
Cellular Morphogenic Processes

under Geometric Constraints

Hydrodynamic Modeling and Simulations, Exploring the Coupling

of Active Mechanics and Geometry in the C. elegans Embryo.

by

Michael Nestler

born 11. December 1981

Dresden, Germany

A dissertation presented for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

School of Science, Faculty of Mathematics



This dissertation was created from October 2013 through April 2019

at the Institute of Scientific Computing at TU Dresden.

Submitted at: 16. April 2019

Disputation at:

Reviewer 1:

Reviewer 2:



Cellular Morphogenic Processes under Geometric Constraints
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Michael Nestler

Abstract

This dissertation considers physical processes such as active mechanics which are subject to ge-
ometric constraints. It investigates the impact of boundary conditions, topological properties of
the domain and local curvature on the dynamics, as well as the stability of equilibrium states
in the concerned physical system. As in-vivo reference system the embryo of the nematode worm
Caenorhabditis elegans in it’s single cell state is considered. Here, the focus lies on the morphogenic
processes leading to the initial cell division. Analytical model derivations, systematic model studies
and validation along experimental data are the central tools in these investigations.

A hydrodynamic description of active matter is used to describe three developmental processes
observed in two major entities, the cytoplasm and cortex of the cell. Here the cytoplasm is con-
sidered as a highly heterogeneous mixture occupying the bulk of the cell. This mixture is encased
by a thin shell of filamentous meshwork-like structure called cortex. The whole system is then
encompassed in a plasma membrane and separated from the surroundings by the rigid eggshell. In
such a geometric set-up of a volume domain bounded by an effectively surface-like domain, fields
of particle numbers, velocities and stresses are considered. These fields prototypically represent
scalar, vector and tensorial valued fields and are subject to parabolic PDEs.

For the cytoplasmic bulk a coarse-grained, parameter-free model, describing the developmen-
tal feature of cytoplasmic streaming, is derived and verified by comparison to experimental data.
An active matter model is formulated on the confined geometry of a thin shell. Focusing on the
vector/tensor valued components of such models, the impact of the inherently curved nature of
such domains, as well as the topological constraints imposed by the boundary conditions, are sys-
tematically investigated. It is observed that these geometric properties of the domain pose strict
constraints on the considered physical system, depending on the tensorial degree of the considered
field. Furthermore, the domain-related constraints remove symmetry properties of equilibrium
states but also enable additional equilibrium states not present in equivalent systems for volume
like domains. Finally we consider a process of cellular self organization, emerging through the
coupling of dynamics in cortex and cytoplasm. Including the sperm donated male pronucleus, as
carrier of the central cell organizing entity called the centrosome, enables to define a mechanical
feedback loop supporting the proper positioning of PAR domains and male nucleus right before the
onset of cell division. Here the geometry provides an essential cue for steering the feedback loop
as well as a decisive effect driving the overall system towards the desired spatial configuration. A
parameter study reveals that only models including these geometric effects are capable of repro-
ducing the experimental observation of this remarkable process of self organization.

Therefore, this dissertation combines results of physical modeling, differential geometry, nu-
meric simulations and experimental observations to identify relevant coupling mechanisms. It
demonstrates the close interdependence between dynamics of active matter systems at the cellular
scale and the geometry of their domain.
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CHAPTER 1

INTRODUCTION

1.1 Life Means Broken Symmetries

Only broken symmetries allow a differentiation in function, complexity of interactions and varia-

tions in shape. Therefore broken symmetries can be found in every organism and at every scale.

Examples in the human body include the up-down alignment of digestive organs, on a tissue scale

the wrinkling of the brain, polarized cell bodies and sub cellular structures.

The question of the origin of this plethora of structures and shapes and the mechanisms of

their creation are part of the fundamental questions of biology. These questions of morphogenesis

inspired many investigations and remarkable results. In the field of biological physics a seminal

concept was proposed by Alan Turing in 1953 [78].

The Turing patterns are a set of spatial structures emerging from the interaction of chemical

reactions and mechanics. While chemistry itself can form patterns by diffusion and reaction, Tur-

ing realized the importance and capabilities of flows, stress and elasticity to contribute in pattern

formation. Such mechanical couplings do not only enable spatial inhomogeneities but also provide

an approach to describe processes of compartmentalization. For example, a separation of two pre-

viously mixed substances by interfacial tension.

Once separated domains enable differential development, e. g. growth, which allows buckling

phenomena at the interface, possibly leading to almost arbitrary complex shapes. In such situa-

tions it comes as no surprise that the geometry of these shapes, their restriction by boundaries or

confinement to thin shells, feed back into the dynamics of the original pattern formation processes.
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Chapter 1. Introduction

Figure 1.1: Types of pattern forming mechanisms: [A]: Pattern forming by diffusion reaction
systems. (top) Localized concentration of morphogens (green dots) close to a source. Diffusion of
morphogens is limited by degradation. (bottom) ”Classic” Turing pattern consisting of inhibitor
(red) and activator (green) creating stripe like configurations. [B]: Mechanochemical feedback
system driven by gradients in motor proteins creating advective fluxes compensating diffusive fluxes.
[C]: Differential growth of tissues enables folded structures, ridge-like and hill like depending on
the growth direction. Plots have been adapted from (A)-[30]and (B),(C)-[22].

Given these fundamental considerations, the driving question of this dissertation is:

How do the three concepts of chemistry-mechanics-geometry interact and contribute to the process

of morphogenesis?

To discuss this question, we will use a single cell biological reference system, the nematode worm

Caenorhabditis elegans in its single cell embryo state, see figure 1.2-A. There, at the onset of initial

cell division a distinct mechanical feature called cytoplasmic streaming is observed. Such stream-

ing can be traced by long range transport of cellular material which is observed in a wide array of

organisms, e. g. plant cells [19]. Recalling the highly delicate nature of a process like cell division

where topological change and differential distribution of cell organelles have to be coordinated in

a robust way, it is highly unlikely that such a large effect appears at random. Also, the directed

nature of these flows suggests a coupling to the polarized cell body axis, possibly providing a sta-

bilizing mechanism supporting the asymmetric distribution of cellular material.

Reviewing the very basic elements at this stage of cell division, we observe the cytoplasm as a

highly heterogeneous matrix in which the cell organelles float. This matrix is encased by a thin

fluid layer called cortex or cortical layer. Finally the whole cellular system is encompassed in a

plasma membrane and separated from the surroundings by a rigid eggshell.

In this situation we observe motor proteins (Myosin) redistributing in the cortex and creating

two domains of low and high Myosin concentration. Such gradients in the motor proteins generate

stresses on the cellular scale and induce flow in the cortex, see figure 1.2-C,E. Parallel cytoplasmic

streaming is observed such that a coupling by drag seems plausible.

At the same time that these flows exist, chemical cue proteins form two domains on the mem-

brane. These so-called PAR polarity proteins come in two families, the aPAR and pPAR proteins.
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1.1. Life Means Broken Symmetries

Figure 1.2: Pattern forming mechanisms in C. elegans single cell embryo enabling asym-
metric cell division:[A]: Schematic of temporal stages of asymmetric cell division. After extrusion
of polar bodies at anterior pole in Meiotic cell cycle polarization is established in Mitotic cell cycle.
Polarization is marked by MEX-5 gradient in cytoplasm and by PAR domain formation in Cortex.
[B]: Depletion of aPAR and Myosin in cortical layer is triggered by signals of centrosom. [C]: Cortex
is active meshwork of Actin filaments and Myosin motors. Anisotropies in active stress generation,
induced by local Myosin depletion from Cortex, induces Myosin flow in cortcial layer. [D]: Snap-
shot of Actin-Myosin meshwork and PAR distribution in the process of polarization. Depletion
of Myosin induces flows of meshwork towards anterior flow. Depletion of aPARs at posterior pole
enables binding of pPAR at posterior Pole region. [E]: Cross section of cell cortex demonstrating
how flow of Mysoin induces passive transport of aPAR towards anterior pole, facilitating the pPAR
binding at posterior Pole. Figure taken from [27].

During the phase of cortical flows, they redistribute due to binding kinetics and advective transport

via these cortical flows. Before the polarity pattern forms, the aPAR proteins are homogeneously

distributed in the cortex, while the pPAR proteins reside in the cytoplasm. In the process of do-

main formation pPAR accumulates at the posterior pole and thereby enforces a redistribution of

aPAR concentrating at the anterior pole. The emerging cortical domains, specified by mutually

exclusive concentrations of aPAR and pPAR, mark the separation line in the upcoming cell division.

In this highly selective and simplified description of the process of polarity domain formation

we recognize the three major ingredients. First, the chemical dynamics in the cortex, creating

mechanical stresses. Second, the induced flow phenomena in the cortex and cytoplasm. Third, the

distinct geometric properties of their domains restricting these flows.

Related work In a typical succession of qualitative description of the overall phenomena via

the breakdown of involved effects and quantitative estimations of their impact, to a theoretical

modeling with predictive capacities, a huge array of investigation in experiment and theory has

been performed and is still necessary.

For example, the findings regarding the overall processes in cell division discussed in [18, 20, 52]
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Chapter 1. Introduction

have contributed with experiments to a better understanding of the mechanical properties of the

cytoplasma and cortex which are reviewed in [69] and [45]. From the field of soft active matter,

the work of [40, 39, 69] provides fundamental concepts for modeling the stress generation in active

materials. For a comprehensive review see [33].

Also, with computational approaches [60, 67, 58, 55], the flow phenomena in thin shells of

fluid, their coupling to neighboring fluids[3] and impact of the thin shell’s curvature[65] have been

investigated [42] . For example, [62] used a particle based method to approach the cytoplasmic

streaming, and [66] used a continuous model to simulate the transduction of stresses generated by

a shear flow in a surrounding fluid via a fluid interface to flows inside a vesicle as described in [28].

The theoretical investigations of the coupling of dynamic systems confined to a curved surface

have gained a lot of attention. The phenomena of geometric frustration, labeling situation where a

preferred order can not propagate throughout the whole domain due to geometrical constrains, has

been observed in many physical systems as reviewed in [10]. Furthermore, recent work proposes

an analytical framework [57] to describe the transition of bounded domains with no geometric

frustration to thin shells with geometric frustration and strong interplay [54, 57, 59] of curvature

and dynamics.

Research questions and approach Given these results we aim in this work for an effective

theoretical description on a hydrodynamic scale of the dynamics in cortex and cytoplasm confined

to the C. elegans embryos geometry.

To do so we want to derive and validate a model capturing the observed flows of cytoplasmic

streaming in chapter 2. With this model we will address the question of driving forces and discuss

the coupling between cortical and cytoplasmic streaming. Furthermore, we extend the model to

provide an effective description of the novel technique of thermo viscous pumping inside living cells

[48].

We will transfer a generic model of active matter to the confined geometry of a thin shell and

investigate how the curvature interacts with physical dynamics in chapter 3. In this framework

we discuss how and why curvature acts differently on the quantities of chemical concentrations,

velocities or stresses.

With these two building blocks we turn in chapter 4 to the coupled dynamics of chemical activ-

ity in the cortex, streaming in cytoplasm and cortical layer and then assess the impact of geometry

in these phenomena.

Throughout our work we apply a top down approach for modeling. We neglect microscopic

effects and coarse grain on a spatial and temporal scale where an effective description with contin-

uous variables is applicable. In this sense we define the hydrodynamic scale by the sole occurrence

of slow and large fluctuations. Typical variables in this context are concentrations, velocities or

stresses distributed in space and evolving in time. For these hydrodynamic variables we use first
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1.1. Life Means Broken Symmetries

principles to derive governing equations and identify phenomenological constants. While those con-

stants might be unknown or hard to determine we will rescale the models to the typical scales of

the C. elegans embryo and work with characteristic numbers like the Reynolds number or Péclet

number given by the ratio of phenomenological constants and typical scales. To verify the proposed

model and their computational predictions we will use available in-vivo measurements.
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Collaborators The experimental data used is provided by the partners Peter Gross, Grill lab at

BIOTEC, and Matthäus Mittasch, from Kreysing lab of MPI-CBG. Without the productive dis-

cussions on physical modeling and evaluation of predicted dynamics this work is not conceivable.

Furthermore, this work benefits from the close collaborations with Ingo Nitschke, Simon Praetorius

and Axel Voigt from the IWR at TU Dresden. This cooperation developed the essential analytical

and numerical tools to derive and solve models in thin shells.

This wide array of collaborators enables a close integration of theory and experiment, under-

scoring the value of interdisciplinary approaches to tackle complex problems, such as understanding

the processes involved in cell division. Given this wide range of contributors, the author uses the

pronoun ”we” throughout the text.

Parts of the results and discussion presented here have already been published in peer referred

journals. These are

• M. Nestler, I. Nitschke, S. Praetorius, A. Voigt:

Orientational order on surfaces - the coupling of topology, geometry and dynamics.

2018, Journal of Nonlinear Science

• I. Nitschke, M. Nestler, S. Praetorius, H. Löwen, A. Voigt:

Nematic liquid crystals on curved surfaces - a thin film limit.

2018, Proc. Roy. Soc. London

• M. Mittasch, P. Gross, M. Nestler, A. W. Fritsch, C. Iserman, M. Kar, M. Munder, A. Voigt,

S. Alberti, S. W. Grill, M. Kreysing.

Non-invasive perturbations of intracellular flow reveal physical principles of cell organization.

2018, Nature Cell Biology
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Chapter 1. Introduction

1.2 Notation

This work combines the scientific approaches of differential geometry and contemporary physics.

Each approach comes with a specific style of notation which do collide in some situations. In this

section we will provide an overview of the used notation.

Domains In general we will consider two domain types. On the one hand side are volumes as

subsets of Rn which are denoted by capital uppercase letters e. g. V . Their boundary is denoted by

∂V with a outward pointing normal ν. On the other hand side we consider manifolds or surfaces

embedded in Rn. These a will be denoted by calligraphic capital letters likeM, where S is reserved

for denoting surfaces. Their normals are denoted by ν as well and n is used for the conormal in

case of bounded manifolds where ∂M 6= ∅. In this context a surface can be considered as boundary

of a bounded connected volume S = ∂V with matching normals. Further we will use a hybrid of

these two domain types called thin shells. They can be considered as volume like, tubular extension

of e. g. a surface with thickness h. We denote them by Sh with Sh ⊂ V and lim
h→0
Sh = S.

Hydrodynamic variables In the context of denoting hydrodynamic variables of physical quan-

tities we apply a notion reflecting on the tensorial degree of the variable. Scalar valued variables

are denoted by lowercase Latin letters like concentrations c or reaction rates r. For vector valued

qualities like velocities V we use bold capital Latin letters. Finally variables with tensorial degree

two and higher are denoted by bold Greek letters, e. g. the σ for the stress tensor. An exception is

the nematic order Q-tensor which is denoted, as prevalent in the literature, by Q. From the school

of physic we also adopt the notation of differential quantities like 4µ, the chemical potential, or

4T denoting a difference in temperature.

In the case of variables defined on manifolds or surfaces we define specific names for the tan-

gential parts of the variables, a precise definition is given in section 3.1.4. In the case of vector

valued variables we use lower case bold letters, e. g. v for tangential part of V on S. Tangential

parts of tensor valued variables are denoted by a subscript, e. g. σS for the stress acting tangential

directions of S. For Q the tangential part is denoted by q.

Furthermore, we will occasionally approximate hydrodynamic variables by a mode decomposi-

tion e. g.

V (x, t) ≈
∑
i

ki(t)Zi(x) (1.1)

where bold blackboard letters F, X, . . . denote temporal invariant specific spatial shapes or profiles.

We use small Latin letters to denote the mode coefficient functions.

Basis and coordinates In the course of our argumentation we will make use of operator and

coordinate wise description of differential operators or tensor contractions. Here we will rely on

the Einstein sum convention and distinguish between contra and covariant formulations as used in

standard text books [1, 34]. Further to distinguish between description along a local basis and the

8



1.2. Notation

basis of the embedding space for manifold bound tensors we introduce two set of indices.

We will use capital letters like I, J,K, . . . as indices for coordinates w.r.t. to a flat, e. g. Eu-

clidean, basis of the embedding space. For the description along the local basis of the manifold we

will use lower case letters i, j, k, . . .. To complement this local basis we denote the normal compo-

nents by ξ. With e reserved for basis vectors we can write the coordinates of a vector, on a two

dimensional manifold, in the Darboux frame [ei, ej ,ν] by [Vi, Vj , Vξ].

Parameters, constants and units Due to the combination of chemical and mechanical balance

laws as well as models of orientational order we are confronted with quiet an array of phenomeno-

logical constants and parameters. Here we try to use the classical physical notation of lower case

Greek letters for phenomenological constants like η viscosity or ρ density. In the context of orien-

tational order of Landau-de Gennes and Frank-Oseen model we will stick with the usual notation

of capital letters like K,L denoting prefactors in the free energy contributions. Finally we reserve

ω as special symbol for denoting scaling factors of penalty terms.

The derived models are in general unit free. For considerations of scaling behavior or denoting

experimental parameters we will use units if necessary. O() denotes the Landau symbol for de-

scribing behavior on orders of magnitude. Since we we are concerned with systems of cellular size

we suggest to review the presented models under a length scale of [µm] an [s] as temporal scale.

Derivatives In the subsequent derivations we will use several notions of derivatives. While these

all share the fundamental concept of a local linear approximation for the function, the notation

includes some subtleties.

For covariant spatial derivatives we will use ∇ for functions or fields regardless their tensorial

degree. To highlight the restricted nature of surfaces, compared to the embedding volume, we

denote the spatial derivatives in this case by ∇S . As laid out in section 3.1.4 we can express the

covariant derivatives along the partial derivatives ∂/∂xi w.r.t. coordinates i. This concept of par-

tial derivatives can also be applied to the temporal domain where ∂/∂t is abbreviated by ∂t.

In the context of energy functionals F(P) we use the notation of a variation by δF(P) w.r.t.

state variable P. Furthermore, we also use the partial derivatives of associated energy density

∂f/∂P in the sense of a linear functional canonically defined by the L2 scalar product of the state

space. Temporal derivatives of a functional, including explicit and implicit dependencies, are called

total derivatives and are denoted by dF/dt

Finally, we use two specific notions for second order differential operators of Laplacian type.

These are ∆dR . and ∆dG . denoting the deRham and Bochner Laplacians. This symbols should

not be confused with 4 used in the variable names of e. g. chemical potential 4µ.

9
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CHAPTER 2

CYTOPLASMIC STREAMING AS STOKES

FLOW

2.1 Cytoplasmic Streaming and Intra Cellular Transport

In the framework of pattern formation, as described by Turing, transport is a key contribution.

Such effects can be classified by two mayor driving mechanisms. On the one hand side, we con-

sider diffusion as a transport phenomena originating from undirected motion of particles. Such

movement are observed as effect induced by thermal gradients, so called Brownian motion. In the

context of active matter another origin of undirected motion is present.

Consider a gel consisting non-isotropic shaped (e. g. rod like) filaments and motor proteins mov-

ing along these filaments. Here, a typical combination of filaments and motors is a Actin-Myosin

suspension where Myosin uses hydrolysis of Adenosine triphosphate (ATP) to crawl along the Actin

filaments [29, 32]. If the motor proteins then randomly switch between the filaments [6] and the

filament network exhibit no specific direction, an undirected movement occurs, leading to an effect

labeled, active diffusion.

On the other hand, transport induced by a directed motion is called advection. Here the typical

phenomena can observed by the bulk flows of the solvent and the induced transport of the solute

substance (e. g. ink drops in water). Again in active matter, the presence of motors can induce di-

rected motion, e. g.the long range transport induced by Kinesin moving along macro molecules [74].

To characterize a systems prevalent mode of transportation the dimensionless Péclet number is

defined

Pe =
|V|l
D

(2.1)

where |V| denotes the characteristic magnitude of flow velocity, l the typical length scale in the
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

domain (or observed patterns) and D the diffusivity of the substance. In the case of Pe � 1 ad-

vection dominates, while Pe� 1 indicates prevalent diffusive transport.

In the case of cytoplasmic streaming in the C.elegans embryo, we observe diffusivity, depending

on the considered molecule, D ≈ 1.5−5 [µm2/s] [64, 43], flows at typical velocity of |V| = 0.1 [µm/s]

at a range of l = 25 [µm]. This implies a indefinite Péclet number Pe ≈ 1 such that transport phe-

nomenas can not be characterized ad hoc. For comparison, the transport in plants at cellular level

occurs at Pe ≈ 50 [19] and we observe advection to clearly outpace diffusion.

Furthermore, the cytoplasm exhibits a complex mechanical behavior, see section 2.1.1, such

that the characterization along diffusion and advection might not be sufficient.

In the overall context of establishment of cell polarity along the formation of cortical domains

by PAR proteins we want to discuss in this chapter following question:

Do flows observed in cytoplasmic streaming induce relevant transport processes?

To address this questions we will proceed in two steps. As initial step we want to derive a basic

mechanical description of the flow phenomena of cytoplasmic streaming. More precisely we es-

tablish an effective hydrodynamic description by a Newtonian fluid governed by viscous stresses

and drag. We follow the notion that cytoplasmic flows are driven by activity at the Acto-Myosin

cortex [11, 46, 61] and discuss whether active contributions in the cytoplasm can be neglected.

Furthermore, we will highlight the essential impact of system dimensionality.

In the second step, we turn to the experimental method of Focused-light-induced cytoplasmic

streaming (FLUCS). This method bases on the effect of thermo-viscous pumping described by

Weinert and Braun [80, 81] and is an all optical, contact free method for in-vivo perturbations in

the cytoplasmic streaming [48]. It has proven as a novel method enabling perturbation experiments

to probe the role of advective transport in in-vivo organisms. Here we will derive and discuss an

analytical description of the flows observed in experiments. We extend the previous model of cyto-

plasmic streaming to include the effects of thermoviscous pumping and to discuss general properties

of the FLUCS method.

The chapter is therefore structured as follows, in section 2.2 we derive and validate an effective

mechanical model for cytoplasmic streaming. Section 2.3 discusses the FLUCS method under

analytical aspects such that we can review in section 2.4 the experimental findings of [48] in the

context of advective transport by cytoplasmic streaming. We conclude the Chapter by reviewing

the derived model and discussing its scope of validity.

2.1.1 Mechanical Properties of the Cytoplasm

Here we use the notion of cytoplasm to summarize the main bulk of cell material including cy-

toskeleton structures or granules. This bulk is enclosed by the cortical layer and restricted to a

prescribed shape by cell membrane and eggshell.
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2.2. A Coarse Grained Model for Cytoplasmic Streaming

Furthermore, the cytoplasm consists of many different kind molecules each with its on size and

elastic behavior. Such that it comes to no surprise that the mechanical properties of the cytoplasm

strongly vary on spatial and temporal scales. For example, while the cytoplasm can be considered

in general as a viscoelastic fluid, [45] highlights two scale dependent features. The first feature

refers to meshwork structures like the cytoskeleton in the cytoplasm, leading to a dependence on

probe size of rheology experiments, e. g. [24], as well as to the frequency of the applied forcing [2].

On the other hand side, the mechanical properties depend on the region of the cell, such that the

cytoplasm in the cell periphery is usually more flexible than in the region close to the nucleus [44].

Another strain of research identifies such spatial and temporal scale dependency as a signature

of active non-equilibrium processes, see e. g. [49]. The constant consumption of energy, for example

in the form of ATP, leads to thermal background noise as well as active noise generated by the

molecular motors in the cytoplasm.

Finally we remark that cytoplasm has been observed to undergo solid-gel phase transitions in

several organisms [76, 63, 4]. Clearly, such phase transition would imply a fundamental change

in material parameters observable at hydrodynamic scale. But, since such behavior has not been

investigated in the C. elegans embryo we will stick with the most basic assumption and consider

hydrodynamic material parameters of the cytoplasm as constant.

2.2 A Coarse Grained Model for Cytoplasmic Streaming

In this section we derive a mechanical model reproducing the cytoplasmic flow fields on hydrody-

namic scale. We review a particle based method, described in [62], its modeling assumptions and

used phenomenological parameters. Subsequent we derive an analogous model along hydrodynamic

variables. Focusing on the velocity fields we arrive at a parameter free, Stokes model for the cyto-

plasmic streaming.

We validate the proposed model by comparison to in-vivo observed velocity fields. To conclude

this section we review the model and summarize its key features w.r.t. the made assumptions

regarding the mechanical properties of the cytoplasm.

2.2.1 Hydrodynamic Variables of Cytoplasmic Streaming

As we have discussed in section 2.1.1 the cytoplasm is a highly heterogeneous material exhibiting

complex behavior in in-vivo experiments. We now aim for an effective model on a coarse grained

scale focusing on a minimal set of state variables while retaining the essential features observed in

the experiments.

In [62, 36] a particle based description of the cytoplasmic streaming has been proposed. [62]

approximated cytoplasmic streaming by a set of ≈ 40.000 spherical particles and their dynamics

along a discrete momentum balance and particle number conservation. This setting matches the

general assumptions of the Navier Stokes equations, which are the starting point of our proposed
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

coarse grained modeling. Furthermore, [62] suggests a set of phenomenological parameters of dy-

namical viscosity η = 1 [Ns/m2][13], water like mass denisty ρ = 1 103 [kg/m3], l = 60 [µm] and a

relative compression rate α = 10−7.

For the description in hydrodynamic variables we perform a spatial and temporal coarse grain-

ing. The temporal coarse graining across tens of seconds allows us to neglect the elastic effects in

the cytoplasm [69]. On spatial scale we assume the cytoplasm as a continues Newtonian fluid with

constant viscosity, describing the ratio of shear to deviatoric stress in the fluid. In this framework

the relevant hydrodynamic variables are velocity V, as displacement and deformation of a volume

element per time, external force density F and pressure P , as an isotropic force resisting volume

change.

Reviewing the phenomenological parameters suggested by [62] we assume the fluid as incom-

pressible and use the Reynoldsnumber Re to characterize the ratio of drag to viscous forces.

Re =
ρ|V|l
η

(2.2)

Within the phenomenological parameter suggested by [62], we obtain Re ≈ 10−9 and therefore a

clear dominance of viscous forces, such that inertia effects can be neglected. By rescaling the well

known Stokes system.

−η∇ ·
(
∇V +∇VT

)
+∇P = F on V (2.3)

∇ ·V = 0 on V (2.4)

The domain V of the cytoplasmic streaming is bounded by the cellular membrane and the rigid

eggshell. Furthermore, the cortical mesh work close to the cell membrane with a average thickness

of 50 − 100 [nm] is not explicitly included in this model. A discussion of possible models of this

highly active thin shell is presented in chapter 3.

Due to the bounded nature of V we are required to specify boundary conditions. Typical

boundary conditions are σ · ν = FBC , prescribing a specific boundary force in normal direction,

and V = VBC , which prescribes a specific velocity. While the first one ensures general solvability of

(2.3), in general, it permits flows across the boundary. The second one leaves the pressure undefined

up to a constant such that we have to fix the pressure at a singular point to obtain well posed

problem. Further, by Gauss’s theorem, the prescribed velocity has to satisfy
∫
∂V VBC · ν d∂V = 0

to ensure compatibility with incompressible mass conservation.

Effective model On the basis of this continuous modeling and due to the passive nature [62]

of the Newtonian fluids we conclude the system to be driven out of ground state V ≡ 0 solely by

external forces in the volume by F or at the boundary. As mechanistic volume forces gravitation

is usually considered, but at height differences of 30 [µm], typical at cellular scales, its impact can

be neglected. Therefore the boundary conditions are identified as driving effects and we choose the

Dirichlet type, prescribing the velocity VBC .
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2.2. A Coarse Grained Model for Cytoplasmic Streaming

Two remarks regarding this modeling decision. On the one hand side, such modeling implies

a force at the boundary sufficiently strong to enforce the prescribed velocity regardless of the dy-

namics inside the domain, a typical example of an one way coupling. Furthermore velocities can be

observed consistently, quit contrary to forces, at high spatial and temporal resolution. In the set

up of absent external forcing we can factor the viscosity into the pressure and yield a parameter

free model for cytoplasmic velocities.

In [62] the cell shape and its evolution have been approximated by a cylinder combined with

semispheres at the long axis. Here we will incorporate the observable irregular shapes of the cell.

The evolution in the cell shape can be decomposed into tangential and normal deformations, where

the tangential contributions are contained in the observed VBC . The normal contributions can

be estimated by the fluctuations of magnitude ≈ 1 [µm] at a frequency ≈ 1 [1/min]. We there-

fore neglect those normal contributions to the boundary velocities and include only instantaneous

shapes and tangential velocities in our model. This assumption also ensures compatibility with

mass conservation.

To ensure a feasible numerical scheme, we incorporate the irregular shapes of V via a diffuse

domain approach as described in [41, 15]. The basic idea of this approach is to embed the irregular

shapes V into a domain with simple, e. g. box-like, geometry V ⊂ Vφ and multiply the state

equations (2.3) with a characteristic function of V . To preserve the well posedness of the PDE

also in the embedding domain the characteristic function is approximated by a smooth function φ,

called the phase field function

φ(x) =
1

2

[
1− tanh

(
3 d(x)

ε

)]
(2.5)

where d(x) denotes the signed distance of the domain V and ε describes the width of the smooth

transition. It has been established [15] that for ε → 0 the solutions(for φ > 1/2) of this approxi-

mated problem in Vφ converge to solutions of the problem in V . Boundary conditions of Dirichlet

type are included in this diffuse domain model by a penalty term, with prefactor β. The diffuse

Stokes system reads

−∇ ·
[
φ̃
(
∇V +∇VT

)]
+∇(φP ) =

β

ε3
(1− φ) (V −VBC) on Vφ (2.6)

∇ · (φV) = 0 on Vφ (2.7)

For numerical stability we have regularized the the equation on Vφ/V by using φ̃ = max(φ, 1e− 6).

2.2.2 Experimental Data Set and Comparison to Model

To validate the model we use in-vivo observations of an individual C.elegans embryo. By spin-

ning disc microscopy a 2D slice at the center of cell body is observed. Genetic alteration in the

cells enable the tracking of Myosin molecules in the cortical layer. Together with particle image
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

velocimetry, see e. g. [82, 83], a dataset consisting of velocities in the cytoplasmic bulk VV and

cortical layer VC as well as the cell outline ΓC across the complete time domain of cytoplasmic

streaming is obtained. To limit data noise, measurement errors and to integrate out elastic effects

we average the velocities point wise across time frames of 20 [s]. We yield a dataset containing an

evolution of 20 snapshots with cytoplasmic velocities on evenly spaced grid with 2000 points, and

250 points along the outline for cortical velocities. The outline itself is discretized as polygon with

250 nodes.

For validation we use the in-vivo outlines to define the domain by ∂V = ΓC . The observed

cortical velocities are assumed as key driver of the cytoplasmic streaming [11, 46, 61] and used

therefore as values for the Dirichlet boundary condition VBC = VC . We evaluate the cytoplasmic

velocities by solving the diffuse domain model (2.6) with a standard FEM method using Taylor-

Hood Elements on an adaptively refined mesh. As validation measure we compare the evaluated

and observed velocities in the cytoplasm across the set of available data snapshots.

As shown in figure 2.1-A, the proposed Stokes model yields velocity fields very similar to the

experimentally observed flows. The in-vivo flows fields can be characterized by three major contri-

butions. Two large vortices located at the posterior side, driven by the cortical flows originating

at the posterior pole. These vortices form a stream roughly aligned with the anterior posterior

axis pointing towards the posterior pole. As third feature we observe low magnitude flows at the

anterior pole. Comparing to the modeled flows we observe the first two features to be reproduced

qualitatively in the sense that major vortices and jet alignment are reproduced. Remarkably the

predicted velocities of the jet differ up to a factor of 2, figure 2.1-C. This mismatch becomes evident

in considering the distribution function of the velocity magnitudes of the in-vivo data set and model

predictions, see figure 2.1-B. Here the modeled flows exhibit a lower fraction in the mid magnitude

velocities.

Impact of spatial dimensionality To address this mismatch in the jet velocities we recall the

three dimensional nature of the embryo. Assuming a rotational symmetric cell shape as in [62] we

observe the driving cortical domain to form a ring around the cytoplasm such that the induced

counter flows are focused in the central stream.

To include such rotation extension to the volume we assume an symmetry of flows along the

anterior posterior axis. Given this we can reformulate the model in (2.6) to cylinder coordinates

[r, z], see e. g. [8], and yield

−
[

1

r
∂r

(
φ̃r∂rVr

)
− 1

r2
φ̃Vr + ∂z

(
φ̃Vr

)]
+ ∂r(φP ) =

β

ε3
(1− φ) (Vr − VBC,r) on Vφ (2.8)

−
[

1

r
∂r

(
φ̃r∂rVz

)
+ ∂z

(
φ̃Vz

)]
+ ∂z(φP ) =

β

ε3
(1− φ) (Vz − VBC,z) on Vφ (2.9)

1

r
∂r (rVr) + ∂zVz = 0 on Vφ (2.10)

To obtain compatible axis symmetric in-vivo data from the observed slice we use a polar coor-
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2.2. A Coarse Grained Model for Cytoplasmic Streaming

Figure 2.1: Top down model captures qualitative and quantitative features of cyto-
plasmic streaming: [A]: Snapshot of velocity magnitude (color scale) and streamlines of in-vivo
measurement data (left) and model (right). [B]: Probability distribution for velocity magnitudes
for data (red line) and model (blue line) rescaled by most likely velocity of data ‖V∗‖ = 0.01.
Distribution function approximated by binning with 35 bins. [C]: Velocity magnitudes along cross
section AP (left) and LU (mid) of data and model fields in [A]. AP is defined by anterior-posterior
body axis of embryo, LU via centers of major vortices in posterior half, see schematic (right)

dinate description of the data and average the velocities along the polar angle. As shown in figure

2.2 we yield significant better reproduction of the velocity magnitudes in the central stream.

2.2.3 Mechanical Properties of the Model

Reviewing the presented results we conclude that the proposed modeling along hydrodynamic

variables suffices to reproduce the qualitative and quantitative features of the observed in-vivo cy-

toplasmic streaming. Most remarkably, by rescaling the pressure with viscosity η, the modeled flow

fields are independent of any phenomenological constant, highlighting the fundamental character

of the proposed model.

Furthermore, the predictive capacities of Stokes flow model emphasizes the passive nature of

the cytoplasm, at viscous time scales, such that conservation of fundamental quantities of mass

and linear momentum suffice to describe the dynamics. On the spatial scale we have neglected the

heterogeneous nature of the cytoplasm and assumed a Newtonian fluid.

In the proposed model the cytoplasm is one way coupled to the cortex and its dynamics.

Furthermore, the model is linear w.r.t. the prescribed boundary velocities and enables a mode

decomposition of cytoplasmic flows. Such basic, yet robust, model will provide a useful building

block in subsequent modeling.
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

Figure 2.2: Dimensionality of system play key role in reproducing the peak velocity
of central stream: [A]: Snapshot of velocity magnitude (color scale) and rotational extruded
streamlines of in-vivo measurement data (left) and model (right). Black arrow indicates rotational
axis coinciding with AP. [B]: Probability distribution for velocity magnitudes for data (red line)
and model (blue line) rescaled by most likely velocity of data ‖V∗‖ = 0.003. Distribution function
approximated by binning with 35 bins. [C]: Velocity magnitudes along cross section AP (left) and
LU (right) of data (red) and model (blue) fields in [A]. Velocities of 2D model are plotted for
comparison by blue dashed line. UL axis is defined as perpendicular to AP via center of major
vortex in posterior half.

2.3 Thermoviscous Pumping of the Cytoplasm

2.3.1 Introduction

After establishing a fundamental description of cytoplasmic streaming on coarse grained scale we

will use it to model the effects of thermoviscous pumping in in-vivo C. elegans embryos.

The effect of thermoviscous pumping was described by F.M. Weinert and D. Braun in [80, 81]

and bases on a highly localized heating of a fluid by a laser oscillating in space. The resulting

method allows to induce almost arbitrary flow pattern in thin films of fluids on a contact free and

non invasive basis. In [48], we transferred this method to living cellular systems. Through exper-

iments in the C. elegans embryo this method has proven as an excellent tool for investigating the

coupling of cytoplasm and cortex thereby enabling impressive experimental results.

In this section we will present the associated modeling used in [48] in detail and compare model

predictions to experimental results.

Results of F.M. Weinert and D. Braun The core physical mechanism of thermoviscous

pumping can be described on the hydrodynamic scale by the response of density and viscosity to

local changes in temperature. Considering a localized heating at a fixed position we observe a

localized decrease of density and viscosity with symmetric gradients. For a moving heat source

18



2.3. Thermoviscous Pumping of the Cytoplasm

this symmetry is broken and we observe an expansion of the fluid in the front of the heat source

and compression in the wake. Furthermore, the locally decreased viscosity breaks the symmetry in

the compensating flows and creates a net flow in opposite direction to the heatspot movement, see

figure 2.3-A.

To model this effect [80] used the compressible Navier Stokes system of mass and linear momen-

tum balance for a Newtonian fluid. Assuming a sufficient small magnitude of temperature changes

the variations in density and viscosity are approximated by a linear response function. This model

is applied to a fluid between two plates in an otherwise effectively unbounded domain. Further-

more, assuming an parabolic flow profile between the plates and a Gaussian shaped heatspot, the

following estimation of the peak velocity of net flows was established

Vflow = −CUSαβ4T 2 (2.11)

Where US denotes the heatspot velocity, α, β are the response rates of density and viscosity to

change of temperature 4T . The constant C depends on the length of the heatspot trajectory

L and the heatspot shape. For oscillatory movement of the laser we can also define a frequency

f = US/L. Using this estimation for pumping in a water like (α = 3.3 10−4 [1/K], β = 0.021 [1/K])

fluid thin film(thickness 6.5 [µm]) with f = 5000 [1/s] and 4T = 9 [K], [80] yielded an theoretical

peak velocity of V = 100 [µm/s], which is in good agreement with the observed V = 95 [µm/s]. The

associated Navier Stokes equations can also be solved numerically. See figure 2.3-B for qualitative

flows, in comoving frame, induced by a traveling heatspot.

Figure 2.3: Thermoviscous pumping of homogeneous media in theory and experiment:
[A]: Basic mechanism highlighting the necessity of density and viscosity fluctuations. As shown in
[A]-a an absence of viscosity fluctuations does not break symmetry in flow patterns and yields no
net flow. [B]: Numerical simulation of qualitative instantaneous flow fields (white arrows, comoving
frame) induced by locally increased temperature (color coded). [C]: Flow field inferred from particle
tracing (black lines) of pumping with heating laser moving short path and subsequent flyback. For
comparison particle trajectories (red lines) resulting from an Stokes flow generated by a superpo-
sition of Oseen tensors, continuous streamlines (grey) indicate Stokes flow pattern. Results and
figures adapted from [80].

Challenges for application to cytoplasm To transfer the modeling of Weinert and Braun to

the pumping of cytoplasm we will focus on three issues.
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Our previous modeling has established the Stokes flow model for a homogeneous Newtonian

fluid as description of the flows in the cytoplasm on the timescale of tens of seconds. On the other

hand side the existing model of thermoviscous pumping bases on the fluctuations in the viscosity

and density at an oscillation period of milliseconds.

This raises also the question of the predominate flow type. Here the FEM simulations of [80],

see figure 2.3-B, suggest a compressible flow type at the instantaneous timescale (milliseconds)

while the observed flow patterns at a timescale of 7 [s] exhibit an incompressible flow type (see

figure 2.3-C).

Furthermore, we apply thermoviscous pumping to confined geometry where boundaries can no

longer be neglected. As known from the solution theory of Navier Stokes equations, compatibility

conditions have to be satisfied, possibly limiting the validity of the model. Also close similarities of

pumping induced flow patterns to superposition of Stokeslets, see figure 2.3-C, suggests the existence

of an overall force. Such force would induce in a bounded domain, like a cell, a compensating force

acting on the domain as whole. Therefore one would expect the cell to start moving, which was

not observed in the experiments of [48].

Outline of the section This section is split into three parts. In the rather theoretical part

we will briefly reproduce the derivations of the governing equations on instantaneous time scale

and discuss the source terms driving this system in detail. In a second step we will derive an

effective model on the mean timescale (several thousand oscillation cycles). The theoretical part

is concluded by discussing the impact of boundaries and suitable modeling. After establishing the

theoretical background, in the second part we will validate the proposed model against the in-vivo

measurements and discuss an experiment presented in [48]. This section is concluded by a brief

review of the proposed model, its features and limitations.

2.3.2 Continuous Model at Instantaneous and Average Time Scale

In order to model the described physical effect we follow the approach of [80, 81] and consider

the cytoplasm as a compressible isotropic Newtonian fluid with temperature dependent viscosity η

and density ρ. The momentum and mass balance in a domain V yields therefore the compressible

Navier Stokes equations

ρ
∂V

∂t
+ ρ (V · ∇) V −∇ ·

(
η
(
∇V +∇VT

))
+∇P = 0 in V (2.12)

∂ρ

∂t
+∇ · (ρV) = 0 in V (2.13)

The temperature dependance of viscosity and density is described, analogous to the Bossinesq

assumption, by an linear expansion arround their values at ambient temperature T0 with linear

response rates α = ρ−1
0 (∂ρ/∂T ) and β = η−1

0 (∂η/∂T ). Assuming further a sufficient strong

thermal diffusivity such that the temperature distribution is not influenced by flows we can express
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density and viscosity in relation to an externally prescribed local temperature change 4T by

ρ = ρ0 (1− α4T ) and η = η0 (1− β4T ) . (2.14)

Following the previous results, we assume predominately viscous effects in the cytoplasmic stream-

ing, leaving the contribution of inertia as neglectable. Inserting the temperature dependent param-

eters into the compressible Stokes equation we yield

−∇ ·
(
(1− β4T )

(
∇V +∇VT

))
+∇P̃ = 0 in V (2.15)

(1− α4T )∇ ·V − α∇4T ·V = α
∂4T
∂t

in V (2.16)

where the constants ρ0 and η0 have been canceled out or factored into the pressure P̃ . As laid out

in [80] this model can be adjusted to an effective 2D model for domains Vh with constant small

height h by assuming no slip conditions on the upper and lower boundary as well as a parabolic

velocity profile in normal direction.

−∇ ·
(
(1− β4T )

(
∇V +∇VT

))
+ 12

(1− β4T )

h2
V +∇P̃ = 0 in Vh (2.17)

(1− α4T )∇ ·V − α∇4T ·V = α
∂4T
∂t

in Vh (2.18)

For the remaining boundaries of V and Vh we prescribe no slip conditions V = 0. To ensure

uniqueness of pressure we fix P̃ = 0 at a single point e. g. x = 0. For the heatspot we assume

an invariant spatial profile X(x) moving unaccelerated with US . The magnitude of temperature

change variates in time t ∈ [0, T ] and is denoted by A(t) such that

4T (x, t) = A(t)X(x−USt). (2.19)

Since the heatspot movement is periodic, including a fly back without heating at t = T , we assume

A(0) = A(T ) = 0.

Flow is driven by monopol and dipole source terms To investigate the discrepancy of

flow types present in figure 2.3-B and C we turn to the driving source term α∂4T∂t in the 3D and

effective 2D model in (2.15) and (2.17). In the considered case of a non-accelerated movement US ,

enveloped by a time dependent magnitude we yield two source contributions

∂4T
∂t

= Ȧ(t)X (x−USt)︸ ︷︷ ︸
=fA

−A(t)US · ∇X (x−USt)︸ ︷︷ ︸
=fB

(2.20)

Due to linearity of the models, w.r.t. to the source terms, we use the effective 2D model to eval-

uate the flow fields VA and VB associated with the sources separately. As shown in figure 2.4

we observe fb inducing instantaneous flow fields consisting of an area of expansion (in the front of

the heatspot) and compression (in the wake of the heatspot). Ignoring the scaling by A(t), this

flows can be related to the results of a traveling heat wave in figure 2.3-B. Contrary to this dipole

type flow field VB the instantaneous flow fields VA exhibit a monopole type. Here, depending on
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the sign of Ȧ(t) the velocity points towards or away form the heatspot location where by source

(expansion) or sink (compression) defines the flow.

Reviewing now the structure of the source terms, where fA correlates to Ȧ(t) and fB to US we

can identify these contributions with the effects of temperature changes induced by on-off switching

the heatspot (VA) and the movement of the heatspot (VB).

Figure 2.4: Qualitative instantaneous flow fields induced by source contributions: nu-
meric simulation of flow fields generated by fA (top), fB (mid) and position of heatspot (bot-
tom) at several instants ∈ [0, T ]. Heatspot properties A(t) = Tmax sin2 (π/T t) and X(x) =
exp

(
‖x− x0‖2/c2

)
for water like material parameters α = 3.3 10−4, β = 0.021. Orther param-

eters Tmax = 8, c = 2, US = 6 104 and T = 5 10−4.

The model on temporal average timescale Since in the experiments an effective flow is

observed for high frequent repetition of heatspot movement and flyback, we are interested in the

effective flow created by a single cycle. To do so we use the linearity of the model, w.r.t. to time,

and calculate a mean flow field by

〈V〉 =
1

T

∫ T
0

Vd t. (2.21)

As shown in figure 2.5, we yield for both 〈VA〉 and 〈VB〉 a compressible type flow responding to a

source-sink combination. Despite these similarities the mean flows have an opposing direction and

differ in the modulation of the central part such that a superimposition of 〈VA〉 and 〈VB〉 does

yield a nonzero flow field. This netflow can clearly be associated to the thermal response rate of

the viscosity β since it vanishes for β = 0.

Here we point out, that the superposition of 〈VA〉 and 〈VB〉 changes the characteristic of the

flow such 〈VA〉 + 〈VB〉 is of incompressible type. To obtain a qualitative understanding of this

fundamental change we consider the temporal average of the model (2.15). Using the linearity of
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Figure 2.5: Mean flow fields induced by source contributions: [left] On-Off switching of
heatspot induces compressible type mean flows in direction of laser trajectory. [middle] Movement
of heatspot induces compressible type mean flows in opposite direction to heatspot movement as
described by [81, 80]. See also figure 2.3-B [right] Superposition of both flows yields incompressible
mean flow as observed in experiments, see figures 2.3-C and 2.7. All shown flow magnitudes are
qualitative. Figure adapted from [48]

∇ such that

〈∇V〉 = ∇〈V〉 (2.22)

and fundamental lemma of analysis we yield for any time periodic field quantity f

f(0) = f(T ) ⇔ 〈∂f
∂t
〉 = 0 (2.23)

we obtain as temporal averaged model

−〈∇ ·
(
∇V +∇VT

)
〉+ β〈∇ ·

(
4T

(
∇V +∇VT

))
〉+∇〈P̃ 〉 = 0 (2.24)

∇ · 〈V〉 − α〈4T∇ ·V〉 − α〈∇4T ·V〉 = α〈∂4T
∂t
〉 . (2.25)

Or separating into spatial modulation of the mean flow variables 〈V〉 and 〈P̃ 〉, we arrive at a Stokes

like system

−∇ ·
(
∇〈V〉+∇〈V〉T

)
+∇〈P̃ 〉 = −β∇ · 〈4T

(
∇V +∇VT

)
〉 (2.26)

∇ · 〈V〉 = α〈∂4T
∂t
〉+ α∇ · 〈4TV〉 , (2.27)

with three source terms scaling by α or β. We already know that α〈∂4T∂t 〉 = 0 but we emphasize

that this implies 〈fA〉 = −〈fB〉 which requires the source-sink configurations of these source terms

to cancel on mean flow time scale.

The remaining terms are evaluated numerically for a modified parameter set with water like

α = 3.3 10−4 and to magnify the mean flow effect with β = 0.1, see figure 2.6. Since both source
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terms ∇ · 〈4TV〉 and ∇ · 〈4T
(
∇V +∇VT

)
〉 are of magnitude O(1), but are rescaled by α and β

we conclude that for α� β the mean flow 〈V〉 indeed can be considered as incompressible.

Therefore, the mean flow can be recovered by a superposition of flows generated by force

monopoles, as done in figure 2.3-C. In this context we point out that∫
V
∇ · 〈4T

(
∇V +∇VT

)
〉 dV ≈ 0 (2.28)

such that the effect of thermoviscous pumping does not exert an overall force on the system.

Figure 2.6: Magnitude and spatial modulation of mean source terms: Source terms w.r.t.
to mean flow model as described in equation (2.26). [left] Distribution of ∇ · 〈4TV〉 ∈ [−2.4, 2.4]
indicating a limited compression at end point of heatspot trajectory and expansion at start point.
[right] X component of term −∇·〈4T

(
∇V +∇VT

)
〉 ∈ [−5, 16], indicating a strong force with op-

posite direction of heatspot trajectory. While off the heatspot trajectory weak forces in direction of
heatspot movement (yellow arrows indicating direction of force scaled by magnitude). Both source
contributions even out in the spatial integral such that the mean flow is overall mass conserving
and force free.

Boundary conditions restrict admissible heatspot trajectories in the model Before

concluding this section we will turn to the boundary conditions. By choosing no slip conditions on

∂V we implicitly required, by Gauss theorem,∫
V
∇ ·V dV = 0 (2.29)

which does not coincide with the mass conservation for a compressible flow type and causes ill

posed problems for ∫
V
4T∇ ·V +∇4T ·V +

∂4T
∂t

dV 6= 0. (2.30)

An expamle for such situations is given for heatspot trajectories crossing the boundary ∂V .
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2.3.3 Comparision Model Prediction to Experiments in C. elegans Embryo

For validation we reproduce an experimental setting of thermoviscous pumping inside the C. elegans

embryo at the onset of maintenance phase immediately following the cytoplasmic streaming phase,

as given in [48]. In figure 2.7 we compare the experimental flow field with the model on average

time scale and observe very good agreement. Both data sets exhibit a typical incompressible flow

consisting of two vortices shaped by the domain geometry. Remarkably, for choosing water like

material parameters (α = 3.3 10−4 [1/K] and β = 0.021 [1/K]), the peak velocity is reproduced

within 5 percent difference w.r.t. the experimental observations.

Figure 2.7: Model predicted flows match FLUCS induced flows: Snapshot of induced
flow fields in embryo on average time scale for thermoviscous pumping a from left to right.
[Left] Stokes like flow pattern obtained by 3D model with water like material parameters (α =
3.3 10−4 [1/K] and β = 0.021 [1/K]). Cell shape approximated by an ellipsoid with major axis
[25 [µm], 15 [µm], 15 [µm]]. [Right] Flow pattern induced by f = 2 [kHz] temperature oscillations of
4T = 3 [K]. Figure adapted from [48].

Furthermore, we use the model to elude the observed effect where thermoviscous pumping in-

duces circular streaming inside the C. elegans embryo to transport the PAR distribution, see figure

2.9. The model is used to investigate the principal feature of suppressing a flow vortex by choosing

a heatspot trajectory sufficient close to the domain boundary. As shown in figure 2.8, we observe

that, by shifting the trajectory towards the boundary, the trapped vortex is compressed and slowed

down up to a complete dissolution.

As typical for flows of Stokes type, where momentum influx is immediately compensated by

dissipation due to shear stress, we observe a redistribution of shear stress for replaced heatspot

trajectories. The stresses previously stored in two vortices are now distributed in a single vortex

requiring amplified gradients in the flow field to compensate the unchanged momentum influx.

This effect yields an increased velocity close to the heatspot trajectory. The full circular pumping

trajectory, as used in experiments shown figure 2.9, can be obtained through a piece-wise super

position of flow field generated by rotated heatspot trajectories.
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

Figure 2.8: Boundary near scan trajectories induce vortex annihilation and strong flows
parallel to cortex: [A]: Vortex trapped between scan trajectory and cortex is slowed compressed
and finally dissolved. Three scan trajectories (red arrow, parameters as in figure 2.7) and induced
mean flows (yellow stream lines) in ellipsoid [27 [µm], 15 [µm], 15 [µm]] with distances (a) 5 [µm], (b)
10 [µm], (c) 15 [µm] to cortical layer. [B]: Velocity magnitudes of flows at scan trajectory increase
with reduced distance to cortex. Geometric restriction of flows induces up to factor 2 faster peak
velocities. Figure adapted from [48].

2.3.4 Capacities and Limits of Modeling for FLUCS

In this section we have extended the model of F.M. Weinert and D. Braun by providing a detailed

discussion of source terms and deriving an effective mean flow model. These two extensions enabled

us to pin down the origin of the compressible and incompressible flow types in [80]. Furthermore,

the mean flow model allowed us to evaluate the effective force field created by a prescribed heatspot

trajectory. In this context we could also establish by numerical experiment that flows induced by

thermoviscous pumping do not induce an overall force on the system. Considering the bounded

nature of a cellular system we highlighted the incompatibility of the proposed model to describe

the effect of heatspot trajectories crossing the domain boundaries.

The comparison to experimental measurements on hydrodynamic scale assured that cytoplas-

mic streaming induced by thermoviscous pumping can be described by the mean flow model and

assuming water like parameters. Overall we conclude that the mean flow model is suitable to de-

scribe the flows on hydrodynamics scale induced by thermoviscous pumping of in-vivo cytoplasm.

Th experimental method and its analytical modes are versatile and open up a wide array of possible

application in mechanical experiments with living cellular organisms [38].

2.4 Transport by Cytoplasmic Streaming in the C. elegans Em-

bryo

2.4.1 Mechanical Perturbation Experiments

After establishing a robust notion for cytoplasmic streaming, as Stokes flow on hydrodynamic scales,

and deriving an effective description for the effects of thermoviscous pumping in the C.elegans em-

bryo, we will review the experimental results presented in [48]. These experiments provide decisive

insights how cytoplasmic flows can contribute to the process of PAR domain formation.

26
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In this context, FLUCS is used to induce flow perturbation inside the living embryo. Ex-

periments are performed immediately after the cytoplasmic streaming has ceased at the onset of

maintenance phase. This allows fully controlled flows in the cytoplasm. The FLUCS parameters

are chosen such that flows are at a similar magnitude, as observed in the previous cytoplasmic

streaming phase, and a limited local heating, within the bounds of typical ambiance temperature

variations.

PAR concentrations are susceptible to advective transport We now discuss a set of ex-

periments concerned with the balance of diffusion to advection in cytoplasm and cortical layer. As

shown in figure 2.9-A, B, C, induced flows are capable of altering the local distribution of PAR-2

proteins. Here an induced stagnation flow at the cortical layer increases the concentration up to

factor 3. Whether this increase in the cytoplasm does also imply an increase in the cortex remains

open but the change of local gradients is highly likely to impact the binding dynamics between

those two domains.

Figure 2.9-D, E, F illustrates the second experiment, where induced flows are used to rotate

overall PAR-2 distribution in cortex and cytoplasm. Most remarkably the rotation of cortical do-

main was possible by inducing a rotational cytoplasmic flow. Further, no temporal delay is observed

between the application of flows in the cytoplasm and the onset of displacement in the cortex. Also

a strong coupling efficiency between the cortical and cytoplasmic velocities(Vcortex ≈ V/2) is ob-

served, underlining the strength of the mechanical coupling of these two domains.

Combining these two results we have strong experimental indications that advection, by flows

at typical magnitudes, outpaces diffusion for the PAR-2 concentrations. Further we observe the

hydrodynamic coupling between cortex and cytoplasm to be double sided, such that flows in one

domain will induce flows in the other by interfacial drag.

Large scale transport has qualitative impact on asymmetric cell division Basing on the

concept that cortical PAR domains are primary markers for cell division [27, 18, 17] artificial flows

were used to dislocate these domains, see [70] for related experiments. As in the previous experi-

ment, rotational flows are excited by FLUCS to induce a rotational displacement of PAR domains.

After applying such distortion the response of the living system is monitored, see figure 2.10. In

systematic tests it was observed that for rotation less than 90◦, PAR domains realign with original

anterior-posterior axis figure 2.10-A, while for displacements across > 90◦ PAR domains align with

the inverted anterior-posterior axis, figure 2.10-B. As suspected, the subsequent cell division follows

the alignment of the PAR domains and an inverted cell asymmetry is observed for alignment along

the inverted anterior-posterior axis, figure 2.10-C.

This striking experiment demonstrates the fundamental bistable character of the alignment

of the PAR domains which admits only stable PAR domains centered either at the anterior or

posterior pole. How this bistability can emerge and which role the shape of the embryo plays will

be discussed in chapter 4. Finally, the observation, that cytoplasmic flows are sufficient to cross

the threshold between the stable configurations, underlines their role in the establishment of cell
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Chapter 2. Cytoplasmic Streaming as Stokes Flow

Figure 2.9: Induced cytoplasmic streaming transport of PAR-2 distribution: [Top] In-
duced cytoplasmic streaming facilitating local increase of PAR-2 concentration in cortical region
by transport. [A]: Initial distribution of PAR-2 with arrow indicating overall direction of FLUCS
induced flows. [B]: Detail of stagnation point for flows close to the cortex. Flow separation at stag-
nation point induces increased depositing of advected PAR-2. [C]: Up to three times local increase
of PAR-2 at stagnation point. [Bottom] Cytoplasmic flows induce large scale transport. [D]: FLUCS
induced flow field consisting of strong single vortex encircling complete cytoplasmic domain. Scan
path close to the cortex. [E]: Initial distribution of PAR-2. [F]: Consistently transported PAR-2
distribution. Figure adapted from [48].

polarity.

2.4.2 Conclusion

To conclude this chapter we briefly summarize the results. In the context of modeling, we estab-

lished an effective description for the cytoplasmic streaming, on scale of tens of seconds, along a

Stokes flow model for a passive Newtonian fluid. This flow model is linear and parameter free

underlining it’s basal nature, but also enabling useful analysis techniques like mode decomposition

of cytoplasmic flows. Further the modeling of Weiner and Braun for thermoviscous pumping effects

could be integrated in this effective model by deriving an effective force field induced by pumping.

At this, observable, time scale we could numerically demonstrate the absence of overall forces ex-

erted by thermoviscous pumping. Again by linearity of the flow model we are able to predict and

design a wide array of flow patterns induced by FLUCS.

Finally the mechanical perturbation experiments performed with FLUCS highlighted the rele-

vance of transport processes in the process of cortical PAR domain formation, confirmed a double

sided mechanical coupling of cortex and cytoplasm as well as revealed the fundamentally bistable

character PAR-domain alignment.
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Figure 2.10: Axis misalignment recovery in-vivo and inverted cell division for induced
misalignment:[left] Sequence of instants of cell [right] Induced shift of chemical body axis by
rotation A:< 90◦ and B:> 90◦. For case A the chemical axis returns to anterior posterior axis and
natural cell division occurs. B: rotation of chemical axis across threshold results in relaxation with
inversed chemical axis and inverted cell division. Figure adapted from [48].

We conclude, while the cytoplasm can be considered as a linear, passive system determined by

viscous stresses, it contributes to nonlinear effects of morphogenesis by its streaming and mechanical

coupling to the cortical layer.
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CHAPTER 3

THE CORTEX AS AN ACTIVE POLAR

GEL CONFINED TO A THIN SHELL

3.1 Introduction

We will now turn to the cortex of C. elegans embryo and discuss the impact of its thin shell like

geometry onto the biophysical dynamics there.

These dynamics include the intriguing process of PAR domain formation [27, 18, 17], a typical

example of morphogenesis on basis of mechanochemical pattern formation. Also, the material of

the cortical layer itself is of high interest, since it is highly heterogeneous consisting of anisotropic

constituents (see section 3.1.1). It has been shown that these anisotropies are essential in modeling

stress generation by molecular motor [32]. These microscopic effects can give rise to active stresses

on hydrodynamic scale. On such coarse grained scale the anisotropies may persist and give the

material an effective orientation. This orientation is an essential variable in the models of active

polar or nematic gels, which we will discuss in section 3.1.2.

Further we recall the cortex as confined between, on the outer side, the cell membrane-rigid

eggshell and, on the inside, by the incompressible cytoplasm, prescribing its thin shell geometry.

Such geometry is a highly interesting hybrid of a two dimensional surface and a three dimensional

volume. We will take a brief detour into topology, in section 3.1.3, to elude the fundamental effects

arising from this specific geometry.
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With this background we can address the central question of this chapter:

How do active mechanochemical processes couple to the geometric features of a thin shell

geometry?

Here we observe three fundamental principles. The tensorial degree of the considered physical

variable determines the possible types of coupling. Further the boundary conditions, in normal

direction, off the thin shells boundary specify the coupling, while curvature provides the local

strength of these coupling. Overall we will see how thin shell geometries with non constant curva-

ture will induce additional stresses in systems of active polar and nematic fluids. But, to keep the

argumentation as plain as possible, we will discuss the coupling mechanisms at example systems of

exclusive orientational order. These fundamental systems can be considered as a typical realization

of the famous Poincaré-Hopf theorem [47].

In this chapter we discuss the problems of polar order on a surface as an approximate descrip-

tion of a thin shell system. In the case of nematic ordering we refine the approach by using the

analytical method of thin shell limit [57, 56], highlighting the importance of boundary conditions

in the transition from thin shell to surface. With this framework we can obtain an effective model

for active polar fluids in thin shells and discuss possible effects, originating in its specific geometry,

on cellular scale.

Complementary, we provide an overview of the notions of differential geometry necessary for

the treatment of problems of orientational order on surfaces in section 3.1.4.

3.1.1 Properties of the Cell Cortex

The cellular cortex can be considered as a layer of Actin filaments, Myosin motors and proteins ly-

ing next to the plasma membrane [69]. It is a dynamical structure undergoing constant remodeling

and turnover, allowing the cell to move, change shape and exert forces. It’s mircoscopic dynamics

gives rise to macroscopic properties like viscoelasticity [14] or localized cortical tension [40]. Namely

the constant turnover of the cortex constituents enables the cortex to act as a viscous fluid on long

timescales (tens of seconds [23]) while on short scales the elastic behavior dominates.

As a coarse grain model for these dynamics the active gel theory has been suggested [40, 69].

There, the cortex is described as a continuous gel subject to internal stresses generated by chemical

processes combined with an average alignment of the non-isotropic constituents. Such models have

been used to describe cortical flows involved in processes of cell migration [25] or polarization [46]

of C. elegans in its single cell state.

Reviewing the geometry of the cortex we observe it uniformly covering the complete cell with

an very small thickness 50− 100 [nm] compared to the cell size of of 150 [µm], such that a descrip-

tion as a thin shell seems applicable. Furthermore, in [50] is stated that the Actin filaments are

predominantly aligned parallel to the cortex, which will turn out to be a decisive feature for the

dynamics in thin shells.
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3.1.2 Active Polar Gels

Conversation laws and rate of dissipation We present a generic model analogue to [40],

describing the dynamics for a coupled system of motor proteins, chemical energy and polar filaments

close to equilibrium in a volume like domain V ⊂ R3. Here we use a coarse grained description with

continuous fields, valid on a large length scale compared to microscopic volume elements. These

fields obey several conservation laws. Mass conservation can be expressed by

∂tρ+∇ · (ρV) = 0. (3.1)

Here, ρ denotes the mass density, V the velocity and momentum is defined by M = ρV. Further

we describe the chemical processes along a set of particle number densities nM, M ∈ {0, ...,M},
which obey

∂tnM +∇ · (nMV + JM) = rM (3.2)

where rM denotes the reaction rates and JM relative fluxes. With a mass density of the molecules

mM we have ρ =
∑
MmMnM. Anyhow, for the sake of simplicity we will restrict our further

derivation to a single particle type n and drop the index M.

Further we express the momentum conservation by a combination of transport and forces exerted

by internal stresses σtot

∂tM +∇ · (MV)−∇ · σtot = 0 (3.3)

For the sake of simplicity we follow [40] and do not discuss conservation of angular momentum,

related details can be found at [33].

We define an orientation P by a local average of microscopic molecule orientation. Following the

Frank-Oseen approach [73] we use a free energy to model the director dynamics towards a ground

state. Here, we are not concerned with the details of such free energy and summarize possible

formulations for directors by f0(P,∇P, n). Further f denotes the overall energy density. The free

energy of the system is then defined by

FV (V,P,∇P, n) =

∫
V

|M|2
2ρ

+ f0(P,∇P, n) dV =

∫
V
f dV (3.4)

The conjugate fields can than derived by variation of the free energy and are the molecular field

H = −∂f/∂P and the chemical potentials 4µtot = ∂f/∂n, 4µ = ∂f0/∂n with

4µtot = −1

2
m4µ (3.5)

Using the material derivative, e. g. for the director field DP/Dt = ∂tP + (V · ∇) P, the rate of
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dissipation of the overall system is given by the derivative in time and reads then

dFV
dt

=

∫
V
− (∇V) : σtot +4µ r + J · ∇4µ−H · DP

Dt
dV

+

∫
∂V

[
V · σtot · ν − ν ·V

( |M|2
2ρ

+ f0

)
−4µν · J + ν · ∂f0

∂(∇P)
· DP

Dt

]
d∂V (3.6)

For details of the derivation we refer to [40]. To obtain a description in rotational and trans-

lational invariant variables we separate stress and rate of deformation tensors in symmetric and

antisymmetric parts

σtot = σ +
1

2
(PH−HP) (3.7)

∇V = Υ + Ω (3.8)

Where Υ = 1/2
(
∇V +∇VT

)
and Ω = 1/2

(
∇V −∇VT

)
. Assuming a sufficiently extended

domain such that we can neglect the boundary contribution, we rewrite the rate of dissipation such

that

dFV
dt

=

∫
V
−Υ : σ +4µ r + J · ∇4µ−H · D

cP

Dt
dV (3.9)

where DcP/Dt = ∂tP + (V · ∇) P + Ω ·P denotes the corotational derivative. Finally separating

deviatoric σd and isotropic stresses P I3 we can identify the flux-force pairs from (3.9)

σd ↔ Υ,
DcP

Dt
↔ H, r ↔4µ, J↔ ∇4µ, (3.10)

Onsager relations After establishing this framework, we use the Onsager relations to identify

linear reactive and dissipative couplings bewteen fluxes and forces, in situations close to the equi-

librium. In the case of hydrodynamic limit, where we consider all elastic stresses as relaxed, we

introduce phenomenological coeffcients for coupling terms obeying symmetry relations. For the

symmetric and trace-free deviatoric stress σd = σ − P I3, with pressure P and I3 the R3 identiy

matrix, we yield

σd = 2ηΥ +
ν1

2

(
PH + HP− 2

3
(P ·H)I3

)
+ ζ4µ

(
PP− P ·P

3
I3
)
, (3.11)

with viscosity η and the reactive polarity-flow coupling ν1. The coupling by ζ, also reactive,

describing the generation of stresses by chemical reaction. For the orientational order the flux-force

variable pair we yield

DcP

Dt
= −ν1P ·Υ +

1

γ
H + λ1P4µ, (3.12)
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with additional reactive coupling for deformations-polar ordering, −ν1, and dissipative coupling to

the chemical reaction λ1. For the reaction rate we find an expression

r = −ζ
(

PP− P ·P
3

I3
)

: Υ + λ1P ·H + Λ4µ, (3.13)

coupling reaction rate to the alignment of polar fields in a dissipative manner, λ1, while the coupling

to flow induced deformations is reactive(−ζ). Finally we consider the couplings of relative fluxes

as relaxed in the hydrodynamic limit and have a only diffusive D and directed fluxes λ2

J = −D∇4µ+ λ2P4µ. (3.14)

Inserting these relations into the conservation laws, allows us to obtain the dynamic equations

governing the active polar gels. Using a shorthand definition Q = (PP−P ·P/3I3), the scalar

valued dynamic equations read

Dρ

Dt
=0 (3.15)

Dn

Dt
+∇ · (D∇4µ+ λ2P4µ) =− ζQ : Υ + λ1P ·H + Λ4µ (3.16)

For the director field we have (3.12), while the momentum balance can be rearranged to a Navier-

Stokes like form

DM

Dt
− 2η∇ ·Υ +∇P =

1

2
(PH−HP)

+
ν1

2

(
PH + HP− 2

3
(P ·H)I3

)
+ ζ∇ · (4µQ) (3.17)

where we have additional stress by the rotation of P towards H, stresses due to the anisotropy of

the material and active stress.

Impact of thin shell geometry To shed a light on the specific nature of the additional con-

straints imposed by thin shell geometries, we imagine the previous model on a two dimensional

surface S, topological equivalent to a sphere. As [50] states the Actin molecules are aligned parallel

to the surface and therefore P is restricted to the tangential space TS of S as well. Assuming the

deformations V to be also tangential, we end up with a set of coupled tangential tensor fields with

degree zero (scalars n), one (vectors P, V) and two (tensors σd).

Such restricted state spaces require a specific notion of derivatives ∇S , since we expect the

gradients of those fields to be tangential as well. Combined with the premise of invariance under

coordinate transformation only a limited set of derivative notions is admissible. Here we use

the Levi-Civita connection, defined by a compatibility condition of metric g and the Christoffel

symbols Γ. Generally speaking g describes the local tangential space of S while Γ covers the

spatial modulations of g. Denoting by i, j, . . . coordinates along tangential directions we can define
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the surface bound derivative along directional derivatives

d = 0, n : S 7→ T0S [∇Sn]i = ∂in (3.18)

d = 1,V : S 7→ T1S [∇SV]ij = ∂jVi − ΓkijVk (3.19)

d = 2,σ : S 7→ T2S [∇Sσ]ijk = ∂kσij − Γlkiσlj − Γlkjσil (3.20)

By these definition, we observe the derivatives of tensor fields to include a number of Christoffel

symbols matching the tensorial degree of the considered field. A first hint that dynamical equa-

tions of non-scalar fields will couple to the geometric properties of the surface. A more detailed

introduction to the notions of differential geometry is given in section 3.1.4.

3.1.3 A Brief Detour to Topology

A widely observed physical effect, see [10] for a review, is closely related to topology and is called

geometric frustration. This denotes the situation where a physically favorable ordering, e. g. ener-

getically minimal, can not propagate throughout the whole domain due to geometric properties of

the domain. In such situations localized areas of broken order, so called defects, emerge and break

symmetries in the system states. Furthermore, these defects turned out to be pivotal entities in

the dynamics of various physical systems [31, 85, 35].

Figure 3.1: Topological defect types of vector fields: Defect types with topological charge +1
[A]: sink, [B]: source, [C]: vortex. [D]: saddle point defect with charge −1. Figure adapted from
[10].

The effect of geometric frustration can be described in terms of topology by Euler Characteristic

χ of a domain and the so called isolated zeros xi. The Euler Characteristic χ is a number describing

the topological structure of the domain regardless of its specific shape, e. g. any two dimensional

surface without a “hole” is topological equivalent to a sphere with χ(S) = 2. Considering a

normalized vector field P defined on this domain and aligned tangential to the boundary we can

define isolated zeros as localized discontinuities in the vector field. Further these discontinuities

can be characterized by the index or topological charge of the discontinuity index(xi), see figure

3.1 for examples. A central concept in this topic is formulated by the Poincaré Hopf theorem [47].∑
i

index(xi) = χ(S) (3.21)

It establishes that, regardless of the chosen normalized vector field P on domain S, the topological

charges of the isolated zeros of P will sum up to the Euler Characteristic χ(S). Also, with the
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notion of a topological charge we can think of defects in an analogy to electric charged particles.

Defects, as charged particles, repel each other for topological charges of matching sign while op-

posing charges attract each other and annihilate on contact.

Figure 3.2: Topological constraints for vector fields in thin shells and surfaces: Plots show
piece, marked in red, of spherical thin shell. [A]: Defect free vector field defined on thin shell Sh
with χ(Sh) = 0. [B]: Spherical surface χS = 2 with tangential vector field requires defects, red dot
marks sink defect. [C]:(left) Boundary of Sh consists of two concentric spheres with nonzero Euler
characteristic χ(∂Sh) = 4. Here a configuration of tangential vector field with two sink (red dots)
index∂Sh = +1 defects. (right) A vector field in Sh conforming with tangential vector fields at ∂Sh.
Two defects are induced but, due to changed dimension, topological charge differs. Sink defect
(blue dot) with indexSh = +1 and saddle point defect(green dot) with indexSh = −1. Thin shell
limit for h→ 0 yields transition from volume to surface and changing Euler characteristic. Limiting
vector field, as shown in [B], can be considered as average (point wise along normal direction) of
vector fields on ∂Sh.

Considering a gel consisting of elongated particles, with a distinguished head, which tend to

align parallel. If this gel is restricted to a two dimensional sphere like surface S and the particles

are forced to align tangential than, due to χ(S) = 2, no defect free states are possible and at least

one defect has to occur. On the other hand side, if we consider the associated thin shell Sh domain,

e. g. a tubular extension of S with thickness h, we have a three dimensional domain with χ(Sh) = 0.

For such geometries one would expect the existence of a defect free configuration, e. g. figure 3.2-A.
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Therefore, the question arises what happens in process in the transition between the topological

different spaces of a thin shell and a surface for h→ 0.

The answer lies in the boundary conditions chosen on ∂Sh. The boundary of the thin shell

consists of two sphere like surfaces such that χ(∂Sh) = 4. Requiring a tangential alignment of

the particles on this boundary implies the existence of at least two defects, see figure 3.2-B. These

defects on the boundary induce the existence of defects in the thin shell. But since topological

charges differ depending on the dimensionality of the domain, some defects in the thin shell change

the sign of their charge and thereby the defect configurations conforms the Poincaré Hopf theorem,

see figure 3.2-B. In such set up, it is plausible that for vanishing thickness of the thin shell, the

defects merge to a surface defect as shown in figure 3.2-C.

This illustrative examples highlights the fundamental impact of boundary conditions in the

process of thin shell limit h → 0 and motivates the description of thin shell dynamics by effective

surface models.

3.1.4 Notions of Differential Geometry

Tensor fields in flat and curved spaces For notational compactness we make two general pre-

requisites. First, we adopt the Ricci calculaus convention where repeated indices in a term imply

summation over this index. Second, most of the tensor formulations presented here are invariant

w.r.t. coordinate transformations, thus a co- and contravariant distinction in the object represen-

tation is not necessary.

We consider a connected subset V ⊂ Rn with a parametrization X : U 7→ V by coordinates ui.

With directional derivatives of X along the coordinates we define the associated basis ei = ∂iX .

With the full contraction ”:” of Rn we obtain the metric by

gij = ∂iX : ∂jX . (3.22)

A scalar product for vector fields on V is then given by 〈t,v〉V = tig
ijvj . The Christoffel symbols

of second kind are defined by

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) . (3.23)

If for V a metric exists such that g does not depend on the elements x ∈ V , e. g. the metric is

equivalent to the Kronecker delta gij(x) = δij , and the parametrization X is smooth on the peri-

odically extended coordinate space U we call V a flat space, otherwise V is called curved.

In this framework the tensor field t defined on V of degree d is a set of pointwise linear forms

which can be expressed along the coordinates of an associated product basis, namely

t : V 7→ L(V × V × . . . V︸ ︷︷ ︸
d times

; R), t = ti1...ide
i1 . . . eid (3.24)
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To switch between components and object representation brackets [] and {} are used, i. e., for a

2-tensor t we write [t]ij = tij for the components and {tij} = t for the object. The notions of full

contraction and scalar product are adopted to tensor fields by a contraction/summation over all

components

t : v = ti1...idv
i1...id , 〈t,v〉V = ti1...idg

i1j1 . . . gidjdvj1...jd (3.25)

Reviewing this tensor field definitions, we point out the invariance under coordinate change com-

plying the covariance principle of physics. To preserve this covariance also for gradients of tensor

fields we use the metric preserving Levi-Civita connection. This notion of derivative is defined by

[∇t]i1...idk = ∂kti1...id −
(

Γlki1tli2...id + . . .+ Γlkidti1...id−1l

)
(3.26)

In component wise description of ∇t we use ; to separate the component denoting with the deriva-

tive, e. g. the derivative of a vector v can be expressed by the components of the two tensor or

along the derivative [∇v]ik = vi;k

Surfaces and thin shells These general definitions apply canonical to an oriented two di-

mensional surface S ⊂ R3 where ν denotes the outward pointing surface normals. Along the

parametrization XS(u, v) 7→ R3 a coordinate basis pair is defined, which will be indexed by lower

case letters i, j, k . . .. We point out that for Euler characteristic χ(S) 6= 0 the surface S is a curved

space. Denoting the surface metric by g and surface Christoffel symbols γ , covariant derivative

∇S , we can define the curvature terms of the surface. The shape operator [B]ij = ∂iXS : ∂jν with

Gaussian K = det{Bij} and mean curvature H = Bii. Further we can define the tangent space TS
pointwise by TS : ∪x∈STxS such that TxS × ν = R3. A tangential tensor field of degree d is then

defined by

t : S 7→ L(TS × TS × . . .TS︸ ︷︷ ︸
d times

; R), t = ti1...ide
i1 . . . eid . (3.27)

As notational convention we use lower case letters to denote tangential tensor fields defined on a

surface, e. g. p or q.

The thin shell Sh is then defined as a tubular extension of S with constant thickness h by an

augmented parametrization

XSh : U × [−h/2, h/2] 7→ Sh, XSh(u, v, ξ) = XS(u, v) + ξν (3.28)

For a sufficient small h, such that h‖B‖ < 1, this description is unique[57]. Despite that S is a

curved space and the thin shell coordinates (u, v, ξ) and metric G are spatial dependent, the thin

shell is a flat space and a description along the Euclidean coordinates exists. Nonetheless, those

two descriptions are equivalent and both indexed by capital letters I, J, K, . . .˙

Tensorfields defined on Sh are denoted by capital letters, e. g. P or Q. The metric and Christoffel
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Chapter 3. The Cortex as an Active Polar Gel Confined to a Thin Shell

symbols of the thin shell are again defined canonical. But expressed in thin shell coordinates these

can be related to the surface quantities. For the metric, details see [57],

Gij = gij − 2ξBij + ξ2B k
i Bkj (3.29)

Giξ = Gξi = 0 (3.30)

Gξξ = 1 (3.31)

while the Christoffels symbols relate by

Γkij = γkij +O(ξ) ΓKξξ = ΓξKξ = ΓξξK = 0 (3.32)

Γξij = Bij +O(ξ) Γkiξ = Γkξi = −B k
i +O(ξ) (3.33)

As further tool we define restrictions operators. the operator .|S yields the resctriction of a thin

shell tensor field to the surface domain while ΠS [.] is the restriction to a tangential surface tensor

field. Later Operator can be described in thin shell and Euclidean coordinates by

ΠS [Q]ij = [Q|S ]ij or ΠS [Q]IJ = Π L
I [Q|S ]LKΠK

J (3.34)

where Π is the projection matrix defined by ΠIJ = 1/2(νIνJ − δIJ) = gIJ .

It comes as no surprise that under such close relation of the geometric properties also the

covariant derivatives of surface and thin shells can be related. Consider a thin shell tensor field T

such that ΠS [T] = t it has been derived in [55] that

[∇St]i1...idk =
(
[∇T]i1...idk +

[
Bki1Tξi2...id + . . .+ BkidTi1...id−1ξ

])∣∣
S (3.35)

Function spaces and differential operators With this definitions we can turn now to suitable

function norms and spaces. We define L2 scalar products by

〈t,u〉L2(S) =

∫
S
〈t,u〉S dS (3.36)

〈T,U〉L2(Sh) =
1

h

∫
Sh

T : U dSh (3.37)

For ΠS [T] = t and ΠS [U] = u we yield 〈t,u〉L2(S) = 〈T,U〉L2(Sh) + O(h2). With the induced

norms ‖.‖S and ‖.‖Sh we define function spaces of tensor fields with degree d

L2(S, d) = {t : S 7→ L(TS × . . .× TS︸ ︷︷ ︸
d times

; R), ‖t‖S <∞} and (3.38)

L2(Sh, d) = {T : S 7→ L(Sh × . . .× Sh︸ ︷︷ ︸
d times

; R), ‖T‖Sh <∞} . (3.39)

Starting at these spaces a tensor valued weak derivative and associated solution theory can be

established. Nonetheless we will not discuss matters of regularity or smoothness. Therefore we

assume throughout the argumentation, sufficient properties to ensure existence and uniqueness of
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3.2. Intrinsic and Extrinsic Contributions on Equlibrium States of Polar Ordering

solutions of the related state equations.

Given these assumptions we can define the well known differential operators gradient, divergence

and rotation in a consistent way on surfaces and in thin shells for any tensorfield with degree d by

S Sh
Gradient: [gradS t]i1...idk = [∇St]i1...idk [grad T]I1...IdK = [∇T]I1...IdK (3.40)

Divergence: [divSt]i1...id−1
= gidik [∇St]i1...idk [divT]I1...Id−1

= GIdK [∇T]I1...IdK (3.41)

Further to define the rotation of a tensor field we use the Levi-Civita tensors E and e of associated

dimension. For the volume we define the rotation by

Rot TI1...Id−1J = −E IdK
J [∇T]I1...IdK (3.42)

For the thin shell we have a compatible notion of rotation by using Eξij = −Eiξj = Eijξ =

eij + O(h2). In this sense we obtain on the two dimensional surface a rotation [rotSt]i1...id−1
=

−eidk[∇St]i1...idk reducing the tensorial degree. A dual or adjoint rotation RotS increases the ten-

sorial degree and can be derived along the w.r.t. L2(Sh), see [54].

For the specific cases of directors and Q tensors we define the admissible state spaces by

PS ={p ∈ L2(S, 1), twice differentiable, ∇Sp ∈ L2(S, 2), ∇S(∇Sp) ∈ L2(S, 3)} (3.43)

QS ={q ∈ L2(S, 2), symetric and, trS(q) = g : q = 0, twice differentiable,

∇Sq ∈ L2(S, 3), ∇S(∇Sq) ∈ L2(S, 4)} (3.44)

The thin shell definitions of state spaces are analogous, except for the volume trace tr(Q) = G : Q.

Please note, this notion does not conform with the surface trace in a sense trS(ΠS [Q]) 6= tr(Q),

and requires extra considerations in the modelling discussed in section 3.3.1.

3.2 Intrinsic and Extrinsic Contributions on Equlibrium States of

Polar Ordering

In this section we consider the Frank Oseen model, describing equilibrias for fields of polar order

in volume V ⊂ R3. For this basic model we will derive the thin shell limit to obtain a formulation

suitable for two dimensional surface S embedded in R3.

By comparing the thin shell limit model with a Frank Oseen model derived directly on a two

dimensional curved space we discuss coupling mechanisms between surface curvature and order

variable. After considering the impact of system size we investigate by geometrical variation how

curvature influences the stability of defect configurations. We conclude the section by evaluating

the applied methods and discussion of the results in the context of cellular length scales.
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3.2.1 Frank Oseen Model and its Thin Shell Limit

The unit free Frank Oseen model considers a field of unit sized vectors P, which we call director.

As ground state a homogeneous configuration of parallel directors is defined and any deviations

from this ground state are penalized by a free energy.

FVFO(P) =
1

2

∫
V
K1 (∇ ·P)2 +K2 (P · (∇×P))2 +K3‖P× (∇×P) ‖2 dV (3.45)

Here K1 ,K2 , and K3 are the Frank phenomenological constants defining the elastic response to

spatial variations of P, namely (from left to right) for splay, twist, and bend.

For our discussion of fundamental properties, we consider the one-constant approximation K :=

K1 = K2 = K3. Using further ‖P‖ = 1, the elastic energy (3.45) thus reads

FVel (V ) =
K

2

∫
V

(∇ ·P)2 + ‖∇ ×P‖2 dV (3.46)

In this model, any defects are modeled as discontinuities of measure zero. Since we are interested

in a global smooth variable P, we adjust the model by dropping the unit length prerequisite for

P. Analogous to other models, e. g. the Landau-de Gennes model, we consider P as a macroscopic

variable describing the average orientation of microscopic particles and ‖P‖ as order parameter

describing the variance in the microscopic orientation. In this sense we consider ‖P‖ = 0 as isotropic

distribution and ‖P‖ = 1 the perfectly aligned (also called nematic) distribution. Enabling localized

defects we use an even potential with parameter ωn. In analogy to Landau-de Gennes this energy

is labeled “thermotropic”.

FVth(P) =
ωn
4

∫
V

(
‖P‖2 − 1

)2
dV (3.47)

Thin shell limit We consider thin shell geometries as tubular extensions Sh of a surface S with

characteristic length (e. g. maximum edge lenght of bounding box) l with constant thickness h

where h � l. Since we are interested in spatial configurations of P in tangential direction of S
we assume a tangential alignment of P throughout Sh and P to be constant along the direction of

surfaces normal ν.

P|S = p ∈ TS and P I;ξ = 0 (3.48)

Defining the thin shell energy as average in ν direction

FSh(P, h) =
1

h

[
FShel (P) + FShth (P)

]
(3.49)
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we can perform the limit h→ 0 to obtain a surface bound energy

FS(p) =
K

2

∫
S

(divSp)2 + (rotSp)2 + ‖B · p‖2 dS

+
ωn
4

∫
S

(
‖p‖2 − 1

)2
dS (3.50)

=FSel(p) + FSth(p)

In the thin shell limit, we observe the interplay of curved space and the vector valued field P in

the sense that normal components change along tangential directions, P ξ;i 6= 0. Therefore, the

associated components of the thin shell Christoffel symbols do not vanish regardless of thickness h,

namely P ξ;i = ΓξjKP
K = BjkP k +O(ξ). For complete derivation of the thin shell limit we refer to

[54].

Dynamic equations We obtain dynamic equations for minimizing FS(p) by a L2-gradient flow

approach,

∂tp = −δFS(p) (3.51)

where the variation of FS can be interpreted w.r.t. the L2(S) scalar product. For q ∈ PS this

reads

δFS(p) =

∫
S
〈∂f

S(p)

∂p
,q〉S dS

=

∫
S
K (divSp divSq + rotSp rotSq) +K〈B · p,B · q〉S + ωn

(
‖p‖2 − 1

)
〈p,q〉S dS

=

∫
S
K〈∆dR

S p,q〉+K〈B2 · p,q〉S + ωn
(
‖p‖2 − 1

)
〈p,q〉S dS (3.52)

with ∆dR
S (.) := −(gradS divS(.) + RotS rotS(.)) the Laplace-deRham operator. This leads to the

evolution equation

∂tp +K∆dR
S p +KB2p + ωn

(
‖p‖2 − 1

)
p = 0 (3.53)

in S×(0,∞) with the initial condition p(t = 0) = p0 ∈ TS. The gradient flow approach guarantees

dissipative dynamics and stationary solutions of (3.53) as local minima of FS .

3.2.2 Comparison of Intrinsic and Thin Shell Model

Alternatively to deriving the surface model via a thin shell limit one could also define the elastic

energy by formulating the Frank-Oseen energy immediately on a two dimensional surface. So

ignoring the embedding space, by just replacing the covariant derivatives in (3.46) and using p

instead of P, we yield following ”intrinsic” surface energy, discussed in [10] .

FS,INel (p) =
K

2

∫
S

(divSp)2 + (rotSp)2 dS (3.54)
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Chapter 3. The Cortex as an Active Polar Gel Confined to a Thin Shell

Inserting consistently rotated vector field R(p,4θ) = cos(4θ)p+sin(4θ)(ν×p) we find this energy

to be invariant under such rotations. Further, as discussed in [10], this energy and its associated

dynamic equation are sensitive to curvature of S in the sense that defects are attracted to areas of

curvature with matching sign of their topological charge. Therefore in such systems an interplay

of Coloumb like defect-defect interaction and a geometric forcing acting on the individual defect

positions exists.

The previously derived thin shell limit energy, see elastic contribution FSel(p) in (3.51), extends

this intrinsic model by an extrinsic contribution term ‖B · p‖2, which can be split into two parts

K

2

∫
S
‖B · p‖2 dS =

K

2

∫
S
H〈B · p,p〉 − K‖p‖2 dS (3.55)

〈B · p,p〉 can be considered as an anisotropic scalar product w.r.t. to the local curvature. Such

that, minimizing this energy contribution implies aligning p along lines of minimal curvature. In

consequence, see figure 3.3, the energetic invariance under consistent rotation observed in the in-

trinsic surface model is not present in the thin shell limit model. The prefactor of mean curvature

H rescales the contribution and might change the preferred alignment w.r.t. lines of minimal cur-

vature for complex geometries where sgn(H) 6= sgn(K).

Figure 3.3: Extrinsic curvature contributions eliminate rotational invariance: Energy
contribution of

∫
S H〈Bp,p〉 dS under rotation 4θ of director field p on an ellipsoid with major

axis [1, 1, 1.25]. Energetic minimum at 4θ = 0 with director parallel to lines of minimal curva-
ture(marked in red), increased energy at intermediate state at 4θ = π/4 and maximal energy for
director orthogonal to lines of minimal curvature at 4θ = π/2.

The contribution −K‖p‖2 can be related to the thermotropic potential FSth and introduces a

cross coupling to the geometries curvature.∫
S
−K

2
K‖p‖2 +

ωn
4

(
‖p‖4 − 2‖p‖2 + 1

)
dS (3.56)

This can be interpreted as a superposition of a double well potential (scaled by ωn/4) and a

geometric potential (scaled by −K/2). The energetic minima’s of this energy can be determined

pointwise and are given by

‖p∗(x)‖ =

√
1 +

K

ωn
K(x) (3.57)
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Therefore, we observe an impact of the local curvature scaled by the ratio of constants K/ωn. For

areas with sufficient strong, negative Gaussian curvature, K ≤ −K/ωn, only the isotropic state is

stable. Figure 3.4 exemplifies such situation for a sequence of Eneper disc pieces, scaled by factor s.

We define the sequence of such manifolds by

XE(s) : (u, v) ∈ [−1/2, 1/2]2 7→ x =
1

3

 1/3u3s3 − u2vs3 − us
−1/3v3s3 + uv2s3 + vs

(u2 − v2)s2

 (3.58)

Further, the resulting manifolds E are rescaled to have matching surface area of 1. As boundary

condition we used homogeneous Neumann type, to enable a defect free minimal energy configura-

tion. Starting from a defect free homogeneous director configuration we numerically evaluate the

configurations of p with minimal energy FE(p) for various values of s.

We observe for increasing s an overall increase in the magnitude of Gaussian curvature. Since

the Eneper disc is a minimal surface the mean curvature remains unaffected H = 0. For low values

of s ∈ [0, 2] we observe a continuous deformation of an uniform configurations. For higher values

s ∈ [2, 3], we observe an expanding area with reduced ‖p‖ < 1, centered at the saddle, until for

s > 3 only the isotropic phase exists.

Figure 3.4: Negative Gaussian curvature induces localized broken order: [A]: minimal
energy configurations for several values of s, glyphs indicate director, colors show magnitude [B]:
L2(E) norm of minimal energy configuration(blue line, diamonds indicate values of states shown in
[A]) and predicted value by ‖p∗(x)‖L2(E)(red dashed line) [C]: Distribution of Gaussian curvature
on the geometry. Energy parameters K = 1, ωn = 200

In the curvature induced transient between ordered and isotropic phase, we also observe a

reordering of the director field. Starting at an uniform field a saddle point defect is inserted at

s ≈ 2.3. For high values a second saddle point defect occurs and enforces a symmetric out of
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center position of both defects. Eventually the curvature has reached a critical value in the area

close to the center and the intermediate defect structures are unified to a single area of isotropic

ordering. Nonetheless, reviewing the very good agreement of theoretical prediction (3.57) with the

simulated values of the transition, see figure 3.4-B, we asses these reordering effects as secondary

to the ordered-isotropic transient.

3.2.3 Curvature of Geometry Influences Stability of Defect Configurations

To refine the understanding of the interplay of curvature and ordering, we consider a sequence of

surfaces with non-constant curvature. The sequence starts with the unit sphere, which is deformed

into a nonic shape for increasing form parameter C, for details of these transformation see [54].

These nonic shapes are charcterized by three regions with high positive Gaussian curvature and a

single saddle with negative K, see figure 3.5 for examples. All surfaces have χ(S) = 2, thus inhibit-

ing defect free states. To investigate the energy value FS(C)[p∗] of a stationary solution p∗ and the

C = 0.5 C = 0.635 C = 1.175

Figure 3.5: Nonic surfaces corresponding to three different stretching parameters C:
Related to results shown in figure 3.7. [Left] Nonic surface with defect fusion-time > 0, [Center]
four-defect configuration gets stable, [Right] four-defect configuration is energetically equivalent to
two-defect configuration.

stability of defect configurations we analyze the evolution of two different initial values p0,4 and

p0,2. The first one p0,4 has four separated defects and is defined by projecting the cartesian basis

vector ey into the tangent space of each point x ∈ S, while the second inital value has two defects,

p0,2 analogous defined by the projecting ex. A survey of suitable numerical methods solving the

dynamic equations is given in [54]. Within this setup we evaluate the energy for stationary solutions

p∗ and the number of defects for both initial solutions p0,4/2 for a sequence of values C ∈ [0, 1.5].

An example of the two different initial fields relaxed to equilibrium is shown in figure 3.6 for a

nonic surface with C = 1.175. We find defects with topological charge +1 at maxima of the Gaus-

sian curvature, while a defects with charge −1 may appear at the saddle point. This dependency

is in agreement with results for the similar problem of flow on curved surfaces [65, 58]. For shapes

with C ∈ [0.5, 0.635], we observe that both initial solutions converge to a two-defect configuration.

In figure 3.7-(right) we plot the fusion time for defect annihilation of initial condition p0,4. Notice

the steep increase in this time for C ↑ 0.635. For C > 0.635 a four-defect configuration becomes

stable, thereby posing a local energetic minimum. Further increasing the parameter C, continu-

ously amplifies the Gaussian curvature on the bulges and saddle. As shown in figure 3.7-(left),
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Figure 3.6: Equilibrium states for surface with C = 1.175 with four and two defects: norm
defects (color gradient) and director (glyphs). Second row: back and front detail of configuration.

this leads to a decreasing energy cost for the four-defect stationary solution, while costs for the

two-defect solution increase monotonically until the energies are equal at C ≈ 1.175. For C > 1.175

the four-defect solution becomes energetically favorable.

Figure 3.7: Energy of equilibrium states for nonic shapes: [left] energy FS [p∗] for solutions
with four and two defects for nonic shapes with C ∈ [0, 1.5] [right] and defect fusion time for the
four-defect initial solution

These experiments emphasize the impact of curvature on the energetic cost of a defect con-

figuration as well as their stability and proves the key role of domain geometry in existence of

non-trivial realizations of the Poincaré-Hopf theorem.
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3.2.4 Impact of System Size

To conclude our discussion of polar ordering in thin shells, we briefly review the thin shell limit

surface energy under the aspect of domain size. For this purpose we use l as characteristic length

scale given by the maximum edge length of a bounding box containing S.

The curvature quantities H, K and B scale by O(1/l2) such that we yield for FSel

FSel(p) =
K

2

∫
S

(divSp)2︸ ︷︷ ︸
≈O(1/l2)

+ (rotSp)2︸ ︷︷ ︸
≈O(1/l2)

+ ‖B · p‖2︸ ︷︷ ︸
≈O(1/l4)

dS︸︷︷︸
≈O(l2)

≈ KO(1) +KO(1/l2) (3.59)

For the thermotropic energy FSth we observe

FSth(p) =
ωn
4

∫
S

(
‖p‖2 − 1

)2︸ ︷︷ ︸
≈O(1)

dS︸︷︷︸
≈O(r2c )

≈ ωnO(r2
c ) (3.60)

where rc denotes the radius of defect core. For numeric investigations concerning the relation of ωn

and rc, we consider a flat disc with a single source type defect enforced by boundary conditions.

Variating ωn and defining regions with ‖p‖ < 0.9 as defect core we obtain a relation of r2
c = 1/ωn.

Assuming this holds also for curved space we yield for thermotropic energy FSth(p) ≈ O(1).

Therefore, we observe the intrinsic elastic energy and thermotropic potential are invariant under

rescaling, relevant parameters determining the fundamental dynamics are K and the defect core

radius rc, defined by ωn. Quite contrary the extrinsic energy contributions scale by O(1/l2) and

increase their impact for small systems l� 1.

3.3 Q tensors in Thin Shells

After considering equilibria of polar ordered systems we now turn to ordered systems with con-

stituents exhibiting a head-tail symmetry. The most prominent modeling of such systems is the

Landau-de Gennes model [79].

We will open this section by reviewing this model in the volume and discuss possible strategies

for defining surface bound Q tensors. Subsequently, we will generalize our previous notion of thin

shell limit and apply it to obtain a Landau-de Gennes model on surfaces, preserving the key features

of the volume model. For this surface model we present results of numerical experiments eluding

the interplay of curvature and nematic ordering. We conclude the section by discussing the scaling

behavior of the surface model under change of system size.

3.3.1 The Landau - de Gennes Model in Volume and on Surfaces

The Landau-de Gennes model, also known as Q tensor model, considers aggregations of rod or disc

like particles. These systems are described on an ensemble average level by using a vector valued

principal director P (‖P‖ = 1) and a scalar order parameter S. P describes the average orientation

48



3.3. Q tensors in Thin Shells

of the long body axis (rods) or the normal (discs) and S characterizes the deviation of individual

molecules from P. Generally speaking, the average ordering of such an ensemble can be classified

in three phases: S = 0 isotropic, implying an uniform distribution of particle directions, S > 0

nematic phase where particles are aligned in direction of P and S < 0 where particles are aligned

orthogonal to P. Due to this dual nature (ordered and isotropic) of this material these systems are

often called liquid crystals.

Please note, the Q tensor model can also be used to describe systems consisting of many other

types of particles. For example chiral particles (which can not be superimposed with their mirror

image) or particles without any rotational symmetry, as present in rods or discs. Nonetheless we

will focus on systems consisting of achiral particles with a rotational symmetry, such liquid crystals

we will call uniaxial.

The Q tensor From the macroscopic state variables P (the principal director, a normalized

vector) and S (order parameter) we can define the Q tensor by

Q = S

(
PP− 1

3
G

)
(3.61)

This second order tensor is symetric and trace free, further it’s eigenvalue spectrum is given by

[2/3S,−1/3S,−1/3S]. The principal eigenvector P corresponds to the dominant eigenvalue 2/3S.

Any vector V orthogonal to P is therefore an eigenvector corresponding to −1/3S, such that the

rotational symmetry of the rod/disc-like particles is also represented in the Q tensor. We define

square norm for second order tensors by

‖Q‖2 = QIJQ
IJ = tr(Q2) =

2

3
S2 (3.62)

Elastic and thermotropic energy Given a field of Q tensors in a domain V ⊂ R3 with flat

coordinates the Landau-de Gennes model uses an elastic and thermotropic energy to define a ground

state with uniform parallel ordering and a preferred degree of ordering S∗. The elastic energy reads

FVel (Q) =
1

2

∫
V
L1∂KQIJ∂

KQIJ + L2∂JQ
J
I ∂

KQIK + L3∂JQ
K
I ∂KQ

IJ dV

+
1

2

∫
V
L4ELIKQ

LJ∂KQIJ + L6Q
LK∂LQIJ∂KQ

IJ dV (3.63)

This model can be understood as an approximation, of an actually unknown, energy functional by a

first order expansion in Q and ∇Q. In this setting the terms associated L1 to L6 represent the first

order terms invariant under rotation, the elastic coefficients Li are phenomenlogical and have to be

determined by experiments. Using an one constant approximation for the elastic constants in the

Frank-Oseen (K = K1 = K2 = K3) and Landau-de Gennes energy (L1 = L,L2 = L3 = L6 = 0) the

elastic energy functionals of both model coincide for defect free configurations and K = 2L tr(Q2)

[71].

In our further considerations we will neglect the L4 term since it vanishes for achiral liquid
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crystals. For the L6 term it has been shown that Q tensor fields Q can be constructed such that

FVel (Q) ↘ −∞ leading to an ill posed problem [7]. For sake of readability, we avoid the proposed

correction of this term and also ignore the L6 term in further discussion.

For the thermotropic state potential a polynomial expansion with minimal degree is used to

approximate the regime close to the isotropic-nematic phase transition. The coefficients of such

expansion A,B and C are phenomenological [84].

FVth(Q) =

∫
V
A tr(Q2) +

2B

3
tr(Q3) +

C

2
tr(Q2)2 dV

=ωn

∫
V
a tr(Q2) +

2b

3
tr(Q3) +

c

2
tr(Q2)2 dV (3.64)

Further, A is usually considered a temperature depended coefficient to model the first order tran-

sition from pure isotropic phase, via coexistence, to pure nematic phase, see figure 3.8. Anyway,

we will focus on isothermal systems and neglect this temperature dependence and consider only

systems with A fixed.

To enable qualitative statements comparing the impact of elastic and thermotropic contribu-

tions we define rescaled coefficients by a = A/ωn, b = B/ωn, c = C/ωn such that a, b, c match the

order of magnitude of Li.

The minima of the thermotropic energy can expressed in terms of order parameter S for any

given parameter set a, b, c, considering the thermotropic energy density

fVth(S) =
2ωn
27

(
9aS2 + 2bS3 + 3cS4

)
(3.65)

∂Sf
V
th(S∗) =0⇔ S∗ = 0 or S∗ =

1

4c

(
−b±

√
b2 − 24ac

)
(3.66)

Reviewing ∂2
Sf

V
th(S∗) we obtain the phase portrait w.r.t. the choice of a, b, c, see figure 3.8.

Surface Q tensor modeling by dimensional reduction The considered thin shells of uniaxial

liquid crystals are usually combined with the assumption of tangential aligned particles. Also the

thin shell models aim to derive an effective model with reduced dimensionality. Two models for

tangential Q tensors on surfaces are discussed in this section.

The first approach has been labeled as planar degenerate Q tensors and is used e. g. in [37].

Such modeling starts with defining the Q tensors in the vanishing thickness limit of a flat thin shell.

In the resulting flat 2D geometry, with a metric equivalent to the 2D identity I2, symmetric trace

free tensors are described by

q = S

(
PP− 1

2
I2
)

where P · ν = 0, (3.67)

where we have required the principal director to be in plane. This model is then transferred straight
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3.3. Q tensors in Thin Shells

Figure 3.8: Properties of the thermotropic state potential: [left] Energy cost versus order
parameter for b = −1/2, c = 1/4 and several values of a across nematic-isotropic transition.
a = 0, only ordered state with S∗ > 0 is stable (red line), a = 0.35 stable minima at S∗ = 0
and S∗ > 0 enabling coexistence of isotropic and ordered phase (green line) and a = 1 where
S∗ = 0, only isotropic phase is stable (blue line) [right] phase portrait w.r.t. to ratios of a, b, c (A):
stable nematic ordering S∗ 6= 0, (B): stable isotropic ordering S∗ = 0, (C): only tangential nematic
ordering is stable, S∗ > 0 or (D): only normal nematic ordering is stable, S∗ < 0

forward to curved domains by using the associated curved space metric instead of I2 and yields

qij = S

(
PiPj −

1

2
gij

)
or qIJ = S

(
PIPJ −

1

2
(νIνJ − δIJ)

)
(3.68)

Such modeling implies a tangentiality for surface Q tensors in the sense of a zero eigenvalue in

normal direction q · ν = 0. Further q is symmetric and trace free w.r.t. the surface trace notion, in

the sense trS(q) = g : q.

The eigenvalue spectra reads therefore [1/2s,−1/2s, 0], which can be interpreted as a global sym-

metry under rotations of 90◦ in tangential plane. This eigenvalue spectrum also implies trS(q3) = 0,

such that the cubic term in the thermotropic potential vanishes. In this case, the coexistence of

ordered and isotropic state is no longer admissible in the surface model.

The second approach, described by [53], interprets tangentiality of a surface bound Q tensor as

a zero eigenvalue of the second moment tensor of the microscopic particle distribution such that

M = PP where M · ν = 0 (3.69)

This argument is independent from the spatial dimension of the domain and enables us to obtain

the previous model (3.67) in the 2D case but also a 3 dimensional Q tensor analog to (3.61)

Q̂ = S

(
PP− 1

3
G

)
where P · ν = 0 (3.70)

Contrary to the first approach, here the eigenvalue in normal direction is Q̂ ·ν = −1
3Sν. Therefore,

the eigenvalue spectra of the tangential Q tensor Q̂ is identical to the volume formulation Q and

contains a rotational symmetry around the principal director P. Q̂ is symmetric and trace free

w.r.t. the embedding space metric tr(Q̂) = G : Q̂.
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Denoting the eigenvalue of Q̂ in normal direction by β = ν ·Q̂·ν, the formulations for tangential

tensors can be related by Q̂(q, β) = q − β/2 g + βνν. In this sense we call q tangential and β

normal part of Q̂. Considering β = 0 we observe Q̂ to be identical with the degenerate surface Q

tensor q.

3.3.2 Generalized Thin Shell Limit

In the case of polar ordering we assumed orientational order with no variation in normal direction

of the thin shell. Here we want to drop this assumption and model the thin shell as an actual

thin volume with boundaries in the normal direction, subsequently allowing variations in normal

direction.

To obtain an effective surface model, we discuss a suitable set of boundary conditions for the

thin shell domain, establish a description of volume Q tensor Q in terms of tangential and normal

contributions. Finally we perform the limit of vanishing thickness h to obtain the surface model and

consistent equations of motion. While doing so we focus on the conceptual part of this modeling

and refer for the technical details to [57].

To preserve readability we will derive the elastic contribution only for a fixed, spatial invariant

β. We limit the arguments to thin shells Sh, which can be considered as tubular extensions of

surfaces S, the presented arguments can be generalized to manifolds by little effort.

Expressing the thin shell model by surface quantities At the thin shell boundaries ∂Sh, we

apply the previously discussed tangentiality condition Q · ν = βν. But this condition does not fix

all degrees of freedom of Q on ∂Sh. For closure, we choose therefore natural boundary conditions

for the remaining degrees of freedom, namely

0 = L1Qij;ξ + L3Qiξ;j or 0 = L1 (∇Q) · ν + L3∇ (Q · ν) on ∂Sh (3.71)

These conditions can be interpreted as requiring the conjugate forces, H = −∂fV /∂Q, to be tangen-

tial on the boundary. Alternatively, this boundary conditions can be motivated by the assumption

that energy contribution of the thin shell boundaries should be neglectable compared to the energy

contributions in the thin shell volume.

Due to the thin shell nature of the geometry, we can approximate the values of Q and ∇Q on

the central surface S ⊂ Sh by the surface tensor Q̂(q, β) and its associated covariant derivative

∇S . Using a shorthand formulation σ(q) = q− β 3/2 g we obtain

Qξi|S = Qiξ|S = O(h2)

Qξξ|S = β +O(h2)

Qij |S = qij +
β

2
gij +O(h2)

(3.72)
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3.3. Q tensors in Thin Shells

for the components and their derivatives

Qξξ;ξ|S = Qiξ;ξ|S = Qξi;ξ|S = O(h2) (3.73)

Qξξ;k|S = [σ(q)B]ik +O(h2) (3.74)

Qij;ξ|S = −L3

L1
[σ(q)B]ik +O(h2) (3.75)

Qij;k|S = qij|k +O(h2) . (3.76)

Inserting this description in the energy contributions of the Landau-de Gennes model, see equation

(3.63),(3.64), allows to describe the thin shell energy in terms of the surface tensors q and normal

part β within the error bound of O(h2). Terms of the thermotropic energy are expressed by

tr(Q2)
∣∣
S = trS(q2) +

3

2
β2 +O(h2) (3.77)

tr(Q3)
∣∣
S =

3

2
β

(
β2

2
− trS(q2)

)
+O(h2) (3.78)

tr(Q4)
∣∣
S = trS(q4) +

3

2
β2 trS(q2) +

9

8
β4 +O(h2). (3.79)

Here we observe that the cubic term contains tangential contributions only in quadratic order such

that for β = 0 this term indeed vanishes up to O(h2) making β a crucial parameter for enabling

coexistence of ordered and isotropic phases in the model. For the terms of the elastic energy we

yield

L1 ‖∇Q‖2
∣∣∣
S

+ L2 ‖divQ‖2
∣∣∣
S

+ L3

〈
∇Q, (∇Q)T(2 3)

〉∣∣∣
S

(3.80)

=L1‖∇Sq‖2S + L2 ‖divSq‖2S + L3

〈
∇Sq, (∇Sq)T(2 3)

〉
S

(3.81)

+

(
2L1 −

L2
3

L1

)
‖σ3(q)B‖2S + L2 ( trS(σ(q)B))2 + L3 trS((σ(q)B)2) +O(h2). (3.82)

In this operator formulation we have equiped the transpose operator with additional indices to

clearify the transposed components, [(∇Q)T(2 3) ]ijk = [∇Q]ikj . We observe matching terms in

surface description plus a set of terms coupling q to the surface curvature quantities.

( trS(σ3(q)B))2 = 〈B,q〉2 − 3βH〈B,q〉+
9

4
β2H2 (3.83)

trS((σ3(q)B)2) = 〈B,q〉2 +K trS(q2)− 3βH〈B,q〉+
9

4
β2
(
H2 − 2K

)
(3.84)

‖σ3(q)B‖2S =
1

2

(
H2 − 2K

)
trS(q2)− 3βH〈B,q〉+

9

4
β2
(
H2 − 2K

)
(3.85)

Considering these terms in detail, we can group them in three categories: an explicit coupling of

curvature to the norm of q, a coupling by contraction of q with the shape operator B and β as

well as a explicit coupling of β and the curvatures of S. Again the parameter β plays a crucial role

since most of these coupling terms vanish for β = 0.

Before summing up these results we review a result concerning the first order invariants of ∇Sq
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Chapter 3. The Cortex as an Active Polar Gel Confined to a Thin Shell

on surfaces presented in [57] ∫
S
‖divSq‖2 dS =

∫
S

1

2
‖∇Sq‖2 +K trS(q2) dS , (3.86)∫

S

〈
∇Sq, (∇Sq)T(2 3)

〉
dS =

∫
S

1

2
‖∇Sq‖2 −K trS(q2) dS . (3.87)

Using these expressions, we can define a surface Landau-de Gennes energy and express it along the

surface Q tensor Q̂(q, β), as defined in equation (3.70), by

FSel(q, β) =
1

2

∫
S
L′1‖∇Sq‖2S +M1 trS(q2) +M2 〈B,q〉2 +M4(β) 〈B,q〉+ Ce(β) dS (3.88)

FSth(q, β) =ωn

∫
S
a′(β) trS(q2) +

c

2
trS(q2)2 + Ct(β) dS (3.89)

with coefficient functions for elastic

L′1 = L1 +
1

2
(L2 + L3) (3.90)

M1 =
1

2

((
2L1 −

L2
3

L1

)(
H2 − 2K

)
+ (L2 + L3)K

)
(3.91)

M2 = (L2 + L3) (3.92)

M4(β) = −3

(
2L1 + L2 + L3 −

L2
3

L1

)
βH (3.93)

and thermotropic contributions

a′(β) =
1

2
(2a− 2bβ + 3cβ2) (3.94)

Ce(β) =
9

4

((
2L1 + L3 −

L2
3

L1

)(
H2 − 2K

)
+ L2H2

)
β2 (3.95)

Ct(β) =
β2

8
(12a+ 4bβ + 9cβ2). (3.96)

Thin shell limit and equations of motion To establish the relation of Landau-de Gennes

energy FSh(Q) with the derived surface energy FS(q, β) = FSel(q, β) +FSth(q, β) we consider, as in

the case of polar ordering, the averaged thin shell energy

FS(Q, h) =
1

h
FSh(Q) =

1

h

∫
Sh
fShdSh (3.97)

Splitting now the integration in normal and surface parts of the thin shell, using a split volume

element dSh =
(
1− ξH+ ξ2K

)
dξdS [57], as well as inserting the description in surface Q tensors
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of (3.80) we yield

FS(Q, h) =
1

h

∫ h
2

−h
2

∫
S

(
1− ξH+ ξ2K

)
fSh dSdξ =

∫
S
fS dS +O(h2)

= FS(q, β) +O(h2) −→ FS(q, β) (3.98)

The surface L2-gradient flow is given by∫
S
〈∂tq,ψ〉 dS = −

∫
S

〈
∂fS

∂q
,ψ

〉
dS , ∀ψ ∈ Q(S), (3.99)

w.r.t. the L2 inner product over the space of Q-tensors, but to obtain the strong formulation we

have to ensure that ∂fS/∂q ∈ Q(S). Considering the derivative of the M2 and M4 term in (3.88)

we observe them to be not trace free, namely

tr([2M2〈B,q〉+M4(β)]B) = [2M2〈B,q〉+M4(β)]H. (3.100)

Therefore we will only consider the trace free part of B. Further, defining divS∇Sq = ∆dG
S q as the

div-Grad (Bochner) Laplace operator, the equations of motion, for the tangential part of Q̂, reads

∂tq =L′1∆
dG
S q−M1q−

(
M2〈B,q〉+

M4

2

)(
B − 1

2
Hg

)
−
(
2a′ + 2c trS(q2)

)
q (3.101)

Initial values for this surface model are obtained by restricting Q0 to the surface and projecting its

tangential part into Q(S) by a suitable projection ΠQ

q0 = ΠQ [ΠS [Q0|S ]] (3.102)

Consistency of the surface model To conclude this section, we present two remarkable results

of [57]. The first one concerns the description of the averaged gradient flow of the Landau-de Gennes

energy by the gradient flow of the the surface energy

1

h

∫
Sh

〈
∂fSh(Q)

∂Q
+ ∂tQ,Ψ

〉
dSh =

∫
S

〈
∂fS(q, β)

∂q
+ ∂tq,ψ

〉
dS +O(h2) , (3.103)

while the second result refers to a point wise approximation of the equations of motion derived

from the Landau-de Gennes and the surface energy.

∥∥ΠQ
[
Π ·
(
∂tQ + δFSh(Q)

)∣∣
S ·Π

]
−
(
∂tq + δFS(q, β)

)∥∥
g

= O(h2) (3.104)

Together, these results ensure that also the approach of first considering the averaged gradient flow

of the volume Landau-de Gennes energy and performing the thin shell limit afterwards also yields
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the surface model. Or more formal speaking the following operator diagram

FSh FS

∂tQ = −δFSh(Q) ∂tq = −δFS(q)

h→0
1
h

δ δ

h→0

ΠQ,ΠS

(3.105)

commutes. This structural result underscores the consistency of the derived surface model of energy

FS(q, β) and equations of motion ∂tq + δFS(q) = 0.

3.3.3 Coupling Mechanisms of Geometry and Ordering in the Effective Surface

Q Tensor Model

In this section we will discuss the interplay of the derived surface model and curvature by per-

forming numerical experiments. Further, we will highlight the impact of choosing either degenerate

(β = 0) or non-degenerate (β 6= 0) Q tensors in the surface model. To focus here on the principal

effects we use a set of phenomenological parameter for the Landau-de Gennes energy such that the

amount of energy contributions is limited. Namely L1 = L2 = −L3 = L for the elastic energy and

a = −2/3, b = −1/2, c = 1 in the thermotropic potential.

For the evaluation of numerical experiments we used a numerical scheme basing on a compo-

nentwise FEM for a triangular approximation of the considered surface, for details see [55].

Surface model for degenerate surface Q tensors As starting point, we will review the surface

model for degenerate Q tensors with β = 0. The associated free energy reads

FS(q, 0) =
1

2

∫
S
L‖∇Sq‖2S +

L

2

(
H2 − 2K

)
trS(q2) dS + ωn

∫
S
a trS(q2) +

c

2
trS(q2)2 dS (3.106)

and consists of a typical elastic contribution, a thermotropic potential of double well type and a

zero order term coupling curvature of S with the norm of q.

As in the case of polar orientation we can interpret this coupling as a, geometry induced, local

deformation of the thermotropic potential changing the preferred order parameter S∗, namely

S∗ =

√
3

(
1− L

4

‖B‖2S
ωn

)
or ‖q∗‖2 = 2

(
1− L

4

‖B‖2S
ωn

)
(3.107)

Contrary to the polar case, see figure 3.4, where only areas with negative Gaussian curvature

induced a local melt we observe here, that any deviations from a flat geometry can induce a lo-

cal melt. So, while the thermotropic potential itself inhibits isotropic-nematic phase coexistence,

a global phase coexistence can emerge on surfaces by local variance of geometric properties, as

shown in figure 3.9. In numerical experiments we considerd a sequence of ellipsoids, ordered by the

value of the major axis B, ranging from prolate B < 1 via sphere B = 1 to oblate B > 1 geometries.

Using the four defect configuration on a sphere, with circular shaped regions of broken order, as

56



3.3. Q tensors in Thin Shells

reference we observe two major effects. For the prolate geometries we observe that pairs of defects

are attracted to the long poles of the ellipsoid such that the distance between them is significantly

reduced, see also [37]. Second the defects are asymmetrically deformed towards the poles leading,

for further decreased B, to an effective fusion of the defect pairs. As figure 3.9 shows, the resulting

area of isotropic ordering is enlarged compared to the spherical geometry.

This effect is also present in the oblate case. Here the strong curvature is concentrated in the

”rim” of the geometry, leading to heavy deformations of the defect shapes parallel to the rim.

For sufficient large B, the elongated defects merge, forming a line defect separating the quasi flat

domains of the upper and lower half.

Summing up, the geometry distorts the defects such that eventually defects unify and enlarged

regions of broken order emerge. Further, the transition between these configuration is highly

coupled to the local features of the considered geometries.

Figure 3.9: Curvature controls isotropic-nematic phase coexistence: Relative area of the
nematic phase An/|S| as a function of the geometry of the ellipsoid, parameterized by its axis B.
For prolate (B < 1.0) the isotropic phases are located at the high curvature regions at the poles.
They increase with increasing curvature for B . 0.6. For oblates (B > 1.0) the isotropic phase
is located at the high curvature region along the rim. It increases with increasing curvature for
B & 1.2. The non-monotone behavior in between results from a rearrangement of two regions on a
prolate to four regions on an oblate, which merge for larger B. The inlets show realizations with red
corresponding to the nematic and blue to the isotropic phase. The corresponding shape parameters
are highlighted with red triangle markers. To distinguish between both phases a threshold of 10%
of the expected norm of q is used. We used ωn = 2.5 to highlight the behavior already for moderate
curvatures.

Surface model for non-degenerate surface Q tensors Considering the model with con-

stant β 6= 0 we have to specify the value of β. Here we propose an approach to choose β such

that surface and thin shell formulation of theromtropic energy match. For β = −1
3S
∗, where

S∗ = 1
4c(−b+

√
b2 − 24ac), we yield indeed matching the minima of FShth and FSth which are achieved

for S = S∗. The complete surface Q-tensor Q̂ = q − β
2 g + βνν is then uniaxial with eigenvalues

[2
3S,−1

3S,−1
3S]. Figure 3.10 shows the phase diagram. Contrary to the modeling via degenerate
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states with β = 0, the phase diagram of the thermotropic energy is preserved for β = −1
3S
∗.

Such parameter choice for β leads to an extended thermotropic potential and additional coupling

terms in the elastic energy. The surface energy reads

FS(q,−1/3S∗) =
1

2

∫
S
L‖∇Sq‖2S +

L

2

(
H2 − 2K

)
trS(q2) + S∗LH〈B,q〉+

(S∗)2

4
LH2 dS

+ ωn

∫
S
a′(−1/3S∗) trS(q2) +

c

2
trS(q2)2 + Ct(−1/3S∗) dS (3.108)

The additional term 〈B,q〉 in the elastic energy imposes further restrictions on energetic favorable
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(C)

β=−1/3S∗

Figure 3.10: Phase diagram of bulk energy vs choice of β : (left) Double-well potential phase
diagram for β = 0 exhibiting two domains enabling the existence of (A): stable nematic ordering
S∗ 6= 0 or (B): stable isotropic ordering S∗ = 0. (right) Phase diagram for β = −1

3S
∗ enabling

additional stable phases discriminating between (C): only tangential nematic ordering is stable,
S∗ > 0 or (D): only normal nematic ordering is stable, S∗ < 0.

ordering. Similar to the case of polar ordering this term can be expressed in terms of principal

director p = ΠS [P] of q by 〈B,q〉 = 〈B · p,p〉 − 1
2H‖p‖. These terms induce a geometric forc-

ing towards the ordering along lines of minimal curvature. Such forcing does e. g. eliminate the

invariance, under consistent rotation R(p,4θ) of the principal director, of the four +1
2 defect con-

figuration on an ellipsoid as demonstrated in figure 3.11. The same effect has also been observed

in surface Frank-Oseen model discussed in the previous section, see (3.55) and figure 3.3.

3.3.4 Impact of System Size

Reviewing the obtained thin shell limit of the elastic energy under the aspect of rescaling by a

characteristic length l

FSel(q, β) =
1

2

∫
S
L1 ‖∇q‖2S︸ ︷︷ ︸
≈O(1/l2)

+L2 ‖divq‖2S︸ ︷︷ ︸
≈O(1/l2)

+L3

〈
∇q, (∇q)T(2 3)

〉
S︸ ︷︷ ︸

≈O(1/l2)

dS︸︷︷︸
≈O(l2)

(3.109)

+
1

2

∫
S

(
2L1 −

L2
3

L1

)
‖σ(q)B‖2S︸ ︷︷ ︸
≈O(1/l4)

+L2 ( trS(σ(q)B))2︸ ︷︷ ︸
≈O(1/l4)

+L3 trS((σ(q)B)2)︸ ︷︷ ︸
≈O(1/l4)

dS︸︷︷︸
≈O(l2)
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Figure 3.11: 〈B,q〉 term removes rotational invariance of elastic energy: (from left to
right) Elastic energy contribution of

∫
SM4 〈B,q〉 dS Q-tensor field q for rotated principal eigen-

vectors R(p,4θ). Energetic minimum at 4θ = 0 with director parallel to lines of minimal curva-
ture(marked in red), increased energy at intermediate state at 4θ = π/4 and maximal energy for
director orthogonal to lines of minimal curvature at 4θ = π/2. Energy contributions of L′1 and M1

are invariant under rotation and therefore constant.

we observe that the energy contributions of first order invariants of the tangential part of Q scale

by O(1) while the contributions of terms, coupling normal and tangential parts to the curvature,

scale by O(1/l2).

As discussed in the case of polar ordering the parameter ωn influences the size of the defects. Due

to the strong similarities in modeling of thermotropic energy in polar and nematic case we expect

here also a relation of defect core radius rc and ωn of r2
c = 1/ωn. In this case, the thermotropic

energy yields an approximate scaling by O(1). In agreement with the results for polar ordering, we

observe strong impact of domain curvature for small geometries l� 1.

3.4 Active Polar Gels in Thin Shells

We will now use the generalized thin shell limit to obtain an effective model for active polar gels

in thin shells. To avoid formal derivations, we present here only a sketch of the argumentation.

For the initial steps we reproduce the previous argumentations for the volume, transfered to the

thin shell Sh, up to the rate of dissipation given in (3.6). Contrary to the previous derivations we

can not neglect the boundary terms of the dissipation rate by assuming a sufficient large distance.

dFSh
dt

=

∫
Sh
− (∇V) : σtot +4µ r + J · ∇4µ−H · DP

Dt
d∂Sh

+

∫
∂Sh

[
V · σtot · ν − ν ·V

( |M|2
2ρ

+ f0

)
−4µν · J + ν · ∂f0

∂∇P
· DP

Dt

]
d∂Sh (3.110)

As in the case of nematic ordering, we stick with the idea that dissipation at the boundary should

be neglectable compared to the thin shell contribution. We therefore determine suitable boundary

conditions for the state variables such that the boundary terms vanish.

Following the previous assumptions of predominately tangential aligned particles on the thin
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shell boundary we require P · ν = 0. For a thin shell of fixed shape we require V · ν = 0 on ∂Sh
such that V

(
|M|2/2ρ+ f0

)
vanishes. Combined with Neumann type of boundary conditions for

4µ we obtain ν · J = 0. The requirement ν · ∂f0/∂(∇P) = 0 is satisfied for a Neumann type of

boundary condition (depending on the actual shape of f0) for P on ∂Sh. These Neumann type of

boundary conditions can be interpreted as an absence of chemical forces and molecular stress in

normal direction. Finally V · σtot · ν vanishes if ν is a right side eigenvector of σtot.

Settling these boundary conditions allows us to perform the thin shell limit and obtain an

effective surface model for active polar gels. For example, considering an one constant type of

Frank-Oseen energy f0 = K/2‖∇P‖2 + A(‖P‖), with state potential A, we obtain as surface

energy and conjugate/molecular field h

fS0 =
K

2

[
‖∇Sp‖2 + ‖B · p‖2

]
+A(‖p‖) (3.111)

h = −K divS∇Sp︸ ︷︷ ︸
=hdi

+K B2 · p︸ ︷︷ ︸
=hcu

+A′(‖p‖)p︸ ︷︷ ︸
=hde

(3.112)

Further we apply the thin shell limit to the conservation laws. Here we observe, due to P · ν = 0

and V · ν = 0 that scalar valued equations for conservation of mass and particle numbers remains

structurally unchanged.

∂tρ+ divS (ρv) = 0 (3.113)

∂tn+ divS (nv + j) = r (3.114)

For the momentum balance, as vector valued equation, we expect structural changes. As prepara-

tion, we seperate the stress tensor σtot into tangential, normal-tangential and normal parts

tensor valued: σtotS = {σtotij }, (3.115)

vector valued: σtotnt = {σtotξi }, σtottn = {σtotiξ }, (3.116)

scalar valued: σtotν = σtotξξ (3.117)

We now can separate the momentum balance in a tangential and normal part, where f(λν) is a

shorthand for the scalar valued terms depending on the value of λν and its spatial variations.

∂tm + divS(mv)− divS(σtotS )−B · σtottn = 0 (3.118)

divS(σtotnt )− 〈B,σtotS 〉S −Hλν = f(λν) (3.119)

As prescribed by the boundary conditions, ν is a right side eigenvector and we yield σtottn,i =

[σtot · ν]i = λννi = 0. In the case of symmetric stress, ν is also a left eigenvector, such that

σtotnt,i = 0. In such situations, the tangential and normal momentum balances reduce to

∂tm + divS(mv)− divS(σtotS ) = 0 (3.120)

〈B,σtotS 〉S +Hλν = −f(λν) (3.121)
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3.4. Active Polar Gels in Thin Shells

These equations are one way coupled and we have to distinguish two cases.

We can either consider λν as a state variable describing the force exerted by the active polar

gel in normal direction, due to bending of the fluid layer. Or we can assume dynamics without

normal forces λν ≡ 0. In this case the surface stress must satisfy the condition 〈B,σtotS 〉S = 0 which

imposes a very restrictive state constraint given by the geometry.

Given these conversation equations, we can turn to the Onsager relations and discuss additional

terms emerging by the thin shell limit for fSh0 → fS0 . Using υ = 1/2(∇Sv +∇SvT ) we yield fully

analogous relations to [40] in the surface bound state variables

σdS = 2ηυ +
ν1

2
(ph + hp− (p · h)g) + ζ4µ

(
pp− p · p

2
g
)

(3.122)

Dcp

Dt
= −ν1p · υ +

1

γ
h + λ1p4µ (3.123)

r = −ζ
(
pp− p · p

2
g
)

: υ + λ1p · h + Λ4µ (3.124)

Additional terms, due to curvature, emerge by recalling the conjugate force contributions hcu =

K B2 · p and hde = A′(‖p‖)p. Considering the typical terms ph and p · h we yield

ph =
1

2

(
phdi + hdip

)
+
KH

2
(pp ·B + B · pp) +

(
A′(‖p‖)−KK

)
pp

+
1

2

(
phdi − hdip

)
+
KH

2
(pp ·B −B · pp) (3.125)

p · h =p · hdi +KHp ·B · p +
(
A′(‖p‖)−KK

)
‖p‖ (3.126)

Here we observe that desired alignment of the director towards lines of minimal curvature exerts

additional symmetrical and antisymmetric stresses. Also, the discussed interplay of curvature and

state potential introduces additional symmetric stresses. For reaction rates r curvature induces

additional dissipative contributions by unaligned particles or curvature-defect interaction.

Overall, this sketch demonstrates how, by determining suitable boundary conditions and per-

forming the thin shell limit, an effective surface model for active polar gels can be derived. A short

glance on the additional terms of the surface model highlights that restricting active polar gels

to thin shells gives rise to several coupling mechanisms between the gel and the curvature of the

thin shell. These couplings originate in the non scalar nature of the state variables and geometric

constraints imposed by the surface topology.

3.4.1 Conclusion

In this chapter we presented a fundamental approach to model the coupling of mechanochemical

processes and geometry of thin shells. We used numeric experiments and theoretic considerations

to explored the proposed models, the key results are:

Dynamics in thin shells can be described by effective surface models We presented two

methods to derive effective surface models, basing each on a specific assumption. In section 3.2
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Chapter 3. The Cortex as an Active Polar Gel Confined to a Thin Shell

we started with an apriori assumption of homogeneity in normal direction. The second approach

labeled thin shell limit, presented in section 3.3, made specific assumption on the boundary condi-

tions for the variables defined in the thin shell. Both approaches can be interpreted as a result of

external forcing. Which modeling is more suitable, most likely depends on considered system and

should be decided by physical experiments.

The thin shell limit has proven to be an analytical tool to derive effective surface models. On

the one hand side, it provides an error estimate by 1/h2 for the effective model and on the other

hand side it has been establish that derived surface models are consistent with the thermodynamic

processes described by a L2 gradient flow. By the continuous limiting process from thin shell to

surface we have gained insight how dynamics of normal and tangential components of hydrody-

namic variables decouple.

Fundamental for the process h → 0 is the choice of boundary conditions at the thin shells

boundary. The relevance of this modeling choices can be demonstrated by considering the thin

shell limit of the elastic energy of polar ordering (3.46). With the boundary condition P · ν = 0

we would yield the discussed surface elastic energy (3.51), while requiring ν × ∇ × P = 0 would

yield a surface model equivalent to the intrinsic energy (3.54), lacking the curvature contribution∫
S ‖B ·P‖2 dS.

In the context hydrodynamic theory the rate of dissipation provides instructive restrictions

on the choice of suitable boundary conditions for the hydrodynamic variables. Here we used the

approach to choose boundary conditions such that the boundary contributions to the rate of dissi-

pation vanish, preserving the thermodynamic consistency of the original volume models.

Due to its continuous description of the dimensional reduction and its consistency the thin shell

limit has shown to be a generic approach applicable to complex hydrodynamic systems like active

polar gels.

Hydrodynamic variables of orientational order couple in complex manner to the ge-

ometry We have discussed possible coupling mechanism along the example systems of polar and

nematic order. These effective surface models can be considered as prototype systems of vector and

tensor valued hydrodynamic variables. There, we observed that the amount and type of possible

couplings increase with the tensorial degree.

Further the effective dimensional reduction in thin shells required a special attention to preserve

symmetry properties of the volume Q-tensor, see eigenvalue spectra, in the effective surface models.

Here we had to take the normal parts into account, leading to another coupling mechanisms. The

explored coupling mechanisms can be roughly summarized into three categories.

By dimensional reduction, while requiring a suitable notion of tangentiality on the thin shell

boundaries, lead to the emergence of geometric frustration and defects. The experiments confirmed

the strong coupling of defect positioning and local curvature. Further we have observed that inho-
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3.4. Active Polar Gels in Thin Shells

mogeneous curvature leads to distortion in the defect shapes. It has been demonstrated how the

overall modulations of the surface curvature influence the energetic landscape of the surface models.

Namely, we showed the emergence of local energetic minima by curvature modulation. Therefore

curvature can induce and stabilize, otherwise unstable, non minimal defect configurations.

The second category includes a wide array of couplings, stemming from the interaction of the

thermotropic energy with the local curvature. Here we observed how, depending on the type of

orientational order, coupling to geometry can induce areas of broken order which are not defects,

in the sense of isolated zeros. In the case of rotational symmetric Q tensors Q̂(q,−1/3S∗) we have

demonstrated that curvature can induce non local areas of broken order, effectively reintroducing

the coexistence of nematic and isotropic phase.

Finally we observed that anisotropic shapes of S and non homogeneous curvature induces a

geometric forcing in the effective surface models that removes the energetic invariance under con-

sistent rotation of the state variables.

Overall, the occurrence of coupling mechanism depends on the tensorial degree of the considered

variable as well as the chosen boundary conditions in the thin shell limit. Anyhow, most of these

mechanisms interfere with each other, enabling a wide array of complex states and dynamics.

An effective model of active polar gels in curved thin shells We used the thin shell limit to

derive an effective surface model for active polar gels in thin shells. There, we observed a coupling

of polar order variables and geometry. Due to the active nature of the gel, these coupling terms

induced additional stresses governed by local curvature and the position of defects.

Given a natural boundary condition of strict normal orientation of normal stresses ΠS [σtot ·ν] =

0, we yielded in the momentum balance a decoupling of normal and tangential components of the

stress.

It has been discussed how activity destabilizes the uniform orientational order and lead to the

emergence of defects in flat domains, see e. g. [39, 77]. The additional effects given by restricting

the dynamics to thin shells, the discussed couplings and geometric forcings add to this complexity.

Coupling effects are strong on cellular scale The proposed models are derived unit free and

under the assumption that the considered physical systems form continua. While the tangential

alignment is predominant in the case of the cortical layers, the ratio of molecule vs system size

might push the modeling, by continuous macroscopic order parameters, to the limit.

Rescaling the effective surface models, revealed that for shrinking system size the energy con-

tributions of thermotropic energy and intrinsic/tangential distortion does not change while the

curvature related terms increase by 1/l2.
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The numerical experiments have been performed at K,L = 1 and l = 1. Considering the

C. elegans embryo with l ≈ 10−6 [m] and using a value obtained for experiments with a nematic

suspension [71] where L ≈ O(10−12) [N] as orientation, we have a ratio L/l2 ≈ O(1). Under this

assumption we expect the observed effects of coupling ordering and geometry to be observable at

cellular scale.

To validate the proposed models experimental data is needed. Experiments regarding the

localized melt in areas of positive or negative Gaussian curvature and the preferred alignment

along lines of minimal curvature could provide valuable insights for answering this question.
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CHAPTER 4

ALIGNMENT OF A DEVELOPMENTAL

AXIS BY A MECHANICAL FEEDBACK

LOOP

4.1 Establishment of a Developmental Axis in the C. elegans Em-

bryo

The C. elegans embryo breaks the first symmetry in its cellular organization before the first cell di-

vision, resulting in a different biochemical composition of one half of the cell compared to the other.

This difference coordinates a so-called asymmetric cell division; a division where both daughter cells

differ in size but also chemical composition. This asymmetric division is the event that specifies

the location of the future head and tail. Consequently, embryologists identified this time-point as

the moment of the establishment of the head-tail, or also called anterior-posterior axis. Key to

this symmetry breaking is the formation of so-called polarity domains; membrane-regions which

are populated with only with either pPAR or aPAR proteins.

Interestingly, these PAR domains are always aligned with the ellipsoidal shape of the embryo

at the time of the asymmetric cell division. At the moment when these domains just form, the

alignment is however not that pronounced. A significant fraction of embryos shows pronounced

misalignment between the axis defined by the polarity domains and the geometric axis of the el-

lipsoidal shape. This misalignment is corrected by the cell, but the underlying mechanism that

conducts this alignment has been unknown so far. Elucidating this mechanism will be the focus of

this chapter.

The PAR domain formation is well described as a process where a bistable reaction diffusion

system undergoes a guided transient between two stable states [27, 17, 21, 52]. The initial state

consists of a homogeneous distribution of anterior proteins (aPAR), residing in the cortex, and
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the posterior proteins (pPAR), distributed in the cytoplasm. The state is actively distorted by

a depletion trigger hat depletes the aPAR concentration via advective transport [51, 17]. There,

pPARs bind to the cortex and, by mutual exclusion, an interface is established such that stable

exclusive PAR domains in cortex and cytoplasm form. As demonstrated in [48] and shown in figure

2.10 these domains can be displaced along the cortical domain by cytoplasmic streaming. Such

displacements are also observed in the normal course of development, e. g. due to misplaced sperm

entry point [18]. Remarkably, such misplaced PAR domains have been observed to align to the

long body axis in the phase of cytoplasmic streaming, see figure 4.1-C.

Figure 4.1: In-vivo observations of axis alignment w.r.t. Myosin activity: [A-C]: Exper-
imental observations for C. elegans embryo with misaligned nucleus (e. g. due to displaced sperm
entry [19]). Myosin depletion is correlated with nucleus position. [A]: Cortical Myosin particle
numbers, x = 0 indicates posterior pole, x < 0 upper part and x > 0 lower part of cortical domain.
[B]: Cortical velocity magnitudes w.r.t. counter clockwise orientation. [C]: Snapshots of microscopy
at central plane with labeled Myosin particles. Male nucleus (indicated by yellow arrow) is trans-
ported through cytoplasmic flow phase to align with long body axis. Cortical area of Myosin
depletion (red labeled) is aligned with nucleus position. [D]: Snapshots of microscopy at central
plane of genetic mutant with disabled Myosin activity and misaligned male nucleus (indicated by
yellow arrow). No alignment of nucleus with long body axis is observed.

Systematic investigations exploring the mechanical properties of the cortical layer [46, 68] estab-

lished an accurate notion of the mechanical processes in the cortex leading to cytoplasmic stream-

ing. Key concept is that Myosin motors individually generate isotropic stresses, while through

non-homogeneous distribution of motors a non-zero stress balance occurs and forces are exerted.

At the onset of cell polarization the Myosin is evenly distributed in cytoplasm and cortex. Fur-

thermore, the activity of the motors increase at the onset such that an increased isotropic stress

across the cortex is observed. In the normal development the symmetry of cortical stresses is
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broken by centrosome, which induces a localized depletion of Myosin close to the trigger position.

The thereby induced cortical flows have been identified, see chapter 2, to drive the cytoplasmic

streaming.

Remarkably, suppressing the active stress generation, by genetically deactivating the Myosin ac-

tivity, does not only yield no cortical or cytoplasmic streaming but also suppresses the self alignment

of the PAR domains as shown in figure 4.1-D. Such observation provides a first hint on the me-

chanical nature of the driving mechanism of the self alignment, ruling out an exclusive (re)binding

phenomena in the PAR chemistry as suggested in [16]. Furthermore, [21] demonstrates that the

location of PAR domains is tightly coupled to the trigger position. In [27, 52, 18] the centrosome

is suggested as central cellular organizer, thereby providing the triggering cue in this process. The

centrosome being attached to the envelope of the male nucleus, adds the position of the nucleus as

relevant to entity to the system.

Thereby understanding how the repositioning of nucleus and associated Myosin depletion region

is facilitated, will also provide a statement regarding the alignment of PAR domains.

In this set up, we will propose and discuss a control mechanism capable of robustly aligning

Myosin domains and nucleus position with the embryos long body axis. Therefore the central

questions of this chapter are:

What kind of mechanism enables a control such that Myosin and PAR domains robustly align with

long body axis? How does the mechanism sense the desired geometric axis?

As suggested by the strong dependence of the self alignment on Myosin activity, we propose a me-

chanical feedback loop. Key ingredients are the depletion trigger position, which we identify with

the nucleus position, the cortical concentrations of Myosin, cortical flows and nucleus transport by

cytoplasmic streaming.

To establish and validate the proposed feedback system we structure the chapter as follows. In

the initial section 4.1.1, we briefly review a recent model for the mechanical processes in the cortex

induced by Myosin gradients [21]. Given this building block we can detail the mechanical feedback

loop in section 4.1.2. Furthermore, to obtain a quantitative understanding of the alignment process,

we analyze and discuss an experimental data set of cortical and cytoplasmic flow fields capturing

the self alignment process in section 4.2. As second step, we aim for a qualitative understanding

of the underlying mechanisms. In section 4.2.2 we provide an intuitive model reproducing the

nucleus trajectories and apply linear stability analysis to describe the fundamental geometry sensing

mechanism. We derive an additional model of cortical activity from first principles via thin shell

limit technique in section 4.3 and discuss the impact of the curved nature of the cortical layer on the

mechanical processes. To concluded the chapter, we summarize the proposed mechanical feedback

system, its key mechanisms and discuss the observed couplings between mechanics and geometry,

see section 4.4.
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Description of experimental data set and nomenclature As reference and for validation

purpose we consider a data set similar to the one used in section 2.2. Across a set of 6 individual

C. elegans embryos we have a sequence of snapshots consisting of a central 2D slice through the

cell body. From these observations we can extract the cell shape ΓC and the nucleus center xN .

Furthermore, we can infer cortical Myosin particle numbers nM and flow velocities v as well as the

cytoplasmic flow fields V. To limit impact of noise and to cancel elastic effects in the flow fields

we perform a temporal binning across 10 [s].

As geometric reference shape we use an ellipse (major axes [27 [µm], 15 [µm]]), which has been

obtained by best fit across all individuals and snapshots. On this ellipse E we define a counterclock-

wise tangential direction t. We define the posterior pole as origin of a cortical coordinate system

x ∈ [−L,L]. There, L corresponds to the half of the ellipse circumference. x ∈ [0, L] denotes the

”upper” and x ∈ [−L, 0] the ”lower” branch of the observed cortical slice (see e. g. figure 4.3-B). We

use this coordinate system to describe the origin of flow d(t). This point is defined by evaluating

the point on the reference ellipse with minimal distance to the nucleus center xN . We abbreviate

the relation between origin of flow and nucleus position by d(t) = ΠE [xN (t)]. Finally, we define the

cortical velocity vectors by VC = vt.

4.1.1 Active Mechanics of Cortical Streaming

A recent paper [21] provides a comprehensive model of the chemo-mechanical dynamics of the cor-

tical PAR domain formation process. Here the in-vivo observations are reproduced by a system

with the principal components PAR chemistry, Myosin driven active mechanics and a trigger.

The model uses a basic approximation of the cellular geometry by assuming the cortical domain

as a flat, periodic, one dimensional geometry. Thereby, the neighboring cytoplasm is not modeled

explicitly. Nonetheless, the cytoplasm is present in the model as a reservoir for PAR and Myosin

particle, such that the total number is preserved and as a friction contribution in the mechanical

force balance, representing the drag between the cytoplasmic and cortical flows. Furthermore, the

rod like nature of the Actin mesh work is neglected such that only isotropic active stresses are

included, compare to the model of cortical activity by an active polar fluid discussed in chapter 3,

equation (3.122). The cortical layer is considered as a barotropic, compressible fluid where pres-

sure is approximated by linear relation to the density, which is identified with the Myosin particle

number.

In this set up the PAR and Myosin particle numbers are described by advection-diffusion-

binding equations and the active mechanics are expressed by a force balance at Stokes regime. The

trigger enters the model as a additional localized source term in the pPAR, Myosin equation and

as a temporal modulation of the active stresses.
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Active mechanics and system trigger Since we suspect a mechanical process as driving effect

in the axis alignment we review on the mechanical part of the model given in [21] in detail

∂tnM = DM∂xxnM︸ ︷︷ ︸
diffusion

− ∂x · (vnM )︸ ︷︷ ︸
advection

+ kon,Mn
cyto
M − koff,MnM +RMnM︸ ︷︷ ︸

binding dynamics

in [−L,L] (4.1)

λ2∂xxv − v = Rv∂x
(

nM
nM + n∗M

)
︸ ︷︷ ︸

active force

in [−L,L] (4.2)

RM = koff,MKM (x)fM (t), Rv = C∗fv(t), n
cyto
M = ntotM −

ψ

2L

∫ L

−L
nM dx (4.3)

The first equation describes the dynamics of the Myosin particle numbers nM with diffusivity DM

and binding rates kon,M , koff,M . The second is the force balance w.r.t. velocities v and third line

provides the definition of the trigger terms RM , Rv and particle conservation. In the force balance,

we summarize the barotropic pressure and isotropic active stress to the left hand side term and

refactor with −γ and yield the hydrodynamic length scale λ =
√
η/γ. The trigger contributions

are separated in a fixed spatial profile and switching functions

KM (x) = kMe
−(x/σM )2 (4.4)

f(.)(t) =
1

2

[
tanh

(
t

τ(.),on

)
− tanh

(
t− T(.)

τ(.),off

)]
(4.5)

Reviewing this model we observe two major features.

Figure 4.2: Dynamics of mechnical contribution in cortex: [A]: Depletion of Myosin concen-
tration [B]: cortical flows induced by Myosin gradients, and characteristic, normalized flow profile
labeled fountain mode X [C]: evaluated flow profile for moving trigger, trajectory of trigger indi-
cated by black dashed line [D]: decomposition of Myosin concentration evolution, impact of trigger
at O(10−1) while transport and diffusion at O(10−3). Transport and diffusive contributions are
presented rescaled by denoted factor. Model parameters are chosen as described in [21].

The cortical system is driven by the trigger position and strength We evaluate the

dynamical system (4.1) with the parameters specified in [21] and consider the kymographs of the

state variables nM and v as shown in figure 4.2-A and B. We observe the described depletion of

Myosin in the trigger region and symmetric flows along the gradients of nM . More precisely we can
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identify a dominant flow mode X(x) such that v(x, t) ≈ k0(t)X(x) and k0(t) ≈ fM (t). The mode is

obtained by temporal averaging and normalization(w.r.t. the L2 norm |.| on [−L,L]).

X̃(x) =
1

T

∫ T

0
v(x, t) dt, X =

X̃
|X̃|

, |X̃| =
√

1

2L

∫ L

−L
〈X̃, X̃〉 dx (4.6)

Since this mode describes flows originating at the trigger center, we call this the fountain mode.

Also by temporal averaging of the active force term Rv∂x (nM/ (nM + n∗M )) we define a force mode

F. Recalling the essentially diffusion like character of the force balance(λ2 � 1) in equation (4.1)

we are not surprised to find a strong correlation (in sense of a L2 scalar product) between the

fountain and force mode, see figure 4.5-C.

Furthermore, we point out that, due to the homogeneity of the domain (absence of boundaries

and curvature, isotropic material parameters) and the neglectable transport, the system is de facto

invariant under arbitrary shift in spatial dimension. Therefore applying a shift d(t) to the system we

yield equivalently displaced states, see figure 4.2-C. This displacement applies also to the PAR and

Myosin distributions. Furthermore, such shifted states can be identified as dynamics of a systems

with a moving trigger RM = kMkoff,MKM (x− d(t))fM (t). Here the flow can be approximated by

a shifted fountain mode v ≈ k0(t)X(x− d(t)), see figure 4.2-C.

Mechnical response is downstream effect of motor protein dynamics In figure 4.2-D

we compare the contributions of binding dynamics, advection and diffusion to the rate of change

∂tnM . Here we observe a dominance of binding dynamics such that advection and diffusion can

be neglected in the dynamics of nM . In the context of the model presented in [21], we therefore

conclude that cortical flows effectively do not couple to the Myosin dynamics and can be considered

as a purely downstream effect of the Myosin depletion.

4.1.2 Mechanical Feedback System Promotes Alignment of Nucleus

We now turn to the description of the proposed mechanical feedback loop, see also figure 4.3, driving

the alignment of the nucleus position with the long body axis of the embryo. Again we emphasize,

by such aligning of the trigger also the developing PAR domains are aligned with the long body axis.

First element of the feedback system are the cortical flows v induced by the active mechanics,

see (4.1). As discussed these are downstream effects of the Myosin binding dynamics and resulting

flows v are linear w.r.t. to the active forces. Furthermore, these forces are the sole input of the

system such that we expect dynamics to cease immediately in the absence of Myosin gradients, as

observed in the control experiment in figure 4.1-D.

The second element are the flows V in the cytoplasmic bulk. As discussed in chapter 2 these

flows are driven by the cortical flows. We recall the modeling of the cytoplasmic flows as incom-

pressible Stokes like, chemically inactive and linear w.r.t. the cortical flows at the boundary.
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Figure 4.3: Geometry sensitive mechanical feedback loop facilitates axis alignment of
nucleus: [A]: Three parts of feedback loop: Position of nucleus defines center of Myosin depletion,
called origin of flow. Gradients in Myosin motors induce active stress generation in the cortex.
Stresses are compensated by cortical flows which induce cytoplasmic streaming. Nucleus is displaced
by cytoplasmic streaming. [B]: Stationary points of the feedback loop. No transport for Nucleus
positions at anterior/posterior pole (bold A,P),stable position, and at short axis tips, metastable
position. Green arrows indicate nuclues transport direction, exhibiting a threshold at short body
axis seperating attractive regions of A, P pole, as observed in figure 2.10. [C]: Schematic slice
of C. elegans embryo. Misaligned nuclues (green circle) induces symmetric (w.r.t. origin of flow,
marked by red dot) Myosin gradients (gray scale). Resulting active stresses are compensated by
asymmetric cortical flows (red arrows). Asymmetry originates in a geometric forcing term scaling
with the curvature of cortex. Asymmetric cortical flow induce asymmetric cytoplasmic flows(
streamlines as red dashed lines) with non orthogonal stagnation point of cytoplasmic jet on nuclues
(black dot). Hydrodynamic forces induce transport of nucleus (green arrow). [D]: Schematic slice
of C. elegans embryo with aligned nucleus. Due to placement off nucleus on geometric symmetry
axis, Myosin gradients induce symmetric cortical flows. Subsequent symmetric cytoplasmic flows
with orthogonal stagnation point on nucleus yield no transport.

Last element is the guiding trigger of the binding dynamics of Myosin in the cortex. Experi-

ments [26, 52] have identified the centrosome as a trigger for locally reduced cortical tension. Since

the centrosome is attached to the male pronucleus envelope, we use the nucleus center xN as ap-

proximate location of the centrosome. The position of the guiding trigger d of the cortical dynamics

is then defined as closest point on cortex to the nucleus and measured as geodesic distance to the

posterior pole. For the nucleus we consider it as free floating in the cytoplasm, such it is transported

by the cytoplasmic streaming (ẋN = UN ). Again, due to the Stokes character of cytoplasmic flows,

the transport is linear with respect to the applied cortical flows v.

The resulting feedback loop is then defined by three steps. For a given nucleus position we

yield (by orthogonal projection of xN to the cortical domain) a cortical trigger position d, also

called origin of flow, which determines the trigger position and the center of Myosin depletion.

The resulting Myosin gradients induce cortical and subsequent cytoplasmic flows. As final step the
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cytoplasmic flows displace the nucleus and the loop is closed. Please note, at cellular scale and in

the parameter regime described by [21] all displacements take de facto instantly effect, such that

effectively no delay is observed.

4.2 Principal Properties of the Alignment Mechanism

4.2.1 Coupling Mechanisms in the Feedback Loop

To analyze and validate the proposed mechanical feedback loop we review the available in-vivo

observations under the aspect of the coupling mechanisms, see figure 4.3-A. The coupling of corti-

cal and cytoplasmic streaming via interfacial drag has been established in chapter 2, such that we

straight forward apply the discussed model for the cytoplasm.

For the coupling between cytoplasmic streaming and cortex bound Myosin activity we use the

available data to validate the nucleus transport as driving mechanism in the displacement of the

origin of flow.

The coupling of Myosin activity to generate cortical flows by active stress generation has been

modeled [21]. Here we will compare this modeling with the observed velocities by projecting them

to a modal basis and discuss agreements and differences.

Transport by cytoplasmic streaming reproduces tangential nucleus velocities and dis-

placement of the origin of flow To obtain a quantitative understanding of the transport of the

nucleus and the displacement of the origin of flow d we perform numerical experiments to evaluate

the nucleus trajectory by a cytoplasmic flow transport and compare the tangential velocities of the

nucleus with the observed velocities as well as comparing the evaluated and observed trajectory of

the origin of flow.

To evaluate the nucleus velocities we use a basic transport model for colloids [75]. Analog to the

model of chapter 2 we consider cytoplasmic streaming as Stokes flow driven by Dirichlet boundary

conditions with values according to the experimentally observed cortical velocities. Following [75]

we model the nucleus as a region in the cytoplasm with significantly increased viscosity, effectively

suppressing gradients in the cytoplasmic flow field V. The nucleus region is approximated by

a diffuse phase field φN (x). Given the nucleus center xN and radius r we can define a phase

field function, describing the region, and use it to define spatial variations in viscosity as well as

determining the nucleus velocity from the cytoplasmic flow fields

φN (x) =
1

2

[
1− tanh

(
−3(‖x− xN‖ − rN )

ε

)]
, (4.7)

η(x) = 1 + ηNφN (x) (4.8)

UN =

∫
V φNV dV∫
V φN dV

and U‖ = UN · t(ΠE [xN ]︸ ︷︷ ︸
=d

) (4.9)

Using the diffuse domain parameters β and ε used previously to define cellular domain geometry,
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by another phase field function φC , defined in section 2.2 and using a step viscosity increase of

ηN = 100, the overall model to evaluate cytoplasmic velocities is given by

−∇ ·
[
φ̃C η

(
∇V +∇VT

)]
+∇(φC P ) =

β

ε
(1− φC) (V −VC) in V (4.10)

∇ · (φV) = 0 in V (4.11)

Evaluating the nucleus velocities across all individuals and observed time steps we yield a dataset

consisting of 949 points. For systematic comparison we use the ellipse approximation of the cell

shape to determine the origin of flow at the cortex, its geodetic distance d to the posterior pole

and ellipse normal at the origin of flow to separate the nucleus velocity in normal and tangential

contribution.

In figure 4.4-A we observe similar velocity distribution for the evaluated and observed nucleus

velocities. Remarkably the evaluated velocities exhibit much stronger variation including data

points indicating a transport of the nucleus away from posterior pole. Using a sliding mean (2.5%

width) on both velocity data sets we obtain smooth distribution functions. Both function exhibit

very low velocities for nucleus positions close to the posterior pole and increasing tangential veloc-

ities for higher distances to the pole. Furthermore, the evaluated velocities U‖ are at magnitudes

half of the observed. Reevaluating the trajectories, across all individuals, with consistently rescaled

velocities we yield trajectories very close to the observed ones. Therefore, we assume this discrep-

ancy in nucleus velocities as a systematic underestimation of the transport model and introduce

the factor K = 2 to address this discrepancy.

Figure 4.4: Quantative comparision of observed nucleus velocities: [A]: Distribution of
tangential nucleus velocities U‖ versus origin of flow position d. Velocities inferred from observed
trajectory (black) and velocities evaluated by model from cortical flows (blue). Dots indicate value
for single instant, lines denote sliding mean average (width 2.5%). [B]: Trajectories of origin of
flow (black) compared to integrated velocities (blue unscaled velocities, cyan rescaled velocities by
K = 2) for individual 2. [C]: Temporal distribution of nucleus velocities for individual 2.

To further verify the model we consider the distribution of tangential velocities vs time for

each individual. In figure 4.4-C we present these velocities for individual 2 and observe a good
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agreement for rescaled velocities. To estimate the systematic impact of strong variations in the

evaluated velocities we compare the trajectories d(t) of the origin of flow to observed trajectories.

In this case, see 4.4-B, we observe good agreement of the trajectories for K = 2.

Overall we conclude that the proposed transport model does reproduce the observed tangential

nucleus velocities up to a consistent factor K. The significant better results for comparison w.r.t. an

integrated feature, like the trajectories, suggests a strong noise contribution in the observed cortical

velocities. Furthermore, we point out that we have not compared normal velocities, since these

depend strongly on the modeled nucleus-wall interaction. A fully satisfactory modeling requires

a significant better understanding of this interaction. For the time being, we therefore remain

with the described model [75] and K = 2 to effectively describe the nucleus transport induced by

cytoplasmic streaming.

Cortical flows are coupled to nucleus position and excite cytoplasmic transport mode

In section 4.1.1 we discussed a model of cortical flows as proposed in [21]. There, we identified the

characteristic flow mode X. The model made strong assumptions on the homogeneity of the cortical

domain, like the absence of a distinct body axis and a translational invariance. Since experimental

observations already suggests a sensitivity to the body axis these assumption might not be valid in

the case of a misaligned nucleus.

To test the applicability of the model and to identify the contributions of the dominant fountain

mode in the observed cortical flows we project them onto a modal basis derived from the fountain

mode. Namely we define Z1 = X and define recursively higher order modes by

Z̃i = ∂xZi−1 −
i−1∑
l=0

〈∂xZi−1,Zl〉Zl ∀i > 1, Zi = Z̃i/|Z̃i| (4.12)

The resulting mode basis is an alternating sequence of even and odd scalar valued, periodic functions

Zi : [−L,L]→ R, Zi(−L) = Zi(L) with
∫
Zidx = 0 . To include flow contribution with non zero

mean we also add the constant transport mode T(x) = Z0(x) ≡ 1. Furthermore, we have identified

the nucleus position xN and its cortical counter part, the origin of flow d, as pivotal points in the

feedback loop. Therefore we incorporate this dependence as a consistent shift in all modes

Zi(x; d) = Zi(x− d) (4.13)

For further reference we use T = Z0, X = Z1, Y = Z2 as short hand for the first three basis modes,

see figure 4.5-C for plots of those modes.
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Along this basis we can project the observed cortical velocities w.r.t. the trajcetory d(t)

v(x, t) =k0(t)T(x) + k1(t)X(x− d(t)) + k2(t)Y(x− d(t))

+
∞∑
i=3

ki(t)Zi(x− d(t)) (4.14)

where ki(t) =〈Zi(x− d(t)), v(x, t)〉 (4.15)

As shown in figure 4.5-A, B (left), we observe the total “kinetic” fluctuations

‖v(x, t)‖ =

√
1

T

∫ T

0
|v(x, t)|2 dt (4.16)

of observed flows v and captured fluctuation by a truncated mode base. Remarkably already the

first three modes are sufficient to capture 70−80% of the fluctuations across all observed flow fields.

Figure 4.5-D shows the decomposition of experimental flow fields into contributions captured by the

first three modes and the residual flows. Here we observe a distinct separation into large structures

correlating with the position of origin of flow and high frequency fluctuating residual structures.

Figure 4.5: Three fixed shaped flow modes capture essential features of cortical flows:
[A]: relative kinetic energy captured by 3 mode model for set of individuals. [B]: (left) Coefficients
functions of first three modes for induvidual. Functions have been smoothed for ploting purpose
with sliding mean 2.5% width. (right) captured relative kinetic energy depending on amount of
modes for individual 2 [C]: First invariant model modes. (from top to bottom) Transport mode T,
fountain mode X(x), shift mode Y(x) and force mode F(x). [D]: Decomposition of cortical flows
for individual 2. (left) observed flow profiles (mid) flows captured by three mode model (right)
residual flows. Black dashed line indicates nucleus position d(t).

Comparing these results to the model of [21] we observe two major features. The most prominent

one is the occurrence of two additional modes T, Y which are orthogonal to X and therefore

represent dynamics not present in the model of [21]. Furthermore, the coefficients k0(t), k2(t), see

figure 4.5-B(left) associated with the modes T, Y seem to correlate with the displacement of the

origin of flow in the sense that k0, k2 < 0↔ ḋ < 0. On the other hand, the coefficients k1 associated

with the fountain mode X seem not to correlate with the displacement of the origin of flow.
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4.2.2 A Qualitative Model for the Feedback Loop

After finishing the formal description of the coupling mechanisms in the feedback loop and the

validation of these couplings with experimental observations, we have established a mode decom-

position of the cortical flow w.r.t. to the nucleus position capturing the principal flow structures.

We now turn to investigate the impact of the geometry on the feedback loop. Which parts of the

loop are sensitive to geometry and how does the broken symmetry relates to the emergence of the

threshold of nucleus alignment as observable in figure 2.10 and 4.3-B.

To do so, we extend the mode decomposition of cortical flow to the cytoplasmic flows and

set up a basic dynamical system describing the mechanical feedback loop in terms of temporal

evolution of the mode coefficient functions ki(t) and the position of the origin of flow d(t). Such

a simplified model might neglect features but enables the application of linear stability analysis,

providing insides in the fundamental properties, like stationary points and their stability, of the

mechanical feedback loop.

Cytoplasmic flow modes and nucleus transport is sensitive to cell eccentricity Due to

the linearity in the coupling of cortical and cytoplasmic flows we can immediately obtain cytoplas-

mic flow modes VT,VX and VY, see figure 4.6-A.

Figure 4.6: Cytoplasmic flow modes and induced nucleus transport: [A]: Streamlines of
cytoplasmic flows in ellipse domain with body axes [A = 27 [µm], B = 15 [µm]] induced by cortical
flow modes T (top), X (mid) and Y (bottom) for aligned d = 0 (left) and misaligned nucleus d = L/4
(right). [B]: Tangential nucleus velocities induced by cytoplasmic flows depending on the alignment
of nucleus. VT,VY induce nucleus strong positive velocities, implying a clockwise transport (blue
lines top and bottom). Nucleus velocities induced VX (blue lines mid) with strong dependence
on the position d. Subsequent transport is always directed towards the posterior pole, except for
nucleus positions at the short body axis d = −L/2, L/2 [C]: Control experiment for cytoplasmic
flow modes in a circular domain. Resulting nucleus velocities (in B red dashed lines) are invariant
under alignment d and VX does not yield any transport at all.

Considering the case of an aligned origin of flow d = 0, we observe two major features. For
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the flows induced by the fountain mode we observe two large vortices forming a jet parallel to the

AP axis, as observed in the 2D flow observations of figure 2.1. The jet has it stagnation point at

nucleus and normal to the cortical such that no transport is induced. Quite contrary for the flow

modes VT,VY, which exhibit in the nucleus vicinity vortices flowing parallel to the cortical layer,

inducing a strong counter clockwise transport of the nucleus.

Considering now the case for a misaligned nucleus position d > 0 we observe for VX a simi-

lar vortex configuration. But due to the broken symmetry in the cellular domain we observe two

unequally deformed vortices, yielding a jet hitting the nucleus off the normal axis. This displaced

stagnation point induces a weak nucleus transport. Most remarkably the direction of the transport

is always directed towards the posterior pole (−L/2 < d < L/2, see figure 4.6-B) such that the

unequal deformation of the vortex pair poses a sensing mechanism. Furthermore, we observe that

nucleus positions at the symmetry axis of the cell geometry (d = 0, L long/AP axis, d = −L/2, L/2
short body axis) yield equally deformed vorticies and subsequently no nucleus transport by flows

of VX. For the modes VT,VY we do not observe such a complex behavior. Regardless the position

of the nucleus, its transport remains strong and is always directed counterclockwise.

To emphasize the impact of the cell geometry on this two fold behavior we repeated the calcu-

lations on a circular domain, see figure 4.6-C. Due to the symmetry of the geometry the flow modes

and associated nucleus transport is independent of d and in the case of VX no nucleus transport is

induced. Further, combining this findings, regarding the nucleus transport, with the observations

of the mode coefficients, see figure 4.5-B, we observe indeed a systematical alignment of the nucleus

towards the posterior pole induced by cytoplasmic transport. In detail, for k1 > 0 the associated

mode VX induces always a weak transport towards the long body axis poles, while k0, k2 change

signs according to the “desired” direction (d > 0 ↔ k0, k2 < 0 and vice versa), yielding strong

transport towards the poles.

Geometric sensitivity of cytoplasmic flows enables stationary points of mechanical

feedback loop and controls their stability To expand our understanding of the alignment

mechanism in terms of modes Zi(x; d(t)), coefficient functions ki(t) and nucleus/origin of flow po-

sition d(t) we set up a dynamical system. This system describes the temporal evolution of ki and

d, enables to discuss cross-coupling between the modes and systematic analyze w.r.t. stationary

points and their stability.

For the cortical dynamics we follow [21] and use a momentum balance consisting of a force

input and a friction term as sink mechanism.

ρv̇ + γv = F (4.17)

We insert the mode expansion discussed in (4.14) and truncate it after three modes.

v(x, t) ≈ k0(t)T(x) + k1(t)X(x− d(t)) + k2(t)Y(x− d(t)), F (x, t) = f(t)F(x− d(t)) (4.18)
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Testing with the cortical flow modes we remove the spatial dependence and obtain a dynamical

equations in ki

k̇j(t) + ḋ(t)
∑
i

ki(t)Sji +
γ

ρ
kj(t) =

f(t)

ρ
Bj ∀ j = 0, 1, 2 (4.19)

where the matrix Sji = 〈Zj(x− d(t)), ∂xZi(x− d(t))〉 expresses couplings between the mode coeffi-

cient functions while Bj = 〈F(x− d(t)),Zj(x− d(t))〉 describes the mode excitation by the external

forcing. Please note, by the symmetric shift d(t) in these matrix definitions, S and B do not depend

on d.

To model the temporal evolution of d we use the results of figure 4.6-B to define a set of transport

functions UT, UX and UY to express the displacement of d induced by the cytoplasmic flow modes

depending on the position of d. The total transport is then a linear combination of the transport

functions scaled by ki

ḋ(t) = k0(t)UT(d(t)) + k1(t)UX(d(t)) + k2(t)UY(d(t)) (4.20)

Summarizing the transport functions in a vector U = [UT, UX, UY]T as well as coefficient functions

X = [k0, k1, k2]T we can express the dynamical system in compact notation

Ẋ(t) + ḋ(t)S ·X(t) =
f(t)

ρ
B− γ

ρ
X(t) (4.21)

ḋ(t) = X(t) ·U(d) (4.22)

Before turning to the stationary points of this dynamical system we review the properties of the

matrices S and B. Recalling the fundamental shapes of the cortical flow modes, see figure 4.5-C,

we observe F to be orthogonal to T and Y. Combined with the strong correlation of F and X we

yield B1 > 0 and Bi = 0 otherwise.

Furthermore, we use the property of wave number W (Zi) doubling across mode pairs to es-

timate the magnitude of S entries. Clearly, any derivative of T yields 0 and the magnitude of

∂xZi can be estimated by O(W (Zi)/L). Recalling the L2 norm definition (4.6) and the normalized

modes we estimate the entries of S by O(10−2) for the truncated mode expansion. Compared to

the magnitude of B1 ≈ O(1) and mass matrices equivalent to the unity matrix we observe a very

weak coupling between the low order modes.

With these considerations at hand, we now turn to the determination of stationary points.

For sake of simplicity we neglect the weak mode cross couplings by assuming S ≈ 0 and restrict

our considerations to a constant forcing f(t) ≡ f . For such autonomous ODE system we obtain

following conditions for the stationary points [X, d]

fB− γX = 0, X ·U(d) = 0 (4.23)

Thereby yielding k0 = k2 = 0 and k1 = f/γB1. Assuming a forcing f > 0, this implies UX(d) = 0
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as a necessary condition for a stationary point.

Reviewing the shape of the transport functions in figure 4.6-B, we observe the condition to met

for all positions d in the circular domain. In the case of an ellipse geometry only the poles of long

and short body axis d ∈ {−L/2, 0, L/2, L} suffice this condition.

To investigate the stability of the stationary points, we calculate the Jacobian J of the right

hand side in (4.21) and yield

J =

[
−γ
ρ I3 0

U(d)T ∂dUX(d)k1

]
. (4.24)

Immediately we observe the eigenvalues of J to be either negative −γ/ρ or to be defined by the slope

of UX in the stationary point. In the case of short body axis stationary points d ∈ {−L/2, L/2} the

slope is positive making the stationary point meta stable, while for d ∈ {0, L} at the long body/AP

axis the stationary points are attractive, see figure 4.3-B.

4.2.3 Systematic Considerations

In the previous sections we have discussed a mechanical feedback loop, facilitating the alignment

of a misplaced nucleus with the AP axis in the C. elegans embryo. There, we observed a strong

impact of geometric effects on the fundamental properties of the feedback loop.

We found the basic flow mode, excited by the Myosin activity, to induce cytoplasmic flows and

subsequent nucleus transport to be highly sensitive to the overall eccentricity of the embryo as well

as instantaneous position of the nucleus. We observed that this sensitivity is key to enable the

existence of localized stationary points, in the overall mechanical feedback loop, as well as it is

decisive for the stability of these stationary points.

Furthermore, we have found in the experimental data additional flow modes orthogonal to the

basic fountain mode X. These additional modes T, Y, which also induce cytoplasmic modes and

subsequent nucleus transport, are drastically less sensitive to geometric properties. Remarkably,

we observed these modes to account for a major part of nucleus transport in the alignment process.

By the orthogonality of these flow modes to the fountain mode and the forcing created by Myosin

activity we conclude that a relevant effect, exciting these modes, is missing in the used model.

As in chapter 2 we recall the three dimensional nature of the C. elegans embryo - so far we have

considered only experimental data observing the process in a slice of the embryo. Reviewing the

experimental data under the notion that the embryo is a three dimension object we point out that

the observations did not specify an exact slice, merely requiring the nucleus to be visible. Such

indifference in choice of observation slice, indicates some symmetry in the observed phenomena.

Regrading the process of Myosin depletion a rotational symmetry w.r.t. the origin of flow seems

plausible since the dynamics, see (4.1), are driven by isotropic effects like Myosin (un-)binding or

diffusion.
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Considering the cortex as a curved thin shell, highlights that we have, so far, treated the cortical

velocity as a scalar field w.r.t. a fixed tangential counter clock wise direction. In the three dimen-

sional context we have to treat the vectorial nature of the velocity fields explicitly. Throughout

the Chapter 3 we have argued that increased tensorial degree leads to extended coupling between

geometry and dynamics, which has been discussed for incompressible fluid dynamics on surfaces

by [5, 60]. In these models explicit geometric terms were observed in the momentum balance.

Combining these arguments, we have strong indications for a systematic investigation of the

mechanical feedback mechanism in a more detailed geometrical setting, addressing the curved

nature of the cortical layer and the volume like nature of the cytoplasmic bulk.

4.3 A Thin Shell Model for Cortical Activity

In this section we aim to derive and discuss a model of the previously defined mechanical feedback

loop incorporating the major geometric features of the biological system. Here we consider the

cortex as a curved thin shell Sh enveloping a three dimensional cytoplasmic volume V ⊂ R3.

To describe the dynamics of the cortical Myosin and the induced flows we transfer the model

presented in [21] to a bounded volume Sh ⊂ R3. With the choice of a set of suitable boundary

conditions we use the thin shell limit framework, discussed in chapter 3, to derive an effective

surface model for the cortical dynamics. For the cytoplasmic flows in the enclosed volume we use

the Stokes flow model analogous to the one presented in chapter 2.

With this model combination, we will investigate the impact of curvature. We use the Helmholtz

decomposition to separate cortical flow contribution into active stress and geometry driven parts.

In the light of these results we discuss the modeling assumptions and used values for λ of [21].

Furthermore, we propose a modeling including line tension effect due to Myosin gradients and

explore it’s possible impact on the overall model.

4.3.1 Derivation of an Effective Surface Model

A model of cortical dynamics in flat volume We now will derive a volume model of the

cortical activity following the assumptions used in [21]. Furthermore, we consider the coupling

mechanisms between Myosin dynamics and cortical flows as given. In this sense we simplify the

modeling approach by treating both dynamics separately.

In the case of Myosin dynamics we straight forward obtain following state equations

∂tnM +∇ · (VnM )–DM∇ · (∇nM ) = +kon,Mn
cyto
M − koff,MnM +RMnM in Sh (4.25)

∇nM · ν = 0 on ∂Sh (4.26)

with RM = koff,MKM (x)fM (t), KM (x) = kMe
−(‖x−x0‖/σM )2 (4.27)
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where we have assumed an isotropic depletion signal positioned at x0. As boundary conditions we

require no diffusive flux or advective transport of Myosin across the boundary. Later requirement

implies V · ν = 0.

For the momentum balance in Sh, we assume the cortex as a compressible Newtonian fluid,

such that the stress tensor is given by the rate of deformation tensor D and can be separated in

deviatoric and isotropic contributions

D = 1/2
(
∇V +∇VT

)
(4.28)

σ = η

(
2D − 2

3
(∇ ·V) I3

)
︸ ︷︷ ︸

=σd

+ P I3︸︷︷︸
=σiso

(4.29)

Furthermore, we assume Stokes regime, where inertia effects can be neglected, an isotropic friction

and use a generalize active stress term analogue to [21]. Requiring purely normal forcing at the

boundary we yield following momentum balance

−∇ · σ = −γV +RV∇
(

nM
nM + n∗M

)
in Sh (4.30)

Π[σ · ν] = 0 on ∂Sh (4.31)

Inserting the stress tensor definition and a linear barotropic approximation for the pressure P =

EnM we can rearrange the state equations and yield following state equations for the cortical

dynamics.

∂tnM +∇ · (VnM )–DM∇ · (∇nM ) = kon,Mn
cyto
M − koff,MnM +RMnM in Sh (4.32)

−η
(
∇ · (∇V) +

1

3
∇ (∇ ·V)

)
+ γV = RV∇

(
nM

nM + n∗M

)
+ E∇nM in Sh (4.33)

with boundary conditions

∇nM · ν = 0 on ∂Sh (4.34)

V · ν = 0 Π[σ · ν] = 0 on ∂Sh (4.35)

Cortex model in curved thin shell yields explicit geometric forcing in momentum

balance As next step we consider the volume model in a curved thin shell geometry Sh as a

tubular extension of S with thickness h. To obtain a compatible model description in curvilinear

coordinates we generalize the stress tensor to non trivial thin shell metric G

σ = η

(
2D − 2

3
(∇ ·V) G

)
+ P G (4.36)

Defining further the tangential, surface bound quantities for the velocity v = Π[V|S ] and the metric

g = Π[G|S ] we can define the surface bound rate of deformation d and stress σS and relate them
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to the thin shell quantities as follows

D|S =
1

2

(
∇Sv +∇SvT

)
︸ ︷︷ ︸

=d∈T2S

+O(h) (4.37)

σ|S =

(
η

[
∇Sv +∇SvT −

2

3
divvg

]
+ Pg

)
︸ ︷︷ ︸

=σS ∈T2S

+Pνν +O(h) (4.38)

With these notions we can straight forward consider the thin shell limit h → 0 to obtain the

surface state equations. For Myosin dynamics, as a scalar valued PDE, we obtain an almost equal

formulation

∂tnM +∇S · (vnM )–DMdivS (∇SnM ) = kon,Mn
cyto
M − koff,MnM +RMnM in S (4.39)

Note that by the dimensional reduction of the thin shell limit we have to adjust the notion of

distance in KM (x) = kMe
−(d(x,xb0)/σM )2 to a geodesic one.

For the momentum balance we can insert the stress tensor definition and expand divSσS . We

yield similar state equation, but with an explicit curvature term (also obtained in the case of

incompressible surface bound flows see [5, 60])

−η
(

divS∇Sv +Kv +
1

3
∇SdivSv

)
+ γv = RV∇S

(
nM

nM + n∗M

)
+ E∇SnM in S (4.40)

The geometric term Kv has opposing sign compared to friction, we therefore consider this effect

rather as a forcing, leading to increased velocities for positive Gaussian curvature.

Geometric forcing excites transport flow mode We will now explore the obtained thin shell

model by numerical experiments and compare these results to predictions of the 1D model of [21]

and previously discussed in-vivo observations. Since the derivation of (4.39) yielded no structurally

changes in the state equations of nM we will focus here on the velocity distributions of these models.

To obtain compatible formulations, we recast (4.40) and (4.39) to match the formulation given

in [21].

∂tnM +∇S · (vnM )–DMdivS (∇SnM ) = kon,Mn
cyto
M − koff,MnM +RMnM in S (4.41)

λ2

(
divS∇Sv +Kv +

1

3
∇SdivSv

)
− v = C∗f in S (4.42)

For subsequent experiments we use phenomenological parameters λ and C∗ in the momentum bal-

ance and parameters DM , kon,M , koff,M in the Myosin system as provided in [21]. We evaluate

cortical flows and Myosin distributions for several nucleus/origin of flow positions d ∈ [0, L/2].

As domain we use an ellipsoidal shape (major axes A = 27 [µm], B = 15 [µm], C = 15 [µm]), ap-

proximating in-vivo observations. On the temporal axis we consider a constant temporal triggers

fM (t) = fv ≡ 1 (“always on”) and evaluate until a stationary configuration of nM and v is reached.
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We restrict these solutions to a domain slice (given by the AP axis and the nucleus center/origin

of flow on the ellipsoid) and parameterize the slice by a signed distance to the posterior pole. The

velocity vectors v are projected onto a counterclockwise oriented tangential unit vector field to

obtain a compatible description v to figure 4.5-D. As second step we project v on the mode basis

introduced in 4.5-C.

In the case of Myosin distributions across the ellipsoid slice we observe that the results of the

model in [21] are reproduced with good agreement. Under the variation of the origin of flow posi-

tion d we observe the distributions to be invariant, beside a consistent shift by −d. As expected,

for scalar valued PDEs and a weak transport, we observe no qualitative or quantitative changes in

the model by the change of a flat 1D to the curved thin shell model.

Figure 4.7: Cortical thin shell model contains transport flow mode in cortex and cy-
toplasm: Streamlines of cytoplasmic flows in slice of ellipsoid domain with body axes [A =
27 [µm], B = 15 [µm], C = 15 [µm]]. Cortical flow fields (black arrows, colorcoded magnitudes).
[A]: Compressible flow contributions for misaligned d = L/4 (top) and aligned d = 0 (bottom) nu-
cleus (green circle). Compare to fountain mode VX flows in 2D case, figure 4.6. [B]: Incompressible
flow contributions for misaligned d = L/4 (top) and aligned d = 0 (bottom) nucleus. Cytoplasmic
flows can be considered as superposition of transport VT and shift mode VY flows in 2D case, figure
4.6. Incompressible flows cease for aligned nucleus.

Reviewing the evaluated velocity fields we consider the qualitative features of cortical flows.

Since we are observing a radial symmetric Myosin forcing f (w.r.t. to origin of flow and along

geodesic distance) we use the Helmholtz decomposition of v = a + b for visualization purpose

and refer to them as incompressible (a ∈ TS, divSa = 0) and compressible (b ∈ TS, rotSb = 0)

contribution. As shown in the icons of figure 4.7 we observe the compressible contribution to match

a rotational expansion of the previously observed cortical fountain mode flows. For the incompress-

ible contribution we observe a circular flow, rotating in the plane given by the long body axis poles

and the origin of flow. This flow reaches peak velocities at the posterior pole and is oriented from

the origin of flow towards the posterior pole. Remarkably this incompressible flow contribution
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vanishes for an aligned nucleus d = 0 due to the symmetry in the geometric forcing.

To estimate the impact of these two cortical flow contributions on the nucleus transport, we

also evaluate the associated cytoplasmic flow modes by a 3D Stokes flow model, analogue to (4.10).

Considering now the cytoplasmic flow fields in the slice, see figure 4.7, we observe flow fields similar

to the transport mode VT (incompressible part) and fountain mode VX (compressible part) of the

qualitative model, shown in figure 4.6. In the case of vanishing cortical flows for incompressible

contribution for aligned nucleus d = 0 we also observe no flows in the cytoplasmic bulk.

As final step we compare the cortical velocities of the domain slice with the in-vivo observations

along the mode coefficients. In figure 4.9-B(top) λ = 11, we have plotted the coefficients of the

dominant modes (T, X, Y) vs. the displacement of the origin of flow. We observe that coefficients

of experimentally observed flows are reproduced for small displacements of the nucleus, |d| < L/16,

while for larger displacements the coefficients of the transport and shift mode are falsely predicted

with a factor of ≈ 10.

Combining these results, we observe three features for the thin shell model describing the cor-

tical activity.

The first feature regards the Myosin dynamics. Here no relevant changes in the model equations

and the evaluated behavior are observed. This matches the expectations for a thin shell limit of a

scalar valued PDE and underlines the insensitivity of Myosin dynamics to curvature.

In the case of the velocity fields a different behavior is observed. Here, we have identified an

additional cortical flow mode which can be related to in-vivo flow patterns, described by the trans-

port and shift mode. This flow mode is not traceable in the 1D flat space model (4.1). Remarkably

this additional flow mode is closely coupled to the curvature and its distribution on the surface.

Thereby, this mode is sensitive to the geometric symmetries at the origin of flow such that it van-

ishes for d ∈ {−L/2, 0, L/, L}. Relating this cortical flow mode, via the associated cytoplasmic

flow mode, with nucleus transport we observe these points to coincide with the fix points of the me-

chanical feedback loop predicted by the qualitative model (4.21). The excitation of this additional

flow mode can be attributed to the coupling of a vector valued physical field with the curvature

of the domain. In the presented form of momentum diffusion λ2
(
divS∇Sv +Kv + 1

3∇SdivSv
)

we

observe a explicit geometric forcing which is amplifying existing flows (opposing frictional effects)

and scales by the Gaussian curvature of the domain. In the case of the considered ellipsoid geom-

etry the geometric forcing can be estimated by λ2K ∈ [4.4, 14.5].

The third feature concerns the observation that the thin shell model reproduces in-vivo cortical

flow fields only for small displacements of the origin of flow. For larger displacement the geometry

excited cortical flow mode is too weak to reproduce the experimentally observed flow contributions

of transport and shift mode.
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4.3.2 Line Tension Induced by Myosin Gradients

The previous section has established a thin shell model of the cortical activity and revealed the

existence of a geometry driven flow mode. We observed this flow mode to correlate to the Gaussian

curvature K and coarse grained material parameter hydrodynamic length λ2. In the subsequent

section we will discuss this material parameter and investigate the sensitivity of the thin shell model

w.r.t. λ.

Modeling assumptions in defining the hydrodynamic length In numerical experiments we

have used a set of material parameters of the cortex given in [21]. In the case of the hydrodynamic

length λ = 11 we refer to experimental studies [46, 68]. These works use an analogue analytical

model and determine the parameters by calibrating towards experimental flows induced by COLA.

In both works, two modeling assumption are made. On the one hand, the drag by the neighboring

cytoplasm, represented by γ, is constant in time and space. On the other hand, both assume a

single driving mechanism to capture the cortical flows (1D contractillity in [46] or isotropic active

stress in [68]).

Regarding the first assumption, we point out that in several single cell organisms it has been

observed [76, 63, 4] that the cytoplasm undergoes several phase transitions between elastic solid to

fluid like behavior and back in the course of its cell cycle. Therefore it seems reasonable that such

fundamental change in material behavior will correspond to a significant change in cytoplasmic

material parameters, like viscosity. As discussed in [72] we know that at an interface of fluids the

ratio of viscosities is key for the drag exerted between the fluids. Namely, dragging a fluid with

high viscosity consumes more energy than for a low viscosity fluid. So, a significant change in

cytoplasmic viscosity, e. g. by a phase transition, will impact the modeled “effective” friction in the

cortical model, yielding a different hydrodynamic length. We therefore emphasize the dependency

of hydrodynamical length of the cortical layer to the material properties of the cytoplasm, as well

as a possible temporal evolution in the ratio of friction and cortical viscosity.

Concerning the second assumption, of a single driving mechanism, we suggest to extend the

model by including line tension effects. To clarify what is meant by the notion of line tension, we

consider the diffusion of a concentration n on a flat plane. As initial state we assume a circular

region at the origin with low concentration and a high concentration in the remaining domain. The

diffusive relaxation process of such configuration can be described along the evolution for lines of

constant concentration, driven by the chemical potential 4µ.

∂tn = −4µ (4.43)

Furthermore, the normal velocities of this line evolution is proportional to the mean curvature of

the line. Reflecting on the contractile nature of these lines of constant concentration, the scaling

factor ζ in this relation is called line tension. Coupling the diffusive relaxation to a momentum

balance w.r.t. n (not necessarily requiring mass conservation of n) we yield, in the context of Stokes

flow, by a Newtonian fluid σ = η/2(∇V + ∇VT ) in contact with another fluid following model
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[72, 12, 9]

∂tn+∇ · (nV) = −4µ (4.44)

∇ · σ − γV = −ζn∇4µ (4.45)

This model includes a forcing term to minimize the length of the contact line between the fluids.

Certainly, the suggested alternative assumptions have to be justified by in-vivo experiments.

Nonetheless, in the scope of this work we can not provide such validation.

We therefore consider the alternative assumptions as an extensions of the established models

in [46, 68] and use the results of [21] as set up for calibration of material parameters C∗ and ζ

for a given λ in the case of an aligned nucleus d = 0. Such calibrated thin shell models are used

subsequently to predict cortical flow patterns for displaced nuclei d 6= 0. These predicted flows are

then compared to the observed flow patterns in the nucleus alignment process, e. g. figure 4.5-D.

Figure 4.8: Introducing line tension enables consistent flow reconstruction across one
order of magnitude of hydrodynamic length λ:[A]: Normalized cortical flow modes X (top)
and L (bottom), w.r.t. to central slice of ellipsoidal geometry, for λ = 5 (blue), λ = 11 (green) and
λ = 100 (red).[B]: Calibrated coefficients C∗ (blue) and Sl (red) depending on given λ. Ligh grey
line shows L2 error of cortical flow fields, restricted to central slice, compared to data of 1D model.
[C]: Flow fields (fixed size glyphs and color coded magnitude) induced by chemical forcing fc (left)
and line tension fl (right) at λ = 11. Myosin concentration on ellipsoid (right top). Yellow lines
indicate interface by isolines for 10% , 50% and 90% of maximum Myosin concentration.

Line tension effects enable consistent flow field reproduction across a range of hy-

drodynamic lengths With the previously discussed extended assumptions for modeling cortical

activity we yield following thin shell model

∂tnM +∇S · (vnM )–DMdivS (∇SnM ) = kon,Mn
cyto
M − koff,MnM +RMnM in S (4.46)

λ2

(
divS∇Sv +Kv +

1

3
∇SdivSv

)
− v = C∗fCF + ζ2

l fLT in S (4.47)

As suggested by [12, 60], we have defined the chemical potential of Myosin by 4µM = divS∇SnM
and yield a line tension force by fLT = nM∇4µM . fCF denotes the forces exerted by Myosin

activity, as defined in [21, 68]. To obtain a compatible formulation with (4.1) we have refactored
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line tension coefficient such that ζ2
l = ζ/γ.

Utilizing the linearity of the momentum balance w.r.t. source terms we can identify associated

cortical flow modes X, L and investigate their sensitivity to changes in hydrodynamic length. For

the remainder of this paragraph we only consider the aligned nucleus set up (d = 0).

Figure 4.8-A shows the normalized flow distribution on a slice of the ellipsoid w.r.t. the signed

distance to the posterior pole. Considering flows excited by fCF and variating the hydrodynamic

length we observe for the cortical flow mode X that the peak velocities are shifted towards the

anterior pole eliminating the typical low magnitude flow regime at the anterior pole observed in 1D

flat space model. See also figure 4.2.

In the case of flows excited by fLT we observe a qualitative different behavior. The general

shape of L exhibits three changes in sign inducing posterior pole directed flows in the region of the

anterior pole. The peak velocities are correlated with the peak magnitudes of ∇SnM , see figure

4.8-C. Similar to the fountain mode, we observe for increased hydrodynamic length distinct changes

in anterior pole region. As shown in figure 4.8-A (bottom) we observe the posterior pole directed

flows to cease for sufficient high λ.

With this qualitative understanding of the general sensitivity of the cortical flow modes X and

L, w.r.t. λ, we can now perform the calibration of C∗ and ζl for given λ. To do so we consider the

minimization of a L2 distance functional and the steady state cortical flow field v1D obtained by

1D model of [21] as target,i. e.

E(v) =

∫ L

−L
‖v − v1D‖2dx (4.48)

As shown in figure 4.8-B we perform successful calibration for a range of hydrodynamic length

scales λ ∈ [10, 100]. Off this array the minimization fails to achieve sufficient approximation of

the target flow profile yielding significant higher values of E(v). In agreement with the results of

[46, 68] we yield in the case of λ ≈ 10 good approximations for weak surface tension contributions

ζl ≈ 10−2 and strong forcing by Myosin activity C∗ ≈ 10. Increasing λ leads to combinations of

(C∗, ζl) with moderately increased C∗ and strong increase in ζl. Due to the quadratic influence of

ζl in the momentum balance we expect the line tension effects to dominate in situations of λ ≈ 100,

where ζl ≈ 25 and C∗ ≈ 45.

Combination of increased hydrodynamic length and line tension effect is key to recover

cortical flow profiles for misaligned nuclei After establishing and calibrating the thin shell

model, including line tension effects, we consider now a parameter set up for a large hydrodynamic

length λ = 80 and strong line tension C∗ = 45, ζl = 25. As for the set up λ = 11, C∗ = 10, ζl = 0

used in section 4.3.1, we evaluate the steady states of (4.46) across various nucleus/origin of flow

positions d ∈ [0, L/2] and review the obtained velocity magnitudes v of a slice of the ellipsoidal

domain, see figure 4.9-A.
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Figure 4.9: Combination of increased hydrodynamic length and line tension effects
amplifies geometric forcing:[A]: Magnitudes of cortical flows on central domain slice depending
on origin of flow position for λ = 11 (left) and λ = 80 (right). X axis denotes distance to posterior
pole, y axis origin of flow position d by distance to posterior pole. [B]: Mode coeffcients of cortical
flow fields versus origin of flow position for λ = 11 (top) and λ = 80 (bottom). Experimental data
(solid lines), smoothed by sliding mean of 1.25%L width, and model predictions (dashed lines) are
shown for dominant modes T (green), X (blue) and Y (red). [C]: Cortical flow fields for origin of
flow at d = L/4 (red sphere) for several values of λ = 11, 20, 40, 80 illustrating the increasing
curvature effects.

It comes to no surprise that we observe coinciding velocities, across the two parameter set ups,

for small displacements d < L/16. For larger displacements d we observe strong deviation between

the set ups. While for λ = 11 only mild changes (beside a shift of the magnitudes) are observed,

λ = 80 exhibits qualitative changed behavior. Most remarkably, for d > L/4 the magnitudes of

flows pointing form origin of flow towards the posterior pole are significantly amplified (up to factor

2.5) while flows in opposing direction are suppressed. At higher values of d ∈ [3/8L, 1/2L] this

asymmetry softens such that for d = L/2 a symmetric flow profile (w.r.t. to origin of flow d) is

obtained. For comparison with experimental data we project the obtained cortical flows onto the

mode basis, see figure 4.5-C. In figure 4.9-B we plot the mode coefficients obtained in each set up

λ = 11 (top) and λ = 80 (bottom) w.r.t. d and compare it to the coefficients of the projected

experimental cortical flow fields. Here we observe that the coefficients predicted by the model

with λ = 80 match the experimental data in a domain d ∈ [0, L/4]. For larger displacements the

prediction and data start to deviate. As observed in figure 4.4-A, for strong displacements only

significantly less measurements are available such that single measurement errors might impair the

overall quality of the data.

To complete this investigation we present in figure 4.9-C a sequence of evaluated cortical flow

fields with d = L/4 for the hydrodynamic length parameters λ = 11, λ = 20 and λ = 80. In

this sequence we observe how the asymmetry of the flows pointing towards anterior and posterior

poles amplifies for increasing λ. Furthermore, we monitor an increasing discrepancy of the center
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of Myosin depletion (d origin of flow) and the actual origin of flow. Combining these features it is

apparent how a transport mode (a constant shift in flow magnitudes v at the ellipsoid slice) can

emerge.

4.4 Geometric Effects Drive and Control the Mechanical Feedback

Loop

Throughout this chapter we have established a description of the nucleus and PAR domain align-

ment process by a mechanical feedback system. Three physical effects engage and form following

loop: Myosin gradients coupled to the nucleus position form in the cortical layer. These gradients

creates active stress in the cortex and induce cortical flows. Finally interfacial drag yields cytoplas-

mic flow which displace the nucleus.

We were able to qualitatively validate these modeled mechanism against experimental observa-

tion. Here nucleus transport poses an exception as our model predicts significant lower velocities

(factor 2 − 5) as observed in-vivo. We attribute this misprediction to an inaccurate modeling of

cortical flows pressing the nucleus into the cortical layer and its mechanical response. To resolve

this issue a systematic investigation of this effects seems necessary which is beyond the scope of

this work. In a second step we projected the observed cortical flows to a three dimensional basis of

characteristic flow modes. By considering the associated cytoplasmic flows we could identify two

modes as main facilitator of nucleus transport as well as a characteristic fountain mode associated

with the cortical flows induced by Myosin activity in flat space. Finally we transferred an existing

flat 1D model of cortical mechano-chemical activity to a thin shell model of a curved cortical layer

to identify the driving effect of the flow modes driving the nucleus transport.

Through these steps we were able to analyze the fundamental properties of the feedback loop.

Via stability analysis we showed how geometry defines the location of fix points and their stability

behavior. We observe in the case of an ellipse shaped cortical layer and enclosed cytoplasm, only

long poles of AP axis are attractive fix points while short body axis pole are metastable. Here

the distinct sensitivity to the eccentricity of the geometry of cytoplasmic flows associated with

the fountain mode is the key element in defining the fix points and their stability. This analysis

provides a strong statement towards an explanation of the observations made by [18] as well as the

FLUCS induced inverted cell division, see figure 2.10.

Furthermore the thin shell model of the cortical activity revealed that curvature anisotropies

induce a forcing which modulates cortical flows generated by fountain mode. Thereby the sym-

metry of sole fountain mode flows is broken and the asymmetric contribution can be related to

the nucleus transporting modes. Due to the tight coupling to the local curvatures we observed

in numerical experiments, with ellipsoidal shapes, these modes to induce cytoplasmic flows with a

nucleus transport parallel to the direction of Gaussian curvature gradient.

Overall we have found a feedback loop of predominantly linear physical effects restricted to a
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nonlinear domain is giving rise to self organizing mechanism, facilitating the alignment of devel-

opmental axes defined by nucleus and PAR domains with the long body axis in the C. elegans

embryo. In detail we could uncover how the geometry contributes to all essential effects in this self

organization. This observed mechanism and its analysis are a conclusive example how the geome-

try of physical domains influences the mechano-chemical morphogenesis and gives rise to surprising

features in systems at cellular scale.
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CHAPTER 5

CONCLUSION

In the previous chapters we have discussed the interplay of geometry and physical processes in a

bounded bulk, a thin shell and a feedback system combining those two entities. The aim of these

discussions was to foster the qualitative understanding of morphogenic processes in the model or-

ganism C. elegans embryo in its single cell state.

Despite the relative simplicity of the model organism compared to a mammal organism, we had

to make several strong simplifications to arrive at a system with feasible complexity. First of all, we

only considered the time frame in the embryonic development in which cytoplasmic streaming oc-

curs. Furthermore, we focused on mechanochemical processes in this temporal domain and ignored

the complex machinery of genetic expression and intra-cellular chemistry. Finally, we neglected the

highly heterogeneous molecular structure of the cellular constituents and used a description along

hydrodynamic variables. On the basis of these assumptions we have singled out the cellular entities

of cytoplasm, cortex and male nucleus for further investigations.

In the course of our investigations we reviewed a particle based model for cytoplasmic streaming

and established a complementary description by hydrodynamic variables. The model confirmed the

notion of cytoplasmic streaming as Stokes flow driven by cortical flows. Systematic considerations

regarding geometry yielded a secondary, quantitative impact of model dimensionality. Apart from

this, only a weak impact of boundary curvature was observed such that major features of cytoplas-

mic streaming were also reproduced in cell shapes approximated by ellipsoids.

Quite contrary results were obtained by considerations regarding the thin shell-like cortex. In

the case of a sufficiently thin geometry, h‖B‖ < 1, we derived effective surface models, reproducing

thin shell dynamics up to an error of O(h2). Using the limit h → 0 framework we yielded a wide

range of coupling mechanisms between geometry and dynamics of hydrodynamic variables. We ob-

served the chosen boundary conditions in normal direction of the thin shell and the tensorial degree

of the considered variables as key factors in determining the couplings. Furthermore we performed

geometric variations for thin shell systems of polar and nematic order where we observed a strong
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impact of the geometry. We yielded a local magnetic like forcing on defect positions as well as

an impact on a systematic level such that equilibrium states and their stability where decisively

influenced.

Combining the effects of cytoplasmic and cortical streaming with the transport of the male

nucleus we defined a feedback mechanism. In the coupling of such fundamentally different flow

phenomena (incompressible-compressible, volume-surface) we observed geometric properties of the

flow domains to heavily impact the feedback mechanism. Breaking the symmetry of the flow domain

by an elongated/ellipsoidal shape gave rise to the bistable behavior as observed in the experiments

of [18, 48]. By linear stability analysis we observed the two anterior and posterior poles of the cell

body as attractive fix points. The equator at the short body axis posed a meta-stable manifold

marking the threshold between those two attractive points.

The application of this array of analytical methods was enabled by the strong reduction of

model complexity. Nonetheless, the obtained models were capable of reproduce in-vivo observation

of intracellular dynamics in teh sense of flow fields and particle densities.

In the case of cytoplasmic streaming we obtained a parameter free model, accurately predicting

the flows by Stokes equations on a qualitative and quantitative level without the use of a fitting

parameter.

For the mechanochemical dynamics of cortical flows and evolving Myosin distributions, we were

able to reproduce the in-vivo observations for aligned nuclei along an established parameter set.

As a second step, we explored the model sensitivities with regard to the parameter of hydrody-

namic length. By including the additional physical effect of line tensions due to Myosin gradients,

we significantly expanded the predictive capacities of the cortical model. This expanded model

reproduced the experimental data in the case of an aligned nucleus and the in-vivo observations

concerning the self organizing process of axis alignment in the advent of initial cell division of the

C. elegans embryo.

Very remarkably, the obtained parameter set yielded a model prone to the previously discussed

geometric effects. Furthermore, these effects lead to the excitation of additional modes of cyto-

plasmic streaming which have been observed as a driving mechanical feature in the process of

axis alignment. Combined with the specification of fix points along the symmetry properties of

the cell body shape we consider geometric effects as decisive for driving and controlling this process.

With these examples of a successful interplay of in-vivo observations and model predictions

we contributed to expanding the qualitative understanding of the intracellular dynamics of the C.

elegans embryo. We established a theoretical model for a process of spatial self-organisation in the

context of asymmetric cell division and identified the geometric effects as vital contributors in this

morphogenic process.
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