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Abstract
Active matter describes systems that convert energy from their environment into directed

motion. Therefore, these systems are in intrinsic nonequilibrium, unlike their passive

counterparts. From a theoretical point of view, such active systems have been modeled

by agent-based models, as well as hydrodynamic approaches, which allowed for the

investigation of a wide range of observed collective phenomena characterizing active

matter. In this thesis we develop a microscopic field-theoretical approach to describe

generic properties of active systems. This description combines the phase field crystal

model with a polar order parameter and a self-propulsion term. First, we validate this

approach by reproducing results obtained with corresponding agent-based models, such

as binary collisions, collective migration and vortex formation. We also perform a direct

comparison between our model and a microscopic phase field description of active matter.

Next, we use this continuum approach to simulate some larger active systems and to

analyze the coarsening process in active crystals, as well as the mechanisms leading

to mobile clusters. We show the generality of our approach by extending it to binary

mixtures of interacting active and passive particles. Also in this case, we first validate the

model by reproducing known results, such as enhanced crystallization via active doping

and the suppression of collective migration in an active bath in the presence of fixed

obstacles. Interestingly, for the regime of mobile passive particles in an active bath a

laning state is found, which is characterized by an alignment of the active particles that is

globally nematic, but polar within each lane. This state represents a theoretical prediction

feasible to be validated experimentally. Finally, we explore the field of topological active

matter. We develop an agent-based model to describe self-propelled particles on curved

surfaces and study the complex spatiotemporal patterns that emerge.
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Zusammenfassung

Aktive Materie beschreibt Systeme, die Energie aus ihrer Umgebung in gerichtete Be-

wegung umwandeln. Im Gegensatz zur passiven Materie befinden sich diese Systeme

nie im physikalischen Gleichgewicht und offenbaren dadurch interessante physikalische

Phänomene. Vom theoretischen Standpunkt her wurde aktive Materie bereits simuliert,

typischerweise durch agenten-basierte Modelle oder hydrodynamische Ansätze, die es

ermöglichen eine Vielzahl der auftretenden kollektiven Bewegungsprinzipien zu unter-

suchen. In dieser Doktorarbeit entwickeln wir einen mikroskopischen Kontinuumsansatz

um die generischen Eigenschaften von aktiven Systemen zu untersuchen. Unsere Beschrei-

bung kombiniert das Phasenfeld-Kristall Modell mit einem polaren Ordnungsparameter

und einem Antriebsterm. Zuerst validieren wir den Ansatz durch Reproduktion bekannter

Ergebnisse agenten-basierter Modelle, wie binäre Kollisionen, kollektive Bewegung und

Wirbelformationen. Des Weiteren führen wir einen direkten Vergleich zwischen un-

serem Modell und einer mikroskopischen Phasenfeldbeschreibung aktiver Materie durch.

Danach nutzen wir den kontinuierlichen Ansatz um große aktive Systeme zu simulieren

und analysieren den Vergröberungsprozess in aktiven Kristallen und Mechanismen der

mobilen Aggregatbildung. Wir illustrieren die Allgemeingültigkeit unseres Simulation-

sansatzes durch die Erweiterung auf binäre Systeme, in denen sowohl aktive als auch

passive Partikel enthalten sind. Auch in diesem Fall validieren wir das Modell durch

Vergleiche mit bekannten Resultaten, wie zum Beispiel die verstärkte Kristallisation durch

aktives Doping oder die Unterdrückung kollektiver Bewegung durch die Einführung von

Hindernissen in einem aktiven Bad. Interessanterweise finden wir bei der Präsenz mobiler

passiver Partikel in einem aktiven Bad einen Fahrspur-Zustand, in welchem die aktiven

Partikel nematische Fahrspuren bilden und sich nur jeweils innerhalb einer Fahrspur

nematisch polar anordnen. Dieser bisher unbekannte Zustand stellt eine theoretische

Vorhersage dar, die experimentell geprüft werden kann. Schließlich begeben wir uns

auf das Gebiet der topologischen aktiven Materie. Wir entwickeln ein agenten-basiertes

Modell um selbst-angetriebene Partikel auf gekrümmten Oberflächen zu beschreiben und

untersuchen die dabei auftretenden zeitlich und räumlich komplexen Muster.
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Introduction

Active matter provides deep insights into the self-organization of systems that are in-

trinsically in a nonequilibrium state such as living matter. This intrinsic nonequilibrium

is obtained because energy taken up on the microscopic scale can be converted into

macroscopic, collective motion. It differs from the standard nonequilibrium observed in

passive systems because the system is driven internally, without the presence of external

fields. Active particles can be defined as self-propelled units that take up energy from

their environment and convert it into directed motion [1–3]. According to this definition,

microscopic organisms (e.g. algae and bacteria), as well as more complex ones (e.g. birds

and fish), can be classified as active particles and exhibit collective coordinated motion

at large scale, such as vortex formation, flocking and swimming [4, 5]. Understanding

these collective behaviors is a problem of ever-increasing interest and importance and it

is motivating a lot of theoretical and experimental efforts. Theoretically, such behavior

can be addressed either from the microscopic scale, taking the interactions into account

or from the macroscopic scale, focusing on the emerging phenomena.

From the macroscopic point of view, hydrodynamic approaches aim at establishing a

field theory for active matter [1, 6]. In this case methods from nonequilibrium statistical

mechanics [7] are used in order to obtain a coarse-grained description of the long time-

scale behavior of the system in terms of a few, accurately selected, continuum variables.

The Toner-Tu model, which describes the dynamics of dry flocks [8–10], and the active

polar gel, which describes the dynamics of the cytoskeleton [11–13], are both examples

of a hydrodynamic method. However, microscopic details are mostly lost when using

such a coarse-grained approach.

Agent-based models are examples for the microscopic viewpoint [14]. In these models,

particles move at a constant speed along their orientation and their direction changes

according to interaction rules which comprise explicit alignment and noise. They are

widely used thanks to their simplicity, efficiency and their ease of implementation. They
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Introduction

also often give reliable results about collective phenomena observed in active matter,

such as collective migration [15–17] and motility induced phase separation [18–21].

However, these methods cannot be used to describe long time- and large length-scale

dynamics, or systems where the particle internal structures and deformations play an

important role, such as in migrating tissue cells [22].

Besides these approaches, microscopic phase field models have been proposed in the

context of collective cell migration [23, 24]. Each cell is thereby approximated by

a deformable phase field variable and the physical processes behind cell motility are

considered using an active polar gel theory [11–13]. These are more detailed microscopic

descriptions which, unlike a hydrodynamic approach, model the deformation and internal

processes within each cell. However, due to the complexity of these models the number

of cells which can be considered numerically is limited.

In [25, 26] a microscopic field-theoretical approach that includes aspects from the

microscopic and the macroscopic scales has been proposed to model active crystals. It

combines the phase field crystal method, introduced to model elasticity in crystalline

materials [27, 28], with a polar order parameter and a self-propulsion term. Our aim is

to extend this approach in order to describe individual active particles instead of crystals.

In doing so, we try to fill the gap between microscopic phase field approaches and agent-

based modeling [29]. The resulting model can, in fact, be seen as a coarse-graining of the

detailed description given by microscopic phase field methods. Instead of describing the

particles by a phase field function, particles are represented by peaks in a particle density

field. In this way, the number of particles that can be simulated is larger than for phase

field models, but smaller than what is achievable with agent-based modeling. Critically,

particle internal structure and, to some extent, deformations, are still accounted for.

In this thesis we validate this microscopic field-theoretical approach and use it to study

emerging macroscopic phenomena in active systems with microscopic details, thus

combining the efficiency of an agent-based description with the comprehensiveness of a

microscopic phase field model.

Structure of the thesis

Chapters 1 and 2 are introductory chapters where we offer a brief overview over the

main concepts and ideas needed to understand the rest of the thesis. Chapter 1 focuses

2



Introduction

on the mathematical and computational tools needed, such as the phase field crystal

model and its modifications, together with a short discussion on how to simulate the

resulting system of PDEs. In chapter 2 some physical concepts are introduced. Here we

discuss how active matter has been modeled in the last years, from agent-based modeling,

through hydrodynamic approaches, to phase field modeling.

In chapter 3 we introduce the active vacancy phase field crystal model, which can be

considered as a microscopic field-theoretical approach to active matter. First, we validate

this model comparing our results with the ones obtained via agent-based and phase field

approaches. To this end we consider binary collisions, collective migration and vortex

formation in confined geometries. Finally we show that, thanks to an efficient paralleliza-

tion algorithm, this newly introduced model can be used to solve large scale problems.

In this case we analyze the formation of collective migration and the appearance of large

mobile clusters.

An extension of this model towards the description of binary mixtures of interacting

active and passive particles is given in chapter 4. Here, we first analyze a collision event

between a passive and an active particle, and then we concentrate our attention towards

bigger systems. Enhanced crystallization in passive systems via active doping is observed,

qualitatively confirming previous experimental and numerical studies. We further study

how collective migration is affected by a disordered environment and we show theoretical

predictions for an active bath with mobile passive particle, where laning states and chain

formations are observed.

Another important field of active matter, namely topological active matter, is treated in

chapter 5. In this case, a microscopic agent-based model for nematic active particles on

curved surfaces is presented, with a special emphasis on the defects dynamics. Using this

model we find oscillations between different defects configurations, a phenomenon that

was observed experimentally for the case of a sphere [30]. We also study the connection

between the defects location and geometric properties of ellipsoids, such as Gaussian

curvature and umbilical points.

Chapters 3, 4 and 5 are based on the following publications:

1. F. Alaimo, S. Praetorius, A. Voigt, A microscopic field theoretical approach for active

systems, New. J. Phys., 18:083008, 2016

2. F. Alaimo, C. Köhler, A. Voigt, Curvature controlled defect dynamics in topological

3



Introduction

active nematics, Sci. Rep., 7:5211, 2017

3. F. Alaimo, A. Voigt, Microscopic field theoretical approach for mixtures of active and

passive particles, Phys. Rev. E, 98:032605, 2018
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1 Theoretical framework

In this first chapter we offer a brief overview over the mathematical and computational

tools that will be needed in the rest of this thesis. It can be seen as a useful, though not

exhaustive, reference to better understand the concepts and the models introduced in

the following chapters. An introduction to the physical system we want to model (active

matter) will be given in chapter 2.

We start by introducing the phase field crystal (PFC) model, which can be seen as a

microscopic theory for crystallization. We will then show a modification of this model

– the vacancy phase field crystal (VPFC) model. The VPFC can be used to describe

individual particles via a particle density field and it will be our model of choice in the

following chapters. An extension of it that allows for a second species of particles to be

introduced in the system, the binary VPFC, is also presented. Next, a coupling between the

PFC model and the Navier-Stokes equation is discussed and a fully continuous approach

to describe (passive) colloidal suspensions with hydrodynamic interactions is shown.

Finally, we concentrate our attention on how to simulate the partial differential equations

(PDEs) governing the PFC. We consider a finite element method (FEM) for the spatial

discretization of the PFC model (and its modifications), showing how to exploit the

strengths of AMDiS, the C++ library that we used, to efficiently solve our PDEs.

1.1 The phase field crystal (PFC) model

In this thesis, we want to build a continuum description of active particles more efficient

than microscopic phase field approaches, but that, at the same time, contains more

information about the particles internal structure than agent-based modeling. The PFC

model bridges the gap between molecular dynamics and phase field approaches and is

5



Chapter 1. Theoretical framework

our model of choice. It is a microscopic field approach based on a free energy functional

Fpfc of the time-average density field ψ(r, t) and a dynamical equation for the density

evolution. The PFC model has been originally introduced as a phenomenological theory

to model elasticity in crystalline materials [27, 28], but it has also been used to describe

various solid state phenomena, such as crystal nucleation [31, 32], dendritic growth

[32–34] and crack propagation [28]. It has later been shown that the same PFC model

can be derived from the overdamped Langevin equations of motion for colloidal particles

via dynamical density functional theory [35].

Elder and Grant derived the free energy functional for the PFC model by phenomenologi-

cal reasoning [28]. Their aim was to build a free energy whose ground state would be

given by a spatially periodic structure. They argued that the simplest possible free energy

F that encourages spatial periodicity in its ground state is given by a Swift-Hohenberg-like

energy [36]:

FSH[φ] =

∫
Ω

{
φ

2

[
a+ λ(q2

0 +∇2)2
]
φ+

g

4
φ4

}
dr′, (1.1)

where ∇2 is the spatial Laplacian operator, a, λ, g are system specific parameters and

q0 is the wavenumber which sets the lattice distance to 2π
q0

. φ is the nondimensional

one-particle density field defined with respect to a reference density φ̄:

φ =
φcrys − φ̄

φ̄
, (1.2)

where φcrys is the one-particle density field. Ω ⊂ Rm, m = 1, 2, 3, is the spatial domain,

but we will not consider the m = 3 case in this thesis.

Defining the undercooling parameter r = a
λq40

and making the following substitutions

[37],

q0r
′ → r,

√
g

λq4
0

φ→ ψ,
g

λ2q6
0

FSH → Fpfc, (1.3)

we obtain the dimensionless PFC functional Fpfc:

Fpfc[ψ] =

∫
Ω

{
ψ

2

[
r + (1 +∇2)2

]
ψ +

ψ4

4

}
dr, (1.4)

From a more microscopic point of view this functional arises by splitting the Helmholtz

6



1.1. The phase field crystal (PFC) model

free energy in an ideal gas contribution and an excess free energy, rescaling and shifting

ψ, expanding the ideal gas contribution in real-space and the excess free energy in

Fourier-space, and simplifications by removing constant and linear terms that would

vanish in the dynamical equations. A detailed derivation of the energy and its relation to

classical density functional theory can be found in [35].

The dynamics is given by the following overdamped equation of motion for a conserved

field:

∂ψ

∂t
= M0∇2

(
δFpfc

δψ

)
, (1.5)

where M0 is a mobility coefficient and δFpfc

δψ denotes the functional derivative of the PFC

functional Fpfc with respect to the density ψ.

Equations (1.1) and (1.5) are the set of equations we refer to when we speak of PFC

model. Notice that the equation of motion (1.5) is a sixth-order PDE, a point we will

come back to, when speaking about how to simulate the PFC model.

In one dimension the PFC model has two ground states: (i) a periodic state usually given

by the one-mode approximation:

ψ ' A sin(qx) + ψ̄, (1.6)

where q = 2π
d , with d being the distance between two successive maxima in the density

ψ (i.e. the 1d lattice distance), and (ii) a constant state given by ψ = ψ̄. It is possible

to calculate the free energy for both states by inserting the respective densities into the

free energy functional (1.4) and minimizing the resulting free energies with respect to

the parameters A and q. To understand for which system parameters - the undercooling

parameter r and the reference density ψ̄ - a certain state is reached these free energies

must be compared. This is done via a Maxwell construction and the corresponding phase

diagram is shown in figure 1.2(a) [28].

In two dimensions the 1d periodic state becomes a striped state, the 1d constant state

does not change and we additionally have a 2d periodic state given by (in the one-mode

approximation):

ψt = A

3∑
j=1

(
eikj ·x + e−ikj ·x

)
+ ψ̄, (1.7)

7



Chapter 1. Theoretical framework

where k1,2,3 = x̂, (
√

3/2)ŷ ± (1/2)x̂. This gives a lattice distance d = 4π√
3
. In figure 1.1

snapshots of the periodic and striped states are shown.

(a) (b)

Figure 1.1: Two-dimensional PFC simulations obtained numerically solving equation
(1.5). (a) Periodic state obtained with parameters r = −0.4, ψ̄ = −0.3, (b) Striped state
r = −0.4, ψ̄ = 0.

Substituting equation (1.7) for ψt into the free energy functional (1.4) gives:

Fpfc[ψ
t]

S
=

45

2
A4 − 12A3ψ̄ +

ψ̄2

4

(
2 + 2r + ψ̄2

)
+ 3A2

(
r + 4ψ̄2

)
, (1.8)

with S a unit area. Minimizing with respect to A we obtain [28]:

Fpfc[ψ
t]

S
= − 1

10

(
r2 +

13ψ̄4

50

)
+
ψ̄2

2

(
1 +

7r

25

)
+

4ψ̄

25

√
−15r − 36ψ̄2

(
4ψ̄2

5
+
r

3

)
,

A =
1

5

(
ψ̄ +

1

3

√
−15r − 36ψ̄2

)
.

(1.9)

To obtain a phase diagram in two dimensions this free energy density must be compared

to the free energy densities of the other two possible ground states: the striped and

the constant ones. This is done in [28] and shown in figure 1.2(b), where we observe

coexistence regions. Henceforth all our simulations will be in 2d. Figure 1.2(b) tells us

for which parameters of r and ψ̄ the system will be in the periodic state in this case.

1.1.1 Vacancies

The PFC model can be used to describe collective properties of a crystal, but it cannot be

used to describe the motion of each individual particle. The peaks (i.e. the maxima) in

the local density ψ can be interpreted as particles, but their number is not conserved. In

8



1.1. The phase field crystal (PFC) model

(a) (b)

Figure 1.2: One-dimensional (a) and two-dimensional (b) phase diagram in the one-mode
approximation for the PFC model. ψ0 is the average density (called ψ̄ in the main text).
The hatched area corresponds to coexistence regions. The image is taken from [28].

fact, even if we start with a very low average density ψ̄, any configuration will evolve

into a perfectly periodic configuration filling the space when the system is in a triangular

phase, see figure 1.1(a). In other words, there is no space for vacancies. This is due

to the fact that the density ψ can take arbitrary large negative values1. Starting from

this observation Chan et al. [38] introduced the so-called positivity of density constraint

ψ > 0 in the whole domain in order to account for vacancies. They have shown that

by imposing this constraint the system can partition itself in a region with a periodic

configuration and a region with ψ = 0. This modified version of the PFC model is known

as vacancy PFC (VPFC) model and it can be used to describe the motion of individual

particles.

To include the positivity density constraint in the PFC model the free energy Fpfc must

be modified. Any term that introduces a penalty for negative values of ψ is allowed.

A typical choice, dictated by numerical stability, is to add the following penalty term

[38, 39]:

Fpenalty[ψ] = H

∫
Ω

(
|ψ|3 − ψ3

)
dr, (1.10)

1Remember that, even though it is called density, ψ is actually a density difference, see equation (1.2). It
is for this reason that it can take negative values.

9



Chapter 1. Theoretical framework

with a penalization parameter H ' 1500. The final VPFC energy functional reads:

Fvpfc = Fpfc + Fpenalty, (1.11)

while the form of the equation of motion (1.5) remains unchanged, but the free energy

Fvpfc is used instead of Fpfc.

This state where vacancies are accounted for is however not always attainable. We need

a phase diagram that tells us for which values of the undercooling parameter r and the

average density ψ̄ the energy of this configuration is lower than the energy of a perfectly

periodic configuration without vacancies. Chan et al. [38] have shown that starting with

the one-mode approximation (1.7) and adding the positivity density constraint ψ > 0

this separation of phases is obtained when:

− 636

343
< r < −72

84
, ψ̄ <

√
−48− 56r

133
, (1.12)

see also figure 1.3 where the shaded area corresponds to a region where stable vacancies

can coexist with a periodic phase.

Figure 1.3: The shaded area corresponds to a region where vacancies can be present. ρ0

is the average density (called ψ̄ in the main text). Based on the figure we will almost
always work with r = −0.9 when simulating the VPFC model. The image is taken from
[38].

In this regime, the ground state that minimizes the energy functional (1.11) can partition

10



1.1. The phase field crystal (PFC) model

itself into two domains: (i) a perfectly periodic domain with density ψ1 =
√
−48−56r

133

occupying an area b1 = B0ψ̄/ψ1, where B0 is the total area of the domain, and (ii) a

domain with ψ = 0, corresponding to vacancies.

With the VPFC model we are now able to simulate individual particles instead of crystals.

For this reason it is useful to think in terms of total number of particles N in the system

instead of an average density ψ̄. This can be done by supposing that each particle occupies

an area Ap. If we want to have N particles we will have b1 = NAp and therefore we can

write ψ̄ as a function of N as:

ψ̄(N) =
NAp
B0

√
−48− 56r

133
. (1.13)

The lattice distance d = 4π√
3

helps us in quantifying the area occupied by each particle

Ap = π(d/2)2 ' 0.78d2. However particles are not always perfect circles and Ap should

also account for interparticle spacing. Therefore it is usually better to take a slightly

higher prefactor for Ap, a usual choice being Ap ' 0.9d2.

Finally, we need an explicit form for a function that has N peaks (corresponding to N

particles), which is continuous and is equal to zero when no particles are present. This

function will be used as initial condition when simulating the VPFC model to ensure

particles are conserved. In [40] it is proposed to use a composition of local density peaks

whose form is given by:

ψ
(i)
0 (r) =

A
[
cos(

√
3

2 |r − ri|) + 1
]
, for |r − ri| < d

2

0, otherwise,
(1.14)

where ri is the position of particle i. Then the density can be written as a sum of these

peaks centered around the different particles positions:

ψ(r) =
N∑
i=1

ψ
(i)
0 (r). (1.15)

In figure 1.4 snapshots from different VPFC simulations are shown. It is possible to see

that by changing the value of ψ̄ also the total number of particles increases, as given by

equation (1.13). More importantly the density is always positive (up to some numerical

noise) and the particles are not filling the whole space anymore.

Finally, we would like to mention an alternative method to obtain vacancies in the system

11



Chapter 1. Theoretical framework

starting from the PFC model. Instead of adding the positivity density constraint it is

possible to set the undercooling parameter r and the mean density ψ̄ so that the system

is in the coexistence region between a triangular and a constant phase (the left hatched

region in figure 1.2(b)). In this case, so-called “localized states” are observed, where

vacancies are present in the system, but the density can still assume negative values.

[41]. However, in this thesis we will only focus on the VPFC model, without exploring

these localized states further.

(a)

(d)

(b) (c)

(e) (f)

0.69

0.33

-0.02

Figure 1.4: Snapshots of different VPFC simulations for r = −0.9, H = 1500 and different
values of the average densities ψ̄. (a) ψ̄ = 0.01, (b) ψ̄ = 0.02, (c) ψ̄ = 0.05, (d) ψ̄ = 0.08,
(e) ψ̄ = 0.11, (f) ψ̄ = 0.14. Notice that all these values of r and ψ̄ are inside the shaded
area of figure 1.3, corresponding to a region where vacancies can be present.

1.1.2 Binary mixtures

Various ways have been introduced to extend the classical PFC model towards a second

species, thus modeling binary mixtures [34, 39, 42]. We adopt one of these approaches

for the VPFC model by considering energies for species A and B with

F [ψA, ψB] = FAvpfc[ψA] + FBvpfc[ψB] + FABint [ψA, ψB], (1.16)

where F ivpfc[ψi], i = A,B is given by equation (1.11) and

FABint [ψA, ψB] =
a

2
ψ2
Aψ

2
B, (1.17)

12



1.1. The phase field crystal (PFC) model

is an interaction energy with a > 0. The same overdamped and conservative equation of

motion (1.5) is used for both species:

∂ψA
∂t

= MA
0 ∇2

(
δFAvpfc

δψA
[ψA] +

δFABint

δψA
[ψA, ψB]

)
,

∂ψB
∂t

= MB
0 ∇2

(
δFBvpfc

δψB
[ψB] +

δFABint

δψB
[ψA, ψB]

)
.

(1.18)

As in the VPFC model, the peaks in the local density ψA (ψB) are interpreted as particles

belonging to species A (B). In figure 1.5 we show snapshots of the solution of the

binary VPFC, equations (1.18), where the coloring corresponds to an order parameter

∆ψ̂ = ψA/ψ̂A − ψB/ψ̂B, where:

ψ̂i =
ψmax
A ψmax

B − ψmin
A ψmin

B

ψmax
i + ψmin

i

. (1.19)

This means that when ∆ψ̂ ' +1 (−1) the local value of ψA (ψB) is high and we have a

particle belonging to species A (B).

(a)

(a) (b) (c)

-1.0

-0.5

0

0.5

1.0

Figure 1.5: Binary VPFC simulations for different values of qA, i.e. the value that controls
the size of the particles belonging to species A (red particles). (a) qA = 0.5, ψ̄A =
0.039, ψ̄B = 0.020, (b) qA = 0.75, ψ̄A = 0.025, ψ̄B = 0.032, (c) qA = 1, ψ̄A = 0.017, ψ̄B =
0.040. Other parameters are r = −0.9, H = 2000, qB = 1.

Elder et al. [34] derived a PFC model for binary alloys by linking the PFC with the

classical density functional theory of freezing [43]. They used this model to simulate

eutectic and dendritic microstructures. See [39] for a discussion on the differences

between the model given by equation (1.16) and the one presented in [34].

A straightforward extension of the binary VPFC model is to consider particles with

different sizes. To this end, the PFC free energy can be rewritten with an extra parameter
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Chapter 1. Theoretical framework

q as:

F (q)
pfc [ψ] =

∫
Ω

{
ψ

2

[
r + (q2 +∇2)2

]
ψ +

ψ4

4

}
dr. (1.20)

In this case the lattice distance is dq = 4π√
3q

. In the case of a single species we can

just assume q = 1, thus obtaining equation (1.4). For the binary case we can use two

different values of q for the two species, thus changing their relative size. Figure 1.5

shows snapshots of the solution of the binary VPFC for varying values of qA and qB = 1.

1.1.3 Hydrodynamic interactions

A possible addition to the standard PFC model is the inclusion of hydrodynamic interac-

tions. This is achieved by coupling the PFC equation of motion (1.5) to the Navier-Stokes

equation [25, 40, 44–46]. In particular, in [40] a fully continuous approach suited for the

VPFC model is introduced. This is based on the fluid particle dynamics (FPD) method [47]

and is used to describe (passive) colloidal suspensions with hydrodynamic interactions.

FPD is a method introduced to model colloidal suspensions that combines continuous and

discrete descriptions. Here, colloidal particles are treated as fluid particles with viscosity

ηp, which are suspended in a fluid of viscosity ηf . We have ηf � ηp and, in the limit

ηp/ηf →∞, fluid particles become solid ones. A viscosity profile, that is described by a

smooth interfacial profile function, is introduced to describe the total viscosity η. This

means that the total viscosity η must be equal to ηp inside the particles, to ηf in the fluid,

and it must change continuously when passing between the two regions. In [40] this is

achieved by introducing a viscosity profile which depends from the VPFC density ψ as:

η(ψ) =

(
ηp
ηf
− 1

)
φ(ψ). (1.21)

φ(ψ) is a tanh-concentration field used for a phase field description of the particles given

by [40, 47]:

φ(ψ) =
1

2

(
1 + tanh

((
ψ(0) − σ

) 3

ε

))
, (1.22)

where σ = 1
2(1 + cos(a)) is a shifting parameter with a controlling the width of the phase

field function. ψ(0) is the one-mode approximation of the PFC model ψt given by equation
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1.1. The phase field crystal (PFC) model

(1.7) in two dimensions, rescaled and translated according to:

ψ(0) =
1

2

(
1 +

ψt − ψ̄
A

)
, (1.23)

and ε defines the width of the smoothing region.

In [25, 26] a first coupling between the PFC model and the Navier-Stokes equation based

on the FPD method has been introduced. Here, the effects of the moving particles on the

surrounding fluid are mimicked by a term F ensuring that the fluid velocity u is equal to

the particle velocity vi at the particle position Ri. This term is added as a force to the

Navier-Stokes equation and it reads:

F (r) = γ

Np∑
i=1

(vi − u)δ(r −Ri), (1.24)

where Np is the number of particles (i.e. number of density peaks) and γ > 0 is a

large penalty parameter. The position and velocity of each individual particle need

to be calculated to evaluate this term, meaning that this approach still has a discrete

component. In [40] it is shown that the force term (1.24) can be approximated as:

F (r) ' −(M1 +M2ψ)∇δFvpfc

δψ
, (1.25)

with M1,M2 scalar parameters.

We now have all the ingredients to combine the FPD model with the VPFC approach and

obtain a fully continuous description of colloidal suspensions [40]:

∂tu+ (u · ∇)u = ∇ · σ̃ −M2ψ∇
δFvpfc

δψ
,

∇ · u = 0,

∂tψ + u · ∇ψ = M0∇2 δFvpfc

δψ
,

(1.26)

where:

σ̃ = −
(
p+M1

δFvpfc

δψ

)
I +

1

Ref
(1 + η(ψ))(∇u+∇uᵀ). (1.27)

p represents a pressure, Ref is the fluid Reynolds number and η(ψ) is the viscosity profile

given by equation (1.21).
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Chapter 1. Theoretical framework

This fully continuous formulation for colloidal particles with hydrodynamic interactions

offers an efficient numerical treatment and it is therefore well suited to describe emerging

phenomena on large scale. A coupling with other fields is also in principle possible.

For instance, by coupling equations (1.26) with an orientation field it is possible to

describe active particles with hydrodynamic interactions. This been done in [25, 26]

using equation (1.24) to couple the PFC model and the Navier-Stokes equation. This

active PFC model with hydrodynamic interactions will be presented in chapter 2.

1.2 Computational details

The equation of motion (1.5) is a sixth-order PDE. Equations (1.18) are two sixth-order

PDEs coupled via a repulsion term. In this section we give some information about the

methods we used to discretize this system. Further details, such as the elements and the

solvers used, initial and boundary conditions and other problem specific parameters, are

given inside each chapter. A full mathematical treatment of the numerics needed to solve

the PFC equation is given in [48].

A semi-implicit Euler discretization is used for the time discretization. In case more accu-

racy and stability are required it is also possible to use a Rosenbrock time-discretization

scheme [49]. For the spatial discretization of the PFC equation different methods can

be used, such as finite difference discretization [50–53] and spectral methods [54, 55].

Spectral methods are however restricted to periodic geometries. These methods are

also difficult to use when coupling the PFC equations with other fields, as we will do in

the following chapters, and when dealing with complex geometries. A finite element

method (FEM) overcomes this problem and it is therefore what we consider for the spatial

discretization of the PFC equation. This is implemented using the parallel adaptive finite

element framework AMDiS [56, 57].

1.2.1 AMDiS

AMDiS is an open source C++ library capable of solving a broad class of PDEs using

adaptive finite elements. It is developed and maintained at the Institute of Scientific

Computing (TU-Dresden). It can be used to solve stationary and instationary problems

in 1d, 2d and 3d and it can handle complex geometries and curved surfaces. It uses

the MTL4 and PETSc libraries for sequential and parallel linear algebra computations

respectively, allowing the usage of the solvers present in these libraries. In particular, the
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1.2. Computational details

developing of optimized preconditioners for the iterative solvers, together with the ability

to deal with parallel grid, offers the possibility to efficiently run simulations in parallel.

The possibility of using an adaptive unstructured mesh is one of its main features. In

figure 1.6 we show the meshes used to solve the binary VPFC problem for species A

(panel a) and B (panel b). We observe a higher spatial resolution (a finer mesh) where

there is a change in the density, i.e. in the proximity of particles, depicted as red or blue

circles. In the vacancy regions the density has a constant value equal to zero and this is

reflected in a coarser mesh. Notice also how in this case a multi-mesh implementation

has been used, with two different meshes for ψA and ψB [58], which further enhances

the efficiency of the simulations.

(b)(a)

Figure 1.6: Meshes used to solve the binary VPFC equation (1.18). (a) Mesh used to
solve the equation for ψA. The mesh is highly refined in correspondence of particles
of species A, represented by red circles. (b) Same as (a) for species B. Notice that the
meshes in a) and b) are different, even though ψA and ψB are coupled. This is possible
thanks to a multi-mesh implementation.

Solving the VPFC equation in AMDiS

We can write down the VPFC dynamical equation explicitly to obtain:

∂ψ

∂t
= M0∆

[
ψ3 + (q4 + r)ψ + 2q2∆ψ + ∆2ψ + 3H(ψ|ψ| − ψ2)

]
, (1.28)
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Chapter 1. Theoretical framework

which can be rewritten as three second-order coupled PDEs:

∂ψ

∂t
= M0∆µ,

µ = ψ3 + (q4 + r)ψ + 2q2∆ψ + ∆ν + 3H(ψ|ψ| − ψ2),

ν = ∆ψ.

(1.29)

Equations (1.29) need to be supplemented by boundary and initial conditions. These are

problem specific and are given in the following chapters.

Considering a semi-implicit Euler scheme with timestep τ and linearizing in ψ, the

following system needs to be solved in order to obtain ψ(tn + τ) = ψ(tn+1) = ψ(n+1)

within a finite element implementation:



1 A12(ψ) −∆

−M0∆ 1
τ 0

0 −∆ 1



(n) 

µ

ψ

ν



(n+1)

=



R0(ψ)

ψ
τ

0



(n)

, (1.30)

where the superscript represents the time at which each matrix is evaluated and

A12(ψ) = −3ψ2 − q4 − r − 2q2∆− 6H(|ψ| − ψ),

R0(ψ) = −2ψ3 + 3H(ψ2 − ψ|ψ|).

The next step in order to obtain a continuum description of active particles is to couple

the VPFC dynamical equation, formula (1.29), to an orientation field P via a term v0

representing self-propulsion. This is done in chapter 3. Before, however, we present

the field of active matter, with a special focus on the different methods that have been

developed to model it.
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2 Modeling active matter

Active matter is a wide field that has grown in many different directions in the last years.

Broadly speaking we can define active systems as systems composed of self-propelled

units that take up energy from their environment and convert it into directed motion.

This simple fact sets the system in nonequilibrium and collective phenomena can be

observed at very different scales, ranging from bacteria colonies to fish schools.

We will begin this chapter by giving a short introduction to active matter, introducing the

main ideas and concepts, as well as the new field of topological active matter. However,

giving a rigorous overview of active matter goes beyond the purpose of this work (for

reviews see [1, 2, 59, 60]). We concentrate our attention only on the modeling aspect

of active matter, trying to understand the main features of different models and their

context. In general two approaches have been used to model active matter: an agent-

based description and continuum theories based on a hydrodynamic approach. We will

explain how the former works and where it has been used. In doing so we will introduce

the Vicsek model, which is often said to have paved the way for the field of active matter.

We will then shift our attention to hydrodynamic approaches, i.e. continuum descriptions

of active matter in terms of a few (accurately selected) macroscopic variables1. Also in

this case we will show one of the most famous examples: the Toner-Tu model, that can

be seen as a coarse-grained version of the Vicsek model. We will sketch two possible

derivations of this hydrodynamic model: a phenomenological one and a microscopic one.

The latter, while more complex from a mathematical point of view, has the advantage of

giving explicit expressions in terms of microscopic variables for the parameters entering

the model.

1Note that there exist also continuum, but non hydrodynamic approaches to active matter, such as the
one in [61]. However, these will not be considered in this thesis.
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Chapter 2. Modeling active matter

We will then move towards a phase field modeling of active matter. Here a phase field

variable is introduced to model individual particles, thus allowing for a more accurate

description of both the particle internal structure and its shape. This phase field approach

is unfortunately very expensive from a computational point of view. It is however possible

to study a coarse-grained version of this approach - what we call a “microscopic field-

theoretical approach” - that allows to consider a much larger number of particles. This

model and two possible applications of it are shortly introduced in this chapter. It will

be used and studied more in detail in the following two chapters to study collective

phenomena for active particles and for binary mixtures of interacting active and passive

particles.

2.1 Active particles

Active particles are self-propelled units that convert energy from their environment into

directed motion [14]. These systems are in intrinsic nonequilibrium, which differs from

standard nonequilibrium in that they are driven internally, as opposed to systems driven

by the boundaries or by an external field [1, 2] . Examples of active living systems can be

found across many different length scales, from flocks of birds at the macroscale [4] to

bacterial colonies at the microscale [5, 62–64], whereas Pt/Au colloids are an example

of synthetic microswimmers that can mimic living systems [65].

Active systems are studied both to better understand the mechanism of motility [66]

and to investigate collective behavior [67]. An example of the former is spontaneous

symmetry breaking and the onset of cell motility [68, 69], whereas the latter concerns

nonequilibrium emergent behaviors and macroscopic collective motion [60].

It is possible to classify active systems according to their orientational order. This

classification is based on the kind of internal symmetry that the individual particles have

in the system. We speak of polar symmetry when the particles have a head and a tail

[8, 10, 14]. It is a ferromagnetic-like symmetry because all the particles tend to align in

the same direction. Bacteria and schools of fish are a typical example of active systems

possessing polar symmetry. The order parameter is a vector p, known as the polarization

vector. On the other hand, when particles have no head or tail (such as vibrating rods

or elongated objects) we speak of nematic symmetry [70–72]. In this case, the particles

are active but do not exhibit any mean motion. The order parameter is a tensor and the

orientational order is the same that is observed for a nematic liquid crystal [73]. It is
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2.1. Active particles

also possible that active particles do not posses any orientational symmetry, meaning that

no alignment between particles is present. This latter possibility is typical of spherical

self-propelled synthetic colloids. In this case, motility induced phase separation (MIPS)

can be observed [19], a phenomenon that we will explore in more detail at the end of

this chapter.

Furthermore, active particles move in a solvent and therefore their dynamics is affected

by hydrodynamic interactions [74–77]. We speak of dry active systems when the medium

simply provides friction to the system (and momentum is not conserved). Wet active

systems are characterized by a more active role of a medium, where, for instance, the

hydrodynamic flow affects the motion of the active particles, like in suspensions [78–80].

Summing up, the defining and underlying features of active systems are: (i) the driving

force acts on each unit, meaning that the symmetry is broken locally and not globally,

(ii) the presence of emerging behavior: collective coordinate motion at large scale is

observed, (iii) most active particles are elongated (synthetic colloids are an exception),

meaning that they order in states that have an orientational order, and (iv) the presence

of a strong coupling between orientational order, flow (in the case of suspensions) and

motion.

Topological active matter

It is a well-known mathematical fact (Poincaré-Hopf theorem) that it is impossible to

cover a sphere (or a topologically equivalent surface, like an ellipsoid) with the lines of a

vector field without creating at least a singular point (e.g. the earth longitudinal lines

meeting at the poles). This singular point is what is known as a topological defect [81].

Defects are for instance observed when confining passive particles with an orientation

on a sphere, see figure 2.1. These defects are however static, but their motion can be

induced by adding self-propulsion to the particles.

This is an example of how confining an active system on a curved surface gives rise to new

spatiotemporal patterns (in this case the defects dynamics). It has also been proposed

that topologically constraining active systems might be a key in morphogenesis [82].

More generally, the study of how topology and curvature affects an active system is what

is typically referred to as topological active matter.

Experimental works studied the resulting defects dynamics of confining an active nematics
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Chapter 2. Modeling active matter

Figure 2.1: Defects, shown as white spheres, arise when confining passive particles with
an orientation (shown as black lines) on a sphere. If, as in this case, the particles have a
nematic symmetry, four +1

2 defects are observed. The color coding corresponds to the
nematic order parameter P (see chapter 5) with minima in the four defects.

system comprised of microtubules and molecular motors within a spherical vesicle and

a toroidal droplet [30, 83]. Agent-based and hydrodynamic models have been used to

study the effects of confining nematic [84–86] and polar systems [87–90] on spheres or

ellipsoids. More recently continuum equations for polar orientational ordering and for

the nematic liquid crystal on curved surfaces have been derived and used in simulations

[91, 92]. These could be used in the future to further study active liquid crystals and

polar fluids on evolving surfaces.

Topological active matter remains, however, a quite recent field and the complex dynamics

of topological active systems is still largely unexplored. This makes it a fascinating and

fast developing new field. We will come back to this topic in chapter 5, where a model to

describe dry active nematics on curved surfaces (published in [84]) will be presented in

more detail.
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2.2. Agent-based models

2.2 Agent-based models

In agent-based modeling the particles in the system are treated as self-propelled units that

move with a certain speed (often assumed to be constant) along their orientation. Their

direction changes according to interaction rules which can comprise explicit alignment

and noise. This is an example of a model on the microscopic scale, where every single unit

is taken into consideration and interactions must be known a priori [59]. Even though

algorithmic and computational advances allow for simulations of systems containing

millions of particles [93], continuous modeling is needed to understand the long time-

and large length-scale dynamics of a very large system [1, 2, 94]. Another intrinsic issue

in an agent-based approach is that physical interactions between particles or internal

symmetries (such as polar or nematic) are imposed as explicit rules. For this reason,

agent-based models are not as general as their continuous counterpart. A new set of

equations is indeed needed every time that a different interaction is introduced in the

system.

These models are however widely used for their simplicity, their ease of implementation

and because they have proved to be a valid tool to study emerging phenomena in active

matter, such as MIPS [18–21], collective migration [15, 16] and, in more recent years,

active dynamics on surfaces [84, 85, 87, 88, 95]. The success of agent-based models

is therefore due to the fact that, in their simplicity, they provide a minimal tool to

investigate the emergent behavior predicted by more complicated models and observed

in the experiments.

Active Brownian Particles (ABPs) are an example of agent-based modeling that has

been widely used in the last years [20, 59, 96, 97]. In this framework, particles are

represented as repulsive spheres self-propelling with velocity v0. Their translational

and rotational dynamics are coupled via rotational diffusion, which induces changes in

the particles trajectories. No orientational order is present, meaning that there is no

alignment between the particles. The particles dynamics is given by:

ṙi = v0pi + γ−1F i +
√

2DT ξ(t)

ṗi =
√

2Drη(t)× pi,
(2.1)

where ri and pi represents the position and the orientation of the i-th particle respectively

and F i represents the forces acting on the i-th particle (including steric forces as well). γ

is the friction coefficient, Dt, Dr are the translational and rotational diffusion coefficients,
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and ξ(t),η(t) represent independent white noise with zero mean and 〈ξα(t)ξβ(t′)〉 =

δαβδ(t− t′) (similarly for η(t)).

Figure 2.2: Four different equal time trajectories of a single Active Brownian Particle
in two dimensions for fixed translational and rotational diffusion DT , DR. (a) v0 = 0
(corresponding to Brownian motion), (b) v0 = 1, (c) v0 = 2, (d) v0 = 3. By increasing
the activity v0 the particle moves over longer distances, before changing its direction
because of rotational diffusion. The image is adapted from [59].

In figure 2.2 two-dimensional trajectories of one ABP with F = 0 are shown for different

values of v0. If v0 = 0 (panel a) the rotational and translational dynamics decouple and

we simply observe Brownian motion. Increasing v0 (panels b-d) the particle moves over

longer distances, before changing its direction because of rotational diffusion. We will not

treat ABP further in this thesis, for a review of this approach see [59], whereas recently

ABP with polar alignment has also been introduced [98].

The Vicsek model is considered to have started the field of active matter. A general

version of it has been introduced by Reynolds in 1987 in a computer graphics context

[99]. A special version of it has been studied in 1995 by Vicsek to study the dynamics

of flocks of birds and it has been inspired by an analogy with ferromagnetism [14]. In

the following section, we will introduce and analyze this model in more detail to give an

explicit example of how agent-based modeling works. The Toner-Tu model [8–10], that

will be introduced later, is a coarse-grained approach of the Vicsek model and its study

should help us to understand how a continuum theory is constructed and when it can be

used.

2.2.1 Vicsek model

The Vicsek model was introduced as a minimal numerical model to better understand

flocking [14, 100]. It uses a discrete-time cellular automata approach to describe the

overdamped dynamics of N points representing self-propelled particles (or birds in the

original formulation). The particles travel at a constant speed v0 and try to align their

direction of motion with the one of their neighboring particles (inside a sphere of radius
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R) with some uncertainty due to a noise ηi(t). In two dimensions the time-discrete

dynamics reads:

ri(t+ ∆t) = ri(t) + v0êi(t+ ∆t)∆t

θi(t+ ∆t) = 〈θi(t)〉R + ηi(t),
(2.2)

where ri(t) and θi(t) are the position and the angle associated with the orientation of

the i-th particle at time t, 〈·〉R denotes an average over the set particles j inside a circle

of radius R from the i-th particle: |rj(t)− ri(t)| < R, and ηi(t) is a random angle with

zero mean and standard deviation η:

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = ηδijδtt′ . (2.3)

Notice that equations (2.2) only comprise short-ranged interactions and that the model

has rotational symmetry, i.e. the flock is equally likely to move in any direction.

Equations (2.2) describes a system that is fully characterized by the noise amplitude η,

the particles speed v0 and the particles packing fraction ρ = N/V , where V is the total

volume of the system. In this system, particles move at fixed speed v0, while trying to

align their orientation with that of their neighbors.

Figure 2.3: Average velocity for a flock described by the Vicsek model, equations (2.2),
versus noise strength η. For low non-zero noise we clearly observe a moving ordered
phase (|〈v〉| > 0). This phase disappears at a threshold noise value (η ' 0.4), after which
a disordered phase (|〈v〉| = 0) is observed. The image is adapted from [10].

Simulations showed that for low noise η or high density ρ an ordered state where all the

particles are on average moving in the same direction (a ferromagnetic flock) is found
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[101]. In figure 2.3 it is shown that indeed the average velocity

|〈v〉| = 1

Nv0
〈|

N∑
i=1

vi(t)|〉t (2.4)

assumes non-zero values for low noise η and we also observe a phase transition from

a disordered state (|〈v〉| ' 0) to an ordered state (|〈v〉| > 0) at a critical noise ηc. The

interesting aspect of this ordered state is that it is not imposed by an external field but

it arises as the result of local interactions between particles. The fact that this ordered

state is present also in two dimensions is in apparent contrast with the Mermin-Wagner

theorem [102], known to be valid in equilibrium statistical mechanics. This theorem

states that no continuous symmetry can be spontaneously broken in an equilibrium

system with short-ranged interactions at a non-zero temperature (encoded in the noise

in the present discussion) in dimension d ≤ 2. Figure 2.3 however clearly shows that

continuous rotational symmetry is spontaneously broken in the Vicsek model (that has

only short-ranged interactions) for a noise amplitude η 6= 0 and d = 2. The answer to this

apparent contradiction is that the Vicsek model is out-of-equilibrium. The nonequilibrium

aspect comes from particles motion and Vicsek was the first one to realize this. This

observation was a big conceptual advancement for the knowledge on flocking and helped

in founding the field of active matter.

Figure 2.3 shows a second-order phase transition (i.e. a continuous one), based on

simulations of equations (2.2) done in [10]. However, later simulations [103] have

shown that, by increasing the system size, the transition becomes discontinuous and a

third state, characterized by traveling bands, is observed [101, 103]. It is now accepted

that the continuous nature of the phase transition observed in figure 2.3 is due to

finite-size effects and that the onset of a moving ordered phase is discontinuous.

The Vicsek model can be made arbitrary complex, by adding new terms and interactions.

A lot of possible variations indeed exist and have been studied, such as considering

nematic rather than ferromagnetic alignment [104]. However, we have seen that the

simple model reported above has already all the necessary ingredients for self-propulsion,

nonequilibrium and to account for a spontaneous symmetry breaking, even in two

dimensions.

In writing down the Vicsek model different assumptions have been made on how birds

(particles) move, such as alignment with their neighbors. This means that a lot of
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information was needed in order to write down the Vicsek model. Now let’s suppose that

almost nothing is known about how birds (or self-propelled particles) move and interact.

Writing down microscopic equations such as (2.2) is of course not possible given the

inability to know which rules to impose. What can be done is to write down a continuum

theory, described by certain fields, based on some very generic assumptions and a clever

use of the symmetries in the system. This is exactly what is done in a hydrodynamic

approach.

2.3 Hydrodynamic approach

The aim of a hydrodynamic approach is to offer a continuum description in terms of

the dynamics of the so-called slow variables. These are given by conserved quantities,

broken symmetry variables and order parameters [6, 105, 106]. In active matter, the

motivation for a hydrodynamic approach is given by the need to write down a field theory

for it and thus have a coarse-grained description of long time-scale behavior of very

large systems given in terms of some continuum fields. The strategies that have been

developed to obtain a description of active matter in terms of a few macroscopic fields

come from methods of nonequilibrium statistical mechanics [7] and are essentially two:

(i) a symmetry-based phenomenological approach and (ii) a full microscopic derivation

of hydrodynamic equations. The former approach is based on the symmetries and

conservation laws of the system, is very generic and allows us to write down fields

equations also when we have very little information about the system. Its main drawback

is that the parameters entering the model are undetermined. The microscopic derivation is

performed by starting from a specific microscopic model, making several approximations

and coarse-graining it. Several calculations are involved, but in the end it is possible

to obtain the values of the different parameters entering the equations, overcoming the

biggest disadvantage of a phenomenological derivation.

To better understand how a hydrodynamic approach works and its main differences

with an agent-based model we are going to introduce the Toner-Tu model, that is

essentially a continuous (and therefore more general) version of the Vicsek model. In

other words, the Vicsek model is a possible microscopical realization of the Toner-Tu

model, corresponding to a specific choice of the phenomenological parameters. Variations

of the Vicsek model with, for instance, different alignment rules or attractive interactions,

corresponds to other possible realizations of the Toner-Tu model, with a different set of

phenomenological parameters. This observation should stress the power and generality -
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or better, universality - of hydrodynamic approaches.

2.3.1 Toner-Tu model

The Toner-Tu model is a continuum theory for dry flocks [8–10]. It has been originally

derived using a phenomenological approach only on the basis of the symmetries and

conservation laws present in the system [8]. More recently the same model has been

derived by coarse-graining the Vicsek model [107–109]. While not giving any explicit

derivation of the Toner-Tu model, we will try to sketch the main ideas behind both

approaches.

Phenomenological approach

In a phenomenological approach, we have very little information about the system we

want to model and want to derive a field theory for its long time scale. To this end, the

only things we need to know are the symmetries and the conservation laws of the system

[106].

Flocks are rotationally invariant, meaning that all directions of space are equivalent to

other directions. Furthermore, conservation of particles is assumed. This symmetry and

conservation law restrict the terms allowed in the hydrodynamic model. The slow-moving

variables in the system are the same of a simple fluid: the density ρ and the coarse-grained

particle velocity P . These will be the hydrodynamic variables for the Toner-Tu model.

Within this framework, we should be able to write down the most general continuum

equations for ρ and P consistent with rotational symmetry and conservation of particles

[8–10]. Since we are interested in the long time-scale behavior of very big flocks the

equations can be further simplified by performing a gradient expansion, meaning that

only the lowest order terms in spatial gradients and time derivatives are kept. The

resulting equations read:

∂ρ

∂t
+∇ · (ρP ) = 0

∂P

∂t
+ λ1(P · ∇)P + λ2P (∇ · P ) + λ3∇(|P |2) = αP − β|P |2P −∇P (ρ)+

+D∇(∇ · P ) +D1∇2P +D2(P · ∇)2P + f .

(2.5)

The first equation just states that particles in the flock are conserved. The λ terms
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on the left-hand side of the second equation correspond to the convective term of the

Navier-Stokes equation. Here, however, there is no Galilean invariance because “birds”

(or particles) move through a resistive medium. This provides a preferential frame and

therefore λ2,3 6= 0. When α changes from negative to positive values the system undergoes

a phase transition from a disordered phase to an ordered flock moving with velocity

|〈P 〉| '
√
α/β. The D terms are the diffusion coefficients and basically controls the

restoring torque in the ordered flock, representing the equivalent of alignment between

neighbors. In this respect, it has been said that “a flock governed by equations (2.5) is a

strange blend of magnet and fluid” [2].

All the parameters entering equations (2.5) will not be discussed further here, see instead

[1, 2, 10]. However, the phenomenological derivation just shown does not shed any light

on their physical meaning. As we have already mentioned, a more systematic derivation

is needed in order to obtain explicit expressions for these parameters. In this case

the hydrodynamic equations are derived by explicitly coarse-graining the microscopic

dynamics given by (2.2) or a similar microscopic model.

Microscopic derivation

The scope of this section is to explain the general ideas behind the systematic coarse-

graining process used to obtain hydrodynamic equations starting from a microscopic

model. This is an alternative method to the phenomenological approach described above.

It is a more complex process, requiring a lot of mathematics and some approximations,

but it provides explicit expressions for the phenomenological coefficients.

The main steps necessary for this coarse-graining operation are essentially three: (i)

write down the coupled overdamped Langevin equations for the particles positions and

orientations, (ii) transform the Langevin equations into a Smoluchowski equation for the

one-particle distribution function [110], and (iii) further coarse-grain the Smoluchowski

equation to obtain a set of coupled equations for the slow variables of the system

[108, 111].

The methods needed to perform these steps come from nonequilibrium statistical me-

chanics [7], but are beyond the scope of this presentation. For a detailed derivation see

[1, 108, 111] . However, it should be mentioned that the “molecular chaos” approxi-

mation (normally used to derive the Boltzmann equation) is needed to complete the

calculations and thus obtain a set of coupled closed equations for the hydrodynamic
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variables. This approximation corresponds to assuming weak interactions and low density

in order to express the two-particle probability density as the product of two one-particle

probability densities.

Notice that if the microscopic model of step (i) is the Vicsek model, then the hydrodynamic

equations that are obtained will correspond to equations (2.5) describing the Toner-Tu

model. But this time the phenomenological parameters will be known: they are explicitly

given in terms of the microscopic coefficients entering the Langevin equations. It is also

possible to start with a different microscopic model. In [112], for instance, the starting

point is a microscopic model of a self-propelled hard rod with steric interactions. In this

case, the system has a nematic symmetry and therefore the hydrodynamic description

contains also a third slow variable: the nematic order parameter Q.

A final comment on the explicit expressions that link the phenomenological coefficients

of the hydrodynamic model with the parameters entering the microscopic description is

necessary. These expressions are dependent on the microscopic model we began with.

Starting with two different (but similar) microscopic models might lead to the same

hydrodynamic equations, but the connection between the phenomenological coefficients

will be given by different expressions in the two cases.

2.3.2 Microscopic phase field modeling

Many complex biological phenomena cannot be treated within the agent-based and

hydrodynamics frameworks described above. Indeed, when using these approaches it

is often not possible to provide a detailed description of the internal structure of the

self-propelled particles. Moreover, individual particle deformations, another important

feature in many phenomena, cannot be easily incorporated in the methods above as

well. Using a phase field description of the particles [113, 114] it is possible to allow for

particle deformations, as well as providing a description of internal processes within each

particle. This is, therefore, a promising approach to model all those phenomena which

need a more detailed description.

Cell motility is a prominent example where an accurate description of the particle interface

and internal structure is necessary [115]. Key processes involved in cell motility include,

e.g., the interaction of myosin with the actin filaments inside the cell and substrate-related

adhesion [116–118]. The underlying mathematical phase field modeling is not trivial. A

cell is described by a deformable phase field variable φ [119], while the surroundings of

30



2.3. Hydrodynamic approach

the cell are regarded as Newtonian fluids. Additionally, when local adhesion of the cell

on a substrate is minimal [120], the bulk (i.e. the actin cytoskeleton) can be considered

as a solution of actin filaments strongly connected via myosin motors. Actin-myosin

interactions lead to an active contractile stress and the dynamics is modeled via an active

polar gel theory [11–13]. Figure 2.4 shows a schematic representation of this model.

The model for the phase field active polar gel. Here, we want to show the equations

governing the phase field active polar gel model used to describe multiple cells in the

context of cell migration. We consider N cells and cell i is described by the phase field

variable φi, with i = 1..N . The average orientation of the actin filaments in cell i is

represented by the orientation field P i, i = 1..N . The governing equations for cell i are

given by three different coupled PDEs [24, 68, 121]:

• a fourth order PDE for the phase field variable φi:

∂tφi + ∇ · (uφi) = γ∆φ\i

φ\i =
1

Pa

(
−c4

2
|P i|2 − β1∇ · P i

)
− µ

Ca
+

1

In

B′(φi) N∑
j=1
j 6=i

wj + w′i

N∑
j=1
j 6=i

B(φj)


µ = ε∆φi −

1

ε
(φ2
i − 1)φi,

(2.6)

where the last term in the second equation represents the repulsive interaction

energy between different cells, B(φi) = 1
ε (φ

2
i − 1)2,

wj =

exp[−1
2(ln

1+φj
1−φj )2], for |φj | < 1

0, otherwise,
(2.7)

ε represent the thickness of the diffuse interface and µ accounts for surface tension

effects.

• a PDE for the hydrodynamic variable P i:

∂tP i + (u · ∇)P i + Ω · P i = ξD · P i −
1

κ
P \
i

P \
i =

1

Pa

(
−c1φiP i +

c4

2
P 2
iP i −∆P i + β2∇φi

)
,

(2.8)
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where Ω = 1/2(∇uT −∇u) is the vorticity tensor and D = 1/2(∇u+∇uT) is the

deformation tensor. This equation can be derived from the active polar gel theory

[11–13].

• the incompressible Navier-Stokes equation for the fluid velocity u:

Re (∂tu+ (u ·∇)u) +∇p = ∇ · σ
∇ · u = 0.

(2.9)

The stress tensor σ have different contributions:

σ = σviscous + σactive + σdistortion + σericksen, (2.10)

the most important of which is the active one σactive. This is the term that sets the

system out of equilibrium. It basically represents the role of the myosin motors

linked to the actin filaments. Mathematically it is given by [2, 122]:

σactive = ξ
N∑
i=1

P i ⊗ P i, (2.11)

where ξ > 0 for contractile activity and ξ < 0 for extensile activity.

The formula for each of the remaining stress contributions, as well as an explanation of

all the parameters and other details can be found in [68, 121]. For some applications

of this model see [23, 69, 123–125], whereas an obvious extension has to do with the

inclusion of substrate adhesion [23].

Dry version. For comparison with other models, it is useful to introduce a dry model

(i.e. without the Navier-Stokes equation) of this microscopic phase field formulation of

active matter. This is not as easy as simply removing the Navier-Stokes equation, formula

(2.9), because this would mean losing the transport term as well as forces and stress. We

consider the following model instead [24, 121]:

∂tφi + v0∇ · (φiP i) = γ∆φ\i , i = 1..N

∂tP i + (v1P i · ∇)P i = −1

κ
P \
i , i = 1..N

(2.12)

where the chemical potential P \
i and φ\i are defined as above. We refer to this model as
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Figure 2.4: Schematic representation of the phase field model used to describe two
moving cells. The microscopic actin filaments are coarse-grained and represented by
an orientation field P i,j . The streamlines of the velocity profile v (called u in the main
text) of the surrounding Newtonian fluid are shown, as well as the cell membrane Γi,j(t),
corresponding to the zero-level set of the phase field φi,j . The image is taken from [24].

the dry version (or non-hydrodynamic) of the phase field active polar gel model and we

will use it in chapter 3 to perform some qualitative comparisons with the microscopic

field-theoretical approach introduced in the next section.

The main drawback of a phase field approach is its complexity on a computational level.

Even though different methods exist to numerically solve the phase field active polar gel

model, including an efficient parallel one for the dry version [126], solving its equations

remains a very expensive task. In [25, 26] a new continuum modeling approach was

introduced for active crystals. This can be seen as a coarse-grained description of the

phase field model just presented. In this method, particles are not described anymore

by a phase field function, but they are represented by the peaks in the PFC density field

ψ introduced in the previous chapter. This coarse-grained method, named microscopic

field-theoretical approach, accounts for particle internal structure and, to some extent,

deformations but allows one to consider a much larger number of particles.
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2.4 Microscopic field-theoretical approach

A microscopic field-theoretical approach has been first introduced to model active crystals

[25, 26]. It was intended as a minimal model for crystallization in active systems and it

is the first continuum model including both orientational and translational ordering. This

new field approach, that can be seen as a coarse-grained model of the detailed phase

field descriptions of the previous section [23, 24], provides the ability to study emerging

macroscopic phenomena in active systems with microscopic details.

This approach combines the phase field crystal (PFC) model introduced in chapter 1 with

a polar order parameter P similar to the one of the Toner-Tu model and a self-propulsion

term v0. The model reads in scaled units:

∂tψ = M0∆
δF
δψ
− v0∇ · P

∂tP = ∆
δF
δP
−Dr

δF
δP
− v0∇ψ.

(2.13)

See the supplement in [25] for a detailed non-dimensionalization of the equations,

which can be derived from microscopic dynamical density functional theory [127, 128].

The energy functional is F = Fpfc + FP , where Fpfc is the dimensionless PFC energy

functional given by equation (1.4) and the polarization dependent part reads:

FP [P ] =

∫
Ω

[
1

2
C1P

2 +
1

4
C4(P 2)2

]
dr, (2.14)

with C4 ≥ 0 to ensure thermodynamic stability (with a strict inequality in the C1 ≤ 0

case). To understand the role of the other parameters, we can compare the equation for

the polar order parameter P to the second equation of the Toner-Tu model, expression

(2.5). To this end, we insert (2.14) into the second equation of (2.13) to obtain:

∂tP = ∆(C1P + C4P
2P )−Dr(C1P + C4P

2P )− v0∇ψ. (2.15)

Neglecting the convection terms (λi = 0) and the noise (f = 0) and setting D = D2 = 0

in equation (2.5) of the Toner-Tu model, we recover equation (2.15) with v0 = 0, up to

the ∆(C4P
2P ) term that contributes to translational diffusion. This analogy allows us to

better understand the orientational behavior of the active crystals described by equation

(2.13). The case C1 ≥ 0 in (2.15) corresponds to α ≤ 0 in (2.5), i.e. a disordered phase.

In this case, orientational ordering causes an increase of the polarization free energy
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(2.14) and is not favored, meaning that collective ordered motion is in general avoided.

An activity threshold for the movement of the active crystals described by equation (2.13)

is indeed observed when C1 ≥ 0, see figure 2.5 (blue dots and red rhombi). Here,

the crystals start to move only when the activity strength v0 increases above a certain

threshold value. On the contrary, for C1 < 0 in (2.15) an ordered phase is energetically

favorable, meaning that movement is observed for every value of v0 6= 0, see figure 2.5 .

Figure 2.5: Collective migration speed vm of the active crystals as a function of the
activity strength v0. The parameters are (r, ψ̄,Dr) = (−0.98,−0.4, 0.5). For C1 ≥ 0 (blue
dots and red rhombi) a non-zero activity threshold is observed. This is a consequence of
the fact that in this case orientational order is energetically unfavorable, as explained in
the main text using an analogy with the Toner-Tu model. For C1 < 0 an ordered phase is
energetically favorable and vm = v0 for every value of v0. The image is taken from [26].

In figure 2.6 snapshots taken from [25] show different phases of the active PFC model for

the more interesting C1 > 0 regime. We see that, apart from the activity threshold effect

explained above, also other new phases are observed and the activity strength v0 allows

transitions between these phases. For low activities, the usual resting hexagonal structure

typical of the PFC model is observed (panel a). Increasing v0 this structure starts moving

and we have a traveling hexagonal structure (panel b). This transition occurs at a specific

threshold value ṽ0 which varies according to the values of the other parameters in the

system. By further increasing v0 a traveling quadratic structure is observed (panel c)

until, for an even higher activity strength, traveling lamellae are found (panel d).

In the next sections we present two extensions of this microscopic field-theoretical

approach that have been introduced in [25, 26] and [90] to consider hydrodynamic

interactions and active crystals on a sphere, respectively.
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Figure 2.6: Snapshots of the density and polar order parameter coming from equation
(2.13) with parameters (ψ̄, r, C1, C4, Dr) = (−0.4,−0.98, 0.2, 0, 0.5). Varying the activity
different phases of the active PFC model are observed: (a) a resting hexagonal for
low activity (v0 = 0.1), (b) a traveling hexagonal (v0 = 0.5), (c) a traveling quadratic
(v0 = 1.0) and (d) a traveling lamellar (v0 = 1.9). The image is taken from [25].

In the next chapter we will present a modification of this microscopic field-theoretical

approach where low densities are allowed. We will then study this new model in details

and use it to explore the collective dynamics of active particles on large scale. In chapter

4 this microscopic field-theoretical approach will be extended to mixtures of interacting

passive and active particles, allowing us to describe generic properties of such systems.

2.4.1 Hydrodynamic interactions

Equations (2.13) can be extended to consider particles surrounded by a fluid. To this end,

hydrodynamic interactions between the particles must be taken into consideration. This

is done in [25, 26] by using an approach inspired to the fluid particle dynamics (FPD)

method [47], already introduced in chapter 1.
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Calling u the fluid velocity, the new set of dynamical equations reads:

∂tψ = M0∆
δF
δψ
− v0∇ · P − u · ∇ψ,

∂tP = ∆
δF
δP
−Dr

δF
δP
− v0∇ψ − u · ∇P + Ω · P ,

∂tu+ u · ∇u = F + η{ψ}∇u− αu,
∇ · u = 0.

(2.16)

α is the friction constant, Ω is the vorticity tensor defined above and it describes rotations

due to convection, while flow alignment of the polarization field is not considered. In

[25, 26] the force term F is modeled using the discrete form given by equation (1.24). As

explained when introducing the FPD method in chapter 1, the viscosity η varies with the

density ψ. In this case, η is set to a certain value at the position where the density ψ is the

lowest and it linearly increases by a factor of 2− 3 when it goes to regions of high density

ψ (which correspond to particles). In [26] it is shown that hydrodynamic interactions

introduced via (2.16) speed-up the collective migration speed vm and destabilize the

crystalline order of the system.

This model for self-propelled particles with hydrodynamic interactions could be extended

by considering the continuous approximation for the force term F , equation (1.25),

instead of the discrete form used here. We also observe that, unlike in the phase field

active polar gel presented above, the activity strength v0 does not influence directly the

fluid. This is also something that should be addressed in a future work. These questions

remain however open and are not addressed further in this thesis.

2.4.2 Active crystals on a sphere

In [90] the microscopic field-theoretical approach presented above is extended to a

sphere. The resulting model is used to study crystals of self-propelled colloidal particles

on a sphere and to explore the different crystalline states and the defects therein. Here,

we want to show how equations (2.13) have been generalized to a sphere S of radius R.

The starting point is the parametrization of the position vector r as r(θ, φ) = Rû(θ, φ),

where û(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))ᵀ is the orientational unit vector with

spherical coordinates θ ∈ [0, π] and φ ∈ [0, 2π), as shown in figure 2.7. The polarization

field P (r, t) is defined as a three-dimensional vector field tangential to S at r:

P (r, t) = Pθ(r, t)∂θû+ Pφ(r, t)∂φû, (2.17)
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where Pθ(r, t) and Pφ(r, t) are scalar functions and P (r, t) ∈ TrS, with TrS the tangent

space of the sphere S in the point r.

Figure 2.7: Image of a sphere S of radius R. The parametrization of the position vector
r(θ, φ) is shown, together with the spherical coordinates θ and φ. The image is taken
from [90].

The energy functionals (1.4) and (2.14) are substituted with:

Fpfc[ψ] =

∫
S

{
ψ

2

[
r + (1 + ∆S)2

]
ψ +

ψ4

4

}
dr,

FP [P ] =

∫
S

[
1

2
C1P

2 +
1

4
C4(P 2)2

]
dr,

(2.18)

where the integration is now over the sphere S, ∆S = divS gradS is the Laplace-Beltrami

operator and we define the gradient and divergence operators in spherical coordinates

as:

gradSψ =
1

R

[
(∂θû)∂θψ +

1

sin(θ)2
(∂φû)∂φψ

]
divSP =

1

R
[cot(θ)Pθ + ∂θPθ + ∂φPφ].

(2.19)

The dynamics of ψ and P restricted to the sphere [92, 129, 130] reads:

∂tψ = M0∆S
δF
δψ
− v0divSP

∂tP = −(∆dR +Dr)
δF
δP
− v0gradSψ,

(2.20)

where F = Fpfc +FP , with Fpfc and FP given by (2.18). The Cartesian Laplace operator
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∆ acting on δF/δψ has been replaced with the Laplace-Beltrami operator ∆S defined

above and the Cartesian Laplace operator acting on the vector-valued δF/δP has been

replaced with the surface Laplace-de Rham operator ∆dR = −gradSdivS − rotSRotS .

The surface curl operators in spherical coordinates are given by:

rotSψ =
1

R sin(θ)
[−(∂θû)∂φψ + (∂φû)∂θψ],

RotSP =
1

R

[
2 cos(θ)Pφ −

1

sin(θ)
∂φPθ + sin(θ)∂θPφ

]
.

(2.21)

The set of equations (2.20) describes the dynamics of self-propelled particles tangential

to the sphere S and it can be seen as a minimal field-theoretical model for active crystals

on a sphere. Notice that, in the limit R → ∞, equations (2.20) locally reduces to the

description on the plane, given by equations (2.13).

Another interesting possible extension of the connection between a microscopic field-

theoretical approach and topological active matter would be the study of active nematics

on surfaces [84–86]. To this end a third variable should be coupled to the system, namely

the nematic order parameter given by a tensor Q. While steps have been made in this

direction [91], the exact coupling between the tensor Q and the PFC model remains an

open question. For this reason, we studied an agent-based model to perform a preliminary

study of dry active nematics on surfaces [84]. This is presented in chapter 5, together

with some results about the defect dynamics.

2.5 Summary

In summary, in this chapter we have given an overview over the different models that

have been introduced over the years to describe active matter and the observed collective

phenomena that characterize this field. We started by identifying the main underlying fea-

tures of active systems and by explaining the role of symmetries, medium and topological

confinement. After, we described how simple agent-based models have been successfully

used to numerically simulate different phenomena observed in active matter. The Vicsek

model, that is considered to have started the field of active matter, has been discussed in

more details. We then shifted our attention towards a more macroscopic point of view,

discussing how hydrodynamic approaches can be used to shed light on the long time-

and large length-scale dynamics of a very large system. In this context, we introduced

the Toner-Tu model, which describes the dynamics of dry flocks, and we sketched two
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possible derivations of it: a phenomenological one and a microscopic one.

Further, we have shown how newly developed microscopic phase field approaches can be

used to deal with deformable particles and to keep track of physical processes happening

inside particles. These methods, that have proven to be particularly successful in the field

of cell motility, are however very expensive from a computational point of view. Finally,

we have seen that a microscopic field-theoretical approach originally developed for active

crystals can be seen as a coarse-grained version of phase field descriptions. This allows

to use this description to efficiently simulate a much larger number of particles than

possible with phase field approaches, while at the same time still accounting for particle

internal structure and, to some extent, its deformations.
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3 A microscopic field theoretical approach

for active systems

Our aim in this chapter is to extend the active PFC continuum model introduced in

the previous chapter to describe active crystals [25, 26]. This has been one of the first

continuum models in active matter which addressed, besides orientational ordering, also

positional ordering. We propose an extension of this model to also allow for low densities.

To this end we consider a variant of the PFC model, the vacancy PFC (VPFC) model, which

can be used to describe individual particles. The resulting microscopic field-theoretical

approach can be considered as a minimal continuum model to describe generic properties

of active systems and emerging collective phenomena on a large scale. After introducing

the model, we validate it by reproducing results obtained with corresponding agent-based

microscopic models [15]. We consider binary collisions, collective motion and vortex

formation. In the previous chapter it was mentioned that this microscopic field-theoretical

approach can be seen as a coarse-grained model of the detailed phase field description

given by equations (2.12). We present a comparison between these two models, which

give results that are in qualitative agreement with each other.

Considering larger systems the formation of collective motion can be analyzed. For high

densities we observe a coarsening process of regions of different directions of collective

motion. This was already mentioned in [25], but not analyzed. In a broader context the

observations can also be related to defects in active crystals. For orientational ordering

this was e.g. analyzed in [131]. Another remarkable property of active systems is giant

number fluctuation in a cluster formation process. In contrast to equilibrium systems,

where the standard deviation ∆N in the mean number of particles N scales as
√
N

for N → ∞, in active systems ∆N can become very large and scales as Nα, with α an

exponent as large as 1 in two dimensions. This theoretical prediction is often associated

with elongated particles and a broken orientational symmetry [10, 70–72], but it has
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also been verified in simulations of agent-based models for disks with no-alignment

rule, see [18], and was demonstrated by experiments and simulations in [132]. We use

large scale simulations to show giant number fluctuations in the proposed microscopic

field-theoretical approach.

3.1 The model

Our starting point is the active phase field crystal model derived in [25, 26], whose

dynamical equations are given by equation (2.13). Inserting equation (2.14) into (2.13),

making the following substitutions:

C1 → α̃2, C4 → C̃2, DrC1 → α̃4, DrC4 → C̃4, (3.1)

and omitting the tilde we obtain:

∂tψ = M0∆
δFpfc

δψ
− v0∇ · P

∂tP = ∆
(
α2P + C2P

3
)
−
(
α4P + C4P

3
)
− v0∇ψ.

(3.2)

Fpfc is the dimensionless PFC energy function, equation (1.4). P (r, t) is the polar

order parameter and the remaining parameters are: M0 mobility, v0 self-propulsion

determining the strength of the activity, α2 and α4 two parameters related to relaxation

and orientation of the polarization field, and C2 and C4 are parameters which govern

the local orientational ordering. In chapter 2 we have seen how the equation for the

polar order P is related to the Toner-Tu model. This analogy has allowed us to identify

regimes where orientational order is energetically favorable (α2,4 < 0) or not (α2,4 > 0).

The model is used in [25, 26] to study crystallization in active systems and we want to

extend it to allow for individual particles.

3.1.1 Adding vacancies

To allow for a description of individual particles, we consider the VPFC model introduced

in chapter 1 [38, 40, 133]. Having now single particles we would like to have a more

classical transport term for the local density field ψ than the one appearing in equation

(3.2). Following other, more coarse-grained models for active systems [1–3], we use a

transport term with advection velocity v0P for the local density field ψ. This modification

is more general and turns out to be more stable in comparison to the term used in (3.2),
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if considered for individual particles. A second modification ensures the polar order

parameter P to be a local quantity that is different from zero only inside the particles.

This allows us to interpret P in the context of cells as a coarse-grained orientation of

actin filaments, similar to [23, 24]. The new set of dynamical equations we obtain is:

∂tψ = M0∆
δFvpfc

δψ
− v0O · (ψP )

∂tP = ∆
(
α2P + C2P

3
)
−
(
α4P + C4P

3
)
− v0Oψ − βP1ψ≤0,

(3.3)

with Fvpfc given by equation (1.11) and β a parameter, which is typically larger than

the other terms entering the P equation. The set of equations (3.3) describes the model

that we call “active vacancy phase field crystal” (active VPFC) . The rest of this chapter is

devoted to show how this set of equations can be used to describe active particles.

3.1.2 Computational details

We consider a sequential finite element approach to solve the evolution equations (3.3).

An operator splitting approach is used, where the equation for ψ is discretized according

to [134] and the equation for P using a semi-implicit Euler-scheme with all nonlinear

terms linearized around the value of the last time step. Elements of polynomial degree

one are used. The resulting linear systems are solved using a direct solver UMFPACK

[135]. See also the section at the end of chapter 1 for more details on the finite element

implementation within the AMDiS framework [56, 57].

The maxima in the local one-particle density field ψ are always tracked for post-processing

and evaluation, and every maximum is interpreted as a particle (see [42] for a discussion

about the validity of this interpretation). The morphology of the particle is obtained from

a contour line of the density field, see below for details, and its velocity is computed

as the discrete time derivative of two successive maxima. The computational domain

varies for the different examples and is specified below. The initial condition for ψ is

given by the sum of the local density peaks, formula (1.14), with the center placed either

randomly or in a given position, see [40] for more details. Only for high densities a

perturbation from a hexagonal ordered state is chosen as initial condition. The P field is

set to zero initially, unless otherwise stated.
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3.2 Model Validation

The aim of this section is to show that the microscopic field-theoretical model equation

(3.3) can be used to simulate active particles and allows the recovery of known phe-

nomena. The versatility of the model thereby allows us to apply it to different physical

situations that have been previously studied using agent-based models, see e.g. [15].

We first consider the situation of one particle, followed by studying the interaction of

two particles. These simple computations allow for detailed parameter studies. We

found no qualitative difference in the results of our simulations when the parameters

C2 and C4 are set to zero. Therefore we simplify our model by restricting ourselves to

the case C2 = C4 = 0, which allows only gradients in the density field ψ to induce local

polar order1. M0 and v0 will be specified for each simulation. The other parameters

are (α2, α4, β,H, r) = (0.2, 0.1, 2, 1500,−0.9), unless otherwise specified in the figure

captions. After having shown the results for these simple systems, we shift our attention

to collective migration and other collective phenomena. We fix the number of particles

N ' 100 and show the emergence of collective migration in a system with periodic

boundary conditions. The emergence of other collective phenomena, such as vortex

formation and oscillatory motion, in confined geometries is shown as well.

3.2.1 Onset of movement and particle shape

We at first want to understand what happens in a minimal system, where a single active

particle is free to move. In particular, since we are in a regime where orientational order

is not energetically favorable (α2,4 > 0), we are interested to know if there is a critical

value for the activity v0 required for the onset of movement, as it has been observed in

[25] for active crystals and shown in figure 2.5.

In figure 3.1(a) the particle velocity is plotted as a function of the activity v0 and we can

see that for small activities (v0 < 0.5) the particle does not move at all. After a certain

threshold value v0,t ' 0.5 the particle starts to move with a constant velocity, which

approximately linearly increases for increasing v0. This is exactly the same behavior

observed in figure 2.5 (blue dots) for the collective migration speed vm of the active

crystals [25, 26].

An important new feature of our model has to do with the mobility term M0 entering

1In this case thermodynamic stability dictates α2 > 0 and α4 > 0, as discussed in chapter 2.
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(a) (b)
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(c) (d) (e) (f)

Figure 3.1: (a) Velocity of a particle as a function of the activity strength v0 for different
values of the mobility M0. At a threshold value v0,t ' 0.5 the particle starts to move. (b)
Eccentricity e of a single particle as a function of mobility. The eccentricity is defined
as e =

√
1− b2/a2 where a, b are the length of the semi-major and semi-minor axis,

respectively. For small values of M0 the particles have the form of an elongated ellipse
(c), (d) (v0 = 2,M0 = 7), whereas for larger M0 their form is similar to a circle (e),
(f) (v0 = 2,M0 = 100). (c) and (e) show the contour plot of ψ and (d) and (f) the
morphology of the particle identified by the contour line of an intermediate value of ψ
between 0.001 and 0.01, together with the P field.
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Chapter 3. A microscopic field theoretical approach for active systems

equation (3.3). M0 = 1 is used in [25]. This value would lead to strong numerical

instabilities when using the modified model equation (3.3). Larger values for M0 can

suppress this numerical instability. While the mobility does not particularly change the

particle velocity, we observe that M0 directly influences the shape of the particle: for

small (but still greater than 1) M0 the particle shows an elliptic form, whereas further

increasing M0 restores a circular shape for the particle, see figure 3.1(b). The dependency

of the particle shape on the value of M0 is shown in figure 3.1(b) for different values

of v0 above the threshold value. Two examples of the morphology are shown in figures

3.1(c-f) together with the P field.

Similar results can be obtained using the (mathematically more complicated) dry mi-

croscopic phase field model [23, 24] given by equations (2.12). In figure 3.2(a) we see

that an activity threshold is present also in this model. For small values of v0 the particle

(or, more precisely, the cell) does not move. Above the threshold value, the cell velocity

increases approximately linearly with the activity strength, as in figure 3.1(a). However,

in figure 3.2(a) the threshold value v0,t and the cell velocity are both significantly smaller

than for the active VPFC model. Finally, notice that in figure 3.2(a) the parameter c1

is negative. This is necessary to obtain an activity threshold value for the cell velocity.

Setting c1 > 0, no threshold value is observed anymore and the cell velocity increases

approximately linearly with v0 (data not shown), similarly to [26] for the active PFC

model, see also figure 2.5.

A phase field model can easily handle particle deformations. In fact, increasing the

strength of the surface tension effects, i.e. decreasing the parameter Ca in equations

(2.12), the cell shape changes from elliptical (figure 3.2(b),(c)) to spherical (panel

(d),(e)). This resembles the behavior observed in figure 3.1(c-f), which was obtained by

changing the mobility M0 in equations (3.3).

This suggests that a comparison between the phase field active polar gel model and the

active VPFC model could help to shed some light on the physical meaning of the latter,

equations (3.3). However, this requires a more detailed comparison between the two

models than the one presented here and it remains as an open question.

3.2.2 Binary collisions and elastic deformation

The study of binary collisions between particles is often used as a benchmark problem to

predict how larger systems evolve, see e.g. [23, 79]. In particular, it has been observed
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(a)
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Figure 3.2: (a) Cell velocity as a function of the activity strength v0 for the dry microscopic
phase field model. Also in this case we observe a threshold value v0,t, however the
cell velocity and v0,t are both much smaller than in figure 3.1. The parameters are
(Ca, Pa, γ, ε, c1, c4, κ, In, v1, β1, β2) = (0.05, 10, 1, 0.2,−10, 10, 1, 0, 0, 0, 0.01). (b), (c) For
Ca = 0.01 the cell shows an elliptic shape, while decreasing Ca = 0.001 the shape
becomes circular (d),(e). (b) and (d) shows the contour plot of the phase field φ, (c)
and (e) the morphology of the cell identified by the contour line of an intermediate
value of φ between −0.4 and 0.4, together with the P field. (b)-(e) Other parameters
are (Pa, γ, ε, c1, c4, κ, In, v0, v1, β1, β2) = (10, 1, 0.2, 10, 10, 1, 0, 1, 0, 0.5, 0.5). The data for
this figure have been produced from Dennis Wenzel solving equations (2.12).
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(a) (b) (c)

(d)

Figure 3.3: (a)-(b) Two particles colliding in a perfectly symmetric way for (a) v0 = 1.5
and (b) v0 = 2.5. The net effect of the collision is an alignment of the particles direction.
(c)Eccentricity of a particle as a function of time during a collision for v0 = 1.5 and
different mobility values. We observe a sudden change in the particle eccentricity at
t ' 40, corresponding to the collision time. (d) Time series of a two-particle collision for
v0 = 1.5 and M0 = 10. Notice how the form of the particles is slightly changed during
the collision. The shape of the particles is identified as a fixed contour line of ψ.

that completely inelastic collisions lead to a force that aligns the particles direction [15].

We here consider only perfectly symmetric collisions meaning that the incidence angle

and the initial velocity are the same for both particles. This is achieved by setting the

norm of the P field at time t = 0 equal to one inside the two particles and zero outside,

whereas the black arrows in figure 3.3(d) show its direction. Different particle trajectories

obtained using different mobility M0 and activity v0 are shown in figures 3.3(a) and (b).

The elastic deformation of a single particle during a collision can be seen in figure 3.3(c),

where the eccentricity is plotted as a function of time, whereas a time series of a single

collision is shown in figure 3.3(d). Collisions of deformable particles have also been

considered in agent-based models [16], with a qualitatively similar behavior. However,

the deformations in our approach strongly depend on M0 and are negligible for large

values. We therefore do not analyze this effect further and interpret the particles as being

spherical in the coming simulations, which are all done for large M0.

All results indicate the particle alignment to be not instantaneous. There is an initial
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Figure 3.4: Cell trajectories for the dry microscopic phase field model. The parameters are
(Ca, Pa, γ, ε, c1, c4, κ, In) = (0.0281, 0.1, 1, 0.2, 10, 10, 1, 0.1125) and β = β1 = β2 = 0.5
(top) and v0 = v1 = 2.25 (bottom). For β = 0 we have perfectly inelastic collision and
the collisions become slightly more elastic as β or v0 are increased. The image is taken
from [121].

Figure 3.5: Time series of a collision between two cells. Shown are the cell shapes
and the orientation fields. The parameters are (Ca, Pa, γ, ε, c1, c4, κ, In, v0, v1, β1, β2) =
(0.01, 1, 1, 0.2, 10, 10, 1, 1, 2.25, 0, 0, 0.01) The data for this figure have been produced from
Dennis Wenzel solving equations (2.12).
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oscillatory phase, whose length and magnitude depends on M0 and v0. Small activity

and large mobility lead to an almost instantaneous alignment, whereas large activity and

small mobility lead to oscillations for a certain period of time, before the particles finally

align and travel together.

Also in this case, a comparison with the dry microscopic phase field model can be made.

A time series of a single collision event is shown in figure 3.5. The alignment between

the cells is instantaneous, in agreement with the results from figure 3.3 for small activity

v0 and large mobility M0. In figure 3.4 cell trajectories of a binary collision event are

shown for different parameters. All collisions are strongly inelastic and there is an almost

instantaneous alignment. Increasing β1,2 or v0,1 the collisions become slightly more

elastic and the qualitative agreement with the active VPFC model is partially lost.

3.2.3 Collective motion in confined geometries

As already analyzed using agent-based [15, 16] and phase field models [23, 24] the

interaction of a moderate number of particles can lead to collective motion. We here

consider simulations with N ' 100 particles to recover these results. To analyze the

phenomena we define the translational order parameter φT and the rotational order

parameter φR as

φT (t) =
1

N

∣∣∣∣∣
N∑
i=1

v̂i(t)

∣∣∣∣∣ , φR(t) =
1

N

N∑
i=1

êθi(t) · v̂i(t), (3.4)

where v̂i(t) is the unit velocity vector of particle i at time t, êθi(t) = (− sin(θi(t)), cos(θi(t)))

is the unit angular direction vector of particle i at time t, and N is the number of particles.

In case of collective migration we obtain φT = 1 and rotational migration (i.e. particles

forming a vortex) leads to φR = ±1.

Collective migration

We consider a square domain with periodic boundary conditions, i.e. simulating an

infinite plane where particles are free to move without obstacles. Figure 3.6 shows the

resulting behavior. At the beginning (figure 3.6(a)) there is no specific order and particles

move towards different directions. After the first collisions take place some particles

start to align with each other and small blocks of particles, in which particles orient in

the same direction are formed (figure 3.6(b)). If these blocks collide they change their
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(a) (b) (c) (d)

Figure 3.6: (a)-(c) Snapshots of a single simulation of N ' 100 active particles in a
square with periodic boundary conditions for v0 = 1.5 and M0 = 50. After an initial
chaotic phase particles travel together in the same direction. (d) Translational order
parameter φT for different values of M0: mobility does not seem to affect the emergence
of collective migration. Each curve has been obtained as the average of 10 different
simulations started with different initial conditions and v0 = 1.5.

direction until all the particles in the system are traveling in the same direction (figure

3.6(c)). This behavior is further confirmed by the translational order parameter φT ' 1

after a certain time, see figure 3.6(d). We also observe that this migration state is not

particularly affected by the value of the mobility M0.

In figure 3.7 we show snapshots for the simulation of N ' 600 particles obtained using

the dry phase field active polar gel model on a square domain with periodic boundary

conditions. The volume fraction (i.e. the ratio between the surface occupied by the

particles and the total surface, formally defined below) is lower than in figure 3.6, but

collective migration is observed also in this case. At time t = 0 the particles are randomly

distributed and the orientation P i is set to a normalized random vector assuming a

constant value inside cell i and zero outside. Different cell colors correspond to different

orientations. At the beginning (figure 3.7(a)) cells are oriented in random direction.

Some order starts to emerge as time passes (figure 3.7(b),(c)), until we find all cells

moving collectively in the same direction (figure 3.7(d)). This is in qualitative agreement

with the results obtained using the active VPFC model, as confirmed by a translational

order parameter φT ' 1 after a certain transient time. In figure 3.8 we also see that the

behavior of φT over time is similar for the active VPFC and the dry phase field models.

This is not always the case: for both models, different parameters lead to a different

duration of the transient phase. However, collective migration is observed in both cases,

meaning that the translational order parameter φT → 1 asymptotically over time for both

models.
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(a) (b) (c) (d)

Figure 3.7: Snapshots showing the emergence of collective motion for the dry phase
field active polar gel model introduced in chapter 2. They correspond to time:
(a) t = 7, (b) t = 25, (c) t = 50, (d) t = 200. The cell shapes and the
cell average orientations are shown. The color code corresponds to the orienta-
tions of the particles. The parameters are (Ca, Pa, γ, ε, c1, c4, κ, In, v0, v1, β1, β2) =
(0.025, 1, 1, 0.15, 10, 10, 1, 0.05, 2.5, 2.5, 0.01, 0.01). Figures and simulations from Simon
Praetorius, based on [90].
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Figure 3.8: Translational order parameter φT as a function of time for the active VPFC
model (red curve) and the dry phase field active polar gel model introduced in chapter
2 (blue curve). M0 = 100 and v0 = 1.5 for the red curve, whereas the parameters for
the blue curve are as in figure 3.7. Both curves show a similar behavior over time; this
is a consequence of the parameters used for the two models. More importantly, φT → 1
asymptotically over time, meaning that collective migration is present in both models.
The data for the blue curve have been provided by Simon Praetorius and published in
[90].
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(a) (b) (c) (d)

Figure 3.9: (a)-(c) Snapshots of a vortex formation by active particles confined in a disk
for v0 = 1.5 and M0 = 60. (d) The rotational order parameter |φR| shows that after a
transient phase the particles follow a circular motion for different values of M0. Also in
this case each curve has been obtained as the average of 10 different simulations started
with different initial conditions and v0 = 1.5.

Vortex formation and oscillatory motion

We now consider a confined geometry and specify ψ = 0 and P = 0 at the boundary,

which serve as an approximation for reflecting boundary conditions. The first geometry is

a disk. Here, again, at the beginning the particles move in a chaotic way, see figure 3.9(a).

Then a vortex is formed and most of the particles follow an anticlockwise trajectory. In

the center some particles move in the opposite direction, see figure 3.9(b). Eventually

also these particles are forced to align with the rest of the system, see figure 3.9(c). This

behavior is confirmed by the rotational order parameter φR. If clockwise or anticlockwise

rotation is observed depends on the initial condition, we therefore plot |φR| instead of

φR in figure 3.9(d). Similarly to the collective migration case studied above, the mobility

M0 does not play a major role in the formation of the vortex.

Ellipses provide a more interesting geometry and confining active particles inside them

can give rise to different kind of collective phenomena, where the ellipse aspect ratio

A/B, where A,B are the length of the semi-major and semi-minor axis, respectively,

plays an important role. An ellipse with a small A/B ≤ 3 shows a similar behavior as

the disc shape. Such geometries produce once again a vortex, where the particles move

along the boundaries. More elongated shapes with A/B = 10 dramatically change the

behavior. As already shown in [15] particles move collectively along the major axis

with oscillating direction. The same behavior could be observed with our model, see

figure 3.10. All particles move in one direction until they hit the high curvature region.

This produces an impulse that propagates fast along the whole system and reverts the

direction of the particles. The whole process repeats every time a boundary is reached

and an oscillatory motion is the result. To obtain this result and ensure a constant particle
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Figure 3.10: (a)-(b) Snapshots of two different moments of the collective travel of active
particles inside an elongated ellipse with A/B = 10. Particles move together along the
major axis and change orientation when they reach a boundary. (c) There is an oscillating
behavior along the x direction. Shown are the scaled mean position and scaled mean
velocity over time together with the computed energy Fpfc. Other simulation parameters
are (v0,M0) = (1.5, 500)

number it is necessary to use a particularly high value for the mobility, M0 = 500. Figure

3.10(c) shows the scaled mean position and mean velocity of the particles together with

the computed energy Fpfc. Maxima in the energy thereby correspond to turning point

of direction, whereas minima are associated with situations, where the mean particle

velocity is constant. If the particles hit the high curvature region the particles get jammed,

which results in an increase in Fpfc, resampling the elastic effects. After a certain energy

value is reached an energy barrier can be overcome and the system starts to relax by

moving in the opposite direction.

It would be interesting to reproduce these results about active particles on confined

geometries using the dry microscopic phase field model as well. To this end, this model

must be extended to account for reflecting boundary conditions and this has not been

done yet.

Validation and numerical issues

These examples demonstrate the validity of our continuous modeling approach. All

known qualitative properties which have been shown using agent-based simulations

could be reproduced. Until now a sequential finite element approach has been used to

solve the evolution equation. For larger systems we must work in a parallel environment

with multiple processors. We adopt a block-Jacobi preconditioner [48, 136] that allows

us to use a direct solver locally. The approach is implemented again in AMDiS [56, 57]

(see chapter 1) and shows good scaling properties, which allows to consider systems with

' 15, 000 particles on the available hardware.
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3.3 Results

We again consider a system with periodic boundary conditions for which collective

migration and cluster formation is expected also for larger numbers of particles. However,

how the collective migration state is reached is not well understood and will be analyzed

in detail. We start with a system with high volume fraction. The volume fraction is defined

as φ = Nσ/|Ω|, with number of particles N , domain size |Ω| and σ the area occupied

by a single particle, which is equal to σ = π(d/2)2, with d = 4π/
√

3 the lattice distance

determined by the free energy equation (1.4). For φ > 0.6 the system shows behavior

of active crystals. Figure 3.11(a) shows various snapshots of the evolution with regions

of particles moving in the same direction color coded. The regions can be identified

as active grains, which undergo a coarsening process. The black particles determine

orientational defects. They are identified as particles where the change in orientation

from one particle to its neighbors is above a certain threshold. The number of black

particles certainly depends on the threshold value, however its decrease is independent

on the value. The data is not sufficient to identify a scaling law. However, the robustness

of the coarsening process is shown in figure 3.11(b).

If we decrease the volume fraction the behavior changes. For very low density, φ = 0.03,

figure 3.12(a) shows the tendency of the particles to group together, but the formed

clusters are very small and there remain many single particle in the system. Increasing

the density, φ = 0.12, increases the size of the formed clusters, but the average size

of a cluster remains very small if compared to the total number of particles, see figure

3.12(b). Further increasing the density, φ = 0.25, leads to the formation of large mobile

clusters and a drastic reduction of the number of particles which do not belong to any

cluster, see figure 3.12(c). This behavior is similar to the results in [78] for (quasi-)

two-dimensional colloidal suspensions of self-propelled particles. For these systems we

compute the standard deviation ∆N as a function of the mean number of particles N .

For active systems it is theoretically predicted that ∆N scale as Nα, with 0.5 < α ≤ 1

and giant number fluctuations occur if α ≈ 1, see [8].

We compute α by considering different subregions of our computational domain2. The

results for ' 600 particles are shown in figure 3.13, demonstrating an increase of α with

increasing φ, with the largest value reached being α = 0.79. This continuous increase

in α, as well as the obtained values are consistent with the behavior found in [18] for

2According to [137] we are actually calculating apparent giant fluctuations.
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Figure 3.11: (a) Snapshots of ' 1, 000 particles inside a square with periodic boundary
conditions. Different colors correspond to different orientations, particles colored in
black are those where there is a change in the orientation. (b) Decrease of the number
of orientational defects D as a function of time. Average and standard deviation of
the data for six different simulations started with different initial conditions and a
tolerance parameter equal to π/10 are shown in blue. Each of the shaded curves has been
obtained as the average of the six simulations, but using different values for the tolerance
parameter, π/8, π/9, π/10, π/11 and π/12 from top to bottom. Simulation parameters
are (v0,M0) = (2, 60)

(c)(a) (b)

Figure 3.12: Snapshots of systems having different particle density φ. Particles with the
same color belong to the same cluster. (a) For φ = 0.03 no cluster is present. (b) φ is
increased until 0.12 and some bigger clusters appear. (c) We clearly observe two big
clusters when φ = 0.25. Other simulation parameters are (v0,M0) = (1.5, 50)
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Figure 3.13: Number fluctuations for the three different values of φ shown in figure 3.12.
The dashed and dotted line correspond to the case α = 0.5 and α = 1, respectively.

moderate numbers of particles but larger volume fractions. However, there is a significant

difference, the formed clusters in [18] are stationary, our clusters are mobile, similar

to the light activated living crystals in [132]. The experimental results as well as the

simulations in [132] lead to similar values of α as ours already for smaller φ.

3.4 Summary

In summary, we extended the phase field crystal model for active crystals [25, 26],

which combines the classical phase field crystal model of Elder et al. [27, 28] with

a polar order parameter, based on a simplified Toner-Tu model, and a self-propulsion

velocity, by considering individual active particles. This can be realized by penalizing a

locally vanishing one-particle density, as considered in [38]. The resulting microscopic

field-theoretical model has been validated against known results obtained with minimal

agent-based models [15]. We found a threshold value for the activity, necessary to induce

motion for a particle. Collective motion and vortex formations have been identified, as

well as oscillatory motion, depending on the considered confinement. All these results

are in agreement with the results in [15]. We have further shown that using a dry phase

field approach, equations (2.12) [23, 24], many of these results, such as the presence

of an activity threshold for particle motion, alignment between particles during binary

collisions and collective migration, could be reproduced. For larger systems we analyzed
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the formation of a traveling crystal if prepared from an initially disordered state. The

traveling crystals emerge through a coarsening process from a multidomain texture of

domains traveling collectively in different directions. For lower volume fractions we could

identify giant number fluctuations. As theoretically predicted the standard deviation

∆N scales as Nα for active systems. The computed exponent α as a function of volume

fraction is in agreement with experimental and simulation results obtained for light

activated colloidal particles [132].

The proposed microscopic field-theoretical model can be extended from two to three spa-

tial dimensions. Another possible extension is the inclusion of hydrodynamic interactions,

using system (2.16) as a starting point [26, 40]. In [44–46] hydrodynamic interactions

within the phase field crystal model for passive systems are also considered. An extension

to binary mixtures [138] is considered in chapter 4. Other variants of the phase field

crystal model have also been used to simulate the dynamics of epithelial cell colonies

[139]. Together with efficient numerical algorithms [48] this provides the possibility to

study emerging macroscopic phenomena in active systems with microscopic details, e.g.

to validate coarse-grained approaches, as considered in [140, 141].
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4 Binary mixtures of interacting active and

passive particles

In the previous chapter we have shown a model that describes a system composed of

interacting active particles. Even more interesting are mixtures of active and passive

particles. Situations of active particles in crowded environments or passive particles in

an active bath resemble the situation in living matter more realistically and might even

shed light on the active dynamic processes within a cell [142]. Observed phenomena in

mixtures of active and passive particles are e.g. activity-induced phase-separation [143],

the formation of large defect-free crystalline domains [144], propagating interfaces

[145], laning states [146] but also a transition from diffusive to subdiffusive dynamics

[147, 148] and suppressed collective motion [149]. To understand this wide span of

phenomena is crucial to almost all applications of active systems.

In this chapter we want to extend the microscopic field-theoretical approach introduced

in chapter 3 to mixtures of active and passive particles in order to describe generic

properties of such heterogeneous systems within a continuum framework. We first

introduce the model, which is based on the binary PFC [34, 39, 42]. We validate the

approach by reproducing experimental results, as well as results obtained with agent-

based simulations. The approach is valid for the whole spectrum from highly dilute

suspensions of passive particles and interacting active particles in a dense background

of passive particles. However, we concentrate only on the extreme cases, as for the

situation with similar fractions of active and passive particles emerging structures are

hard to analyze and experimental results are missing. We perform a preliminary study of

binary collisions between active and passive particles, which provide useful predictions

to understand how larger systems may evolve. We then use the model to study the

effect of a few active particles in passive systems (active doping) [144, 150, 151], how

passive particles perturb collective migration in an active bath [147, 152–154] and in an
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intermediate regime the formation of lanes of active particles which move in opposite

direction [5, 16, 146, 155]. For the first case we observe enhanced crystallization in the

passive system, in qualitative agreement with the results of [144]. For the active bath

case we investigate how collective migration is affected by a disordered environment.

For the special case of immobile passive particles these results are in agreement with

[148, 149]. However, for mobile passive particles new phenomena and patterns emerge,

which ask for experimental validation. In the intermediate regime of similar fractions of

active and passive particles a laning state is found, which is characterized by an alignment

that is globally nematic, but polar within each lane. This is in qualitative agreement with

[146]. However, here it is also observed for spherical-like particles. Finally, we show how

this model can be extended to consider two active species or several passive species of

different sizes interacting with an active species.

4.1 Modeling binary mixtures of active and passive particles

The starting point for the derivation of the model is the microscopic field-theoretical

model for active particles introduced in chapter 3 given by the set of equations (3.3).

We have to extend this model to include passive particles as well. To this end we use

the binary PFC model used to describe binary mixtures introduced in chapter 1. The

approach that we have chosen consists in considering energies for two species - species A

and species B - plus a purely repulsive interaction energy, as given by equations (1.16)

and (1.17). The densities of both species (ψA and ψB) evolve according to the usual

conservative equation of motion (1.18).

In principle both species appearing in (1.16) could be made active. Our aim is however

to simulate mixtures of interacting active and passive particles. With this in mind we

couple only species A to the polar order parameter P. We assume FAvpfc = FBvpfc = Fvpfc

and thus e.g. equal lattice distance of the active and passive particles. The resulting

dynamical equations are:

∂ψA
∂t

= MA
0 ∆

(
δF [ψA]

δψA
+ aψAψ

2
B

)
− v0∇ · (ψAP)

∂tP = α2∆P− α4P− v0∇ψA − βP1ψA≤0

∂ψB
∂t

= MB
0 ∆

(
δF [ψB]

δψB
+ aψ2

AψB

)
,

(4.1)

which define a microscopic field-theoretical approach for binary mixtures of interacting
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active and passive particles.

4.2 Results

We solve equations (4.1) in two dimensions using the same parallel finite element

approach described in the previous chapter and at the end of chapter 1 [29, 134]. The

computational domain is a square of size L = 200 with periodic boundary conditions.

The initial condition for ψA and ψB is calculated using the sum of the local density peaks,

formula (1.14), with lattice distance d = 4π/
√

3 determined by the free energy equation

(1.4) [40], with the centers placed randomly according to a packing algorithm [156].

The P field is set to zero initially, unless otherwise specified.

As in chapter 3 each maximum in the one-particle density fields ψA and ψB is interpreted

as an active or passive particle, respectively. The diameter of the particle is defined by the

lattice distance d. We track again the particle positions xiA,B(t) and use this information

to compute the particle velocities viA,B(t) as the discrete time derivative of two successive

maxima. We define the total particle density φ = Nσ/L2, with N the total number of

particles N = NA + NB and NA,B the number of A and B particles, respectively. The

parameter σ = π(d/2)2 is the area occupied by a single particle. The fraction of active

particles present in the system is ηA = NA/N . When a small fraction of particles is active

(ηA < 0.2) we are in the regime of active doping, and analyse how a passive system is

influenced by the presence of a few active particles. Increasing the number of active

particles (ηA > 0.7) we are in the regime of an active bath and study how a few passive

particles affect an active system.

When simulating equations (4.1) we fix the following parameters, see table 4.1, unless

otherwise specified in the figure captions.

a v0 α2 α4 β H r MA
0 MB

0

200 1.5 0.2 0.1 2 1500 -0.9 70 70

Table 4.1: Model parameters to be used in the simulations.

4.2.1 A preliminary study: binary collisions between active and passive

particles

We begin with analyzing a binary collision of an active and a passive particle. Figures

4.1(a) and (b) shows the results for two different values of the mobility of the passive
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particle, MB
0 = 10 (left) and MB

0 = 70 (right). At time t = 0 a passive particle (shown as

a black disk) is placed at the origin. An active particle, shown as a fixed contour line of

ψA, is placed a few lattice lengths to the left with a homogeneous polarization directed

towards the right. For the low mobility case (MB
0 = 10, left) the active particle bounces

back after colliding with the passive particle, which does not move. This is confirmed by

a plot of the x−component of the velocity for both particles (figure 4.1(c)).

For the opposite case of high mobility (MB
0 = 70, right) the passive particle is transported

along the x−axis by the active particle (the black arrow in figure 4.1(b) represents the

trajectory of the passive particle). The x−component of the velocities shown in figure

4.1(d)) confirm this. The collision causes a slow down of the active particle, and results

in a movement of the active and the passive particle with the same velocity.
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0
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1
(c)

vAx

vBx

0 10 20 30 40 50
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0.0
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(d)
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vBx

Figure 4.1: (a), (b) Time series of a head-on collision between an active and a passive
particle for low passive mobility MB

0 = 10 (a) and high passive mobility MB
0 = 70 (b).

The active particle is shown (at different times) as a contour line of ψA and its orientation
is represented by an arrow. The blue (red) color is used to show the particle before (after)
the collision. The final position of the passive particle is shown as a black disk, whereas
in (b) the transparent black disk represents the initial condition of the passive particle
and the black line its trajectory. The active particle bounces back after the collision (a)
and transport the passive particle (b). The velocities along the x−direction of active and
passive particles are shown as a function of time in figure (c) for MB

0 = 10 and (d) for
MB

0 = 70. The yellow region represents the approximate time of the collision.

This preliminary analysis shows that for low values of the passive mobility MB
0 passive

particles can act as fixed obstacles. In this case a collision causes a change in the active

particle direction. However, for large values of MB
0 the passive particle is transported

by the active particle. The active particle does not change its direction, only its velocity

decreases. These qualitative differences will also affect larger systems, which will be
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analyzed next.

4.2.2 Active doping: how active particles can enhance crystallization

It has been shown by particle simulations [150, 151] and experimentally [144] that the

crystalline structure of passive particles is altered by the presence of active agents. More

precisely active particles generate density variations in the passive system and promote

crystallization, leading to the formation of passive clusters. To analyze these phenomena

with our microscopic field-theoretical approach we need to identify if a particle belongs

to a cluster. We follow the definition of [144] where two criteria have to be fulfilled. The

nearest neighbor distances are less than 3/2d and the coordination number is 6. We also

add to the cluster all the remaining particles that are within a distance of 3/2d from it.

Figure 4.2 shows snapshots with passive clusters for different ηA and φ. The time

evolution of the percentage of passive particles which belong to a cluster Xf is shown

in figure 4.3. For dilute systems (φ = 0.5, figure 4.2(a)) Xf slowly increases with time.

Increasing the fraction of active particles ηA leads to larger values of Xf . However,

it remains relatively low, rarely exceeding 20%, for the considered time (t = 1000).

Increasing the density (φ = 0.6, figure 4.2(b)) the system changes from a state where

no clusters are present (t = 0) to a state where up to 50% of the passive particles are

found in clusters. A maximum Xf is observed for ηA = 0.1, where Xf saturates at

t = 1000. Further increasing the number of active particles leads to a reduction of Xf .

Adding more and more active particles to systems with already existing crystalline clusters

introduces disorder, a phenomena already observed in [144]. By further increasing the

density (φ = 0.7, figure 4.2(c)) some clusters are already present for the random initial

configuration at t = 0, due to spontaneous crystallization. Active particles can be inside

these regions, thus disturbing their symmetry. This explains why the system behaves

in the opposite way as for the dilute case, with Xf decreasing as the fraction of active

particles ηA increases. Finally for φ = 0.8 the initial configuration is already almost

completely crystallized (Xf ' 1 for t = 0, figure 4.2(d)). Adding active particles partially

destroys the crystalline structure (figure 4.3(d)) and Xf decreases for increasing ηA. We

thus observe both phenomena, enhanced crystallization in dilute systems and suppressed

crystallization in dense systems.

All these results are in qualitative agreement with [144]. It is in principle possible to

perform a more quantitative analysis, comparing, for instance, the number of clusters vs
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Figure 4.2: Snapshots showing passive clusters for different total densities and fractions
of active particles φ and ηA at time t = 0 (first column) and at time t = 1000 (second
column). Particles with the same color belong to the same cluster, white disks represent
passive particles not belonging to any cluster and black disks are active particles. (a)
φ = 0.5, ηA = 0.05, (b) φ = 0.6, ηA = 0.05 (c) φ = 0.7, ηA = 0.05, (d) φ = 0.8, ηA = 0.15.
Other parameters are MA

0 = MB
0 = 50.

time. This would require a more comprehensive model than the one presented here and

it goes beyond the scope of our work.

A final observation concerns how the dynamics of the active particles is affected by the

presence of passive ones. In figure 4.4 the maximum of the particle-averaged mean

square displacement 〈∆r2(t)〉 for active particles is shown as a function of φ and ηA. No

data is shown for ηA = 0.01, as the number of active particles is too small for meaningful

averages. We observe a clear correlation between this value and the crystallization in the

system: the higher Xf , the smaller is the maximum displacement of active particles until,

for the extreme case of φ = 0.8 and ηA = 0.05, active particles are trapped inside a big

passive cluster and show a very small displacement.
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Figure 4.3: Percentage of passive particles belonging to a cluster Xf as a function of time
for different total densities and fractions of active particles φ and ηA. We observe that
for φ = 0.5 and φ = 0.6 (top row), increasing the number of active particles lead to an
increase of Xf , whereas the opposite is true for φ = 0.7 and φ = 0.8 (bottom row). Other
parameters are MA

0 = MB
0 = 50. Each curve has been obtained as the average of five

different simulations started with different initial conditions.

4.2.3 Active bath: how passive particles can suppress collective migration

In chapter 3 we have seen that inelastic collisions in systems which are composed solely

of active particles can lead to collective motion. We characterized the state of collective

migration by the translational order parameter φT = 1/NA

∣∣∣∑NA
i=1 v̂iA(t)

∣∣∣ being close to

one, with v̂iA(t) the unit velocity vector for the i−th active particle at time t. We here

analyze the stability of the state of collective migration, if passive particles are introduced

in the system. How do the total density φ, the fraction of active particles ηA and the

mobility of passive particles MB
0 affect this state?

To consider a dense system we fix φ = 0.9 and we further set ηA = 0.9. We have seen

(figure 4.1) that for low mobility MB
0 passive particles act as fixed objects. The situation

is therefore comparable with experimental studies for active colloids in disordered envi-

ronments [149], which show a suppression of collective motion. Also in our simulations

the active system does not reach a state of collective motion, as shown from the time

series of φT (figure 4.5(b)). However, the situation changes if we increase MB
0 , thus

making passive particles mobile. Figure 4.5(a) shows the average velocity ṽB of the

passive particles as a function of their mobility. Increasing MB
0 , the average passive
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Figure 4.4: Maximum of the particle-averaged mean square displacement 〈∆r2(t)〉 of
active particles moving in a binary mixture for different values of φ and ηA. Active
particles travel a longer distance when the passive particles have not crystallized, until
the extreme case of φ = 0.8, ηA = 0.05 where the maximum mean square displacement is
so low that active particles are basically trapped. Other parameters are MA

0 = MB
0 = 50.

Each point has been obtained as the average of five different simulations started with
different initial conditions.

particles velocity ṽB also increases, meaning that passive particles are transported by the

active ones, as expected. For MB
0 ≥ 50 a state of collective migration is reached (figure

4.5(b)), even though the time required to reach it is larger than in the homogeneous case

ηA = 1 (no passive particles present).

We now fix the mobility MB
0 = 70 and vary φ and ηA. We reduce φ down to 0.7, a limit

for which a state of collective migration would still be reached in a homogeneous active

system (ηA = 1), as seen from the purple lines in figure 4.6. For φ = 0.9 a state of

collective migration is reached for ηA = 0.9 but with a longer transient phase than for

the homogeneous case (green line in figure 4.6(c)). For ηA = 0.8 we already see a small

perturbation from the unit value for φT and for ηA = 0.7 collective migration is no longer

reached. We here observe the accumulation of passive particles in certain regions, see

also figure 4.7(d). This hinders the active particles from following a straight trajectory

and thus the formation of collective migration. Things change by reducing the total

density to φ = 0.8. The state of collective migration is not reached, independently of the

value of ηA (figure 4.6(b)). However, for ηA = 0.9, green curve in figure 4.6(b), a new

state is formed, where the order parameter φT is at least locally close to one. This new

state is discussed below and can be seen in the snapshots in figures 4.7(a) and (b). For
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Figure 4.5: (a) Average velocity ṽB of passive particles as a function of their mobility in
an active bath with φ = 0.9, ηA = 0.9. ṽB increases almost linearly for small MB

0 until it
starts to saturate at around MB

0 = 70. (b) Translational order parameter φT as a function
of time for different mobility MB

0 . For small values of MB
0 there is no collective migration,

for intermediate values this state is reached quite fast, whereas for high mobility the
transient phase to reach collective migration increases. However simulations are not so
numerically stable for small and intermediate values of the mobility and this is why we
choose MB

0 = 70 for the analysis in figure 4.6. MA
0 = 100 for both cases. The data have

been obtained as the average of ten different simulations started with different initial
conditions.
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Figure 4.6: Order parameter φT as a function of time for different values of φ and ηA.
The purple curve corresponds to the case ηA = 1, i.e. no passive particles present. We see
that in all other cases the state of collective migration is reached later (longer transient
phase) or not reached at all, especially for lower ηA (red curves). Other parameters are
MA

0 = 100 and MB
0 = 70. The data have been obtained as the average of ten different

simulations started with different initial conditions.

φ = 0.7 (figure 4.6(a)) a decrease in ηA leads to a decrease of φT . In this situation there

is enough empty space in the system to allow active particles to change their trajectories

when interacting with passive ones. This causes a perturbation that gets bigger as the
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number of passive particles increase, leading to a decrease of φT .

Figure 4.7: The color code corresponds to the orientation of the single particle velocity
and black disks represent passive particles. (a) Snapshot of a laning state, with two
macro regions of active particles having exactly opposite orientation. This state can last
for a long time thanks to the presence of passive particles at the boundary between the
two regions. (b) Another laning state. Here, less passive particles are accumulated at
the boundary between the moving active regions. This situation is less stable and, at a
later time (c), active particles all move in the same direction, whereas passive ones form
chains, which persist over longer periods of time. (d) Passive particles forming clusters in
an active bath. (a) - (c) regime φ = 0.8, ηA = 0.9, (d) regime φ = 0.9, ηA = 0.7.

A more detailed investigation of the intermediate regime with φ = 0.8 and ηA = 0.9

(figure 4.7(a) and (b)) shows an intermediate state with two lanes of active particles

moving in opposite direction. The lanes are separated by passive particles (black disks),

that prevent the alignment of the collectively migrating domains. It is more stable in

figure 4.7(a), persisting for the whole simulation time, and less stable in figure 4.7(b),

where the alignment of passive particles will be destroyed after a while and a transition

to collective migration follows. This state is known as laning state and it is characterized

by an alignment that is globally nematic, but polar within each lane. It has already

been observed for self-propelled rods with an effective nematic alignment [5, 155],

soft deformable self-propelled particles with high aspect ratio [16] and a mixture of

self-propelled and passive rods interacting solely through excluded volume interactions

[146]. It is to our knowledge the first time that this laning state is observed in a mixture
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of interacting spherical-like particles whose velocity alignment would be globally polar in

the absence of passive particles, see figure 3.6 [29].

Even if a state of pure collective migration is reached, the passive particles are not

randomly distributed, but are transported by the active particles, filling the holes between

them. For φ ' 0.8 the packing of the collectively migrating active particles allows the

passive particles to arrange in the free space. They form chain-like structures (figure

4.7(c)) which persist over longer periods of time and are transported by the active

particles. If the number of passive particles is increased ηA = 0.7 a clustering of passive

particles within the active bath can be observed, see figure 4.7(d). These new states

and patterns are characteristic for binary mixtures and should be explored further, both

numerically and experimentally.

4.3 Extensions

Several possible extensions are possible starting from the dynamical equations to describe

binary mixtures of interacting active and passive particles, system (4.1). We here show

the dynamical equations for two of these, namely how to make both species active and

how to couple several passive species with different lattice distance to an active species.

We will however not show any results for these cases in this thesis. An extension to

include a different interaction potential than the repulsive one given by equation (1.17)

is also possible, but will not be considered here.

4.3.1 Both species active

First, we consider the case where we have two different species of active particles

described by densities ψA and ψB with two different orientation fields PA and PB.

Allowing for two different lattice distances dqi = 4π√
3qi

, i = A,B, the dynamical equations
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for such a system read:

∂ψA
∂t

= MA
0 ∆

δF (qa)
vpfc [ψA]

δψA
+ aψAψ

2
B

− vA0 ∇ · (ψAPA)

∂tPA = αA2 ∆PA − αA4 PA − vA0 ∇ψA − βPA1ψA≤0

∂ψB
∂t

= MB
0 ∆

δF (qb)
vpfc[ψB]

δψB
+ aψ2

AψB

− vB0 ∇ · (ψBPB)

∂tPB = αB2 ∆PB − αB4 PB − vB0 ∇ψB − βPB1ψB≤0,

(4.2)

where the superscripts in the coefficients refer to the different species and F (qi)
vpfc =

F (qi)
pfc +Fpenalty, with F (qi)

pfc and Fpenalty given by equations (1.20) and (1.10), respectively.

4.3.2 Several species

We now consider the case of N different species. The particle radius of species i is given

by rqi = 2π√
3qi

and they interact repulsively via an extension of the interaction energy

(1.17):

F1,...,N
int [ψ1, . . . , ψN ] = a

N∏
i=1

ψ2
i . (4.3)

We make species 1 active by coupling it to a polarization field P , while species i = 2..N

remain passive. We then obtain the following system of N + 1 dynamical equations:

∂ψ1

∂t
= M1

0 ∆

δF (q1)
vpfc[ψ1]

δψ1
+ aψ1

N∏
j=2

ψ2
j

− v0∇ · (ψ1P)

∂tP = α2∆P− α4P− v0∇ψ1 − βP1ψ1≤0

∂ψi
∂t

= M i
0∆

δF (qi)
vpfc[ψi]

δψi
+ aψi

N∏
j=1
j 6=i

ψ2
j

 , i = 2..N,

(4.4)

where again the superscripts in the coefficients refer to the different species and F (qi)
vpfc =

F (qi)
pfc +Fpenalty, with F (qi)

pfc and Fpenalty given by equations (1.20) and (1.10), respectively.
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4.4 Summary

In summary, our microscopic field-theoretical approach for mixtures of interacting active

and passive particles has been used to investigate a wide spectrum from systems with

φ < 0.7 to dense systems φ > 0.7 with a relatively low fraction of active particles ηA < 0.2

(active doping) and a relatively high fraction ηA > 0.7 (active bath), respectively. We

have demonstrated with one and the same model a variety of known phenomena, such

as enhanced crystallization via active doping [144, 150] and suppressed crystallization

in dense systems [144]. We also analyzed the limits of collective migration, which for

the special case of immobile passive particles qualitatively reproduce the results in [149].

Within the experiments in [144] and in our simulations the suppression of collective

migration sensitively depends on the fraction of immobile passive particles. Within the

experimentally less explored state of mobile passive particles we found new phenomena.

For fractions of passive particles, for which collective migration is suppressed if the

passive particles are immobile, collective motion is still possible if the mobility of these

particles is large enough. But there are also intermediate regimes, known as laning states,

where lanes of active particles moving in opposite direction are separated by boundary

layers of passive ones. We further found chains of passive particles and clusters which

persist for a relatively long time. A rigorous classification of these states remains open

and should be addressed together with experimental investigations.

Finally, we have shown how the approach can easily be modified to consider more than

two species with different sizes and two active species with different self-propulsion

velocities and orientation fields. This makes the active binary VPFC model, system (4.1),

a generic tool to study active systems in complex environments. While the approach is

unable to reach system sizes possible with classical agent-based methods, it provides a

minimal approach for a more detailed microscopic description of binary mixtures, which

does not need any explicit alignment rule, accounts for processes within the particle and

allows for small particle deformations. Another step towards an even more microscopic

description would be to extend the dry phase field model, equations 2.12, to include a

passive species as well. A comparison between this model and the active binary VPFC

one presented in this chapter would then be possible, similarly to what we have done for

the single species case in chapter 3.
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When active systems are confined on curved surfaces, topological constraints strongly

influence the emerging spatiotemporal patterns. Using these topological constraints

to guide collective cell behavior might be a key in morphogenesis [82] and active

nematic films on surfaces have been proposed as a promising road to engineer synthetic

materials that mimic living organisms [30]. However, the complex dynamics of such

topological active systems remains wildly unexplored. It is therefore tempting to extend

the microscopic field-theoretical model introduced in chapter 3 to curved surfaces in

order to shed some light on these phenomena. In chapter 2 we have seen how this has

been done for crystals of self-propelled colloidal particles on a sphere [90], equations

(2.20). We have also seen that an extension of the microscopic field-theoretical model of

chapter 3 to active nematics on curved surfaces would involve the coupling of a nematic

order tensor Q [91] to the PFC model and this is not trivial. Given these difficulties

we want to introduce a simpler model in order to perform a preliminary study of these

systems and thus understand them better. For this reason, in this chapter we introduce

an agent-based model to describe dry active nematics on curved surfaces [84].

First, we shortly describe how defects behave in active nematics and then we introduce

an agent-based model for active particles on curved surfaces. Thanks to the flexibility of

the model, we show that it can be used to describe active particles with different kind of

symmetries (such as nematic or polar). We use this model to study the spatiotemporal

patterns that emerge when an active nematic film is topologically constraint. These

topological constraints allow to control the nonequilibrium dynamics of the active system.

We consider ellipsoidal shapes for which the resulting defects are 1/2 disclinations and

analyze the relation between their location and dynamics and local geometric properties

of the ellipsoid. We highlight two dynamic modes: a tunable periodic state that oscillates
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between two defect configurations on a spherical shape and a tunable rotating state for

oblate spheroids. We further demonstrate the relation between defects and high Gaussian

curvature and umbilical points and point out limits for a coarse-grained description of

defects as self-propelled particles. Finally, we show how the same model can be used to

describe nematic and polar active particles on toroidal surfaces. For the nematic case,

we observe a localization of positive and negative defects on regions of positive and

negative curvature, respectively, as experimentally found in [83]. An oscillating state,

where particles rotate along the toroidal direction of the surface, regularly changing

direction, is observed for the polar case.

5.1 Defect dynamics in active nematics

As in passive systems the mathematical Poincaré-Hopf theorem forces topological defects

to be present in a topologically constraint active nematic film. On a sphere this leads to an

equilibrium defect configuration with four +1/2 disclinations arranged as a tetrahedron

[157–159], see figure 2.1. The disclinations repel each other and this arrangement

maximizes their distance. In active systems unbalanced stresses drive this configuration

out of equilibrium. But in contrast to planar active nematics with continuous creation

and annihilation of defects [160–163] the creation of additional defect pairs can be

suppressed on curved surfaces, which is demonstrated in [30, 86] for an active nematic

film of microtubules and molecular motors, encapsulated within a spherical lipid vesicle.

This provides an unique way to study the dynamics of the four defects in a controlled

manner and leads to the discovery of a tunable periodic state that oscillates between

the tetrahedral and a planar defect configuration. We confirm this finding by computer

simulations, see figure 5.2. On a surface with non-constant Gaussian curvature local

geometric properties influence the position of the defects and thus can be used to control

defect dynamics.

Within a coarse-grained model +1/2 disclinations in planar active nematic films can

be effectively described by self-propelled particles with a velocity proportional to the

activity [164]. In [30] this relation is extended to spherical nematics. Four self-propelled

particles on a sphere also oscillate between the planar and tetrahedral configuration.

Both descriptions can be quantitatively linked to each other, but also differences can be

pointed out, which become more evident for more general surfaces.
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5.2 A model for active particles on curved surfaces

For active systems in flat geometries various theoretical descriptions have been proposed,

see e.g. [1, 59]. One of the most studied approaches are Vicsek-like models [14]. We

consider an extension of these models which includes excluded volume [18, 165–167]

and classify systems by the head-tail symmetry of their particles in polar or nematic. We

do not include any noise term in our model and also do not consider hydrodynamic

interactions.

We consider N active particles of mass mi = 1, which are constrained to move on a

surface algebraically described by g(q) = 0, with particle positions q = (q1, . . . ,qN ).

Newton’s equations of motion (EOM) with holonomic constraint g(q) read:

d

dt
q = v,

d

dt
v = F−G (q)T λ, g (q) = 0, (5.1)

with forces F = (F1, . . . ,FN ) and velocities v = (v1, . . . ,vN ). λ = (λ1, . . . , λN ) are the

Lagrange multipliers and G(q) = ∇qg(q) is the Jacobian of g(q). The force Fi can be

written as:

Fi = −γvi +
N∑
j=1

Fij + Fac
i , (5.2)

where γ is the translational friction coefficient, Fac
i the active force acting on the i-

th particle and Fij the pair-interaction force between the i-th and the j-th particles.

Additionally, every particle has an internal degree of freedom, namely its orientation ni.

Denoting the angular velocity by ωi we have the following EOM for the orientational

dynamics:

d

dt
ni = ωi × ni,

d

dt
ωi = −γaωi + Ti (q,n) , (5.3)

where γa is the rotational friction coefficient and Ti(q,n) is the torque acting on the i-th

particle, with n = (n1, . . . ,nN ). Depending on the specific form for the active force Fac
i ,

the pair-interaction force Fij , the torque Ti(q,n) and the holonomic constraint g(q) we

will be able to describe polar and nematic active systems on various surfaces.
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5.2.1 Active polar particles

For active polar particles on a sphere of radius R we specify [87] Fac
i = v0ni with

a constant self-propulsion velocity v0. The particles are spheres of radius σ with a

short-range repulsion between them. The pair-interaction force is therefore:

Fij =

k(2σ − qgij)
qi−qj

qij
, for qgij < 2σ

0, otherwise,
(5.4)

where k is an elastic constant, qij = |qi − qj | the euclidean distance and qgij = |qi − qj |g
the geodesic distance. Parallel orientations between neighboring particles are favored and

therefore we use the aligning torque Ti(q,n) = −J∑j∈U(i) (ni × nj), with the strength

J > 0 and the first shell of neighbors of particle i U(i), identified as all the particles within

a cutoff radius of 2.4σ from ri. The holonomic constraint for a sphere of radius R reads

g(qi) = q2
i,1 + q2

i,2 + q2
i,3 −R2, with qi = (qi,1, qi,2, qi,3) ∈ R3. This approach can be used

to reproduce the results in [87] in which the overdamped limit, the euclidean distance

instead of the geodesic distance and an additional noise term are considered. We use it at

the end of the chapter to show simulations of active polar particles on a toroidal geometry.

In this case, the simulation parameters are (J, k, σ, γ, γa, v0) = (5, 3, 2, 0.1, 2, 0.05).

5.2.2 Active nematic particles

We use the tensor order parameter Qjαβ = 1
2

(
3njαn

j
β − δαβ

)
to describe active nematic

particles, where the upper index corresponds to the particles and the lower indices

represent the components x, y, z. The active force does not distinguish ’head from tail’

and it thus has the form:

Fac
i = −v0

∑
j∈U(i)

Qj qi − qj
q2
ij

. (5.5)

The torque reflects the fact that both parallel and anti-parallel configurations are favored.

It has the form:

Ti = J
∑
j∈U(i)

((ni · nj) (ni × nj)) . (5.6)

The pair-interaction force Fij and the holonomic constraint g(q) are the same as in the

active polar particles case. The simulation parameters for this case are (J, k, σ, γ, γa, v0) =
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(10, 3, 2, 0.1, 2.5, 0.7) unless otherwise specified.

5.2.3 Coarse-grained defect description

In the coarse-grained defects description by active polar particles [30, 164] the elastic

energy between defects is E ∼ log(qgij), where qgij is the geodesic distance between

the defects. The pair-interaction force is therefore Fij = k
qgij

qi−qj

qij
, which is no longer

short-ranged. Defects align anti-parallel to each other and the restoring torque strength is

Ti = J
∑

j∈U(i) cot(
θij
2 ), where θij is the angle between ni and nj [30]. The vector form

for the torque can be written in terms of the orientations as:

Ti = J
∑
j∈U(i)

(1 + ni · nj)
ni × nj
|ni × nj |2

(5.7)

Finally the defects are treated as self-propelled particles and the active force is Fac
i = v0ni.

The simulation parameters for this case are (J, k, γ, γa, v0) = (3, 4, 0.1, 2.5, 0.11) unless

otherwise specified. A similar model can also be derived by rigorous perturbation expan-

sion [168]. It differs in 2d from [164] by a velocity-dependent factor. Computational

studies on curved surfaces indicate that also with this model the complex defect dynamics

on surfaces of non-constant Gaussian curvature can not be obtained.

5.2.4 Numerical methods

Equations (5.1) have been numerically solved using RATTLE discretization [169]. The

equations for the orientational dynamic, equations (5.3), have been first solved uncon-

strained with the torque Ti projected onto the normal plane of the surface at point ri.

Afterwards the orientation ni has been projected onto the tangent plane of the surface at

point ri and the angular velocity ωi takes the direction of the normal to the surface at

point ri.

We fix the number of particles N = 1000 and the volume fraction φ ' 1 (defined as the

ratio of the area occupied by the particles and the total surface area, i.e. φ = Nπσ2/A).

The surface area for the sphere is equal to A = 4πR2, with R = 31.6. The ellipsoid

parameters a, b, c have been chosen such that the surface area is equivalent to the surface

area of the sphere and the aspect ratio is respected. The nematic order parameter P is

defined as the weighted local average of the tensor order parameter Q with respect to
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the weight wij = q−1
ij . The polar order parameter ω is defined as:

ωi =
1∑
j wij

∑
j

wij
2
ni · nj (5.8)

where the sum is over the nearest neighbors and wij = q−1
ij . Defects are calculated as the

local center of mass for regions where the local order parameter Pi is smaller then 0.45

(some corrections were required for regions of high Gaussian curvature, due to strong

distortion of the director field).

The simulation code is implemented in C++, using the GeographicLib library [170] for

the calculation of the geodesic distances. However, for non-spheroidal ellipsoids the

euclidean distance has been used. This approximation can be justified by the short-range

interactions. Data have been analyzed using Python, Ovito [171] and Paraview.

5.2.5 Geometric properties

Besides a sphere we consider two classes of ellipsoidal surfaces: (i) spheroidal and (ii)

non-spheroidal. These ellipsoids are characterized by their major axis a, b and c and have

non-constant Gaussian curvature

K =
a2b6c6

(c4b4 + c4(a2 − b2)y2 + b4(a2 − c2)z2)2 . (5.9)

For spheroidal ellipsoids two of these values are equal. The algebraic description reads

g(qi) =
q2i,1
a2

+
q2i,2
b2

+
q2i,3
c2
− 1 = 0. An umbilical point is a point where the maximum and

minimum curvatures coincide. At an umbilical point, the surface is ”locally spherical”.

These points are found at(
±a
√
a2 − b2
a2 − c2

, 0,±c
√
b2 − c2

a2 − c2

)T
(5.10)

In figure 5.1 we show three different ellipsoids, where umbilical points are highlighted

and the color coding corresponds to the Gaussian curvature K.
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0

0.005

0.009 0.01

0.006

0 0

0.03

0.05a) b) c)

Figure 5.1: Example of an ellipsoid with major axis (a) a/b = 1 and a/c = 4 (oblate
spheroid), (b) a/b = 1.25 and a/c = 4 (non-spheroidal ellipsoid) and (c) a/b = 1 and
a/c = 0.25 (prolate spheroid). The parameters a, b, c have been chosen such that the
surface area of the ellipsoids is equivalent to the surface area of a sphere with radius
R = 31.6. Umbilical points are shown as points and the Gaussian curvature K is color
coded.

5.3 Active nematics on closed surfaces

Models similar to the agent-based approach given in equations (5.1) and (5.3) have

been formulated for active polar particles on a sphere [87] and on ellipsoidal surfaces

[88]. In these situations a robust rotating-band structure around the waist, with two +1

defects at the poles, is found on a sphere. On an ellipsoid the location of the defects

is linked to local geometric properties, similar to vortices in surface fluids [172–175].

The defects are related to the Gaussian curvature and to the umbilical points of the

surface. For spheroidal ellipsoids there are two umbilical points, which locate the two

+1 defects. This configuration is more stable for prolate spheroids, where the umbilical

points are at the points of maximal Gaussian curvature at the poles and less stable for

oblate spheroids, where the umbilical points and the maximum in Gaussian curvature

are separated. As in the spherical case a rotating-band structure is formed, with possible

sub-bands which counter rotate depending on the initial condition. New dynamical

features are found for non-spherical ellipsoids. They have four umbilical points. For

lower velocities the defects encircle pairs of umbilical points and for larger velocities the

defects are found at the high Gaussian curvature regions between each pair of umbilical

points. With this richness in dynamics found for active polar particles on non-constant

Gaussian curvature surfaces, we expect similar behavior for active nematic particles. We

perform a systematic investigation of the impact of non-constant Gaussian curvature

constraints on the emergence of complex patterns and oscillations. We also ask up to

which complexity of the geometry the dynamics of the four 1/2 disclinations can be

effectively described by self-propelled polar particles.
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5.3.1 Sphere

Before answering the questions above, we first analyze the spherical case in more detail.

We track the oscillations between the planar and tetrahedral defect configurations on

a spherical vesicle, figure 5.2, and the positions of the defects, as explained in the

“numerical methods” section. To track the oscillations between the planar and tetrahedral

configurations we calculate the average angle 〈α〉 = 1
6

∑
i<j αij , where αij denotes

the angle between the radii connecting the center of the sphere to defects i and j.

Computing the power spectrum from the time series of the average angle 〈α〉, we obtain

the frequency for these oscillations, which linearly depends on the activity. The same

results, but with a small offset and a different slope, are obtained for the coarse-grained

description by self-propelled particles, see figure 5.3(a) and (c). As a consequence, for

each activity in the nematic film a self-propulsion velocity can be determined in the

coarse-grained description, which resamples the frequency of the planar-tetrahedral

defect oscillation. Differences between both descriptions are found if we compare the

trajectories of the defects and self-propelled particles. Within the considered time interval

the 1/2 disclinations are locally confined, with each defect only covering a part of the

vesicle. This is in contrast to the trajectories of the self-propelled particles, which rotate

within a band structure leaving parts of the vesicle uncovered, see figure 5.3(b). The

experimental defect trajectories in [30] differ from both descriptions: they are global,

covering the whole vesicle. The discrepancy might be a consequence of the considered

short-range interactions in our model for dry active nematics.

5.3.2 Spheroids

We next consider spheroidal ellipsoids. They are characterized by the aspect ratio a/c

and a = b, with a, b and c the length of the major axes. Due to the symmetry all

geometric properties can be characterized with respect to the polar axis. As the geometry

is topologically equivalent to a sphere we expect for passive systems again a minimal

energy configuration with four 1/2 disclinations. They still try to maximize their distance,

but are now also influenced by local geometric properties. The 1/2 disclinations tend

to accumulate in regions of high Gaussian curvature [176, 177]. Computer simulations

for thin passive nematic shells have shown that for prolate ellipsoids pairs of defects are

located at opposite ends close to the poles. The defects in each pair arrange at opposite

sides of the surface and tend to align perpendicular to the pair at the other pole [176].

As the distance between the defects is no longer maximized, the geometric effect seems
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a)

b)

Figure 5.2: (a) Top: Kymograph showing the time evolution of the angles αij . Bottom:
Oscillation of the average angle 〈α〉. The blue and the green lines correspond to the
planar (〈α〉 = 120◦) and tetrahedral (〈α〉 = 109, 5◦) defect configuration. (b) Snapshots
showing the planar and tetrahedral defect configuration within a simulation of 1.000
particles (the four 1/2 disclinations are highlighted, the director field is shown - black
lines - and the color coding corresponds to the nematic order parameter P , with minima
in the four defects). The results are in excellent agreement with the experimental results
in [30]

to dominate the repulsion in this case. For oblate ellipsoids the 1/2 disclinations are

found near the waist, where the Gaussian curvature is largest. Again two pairs of defects

are found, one on each side. They repel each other and are mutually perpendicular to the

other pair, leading to an alternating ring of 1/2 disclinations, one above and one below

the waist. This behavior seems to be independent of the film thickness [176], we have

confirmed this behavior by our surface model without activity.

For active systems we observe again oscillatory behavior, see figure 5.4. For prolate
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a) b)

c)

Figure 5.3: (a) Top: Oscillation of the average angle 〈α〉 from figure 5.2(a), Middle:
The power spectrum of 〈α〉 obtained by using the Fast Fourier Transform (FFT), the
peak is associated with the planar-tetrahedral oscillations, Bottom: Oscillation of the
average angle 〈α〉 for four self-propelled particles. (b) Top: Trajectories of the four 1/2
disclinations, each color corresponds to one defect, shown on the sphere and using the
Gall-Peters projection, Bottom: same as Top but for the four self-propelled particles. (c)
Frequency for the planar-tetrahedral oscillation corresponding to the peak in the power
spectrum as a function of the activity for various realizations (blue curve). The trajectories
of the four self-propelled particles show a perfect planar-tetrahedral oscillation, the
frequency is obtained as the inverse of the distance between consecutive maxima and
shown as a function of the self-propulsion velocity (red curve).

82



5.3. Active nematics on closed surfaces

spheroids (a/c < 1) only two 1/2 disclinations are located at the poles, whereas the

other two oscillate around the waist. The oscillations are very noisy and can not be tuned

by the activity. Even if the distance between the two 1/2 disclinations at the waist is

not optimal the average distance between all four defects is larger than in the passive

case. While the 1/2 disclinations are still attracted by the high curvature regions at the

poles, the active forces push one of the defects away leading to the observed metastable

configuration. Within a transition zone (a/c ≈ 1) we observe similar behavior as in the

spherical case (a/c = 1) without any defect localization. The behavior changes for oblate

spheroids (a/c > 1), where all four 1/2 disclinations are along the waist, maintaining a

maximal distance to each other. This behavior is similar to the passive system, but the

defects now oscillate between both sides. The frequency of the alternating oscillations

above and below the waist can be extracted for various activities. However, a clear

functional dependency on the activity could not be found. If the aspect ratio is further

increased the situation changes to pairs of 1/2 disclinations which rotate around the

umbilical points at the poles. The defects are no longer located at positions of maximal

Gaussian curvature. The high curvature value at the waist creates a distortion of the

nematic film, which can be seen from the nematic order parameter. It somehow serves as

a barrier for the 1/2 disclinations preventing them from crossing the waist. The rotation

is a consequence of the activity and the unfavorable short distance with respect to each

other. The frequency of the rotation depends on the activity and can be tuned, see figure

5.5. Also the transition to this rotating state depends on the strength of the activity. The

stronger the activity, the longer it is possible for the defects to cross the barrier at the

waist. A tendency to locate the defects away from the high Gaussian curvature waist can

also be seen for the passive case.

The four different regimes are shown in figure 5.6 using the average height h of the

defects along the polar axis as the order parameter η = 〈|h|〉. We have η = 1 if all defects

are at the poles, η = 0 if they are at the waist and η = 0.5 if they are homogeneously

distributed along the polar axis.

Within the coarse-grained description by self-propelled polar particles, using the cor-

responding self-propulsion velocity according to figure 5.3, we obtain a qualitatively

different behavior. Within the considered parameter regime, the values for η are inde-

pendent of the self-propulsion velocity. For aspect ratios a/c < 0.5 the particles rotate

on closed trajectories, well separated from each other at approximately equal distance

along the polar axis. The transition zone with sphere-like behavior is more extended than
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Figure 5.4: (a) Snapshot showing the defect configuration within a simulation of 1.000
particles on a prolate spheroid with a/c = 0.25 (the four 1/2 disclinations are highlighted,
the director field - black lines - is shown and the color coding corresponds to the nematic
order parameter P , with minima in the defects). In addition the trajectories of the four
1/2 disclinations are shown (each color corresponds to one defect). The height hi for
each defect with respect to the waist is also shown as a function of time. (b) same as (a)
for a oblate spheroid with a/c = 2. The oscillations of the four defects have the same
frequency and alternate with respect to each other.

for the nematic defects. For 0.5 < a/c < 2 a band structure is formed around the waist,

which shrinks with increasing aspect ratio. For a/c > 2 all particles are positioned at the

waist, rotating in one direction and maintaining their distance. The regime with pairwise

rotating defects around the umbilical points could not be found within the coarse-grained

model.

5.3.3 Non-spherical ellipsoids

Non-spherical ellipsoids, which are characterized by a 6= b, a 6= c and b 6= c, have four

umbilical points. They are either prolate-like or oblate-like but in any case have two

distinct points of maximal Gaussian curvature. We thus analyze the distance of the

84



5.3. Active nematics on closed surfaces

0.4

0.7

1

0.4

0.7

1

a) b)

c)

Figure 5.5: (a) Snapshots from above and below showing the defect configuration within
a simulation with 1.000 particles on an oblate spheroid with a/c = 6 (the four 1/2
disclinations are highlighted, the director field - black lines - is shown and the color
coding corresponds to the nematic order parameter P , with minima in the defects). (b)
Oscillations of the angle measuring the rotation around the umbilical points (top and
bottom) and (c) frequency of the oscillation as a function of activity for two different
aspect ratios.

four 1/2 disclinations with respect to the umbilical points 〈DDU〉 and the points of

maximal Gaussian curvature 〈DDG〉 using the average geodesic distances. Figure 5.7,

which is inspired by [88], shows the distances as a function of the aspect ratios a/b and

a/c. Spheroids are also included, the first column shows the previous results for oblate

and the diagonal for prolate geometries. Each row in between thus corresponds to a

transition from oblate-like to prolate-like geometries. In most cases the 1/2 disclinations

are closer to the high Gaussian curvature points than to the umbilical points, with the

only exception for oblate-like ellipsoids with a large aspect ration a/c ≥ 4. This leads

to the conclusion that 1/2 disclinations tend to be attracted by points of high Gaussian

curvature.

85



Chapter 5. Dry active nematics on curved surfaces

Figure 5.6: Phase diagram for patterns and oscillations on spheroidal ellipsoids for 1/2
disclinations and self-propelled particles. The results for the coarse-grained description
by self-propelled particles are independent of the activity in the corresponding regime to
the considered velocities v0. From left to right we have (blue) the situation for prolate
shapes with location of two defects at the poles, leading to η > 0.5, (green) spherical like
shapes with no clear location of the defects, leading to η ≈ 0.5, (yellow) oblate shapes
with location of the defects along the waist, leading to η < 0.5, (red) for larger a/c we
obtain a phase transition towards the rotating state, with the defects located around the
poles, leading to η > 0.5. The transition towards this state depends on the activity.

5.3.4 Torus

We now want to see the effects that changing topology has on the system. For this reason,

we constraint the self-propelled particles to a toroidal surface of major and minor radius

R = 21.8 and r = 14.6, respectively. These parameters correspond to a surface area

of the torus that is equivalent to the surface area of the spheroids considered above.

The number of particles is also in this case N ' 1000. The holonomic constraint in

equation (5.1) in this case reads: g(qi) =
(√

q2
i,1 + q2

i,2 −R
)2

+ q2
i,3 − r2. The toroidal

surface differs from the spheroids previously considered because it has a genus g(S) = 1.

Broadly speaking, the genus of a surface is the number of holes it has. All the spheroids

considered above have therefore a genus equal to zero. It is in this respect that we can

say that the torus has a different topology. This fact has an important consequence for

the defects in the orientation fields. In fact, according to the Poincaré-Hopf theorem, it it
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Figure 5.7: Average geodesic distance of 1/2 disclinations to the umbilical points 〈DDU〉
(left) and to the points of maximal Gaussian curvature 〈DDG〉 (right) for non-spheroidal
and spheroidal (first column - oblate and diagonal - prolate) ellipsoids of different aspect
ratio. Only for the extreme case of a/c = 4, 6 and a/b = 1.1 the disclinations are closer to
the umbilical points. Also in these cases a rotating state as in figure 5.5 can be observed,
which however is not as regular. In all other situations the disclinations are closer to the
points of maximal Gaussian curvature.

possible to cover a surface with genus equal to one without generating any defects. In

[83], it has however being experimentally shown that in active nematic toroids there are

pairs of defects of opposite sign (i.e. +1/2 and −1/2 defects) that unbind and segregate

in regions of opposite Gaussian curvature. We simulated active nematic particles on a

toroidal surface and observed if defects of opposite sign arise. In figure 5.8 we show two

snapshots of the resulting simulation, taken at different time. In both cases, a positive

(yellow circle) and a negative (green triangle) defects are found, located in the regions

of positive and negative Gaussian curvature, respectively. We observe that this effect is

still present for different major and minor radius R and r. A more quantitative analysis is

needed in order to address questions such as the role of the activity strength, the number

of defects pair present in the system and a relation between the exact defect position and

the value of the Gaussian curvature. However, figure 5.8 already shows that numerical

simulations of active nematics on a toroidal surface obtained using equations (5.1) and

(5.3) are in agreement with the experimental data observed in [83].

Even more interesting is the case of polar active particles on a toroidal geometry, shown

in figure 5.9. Numerical simulations show that the polar particles rotate along the

toroidal direction in a counter-clockwise direction (panel a). They then collectively
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Figure 5.8: Snapshots taken at different time showing a simulation of 1.000 active
nematic particles on a toroidal geometry with R = 21.8 and r = 14.6. The color coding
corresponds to the nematic order parameter P and the black lines represents the director
field. +1/2 (−1/2) defects are shown as yellow circle (green triangle).
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Figure 5.9: Snapshots taken at different time showing a simulation of 1.000 active polar
particles on a toroidal geometry with R = 21.8 and r = 14.6. The particles rotate along
the toroidal direction in a counter-clockwise (a) or clockwise (c) direction. They shortly
align along the poloidal direction when collectively changing direction (b). The color
coding corresponds to the polar order parameter ω and the black arrows represent the
particle directions.

change direction by orienting themselves along the poloidal direction (panel b), before

starting rotating again along the toroidal direction in a clockwise direction (panel c).

This cycle repeats itself over and over.

In summary, in [83] the localization of positive and negative defects on regions of

positive and negative curvature respectively has been experimentally observed for an

active nematic toroid. We could confirm this result within our model, see figure 5.8, even

though a more exhaustive analysis is needed. We treated the polar case as well, where

no defects were present in the system. We found an oscillating state, where the polar

particles rotate along the toroidal direction of the torus, changing direction at regular

intervals. Both these effects show the richness of phenomena that is possible to discover

in topological active matter and, together with the study of surfaces of different topology,

88



5.4. Summary

such as a 2- or 3-torus, should be explored further.

5.4 Summary

In [30] it was shown that in a confined active system, namely a dense suspension of

microtubules and molecular motors on the surface of a spherical lipid vesicle, cyclic

oscillations between defect configurations can be observed. They result from topological

constraints and the coupling between velocity fields and defect-defect interactions. Our

work extends the understanding of the delicate relations between topology, geometry

and defect dynamics on non-spherical shapes for the system considered in [30]. We

are concerned with ellipsoidal surfaces and identify crucial geometric features which

influence collective motion patterns in active nematic films. We have shown that 1/2

disclinations are related to both, maxima in the Gaussian curvature and umbilical points

of the surface. On prolate spheroids maxima in Gaussian curvature and umbilical points

coincide, they are located at the two poles and attract the 1/2 disclinations. However, the

repulsive defect-defect interaction allows only two of the defects to be located at the poles,

the other two try to maximize their distance and are located around the waist, where they

oscillate. Spherical like shapes lead to similar behavior as observed on a sphere, with no

distinguished location of the defects and an oscillation between a tetrahedral and planar

defect configuration. For oblate spheroids all 1/2 disclinations are located at the waist,

the region of high Gaussian curvature. They again maximize their distance and oscillate.

With increasing aspect ratio a/c the situation changes. The defects can no longer cross

the waist, where the high Gaussian curvature leads to a distortion of the nematic order.

As a consequence pairs of 1/2 disclinations rotate around the umbilical points. The

frequency of the rotation depends on the activity and can be tuned. This found rotating

state is an other step towards a controllable transformation of chemical into mechanical

energy in nanoscale active matter and asks for experimental validation. The results for

non-spheroidal ellipsoids confirm these findings, even if the separation of the different

states is not as distinct as in figure 5.6. A smooth transition of the dynamics between

prolate-like and oblate-like shapes is identified in figure 5.7 with a clear tendency of the

1/2 disclinations to locate at points of maximal Gaussian curvature. Only for extreme

values of a/c and almost spheroidal shapes the situation changes and the rotating state

around the umbilical points could be identified.

We have further demonstrated that the proposed coarse-grained description of 1/2 discli-

nations in active nematic matter by self-propelled particles fails if geometric properties
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come into play. Already on spherical shapes the trajectories of the defects and the self-

propelled particles differ significantly and on spheroidal ellipsoids both descriptions do

not even qualitatively agree.

We have also seen the effects that changing topology has on the system by simulating

nematic and polar active particles on a toroidal surface. In this case, the presence of

defects is not dictated by the Poincaré-Hopf theorem and this is what we observed for polar

particles. However, for nematic particles we observed pairs of +1/2 and −1/2 defects

that are localized in regions of opposite Gaussian curvature, as observed experimentally

in [83].

In summary, in this chapter we explored the complex interaction of topology, geometry

and defect dynamics in nematic films on ellipsoidal surfaces and demonstrated how topo-

logical constraints and geometric properties can be used to control the collective behavior

in nanoscale active matter. The non-linear coupling between non-constant Gaussian

curvature and defect-defect interactions leads to tunable spatiotemporal patterns. Among

these findings is a stable rotating state on strongly oblate-like ellipsoids, which suggests

an other pathway towards a controllable generation of mechanical work in nanoscale

active matter. The richness of physics observed in our work will further increase if the

underlying shape is deformable. First experimental results of such an interplay between

activity-driven defect motion and deformability of the vesicle are already shown in [30]

and discussed in [178]. However, for theoretical descriptions of these phenomena new

methods will be required.
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Different theoretical methods have been proposed to model the many collective phenom-

ena that characterize the field of active matter. Agent-based models are very common,

thanks to their efficiency. However with these methods the physical internal processes

are lost, as well as the deformations of the particles. On the other side, we have micro-

scopic phase field modeling, which offers a very detailed physical description, but its

computational capabilities are limited to a small number of particles.

In chapter 3 we proposed a microscopic field-theoretical approach that fills the gap

between agent-based model and microscopic phase field descriptions of active matter.

This model combines the phase field crystal method with a polar order parameter and

a self-propulsion term. It can therefore be thought as a phase field crystal modeling of

active matter. We have shown that this model can be used to describe different known

collective phenomena in active matter, such as vortex formation and collective migration.

Thanks to a parallel finite element implementation, it has been possible to simulate

thousands of active particles. This helped us to shed some light on the coarsening process

that lead to collective migration and to the mechanisms behind the formation of mobile

clusters.

An extension towards binary mixtures of interacting active and passive particles was

possible with the aid of the binary phase field crystal method. In this case, we explored

the phenomenon of enhanced crystallization of passive particles via active doping, quanti-

tatively reproducing experimental results. During the study of head-on collision between

a passive and an active particle we were able to identify a single parameter controlling

the mobility of passive particles. We exploited this fact to show that collective migration

is suppressed in an active bath in the presence of fixed obstacles. In the more interesting

case of mobile passive particles, we were able to offer a theoretical prediction that can be

validated experimentally, namely the existence of a state where the alignment between

the active particles is globally nematic, but polar within each lane, known as laning state.
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Conclusions

Topological active matter is a field that studies the interplay between curvature, activity

and topology. In chapter 5 we developed a minimal model to describe active nematic

particles on curved surfaces and we have analyzed the spatiotemporal patterns that

emerge in the defects dynamics. For the case of a sphere, we could reproduce oscillations

between different configurations that were observed experimentally [30]. For the case

of an ellipsoid, we studied the connection between the defects location and geometric

properties of the surface, such as Gaussian curvature and umbilical points.

It would be interesting to link the phase field crystal approach to active matter that we

introduced in this thesis to the field of topological active matter explored in chapter 5.

Steps have been made in this directions in [90], where a polar active crystal on a sphere

has been studied using a phase field crystal approach. Even more interesting would be an

extension towards nematic symmetry, thus confirming our findings of chapter 5 about dry

active nematics on surfaces. Such a model would provide a powerful tool to theoretically

study the dynamics of active systems on deformable surfaces, especially considering that

experimental results on deformable surfaces have already been obtained [30].

In [40] a fully continuous model to describe (passive) suspensions have been developed

by coupling the phase field crystal method with the Navier-Stokes equation. It is therefore

tempting to couple the active vacancy phase field crystal model with the Navier-Stokes

equation, thus describing active suspensions. In this way it would be possible to obtain a

better understanding of the interplay between activity and hydrodynamic interactions.
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[32] G. I. Tóth et al. Polymorphism, crystal nucleation and growth in the phase-field

crystal model in 2d and 3d. J. Phys.: Condens. Matter, 22:364101, 2010.

[33] S. Tang et al. Three-dimensional phase-field crystal modeling of fcc and bcc

dendritic crystal growth. J. Cryst. Growth, 334:146–152, 2011.

[34] K. R. Elder et al. Phase-field crystal modeling and classical density functional

theory of freezing. Phys. Rev. B, 75:064107, 2007.

[35] S. van Teeffelen, R. Backofen, A. Voigt and H. Löwen. Derivation of the phase-
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