5.3 Magneto-structural coupling and minimum
energy surface (MES)

In this section we analyze the influence of homogeneous magnetization on a
single crystal. That is, the crystal does not have any defects and may only
homogeneously be deformed. This simple set up can be analyzed by a simpli-
fied amplitude expansion. The density wave is parameterized by real constant
Amplitudes, Aj, and kj:

ϕ(r) = ϕ̄+
∑
j

Ajeikj ·r + c.c. =: ϕ({Aj}, {kj}), (5.9)

where {kj} is a set of k-space vectors representing the deformed crystalline
structure, kj = Dkkref,j. kref,j defines an undeformed crystal structure, e.g.
BCC. Every pair (Aj,kj) defines a single mode used to approximate the density
wave ϕ. ϕ̄ is the mean density and is set by rescaling to zero as in APFC: ϕ̄ =0.
Further on we will refer to this ansatz as the few mode approximation (FMA).
The FMA is exact solution to APFC for homogeneous deformed single crystals
and a very good approximation to PFC solutions [49]. Aj as well as kj are
constant in space. Thus, the free energy, eq. 5.4, greatly simplifies to :

F({Aj}, {kj})
Ω =

∑
j

Aj(q2
0 − k2

j )2Aj + gS({Aj}), (5.10)

and w.l.o.g. Ω = 1. The last term, gs({Aj}) is a polynomial in Aj’s. It depends
on the structure S and is defined with eq. 5.4:

gS({Aj}) = −
∑
j

3v
2 |Aj|

4+∆B0

2 A2 + 3v
4 A

4 + f s({Aj}) (5.11)

In [70, 88] fS({Aj}) is shown for S=’BCC’ or ’FCC’ crystals. gS({Aj}) is inde-
pendent on kj and, thus, on deformation of the crystal. The first term in eq. 5.21
depends on Aj and kj, but does not mix contributions of different k-vectors. It
is due to the excess free energy of PFC [32, 77]. The operator acting on Aj

resembles the approximation of a correlation function in k-space. It is invariant
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on the orientation of kj and, thus, on rotation of the crystal represented by the
density wave.
An external magnetic field breaks the rotational symmetry of a crystal by induc-
ing local magnetization, m. Here, m is assumed to be constant in magnitude
and orientation. Thus, the energy of the crystal may depend on the relative ori-
entation of the crystal w.r.t. the magnetization. The simplest ansatz to include
symmetry breaking due to m in PFC is [72] and used in Chapter 3 and 4:

Fcoup(ϕ) = −
∫

Ω
drα2ϕ(m∇)2ϕ. (5.12)

We assume that m is the normalized local magnetization, |m|= 1. The FMA
leads to:

Fcoup({Aj}, {kj})
Ω =

∑
j

α2A
∗
j(mkj)2Aj, (5.13)

where α2 controls the strength of the magnetic interaction and the size of inte-
gration domain is w.l.o.g. Ω = 1. The total free energy is then:

F({Aj}, {kj}) =
∑
j

A∗j
[
(q2

0 − k2
j )2 + α2(mkj)2

]
Aj + gS({Aj}) (5.14)

For α2 > 0 and a single kj, this is minimized when kj =q0 and kj ⊥ m. For
α2 < 0 the energy is minimized by kj ‖ m and k2

j = q2
0 − α2/2. Thus, the

kj increases in direction of m. The magnetic coupling not only favor some
directions of kj, which lead to magnetic anisotropy, but also modify the length
of kj, which lead to magnetostriction.
In the FMA the enrgy has to be optimized w.r.t. a set of kj’s, but the kj’s do
not vary independently. In order to preserve the crystal structure all kj’s have
to transform according the same deformation Dk:

kj → Dkkj. (5.15)
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Dk is a deformation in k-space independent on kj. The free energy under such
a deformation reads:

F({Aj}, {kj}) =
∑
j

Aj
[
(q2

0 − (Dkkj)2)2 + α2(mDkkj)2
]
Aj

+ gS({Aj}). (5.16)

gS({Aj}) is independent on kj and, thus, does not change under deformation Dk.
It’s easy to see, that for a pure rotation, Dk = R, follows (Dkkj)2 = (Rkj)2 = k2

j

and the first term in the sum of eq. 5.16 is rotational invariant. The second term
is minimized by rotation for a single kj if Rkj ⊥ m for α2 > 0. But the same
deformation may lead to an increase of energy due to another kj. In order
to analyze the energy difference between different oriented crystals resp. kj’s,
the deformation has to be restricted to deformations without rotations. In real
space the deformation of a crystal may deform relatively to the local magne-
tization. Due to symmetry considerations, we allow independent deformation
perpendicular and parallel to the magnetization. Thus, the deformation is:

D = RT D̃R with D̃ =
(
d0 0 0
0 d1 0
0 0 d1

)
. (5.17)

The diagonal matrix D̃ describes the deformation, if the first eigenvector is
aligned to the magnetization m. d0 is the deformation parallel and d1 in the
plane perpendicular to the magnetization. The rotation R aligns the magneti-
zation with the first eigenvector of D̃. Under this deformation the kj in k-space
transform as:

kj → DT
k kj = (D−1)Tkj = RT D̃−1R kj. (5.18)

The Aj are nonlinearly coupled in gS({Aj}) and can be optimized without re-
striction, as long as they do not vanish.
The kj minimizing the energy are solely defined by the kernel (q2

0 − k2
j )2 +

α2(mkj)2 and are independent on {Aj}. For a single kj the kernel defines a
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surface of minimal energy (MES) in k-space:

Sα2 = {k : min
k‖n
{(q2

0 − k2)2 + α2(mkj)2}∀n ∈ S2}, (5.19)

where n is an arbitrary vector at the unit sphere. The k on the minimum energy
surface minimize the free energy constrained to the orientation of k. The kernel
evaluated at this k is proportional to the energy contribution of k to the free
energy. Without magnetic interaction, α2 = 0, the minimal energy surface is the
isosurface defined by (q2

0 −k2)2 = 0. Thus, every k on the sphere with radius q0

minimize energy and has a vanishing energy contribution, see fig. 5.3. That is,
the radius of the MES reflects the particle distance in the crystal. The magnetic

base PFC magnetic coupling
isotropic anisotropic

without deformation with deformation

Figure 5.3: Symmetry breaking due to magnetic interaction. Minimum energy
surface without (a) and with magnetic coupling according eq. 5.19. The color
indicates the energy contribution of a k at the minimum energy surface. For
α > 0 the energy is increased in direction of m and the minimum energy
surface is squeezed along m.

interaction breaks the rotational symmetry of the minimum energy surface. The
shape of the minimum energy surface as well as the energy contribution due to
the kernel becomes dependent on orientation of k, see fig. 5.3 For a single k the
energy minimization leads to the k on the minimum energy surface with the
smallest energy contribution. In a crystalline case the kj are not independent.
The same deformation has to be applied to every kj, Eq. 5.18. Thus, the single kj
may not lay on the minimum energy surface for the minimum energy state. But,
the minimum energy surface visualizes the symmetry breaking due to magnetic
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interaction and gives a first hint of the expected anisotropy. It is used in the
following to interpret the influence of the magnetic coupling terms.
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5.4 Magneto-structural interaction in magnetic
PFC

In this section we analyze different magnetic coupling terms in PFC. We use
FMA, section 5.3, to calculate the free energy of a single crystal with a pre-
scribed magnetization m. The magneto-structural interaction is calculated by
minimizing the free energy w.r.t {Aj} and deformation along and perpendicular
to the magnetization, (d0, d1). The energy dependence on the direction of m de-
fines the magnetic anisotropy. Especially, we find the easy and hard direction of
magnetization resp. the low and high energy directions. The magnetostriction
is defined by the deformation D. BCC as well as FCC crystals are considered.
Firstly the basic magnetic coupling proposed by Seymour et al [72] is analysed
in detail using the MES. With this experience, we propose an extended mag-
netic coupling. The extended coupling is more flexible and can be qualitatively
adapted to the magnetic properties of iron and nickel.

5.4.1 Basic model of magnetic coupling

The BCC crystal

In section 5.3 the magnetic coupling of Seymour et al. [72] is already discussed.
A BCC crystal is defined by a set of kj, {kj}, that describe a FCC structure in
k-space. The k-vectors are:

{kj
k0
} =




1
1
0

 ,


1
0
1

 ,


0
1
1

 ,


0
1
−1

 ,


1
−1
0

 ,

−1
0
1


 , (5.20)

with q0 = 1 follows k0 = 1/
√

2. The FMA of the free energy is then:

F({Aj}, {kj}) =
∑
j

Aj
[
(1− k2

j )2 + α2(mkj)2
]
Aj + gBCC({Aj}), (5.21)
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setting Ω = 1. The first term defines the MES and the deformation independent
part is [70]:

gBCC({Aj}) = −
∑
j

3v
2 |Aj|

4+∆B0

2 A2 + 3v
4 A

4 + fBCC({Aj}) and

fBCC({Aj}) =− 2t(A∗1A2A4 + A∗2A3A5 + A∗3A1A6 + A∗4A
∗
5A
∗
6 + c.c.)

+ 6v(A1A
∗
3A
∗
4A
∗
5 + A2A

∗
1A
∗
5A
∗
6 + A3A

∗
2A
∗
6A
∗
4 + c.c.). (5.22)

Figure 5.4: The red balls symbolize the kj ∈ {kj} defining the BCC crystal.
The kj are numbered according eq. 5.20. The energetic equivalent vectors,
-kj , are numbered in grey.

The reference structure is chosen is chosen, such that all the kj are on the MES
for α2 = 0. They describe a FCC ordering in k-space, see. Fig. 5.4. All k-vectors
are [1 1 0] directions on a standard cube. The cube size, c = 2π

a
, is defined by the

particle distance, a. Thus all kj ∈ {kj} are on a sphere, the MES, defined by the
standard PFC model. The negative kj are implicit included in the description
because of the complex conjugate part in the ansatz for the density wave, eq. 5.9.
Due to the symmetry of the crystals and magneto-structural interaction kj and
-kj contribute equally to the total energy.
In order to examine influence of the magneto-structural coupling, we firstly
consider ‖m‖= 1 and three directions for the magnetization: [1 0 0], [1 1 1] and
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[1 1 0]. It will be shown later in the current section, that this low index directions
give a good characterization of the magnetic properties of the model. The
strength of magnetic coupling, α2, is varied between -0.18 and 0.08.

a) b) c)

m ‖ [1 0 0] m ‖ [1 1 1] m ‖ [1 1 0]

d) e) f)

Figure 5.5: Symmetry breaking in the simple magnetic-structural coupling.
a)-c): MES of simple magneto-structural coupling for m in a) [1 0 0], b)
[1 1 1] and c) [1 1 0] direction. The red balls indicate the kj defining the
crystal structure in the FMA, eq. 5.20. d)-f) the amplitudes Aj are shown
for varying coupling strength α2. Due to symmetry, there are groups of
energetically equivalent kj ’s. The numbering of Aj and kj follow fig. 5.4.

For every m and α2 the free energy is minimized w.r.t {Aj} and deformation
D, see Chapter 5.3. In fig. 5.5 a)-c) the MES for α2 = 0.06 are shown for the
different directions of m. The deformation of the MES is very small and not
visible. But the energy corresponding to a kj varies clearly at the MES. In
the first case, Fig. 5.5 a), is m parallel to [1 0 0]. Thus energy contribution is
maximized for kj parallel to m, eq. 5.21. The energy contribution of MES on
the kj’s on the yz-plane is lowest. Thus, we get two set of kj’s with different
energy contribution to the total energy: k2 and k3 are on the xy-plane and,
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thus, energetically favored (lowest energy). k0,k1,k4 and k5 are energetically
unfavored. They are symmetrically ordered around the maximum of energy at
the MES. If α2 < 0 then k2 and k3 are energetically unfavored and k0,k1,k4and
k5 are energetically favored.
In order to compensate for the different energetic contribution due to the anisotropic
MES, the amplitudes adapt. The corresponding amplitudes of different sets of
kj’s react differently. In Fig. 5.5 d)-f), the dependence of the amplitudes Aj
on the coupling strength is shown. Unfavored direction lead to higher energy
contributions, this is balanced by smaller amplitudes in this direction. The set
of unequal amplitudes leads to anisotropic density peaks, when density is re-
constructed, 5.3. An example for elongated peaks is shown in Chapter 3. If the
magnetic coupling becomes to strong then some of the amplitudes vanish. Thus,
the model does not describe a BCC ordering anymore and the model breaks down
for our application. This sets a natural limit for achievable magneto-structural
interaction in this model.
If m is oriented along [1 1 1] and α2 > 0, the unfavored set of kj’s are k0,k1 and
k2, Fig. 5.5 b). The three kj’s are placed symmetrically around the energetic
maximum at the MES. The favored set of kj’s, k3,k4 and k5, are at the energetic
minimum. m is in direction of [1 1 0] in the last set up, Fig. 5.5 c) and f).
In this case, there are three sets of energetically equivalent kj. k4 is at the
energetic maximum, k0 is at the energetic minimum and the remaining kj’s are
energetically equivalent in between. In all cases, the amplitudes for high energy
directions become smaller than for high energy directions.
In Fig. 5.6 the free energy of the different set ups shown in Fig. 5.5 are compared
dependent on the coupling strength. Without any coupling, α2 =0, there is no
symmetry breaking and the total energy is independent on the orientation of m.
For α2 > 0 the coupling term is a positive contribution to the free energy. Thus,
for all directions of m the total energy increases with increasing α2. Negative
α2 leads to decreasing energies, Fig. 5.6 a). m in [1 0 0] direction has the highest
energy for all α2 and, thus, is the hard direction of magnetization. The easy axis
depends on the sign of α2, Fig. 5.6 b). m parallel to [1 1 0] has lowest energy
for α2 < 0. The energy difference between m ‖ [1 1 1] and m ‖ [1 1 0] is small
compared to the difference to the hard direction of magnetization. For α2 > 0
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a) b)

Figure 5.6: Total energy (a) and magnetic anisotropy (b) dependence on
strength of magnetic coupling. [1 0 0] is always the hard (highest energy)
direction of magnetization. The easy (lowest energy) direction is [1 1 0] for
α2 < 0 and [1 1 1] for α2 > 0.

m in [1 1 1] direction has lowest energy.

In Fig. 5.7 a) the free energy for all orientations of m are shown at a sphere. The
crystal is fixed and its 〈1 0 0〉 directions are aligned with the x-,y- and z-axis.
The direction of highest energy and lowest energy reflect the cubic symmetry of
the BCC crystal. Here, α2 > 0, 〈1 0 0〉 are the hard directions of magnetization
(high energy). The easy direction are 〈1 1 1〉. The 〈1 1 0〉 directions are saddle
points in the energy landscape. Thus all basic features of the energy landscapes
are located at the low index directions.
Due to the cubic symmetry, it is enough to study the energy in the triangle
defined by [1 0 0],[1 1 0] and [1 1 1], see Fig. 5.7 b). The characteristic directions
are in the low index directions. Thus, energy along the bound of this triangle
gives a good view of the magnetic anisotropy.
Fig. 5.7 c) shows the energy surface. The distance of the surface to center scales
with the energy in this direction. Thus, the hard direction of magnetization are
the highest spikes at the energy surface. The easy directions of magnetization
correspond to the deepest holes.

In Fig. 5.8 the magnetic anisotropies for α2 = 0.06,−0.04 and −0.08 are com-
pared. The free energy is plotted along the edges of the triangle defined by
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a) b) c)

Figure 5.7: Free energy of BCC crystal dependent on m with fixed coupling
strength α2 = 0.06. The 〈1 0 0〉 directions of the crystal are aligned with the
x-,y- and z-axis. Yellow correspond to high and blue to low energy directions
of m. a) free energy on the sphere representing the orientation of m. b) free
energy in the triangle [1 0 0], [1 1 0] and [1 1 1]. c) energy surface.
The easy (low energy) and hard (high energy) directions of magnetization are
〈1 1 1〉 resp. 〈1 0 0〉.

[1 0 0], [1 1 0] and [1 1 1], see Fig. 5.8 a). This shows the basic features of mag-
netic anisotropy, as all extrema of the free energy are located at this edges, see
Fig. 5.7. The energy is measured relative to the energy of easy direction (min-
imum energy). In all cases there is a maximum at [1 0 0]. The height of the
maximum increases with increasing coupling strength |α2| 2. That is, the mag-
netic anisotropy increases with coupling strength. For α2 = −0.08 the energetic
minima are in the 〈1 1 0〉 directions. In the other cases they are in the 〈1 1 1〉
directions. For α2 < 0 the difference between the 〈1 1 1〉 and 〈1 1 0〉 directions is
quite small compared to the hard directions, 〈1 0 0〉. Thus, the easy direction is
not very distinguished.

The magnetic coupling does not only lead to magnetic anisotropy, but also
leads to a deformation of the crystal. In Fig. 5.9 the deformation of the crystal
is shown for m in [1 1 1] direction. The length of the kj in the optimized state
is shown in Fig. 5.9 a). All kj transform according to the same deformation
Dk. The deformation leads to the same length in each set of energetically
equivalent kj’s due to symmetry. The length of kj in the favored set, k0,k1and

2α2 > 0 and α2 < 0 has to be considered separately.
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a)

b) c)

Figure 5.8: Comparing magnetic anisotropy for α2 = 0.06, -0.04 and -0.08.
a) energy along the edges of the triangle defined by [1 0 0], [1 1 1] and [1 1 0],
Fig. 5.7 c). Maximum defines the hard direction and minimum the easy
direction of magnetization. The energy is plotted relative to the minimum
energy (easy direction). b) and c) energy surface for α2 = -0.04 and -0.06.
(energy surface for α2 = 0.06 in Fig. 5.7 b) ). The easy direction is [1 1 1]
or [1 1 0] depending on α2. The energy difference between [1 1 1] and [1 0 0] is
small for α2 < 0.

k2, decreases for increasing α2. For α2 > 0 the energy is increased in [1 1 1]
direction. Thus, the energetic minimum is shifted towards the center. That is,
the MES is compressed along m. The kj tend to follow this deformation and
its length shrinks, Chapter 5.3. As all kj’s deform due to the same deformation
the unfavored kj’s also change. In Fig. 5.9 b) the two independent values of
the deformation tensor in m direction, d0, and perpendicular to m, d1, are
shown. Thus, for α2 > 0 the crystal expands in m direction and slightly shrinks
perpendicular to m.
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Figure 5.9: Deformation of the crystal due to magnetic coupling. m is in
[1 1 1] direction. Due to deformation of the MES the crystal shrinks in [1 1 1]
direction and expanse slightly perpendicular to m.

The FCC crystal

A similar analysis can be done for FCC crystals. A FCC crystal is described by
two sets of k-vectors with different length scale, [70]:
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 (5.23)

The kj’s define a BCC lattice in k-space, Fig. 5.10. There are two sets of k-
vectors. k0−3 and k4−6 differing by their length. The free energy in the amplitude
expansion for the FCC crystal is often modified in order to account for the two
length scales, [27, 86]:

F [{Aj}] =
∫

Ω

3∑
j=0

Bx
0A
∗
jG2

0,jAj +
6∑
j=4

Bx
0A
∗
jG2

1,jAj

−
6∑
j=0

3v
2 |Aj|

4+∆B0

2 A2 + 3v
4 A

4 + f s({Aj})dr, (5.24)

with Gm,j ≡ q2
m,j − k2

j + ∇2 + 2ikj · ∇ and qm,j is the length of the related
kj. This amplitude expansion is derived from PFC models with two or more
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Figure 5.10: The numbered red balls symbolize the kj ∈ {kj} defining the
FCC crystal. The kj are numbered according eq. 5.20. The energetic equiv-
alent vectors, -kj , are numbered in grey. Due to symmetry of the crystals
and magneto-structural interaction kj and -kj contribute equally to the total
energy. The two length scales represented by k0−3 and k4−6 leads to two
separate MES.

modes, e.g. [39, 53, 86, 88]. Her we assume q0,j = 1 and q1,j = 2/
√

3. Thus,
a FCC crystal with k0 = 1/

√
3 will minimize the energy. Then the few mode

approximation to the free energy including the simple magnetic coupling is:

F({Aj}, {kj}) =
3∑
j=0

Aj
(
(1− k2

j )2 + α2(mk)2
)
Aj

+
6∑
j=4

Aj

(
(4
3 − k2

j )2 + α2(mk)2
)
Aj + gFCC({Aj}). (5.25)

gFCC({Aj}) is a structure dependent polynomial in {Aj} [70]:

gFCC({Aj}) = −
∑
j

3v
2 |Aj|

4+∆B0

2 A2 + 3v
4 A

4 + fFCC({Aj}) and

fFCC({Aj}) =− 2t[A∗1(A∗2A5 + A∗3A7 + A∗4A
∗
6) + A∗2(A∗3A6 + A∗4A

∗
7)

+ A∗3A
∗
4A
∗
5 + c.c.] + 6v[A∗1(A∗2A∗3A∗4 + A2A

∗
6A7 + A3A5A

∗
6

+ A4A5A7) + A∗2A5(A3A
∗
7 + A4A6) + A∗3A4A6A7 + c.c.]. (5.26)
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The coupling term is same for both length scales. Thus, every set of kj is con-
trolled by a separate MES, see fig. 5.10. In fig. 5.11 a) and b) the MES for m

a) b)

c) d)

Figure 5.11: Symmetry breaking in the simple magnetic-structural coupling
for a FCC crystal with m ‖ [1 0 0]. a) MES of simple magneto-structural
coupling for k0−3. a) MES of simple magneto-structural coupling for k4−6.
The red balls indicate the kj defining the crystal structure in the FMA,
eq. 5.23. c) Amplitudes Aj are shown for varying coupling strength α2. b)
Deformation along and perpendicular of m. Due to symmetry, there are
groups of energetically equivalent kj ’s. The numbering of Aj and kj follow
fig. 5.10.

in [1 0 0] and α2 = 0.15 is shown. The deformation of the MES is small and not
visualized. The 〈1 0 0〉 directions of the crystal are aligned with the x-,y- and
z-axis. k0−3 are on the corner of a cube. They are equally placed around the
energetic maximum at the MES. That is, they are energetically equivalent. The
MES of the other kj’s, k4−6, is similar, only the radius is of the MES is adjusted,
see fig. 5.11 b). The kj’s are at the x-,y- and z-axis. The minimum energetic
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contribution is at the y-z-plane. Thus, k5 and k6 are energetically equivalent
and have a minimum energy contribution. k4 is a the energetic maximum at the
MES. In fig. 5.11 c) the dependence of the amplitudes on the coupling strength
are shown. Analogous to BCC, the amplitudes corresponding to energetically
equivalent sets of kj’s are equal. Sets with larger energy contribution due to
the MES have smaller amplitudes. The crystal expands in [1 0 0] direction for
α2 > 0 just as a BCC crystal. For BCC and FCC the MES is compressed in
m direction for α2 > 0. Thus, kj’s near the m direction tend to shrink. The
magnetic anisotropy is harder to predict a priori as there are more energetically
sets of kj are involved in FCC and BCC.

a)

b) c) d)

Figure 5.12: Comparing magnetic anisotropy for α2 = -0.1, 0.1 and 0.15. a)
energy along the edges of the triangle defined by [1 0 0], [1 1 1] and [1 1 0],
Fig. 5.7 c). Maximum defines the hard direction and minimum the easy
direction of magnetization. The energy is plotted relative to the minimum
energy (easy direction). b)-d) magnetic anisotropy for FCC crystal.

In fig. 5.12 the influence of simplest magnetic coupling for m in [1 0 0], [1 1 1]
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and [1 1 0] direction is shown for various coupling strength, α2. In all cases the
〈1 0 0〉 direction is the easy direction. The hard direction is 〈1 1 1〉. For highly
negative α2 the 〈1 1 0〉 becomes energetically comparable to 〈1 1 1〉. The mag-
netostriction and magnetic anisotropy increases with increasing |α2|. Thus, For
FCC and simple magnetic coupling, the easy direction of magnetization can not
be controlled. It is always 〈1 0 0〉 for FCC structures.

Limits of the simple coupling approach

In this chapter we showed that the MES can be used to analyze the magnetic
coupling in PFC.The simplest magnetic coupling in PFC leads to a deformation
of the MES and energetically preferred direction for single kj’s. The energy
kernel defining the MES in PFC is an approximation to the C2 correlation func-
tion. It is rotational invariant in shape and energy contribution. The magnetic
coupling breaks the rotational symmetry. Thus, the magnetic interaction can
be interpreted as the breaking of symmetry of the correlation function due to
magnetization. This breaking of symmetry leads to magnetic anisotropy and
magnetostriction. In this simplest coupling magnetic anisotropy and magne-
tostriction are controlled by a single parameter and cannot be adapted indepen-
dently. Also easy and hard direction of magnetization cannot be chosen freely.
In BCC only 〈1 1 1〉 and 〈1 1 0〉 are possible easy directions, while in FCC only
possible easy direction is 〈1 0 0〉. In the following we will extend the idea of
an modified C2 correlation function and, thus, the MES, in order to get more
independent control on magnetic anisotropy, on magnetostriction and on easy
direction of magnetization.
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5.4.2 Extended model

In the last chapter we showed that already the simple magnetic coupling leads
to magnetic anisotropy and magnetostriction. Unfortunately, the easy or hard
direction of magnetization in this model can not be controlled for BCC and FCC
crystals. Thus, it is not possible to model two typical magnetic materials: iron
and nickel. Iron is BCC and its easy(hard) direction of magnetization is [1 0 0]
([1 1 1]). Nickel is FCC and its easy(hard) direction of magnetization is [1 1 1]
([1 0 0]). Additionally, strength of magnetic anisotropy and magnetostriction is
controlled by the same parameter. Thus, both properties can not be controlled
independently. Larger magnetic anisotropy always leads to larger magnetostric-
tion.
In this Chapter we extend the magneto structural coupling interaction in order
to get a better control of the magnetic properties. An ideally controllable mag-
netic coupling without magnetostriction would not alter the shape of the MES.
There are localized energetic minima at the MES for every kj. Then, if m is
in easy direction of magnetization every kj would be in an energetic minimum
at the MES. In k-space this can be done by introducing localized gaussians re-
ducing the energy at the appropriate positions at the MES. But this leads to
non local PFC models with an integral Kernel analogous to the XMPFC model
of Greenwood et al. [39]. In order to get better control and do not increase the
complexity of the model, we propose an extended magnetic term:

Fc(ϕ) =
∫

Ω
α2ϕ

((
(q2
m + (m∇)2

)2
+ s

)
ϕdr. (5.27)

Thus, the free energy in few mode approximation for BCC crystals then reads:

F({Aj}, {kj}) =
∑
j

Aj
[
(1− k2

j )2 + α2(q2
m − (mkj)2)2 + s

]
Aj

+ gBCC({Aj}), (5.28)

The coupling term defines a double well in the direction of m. At least at the
cut of the planes defined by the extrema of this double well with the MES of
PFC, the combined MES of magnetic PFC is not deformed. Thus there is no
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magnetostriction due to kj’s there. The distance of this planes to the origin is
controlled by qm. The mean impact of the extended coupling is controlled by
the additional parameter s. In Fig. 5.13 we show the MES for qm = and m

a) b) c)

d) e) f)

Figure 5.13: Symmetry breaking in the extended magnetic-structural coupling
for BCC crystals.

in [1 0 0], [1 1 1] and [1 1 0] direction. The double well srtucture of the coupling
leads to maximum energy contribution at a plane at the origin perpendicular
to m. A minimum energy contribution are at parallel planes also perpendicular
m at a distance of qm from the origin. At the point where m cuts the MES
a second energetic maximum occurs. Here qm is chosen to have the minimum
energy contribution at the position of k0,k3,k4 and k5 for m in [1 0 0] direction,
Fig. 5.13 a). That is, the minimum energy at the MES is at the (1 0 0) plane
of the FCC crystal in k-space defined by {kj}. The remaining kj’s are at the
energetic maximum at the MES. If m is in [1 1 1] direction, k3−5 ar at energetic
maximum and k0−2 are place equally around the second energetic maximum in
[1 1 1] direction. There are three sets of energetically equivalent kj’s for m in
[1 1 0] direction, see Fig. 5.13 c). In all cases, the amplitude corresponding to
energetically kj’s are equal and shrink for larger energy contribution.
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In Fig. 5.14 the deformation due to the extended magneto structural coupling

Figure 5.14: Deformation of the crystal due to magnetic coupling. m is in
[1 1 1] direction. Due to deformation of the MES the crystal shrinks in [1 1 1]
direction and expanse slightly perpendicular to m.

is shown. For m in [1 0 0] direction there is no deformation. That is, there is
no magnetostriction. The coupling is especially constructed in a way, that all
kj’s are on some energetic extrema on the MES. At this extrema there is no
deformation to the spherical MES. Thus, there is no driving force for a single
kj to change direction or length and no deformation occurs. This clearly holds
only for m in [1 0 0] direction. If m is in [1 1 1] direction, see Fig. 5.14 b), k0−2

are not at an energetic extrema. There is a force toward the energetic minimum.
Thus, an expansion of the crystal along m is expected for α2 > 0 and shown
in Fig. 5.14 b). Variation of qm can be used to control magnetostriction.
Increasing qm may increase magnetostriction in [1 0 0] direction and decrease
magnetostriction in [1 1 1] direction.
In Fig. 5.15 the magnetic anisotropy for different coupling strength are shown.

The easy direction of magnetization is [1 0 0] for α2 > 0. The hard direction is
[1 1 1]. The magnetic anisotropy increases with increasing α2. α2 < 0 reverses
the situation. [1 0 0] becomes the easy direction and [1 1 1] the hard direction.
Thus, the total energy is dominated by k0−3. For α2 > 0 and m in [1 0 0]
direction k0−3 are at an energetic minimum at the MES. For α2 < 0 they are at
an energetic maximum.
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a)

b) c) d)

Figure 5.15: Comparing magnetic anisotropy for α2 = -0.05, 0.05 and 0.1
and a BCC crystal. a) energy along the edges of the triangle defined by
[1 0 0], [1 1 1] and [1 1 0], Fig. 5.7 c). Maximum defines the hard direction and
minimum the easy direction of magnetization. The energy is plotted relative
to the minimum energy (easy direction). b)-d) energy surface for α2 = -0.05,
0.05 and 0.1. The easy direction is [1 1 1] for α2 =-0.05 and [1 0 0] otherwise.
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a)

b) c) d)

Figure 5.16: Comparing magnetic anisotropy for α2 = -0.05, 0.05 and 0.1
and a FCC crystal. a) energy along the edges of the triangle defined by
[1 0 0], [1 1 1] and [1 1 0], Fig. 5.7 c). Maximum defines the hard direction and
minimum the easy direction of magnetization. The energy is plotted relative
to the minimum energy (easy direction). b)-d) energy surface for α2 = -0.05,
0.05 and 0.1. The easy direction is [1 0 0] for α2 =-0.05 and [1 1 1] otherwise.

For FCC crystals there is no such easy way to choose qm due to the two involved
length scales in {kj}. We adapt the extended coupling model to the two length
scales involved in the modeling of FCC crystals. We choose for q0,m = 1/

√
3 for

k0−3 and q1,m = 1/
√

2 for k4−6. In Fig. 5.16 the magnetic anisotropy is shown
for various α2. With this set of parameters it is possible to control the hard and
easy direction of magnetization. For α2 > 0 the easy axis of magnetization is
[1 1 1] and the hard direction is [1 0 0].

Here we introduced the extended magnetic coupling for PFC. Our proposed
extension does the complexity of the magnetic PFC model significantly. That is,
the order of the PDE defining the evolution of the density wave is not increased.
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The energy contribution due to the extended coupling term describes a double
well in k-space perpendicular to magnetization. That is, the local extrema of
the energy contribution are on planes perpendicular to magnetization, m, and
a distance dependent on qm. With this model the easy direction of FCC and
BCC crystals can be controlled. The easy direction can be switched between
〈1 0 0〉 and 〈1 1 1〉. Thus, a magnetic model for basic magnetic materials, Iron
(BCC) and Nickl (FCC), can be formulated, which was not possible in the simple
coupling model.
Additionally, qm is directly connected to the magnetostriction. qm defines the
position of the local extrema of the energy contributions due to the coupling
in k-space. If this is chosen, such that all kj of the undisturbed crystal are at
this extrema, then the MES at this position does not deform and there is no
magnetostriction induced in this situation. Small changes in qm will induce a
force on the kj and lead to magnetostriction.

5.4.3 Summary

The simple and extended magnetic coupling has analyzed with the help of the
MES. The MES visualize the minimum energy contribution of a single kj defin-
ing the crystal. The magnetic coupling break the rotational symmetry of MES
and, thus, leads to magnetic anisotropy and magnetostriction. Using simple
magnetic coupling the hard direction of magnetization is always 〈1 1 1〉 for BCC
crystals and 〈1 1 1〉 FCC crystals. Thus, it is not possible to model the basic
magnetic materials Iron (BCC) and Nickel (FCC) with the simple magnetic
coupling. Additionally, the magnetic anisotropy and magnetostriction are con-
trolled both by the coupling strength, α2. They are strongly correlated and can
not be controlled independently.
The extended magnetic coupling model overcome this restrictions without in-
creasing the complexity significantly. It describes a double well in direction of
magnetization in k-space. Thus, the local extrema of the double well can be
chosen freely and the energy contribution at the MES is changed without de-
formation of its shape. This property of the extended magnetic coupling gives
additional flexibility to adapt the magnetostriction. In some cases, when all kj’s
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are at local extrema of the extended magnetic coupling, the magnetostriction
vanishes.
The extended magnetic coupling only introduces directional derivatives of order
four and thus does not increase the order of the model. Thus, an implemen-
tation does not increase complexity of the numerical model. The expansion in
directional derivatives gives us the possibility to define a MES. The anisotropy
in energy and shape of the MES can be used to understand the impact of the
magneto structural coupling and develop further magnetic coupling terms in
order to fit your needs.
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5.5 Magneto-structural coupling in APFC

In the preceeding chapters magneto-structural interaction was introduced in
PFC modeling. We analyzed the simplest approach proposed by Seymour et al.
[72] and the extension proposed section 5.4.2. In the following, the magneto-
structural interaction is introduced in the amplitude expansion of PFC. We still
assume the limit of strong external magnetic fields, Chapter 3. That is, the
magnetization m is perfectly aligned by the external magnetic field and con-
stant in space. The developed magnetic APFC model is applied to study the
influence of strong magnetic fields on grain shrinkage in 3-D at the end of this
chapter.

The considered coupling terms of the simple and extended model are are both
quadratic in the density. Thus, the amplitude is easily done equivalently to
the other quadratic terms. It leads to additional terms independent on the
reference structure of the amplitude expansion, chap. 5.2. Assuming the PFC
energy eq. 5.1, the APFC with magnetio-structural coupling is:

F [{Aj}] =
∫

dr
∑
j

A∗jB
x
0

[
G2
j + α2

(
M2

j + s
)]
Aj + gS({Aj}) (5.29)

with

Mj = i m · kj + m · ∇ and s = 0 for simple model and (5.30)

Mj = q2
m + (i m · kj + m · ∇)2 and s = q4

m for extended model.

qm is an additional parameters in the extended magnetic coupling in order to
have better control of the magneto-structural interaction, chap. 5.4.2. The cou-
pling terms have the same structure as the first term in the energy eq. 5.29 due
to the approximation of the correlation function in PFC. gS is again the struc-
ture dependent and deformation independent part of the energy and does not
change by introducing the magnetic coupling. For BCC and FCC it is listed in
eq. 5.22 and eq. 5.26. Then, assuming a long wave length limit [88], the dynamic
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equation is written as:

∂Aj
∂t

= −|kj|2
δF [{Aj}]
δA∗j

= −|kj|2
[
Bx

0

(
G2
j + α2M2

j

)
Aj + ŝAj + ∂gS({Aj})

∂A∗j

]
,

(5.31)

with ŝ = Bx
0α2s. The proposed magnetic coupling does not increase the order

of the partial differential equation. That is, the magnetic coupling does not
increase the complexity of the equation significantly. This property was a key
idea in the development of the extended magnetic coupling. The coupling terms
and the first terms in energy eq. 5.29 have a similar structure. This is exploited
in the discretization scheme by using operator splitting to avoid differential
operators of degree four or higher [70]. The differential operator (G2

j + α2M2
j)

is written as a product of two linear second order operators:

(
G2
j + α2M2

j

)
= (Gj − i

√
α2Mj)(Gj + i

√
α2Mj) =: N+

j N−j . (5.32)

Thus the operator splitting reads:

∂Aj
∂t

= −|kj|2
[
Bx

0N+
j µj + ŝAj + ∂fS({Aj})

∂A∗j

]
, (5.33)

µj = N−j Aj.

The linear operators N+
j and N−j are of second order and can be easily imple-

mented with FEM in AMDiS [70, 82]. A semi-implicite time discretisation
scheme is used.

We examine the influence of magnetization on the shrinkage of a initially spher-
ical grain. A spherical region is cut from a otherwise perfect BCC crystal, the
matrix, Fig. 5.17. The spherical region is rotated by 5◦around the [1 0 1] direc-
tion of crystal in the matrix. That is, the rotation axis is the z-axis in our frame.
Fig. 5.17 b) visualize the cubic unit cell of crystal in the matrix. When the mag-
netization direction varies along the line defined by [0 1 1],[0 0 1] and [0 1 1], the
free energy of the matrix and grain varies, Fig. 5.17 c). For the matrix there
are energetic maxima for m in 〈0 1 1〉 directions and an energetic minima for
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a) b) c)

Figure 5.17: Set up for magnetic APFC simulation. a) A spherical grain
is constructed by cutting a sphere in a BCC crystal (matrix) and rotating
the sphere by 5◦. b) The [1 0 1] direction of the grain and matrix is aligned
with the axis of rotation. The direction of magnetization is defined w.r.t
the matrix. c) Sketch of magnetic anisotropy of matrix and grain along the
line defined by [0 1 1], [0 0 1] and [0 1 1]. For small rotations the magnetic
anisotropy in grain and matrix are similar. But magnetic anisotropy of the
grain is shifted due to rotation. Maximum energy difference between grain
and matrix is achieved for magnetization between easy and hard directions
(m1,m2). Additionally a set up with magnetization in [1 0 1] direction is used
(m0), which does not prefer grain or matrix.

〈0 0 1〉 direction, Fig. 5.17 c). The grain is rotated and the same magnetization
leads to an slightly shifted easy direction. Thus, dependent on the direction
of m the energy difference of grain and matrix varies. In order to maximize
the energy difference m is chosen between the energetic extrema. The matrix
is energetically preferred for m between [0 1 1] and [0 0 1], (m2). The grain is
energetically preferred for m between [0 0 1] and [0 1 1], (m1). No preference of
grain or matrix is achieved by choosing m along the axis of rotation of the grain,
[1 0 1], (m0).

Fig. 5.18 shows the grain shrinkage for the case m0. The grain shrinks anisotrop-
ically as already discussed in section 5.2 or in [69] in more detail. In all three
simulations the grain structure does not vary significantly. That is, the defect
network for grains of the same size are nearly independent on the orientation of
m. But the speed of shrinkage is greatly influenced by m.
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5.5 Magneto-structural coupling in APFC

Figure 5.18: Defect network of an initially spherical grain in a BCC crystal,
Fig. 5.17. A-E) are snapshots taken at times indicated in Fig. 5.19. The
magnetization is aligned with the axis of rotation (m0). The diameter d0−2
are introduced to define the shape of the grain.

In Fig. 5.19 a) the energy decay during shrinkage of the grain is shown. The
energy decay is shown relative to the initial energy. When the grain vanished
the energy becomes constant. This defines the vanishing time tv. The slowest
shrinkage is achieved if the grain is energetically preferred. The energy gain
during shrinkage is the lowest as the grain has lower energy than the matrix.
The highest shrinkage speed and energy gain is observed when the grain has
higher energy than the matrix. If matrix and grain are energetically equivalent,
the vanishing time is between the other two cases. Thus, the magnetization
enhance or hinder the grain shrinkage. In order to study the grain evolution in
more detail the area of the grain and the different diameters, d0−2, are shown
in Fig. 5.19 b) and c).The area of the grain boundary is approximated by the
Knud-Thomsen formular:

A = π

31/p ((d0d1)p + (d1d2)p + (d0d2)p)1/p (5.34)

with p=1.6075 and d0−2 the extension of the grain in x,y and z-direction. Fig.
5.19 b) shows the decay of the grain boundary area over time. The time is scaled
by the vanishing time and the area with the initial area. In all simulations
the area decreases nearly linear. A linear decrease in energy was predicted
by classical theory of grain shrinkage [25] and reproduced by PFC and APFC
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a)

b) c)

Figure 5.19: Influence of magnetization on grain shrinkage. For m0 there is
no difference in bulk energy of grain and matrix. m1 leads to lower energy of
the grain and m2 leads to lower energy of the matrix. a) Energy decay during
shrinkage. Dependent on magnetization the grain vanishes at different times
tv. b) Area shrinkage normalized by the initial area and vanishing time tv.
c) Shape evolution shown by the shrinkage of the different diameters d0−2,
see Fig. 5.18.

without magnetic interaction [69, 87]. This indicates that the evolution is still
mainly governed by the minimization of grain boundary energy. Nevertheless,
the magnetic anisotropy may enhance or hinder the evolution. A closer look of
the shape evolution is shown in Fig. 5.19 c). Here, the evolution of the diameters
d0−2 are shown. d0 shrinks nearly linear at the beginning. The shrinkage speeds
up at the end, t/tv > 0.9. The evolution d1 and d2 is not as simple. There are
some steps and intervals of different shrinkage rate. This steps can be connected
to vanishing defect lines, which greatly influence the grain boundary. That is,
in the interval 0.6 < t/tv < 0.8 indicated by C-E in Fig. 5.18 dislocation lines
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defining the grain vanishes and change structure of the grain boundary. This
leads to an increased shrinkage rate in this directions. This can also be identified
in the decay of energy and grain boundary surface. The rate of decay changes
slightly in this interval. The evolution of d0−2 is nearly the same for all three
cases. This also shows, that the shape of the grain depends on size but not on
the magnetization.

5.6 Summary

In APFC the density wave is expanded in its most important modes. The am-
plitudes of the modes encode the deviation to a priori chosen reference crystal.
This deviations varies mostly on a much larger length scale than the particle
distance defining the density wave of PFC. Thus, the amplitudes can be dis-
cretized on a much coarser grid and computation of much larger domains and
three dimensional set ups become numerically feasible. The amplitudes vary
at a length scale comparable to the particle distance only at defects. This is
treated by adaptively refined grids in our FEM discretization.
We define the MES in order to analyze the magneto structural coupling. The
MES represent the energy contribution due to the isotropic correlation function
and the magnetic coupling in k-space. The magnetic coupling term breaks the
rotational symmetry of the MES, which leads to magnetic anisotropy and mag-
netostriction in the PFC model. In order to adapt a magnetic PFC model for
iron (BCC) or nickel (BCC) the extended magnetic coupling model is developed.
With this new model the easy and hard direction of magnetization in BCC and
FCC crystals can be chosen freely. Furthermore, it introduces larger flexibility
to adapt magnetic anisotropy and magnetostriction.
The proposed magneto structural coupling does not increase the complexity of
the model significantly. The amplitude expansion of the magnetic PFC is used
to show the impact of magnetic anisotropy on the shrinkage of an initially spher-
ical grain. The shrinkage of the grain can be hindered or enhanced dependent
on the direction of the magnetization.
Thus, the extended magnetic coupling paves the way to modeling of different
magnetic materials in PFC. The MES visualizes the impact of the magneto

77



5 Controlling magnetic anisotropy in PFC

structural coupling and is a tool to develop further extensions of the magneto
structural coupling.
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6 Conclusion

Electromagnetic fields can be used to tailor microstructures and, thus, proper-
ties of materials, by controlling grain growth. Grain growth in multicrystaline
thin films is quite complex and not fully understood. Simple models merely
based on grain boundary energies can not explain the grain size and shape dis-
tribution found in experiment. In this work we use phase field crystal (PFC)
models to study the influence of magnetic fields on grain growth and coarsen-
ing. PFC is based on an energy dependent on the local ordering in the crystal.
It defines the ordering on an atomic scale. The time evolution is treated on
diffusive time scales. Thus, long time simulation of coarsening is feasible. PFC
naturally includes grain boundaries, defects and elastic effects. In Chapter 2 we
showed that PFC can reproduce the grain size distribution and stagnation of
coarsening in thin films. Large scale simulations are done using pseudo spectral
discretization of the PFC model.
In Chapter 3 and 4 we used an extension of PFC to include magneto-structural
interaction. A strong external magnetic field and magnetic anisotropy of the
model leads to grain selection during coarsening. Grains with their easy di-
rection aligned preferably to the external magnetic field grow preferably. This
expected result was also seen in experiment. In our simulation we also see, that
growing crystals often elongate perpendicular to the magnetization. This unex-
pected result can be explained by an anisotropic mobility of grain boundaries
due to the local magnetization in our model. Long time simulations showed dif-
ferent coarsening regimes, Chapter 4. We identified a coarsening regime, where
the scaling exponent is dependent the magnetic driving force. Additionally, stag-
nation can be prevented by a high magnetic driving force. This effects are most
likely due to kinetic effects. the local magnetization may increase the mobility
of the defect in the magnetic PFC model.
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6 Conclusion

In the last chapter we introduce the magneto-structural coupling in the am-
plitude expansion of PFC (APFC). This approach tackles two problems of the
magnetic PFC model used in Chapter 2-4.
Firstly, APFC depends on fields (amplitudes) mostly varying on a much larger
length scale than PFC. Variations on the length scale of particles only occur at
defects. We use a finite element discretization using adaptive grids. Thus, large
scale simulations in three dimensions become feasible at least for small angle
grain boundaries.
Secondly, magneto-structural coupling is extended in order to adapt the model
to typical magnetic materials, e.g. iron or nickel. The simple magneto-structural
coupling used in Chapter 2-4 has not the flexibility to adapt qualitatively to this
materials. We developed an extended magneto-structural coupling, which can
be adapted to iron and nickel. The extension is specifically constructed to not
increase the complexity of the numerical model. This extension is introduced
also in the APFC model. With the magnetic APFC model we study the in-
fluence of magnetic fields on the shrinkage of a single grain. The shrinkage is
enhanced or hindered depending on the direction of the magnetization.
In summary, we belive that PFC models are a versatile tool to examine grain
growth and coarsening. The classical PFC model is easily solved with spectral
methods. But as more complex PFC models become necessary, efficient reals
space methods are needed. APFC models can be seen as a method to solve
PFC on a larger length scale. This models have great potential to close the gap
between atomistic and continuum simulations in nanotechnology. However, the
properties of PFC and APFC are not easily analysed and adapted to a material.
Our proposed magneto-structural coupling is the simplest approach to adapt the
magnetic properties of PFC and APFC to real materials. Large scale simulation
depend on efficient numerical models. Finite elements on adaptive grids are well
suited to exploit the properties of APFC.
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[40] O. Guillon, C. Elsässer, O. Gutfleisch, J. Janek, S. Korte-Kerzel, D. Raabe,
and C. A. Volkert. “Manipulation of matter by electric and magnetic fields:
Toward novel synthesis and processing routes of inorganic materials”. In:
Materials Today 21.5 (2018), pp. 527–536.

[41] C. Günster, D. A. Molodov, and G. Gottstein. “Magnetically driven migra-
tion of specific planar grain boundaries in Zn bicrystals”. In: Scr. Mater.
63 (2010), p. 300.

[42] J. Han, S. Thomas, and D. Srolovitz. “Grain-boundary kinetics: An unified
approach”. In: Prog. Mater. Sci, 98 (2018), p. 386.

[43] V. Heinonen, C. V. Achim, K. R. Elder, S. Buyukdagli, and T. Ala-Nissila.
In: Phys. Rev. E 89 (2014), p. 032411.

[44] C. Herring. “Surface tension as a motivation for sintering”. In: The Physics
of Powder Metallurgy. Ed. by W. Kingston. 1951, p. 143.

[45] G. Herzer. “Modern soft magnets: Amorphous and nanocrystalline mate-
rials”. In: Acta Mater. 61 (2013), p. 718.

[46] P. Hirvonen, M. M. Ervasti, Z. Fan, M. Jalalvand, M. Seymour, S. M. Vaez
Allaei, N. Provatas, A. Harju, K. R. Elder, and T. Ala-Nissila. “Multiscale
modeling of polycrystalline graphene: A comparison of structure and defect
energies of realistic samples from phase field crystal models”. In: Phys.
Rev. B 94 (2016), p. 035414.

[47] E. Holm and S. Foiles. “How grain growth stops: A mechanism for grain-
growth stagnation in pure materials”. In: Science 328 (2010), p. 1138.

[48] A. Jaatinen, C. Achim, K. Elder, and T. Ala-Nissila. “Thermodynamics
of bcc metals in phase-field-crystal models”. In: Phys. Rev. E 80 (2009),
p. 031602.

85



References

[49] A. Jaatinen and T. Ala-Nissila. “Extended phase diagram of the three-
dimensional phase field crystal model”. In: Journal of Physics Condensed
Matter 22.20 (2010).
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