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Abstract

The understanding and prediction of sudden changes in flow patterns is of paramount
importance in the analysis of geophysical flows as these rare events relate to critical
phenomena such as atmospheric blocking, the weakening of the Gulf stream, or the
splitting of the polar vortex. In this thesis, our aim is to fully set up a theoretical un-
derstanding of vortex splitting phenomena with concrete real-world applications. To
this end, we firstly study bifurcations of global flow patterns in parameter-dependent
two-dimensional incompressible flows, with the flow patterns of interest corresponding
to specific invariant sets. Based on already known classical bifurcation results from prob-
abilistic approaches, we exploit the discrete spectrum of a perturbed Frobenius-Perron
operator to build almost-invariant sets from perturbed invariant sets and study their
changes as the bifurcation parameter is varied. Even though these almost-invariant sets
are supported in a neighborhood of a critical point that later bifurcates, our spectral
results suggest a novel approach.

We, then, re-describe the underlying dynamics in terms of a reversible finite-state Markov
chain in order to spectrally characterize a set-oriented bifurcation from matrix pertur-
bations theory. Indeed, perturbed eigenvalues and their corresponding eigenvectors
sign patterns are inter-dependently used as observables, to successfully depict generic
indicators for pattern splitting.

These findings are, thus, extended to more realistic time-dependent systems where per-
turbed singular vectors and their singular values yield observables. Therefore, spectral
early-warning signals are proven to be robust, given a specific class of incompressible
time-dependent systems. Our results are confirmed, in application, by studying spectral
indicators of the Antarctic ozone hole sudden break up in September 2002, from satellite

velocity data.






Zusammenfassung

Das Verstdndnis und die Vorhersage von plétzlichen Verdnderungen in Strémungsmustern
sind bei der Analyse von geophysikalischen Stromungen von grol3er Bedeutung, da solche
seltenen Ereignisse haufig mit kritischen Phdnomenen zusammenhingen, beispielsweise
der atmospharischen Blockierung, der Abschwiachung des Golfstroms oder der Aufspal-
tung der Polarwirbel.

In dieser Dissertation wollen wir ein umfassendes theoretisches Verstdandnis insbesondere
von Wirbelaufspaltungen entwickeln und dies mit mit konkreten praktischen Anwen-
dungen verbinden. Zu diesem Zweck untersuchen wir zunachst Bifurkationen von glob-
alen Stromungsmustern in parameterabhangigen, zweidimensionalen, inkompressiblen
Stromungen, wobei die interessierenden Stromungsmuster bestimmten invarianten Men-
gen entsprechen. Auf der Grundlage bekannter klassischer Verzweigungsergebnisse aus
probabilistischen Ansétzen nutzen wir das diskrete Spektrum eines gestorten Frobenius-
Perron-Operators, um aus gestorten invarianten Mengen sogenannte fast-invariante
Mengen zu konstruieren und deren Anderungen bei Variation der Bifurkationsparameter
zu untersuchen. Auch wenn diese fast-invarianten Mengen in einer lokalen Umgebung
des sich spater verzweigenden kritischen Punktes liegen, deuten unsere spektralen Ergeb-
nisse auf einen neuen Ansatz hin.

Mit einer neuen Beschreibung der zugrunde liegenden Dynamik in Form einer diskreten,
reversiblen, endlichen Markov-Kette erhalten wir dann eine spektrale Charakterisierung
einer mengenorientierten Verzweigung auf Grundlage von Matrix-Storungstheorie. Tatsach-
lich werden gestorte Eigenwerte und die Vorzeichenmuster der entsprechenden Eigen-
vektoren gemeinsam als Beobachtungsgrof3en verwendet, um generische Indikatoren fiir
die Aufspaltung von Stromungsmustern erfolgreich abzubilden.

Diese Ansatze werden dann auf realistischere, zeitabhéngige Systeme ausgedehnt, bei
denen gestorte singuldre Vektoren und ihre Singuldarwerte die entsprechenden Beobach-
tungsgrofRen liefern. Dabei erweisen sich unsere spektralen Frithwarnsignale in den
betrachteten inkompressiblen, zeitabhédngigen Systemen als robust. Die Ergebnisse

bestatigen sich in der Anwendung. Insbesondere untersuchen wir spektrale Indikatoren
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der plotzlichen Aufspaltung des Ozonlochs iiber der Antarktis im September 2002 auf

Grundlage von durch Satelliten gemessenen Geschwindigkeitsdaten.
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i} Introduction

Understanding critical transitions in the macroscopic behavior of dynamical systems is,
nowadays, of high interest due to the emergence of new scientific challenges towards
developing mathematical theories for bifurcations of complex systems [3]. The ultimate
goal is to provide indicators or early warning signals for the prediction of sudden changes
in flow patterns emerging in real world systems such as the atmosphere. For instance,
the Antarctic polar vortex break up scenario in late September 2002 appears as a rotating
atmospheric pattern that suddenly splits [7, 9, 38]. Figure 1.1 illustrates graphically

this splitting event from velocity data. One may classify this splitting event as a critical

September 20, 2002 September 25, 2002

Figure 1.1: Antarctic polar vortex splitting event in September 2002, visu-
alized using two-dimensional velocity data from the ECMWF Interim data set
(http://data.ecmwf.int/data/index.html).

transition of patterns occurring in a specific natural complex system. Moreover, such
complex system may be modeled as incompressible time-dependent dynamical systems
where the sudden critical change is characterized as a critical transition [3, 5, 6] of

dominant slowly mixing patterns. Thus, a legitimate question arises: How could such an
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event be predicted before it happened? We suggest that a possible answer to this question
can be found by the combination of a model-based approach and its set-oriented analysis.
This means that, first, one needs to find a mathematical model that is representative
enough for the underlying complex system phenomena. Secondly, from the newly built
model, one needs to be able to distinguish and study critical transitions for patterns that,
a priori, behave similar to the polar vortex. Indeed, from the dynamics of the chosen
model, it follows that the task of finding observables as early-warning signals of any
radical split of the resulting pattern will progressively lead to predicting the occurrence

of the critical transition which may emerge as a sudden change.

Fortunately, there is an established mathematical concept to represent dominant slowly
mixing patterns from a time evolving dynamical system [13, 15, 36]. This is mainly
based on a measurable partition of the phase space into regions that are dynamically
almost disjoint and thus material transport between these regions, or patterns is minimal.
In case of autonomous systems, those regions are commonly called almost-invariant
sets [13, 14] since they mitigate transport between their interior and the rest of the
phase space. They are called coherent sets in the context of nonautonomous systems,
as they move over time with minimal dispersion [15, 16]. The theory leading to the
construction of these dominant patterns is mainly based upon the Perron-Frobenius
operator. The latter is an infinite dimensional linear operator which maps the time
evolution of probability densities, see [49] for more details. However, the discrete
spectrum and the corresponding eigenfunctions of a dynamically similar, perturbed linear
operator are systematically used to extract the patterns of interest [13, 15]. Besides, finite
time bifurcation theory has been recently introduced in [58]. There, central concepts
such as finite time attractivity and finite time repulsivity were analytically formulated
and applied mainly to low dimensional dissipative nonautonomous systems undergoing
critical transitions. However, the main concept of finite time dynamical systems can be

transferred to incompressible flows, which will be our main interest in this research study.

To the best of our knowledge, a set-oriented bifurcation analysis is still a broadly open
topic that may require a new theoretical approach beyond classical bifurcation theory.
Known previous works in this direction include using the discrete spectrum of the
deterministic Perron-Frobenius operator (referred to as transfer operator) generated by
dissipative and non-dissipative systems. In [17] a transfer operator based framework
was successfully developed for studying the one-dimensional pitchfork normal form.

Indeed, particular changes in the discrete spectrum of the transfer operator, including



accumulation of eigenvalues to 1 as the critical parameter is reached, yield indicators of

the pitchfork bifurcation.

The study of the time evolution of deterministic dynamical systems via a probabilistic
approach has been a subject of intense research during the last decades. In particular,
it has been used in many topics including physics and classical statistical mechanics
[48, 49]. For Anosov flows [45, 47], the probabilistic framework is provenly very
suitable for the analytical investigation of statistical properties of the dynamical systems.
Examples include chaos, ergodicity and mixing properties. These dynamical properties
are mathematically formulated after an invariant measure, or invariant distribution is
found, or assumed to exist. In terms of densities, the probability distributions always
converge to the existing unique invariant density when the system is mixing [52]. The
spectrum of the Perron-Frobenius operator generated by an Anosov flow and sometimes
referred to as the mixing spectrum [63], is used to interpret the global mixing properties
of a given dynamical system. It is also relevant for studying bifurcations within a statistical
view point. Indeed, the discrete spectrum of the Perron-Frobenius operators is directly
linked to the hyperbolic stationary points of the underlying dynamical system [17, 46].
Thus, the spectrum captures the stretching or contracting dynamics near stationary states.
Therefore, a critical transition of the dynamical system can be characterized by significant
changes in the spectrum of the Perron-Frobenius operators, when a critical parameter is
reached.

However, despite the mixing nature of a given system, there may exist regions in phase
space that resist mixing under the action of the dynamical system. These regions turn out
to be very relevant in the study of transport processes [41-44]. Hence, it would be very
crucial — but highly challenging — to predict their occurrences, their bifurcations and their
decays. Indeed, to the best of our knowledge, a set-oriented, probabilistic bifurcation
theory is still a broadly open research topic that requires the development of approaches
beyond the traditional bifurcation concepts. Furthermore, a probabilistic description of
critical transitions in flow patterns will help to get a better understanding of possible
early warning signals for sudden changes in geophysical real-world fluid dynamics, such

as Antarctic vortex splitting event.

In [18] early warning indicators for transitions between atmospheric flow regimes were
defined based on the transfer operator of a dissipative atmospheric model. In that work,
the discrete spectrum of the transfer operator was initially used to approximate two

isolated regimes as almost-invariant sets. Closer to the setting of the present work,
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bifurcations of almost-invariant and almost-cyclic sets in two-dimensional conservative
systems and corresponding changes in the spectrum of the transition matrices were
observed in [19, 20] but not systematically studied.

As a matter of fact, the three major axes of our research study will be as follows:

Firstly, this thesis addresses the problem of characterizing bifurcation of almost-invariant
sets from the classical bifurcation theory approach. That is, we seek qualitative changes
of those sets by studying qualitative changes of local fixed points. This approach is
similar to [17] but we use a perturbed transfer operator, instead of the deterministic
Frobenius-Perron operator. The advantage of using the perturbed transfer operator
resides in the nature of its discrete spectrum, at first sight. Indeed, we can identify a
particular subset of real eigenvalues whose magnitudes are close to 1. In addition to that,
positive/negative level sets of the corresponding eigenfunctions yield almost-invariant
sets. However, bifurcation can only be studied numerically. Thus, with this approach one
can see a spectral signature through significant changes of numerically approximated
real eigenvalues, as a bifurcation parameter crosses its critical value. This result is similar
to what is observed in [17]. However, changes in the approximated real eigenvectors
corresponding to those real eigenvalues do not yield any set-oriented bifurcation insight.
That is why, the second part of this thesis contribution consists of providing first steps
towards predicting bifurcation of patterns that can mathematically be represented as
optimal almost-invariant sets. Our approach is still probabilistic and will be mainly
based on analyzing the spectral behavior of discrete Markov chains subject to external
perturbations. The corresponding stochastic transition matrices are finite rank approx-
imations of the Perron-Frobenius operator and its diffused version. Almost-invariant
sets are numerically approximated by the dominant eigenvector basis of the transition
matrix. Moreover, we use the sign structures of these vectors to systemically design the
meaningful patterns that emerge from the dynamical system under study. Meanwhile, the
behavior of the corresponding dominant eigenvalues under parameter-variation indicates
when radical changes of patterns occur. Indeed, as the bifurcation parameter is varied,
eigenvalues change continuously with respect to the parameter.

Finally, this thesis investigates the finite time bifurcation of coherent sets with the main
goal of establishing a better understanding of early warning signals for sudden pattern
splitting. The latter is motivated by the Antarctic polar vortex sudden break up in
September 2002, as illustrated in figure 1.1. To this end, we study specific classes of
nonautonomous systems who mimic the Antarctic polar vortex dynamics. To the best of

our knowledge the bifurcation analysis of coherent sets as formulated in this work, has



remained a widely unexplored topic.

In the following is listed a brief outline of this thesis.

In chapter 2 and chapter 3 we respectively give the background study of the probabilistic
analysis of deterministic systems and the background study of set-oriented dynamical
systems. These two theories are actually in the core of our research study. Indeed, a set-
oriented analysis of a dynamical system (chapter 3) is a particular probabilistic approach
to analyzing dynamical systems (chapter 2). Besides, the particularity of a set-oriented
approach is tied to the fact that the latter focus on extracting optimal coherent sets,
while the probabilistic analysis of deterministic systems may lead to diverse conclusions
including ergodicity. Hence, in addition to defining basics concepts of Frobenius-Perron
operators, we give detailed mathematical constructions of almost-invariant sets and

coherent sets.

In chapter 4, we challenge our understanding about where should the study of a set-
oriented bifurcation really start, compared to already known classical bifurcation theory.
In fact, our approach can only start from the most comprehensive way towards solving
the main question of this thesis. Thus, chapter 4 explores the possibility of extending
already known results about characterizing local bifurcations from a statistical approach.
Namely, in [17], the spectral signature of the one-dimensional pitchfork normal form was
developed. Therefore, in chapter 4 we use the e-perturbed Frobenius-Perron operator and
study the spectral signature of the pitchfork bifurcation of a two-dimensional Duffing-like
oscillator system. Indeed, the latter yields a center stationary point for negative p and two
center stationary points for positive p. Furthermore, the underlying system’s dynamics
mimics somehow the Antarctic polar vortex rotating dynamics and the undergoing

bifurcations mimics the splitting scenario.

Results in chapter 4 have freed the set-oriented bifurcation study from the local bifur-
cation which is intrinsic to the system. Therefore, in chapter 5 we concretely study
bifurcation of almost-invariant sets, in the sense of pattern splitting. There, we briefly
review the concept of almost-invariant sets within a set-oriented numerical framework,
which yields stochastic transition matrices for reversible finite-state Markov chains. We
address results from the perturbation theory of stochastic matrices and show how their
dominant spectrum is suitable for estimating almost-invariant sets that originate from
invariant structures of the unperturbed dynamics. In order to illustrate the numerical
framework, we discuss the practical computation of the dominant almost-invariant sets

for a two-dimensional non-dissipative flow. Then, we start the foremost step by system-



Chapter 1. Introduction

atically experimenting Markov chain toy models undergoing bifurcations of specifically
constructed patterns. Finally, we rigorously study two explicit dynamical models, a
Duffing-type oscillator and a single gyre flow, and identify early warning signals for
splittings of patterns through the trends of eigenvalues with respect to a bifurcation

parameter. Findings in chapter 5 have been submitted for publication, see [57].

Patterns emerging from complex dynamics of real world systems, such as the Antarctic
polar vortex break up in late September 2002, suggest an analogous nonstationary
framework. That is, in order to apply this set-oriented formulation of bifurcation analysis
of chapter 5 into real world applications, one may need to reconsider nonautonomous
dynamical systems instead.

Inspired by chapter 5, we address a characterization of finite-time bifurcations of coherent
sets in chapter 6, which emerge from a nonautonomous dynamical system. This has
allowed us to deduce finite-time generic early warning signals for sudden vortex splittings.
These results are used to spectrally describe and characterize the Antarctic polar vortex
splitting event from the recorded velocity data, see figure 1.1. The results in chapter 6

are being prepared for submission to Chaos [60].



] Dynamical systems and transfer operators

In this chapter, we briefly introduce basic concepts our research will be built on. Indeed,
we define autonomous and nonautonomous dynamical systems. In particular, we intro-
duce the notion of ensemble evolution of trajectories, as our main approach can also be
classified in the broad range of statistical analysis of deterministic dynamical systems.
Thus, infinite dimensional linear operators which maps the evolution of densities will be
properly defined as as well. Finally, we introduce the main set-oriented objects that will

be at the core of all the ultimately developed frameworks throughout.

2.1 General definition and motivation

The theory of dynamical systems is concerned with the temporal evolution of systems.
As a matter of fact, a dynamical system can be used to describe process in motion, to
predict the future behavior of the underlying systems. Areas where dynamical systems
are relevant include changes in atmospheric flow motions, prediction of climate change
from the dynamics of climate models, etc.
A fast mathematical understanding of dynamical system includes thinking the latter as
being any semigroup acting on a set. Indeed, a semigroup is simply an algebraic structure

made up of a set with an associative binary operation. Let (G, x) be the semigroup. Thus,

the action of G on a set X is defined as a rule which associates to each element ¢t € G a

transformation R! of X such that the operation ¢ x s is associated with the composition

R! o R®. Therefore, the dynamical system can be modeled as the transformation

R:Gx X — X with R(t,z) = R'(z). (2.1)
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Equation (2.1) models the final state of an initial data z € X after moving ¢ times, under
the transformation R(¢,x). That is, if ¢ is considered as a time duration and x as an
spatial data, then (2.1) represents the time evolution of data x in the domain X.

A more formal definition is given as follows.

Definition 1 A dynamical system is a triplet consisting of a set of time I € {R,N,Z}, an
non-empty topological Hausdorff space X known as the state space or phase space, and a
continuous mapping R : I x X — X, (t,x) — R(t,z) known as the rule for evolution
with

R(0,z) =x V zeX (2.2)
R(s,R(t,z)) = R(s + t,z) vV os,tel. (2.3)

The triplet (I, X, R) is called a discrete-time dynamical system if / C N or / C Z and
a continuous-time dynamical system if I C R. Besides, (I, X, R) with the map (2.1) is
called an autonomous dynamical system, as the knowledge of the final time is enough to
understand the evolution of the system, whenever an initial point is given.

Definition 1 can be reformulated by incorporating an explicit initial time. That is, the

transformation (2.1) becomes
R:IxIxX—X with R(ts,x)=R"(2). (2.4

and models the final state of an initial data z at initial time s at time ¢. Moreover,

conditions (2.2) and (2.3) become

R(s,s,z) =x V ze€X (2.5)
R(t,R(s, s0,x)) = R(t,s,x) Y sg,s,t€l (2.6)

Hence, the quadruplet (11, I3, X, R) where I; and I»> denote, respectively, the set of
initial and final times and the transformation in definition (1) is called a nonautonomous
dynamical system. More details about the mapping (2.4) and the nonautonomous
dynamical setting (2.5)-(2.6) will be given later in this chapter.

Now, for the sake of motivation we will focus more on the autonomous dynamical system.
Given an initial point € X and the autonomous dynamical system with the flow map
(2.1), the set of points O, = {R(t,x) t € I} is called orbit or trajectory of x. In this

setting, one may be interested in the time evolution of an individual orbit O,. In this case,

8
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the asymptotic behavior of O, may be investigated. Alternatively, a more macroscopic
approach may be considered by studying the collective behavior of a swarm of initial
points. That is, given {1, z9,...,zx} C X, we can then seek to understand the global
behavior of the set of trajectories {Oy,, Oy,, ..., Oz, } C X. The latter approach is very
suitable in some contexts. For instance, the need to understand and/or predict the
changes of behavior of ocean eddies or atmospheric vortices, which emerge from ocean or
atmospheric dynamics, may leave us with no other choice than to consider the collective
behavior of the systems dynamics. In addition, depending on the nature of the dynamics,
say chaotic, it may be easier to study the fate of an ensemble of trajectories instead of a
single trajectory O,. Indeed, two initial data whose spacial positions may be very close
tend to diverge quickly as time runs forward.

In this study, we aim to understand the change in behavior of sets of ensemble of points
(or a clusters of points) that are fixed or move in time together with minimum dispersion
with respect to the flow map. This can be referred to a set-oriented approach. Hence,
this set-oriented approach may be view as an sufficient pretext to analyze the underlying
dynamical system from an ensemble evolution of trajectories approach.

In this pace, given the initial points {z1,z9,...,zx}, We can associate the probability
density function po(z) = + Zfi 1 6(z — x;), where § denotes the Dirac distribution, 3
is the probability associated to each value x;, ¢ = 1,--- , N. Thus, pg is a well-defined
probability density function, given po(z) > 0 and [ po(x)dz = 1. Now we define a
smooth observable g : X — R. The value of the observable g at time ¢ is denoted by (g);

and is given by

(gt = igm Dol — ;) / g(R(2))po(2)d
t — == xZ; r— X)) = X ol )ax
N i=1 X 2.7)

= o 9(y)po(R™(y)) [det J(R™)(y)| dy,
where J(f) denotes the Jacobian matrix of partial derives of f and the transformation R!
is supposed to be differentiable and invertible, for simplicity. Note that ‘det J (Rt)(y)] =1,
if the transformation R! is area preserving, which is a characteristic of incompressible
fluid flows. On the other hand, let p; be the probability density function of the image
points { R'(z1), R*(3), ..., R'(zn)} at time ¢. Thus, we have

(9)t = / g(y)pe(y)dy (2.8)
RH(X)
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and it follows that

~ po(R7(y))
o) = Yt TR0 ()

(2.9)
~ [ b~ Rw)mla)da.
X

Therefore, given the ensemble evolution of trajectories, the corresponding probability
density functions are transported in a linear fashion. This is very important in the
sense that, even though the evolution of trajectories may be non-linear, the evolution
of corresponding density functions is linear as shown in (2.9). Thus, given the initial
density pg, we have then a trajectory of densities {p;, ¢ > 0} that evolves linearly over
time. One may think of the stochastic kernel k(x,y) := 6(z — R(y)) as a matrix with
indices (z,y) and index summation in matrix multiplication replaced by the integral over
Y := RY(X). Therefore, the linear relation between py and p, may be mathematically

formulated via an infinite dimensional operator L! such that (2.9) becomes
pr = Lt,OO- (2.10)

Alternatively, the operator L! in (2.10) could emerge from the nonautonomous setting
(2.5)-(2.6) and denoted by L) In this case, the finite time evolution of densities within

the time interval [s, t| can modeled as
pr=L"p,. (2.11)

That is, even if a linear relation between densities is preferable to a non-linear evolution
of trajectories, one may pay the cost of dealing with an infinite dimensional operator.
Besides, linear infinite dimensional operators are particularly important when we can
exploit their spectral features and use them to analyze statistical properties of the dynam-
ical system, for instance. By spectral features, we mean a discrete set of eigenfunctions
and their eigenvalues or singular values and their singular functions. Then, relation be-
tween the nonlinear flow map R! and the linear operator L! yields a connection between
qualitative properties of a (finite time) dynamical system including bifurcation, ergodicity,
etc., and the spectral theory of infinite dimensional operators, as Koopman [26] and von
Neumann [27] firstly noticed.

Throughout this work, however, we will be investigating changes of magnitude of the
discrete spectra of (2.10) and (2.11) with respect to changes in the dynamics of their
corresponding dynamical systems (2.2)-(2.3) and (2.5)-(2.6), respectively. In particular,

10
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with the operator (2.10), we will be targeting special densities 14, A C X such that
L'y~ 14. (2.12)

and, with the operator (2.11), we will be seeking densities 14, A C X and 15, B C
R(s,t, X) such that

LeN1, ~ 15. (2.13)

Equation (2.12) may be interpreted as a functional characterization of the notion of
almost-invariance of the set A, while equation (2.13) yields a functional representation
of the notion of coherence of the sets A and B. Indeed, note that densities 14 and 1g are
supported in A and B, respectively. Thus, in (2.12), we can say that the autonomous
dynamics leaves the set A almost-invariant, whereas in (2.13), the nonautonomous
dynamics carries the set A coherently to the set B in the sense that the set A is mapped
to the set B by the nonautonomous flow. In addition, equations (2.12) and (2.13)
may be cast in more general eigenequations for the operators L and L(*!), respectively.
Therefore, we can already notice that there may be an interdependency between finding
almost-invariant/coherent objects and solving eigenequations of the infinite dimensional
operators L! and L(*!), Note that with the operation L), we might want to solve a
singular value decomposition problem, as 1, and 15 may be very different functions.
Nevertheless, the spectral idea to finding these sets remains there. A set-oriented dynami-
cal system consists of analyzing the behavior of system in the whole phase space with a
special aim of computing and analyzing those sets. Thus, almost-invariant/coherent sets
are the main objects on which our work will be based throughout this thesis. However,
note that we have only partly introduced almost-invariance/coherence notions, since
equations (2.12) and (2.13) only yield necessary conditions for finding these objects
from a probabilistic approach. In the following, we concretely introduce the systems our
study will be based on as well as mathematical definitions of basic concepts including

almost-invariance/coherence.

2.2 Dynamical systems and transfers operators

We are mainly interested in continuous time processes generated by solutions of ordinary
differential equations. Thus, we will define infinite dimensional linear operators gener-

ated from the time evolution of these processes. Throughout this work, we will consider
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Chapter 2. Dynamical systems and transfer operators

a continuous time interval I C R and a measure space D C R%. Let X C D.

2.2.1 Dynamical systems

An autonomous ordinary differential equation (ODE) is given by

dx .
- = &= F(z), (2.14)

where F': X — X is called the velocity field of (2.14) and is assumed to be smooth. Let
x: I — X be continuously differentiable. Thus, the function x is said to solve (2.14) if
i(t) == 92 = F(2(t)) for all t € 1. Moreover, if the initial condition z(t) = o is coupled
with the equation (2.14), then (2.14) is referred to as an initial value problem. Thus, a
solution z solves the initial value problem if z(t¢) = = and @(t) = F'(x(t)). That is, if we

assume global existence and uniqueness of the solutions, then the latter form a mapping
(t, to,wo) — $<t,t0, xo), A (t, to,wo) elxIxX (2.15)

and are called general solution of (2.14). Adding an initial condition to (2.14) makes the
problem simpler in the sense that, once a solution is found, it is translation invariant in
time. That is, only the duration matters since starting, which means that the solutions
depend only on the elapsed time ¢ — ¢, since starting and not separately on the actual

time ¢ and the starting time ¢y. Hence the solution mappings satisfy the relation
x(t — 1, 0,.1’0) = x(t,to,iﬁo), A (to, xo) el x X. (2.16)

Indeed, let s1(t) = (¢, to, xo) and sa(t) = z(t —to, 0, zp). Then we have s;(tg) = sa2(to) =

xg. Moreover, we have

d

— 852 (t) =

d
t—to,0 -—(t =1
dt 0 7330) ( 0)

ox
t—tQ,O,ZEO):i dt

d

T ot ¢
= F(I'(t — 10,0, .’L'(])) = F(SQ(t))v

which concludes that both s5(t) and s;(¢) satisfy the same initial value problem. Hence

by the uniqueness assumption, we have s (t) = sa(t).

As a matter of fact, we can restrict the initial time to ¢y, = 0 and write the solutions

12



2.2. Dynamical systems and transfers operators

(2.15)-(2.16) as z(t, xzo). Furthermore, the solution mapping

p:IxX > X

(tv xU) = ¢(t7 xO)

(2.17)

with ¢'(zg) = ¢(t, o) := (¢, z9), is continuous in both variables and fulfills the initial
value condition
Cb(o,x()) = X0, VoargeX

and the group property
d(s+t,x0) = d(s,0(t,xp)), V s,t €l and zy € X.

The latter relation is a direction consequence of uniqueness of solutions. As, a con-
sequence, the mapping (2.17) is special case of an autonomous dynamical system as
defined in (2.1). One can, thus, see that from an autonomous ODE (2.14) and its so-
lutions (2.15)-(2.16), an autonomous dynamical system can be defined and studied by
tracking the time evolution of the the flow map (2.17), via group property formulation.
However, the latter is only possible due to the translation invariant of the solutions (2.15)
of (2.14). This means, autonomous dynamical systems do not depend separately on
initial time ¢ and final time ¢.

The opposite occurs for nonautonomous systems, since both initial and final times are
important rather than the elapsed time ¢ — to. Hence, a generalization of the group
property above is a two-parameter group property where both ¢y, and ¢ are parameters,
which also referred to as a process of a nonautonomous dynamical system [59]. Let

r = F(t
t=Ft,2) (2.18)

z(to) = 7o

be the time-dependent extension of the ordinary equation (2.14). Let us assume existence
and uniqueness of solutions in forward time. Then, the solutions form a continuous map-
ping (¢, to, xo) — x(t, to, xo) € X satisfying the initial value condition (i) x (o, to, z¢) = o
and the evolution property (ii) x(t2, to, zo) = (t2, t1, x(t1,to, o)), for all to < ¢t; <ty in
I and zy € X. The principle in which solutions are uniquely determined by their initial

values justifies the property (ii). A process can, thus, be defined as a continuous mapping

13
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o:IxIxX —>X

(t7 to, ':UO) = ¢(ta t07 1’0),

(2.19)

which satisfies the initial value (i) and the evolution property (ii). Later in this work, we
may write ¢} in place ¢(t, to, -) and vice versa, and the same will apply to the autonomous
flow map. Regarding the inverse flow maps, we may choose to work with (qbio)_l in
place of ¢(to,t,-) and vice versa, and the same will apply to the autonomous flow map.
For more details about process formulations and nonautonomous dynamical systems, we
refer the reader to [59].

In order to study the (finite) time evolution of a finite number of initial points

{xéi), 1=1,...,N } over time, one may think of considering a statistical evolution of
the autonomous/nonautonomous deterministic dynamical system through its flow map
(2.17) or (2.19). With this approach it helps to define a measure space environment,
since investigating the (finite) time evolution of an initial density of the distribution of
the initial points {xéi), i=1,...,.N } may be simpler and more rewarding in many ways.
Indeed, we could then study infinite dimensional linear operators whose spectra are
suitable for set-oriented dynamical systems. This is in fact, the importance of the next

section.

2.2.2 Transfer operators

Let (X, Xy, 1) be a measure space and let D = {p € L*(X,Ex,u): p >0 and |/p[j; = 1}.
Note that to any measure space (X, Xy, i), one can associate the Banach spaces
LP(X,Sx,pu) = {p: X - R: p is measurable and [, [p[Pdpu < 0o}, p > 1. Moreover,
forany p € LP = LP(X,Ex, 1), llpllp = (Jx ]p|7’du)1/p denotes the L? norm of ||p||,. A
transformation R : X — X is measurable if R~!(A) € ¥ x forall A € Ty.

We suppose that, for a fixed time ¢ € I, the mapping ¢': X — X defined in (2.17) is a non-
singular measurable transformation. That means, ,u((gbt)_l (A)) =0, whenever p(A) =0
for all A € X x. The latter is immediately verified for measure preserving transformations
which are flow maps generated by ODEs that model the dynamics of incompressible fluid
flows. The Frobenius-Perron operator P': L'(X, Yy, u) — L'(X, Y x, 1) with respect to

the flow ¢!, t € I is uniquely defined [49] by the mass conservation relation

/Ptpd,u :/ pdp, ¥ A€ Xx. (2.20)
A COREY
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Moreover, it straightforward to show that the operator P! satisfies the following relations
(@ P (a1p1 + azp2) = a1 Pl p1 + aaPlps

(D) Plp>0if p >0

(©) [y Ptpdu = [y pdp.

Hence, the Frobenius-Perron operator P!, t > 0 is a linear operator, positive and maps
probability densities in D to probability densities in D. Furthermore, P!, ¢t > 0 has a
dual operator called the Koopman operator K: L>®°(X,Yx, u) — L*>®(X, X, 1) defined
by K'g = g o ¢!, where the functions g are smooth and are called observables. The
dynamical difference between P?, t > 0 and K', t > 0 is that the former pushes densities
forward under the evolution of the underlying dynamics, while the latter pulls backward
observables. Due to the one-to-one property of the flow map (2.17), the explicit formula

of P! is given by

. 2 <(<I5t)71 (il/))
Pl = Taer 70 ()| @21

where pg the initial density of the initial points {x(()i), 1=1,..,N } Similarly, the finite

time Frobenius-Perron operator P related to the flow map (2.19) is given by

_ rol(¢h) " )
|det J (¢f)) (v)

Pl po(y) , (2.22)

A lot of studies have been carried out around these operators, see [49]. In this work, we
will intensively use these operators to construct particular measurable sets which are

introduced below.

2.3 Basic concepts

Definition 2 (invariance) A subset M of X is called invariant under the autonomous flow
map (2.17) if
o(t, M) =DM forallt el

In autonomous settings, as defined in (2.17), invariant sets characterize the local long-
term dynamical behaviors. Thus, simplest examples of invariant sets include equilibria
and periodic solutions. An equilibrium point, ¢(¢,z) = x for all ¢ € I, is an invariant set
M when M is the singleton {z}. Periodic solutions can also be referred to as periodic

orbit v where for any x € ~, we have ¢(T + s,x) = ¢(s,x) and ¢(kT,z) = = for any
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Chapter 2. Dynamical systems and transfer operators

integer k. The latter relations are possible due to the group property of ¢. Besides, T is
called the period of v as the minimum positive value for which ¢(7', x) = x. Thus, = is
an invariant set. In this study, periodic orbits will play a key role in the construction of
invariant sets that emerge from the dynamics of incompressible flows. This will be widely
detailed in chapter 4.

Let us assume that M is a compact invariant subset of X and the underlying dynamics is
incompressible. Then M and M¢ = X \ M partition the phase space X into two invariant
sets. We have, thus, a coexistence of two phase spaces with no transport of flow between
them. However, in real-world incompressible dynamics such as ocean or atmospheric
dynamics, an invariant partition of phase space is not possible. Indeed, interesting objects
include sets that move with minimum transport through there boundaries. Examples
include ocean eddies. Motivated by practical examples, this work will deal with almost-
invariant/coherent measurable sets which emerge from the dynamics of incompressible
flows. Let us suppose that p is an invariant probability measure with respect to the flow
map (2.17). That is, u(¢~*(A)) = u(A) V A € x. As a consequence, 4 is automatically
nonsingular. Invariant measures in set-oriented autonomous dynamics are fixed with
respect to the flow map. Thus, they are relevant to represent mass distribution of fixed

macroscopic objects, as the underlying dynamics is fixed in time.

Definition 3 (Almost-invariance) A measurable set A C X is said to be an almost-

invariant set with respect to yu if

HANG(=t, A))

~ 1. 2.23
(A (223)

Definition 2.23 states that the probability to leave the set A in ¢ time steps is very low. In
other words, the set of points that are currently in A and will stay in A after ¢ time steps
is large relative to A in the sense of the y-measure. The almost-invariant set A partitions
the phase space into A and A° = X \ A such that both A and A¢ satisfy definition 3.
Later in chapter 3, we will seek balanced and maximal almost-invariant sets. That is,
measurable sets of interest should be balanced in the sense that u(A) = p(A°) and
dominant among other sets. Thus, we say that { A, A°} is a pair of almost-invariant sets,
whenever A and A€ each satisfies (2.23) and p(A4) = p(A°). Moreover, we will see in
chapter 3 that equation (2.23) is, in a functional level, equivalent to equation (2.12)
and finding and computing pair of optimal almost-invariant sets will require solving a

functional optimization problem.
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2.3. Basic concepts

Given the nonautonomous dynamical system with the flow map (2.19) and inspired by
definition 3 in the autonomous setting, we can ask for finding measurable partitions
XiUXo=Xand YUY, =Y = ¢(t,t0,X) so that

Y1~ ¢(t, to, X1) and Ya = ¢(t,tg, X2) with
W(X0) = (¥) and p(Xo) = w(Ya).

(2.24)

These separate both the initial and image phase spaces into two regions with minimal
transport between them. Note that the measure p is transformed, via the flow map (2.19),
to a final measure v, which is supported on the corresponding measure space (Y, Xy, v).
That is, v(A) = po ¢(to,t, A), V A € ¥y. Moreover, the measure v represents the mass
distribution of objects of interest at time ¢. With the time-dependent setting (2.18), note
that the measure ;1 does not need to be necessarily invariant. In the following is given a

more formal definition regarding set relations in (2.24).

Definition 4 (Coherence) {A, B} is a pair of coherent sets, whenever

p(ANg(to,t, B))
1(A)

~ 1 and pu(A)=v(B). (2.25)

Definition 4 states that the conditional probability of a point initially in A C X to be
mapped forward into B C Y at time ¢ is very high. Moreover, the measurable sets
{X1,Y1} and { X5, Y>} in (2.24) are pairs of coherent sets.

Coherent sets are optimal regions that resist mixing with their surroundings over a finite
time span, while almost-invariant sets are fix optimal regions that asymptotically resist
mixing [13-16, 36]. The former emerge from a nonautonomous dynamical system (2.19),
while the latter exist when an autonomous dynamical system (2.17) is considered.
Given that 1y, is a functional representation of X, k = 1,2 and 1y, is the functional
representation of Yy, k = 1,2, relations in (2.24) can be reproduced in a functional
manner. For this we need a suitable linear operator [16] so that our goal will finally

consist of the following

Goals 5
1-L1Xk ~ 1yk.
2-/~L(Xk) = V(Yk), k= 1,2.
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Chapter 2. Dynamical systems and transfer operators

Therefore, the mapping ¢(t,to, X;) may be operator-wise viewed as the functional
mapping L1x,. This intuitively makes sense since we are interested in tracking the
evolution of densities that represent the distribution of initial data. Note that the
constraint in goals 5(2) means that there is no loss of mass under the dynamics, while
mapping X to its image Y}, under the action of L or the flow ¢(t, -, -). However, the
operator L should be specified and understood, which requires a particular setting where
L can be gradually constructed. For the moment, one may notice that the operator L,
restricted in goals 5(1), satisfies equation (2.13). That is, L must be built using flow map
information with a functional approach. That is equivalent to think of building L from
the Frobenius-Perron operators in (2.21) and (2.22) which do not always satisfy goals
5(1). A mathematical framework for constructing the operator L in both autonomous and
nonautonomous dynamical systems and for finding optimal almost-invariant/coherent

sets will be carried out in chapter 3.

2.4 Summary

This chapter has served as a brief introduction of dynamical systems and transfer operators
concepts, which will be heavily used throughout this work. There is a broad literature
about these mathematical tools but it is always necessary to introduce key concepts
in order to align with traditional scientific methods. Finally, precise definitions of the
notions of almost-invariant/coherent sets were given. These sets are the main dynamical
objects we are interested in throughout this thesis. That is why an early understanding of

these concepts is necessary.
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dynamics

In this chapter we give a detailed construction process of robust coherent sets as well
as almost-invariant sets. Robust coherent sets are those that exhibit robustness under
external perturbations. They are, thus, suitable to mathematically model transporters of
mass, given the dynamics of a complex system such as the ocean/atmospheric circulation.
In fact, coherent sets can numerically simulate ocean eddies, which are good transporters
of water that is warmer/cooler/saltier than the surrounding water. Hence, coherent sets
can, for instance, very well contribute to change the temperature of the area of their
destinations, according to ocean flow direction. The approach that we follow is analytic
and is, firstly, based on perturbed infinite dimensional linear operators which are built

around transfer operators (2.21) and (2.22) introduced in chapter 2.

3.1 Singuar vectors for compact operators

3.1.1 Operator setting

Let L: X — Y be a compact linear mapping between two Hilbert spaces. Let Q =
L*L: X — X with L* the dual of L. Hence, @) is compact, self-adjoint, and positive,
ie., (Qr,xr)x > 0. As a consequence, () has a non-negative spectrum ordered as
A1 > Ay > --- > 0. Therefore, by the spectral theorem for compact and self-adjoint
operators ([61], Theorem II.5.1), we can find an orthonormal basis of eigenvectors,
up € X, Quyp = A\puy, so that

Q=) Ml up)xup (3.1)

I
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Chapter 3. Diffused transfer operators, set-oriented dynamics

Note that N may be finite or infinite.
It follows, thus, the minimax principle ([62], Theorem 9.2.4, p212) :

Theorem 6

AL = min max M, k=1,...,N. (3.2)
Vicodim V<k—1<N 0#£zeV (T, x)x

Furthermore, the maximizing x=’s are the ug, k =1, ..., N.

On the other hand, we have that the transformation

1/2 1/2
(Qu.a)y® _ (La,La)y” ||Laly _ (La,y/llylv)y
(z, 2) ]l lelx ~ovey  lallx

solves the optimization problem

<L:Ea y>X

or = (\p)/? = min max = o
Vicodim V<k—1<N 0£z€V,0£yeY ||z| x||y|ly

k=1,.. N, (3.3)
where we call the maximizing units = and y in (3.3) the left and right singular vectors of
L, respectively. Moreover, o, are the corresponding singular values of L.

One can easily observe that the compactness property of the linear operators L and
the existence of inner products were only used to arrive at a singular value decompo-
sition (SVD) in an operator level. Recall that our goal is to find coherent sets, given a
nonautonomous dynamical system between measurable phase spaces. Therefore, we
will see that constructing compact operators from the underlying dynamical systems and
choosing appropriate Hilbert spaces will lead to finding a SVD that will systematically

yield coherent partitions of the phase spaces.

3.1.2 SVD of matrices

To fix understanding, it is important to have in mind that the set-oriented analysis of

the dynamical systems (2.17) and (2.19) will eventually lead to a spectral analysis of
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matrices M € R"*"™:

Mg Mg -0 My
Mo Moy - Moy

M=|" . . k> 2. (3.4)
Mnl MnQ e Mnm

The state space of the system is, thus, subdivided in to smaller sub-states and the entries
M;j #0,i=1,..,n,j=1,..,m correspond to transition probabilities between states.
In other words, the conditional probability of the flow map to land in a sub-state j given
that it was initially in the sub-state i yields the entry M;;. This will be more explicit
in chapter 5 and chapter 6. Therefore, depending on the nature of the dynamics in
phase space, M is vertical and tall when n > m, horizontal and short when n < m. For
instance, n > m may corresponds to a contraction where the flow (2.19) maps all the
initial data together into a smaller region in the image phase space. The case n < m
may correspond to an expansion where all the initial data are mapped to wider region
within the image phase space. Given the time dependent flow (2.19), the matrix M is
mainly used to determine input and output numerically approximated coherent clusters
of sub-states under the finite time dynamics. Further details about the matrix M will be

given later in this study. Finally, M can be non-uniquely decomposed as
M=UXVT, (3.5)

where U € R™" and V' € R™*™ are unitary matrices. That is to say that UUT = UTU =
I, and VVT = VTV = [, with I,, and I,,, being the identity matrices. The matrix ¥ is
diagonal and the diagonal entries o; = ¥J;; are called singular values of M. The number
of non-zero diagonal entries determine the rank of M. Equation (3.5) is known as the
SVD of M and vectors U and V are called left and right singular vectors, respectively. The
SVD is well known to be relevant in extracting dominant patterns from a low dimensional
approximation given a high dimensional data. This is the so called principal component
analysis (PCA). The SVD can also be systematically used to extract dominant coherent
patterns given a matrix of data which is generated from the finite time evolution of a
dynamical system. The SVD is actually a data-driven method since it can help detect
qualitatively relevant features, given complicated set of data. In this study our first
task will always consist of finding dominant coherent patterns, given singular vectors
obtained from (3.5). In the following, we will elaborate more on the different steps

towards connecting the underlying dynamical systems, the transfer operators, the SVD,
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and also the eigenvalue value decomposition. In other words, the matrix (3.4) will later
be more specified as a finite dimensional approximation of compact operators. Note that
the SVD is convenient when studying nonautonomous dynamical systems, see chapter 6.
Furthermore, for an autonomous dynamical system, a square matrix will approximate
the autonomous transfer operators and, instead of SVD, eigenvalue decomposition will

yield almost-invariant patterns, see chapter 5.

3.1.3 Compact linear operators, coherent partitions

Now, we specify our setting by taking the Hilbert spaces L?(X, X x, i) and L?(Y, Xy, v)

and a transfer operator
L: I*(X,%x, pu) = L*(Y, Sy, v). (3.6)

Note that the measurable spaces X and Y are now different from the Hilbert spaces X
and Y in the previous section. Let (-,-), and (-, ), denote the standard inner products of

L?(X,Yx,u) and L2(Y, Xy, v), respectively. Under the following assumptions:

Assumption 7

L(LA)(y) = [ k(z,y)f(x)du(z) where K € L*(X x Y,Sx X Sy, 1 X v) is non-negative,
2.L1x = 1y, equivalently [ k(z,y)du(z) =1 for v— a.ay,
3.L*1y = 1x, equivalently [ k(z,y)dv(y) = 1 for p— a.a z,

it is proven in [16] that both operators L and L* are compact, the largest singular value
of L is 01 = 1 and is simple (i.e., of multiplicity one) with 1y and 1y the respective

associated left and right singular vectors, and the second singular value o9 satisfies

(Lf,9)

0'2 = max
JELA(X,Sx ), geL2(Y Dy v) { £ llllgll

<f7 1X>M: <g7 1Y>1/:O} < 1. (37)

Besides, the maximizing f and g of (3.7) are uy and e respectively. The latter are

Lu
the respective left and right singular vector of L corres”pondlng to the singular o.

The square integrability of the stochastic kernel k in assumption 7(1) ensures compactness
of L and L*, which also ensures that the spectrum of the operator Q = L*L located far
from the origin is discrete. In addition, the non-negativity of k is set to make sure that L f

represents mass distribution with respect to v, whenever f represents some distribution
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of mass with respect to u. As 1x represents the density function of the measure ; and
1y represents the density function of the measure v, then assumption 7(2) requires 1x
to be mapped to 1y by L. From assumption 7(3), one can easily prove that L preserves
integrals.

Therefore, assumption 7(1-3) yields necessary conditions to have a meaningful discrete
spectrum of L. Moreover, it provides an intuitive understanding of what the operator L
should look like, given an ultimate explicit nonautonomous dynamics.

Using only results from assumption 7 including (3.7) and the targeted goals in 5, it is

shown in [16] that

max { <L1X17 1Y1>V <L1Xza 1Y2>u

<1+ 3.8
X1UX2=X, Y1 UYa=Y p(X1) n(X2) } N 72 G

Indeed, it all starts from solving the optimization problem

[ (Xo) [u(X1) v(Y2)
(P)Xluxgzrn&}s)%uygzy <L< ,u(Xl)le_ ,u(X2)1X2>’ lel_

(3.9)
v(Y1)
1 (X)) = v(Y; =1,2.
V(Yé) Y2> M( k) V( k)v k ) )
where <LUx, Vy>y with UX = Zg§?§ 1X1 - ZE§;; ng and Vy = Zg?; 1Y1 — ZE)Y,;; ].y2

is the objective function and u(Xy) = v(Yx), k = 1,2 is the constraint. The latter agrees
with goals 5(2). Hence, given the constraint, it is straight forward to rewrite the objective

function as

<L1X1)1Y1> <L1X2’1Y2>

70 RN

— 1. (3.10)

That is, the set-based optimization (3.9) becomes

ax { (L1x,,1y;) | (L1x,,1y,)
X1UXo=X, Y1UYo=Y w(X1) u(X2)

P) —1: pw(Xy) =v(Yy), k:1,2}.

(3.11)

As a consequence, a strongly possible way to achieve the goals 5 is to solve the problem

(3.9) which is just problem (3.11). Moreover, given that ||Ux||, = ||V¥||, = 1 and
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(Ux,1), = (Vy,1), =0, then problem

(L, g)v

max {
f€L2(X7EXHU‘)7g€L2(Y72Y7V) ||f||ﬂ||g||y

(RP) L) = (0 Ty ) = o}

is a relaxed version of the problem
max LUx,Vy),.
X1UXp=X, Y1UY2:Y< Wl

We, thus, have the following:

(P) < max (LUx, Vy')y
X1UX2=X,Y1UYs=Y
(Lf,g)v }
< max S 1) = (9, 1) = 0
fEL2(XZx 1), geL2(Y, Sy ,v) { I fllellglle { Ju = v
That is
<L1X17 1Y1> <L1X27 1Y2> }
X1UX2=X, §1uy2y{ 1(X1) 1(X) w(Xg) = v(Y) (RP)

(3.12)

One can, therefore, see that (3.12) is simply (3.8).

The relaxed problem (RP) can be easily solved in reality, given that a numerical approx-
imation of L is available. That requires an explicit operator L. whose approximation
yields a matrix similar to (3.4). Then the SVD (3.5) can be computed and dominant left
and right singular vectors ( f2, g2) with corresponding singular value oy are systemati-
cally used to approximate the coherent partitions (X, Y%), k& = 1, 2. Indeed, a heuristic
approach consists of creating coherent partitions { X1, Xo} of X and {Y1,Y2} of Y by
choosing thresholds a and b such that u(Xy) = v(Yy), k = 1,2. Then, as performed in

[15], partitions are built from the following classification:
Xi={fo>a}, Xo={fao<a} and Yj={go>0b}, Yo={g2 <b}.

Thus, given that oy ~ 1, (X, Y}) is a pair of coherent sets since L1y, ~ 1y,, k =1,2.
In other terms, the relation (2.24) holds. Hence, the nonautonomous flow will then

transport X to Y, with minimum dispersion.

Remark 8 In this study, approximating coherent sets is only the beginning of the work

towards understanding qualitative changes of the latter. Indeed, we are interested in
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predicting sudden qualitative changes of coherent sets, as the nonautonomous dynamical
system evolves in time. That means, we will be interested in particular coherent partitions
which may not be approximated by the second dominant singular vectors but by other
singular vectors with smaller magnitude singular value. In other words, we will not restrict
ourselves to only finding oo and (f2,g92). In fact, the spectral collection of the whole

famlly {(fhgl) P (f2792) ) (f3ag3)7' o 7(fNagN)} Wlth 1 Z g2 Z g3 Z Z ON, N Z 3 iS
necessary for finding the convenient coherent partition to be studied.

3.2 Nonautonomous dynamics, robust coherent sets

Now, we will specify the operator L, given an explicit dynamical system and robustness
constraints of coherent sets. A coherent set is robust when it remains coherent under
external perturbations. The latter will be explicitly modeled so that a perturbed linear

operator, say L., satisfying assumption 7 will be derived.

3.2.1 The deterministic setting

Let us consider the nonautonomous flow map ¢!™™ from time ¢ to time ¢ + 7 defined

in (2.19) and acting on a compact set D C R%. However, our initial domain of interest
will be X € D and Y will be its image with respect to the flow. Now, we define a new
measure £ in X which has a density h,, € L?(X, ¢) with respect to the Lebesgue measure,
ie, h, = Z—’Z. The new measure p may be interpreted as the mass distribution of the
matter we are interested in transporting. In the same vein, we define v as the image of
with respect to the ongoing finite time dynamics. The measure v is supposed to have a
density hy%. It may be interpreted as the mass distribution of the transported matter at
final time.

Let the time-dependent Frobenius-Perron operator be defined with respect to the Lebesgue
measure £ as PY+7: LY (X, 0) — L' (Y, /). Now we define a transfer operator

L: L' (X,u) — L' (Y,v) by

_ Pt,t—I—T (fhu)

Lf= - : (3.13)
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Chapter 3. Diffused transfer operators, set-oriented dynamics

where h, = P“"*7 (h,). Note that L1x = 1y. Now, let L*: L= (Y,v) — L*> (X, p)
denote the dual operator of L. Then for f € L' (X, /) and g € L (Y, v) we have that

ti+7
wrg = [T g [P (g gar = [ oo o= (1.

Note that the use of the standard duality relation between the Koopman operator K7
and the Frobenius-Perron operator was used to make the above relation possible. We
have, thus, L* = go gbﬁ” and L*1y = 1x. Finally, substituting the abstract operator L in
the left hand side of (3.8) by the concrete operator L defined in (3.13), we have

A (L1x,1y)n | (L1xy,1y)s
X1UX2=X,Y1UY2=Y w(X1) w(Xs)

ax _ {<1X17L*1Y1>u N <1X27L*1Y2>u}
X1UX2=X, V1UY2=Y wu(X1) w(X2)

-1 -1
p(Kn ) N) e @) )

ma. = +

X1UX2=X,Y1UY2=Y w(X1) w(X2)
<1+ o9.

Therefore, given any two measurable sets {Y7,Y>} such that X; = ( ?T)_l Y; and
Xy = ( i“)_l Y5, we have that

p(Kn ) M) w0 @) ')
max = + =2, (3.14)
X1UX2=X, Y1UY2=Y w(X1) w(X2)

which implies directly that oo = 1. As a consequence, every pair of measurable sets
{X1, X,} and {Y1, Y2} that satisfy the relations X;, = (¢;"") Y, k=12 yield coherent
sets that partition X and Y. However, constructed this way with the operator (3.13),
these kind of coherent sets are infinitely many. Moreover, these coherent sets do not
have robustness. Indeed, depending on the nature of the dynamics, the coherent couple
(Xk,Yr), k= 1,2 may consist of thin and elongated measurable sets. As a consequence,
any external perturbation will easily push points outside these sets. That means, these
coherent sets lack robustness. The robustness property is, however, very important in
practice, since real world physical systems are usually exposed to external perturbations.
For instance, ocean dynamics are subject to perturbations such as wind intensities. In
this context ocean gyres must be modeled as robust coherent sets. As a matter of fact,
the operator (3.13) is not suitable to obtain optimal coherent sets. We should then build

a different transfer operator by incorporating additional perturbations into the dynamics.
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3.2. Nonautonomous dynamics, robust coherent sets

Hence, the deterministic operator (3.13) will be replaced by a non-deterministic linear

operator built from the perturbed nonautonomous dynamics.

3.2.2 Robust operators and robust coherent sets

The robustness property of coherent sets is essential as argued in the previous section.
Hence, we are going to study nonautonomous dynamics which are subject to additional
perturbations. Note that the latter are independent from the dynamics and the reason
why we are adding external perturbation is to find robust coherent sets. Indeed, our study
is motivated by real world applications such as predicting the sudden split of the Antarctic
polar vortex in September 2002. Given that coherent sets are obtained from compact
transfer operators, we are going to construct the latter from the perturbed dynamics.
To construct the perturbed operator L, we should first specify the manner in which
perturbations will be incorporated into the dynamics.

The perturbation process is similar to discontinuously adding small random noise. That
is, firstly, the phase space X will be initially perturbed in the sense of shaking the whole
domain with an amplitude € > 0. This means every single point in the phase space X
will be perturbed with a radius of . Secondly, the flow will be applied to the perturbed

phase space, say X.. Thirdly, the image phase space, denoted by Y/ := ¢! ™"

(Xe), is again
perturbed to yield the final phase space Y. which is the perturbed version of Y and yields
the perturbed dynamics phase space at final time. Hence, it is clear that the underlying
dynamics is only perturbed at initial and final time [16]. That is why, the perturbation is
referred to as a discontinuous addition of small random noise.

A concrete mathematical formulation of the perturbation process is also constructed
progressively. Perturbation is added in form of local diffusion which is modeled using the

diffusion operators

DX LNX,0) = LN(X,0), DXgly) = / Vx,e(y — x)g(x)dx
X (3.15)

DY LY o LY 0, DX AW = [ iy = o) (@)ds
Y/

€

where

vxe: D3 Ry, / ey — @)y = 1,
Xe (3.16)
")/YE/Z D — R+,

=

ey —x)dy = 1.
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Chapter 3. Diffused transfer operators, set-oriented dynamics

are the stochastic kernels. Thus, the operators (3.15) act as convolution with the
stochastic kernels (3.16). To fix thoughts, one may think of the kernels functions (3.16) as
supported on e-neighborhood of the origin, that X, = supp (DX 1x), that Y/ = ¢;™" (X,)
and that Y, = supp (DZ ellyef).

From (3.15), we construct the perturbed version of the Lebesgue Frobenius-Perron

operator P»'*7 as
PR LNX, 0) — LYY, 0), PYITf(y) = DI o PYT o DX f(y).
That is

s = [ ( [ ety = et x)dz) f(a)dr. (3.17)

Given that b, = ‘fl—’z, we can operate a change of measure and rewriting (3.17) yields

PYTf(y) = /

X

(. -t @nxac - o) L auco)

Besides, we have

PET () = [ ( /. m(y—<z>§+f<z>m,e<z—x>dz> f@)dp(z)  (318)

and

e = [ ( | = 7 Dxale — )i ) o). (3.19)

Note that taking f = 1x in equation (3.18) yields equation (3.19). Hence, we can
normalize (3.18) with (3.19) and finally define the perturbed transfer operator L. as

PET(f - hy) (=)
Pﬁt,t-‘rThM (.’E)

LM f(z) = (3.20)

which satisfies the relation LY "1y = 1y.. A more detailed expression of (3.20) is given

as
ey = B (e 20 = 60— 102) oy
€ Yy) =
fX (er Yy (y — ¢i+T(z))7X’E(z — :U)dz) hy(x)dx (3.21)

- / Le(z,y) f(z)dpu(z)
X
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3.3. Autonomous dynamics, robust almost-invariant sets

In [16], it is proven that the operator L-'” will act on functions in L2(X, 11), depending
on the conditions set on the kernels functions (3.16). More precisely, a suitable choice
would be
1
== s 1
7X7 7}/6 E(Be(())) BE(O)
then (3.21) becomes
)N (@)1 (B,
L s = | L D) i)
fX ) (BE(?J>)) du() (3.22)

— / Le(x,y)f(z)dpu(z),
X

where

((Be(x) N (67) " (Be(v)))

L (Be(@) N (7)1 (Bw) dpi(e) (5:29)

Le(z,y) =

Thus, [16] showed that I'.(z,y) € L*(X x Y., u x v), LV"*7 is compact and acts on

L2(X, ). Moreover, the dual operator L' 7)* Lt

is compact and satisfies y, = 1x.
We arrive then at the conclusion that the operator LYY fulfills the conditions to yield o9
as in (3.7) and then optimal coherent sets can be obtained from its discrete spectrum.
The process of constructing the operator L**7 looks technical but the end goal consists
of numerically approximating the latter in order to arrive at a matrix similar to (3.4).
Indeed, one may already view the the stochastic kernel ', in (3.22) as a matrix with
matrix entries entries I'c(x,y) and the evolution of densities L“'" f(y) in (3.21) as a
matrix multiplication. We will see later in this study that a systematic exploitation of
the SVD of the matrix approximation of (3.21) yields approximation of coherent sets. In
chapter 6, the latter will be computed and there qualitative change within the finite time
dynamics will be studied. This will consist of a purely discretized finite time bifurcation
framework and coherent patterns will be extracted from sign patterns of singular vectors.
But from now, we remark that the infinite dimensional operator LY in (3.22) acts on
densities f as a matrix multiplication where the operator I'c(z, y) in (3.23) denotes the

tt4+1

matrix entries. A finite dimensional approximation of Lo " was fully developed in [36].

3.3 Autonomous dynamics, robust almost-invariant sets

In the autonomous setting, the analytic framework developed in section 3.2 becomes

simpler. Indeed, the dynamics no longer depends on both initial and final time, only

29



Chapter 3. Diffused transfer operators, set-oriented dynamics

the flow time matters. Moreover, the dynamics is fixed in space which means we only
consider the domain X C D and look at fix measurable almost-invariant sets with respect
to an invariant measure y which is absolutely continuous with respect to the Lebesgue
measure . Hence, as, in section 3.2 with nonautonomous dynamics, we are particularly
interested in finding an optimal measurable almost-invariant set A. This is equivalent
to finding a measurable partition {A,AC} of the domain X with minimal transport
between them. In order to set an optimization problem, a functional representation
of this partition is used as 14 and 14c. Thus, under the constraint u(A) ~ p(A°) and

L1, ~ 14, L14c = 14, we maximize over measurable sets A the following ratio

ri(4) = <L;?A;A> " <L1’2A1)A> (3.24)

The ratio (3.24) is equivalent to

) = HAD (Y T (A)

Iy u(A) 525

Note that, the operator L is the same as (3.6) defined in section 3.1.3 but defined in
L?(X, ) to itself. Under the specific deterministic autonomous dynamics, the ratio in
the left hand side of (3.14) becomes (3.25). Thus, the framework for finding optimal
almost-invariant sets is just a particular setting of section 3.2.

It is clear that the optimal almost-invariant set A will satisfy r:(A) ~ 2. However, the
problem (3.25) is not well posed. Therefore, we seek realistic optimal almost-invariant
sets, in the sense of robustness in the presence of noise as described in section 3.2,
or small external random perturbations. Therefore, a perturbed transfer L., which is
dynamically similar to P!, is necessary. If ¢ represents the perturbation strength, a diffused
transfer operator, L. is constructed in section 3.2 and was proposed in [16]. Robust
almost-invariant sets will eventually be computed from the spectrum of a self-adjoint
operator derived from the diffused transfer operators [36]. As mentioned above, we use
an e-perturbation to obtain a diffused version of the deterministic transfer operator L.
Thus, as discussed in [16], the following diffusion operator transforms a deterministic
density to a diffused one via a stochastic kernel with a bounded support, Moreover, the
kernel is supported in B.(0) with an explicit form 7. = ml B.(0)- Therefore, with
this choice of the stochastic kernel, both operators L. and L} are compact, positive with
Lx =1x and L¥1x = 1x. From now on we can address the question of finding robust

almost-invariant sets under the e-perturbed dynamics. Hence, we set a perturbed version
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3.3. Autonomous dynamics, robust almost-invariant sets

of (3.24) as

Loy, 1A> . <L€1Ac, 1Ac>
1(A) 1(A°)

The optimization problem becomes finding a measurable partition {A, AC} that max-
imizes (3.26), i.e., u(A) ~ pu(A¢) and L dly ~ 14, Llge =~ 1yge. The constraint
w(A) ~ p(A°) is set to ensure that the partition is nontrivial. The expression (3.26)

is equivalent to the following

o (Q1a14)  (Qclaslac) -

re = + . :
p(A) 1(A°)

where Q. = % The latter has the same property as L. and, more importantly, it is

self-adjoint. Therefore, in [16, 36], it is shown that maximizing r¢ over all measurable
sets is the same as solving the relaxed optimization problem
(Qcf, [)

w00} o

knowing that the solution of the above problem is \,, the second largest eigenvalue of
Q¢, which is realized for f = vy where v, is he corresponding eigenfunction. Indeed,
due to the properties of (). including compactness and self-adjointness with the specific
choice of the stochastic kernel ~,, the first dominant eigenvalue, A\; = 1, is simple and
1p is the corresponding eigenfunction [16]. Moreover, all the eigenvalues of (). are real.
However, the spectrum of L. and L} may be complex except for the leading eigenvalue
A1 = 1, which is also simple with 1x as the corresponding eigenfunction. It is possible to
find bounds of r¢ [36] as

2—2/(1=Xg) < supr(A) <14 X (3.29)

ACD

It is clear from (3.29) that sup,-x 7°(4) ~ 2 whenever Ay ~ 1. Consequently, the
existence of an eigenvalue \y = 1 is linked to the existence of an almost-invariant set A.
Furthermore, the corresponding measurable partition into almost-invariant sets A and A°
is constructed from the corresponding eigenfunction vy. Indeed, a threshold ¢ is carefully
chosen so that A and A€ are the upper and lower level sets of v9, respectively.

Numerical approximations of L. and ). and computation of almost-invariant sets can

be found in [36]. In this study, we will just use them in case we need them. Note that
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Chapter 3. Diffused transfer operators, set-oriented dynamics

this work addresses bifurcations of almost-invariant/coherent sets. But in chapter 4 and
chapter 5, it will be clear that set-oriented bifurcation is only possible with the discretized

compact operators L. and Q..

3.4 Summary

The analytic framework proposed above was widely developed in [16]. Moreover, finite
dimensional approximation of (3.21) and its autonomous version in section 3.3 was
widely developed in [36]. Thus, this chapter can be viewed as a mandatory introduction
for understanding the theoretical background of our current study. Indeed, it is necessary
to have a solid comprehension of measurable coherent/almost-invariant sets before any
further serious work in this regards. A very interesting observation is that there is a
strong interdependency connection between discrete spectra of compact operators and
set-oriented dynamics. That is why, in the upcoming chapters we are going to use this
connection to characterize bifurcation in a set-oriented dynamical system approach. The
latter approach is actually very innovative. Hence, in chapter 4, we will show how to
specifically characterize bifurcation of almost invariant sets based on known classical
bifurcation theory [10, 25, 28].
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%Y Bifurcations, spectral signatures and

almost-invariant sets

This chapter is the starting point of the study of qualitative changes of optimal almost-
invariant/coherent sets. Understanding and characterizing changes of optimal almost-
invariant/coherent sets sounds a very unfamiliar task to do despite the rich content of
dynamical system theory. Indeed, by the time we are writing this thesis, there is no
preexisting study in this regard that we know of. Therefore, we will start our work by
briefly reviewing the very classical theory of qualitative changes of a dynamical system
on a microscopic level, before we progressively move forward to address changes in a

macroscopic levels.

4.1 Basic concepts and definitions

Let us define a p-parametrized ODE in the Lebesgue measure space (D, >, 1) with D a

compact subset of R? and let us suppose that p € R is a bifurcation parameter.
&= F(z,p) =: Fp(x). (4.1)

We fix p and assume that the vector field F, : D — R is sufficiently smooth to guarantee
the existence and uniqueness of solutions of (4.1). Thus, there exists a flow map

St : D — D such that for any given initial solution z(0) = z( and flow time ¢ € R
o St(.%’()) eD, xge D (4.2)

yields the solution of the system at time ¢ for the initial value xy. Note that in this chapter
we use the notation S! for a flow map, unlike the notation used in chapter 2 (2.17).

Indeed, we want to avoid naming confusions between flow map and eigenfunctions that
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

we will introduce later.

Recall that the solution of (4.1) generates a Frobenius-Perron operator

RS
P = (et 755 @)

4.3)
= [ da = S'@mle)duto). >0,

which is actually a strongly continuous semigroup of contraction. Hence, its infinitesimal

generator is given by

tr
gf:mpft I ren. 4.4)

G is linear and its domain is given by

P'f -
D(G) = {f e D(PY): lim LS =7 exists}.

t—0 t
In this work, the infinitesimal generator of the Lebesgue Frobenius-Perron operators

generated by (4.1) is particularly given by the so-called transport/continuity equation
Gf ==V (Fpf)=-F-V/,

for every continuously differentiable function f (Chapter 7, [49]). Given such initial time
density f, the density at time ¢, g(¢,x) = P!f(x), is the solution of the equation

Jg

a = _Fp : v.g = g(g) (45)

Furthermore, the discrete spectra of both P! and G, denoted respectively by o(P!) and
0(G), are related by the spectral mapping theorem (Theorem 2.4 [50])

e c o(P!) c A U {0}, V¢ > 0. (4.6)

This means that for a given ¢ > 0, if A € o(G) then ™ € o(P?), conversely, if eM € o(P?)
then A+22 € o(G), c € Z. Note that both operators P* and G can also have a continuous
spectrum, since they are infinite dimensional. However, in this work we will only focus
on the discrete spectra of both operators. Moreover, for an appropriate Banach space
D(PY), t > 0, the resolvent operator of G, given by R(z) = (2I — G)™}, z € p(G) =
C\ o(G) with p(G) being the resolvent set, is bounded and its explicit form becomes the
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4.2. Bifurcations

Laplace transform of semigroup P!, ¢t > 0 (see [31], Chapter II, Theorem 1.10). That is,

R(2)f = /Ooo e *P°fds, feL', z€p(G), with Re(z) > 0. (4.7)

4.2 Bifurcations

4.2.1 Classical approach

The origin of the term bifurcation was by Henri Poincaré [30] who used it to describe
the ”splitting” of equilibrium solutions, given the family of ODEs (4.1). Indeed, given a
parametrized dynamical system, bifurcation occurs when a change in parameter causes
an equilibrium point to move the system to a qualitively different regime. The equilibrium
solutions of (4.1) are the solutions of the equation F'(x,p) = 0. Hence, equilibrium points
can be created or destroyed, or their stability can change, as the parameter p is varied.
Moreover, as p varies, these equilibrium points are described by smooth functions of p,
say xo(p), far from points at which the Jacobian derivative of F'(z,p) with respect to z,
denoted by DF,, has a zero eigenvalue. The graphs {(p, zo(p)), p € R} are branches of
equilibria of (4.1). Thus, we say that (pg, Zo) is a point of bifurcation if DF), has a zero
eigenvalue at (pg, Zp). In this case, several branches of equilibria may come together
and qualitative changes such as loss or gain of stability may occur. These qualitative
changes in the dynamics are called bifurcations. A bifurcation diagram is a diagram that
depicts the evolution of the graphs {(p, zo(p)), p € R}. The following example illustrates
a bifurcation which occurs as a catastrophic jump. Catastrophe is meant in the sense that
the stability of an equilibrium point will break down and causes the system to suddenly

jump to into another state.

Example 9
t=p—a®+x, pxeck (4.8)

The dynamical system generated by the ODE (4.8) undergoes a qualitative change as an
example of bifurcation with the corresponding diagram shown in figure 4.1. There are two
bifurcation points marked as black dots. The blue branches are stable equilibrium points or
stable states, while the red branch connects unstable equilibrium points or unstable states.
Hence, when the parameter p passes beyond a bifurcation point, the system transitions very

fast to another stable state. This sudden transition is not immediately followed by another
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Figure 4.1: Bifurcation diagram of the (4.8) in Example 9.

sudden jump towards the previous stable state by simply tuning parameters p slightly. In
fact, one needs to put a considerable change in the parameter p in order to get back to the
prior stable state. This lack of immediate reversibility as a parameter is changed is called
hysteresis. Therefore, the bifurcation diagram exhibits oscillations between stable states
where slow and fast motions alternate. This is known as the hysteresis loop. Mathematical
models where the hysteresis bifurcation are found include the Budworm population dynamics.
The latter describes the population dynamics of an insect called spruce budworm (see [25],

chapter 3).

4.2.2 Statistical approach and the trace formula

In example 9, we have illustrated qualitative changes, occurring in the dynamics of a
chosen initial point. The bifurcation of an ensemble of trajectories can also be studied by
relying on the statistical properties of the deterministic system (4.1). The latter suggests
a formulation of a randomly generated set of initial points into a probability distribution
function, as introduced in chapter 2. One then needs to study their evolution under the
deterministic dynamics via the continuity equation (4.5). In this setting, it is possible
to study the bifurcation of the underlying system statistically. This method is spectral
and connects the spectra of the operators (4.3) and (4.4) to the stability eigenvalues of
the stationary points of (4.1). Indeed, a spectral signature of the pitchfork bifurcation
was studied in [17] where, in an appropriate functional space, the spectrum of the

infinitesimal generator could be found as well as the corresponding eigenfunctions. The
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4.2. Bifurcations

eigenvalues of (4.4) came out as a linear combination of the bifurcation parameters p
and stability eigenvalues. As a result, eigenvalues tend to accumulate at zero as the
bifurcation parameter comes close to 0. The challenging part of this method is choosing

the appropriate functional space for the eigenfunctions.

An easier approach that guarantees a direct computation of the eigenvalues of (4.4)
is based on the so-called trace formula (Chapter 3, [48]). This approach consists of
extracting eigenvalues by computing the trace of the resolvent operator (4.7). Indeed,

from the Laplace transform (4.7), we have that

trR(2)f =tr(zI —G)~! = tr/ e Pids = / e **trP*%ds (4.9)
0 0

and

1Pt = tr / 5(x — 5'(y))po(x)du(y)
X
— [ e S'@)du(x)
X

1
= 2 [Get 1= IS

where zg, s € N denote(s) the stationarity solution(s). A necessary condition to use the
trace formula is to assume that all the stationary points of (4.1) are hyperbolic. That
is, the corresponding stability eigenvalues of z,, denoted by A\, ; € C, j =1,2,--- ,d,
should satisfy Re(\; ;) # 0. Since J(F),) is the matrix of the linearized vector field, we
have J(S'(xz5)) = exp(J(Fp)(zs)t), t >0, and hence

. 1
= ; |det (I — exp(J(Fp)(@s)t))|

One can see that tr P! diverges like [ t|n, n € N for ¢ — 0, but it also decays to zero for

t — oo. Indeed, we can rewrite trP! as

trP! = Z H

s 1\1—6XP (s,5) ()1)]
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which can be decomposed as

t P Ao (1) 1
trP" = Z H D) P H 1 —exp(Ag 5 ()1)

1= exp(—\. (D)
= \ReOrn o L~ FPEAHPI |\ po <o

T L BN | ;j — 1. Moreover,

1
1—exp(=A(s,5) (P)?) 1—exp(A(s,;)(P)
in the denominators we have |exp(—A(s ;) (p)t)| < 1 and |exp(As ;) (p)t)| < 1, for positive

Therefore, for t — +o00, we that

real parts and negative real parts, respectively. Thus, we can write trP! as a Taylor

expansion in the following way:

trpPt = Z ( H exp (—/\(S)j)(p)t) Z exp (—njA(s’j)(p)t)) X

5 \Re(A¢s,5)(P))>0 n;=0

( I1 Y exp (mws,j)(p)t))
Re(

)\(S,j)(p))<0 mj:O

=> 1T > exp (=(nj + DAy (0)2) 11 > exp (m;As. ) (P)t)

5 Re(As,5)(p))>0n;=0 Re(X(s,j) (p))<0m;=0

=>_ > e (— > (i 1)/\<s,j)(1’)t> > exp ( > mjA(sJ)(p)t)

s m;=0 Re(A(s,5)(p))>0 m;=0 Re(A(s,5) (P))<0

s nj,m;=0 Re(A(s,5)(p))>0 Re(A(s,5)(P))<0

=> > e {_ Yo i+ DA+ > mj)‘(s,j)(p)t] :

The trace of the transfer operator is, thus, a sum of exponential decays, for each stationary

point. Hence, given a hyperbolic stationary point x4

trPt= % expl— Y (DAt D miAe,) )t
nj,m;=0 Re(X(s,5)(p))>0 Re(As.5) (1)) <0

and it follows from (4.9) that
tr(zl —G)~! :/ exp(—zs)x
0

> exp [— S i+ DA+ D miAe, ()t ds.

nj,m;=0 Re(A(s,5)(P))>0 Re(A(s,5) (p))<0
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Computing the integral above, we have, for z € p(G) with Re(z) > 0, that

-1

tr(z[—g)_l = Z z+ Z (nj + DA 5 () — Z mj)‘(s,j)(p)
nj,ijO Re()\(syj) (p))>0 Re()‘(s,j)(p))<0

(4.10)

Therefore, the discrete spectrum of the generator associated to the stationary point z; is

given by the poles of (4.10). That is,

z=— > DA+ D midey D) (4.11)

Re(A(s,5)(0))>0 Re(A(s,5)(p)<0

Note that z in (4.11) is a function of n;, m; and p and we can write z(n;, m;,p), to
mean z and vice versa. Thus, the discrete spectrum of G in (4.11) is composed of
isolated eigenvalues of finite multiplicity which are located in the strip —g < Rez < 0,
for some ¢ > 0. As a consequence, due to (4.6), the discrete spectrum of P!, t > 0
consists of isolated eigenvalues of finite multiplicity which are located inside the unit
disc. Since (4.11) is a linear combination of the stability eigenvalues, it follows that
(4.11) is relevant to characterize a bifurcation. As mentioned above, (4.11) and their
corresponding eigenfunctions were used in [17] to characterize the one-dimensional

pitchfork bifurcation. A concrete example is given in the following.

Example 10

x(t) = — (wpsin(27x) + (1 — p)wsin(7x)), p,x € [0, 1]. (4.12)
For p € [0, 1/3], the stationary points are given by
x1 =0, x3=1 with stability eigenvalues M\ (p) = %(p+1), Xa(p) = —7*(3p—1).

For p € [0, 1/3], the stationary points are given by
1

_ _m)2
M(p) = 72 (p+1),  da(p) = —72(3p—1), As(p) = — |27 cos(2arccos(25))) — U5En| .
Thus, one sees that \i(p) is always negative while \3(p) is positive and exists only for
p € (1/3, 1]. However, A\2(p) is positive for p € [0, 1/3), negative for p € (1/3, 1], and
A2(p) = 0 when p = 1/3. Therefore, a bifurcation occurs at p = 1/3. Given that the fixed

point x1 = 0 is always stable, we can only focus on \y(p) and \3(p), in order to investigate

1 =0, x2=1, =x3 arccos (p—_l) with corresponding stability eigenvalues

2p
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

the bifurcation in a spectral level. In figure 4.2, we show the changes of \a(p) and A3(p)
with respect to the changes of the bifurcation parameter p. The discrete spectrum (4.11) of
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Figure 4.2: In the y—axis: stability eigenvalues \2(p) in blue (dashed line for p < 1/3
and smooth line for p > 1/3), stability eigenvalues \3(p) in red and dashed curve of the
system (4.12). In the z—axis the bifurcation parameter p.

the generator at xs and x3 can be easily computed now.

Forp<1/3:
at zo: z(n,p) =+ 1)r*Bp—1), n=0,1,2,---
Forp>1/3:
at xy: z(n,p) = —nn?(Bp—1), n=0,1,2,---,
-1 1—p)?
at x3: z3(n,p) = (n+1) 272 cos(2arccos(p ) — (1=p) |, n=0,1,2,---.

2p 2p
Hence, changes in these eigenvalues correspond to the spectral signatures of the undergoing
bifurcation. The latter are illustrated in figure 4.3. For each bifurcation parameter p,
n = 10 eigenvalues of the generator (4.4) are plotted. Figure 4.3 agrees perfectly with the
spectral data formula in (4.11). Moreover, as the bifurcation parameter is close to its critical
value, i.e. p = 1/3, the eigenvalues tend to shrink and accumulated near zero. This is a
typical spectral signature of the bifurcation. Compared to the classical bifurcation studied
in example 9, we are able to see the slowing down scenario before the system transitions to
its post-bifurcation state. Indeed, slowing down was observed to occur in the dynamics of
systems before a bifurcation occurs [5]. On the spectral level, we observe an accumulation of
the spectrum of the generator around zero. The same can be observed with the spectra of the

transfer operators P, t > 0 by simply applying the spectral relation in (4.6) with a chosen
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time t. For instance, with t = 10~* we have the changes of the spectrum of P! in figure 4.4.
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Figure 4.4: In the y—axis: exp(z2(n,p)t) in blue and exp(z3(n, p)t) in red. In the x—axis
the bifurcation parameter p. The chosen time is t = 1074,

One then observes a convergence of the eigenvalues of P, t > 0 towards 1 as p approaches
its critical value. Note that the bifurcation found in (4.12) is similar to a generic pitchfork
normal form ([28], Chapter 2), since the only difference is the lack of symmetry of the
emerged unstable branch A3(p) for p > 0. Nevertheless, the spectral signature shown in
figure 4.3 has similar trends as in [17]. Therefore, we can say that these spectral trends are

generic indicators of bifurcations including the the pitchfork bifurcation.
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

A similar spectral approach was used in [46] using the generic Hopf bifurcation ([28],
Chapter 3). In this study, however, we are more interested in spectral signatures for
bifurcations of pitchfork type. Indeed, our goal is to study and understand critical
changes of almost-invariant/coherent sets. These critical transitions come out as a form
of pitchfork bifurcation in the macroscopic consideration of the dynamical system. Indeed,
a set-oriented pitchfork bifurcation should practically be equivalent to sudden splitting of
rotating gyres/storms/vortices into two.

As illustrated by example 9 and example 10, the statical approach to study classical
bifurcations requires the existence of hyperbolic stationary points. However, in the
present work, we will study bifurcations while there is no prior existence of hyperbolic
stationary points. In other terms, we will study a particular class of Hamiltonian systems
whose dynamics mimic a rotating vortex, before a qualitative change occurs. We will
then consider elliptic stationary points (i.e., Re A\ = 0 and Im A # 0) that will bifurcate
to become hyperbolic, as a parameter changes. In addition, we will focus on almost-
invariant sets generated by the underlying dynamics. Note that, as detailed in chapter 3,
the occurrence of almost invariant sets is tight to the existence of dominant eigenvalues.
Thus, the set-oriented bifurcation analysis will consider two indicators: changes in
the eigenvalues and changes in almost-invariant sets, knowing that those sets are just
the corresponding eigenfunctions of the eigenvalues, given the linear operators (see
Chapter 3). Under the robustness constraint of almost-invariant sets (see Chapter 3 ),
we will use the diffused operators P! and ultimately G, instead of their deterministic
version P! and G studied above. Hence, we will look at a spectral signature of the
critical transitions, given the diffused operators. However, spectral relations between
deterministic and diffused operators will be explored, in order to understand spectral
signatures in the diffused setting. We will explore eigenvectors and eigenvalues of these
diffused operators by mainly considering eigenvalues whose corresponding eigenvectors

approximate almost-invariant sets.

4.3 Almost-invariant sets as eigenfunctions level sets

In this section, we prepare for dealing with the specific dynamics that motivates our
research, namely two-dimensional area preserving flows. Here elliptic fixed points are
surrounded by periodic solutions forming a family of invariant sets, which we expect to
appear as almost-invariant sets for the perturbed dynamics. We will later demonstrate

that in order to obtain such almost-invariant sets, it suffices to use the real eigenvalues
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4.3. Almost-invariant sets as eigenfunctions level sets

and corresponding eigenvectors of the spectrum of the transfer operator P! as defined
in chapter 3. We will briefly review some properties of the discrete spectrum of the
deterministic operator P! for general conservative systems before investigating the
spectrum of the diffused operator P!. Furthermore, the analysis of almost-invariant
sets and their possible bifurcations we will studied and, in this context, the randomly

perturbed infinitesimal generator will be used to better confirm found spectral signatures.

4.3.1 Spectrum of the deterministic transfer operator

We suppose that the dynamical system generated by (4.1) is conservative. Therefore, the

Frobenius-Perron operator defined in (4.3) becomes

P'f(z) = f(S7"(2)).

Thus, P! is stochastic, meaning that P!1, = 1p, and the Lebesgue measure y is invariant.
In addition, we can restrict the functional domains of P! and its adjoint, the Koopman
operator K', to the LP spaces, p > 1 [29]. We particularly choose p = 2, in order to
benefit from the Hilbert space L?(D, ¥, i), which allows us to use its scalar product
(-,)u- Hence, P* is unitary, meaning P"* = P!, where P'* is the adjoint of P’. Indeed,
K': L2(D,%, ) — L*(D, %, u) is explicitly defined as K'g = g o S*, for any observable
g € L?. Thatis K! = P~! = P". Thus, K' maps backward observables, while P*
propagates forward the densities. Beside, due to their isometric properties, the discrete

spectrum of the deterministic operators P! and its adjoint K is expressed as

P'f = A\u(t) fn, whereas K'f, = A\y(t)fn, V>0,

with [\, (t)| = |Au(t)] = 1. Thus, ||P'f,|| = ||fn]] = ||Kf.|| and eigenfunctions are
neither contracted nor expanded but rotated.

The set-oriented approach connects the phase space dynamics to a functional dynam-
ics within a functional space such that every function, or density, is supported on u-
measurable subsets of D. Hence, invariant densities or almost-invariant densities (i.e.
f € L3(D, ¥, u) such that P! f ~ f) yield qualitative information of the space dynamics

at equilibrium. Let

8:{f6L2(D,E,u): /Dfduzo,f;é().} (4.13)
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

be the set of all nontrivial functions f € L?(D, X, i) that are orthogonal to 1p, under the

scalar product (-, -),. Let f € S satisfy the following assumption:

Assumption 11 There exists a measurable partition of D with partition elements A;,i =
1,..,q, such that

1. ?‘S*f(A,;) is either positive or negative and if ﬂsft(Ai) > 0 then ﬂsft(Ai < 0, and vice

versa.
2. P'f ~ f on A, in the sense of the L? norm (i.e. [, (P'f — f)?du~ 0).

+1)

Then the A;’s form an almost-invariant measurable partition of D, under the following
reasoning. Indeed, [, fdu = (f,1p), = >, [, fdu=0and, [, P'fdu~ [, fdu for
i=1,...,q, implies [,_, (AD) fdu= [ A, Sy Thus, a possible set-oriented solution for the

latter is

wherein it follows
(A N S7H(A))

p(A;)

As a result, the A;’s form an almost-invariant measurable partition of D. One sees that

~1,V1<i<gq.

for such a real-valued density f € S with the relation (4.14), the ratio

(AN ST A,
re(Ar, Az Ag) = Y 2 ;(A‘)( ) (4.15)
i=1 v

is maximized in the sense that r;(A;, Ag, ..., 4y) = q.

We, thus, infer that if there is presence of almost-invariant sets that partition the state
space, then we may find almost-invariant densities that belong to S satisfy assumption
11 and that are supported on those sets. This brings us to the idea of searching for
almost-invariant densities in order to identify almost-invariant sets.

Finding densities f that satisfy Assumption (11) in realistic systems is intractable. The

first step would be to find solutions of the equation
P'f = 6(t)f where 6(t) ~ 1,

requiring to investigate the discrete spectrum of P!, which is, however, an analytically
hard task. Moreover, the spectrum of P! does not immediately yield almost-invariant

measurable partitions. Indeed, Assumption 11 on the density f is not guaranteed by the
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4.3. Almost-invariant sets as eigenfunctions level sets

eigenfunctions. Moreover, all the corresponding eigenvalues lie on the unit circle. That is,
from the discrete spectrum of P?, the idea of finding almost-invariant sets must be ruled
out. Nevertheless, the discrete spectrum of P! may provide two types of measurable sets:
almost-cyclic sets and invariant sets that will later become almost-invariant sets, under
external perturbations.

Almost-cyclic sets are measurable sets that undergo a cyclic motion around the elliptic
stationary point. Recall that almost-invariant sets, in contrary, are measurable sets that
are fixed with respect to the flow map and have the property to lessen transport between
their interior and the rest of the phase space. We remind that the dynamical system under
investigation consists of rotating orbits around a global elliptic fixed point.

The following remark yields conditions under which eigenfunctions generate almost-cyclic

sets.

Remark 12 Let {)\n(t),fn}n>1 be the discrete spectrum of P'. Then |\,(t)] = 1 and

Plfy = Mu(t) fn, V0 > 1, where f,, = f7¢ + ifi™. Let us assume that Re\,(t) ~ 1 while
ImA,(t) ~ 0. Then P'fr¢ ~ fr¢ and, P'fi™ ~ fi™. Moreover, if fr¢, fim ¢ S and
Assumption 11 is satisfied, then f'¢ and fi™ both yield measurable almost-cyclic partitions

of D.

In fact, the push-forward effect of P! on f, is only a rotation and, since \,(t) are complex
with a particularity of having Re\,,(t) ~ 1 while SmA\,(t) ~ 0, we can deduce that f;°¢

yields almost-cyclic sets. Denote by
E={Re,(t): Relp(t) =1, n >0} (4.16)

the set of these dominant eigenvalues. These are analytically intractable in general as are
the corresponding eigenfunctions, which are indicators of almost-cyclic sets. Instead, we
will later consider the diffused operator P!, which can be numerically approximated and
its spectrum can be investigated.

Note that, in the present chapter, we study the spectral signature of the bifurcation of the

system described above, with a high presence of almost-invariant sets.

4.3.2 Deterministic spectrum and invariant sets

In this section we are going to show that there exist particular eigenfunctions with eigen-

values A, (t) = 1 that are supported on invariant measurable sets partion which describe
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

the deterministic dynamics of the system we are studying. Moreover, these measurable
sets yield measurable almost invariant sets partition, when external perturbations is
added to the system’s dynamics.

In order to construct an invariant set partition of the deterministic system (without

perturbations), we are going to use the Hamiltonian function

U,: D — [a, b] (4.17)

(Q?, y) = \I/p(x7y)7

which generates the two-dimensional area-preserving system 4.1. The latter generates
a dynamical system completely described by the 1-degree of freedom scalar function
(4.17), the Hamiltonian. In addition, the value of the Hamiltonian function is constant
along the trajectory {S*(-), t > 0}. That is, every closed orbit can be mapped to a single
value of ¥, (-, ). Thus, one can think of the Hamiltonian as a smooth function which lifts
the phase space into the interval [a, b]. Hence, for every a; € [a, b], there exist a closed
orbit {S*(x;), t > 0} C D such that {S*(z;), t > 0} = ¥, (a;). As a consequence, let us

partition [a, b] into N disjoint sub intervals I;, i = 1, ..., k and build the measurable sets
Ai(p) =V, (L), i =1, ..k, (4.18)

As a results, every A;(p) is composed of closed orbits and A;(p) N A;(p) =0, j # i with
S~t(A;(p)) = Ai(p), i = 1,..., k. In this way, we have a measurable partition of D into
rings-like patterns with a particular invariant set

An(p) = v, (In), (4.19)

which is supported on a neighborhood of the fixed point and surrounded by all the other
rings A;, i # h. In fact, (4.19) can be understood as a macroscopic representation of
the fixed point. Note that this partitioning is not unique and the trivial case consists of a
partition with an infinite number of closed orbits. That corresponds to the case where
each I; is a singleton. However, since we are looking at the macroscopic dynamics, we
can set the number of partitions & to be finite.

Now we are going to construct stationary eigenfunctions whose level sets yield the

invariant partition A;(p), i =1, ..., k.
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4.3. Almost-invariant sets as eigenfunctions level sets

Fori =1, ..., k, we define the functions

1 if oz Ap)
Yi(r) = 14, (7) = _ (4.20)
0 if ¢ Ai(p).

Then, we have that {i1,»9, ...,1;} are eigenfunctions of P!, ¢+ > 0 with eigenvalue
A(t) = 1. Indeed,

Pl = P'la ) = 1a,0) © S™° = Lgi(a,)) = La(p)-

Note that D = [J{_; Ai(p) and P'1p = P! (14,0p) + Lagip) + - + Layp) = P'layp) +
Py, ) + o+ Py = 1) + 1agp) + - + 1) = 1p. Thus, 1p is also an
eigenfunction of eigenvalue 1, we refer to it as the trivial eigenfunction.

Let us consider the subspace &; of the eigenspace corresponding to the eigenvalue 1 and
spanned by only the eigenfunctions {v, 1, ..., %% }. Then & C L? with dim & = k. That
is, every element f € & is a linear combination of the functions (4.20) with coefficients
in R. Moreover, the functions ¢; are orthogonal, i.e. (v;,%;), = 0, ¢ # j. Hence, let
Vi = {é1, ¢2, ..., o} be an orthogonal basis of £;. That is,

k
¢; = Zaijwj, 1=1,..k, Qi € R. (4.21)
j=1

It follows that the basis elements (4.21) of Vi, i.e. {¢1, 2, ..., ¢}, are also eigenfunctions
of P! with eigenvalue 1. Indeed, P'¢; = Z;‘f’:l i Pl = Z;?:l @i;jt; = ¢;. Moreovet, to

each ¢;, i = 1,..., k, we have the vector-wise correspondence
¢i = (i1, iz, -y Qi) (4.22)

and the invariant measurable sets {4;(p), j = 1,...,k} can be obtained from the level
sets of the basis elements ¢;, i = 1, ..., k. Indeed, let us consider the negative level sets

{¢; < 0}, for instance. We have then
$i<0={z: ¢i(x) <0} ={reD: o; <0: j=1,....k},
which is equivalent to

{z: ¢i(x) <0} = {A;(p), suchthat a;; <0: j=1,...,k}.
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For positive level sets {¢; > 0}, we have
{z: ¢i(x) >0} = {4;(p), suchthat a;; >0: j=1,...k}.
Equation (4.22) may be written in terms of sign patterns. That is, fori =1, ..., k,
¢i — (sgn(as1),sgn(ase), ..., sgn(ay)) - (4.23)

Given ¢; and (4.23) and the sign pattern structure of the coefficients, it may be possible
to classify the measurable invariant partitions {A4;(p), i = 1,...,k} into aggregates of

measurable partitions. For instance, if
(Sgn(ail)v Sgn(OéiQ), ceey Sgn(alk)) = (+a +7 +a R R T ) 7) (424)

with n™ the number of successive positive sign coefficients and n~ the number of

successive negative sign coefficients satisfy n™ + n~ = k, we have that

nt
= U Aj(p)
i=1

and

Co = U Aj(p)

j=nt+1
are aggregates of measurable invariant sets. Hence, C; and C, partition D into two

measurable
(sgn(a;1),sgn(ag2), ...,sgn(auk)) = (+, —, +, — oo, +, —, +, ..) (4.25)

and

The coarsest aggregates correspond to a single sign pattern structure corresponding to all

positive or all negative entries. That is,

sgn(a;1),sgn(aya), ..., sgn(ayi)) = (+, +, =+, ey +, 4+, +, ...
(sgn(ci1), sgn(avz) gn (o)) = ( ) 4.26)
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4.3. Almost-invariant sets as eigenfunctions level sets

and in both cases

k
c= U4 =D.

Therefore, as illustrated in (4.24), (4.25), and (4.26), we can restrict ourselves to the
signs of «y; to find aggregates of invariant measurable sets. That is, signs matter more
than their corresponding entries. Note that we assume the «;; be non-zero. Besides, the
need of aggregates of measurable sets comes naturally from set-oriented approach for
finding maximal slowly mixing regions [36].

Equation (4.26) is particularly important, since we can then assume the entries «;; in

(4.26) to be all equal to one. Let ¢ be the corresponding eigenfunction. Hence, ¢; = 1p
and Vi = {¢1, ¢2, ..., 0} = {1p, 02, ..., ¢} wWith (¢4, ¢;), = 0, i # j. As a result, we have

/ ¢idp =0, ¢; #0, and ¢; € L*(D, %, ), fori=2,.. k. 4.27)
D

Therefore, (4.27) corresponds to (4.13), which means ¢; € S, for i = 2,...,k. Note
that ¢;, ¢ = 2, ...,k yield measurable invariant sets from their positive/negative level
sets. Besides, these invariant sets existed already by construction in (4.18). It is easy to
verify that the eigenfunctions ¢;, i = 2, ..., k corresponding to eigenvalue \(¢) = 1 only
satisfy assumption 11(1), since we have P'¢; = ¢;, instead of P'¢; ~ ¢;. From these
observations, we are going to systematically perturb the system so that invariant sets
defined above will simply become almost invariant. As we will see in the following, this
systematic perturbation will result in an perturbed transfer operator P. Besides, the
spectrum of P! may contain a set of k eigenvalues which are clustered near 1 and and the
corresponding eigenfunctions showing a sign pattern structure similar to (4.24), (4.25),
and (4.26) but with little variation.

In the following, we demonstrate how the spectral properties of the perturbed operator P!,
which is however, dynamically similar to P?, can be used to obtain actual almost-invariant

partitions of the domain D.

4.3.3 Diffused spectrum and almost-invariant sets

The e-perturbation € > 0, which is central to the construction of the operators P! and its
adjoint P*, leaves the dynamics undissipated. Indeed, any given density f € L?(D, X, u1)
is initially diffused, rotated by the dynamics, and the resulting density is again diffused at
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final time. For more details about the construction of P!, we refer the reader the chapter

3. Therefore, we have
P'f =D.P'D.f, whereas P*f =D:K'Dff, Vit >0.

In particular, it follows immediately that the eigenfunctions of P! and P!* are the specific
densities ¢,,: L*(D, %, u) — C that satisfy the following relations

PloS = X (t)¢f, and P™ ¢, = A& (t)gS, V>0 (4.28)

with |\ (t)| = |AS(t)|. As a consequence, the two operators P! and its dual agree in the
subset of real eigenvalues, since eigenfunctions are the same.

We are interested in almost-invariant sets as supports of eigenfunctions of P! as well as
their corresponding eigenvalues, under the perturbed dynamics. That is, we are going
to characterize spectral signatures of bifurcations exhibited by the underlying system.
We are, thus, going to shed light on the spectral property of P!, before any spectral

bifurcation analysis.

Proposition 13 Any non-zero real eigenfunction ¢¢ # 1p € L*(D, %, u) of P! with corre-
sponding real eigenvalue \(t) belongs to S defined in (4.13). Furthermore, its corresponding

eigenvalue, \(t), satisfies the following inequality

2 — 2 /(1 - X(1)) < sup r°(A) < 1+ X(t), (4.29)
ACD

whenever \(t) < 1 is the largest real eigenvalue of P_.

Proof 14 From chapter 3, we have

Pt_|_Pt*
Q= ——¢=

A(t)p + A°(t)o
2

= ()¢

thus, \(t) € o(Q!) and due to the orthogonality of the eigenfunctions of Qt, it follows that

Jpddp=0,0r¢ L1p
As detailed in chapter 3,

(Qef. f)
I1F1I%

Ay = max{

s (£.10) =0}
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and we have
(Qf, f) B }_ ) -
e { i 1 =0 ‘1?28‘{ i =0y
1 (PR (PR _}
‘2%128{{ e e Ve =0p
Thus
I (P IR B
le?%‘{ Iz <f’1D>‘O}+2?§8‘{ G <f’1D>‘°}‘

Note that, with the the chosen diffusion, \{(t) = 1 is a simple eigenvalue of both P! and
P with corresponding eigenfunction ¢y = 1p. Hence, the right hand side of the above
inequality seeks the largest eigenvalue \°(t) such that ¢, 1 1p, or [, ¢ndp = 0.
It follows that
AC(t) + A°(t

)\2 < ();() = \€ (t)
Recall that \; yields the inequality 2 — 21/(1 — A2) < supsc-pr(A) < 1+ A2 [36]. Hence,
substituting Ao by \°(t), we obtain (4.29).

One possibility of achieving a measurable partition is to consider the threshold 0, then set
AT =supp{¢ > 0} and A~ = supp {¢ < 0}. This is indeed the threshold we will consider
in this study. Thus, {A", A~} yields a measurable balanced partition of D whenever
A€(t) is close to 1. It is clear by now that only real eigenfunctions and corresponding
eigenvalues of P! are potential candidates to generate almost invariant partitions. Indeed,

a partition of almost-invariant sets can only be done we eigenvalues of Q%, [16, 36].

Corollary 15 All real eigenfunctions of P! are orthogonal.

In other words, corollary 15 is highlighting the fact that the subset of real eigenvalues of
P! and their corresponding eigenfunctions are contained in the spectrum of Q% which is

composed of orthogonal eigenfunctions.

N
Let us denote by &' = {gbg} ) the finite set of real eigenfunctions of P!. We choose
to order the corresponding eiéenvalues DI as 1= A{(t) > AS(¢) > - > Ay (1).
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Hence, ¢; = 1p, the eigenfunction ¢5 yields the existing optimal almost-invariant parti-

tion of D into two measurable sets, and \, satisfies (4.29).

Corollary 16 Any eigenfunction ¢, n > 2, generates at least a measurable

n-partition of D in the sense that
+ - .
supp {¢, > 0} = U?ZlAf and supp {¢, <0} = UL A7,

withn=nt+n".

This follows directly from the orthogonality of the eigenfunctions as stated in corollary 15.
Let us suppose that N = k and that P! has a k > 2 distinct eigenvalues {\{(¢), ..., A\, (¢)}
clustered near \°(¢) = 1 and each has a geometric multiplicity which is equal to one. Then
S’ ={¢S, i =1,...,k} are mutually orthogonal, from corollary 15. Moreover, the eigen-
functions {¢¢, i = 2,..., k} are all elements of S defined in (4.13), given that ¢{ = 1p.
Finally corollary 16 stated that eigenfunctions {¢5, i = 2, ..., k} yield almost-invariant
partitions.

It is worth mentioning that it is highly unlikely to find an analytical relationship between
the eigenfunctions {¢¢, i = 2, ..., k} from the perturbed dynamics and the eigenfunctions
{¢i, i =1,...,k} defined in (4.21) from the unperturbed dynamics, except the trivial
eigenfunction ¢{ = ¢; = 1p. However, note that the perturbation used here is discon-
tinuous because it only incorporates diffusion at initial and final time. Thus, with this
type of diffusion, invariant sets or aggregates of invariant sets, such as (4.24), (4.25),
(4.26), are simply inflated in the order of the diffusion amplitude e. We can then propose

a formula for the diffused eigenfunctions in the following way:
S = ¢; + €hy + O(), i=2,...,k, (4.30)

where ¢; is defined in (4.21), h; = 25:1 Bijj, j=1,...k, Bi; € R. With this formula,
we can see that ¢¢ = ¢;, whenever the diffusion amplitude ¢ is zero. The latter corre-

sponds to the deterministic dynamics where only invariant sets are present. If ¢ is a small
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amplitude, then the pattern structure of ¢¢ can be understood by rewriting (4.30) as

k
Qi + € Z Bijtbj + O(€)

=1

M=

o =

<
Il
—

(4.31)
(aij + €Bi) ¥j + O(€?).

I
™=

<.
Il
-

fori=2,..,k, j=1,..,kand a;j, B;j, € R. Similar to (4.22), we have the vector-wise

correspondence of ¢S, i =1,...,k as
(bf = (agb 047?2, ceey agk) ’ (432)
and

¢; = (sgn (afy) ,sgn (afy) , ..., 580 (afy)) (4.33)

with oz;j = a;j + €5 + O(€?). Indeed, the entries afj in (4.32) are obtained form the
entries of (4.22) by adding a forward or backward shift ¢3;; and a limiting term O(€?).
Adding the latter terms does not bring changes in the sign pattern structure of (4.32)
compared to (4.22). Indeed, note that with the formula (4.30), we have

P'; = 6§

Moreover, it is trivial to show that the deterministic sign structure (4.23) does not change
by only shifting the constants «;; with €/3;;, € > 0 and O(e?). Thus, given the constant
level patterns g, there is no significant difference between (4.23) and (4.33). This
means that eigenfunctions {¢, i = 2,...,k} are supported in the same aggregates as
the eigenfunctions {¢;, i = 2,...,k} with corresponding eigenvalues {\5(t), ..., AL, (¢)}.
The difference is that in the deterministic setting, we have P'¢; = ¢;, while in the
perturbed setting P'¢¢ = Ai(t)¢, 2,...,k. The latter means that the eigenfunctions
{#, i =2,...,k} are slightly contracted in all directions by P! and the {\5(¢), ..., AL ()}

are the corresponding contraction rates. Thus, instead of an equality, we can write
PloS =~ ¢S, i =2,..., k. (4.34)

As a result, the eigenfunctions {¢f, i = 2,...,k} satisfy assumption 11 with the dif-

fused transfer operator P!, rather than the deterministic operator P'. The eigen-
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

functions {¢¢, i = 2,..., k} yield almost-invariant sets with corresponding eigenvalues
{A5(1), ..., A (1)} clustered near 1

With this theoretical setting, we are going to numerically approximate P! and proceed to
a bifurcation analysis by exploring changes in the spectrum of the numerical operator. A
particular focus will be made on the subset of real eigenfunctions with corresponding
eigenvalues close to 1. We believe that with the class of dynamical systems we are
studying, the existence of real eigenvalues close to 1 is very likely, given the detailed

theory above.

4.4 Numerical approximation of the transfer operator

As illustrated in (4.29), the spectrum of the transfer operator is key to identifying almost-
invariant sets, but a corresponding analysis of specific mathematical models requires
numerical approximations. Here, we propose a discretization of the diffused transfer
operator P! based on Ulam’s method [22]. Following [13] we subdivide the domain D
into disjoints subsets, or boxes {Bl, B, ..., BN} of positive volumes. Each box B; has
the same dimension as the domain and all the boxes have same size.

We then approximate the deterministic Perron-Frobenius operator P?. Let us define
Ayx = (1p,,...,1p,) as a N— dimensional subspace of L?(D, ¥, 1), where u denotes

Lebesgue measure. Let

Oy: LY(X, u) = Ay
Yo/
Anf = - du )15,
fre ]Zl<u<3i>/3if“) &

be the L?—orthogonal projection of L?(D, X, ;1) onto Ay. Let
P]i[: An — Ay, with P]t\; = HNPt

be the finite-rank approximation of P’. The matrix representation P%, with respect to the

basis {1p,,..., 15, } is given as

(3

N
1
P}{,IBZ.:Z< /PtlBidM)lB,
= \u(Bi) Jp, ’
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and finally,
(Pt ) _ :U’(Bl N S_t(Bj)>
NI 1(B;j) (4.35)
_ u(BinST(B))) '
w(B;)

k

The entries (P%);; are numerically estimated by uniformly sampling & test points {:pl}
i=1

in each box B; and computing the transition probabilities between boxes. Thus, each

matrix entry is given by

. #{l’l € B, : St(l‘z) S Bj}
k

In this way, the matrix P%; represents a transition matrix of an N-states Markov chain;
the states are given by the boxes B;, i = 1, .., N. Moreover, the entry (PX);; represents
the conditional probability that a randomly chosen point in B; lands in B; at time ¢ after
application of the flow S?.

P, is row stochastic and has a leading eigenvalue 1. Even though, we are more interested
in the finite dimensional version of the diffused transfer operator P!, it is enough to
use the matrix P};. Indeed, the numerical method used to compute P4 adds sufficient
numerical diffusion with e being of the order of box size. So it suffices to directly use P}

as a numerical approximation of P/.

4.5 Simple example systems

As already mentioned above, we are interested in specific types of conservative systems.
Motivated by the Antarctic polar vortex dynamics figure 1.1, we are going to consider
two-dimensional area-preserving systems that, a priori, exhibit a global elliptic stationary
point. Hence, the dynamical behavior is characterized by rotating orbits around that
global elliptic stationary point. We will study numerically approximated almost-invariant
patterns. Moreover, we will explore the spectral signature of the bifurcation of almost-
invariants sets. Under this supposition, the discrete spectra of the deterministic Frobenius-

Perron operator P! and their adjoint K* are given by

P'f, =e“ntf,  whereas K'f, =e “rtf, Vit>0.
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Thus, eigenfunctions are periodically propagated with period 3—;; by P! and K forward
and backward, respectively.
4.5.1 Harmonic oscillator

As a first numerical investigation, we consider the harmonic oscillator
(4.36)

The stationary point (0,0) is a stable center and trajectories form a family of ellipses
centered at (0, 0) for each parameter w # 0. This system can be viewed as a simple toy

model of an ocean or atmospheric eddy. The solution of the flow is given by

x(t) = xq cos(wt) + % sin(wt)
w

(4.37)
y(t) = yp cos(wt) — zow sin(wt)
and the Hamiltonian/streamfunction is given by
Y2
(z,y) =x2+?+c, CeR (4.38)

In order to determine the discrete spectrum of the deterministic transfer operator P!, we

use the continuity equation of (4.5) and solve the following equation in p with A € C

9 2,90 _

= Ap.
& wx@y P

p(x,y) = (x — iZ)" solves the above equation V n > 0 with A\ = inw, which are the
eigenvalues of the infinitesimal generator G. Therefore, by the spectral mapping the-
orem (4.6), the discrete spectrum of the Perron-Frobenius operator P! is given by
A (t) = €™t Vv ¢ > 0, so all the eigenvalues lie on the unit circle. The correspond-
ing eigenfunctions are the same as those of the generator, i.e. ¢, (z,y) = (z —i%)", which
we rewrite as ¢, (r,y) = (2% + g—z)"eme with 6 = arctan(—-L).

Moreover, as detailed in section 4.3.2 (equation (4.21)), the spectrum of P! contains a
finite number of orthogonal real eigenfunctions, denoted {¢;, i = 1, ..., k} with eigen-
value 1, which are constructed from the Hamiltonian (4.38). These eigenfunctions, by
construction, are supported on the invariant ring-like patterns, given the circular behavior

of the flow.
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4.5. Simple example systems

Now, let us assume that Re \,,(¢) ~ 1. Then sin(nwt) ~ 0 and it follows that
nwt = 2mm, m € Z.

As a consequence, if m is a multiple of n, then the system of solutions (4.37) yields the

almost stationarity relation

(x(t),y(t)) = (x0,y0) with t # to. (4.39)

Indeed, it is enough to substitute wt by 2’"7” into the equations in (4.37) to obtain (4.39).
Moreover, with respect to the spectrum we immediately have that the corresponding eigen-
function ¢,, satisfies Pt¢,, ~ ¢,,. This means, P! [(a:2 - Z—i)" cos(nf)| ~ (z2+ g—z)" cos(nf)
and P! |(2? + g—z)" sin(nf)| ~ (22 + 5—22)” sin(n).

we are going to numerically show that the positive and negative level sets of the latter
partition the domain D into almost-cyclic sets, given the almost stationarity relation
(4.39). On the other hand, we are going to numerically show that the diffused eigen-
functions {¢';, i = 1, ..., k} of the diffused transfer operator P!, which are constructed in
(4.31) from the deterministic eigenfunctions {¢,, ¢ = 1, ..., k}, are supported on almost-
invariant ring-link patterns with eigenvalues clustered near 1.

The system (4.36) is integrated with a fixed flow time 1 using a RungeKutta scheme of
fourth order and studied in the space domain [—2, 2] x [—2, 2]|. The latter is subdivided
into 2'3 equals subdomains with 900 uniformly distributed test points in each subdomain.
Thus, we compute the transition matrix approximation of the infinite dimensional oper-
ator P!. Note that diffusion of amplitude e is artificially including from the numerical
discretization. In fact, the diffusion amplitude is equal to the size of a subdomain. Finally
note that the system (4.36) is open. That is, trajectories of test points may leave the
considered domain at final time integration. To numerically overcome this computational
obstacle, an additional box is added in order to capture all the image points that are
being mapped out of the initial domain D when computing the transition matrix. At the
end of the computation, this temporary subdomain will be removed from the eigenvector

entries by just considering the 2'3 first entries.

In Figure 4.6 we have plotted the largest magnitude eigenvalues of the approximated
diffused transfer operator P! in the left panel. The right panel shows the largest real part

eigenvalues. The numerical spectrum was computed for a fixed parameter w = 1.
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Figure 4.5: Largest magnitude (left) and largest real part eigenvalues (right) for the
linear flow with parameter choice w = 1.

As shown in figure 4.5, we have a cohabitation between strictly real eigenvalues clustered
near the eigenvalue 1 and complex eigenvalues which have, among them, complex
eigenvalues with real parts close to 1. The latter yield almost-cyclic sets in figure 4.6
in agreement with remark 12, while the former yield ring-like patterns in figure 4.7 as
predicted by our study in section 4.3.3.

In figure 4.7(a)-(d), note the center pattern defined in (4.19), which is present in every
eigenvector pattern. The pattern (4.19) carries the qualitative behaver of the center
fixed point (0,0). This is a qualitatively important difference with eigenvectors patterns
in figure 4.6, as the latter only cycle around the fix point (0, 0). It may be very helpful
to keep this in mind for a better understanding of results in the upcoming chapters.
Indeed, when the fixed point (0, 0) bifurcates, it may be more logical to investigate the
set oriented response of the bifurcation in the real eigenvectors in figure 4.7 than in the

complex eigenvectors in figure 4.6.

4.5.2 One-dimensional circle dynamics

Let us now consider a macroscopic approach of the circle dynamics
0=w (4.40)

This can be interpreted as viewing one periodic orbit in a two-dimensional system. In
this study we illustrate the lack of possibility to construct the real eigenfunctions (4.21)
and their diffused version (4.31) from the Hamiltonian function (4.17). Indeed, we will

show that the only real eigenvalue that one can find is the trivial eigenfunction with
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Figure 4.6: Approximations of the leading complex eigenvectors of the transfer operator
for the linear flow for w = 1 exhibit spatially-periodic pattern that partition the domain
into almost-cyclic sets.

corresponding eigenvalue 1. Therefore, the diffused transfer operator yields the same
eigenfunction with eigenvalue one. However, almost-cyclic sets can always be obtained
from eigenfunctions with eigenvalues whose real parts are close to 1 and imaginary part

close to 0.

Given any initial angle 6 € [0, 27), the flow S? is given by
S'(0) = wt +6 mod 27, (4.41)

the Lebesgue measure p is invariant under S*. Then P'f(0) = f o S74(0) = f(0 — wt)
and any point z(#) € S! is given by z(A(t)) = ¢ = ¢/0+) with 6, = S*(0) = wt + 6
mod 2w. We are able to easily obtain the discrete spectrum of P!t > 0 by taking

fn(0) = 2™ = eV = ¢iM¥einwt Thuys, eigenfunctions and eigenvalues are given by
bn(0) = €™ and M\, (t) = ™! n e Z.

Note that these eigenfunctions are Fourier basis elements, forming a complete orthogonal

59



Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

2

15 0.01
1
0
0.5
-0.01
0
05 -0.02
-1 -0.03
-15
-0.04
-2
-2 -1 0 1 2

()
2 - —
b 0.02
15 —
0.01
1
0
0.5
-0.01
-0.02
- -0.03
- -0.04
o 5 0.05
“2 1 0 1 2
© @

Figure 4.7: Approximations of the leading real eigenvectors of the transfer operator for
the linear flow for w = 1 exhibit spatially-periodic patterns that partition the domain into
almost-invariant sets.

basis of 2.

Since Plg,(0) = M\ (t) ¢, (0), we have

Plén(6) = ( cos(nwt) + isin(nwt)) (cos(nG) +1 sin(n@))
= cos(nwt) cos(nf) — sin(nwt) sin(nd)

+1 ( cos(nwt) sin(nd) + cos(nfd) sin(nwt)) :
Now, let us suppose that Re(A,(t)) ~ 1. Then sin(nwt) ~ 0, which implies that
nwt ~ 2km, k € Z. (4.42)
Hence, due to equation (4.42) we have for (4.41) the almost-stationarity relation

0(t) ~ 6o (4.43)
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4.5. Simple example systems

for the chosen flow time ¢ > 0. From (4.43) it is clear that a measurable almost-cyclic
partition generated by (4.41) must consist of sub-intervals of [0, 27) of equal length,
which are supported on either real or imaginary parts of the eigenfunctions ¢,,(0) with
corresponding eigenvalues satisfying Re(\,(¢)) =~ 1. Indeed, with respect to the spectrum,

we have
Plén(0) ~ <cos(nt) cos(n@)) + i(sin(n&) cos(nt)).

Therefore, P! cos(nf) ~ cos(nf) and P!sin(nf) ~ sin(nf). As stated in Remark 12, for
such n satisfying equation (4.42), real part eigenfunctions of P! must be periodic and
their level sets partition the domain into sub-intervals of equal length. That is what either
¢n, = cos(nb) or ¢, = sin(nh) exactly do. Finally, note that besides the trivial eigenvalue
1 with corresponding eigenfunction 1p, one cannot construct the real eigenfunctions
(4.21) from the underlying system (4.41). In fact, the Hamiltonian (4.17) cannot be
derived from (4.41). Therefore, the spectrum of the diffused operator P! can only yield
complex eigenvalues and an eigenvalue 1 with corresponding eigenfunction 1.

In the following, we are going to give numerical illustrations.

The system (4.41) is, thus, integrated using a RungeKutta scheme of forth order with a
fixed flow time of length 1. Thus, (4.41) is studied in the space interval [0, 27). The latter

is subdivided into 212

equals sub-intervals with 400 uniformly distributed test points in
each sub-interval. Thus, we compute the transition matrix which is the finite dimensional
approximation of P!. Recall that diffusion of amplitude ¢ comes in artificially with the
numerical discretization.

As expected, the spectrum lies on the unit circle, see Figure 4.8. There is only one real
eigenvalue, which is the trivial one, as P! is a stochastic operator. Thus, in the finite
dimensional approximation, we have a stochastic matrix whose stationarity distribution is
the positive/negative entries (i.e. probability distribution over sub-intervals) eigenvector
with eigenvalue 1, see figure 4.9. Moreover, there exists a finite number of eigenvalues
with real part close to 1. The real parts of the corresponding eigenvectors are displayed
in Figure 4.10 corresponding to approximations of cos(nf). Note that in synchronization
with the circle dynamics, both cos(nf) and sin(nf) are oscillations of frequency 27 /n in

the domain [0, 27). Their zero-level sets yield a finite partition of the domain [0, 27).

Consequently, eventual critical transitions of almost-invariant sets will be based on the
strictly real spectrum of P!, which is always numerically accessible. As a matter of fact,

we will be looking for real eigenfunctions of P! with real eigenvalue close to 1. We
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Figure 4.8: The numerically approximated eigenvalues of P! for the circle dynamics
with parameters w = 7/34 and ¢ = 1.
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Figure 4.9: Numerically approximated real eigenfunction (stationary distribution) of P!
for the circle dynamics with parameters w = 7/34 and ¢ = 1.

will then construct almost-invariant sets as the zero-level sets of the eigenfunctions and
eventually track the changes of this spectrum with respect to a bifurcation parameter.

Special focus will be made on parameter values close to the critical parameter.
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oo o8 s o ¥
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Figure 4.10: Real parts of eigenvectors of the numerical approximation of P! to eigen-

values with real part close to 1 for the circle dynamics with parameters w = 7/34 and
t=1.

4.6 Spectral signature for set-oriented bifurcation

The spectrum of the operator P!, is reliable to study the bifurcation of patterns generated

by the real spectrum &’. In this section we consider a nonlinear version of (4.36)

T=1y
. . (4.44)
y=pr—z.

For p € R, the system displays two different stable phases separated by a critical state as
shown in Figure 4.11.

The transition from one stable phase to another is referred to as a critical transition.
The early indicators before the system shifts to another state are of interest here, mostly
referred to as critical slowing down [3]. In the first part of this section we investigate the
critical slowing down based on the diffused spectrum, i.e., the spectrum of the operator

P!. In the second part, we investigate the same phenomena with a randomly perturbed
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Figure 4.11: Phase plane of system (4.44) for parameters p = —1 (left) and p = 1 (right).

version of the deterministic infinitesimal generator defined in (4.4).

4.6.1 Transfer operator approach

Now, we are ready to study the spectral signature of the underlying bifurcation with
respect to the diffused spectrum of P'. We will show that the transfer operator based
approach gives an indication of a bifurcation before the critical parameter is reached.

The vector fields before and after the bifurcation is illustrated in Figure 4.11.

System (4.44) clearly undergoes a pitchfork bifurcation of elliptic-type equilibria. When
p < 0, (4.44) has a unique fixed point at the origin. The latter is a stable center. Actually,
(4.44) is a nonlinear perturbation of the linear system

U=

(4.45)
U = pu.

When p < 0, adding the nonlinear term in (4.44) to (4.45) does not change the qualitative
behavior of the latter with respect to the former. Indeed, the two dynamical regimes
consist only of rotating closed orbits around the stationarity point (0,0) for negative
values of p. Hence, we can say that near a neighborhood of (0, 0), the nonlinear system
(4.44) is qualitatively equivalent to (4.36) and (4.45), for negative values of p. Moreover,
near (0,0), the discrete spectrum of the deterministic operator P! generated by (4.44)
may be given by
An(t,p) = VTPt >0, p < 0.

As mentioned earlier, almost-cyclic partitions require, Re(\, (¢, p)) ~ 1 while Im(\,(¢,p)) ~
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4.6. Spectral signature for set-oriented bifurcation

0. Let s,,(t,p) = ReA,(t,p) = 1. Therefore, we focus on

sn(t,p) = cos(ny/—pt) =~ 1

and, as in (4.16), we pick all of them in
E ={sn(t,p): n>0}. (4.46)

Note that, even though s,,(t,p) ~ 1, V n > 0, there is a decreasing order among them
since s, (t,p) # sm(t,p) when n # m. Therefore, near the critical parameter p we have
that

sn(t,p) > 1lasp—0, ¥Vn>0. (4.47)

The spectrum in (4.46) tends to accumulate at 1 when the system is close to the tipping
point p = 0. This is clearly a spectral version of the critical slowing down scenario [3]
which the system faces near the bifurcation. However, (4.47) only concerns the complex
eigenvalues of the deterministic operator P!. Moreover, in example 4.36, it is made clear
that studying real eigenvectors in figure 4.7 may be more relevant to characterize the
set-oriented bifurcation of the center point (0, 0). Indeed, these eigenvectors correspond
to real eigenvalues accumulated near 1, as shown in figure 4.5. In the same vein, we
are going to study the pitchfork bifurcation by relying on these kind of real eigenvalues.
Their existence should be shown first.

Indeed, we have the Hamiltonian of (4.44)

_ 1o po 1
plz,y) = 5Y° — 5% +6:L“ +C (4.48)

with which we can construct k orthogonal real eigenfunctions {¢;, i =1,...,k} with
eigenvalue 1 of the deterministic operator P'. Note that these eigenfunctions are the
concrete realizations of (4.21). They are, thus, supported on ring-like invariant sets, given
the circular behavior of the phase space of (4.44), see figure 4.11 (left panel). As shown in
section (4.3.3), under the diffused dynamics, the transfer operator P! yields k orthogonal
eigenfunctions {¢;, ¢ =1, ..., k} with corresponding eigenvalues {X\¢(¢,p), i = 1,..,k}
eigenvalues near 1, including the eigenvalue \}(p) = 1.

In the following, we will numerically investigate the pitchfork bifurcation of the underly-
ing system. Thus, we will mainly focus on the changes of the eigenvalues

{X{(t,p), i =1,..,k} and their corresponding eigenvalues {¢’;, i = 1,...,k}, as the pa-
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rameter p is varied.

The flow map is approximated by using a fourth order Runge Kutta ODE solver with
a time interval of length 1 and step size of h = 0.1, i.e 100 time steps. The domain
[—2, 2] x [~2, 2] is subdivided into 27¢P** rectangular grid sets (boxes). Here, we use
depth = 13, which gives N = 23 = 8192 boxes B; that partition the phase space M. In
each box, we sample 900 test points as initial data for constructing the transition matrix
approximation of P!. Note that diffusion of amplitude e is artificially including from the
numerical discretization. That is, the diffusion amplitude ¢ is equal to the size of the
subdomains which are all equal.

Note that the system (4.44) is open. That is trajectories from initial test points may
leave the domain D = [-2, 2] x [—2, 2] during integration. To numerically overcome
this computational obstacle, an additional box is added in order to capture all the image
points that are being mapped out of the initial domain D when computing the transition
matrix. At the end of the computation, this temporary subdomain will be removed from
the eigenvector entries by just considering the 2'3 first entries.

For p = 1, we show the eigenvalues of the transition matrix approximation of P! in figure

4.12. The real eigenvalues are isolated and accumulated near 1. Their corresponding
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Figure 4.12: Largest magnitude eigenvalue for the Duffing-type system (4.44) for param-
eter p = —1 (left) and largest real eigenvalues (right).

eigenvectors are shown in figure 4.13, where we only visualize the four largest. These
are rings of almost-invariant sets which depict the stationary behavior of the system.
Note the center pattern defined in (4.19). The latter carries the center fixed point (0, 0).
The set-oriented bifurcation will be investigated by focusing on the changes of both real
eigenvalues and eigenvectors shown, respectively, in figure 4.12 and figure 4.13.

To study the spectral signature of the pitchfork bifurcation shown in figure 4.11, we vary

p in the interval [—0.5, 0.5], first. Then we track the changes of the real eigenvalues and
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Figure 4.13: Four largest real eigenvectors for the Duffing-type system (4.44) for
parameter p = —1.

their corresponding eigenvectors for different parameters p.

In figure 4.14, the trends of the nine largest real eigenvalues are shown for p € [—0.5,0.5].
Each panel corresponds to the changes over p of three different eigenvalues. For instance,
left panel (figure 4.14(a)) shows the trends of {\{(t, p), A5(t,p), A5(¢, p) }, middle panel
(figure 4.14(b)) yields {Ai(¢,p), A§(t,p), AG(t,p)}. Finally, in the right panel (figure
4.14(c)), we illustrate the changes of {\5(¢,p), A§(¢, p), A§(t, p)}-

Looking at figure 4.14(a)-(c), a particularly common shape seems to repeatedly show up.
Indeed, a peek of the eigenvalues trend A;(t, p), j =1,2,...,9 at the critical parameter
p = 0 can be seen as we slide from one panel to another. This peek becomes sharper as
we go down to smaller magnitude eigenvalues. To better visualize this particular slope,
we plot the zoomed version of figure (4.14) for p € [—0.05,0.05]. The corresponding
zoomed picture is shown in figure (4.15).

The spectral signature of the pitchfork bifurcation of the system (4.44) is illustrated
in Figure 4.14. The spectral outcome of the critical slowing down is visible when p is

close to 0. Indeed, one can see that when p enters what we call a critical interval as
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(©:{A7(t,p), AS(E,0), A5 (¢, ) }-
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Figure 4.15: Nine largest real eigenvalues for the Duffing-type system

(4.44), for parameter p € [-0.05,0.05] in the z-axis and X(t,p), j =
1,2,..,9 in the y-axis. (@):{A{(t,p),A5(t,p), A5(t,p)}, (D):{AL(t,p), A§(t, ), A§(t,p)},
(©:{A7(t,p), A§(L,0), A5 (¢, )}

shown in Figure 4.15, eigenvalues start increasing continuously towards 1. This is fairly
comparable to the deterministic version of criticality in (4.47) where all leading real parts
eigenvalues of P! converge to 1 as p approaches 0. Note also that in Figure 4.14 and more
clearly in figure 4.15, the further the eigenvalue is away from 1, the earlier its increasing
process starts. The explanation to that is twofold. First, each eigenvalue measures how
porous are the different almost-invariant sets generated by its corresponding eigenvector.
Based on this fact, the set-oriented dynamics measures transport between different
almost-invariant sets. Note that the external perturbation is responsible for the transport
between almost-invariant sets. Second, the almost-invariant sets appear, in this context,
as ring shapes surrounding a central almost invariant pattern supported on (0,0) (see
panels (a),(b),(c) and (d) in Figure 4.13 as an example). Therefore, the further an
eigenvalue is away from 1, the stronger is the transport between ring patterns. Thus,
they are more porous, under external perturbations. This implies that the undergoing

dynamics of the system (4.44) is better captured by the smaller eigenvalues. Hence,
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4.6. Spectral signature for set-oriented bifurcation

when the dynamics of the latter system slows down, transport between rings decreases
as well. This results in an increase of the corresponding eigenvalues towards 1, which
explains the critical slowing down before the bifurcation. As a consequence, if one only
tracks the second leading eigenvalue, one may not see a spectral signature when the
parameter crosses its critical value. This is due to the fact that second leading eigenvalue
is already pretty close to 1 and cannot be 1 because, due to the underlying dynamics and
the stochastic perturbation applied, the transition matrix is irreducible. The continuous
growth of eigenvalues, which are further away from 1, is better visualized in Figure
4.14(b)-(c). The latter is a zoomed out version of Figure 4.15(b)-(c).
In figure 4.16, we plot the changes of the eigenvectors corresponding to eigenvalues in
figure 4.14. Without missing any qualitative detail in the analysis, we only chose the
eigenvectors corresponding to eigenvalues A5(¢, p) and A§(¢, p) and visualize them before,
at, and after the bifurcation. That is, for parameter values p = —0.5, p = 0, and p = 0.15.
Figure 4.16 shows that the ninth eigenvector corresponding to the eigenvalue \§(¢, p)
(see figure 4.16(b),(d),(f)) has more ring-like patterns that are also finer than the ring-
like patterns displayed by the second eigenvector \5(t, p) (see figure 4.16(a),(c),(e)).
Therefore, under external perturbations, the transport between rings is stronger in figure
4.16(b),(d),(f) than in figure 4.16(a),(c),(e). This explains why smaller magnitude
eigenvalues are more sensitive to changes of parameter p near the bifurcation point.
However, a bifurcation of almost-invariant sets in the sense of pattern splitting is not clear
with this approach. Indeed, after the bifurcation at p = 0.14, the second eigenvector does
not show any split-like shape (see 4.16(e)). A pattern split can only be seen in the ninth
eigenvector pattern (see 4.16(f)) similar to figure 4.11(right), and this is explained by the
fact that the eigenvector sign pattern partitions the phase space into finer almost-invariant
sets. Thus, the partition element supported in the neighborhood of the fixed point (0, 0),
say the particular invariant set defined in (4.19), will capture the local qualitative change

following the bifurcation.

4.6.2 Infinitesimal generator approach

In this section, we want to confirm the spectral signature of the pitchfork bifurcation of
(4.44) from the spectrum of a randomly perturbed infinitesimal generator. The latter
can thus be understood as the perturbed version of the generator defined earlier in
(4.4). Recall that with the latter operator we could investigate the spectral signature
of the bifurcation that occurred in system (4.12) in example 10 with the deterministic

infinitesimal operator. The approach was based on the trace formula (4.10)-(4.11) which
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|

(e) ®

Figure 4.16: Changes of almost-invariant patterns for p € [—0.5,0.5]. Eigenvector of
A5(t,p) (@) (eft) and eigenvector A§(¢,p) (b)(right) for p = —0.5. Eigenvector of \§(¢, p)
(c)(left) and eigenvector A\§(t, p) (d) (right) for p = 0. Eigenvector of \5(¢, p) (e)(left) and
eigenvector \§(t,p) () (right) for p = 0.14.

is a method that requires existence of hyperbolic stationary fixed points. Hence, changes
of the discrete spectrum of (4.4) which is computed via the trace formula applied to
system (4.12) are shown in figure 4.3. Moreover, the Spectral Mapping Theorem (4.6)
can be used to have the changes of the eigenvalues of the deterministic Frobenius-Perron
operator P! defined in (4.3) as shown in figure 4.4 .

However, in this set-oriented case study, we are using perturbed transfer operators P!

which yield real eigenvectors generating almost-invariant sets (see figure 4.13 and figure
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4.6. Spectral signature for set-oriented bifurcation

4.16) and corresponding eigenvalues that yield signatures of the qualitative change of
(4.44) (see figure 4.14 and figure 4.15).

Adding external perturbations to a deterministic systems such as (4.44) is usually done
to respond to the undergoing physical realities of the phenomena that are being modeled.
Indeed, external perturbations are present in many real world situations. Besides,
it may be difficult to have a complete knowledge of those perturbations. Therefore
a deterministic model might be inappropriate to model those physical system. One
should rather consider the perturbations by adding external relatively small random
perturbations into the mathematical model being used. As a matter of fact, two types
of random perturbations may be used depending on the question being addressed. For,
instance, consider the system defined in (4.1). A discontinuous random perturbation
consists of adding random noise at initial data before applying the flow map (4.2) and
adding random noise at image data after applying the flow map (4.2). This leads to the
transfer operator P, which is compact and suitable for numerical approximations. The
discontinuous perturbation of this kind does not only yield a compact operator but it is
also a way of formulating mathematically robust almost-invariant sets which are more
suitable for real life modeling of invariant patters such as ocean vortices.

A continuous random perturbation, however, considers a random (ODE) built from the

deterministic (ODE) (4.1). That is, we deduce a stochastic differential equation (SDE)

AWy

o, (4.49)

& =F(z,p)+e

from (4.1). The noise amplitude ¢ is positive and W is the Wiener process. In this work,
we will not go through SDE analysis, as it is indeed not in the spectrum of our research
study. For more details about this approach, see [49], Chapter 10.

In the following, we briefly define the perturbed generator and its numerical approxima-
tion before exploring its spectrum for different parameters p.

The solutions of (4.49) are continuous time Markov processes (diffusion processes)
X, t > 0 with density f(¢, x) satisfying

P(X,€C) = /Cf(t,a:)dm.

However, this density can be found without any explicit knowledge concerning the process

X;. Indeed, the density f(t,z) appears as a solution of the Fokker Planck equation

of € o 0
= SAL- V(P = G.f. (4.50)
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As a consequence, with initial condition at initial time ¢, i.e. initial density function

f(to,x) = f(x), the Partial differential equation (4.50) has a solution
f(t.o) = [ Dltz) o)y (451
X

and for every g € L?(D, X, 1), (4.51) is called the generalized solution of (4.50) ([49],
Chapter 11).
Having the fundamental solution I", we define a family of transfer operators {P§ } such

that for a given initial density f(to,z) = f(z), we have
P = . P = [ Do) f)dy (4.52)

The family of operators {Pﬁ} forms a semigroup of transfer operators referred to as
stochastic semigroups ( see [49], Chapter 11). Moreover, G, is the infinitesimal generator
of the transfer operator {P!}, with Neumann boundary conditions [32].

Our main interest is the discrete spectrum of G, and almost-invariant sets; mainly changes
of these eigenvalues with respect to p. The framework of finding almost invariant sets
from the spectrum of the operator G, was widely developed in [33], both analytically and

numerically. Indeed, in [33] it is shown that a y-measurable set A is almost-invariant if

_PXoeA XA
rd)i=—Smea SV

for modest times ¢ with Xy and X; denote initial and final random variables solutions of
the SDE (4.49). This can be characterized by using the generator G.. Indeed, we define
the functional G, 4: D (G.) — R by

Pef—f
¢

Ge,af = lim dp f€D(Ge), (4.53)

where D (G,) is the linear subspace of L?(D, X, 1) where the above limit exists. Let
fa = fxa/ ([ fxa) with the density f € D (G.). Then for a y-measurable set A and
t — 0, it is proven in [33] that

Te(A) =14 Ge afa + o(t).

As a consequence, a pu-measurable A is almost-invariant if
Ge,afa=0.
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4.6. Spectral signature for set-oriented bifurcation

The connection between almost-invariant set and spectrum of G, is established in the
following way.

If G, has a real eigenvalue A < 0 with corresponding eigenfunction f, then [ f = 0.
Moreover, if AT = {f >0}, A~ = {f < 0}. Then

Geat|far| +Gea-fa-|= A

Hence the above equality yields G, 4+|f4+| ~ 0 for ~ 0, which means that A* and A~
will be almost-invariant sets generated by the eigenvector f. Hence, this sets a connection
between almost invariant sets and the spectrum G,. For spectral signatures of bifurcation,
we will focus on real eigenvalues of G, which are close to 0 and their corresponding
eigenfunctions.

The finite dimensional approximation of G, was provided in [33]. It is mainly based on
the discretization of phase space into boxes but, unlike (4.35), a trajectory computation
is not needed. That is actually a huge advantage of using the infinitesimal generator. In
fact, only the knowledge of the vector field is enough to approximate G.. Once the phase
space is discretized into boxes, the velocity field is considered and inflow/outflow rates
between boxes are computed to yield the matrix approximation of G.. Note also that, an
explicit noise amplitude ¢ is required for the numerical computations.

We thus, directly compute the spectrum of finite dimensional approximation of G, pro-
posed in [33]. We will then analyze the spectral signature of the bifurcation of (4.44).
The phase space [—2, 2] x [—2, 2] is discretized in 200 x 200 boxes B; of equal size. We use
a noise amplitude e = 107°. In figure, we show the 60 smallest magnitudes eigenvalues of
G. as the bifurcation parameter p changes in [-0.5,0.5]. Near p = 0, the real parts eigen-
values tend to accumulate to 0 similar to the imaginary parts converge to 0 as well. Real
eigenvalues trends in figure 4.17 is similar are similar to eigenvalues trend in figure 4.3.
Hence, despite the random perturbation added to the dynamics, the spectral signatures
for pitchfork bifurcation persist and, in the eigenvalues level, the set-oriented approach
does not violate this spectral characterization of the pitchfork bifurcation. Moreover, the
spectrum shown in figure 4.17 has strictly real eigenvalues. Indeed, in figure 4.18 the six
smallest magnitudes eigenvalues are shown. These eigenvalues are real as the imaginary
parts are all zero. The signatures of the real eigenvalues as p changes is the same the
eigenvalues trends of the diffused transfer operator shown in figure 4.14 and figure 4.15.
Therefore, the spectral signature of the pitchfork bifurcation of system 4.44 is robust
under discontinuous additive noise and continuous additive noise. In figure 4.19 we show

the changes of the second and third eigenvectors for p = —0.5, p = 0 and p = 0.5. With
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Figure 4.17: Numerically approximated 60 smallest magnitudes complex eigenvalues
of G, for p € [-0.5,0.5]. Real parts eigenvalues (Top), imaginary parts eigenvalues
(Bottom).

-0.5 0 0.5

Figure 4.18: Numerically approximated 6 smallest magnitudes eigenvalues of G, for
p € [—0.5,0.5]. Real parts eigenvalues (Top), imaginary parts eigenvalues (Bottom).

the continuous noise added to the dynamics, the spectrum of the infinitesimal generator
exhibit real eigenvectors patterns for p € [—0.5,0.5] in figure 4.19, which are similar to

the real eigenvectors patterns of P! shown in figure 4.16.
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(e)

15

0.5

-0.5

-15

®

Figure 4.19: Changes of almost-invariant patterns for p € [—0.5,0.5]. (a) eigenvector of
A5 (t,p), (b) eigenvector A\§(t, p) for p = —0.5. (c) eigenvector of \5(¢, p), (d) eigenvector
A§(t,p) for p = 0. (e) eigenvector of \5(¢,p), (f) eigenvector A§(¢,p) for p = 0.14.

4.7 Summary

This chapter discusses transfer-operator based ideas to characterize spectral signatures of

bifurcations of an autonomous dynamical system by using changes of almost-invariant

patterns. We have restricted our study to a special class of systems such as (4.44). The

reason for this choice is justified by our findings in real world systems. Indeed, we want

to predict the sudden change of Antarctic vortex break up in September 2002, from
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satellite velocity data, see figure 1.1.

Our approach is inspired by results in [17, 48] where a statistical analysis of a deter-
ministic dynamical system was used to characterize bifurcations. In [17], the pitchfork
bifurcation was studied and spectrally characterized from the discrete spectrum of the
infinitesimal generator (4.4). In this work we also consider the statistical evolution
of the underlying dynamical system but we focused on macroscopic almost-invariant
measurable sets. Thus, in practice, our approach is different from [17]. Indeed, while
in [17] the discrete spectrum is used altogether to observe changes as the bifurcation
parameter is varied, in our work we use a perturbed transfer operator and select a subset
of its discrete spectrum which approximates almost-invariant sets. That is, we are only in-
terested in changes of a part of the discrete spectrum (eigenvalues, eigenfunctions) since
the latter yield dominant patterns which are supported on the critical point. Moreover,
this part of the spectrum is composed only of real eigenvalues and real eigenfunctions
which exhibit sign patterns that can be used to extract robust almost-invariant sets. In
order to characterize the qualitative changes of the latter, we track the changes of the
corresponding real eigenvalues as we vary the bifurcation parameter p. Our findings
were very interesting as near the critical parameter (i.e. p = 0), we see particular trends
of the eigenvalues which truly characterize the transport dynamics occurring between
almost-invariant sets. Moreover, these spectral changes agree with the ones in [17].
Most importantly, our findings help us understand how we should specifically define
the notion of bifurcation of almost-invariant sets. Indeed, near the critical parameter
we have evidence of a bifurcation from observing the changes of the eigenvalues as
shown by figure 4.14 and figure 4.15. However, the corresponding eigenvectors in figure
4.16(b)-(d), for instance, do not show any qualitative change near p. Looking at figure
4.16(e), we only become aware of changes of patterns when p is far from its critical value
after the bifurcation. Therefore, the local pitchfork bifurcation as shown by figure 4.11 is
not characterized by dominant patterns, even if it is characterized by the corresponding
eigenvalues.

Hence, we state that a bifurcation of almost-invariant set must be simultaneously charac-
terized by both eigenvectors and corresponding eigenvalues. The next chapter will bring

more details to proving our statement.
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almost-invariant patterns

From chapter 4, it is clear that a spectral characterization of bifurcations of almost-
invariant sets should simultaneously concern dominant real eigenvalues and correspond-
ing eigenvectors. Moreover, the discrete approximation of a diffused transfer operator is
a stochastic matrix whose real leading eigenvectors exhibit sign patterns which approxi-
mate almost invariant sets. The corresponding eigenvalues showed very well signatures
of the pitchfork bifurcation but the eigenvectors did not. Hence, in this study, we are
going to develop a bifurcation theory of almost-invariant sets, which will be strictly based
on the qualitative changes of the almost-invariant patterns, instead of the critical value of
the bifurcation parameter. Indeed, the latter approach makes sense, since the pitchfork
bifurcation is a point bifurcation, while we are interested in the changes of macroscopic
sets.

The aim of the chapter is to provide further methodological steps towards a better un-
derstanding of such global bifurcations. The approach is based on a purely discretized
dynamical systems where the evolution of the flows yield stochastic matrices.

In this chapter, we are going to we rigorously study two explicit dynamical models, a
Duffing-type oscillator and a single gyre flow, and identify early warning signals for
splittings of patterns through the trends of eigenvalues with respect to a bifurcation
parameter. The results of this chapter have been submitted for publication in the SIAM

Journal for Applied Dynamical Systems [57].

5.1 Set-oriented approach and almost-invariant patterns

In this chapter, we follow similar dynamical settings as chapter 4. Indeed, we consider a

p-parametrized ODE as described in (4.1) and the flow map (4.2) which is denoted here
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by ¢! and defined in the same measure space (D, ¥, u). In addition, (4.1) is supposed
to model the evolution of a rotating incompressible steady fluid flow such as a vortex,

throughout the present chapter. The Lebesgue measure y is, thus, invariant.

5.1.1 Finite number of almost-invariant sets

Following [21], the invariance ratio of a measurable set 4;, i = 1,2,...,k is defined as

(A; N d)_t(Ai))‘

5.1
p(A;) G

Pu(Ai) -

This is interpreted as the probability of a point in A; to stay in A; under the mapping ¢’ .
Hence, any measurable invariant set A satisfies p,(A) = 1. As defined in chapter 2 and
analytically constructed in chapter 3, { A1, Ao, ..., Ay} is a family of almost-invariant sets

that partitions the phase space D if D = U¥_, A; and
pu(A)~1Vi=12.. .k (5.2)

Finding such a family of almost-invariant sets is intractable in practice. Instead one seeks
optimal solutions of a relaxed problem based on the description of the dynamics in terms

of a finite-state Markov chain and its spectral properties.

5.1.2 Discretization and stochastic matrices

The time evolution of the dynamical system on the discretized phase space yields the

transition matrix

m(B;N¢~"(B;))

(Py)ij = (B , (5.3)

which is already established in chapter 4. Recall that P}, is actually a finite rank approxi-
mation of the Perron-Frobenius operator [22], each (i, j)-th entry is the probability that
a randomly selected point = € B; has its image in B;, and P} is a row stochastic matrix
and is interpreted as the transition matrix associated with an N-state Markov chain over

N
the finite states {Bi}‘ - Let us define the lumped finite state [21]

1=

CN:{ACD : A= B, IC{1,2,...,N}}.
JjET
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5.1. Set-oriented approach and almost-invariant patterns

The Markov chain (5.3) is not in general reversible. However, reversible transition
matrices yield important spectral properties which are dynamically efficient in terms of
checking how mass is transported in both forward and backward time. Moreover, as we
are ultimately interested in the macroscopic dynamics of patterns such as the transport
and critical transition of optimal almost-invariant patterns, it is more relevant to use a

reversibilised Markov chain. The latter comes as straightforward transformation of (5.3)

as
(L+P)
Q= o (5.4)
s AN
where L = (”JWJ) is the transition matrix of the reversed Markov chain and
ij=1
P := P} is assumed to have a unique positive stationary distribution = = |71, 72, ..., 7N]

with 7P = 7; in our case it holds that m; = m(B;) with m being normalized Lebesgue
measure. Note that @ is exactly the approximation of the operator ). in chapter 3 with

e = 0. It follows the approximation of the invariance ratio as follows

Zz‘,jeI Wi(Q'}V)ij
Dier T

=1 if A isinvariant,

pfj(A) = , ZC{1,2,...,N}, invariance ratio,

(5.5)
~ 1 if A is almost-invariant.

@ is a transition matrix as the weighted average of two transition matrices P and
L. Moreover, () is reversible since it satisfies the so-called detailed balance condition,

Qi = m;Qsj. Further important properties of () include:

1. @ is diagonalized by a basis of m-orthogonal right eigenvectors.

2. @ has only real eigenvalues contained in [—1, 1]. Moreover, for any given eigenvalue
with a corresponding right eigenvector z, there is an associated left eigenvector y

such that y = Dyx, where Dy = diag([r1, 72, ..., 7N]).

3. Q is symmetric or self-adjoint with respect to the weighted Euclidean space (-, )
defined in R such that (z, y), = vaz 1 Tiy;m;, and two vectors z, y are orthogonal
if (x,y), = 0.

Moreover, it is easy to verify that the adjoint of L with respect to (-, ) is the transition

matrix P. Therefore, () is just the average of two adjoint matrices. Besides, in terms of
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transport, () is checking how mass is transported in forward and backward at stationarity.
For more details on Markov chains we refer to e.g. [23]. In this work, we will use the

reversibilized transition matrix to almost-invariant patterns and their bifurcations.

5.2 Perturbed invariant patterns and spectral configurations

In this section, we consider a k-state, k > 2, reducible Markov chain which becomes
irreducible when it is subjected to small perturbations. Then we assume the existence of
disjoint strongly connected lumped states { A; }*_, and their perturbed versions {4;(¢)}*_,,
¢ € R. Thus, under some convenient reordering within the states, the unperturbed and

perturbed Markov chains are respectively given by

@@ 0 - 0 Qi(e) Ei2 -+ By
o-|" & U o - P @9 Pl oo 66
0O 0 - Q Ejq By - Qule)
Every Q;, i = 1,...,k, is a primitive n; x n; reversible transition matrix over the “cloud”

of states A;. Moreover, due to the reducibility of ), a system described by @ will always

stay in state A; once it is initialized in A;. This means that the conditional transition

probability to map to A; when in A;, w(4;, A;) = ZZGL’:Q”, is the Kronecker symbol
el "
dij, j=1,...,k,. Besides, the matrix ) has an eigenvalue 1 of multiplicity k. One may

think of the matrix @ as the reversibilized of version (5.3) generated from (??).

The transition matrices Q(¢), € € R are, however, irreducible and the magnitude of the
off-diagonal blocks E;; is very small relative to 1 with respect to any chosen matrix norm.
This implies, w(A;(e), Ai(€)) = d;5, 1,5 = 1,..., k, and means that when the dynamical
system enters A;, it will stay in A; for a long time with high probability before it leaves.
The patterns A;(¢) are referred to as almost-invariant patterns. Following the settings
in [24], Q(e) is considered as an operator-valued function of ¢, which is analytic in
E CR, 0 € E. Thus it can be, in general, expressed as Q(¢) = Q(0) + eQ), which is the
first order Taylor expansion of Q(¢). As a consequence of this regularity condition, the
eigenvalues of ((¢) are continuous in e. From this continuity and the fact that the Q;(¢)
are nearly stochastic matrices [34], we have that the spectrum of Q(¢) includes three

parts:
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(a) the Perron root A;(e) =1,
(b) the set of £ — 1 non-unit eigenvalues, {z2(€), ..., A\;(€)} that are clustered near 1.

(c) the remaining part of the spectrum which is bounded away from 1, for small e.

Throughout this work, we set the ordering 1 = Aj(e) > Aa(e) > ... > Ag(€). Note that
this section is motivated by the fact that the class of models we consider in this study
yield invariant sets in their dynamical evolutions. This means that the almost-invariant

patterns will be just considered as perturbed invariant sets.

Example 17 To illustrate this setting, we consider a 60-state Markov chain with S =
{1,2,...,60}. This is chosen to be reducible with three disjoint invariant patterns A; =
{1,2,...,10}, Ao = {11,12,...,40} and A3 = {41,42,...,60}. The corresponding transi-
tion matrix is shown in figure 5.1 (left) with the blue dots highlighting the nonzero entries.
An example of a perturbed Markov chain, allowing for small amounts of transport between
the three patterns, is shown in figure 5.1 (right), as the corresponding irreducible transition

matrix Q(¢). The corresponding eigenvalues of both matrices are shown in figure 5.2. As

m@ m% .
10 EE 10 EE

20 20

30 30 [zeccce

40| 40|

50 50

60, 60,

40 50 60 o 10 20

o 10 20 40 50 60

30 30
nz = 1400 nz = 1576

Figure 5.1: Reducible and irreducible transition matrices @) (left) and Q(e) (right) of a
60-state Markov chain (example 17) exhibiting three invariant or three almost-invariant
patterns, respectively.

expected, the unperturbed matrix has an eigenvalue 1 of multiplicity 3 (figure 5.2 (left)),

while the perturbed matrix has two eigenvalues near the Perron root (figure 5.2 (right)).

Due to reducibility, the global stationary distribution of the unperturbed transition matrix

Q in (5.6) is not unique. Indeed, each vector V;, where

Vi=(0,...,0,79,0,...,0), i=1,....k with #Q; = 7®, (5.7)
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Figure 5.2: Eigenvalues (ordered by magnitude) of the unperturbed matrix @ (left) and
the perturbed matrix Q(e) (right) for the 60-state Markov chain model in example 17.
The perturbation results in two eigenvalues very close to one (right, see also inlet) which
originate from the three-fold eigenvalue 1 (left) in the unperturbed situation.

is a left eigenvector of () corresponding to the k-fold eigenvalue \; = 1 of (5.6). The
eigenspace F), is, thus, spanned by {V;, i = 1,...,k}. The eigenvectors V; are only
supported on A; where they have a constant sign. However, there exists other eigenvector
bases {U;, i =1,...,k} of E), given by

k
Ui=> aiVj, i=1,....k o €R. (5.8)
j=1

Thus, depending on the choice of «;;, each U; may partition the “clouds” {A;}%_; into

configurations via its sign structure.

0.2

0.1 01 o

(1]
—Vv1 -0-2 —ul -0.2
-0.1 — V2 03 —U2
: u3
-0.2 v3 -0.3

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

0.4 0.2 'Jv\l\\/\j —u1(e)\
0.1 —U2(c)
: [N\/VV\ A ey M VN bt

Figure 5.3: Eigenvectors V; (left) and U; (middle), : = 1, 2, 3, to the 3-fold eigenvalue 1
of the unperturbed matrix @ of the 60-state Markov chain (example 17), and eigenvectors
to leading eigenvalues U;(¢), i = 1, 2, 3, for the perturbed matrix @)(e) (right).

Example 18 (cont.) The eigenvectors V;, i = 1,2, 3 corresponding to the three-fold eigen-

value 1 of the unperturbed matrix are only supported on the respective invariant patterns
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(figure 5.3 (left)). In figure 5.3 (middle), the eigenvector U is constructed to have a constant
positive sign on the whole state space S; it can be interpreted as a stationary distribution.
Uy yields a 2-partition of S by lumping together A; and As. Finally Us yields a 3-partition
of S, which corresponds exactly to the three invariant patterns that exist in the state space.
In figure 5.3 (right) the leading eigenvectors for the perturbed matrix )(e) are shown. From

their sign structures a 3-partition of S into almost-invariant patterns is obtained.

In the presence of perturbations, an explicit formula of the k£ analytic eigenvectors
corresponding to the dominant eigenvalues - the eigenvalues clustered near 1 — can be

found as

(5.9)

1
+ € Z 74<Uj,Q(1)Ui>7r(e) +O(62), 7= 2,.. .,k, Oéij,ﬁij € R.
Pt 1—Xj(e)

Formula (5.9) was stated and proven in [35] for the right eigenvectors of Q(¢). The proof
is mainly based on ([24], Chp. 2) but with a particular focus on reversible stochastic
matrices. Here, we only use left eigenvectors of (Q)(¢) since left and right dominant
eigenvectors are both analytic for ¢ € R and are related by U;(¢) = Dy X;(¢), where
Dy = diag([m1,me,...,mn]) and {X;(e), i = 1,..., N} are the m(e)—orthogonal right
eigenvectors of (e). Note that sign(U;(e)) = sign(X;(e)).

The first term in the second equation in (5.9) suggests that the U;(¢)’s are actually e-up-
or-down-shifts of the basis V; in equation (5.7), which were each supported on invariant
patterns A;. Thus, this shifting does not affect the sign structure of the unperturbed
eigenvectors; see equation (6.14). However, the second term depends on the spectral
gap #](6) between the Perron root 1 and the N — k small magnitude eigenvalues of
Q(e€). Therefore, this second term may have an influence on the sign structure of the

unperturbed eigenvector, but only when a relatively small € is chosen [35].

With this setting of the Markov chain and the lumped almost-invariant states, the sign
structure of each dominant eigenvector in equation (5.7) yields a partition of the state
space. Indeed, each U;(e) defines a partition into i nearly disjoint aggregates for i =
2,...,k, via its sign structure. In addition, k¥ dominant eigenvalues are a consequence

of the occurrence of k almost-invariant patterns given by the supports of Uy (e). Finally,
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

note that the remaining N — k eigenvectors, corresponding to the spectrum {\;(e), j =
k+1,..., N} bounded away from 1, cannot be interpreted as (5.9). Indeed, the supports
of these eigenvectors do not correspond to invariant patterns. However, they may play an
important role when it comes to studying the changes of the dominant almost-invariant

patterns with respect to an external bifurcation parameter.

5.3 Incompressible 2D flows and almost-invariant sets

Since our study is motivated by geophysical applications including the splitting pattern of
the Antarctic polar vortex in September 2002 in figure 1.1, we focus on models exhibiting
vortices in their incompressible dynamics. As a first illustrative example, let us consider
the following two-dimensional system of ordinary differential equations:

#(t) = —msin(mx) cos(mx) (5.10)

y(t) = mcos(mx) sin(my)

From the stationary behavior of (5.10), it is clear that every single orbit is periodic, see
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Figure 5.4: Phase plane of system (5.10) consisting of periodic orbits.

figure 5.4. Hence, the ensemble evolution of a set of initial points under the flow map ¢
yields a bundle of closed curves for sufficiently large ¢. Under this rotational dynamics,
one can always extract a finite number of disjoint ring-like sets { A1, As, ..., A;} that
partition the phase space D so that the invariance equation p,(A4;) = 1 holds, for every
A;,i=1,..., k. In this context, one may think of a set A; as a bundle of invariant orbits.
Note that this partition is not unique, given the particular behavior of (5.10). We will,
nevertheless, choose to work with a fixed partition of k invariant sets. Therefore, as in
section 5.1, let us suppose that the stationary dynamics within the discretized phase

space yields a reducible diagonal block transition matrix Py with k blocks. That is, the
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5.3. Incompressible 2D flows and almost-invariant sets

reversibilized transformation @y in (5.4) has the form (5.6). In other words, the k block
matrices of @)y consist of clustered states such that each lumped state yields an invariant
set A;, i =1,2,... k.

In what follows, we will add an external perturbation to the reducible macroscopic
dynamics so that the invariant sets persist but become almost-invariant sets

{A1(e), Aa(e€),..., Ap(e)} C Cn. Thatis, p,(Ai(e)) = 1,7 = 1,2,...,k as defined in
equation (5.5). In [16, 36] an explicit model of the perturbation was introduced and
analytically formulated. It consists of “shaking” every box B; before and after applying
the flow map ¢'. As a consequence, only those invariant sets that resist perturbations
will continue to exist as robust almost-invariant sets and are, thus, relevant in real world
settings. Under the perturbed dynamics, the transition matrix is given by

m(Be(¢'(Be(B:))) N Bj)

(PN (€))ij = (B (BB (5.11)

B. is the ball centered at zero with radius ¢, which can be thought of as the perturbation
amplitude. P4 (e) is actually the finite rank approximation of the explicitly diffused

Perron-Frobenius operator; see [36] for more details and the numerical implementation.

As in section 5.2, the added perturbation yields a reversible row stochastic transition
matrix QY (e) from P () analogously to (5.4), where 7(e) denotes the unique stationary
density of P4 (e). Hence, Q% (¢) has k eigenvalues {\!(e)}*_; that satisfy the properties
(a), (b) and (c) outlined in section 5.2. The corresponding eigenvectors, denoted as

{U!(e)}r_,, can be expressed as in equation (5.9).

Let {X!(e)}%_, be the right eigenvectors of Q¥ (¢) corresponding to the eigenvalues
{A(e)}r_, . Then due to the self-adjoint property of Q;(¢) with respect to the inner
product (-, ) rt(c), we have for j = 2,... k

under the 7!(¢)-orthogonal constraint
(@, 1) pee) = (2, X5())mt(e) = - = (2, Xj_1(€))me(e) = 0.
Note that 1 = X}(e) = [1,1,...,1] denotes the right stationary distribution of Q% (e).

Besides, (5.12) is a finite dimensional approximation of (3.28) in chapter 3. In [16, 36],

85



Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

the eigenvalue \(¢) and the corresponding left eigenvector Ul(e) = Dy Xi(e), Dy =
diag([r(€)1, 7t (€)2, ..., m(e)n]) were used to approximate two robust maximal almost-
invariant sets. Indeed, due to the 7!(¢)-orthogonality relations among the right eigen-
vectors {X!(e)}¥_, and the positive sign of X!(e), the sign structure of Ut (e) is given
as

sgn(U(€)) = (4, +, 4,4, .oy 4y oo, ).

We can therefore predict the sign structure of Ul(e) as follows
Sgn(U2t<€)) = (+7 +7 +7 +7 st +7 Ty Ty Ty T 9 T ey _)7

subject to a convenient box reordering. Hence, it follows that Ul(e) yields positive
and negative level sets, which partition the phase space into two dominant almost-
invariant sets, whenever \,(¢) ~ 1. Similarly, since further k¥ — 2 eigenvalues are
clustered near 1, each eigenvector U ;(e) yields a sign structure that may be sorted so
that j almost-invariant sets are obtained. In [35], all ¥ — 1 leading eigenvectors are
used to compute almost-invariant sets. This method does not need the corresponding
eigenvalues, but only the sign structures of the eigenvectors. However, in this work we
use the eigenvectors separately, because we ultimately need to study the trends of the

corresponding eigenvalues to understand bifurcation of patterns.

Given (5.10), we can numerically compute and visualize the eigenvector patterns
U}f(e), Jj = 1,2,...,k, as well as their corresponding eigenvalues \;(¢). For this we
use GAIO[37], which is a MATLAB-based software package for set-oriented numerics

in dynamical systems. We approximate the flow map by using a fourth order Runge

Ui(e) Us(€) Us(e) Uj(e)

spesbbse

Figure 5.5: First 4 dominant eigenvectors of QY () for model (5.10).

Kutta ODE solver with a time interval of length 1 and step size of h = 0.01, i.e 100 time
steps. The domain is subdivided into 29¢P*" rectangular grid sets (boxes). Here, we use
depth = 13, which gives N = 2!3 = 8192 boxes B; that partition the phase space D.

In each box 900 test points are uniformly sampled as initial data for constructing the
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5.4. Numerical experiments of bifurcation

transition probabilities of the V x N-transition matrix.

In figure 5.5, the ¥ = 4 dominant eigenvectors are plotted, with the corresponding
eigenvalues shown in figure 5.6. These are all clustered near 1, as the result of additional
external perturbations. Note that the numerical discretization induces a small amount of
noise in the order of magnitude of the box diameters ([12], Lemma 2.2). That is, the
numerical discretization directly yields an approximation of (5.11), and, hence, it is not
necessary to add explicit diffusion in practice, although it is required on the theoretical
level. Also note that the leading eigenvector U (¢) is approximately constant due to area
preservation of the underlying system (5.10), with some small numerical artefacts at the

boundary of the domain.

0.999

0.998

0.997

Figure 5.6: First 4 dominant eigenvalues of Q% (¢) from system (5.10).

A set-oriented bifurcation analysis of a dynamical system will be exclusively based on
studying the changes of the spectral data as a response to qualitative changes in the
underlying dynamics. That is, one needs to focus on both the eigenvectors and their
corresponding eigenvalues. In this way, trends of the spectral data can be used to
understand whether or not there is hint of any qualitative changes of patterns generated
by the corresponding eigenvectors. But, beforehand, we will first consider some toy

models and investigate bifurcations of patterns in an experimental manner.

5.4 Numerical experiments of bifurcation

Now, we start to dive into the main purpose of this work through an experimental
approach. We study the changes in the trends of the dominant spectrum when the
almost-invariant patterns undergo different qualitative changes. This may be understood
as a "bifurcation analysis” of the stationary macroscopic dynamics of the Markov chain.
The process resulting in qualitative changes of a pattern can only occur in two ways:

Either it starts from the inside towards the outside of the pattern or the other way round.
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

Example 19 We revisit the 60-states Markov chain with the perturbed 3 invariant patterns
as introduced in example 17. In this experiment, we want to understand how the spectrum

behaves when the change of the pattern starts from its boundary. Thus, as shown in figure

Figure 5.7: Different transition matrices of example 19, where the outer two almost-
invariant patterns grow at the expense of the center one.

5.7, we manually decrease uniformly the size of the middle invariant pattern A,, while
increasing the size of both A, and As, simultaneously. These changes are captured by the

dominant spectrum as illustrated in figure 5.8. Eigenvalue \3(e) decreases in magnitude as

1

0.08 r/—"ﬁ

0.96}

0.941

0.92¢ ——2, (0
0.9 H—e=*2(9

—o—)\3(e)

0.88

1 2 3 4 5 6 7 8 9 10

Figure 5.8: Spectral signature of the shrinking of one almost-invariant pattern in example
19, with two other patterns growing and becoming more invariant.

the middle pattern As shrinks in size. This shrinking process is captured in the eigenvector
Us(e), where the support of Us(e€) in As is becoming smaller and smaller; as demonstrated
in figure 5.9. The opposite is noticed in the changing process of Ux(¢). The corresponding
eigenvalue \o(€) approaches 1 as \3(e) decreases. In this process, one can clearly see that

the system tends to become nearly reducible with two growing lumped states A;(e) and
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5.4. Numerical experiments of bifurcation

As(e). That explains the growth of Aa(e) towards 1. It is necessary to understand the
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Figure 5.9: Changes in the three dominant eigenvectors for the transition matrices
shown in figure 5.7.

behavior of the eigenvalues and their correct interpretation with respect to the dynamics
of the almost-invariant patterns. Indeed, this experiment clearly suggests a relationship

between the eigenvalues and the size of the patterns.

Example 20 Here the qualitative change is provoked from the interior of the middle pattern
As. The aim is to experiment the behavior of the spectrum with respect to a sudden growing
change from a local region. The corresponding transition matrices of the gradually changed
Markov chain are shown in figure 5.10. The evolution of the dominant eigenvalues shown
in figure 5.11 indicates the importance of the eigenvalue \4(¢), which is not part of the
dominant spectrum at first. It increases very quickly in magnitude until it crosses A3(e). The
corresponding eigenvector, Uy(¢), is supported on the newly born almost-invariant pattern

as illustrated in figure 5.12.

Unlike the first example, there is no variation in the trends of the eigenvalues \;(¢), i = 1,2, 3.
This is because the shapes of the first three invariant patterns A;, i = 1,2, 3 have not been
affected by the sudden birth of the new pattern A4. Therefore, in this experiment we clearly
see that the trends of the three dominant eigenvalues are not relevant in order to predict
the changes occurring in the dynamics. This can be understood by the fact that the change
is primarily local and is only happening inside As. Again, the variation in the size of the
almost-invariant patterns seems to be a crucial component for understanding the trends of

the eigenvalues.

Example 21 Finally, in this experiment we summarize the behaviors observed in the two

previous examples 19-20 within one toy model. At the beginning there are two coexisting

89



Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

Figure 5.10: Different transition matrices of example 20, where the split of the central
almost-invariant pattern is provoked locally in its interior.

0.85¢t

5 10 15

Figure 5.11: Spectral signature of the splitting of an almost-invariant pattern in example
20.
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Figure 5.12: Changes of the previously subdominant eigenvector Uy (¢) (i.e. £ = 4) in
example 20.
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5.4. Numerical experiments of bifurcation

almost-invariant patterns. Due to implicitly tuning an parameter, which is external to the
model, a new pattern arises continuously inside one of these almost-invariant sets. While
this new pattern grows, the two other almost-invariant sets shrink. This is captured in the

behavior of the dominant eigenvalues, see figure 5.13. Indeed, as in equation (5.9), A3(e)

1'\\*..—-” |
0.95
0.9
—o— ), (€)
—a— ), (c)
0.85 e

1 3 5 7 9 11 13 15 17

Figure 5.13: Spectral signature of a splitting of an almost-invariant pattern while another
pattern is decreasing in size as described in example 21.

appears to rise from the small magnitude eigenvalues {\;(e), j = k+1,..., N}, finally

crossing Ao (¢€), which is decreasing.

Although we have only shown very specific settings in examples 19-21, the spectral
effects of the pattern changes that we have illustrated are universal. In particular, it
becomes clear that the study of qualitative changes of patterns, which are visible in
the dominant eigenvectors, depends strongly on an understanding of the trends of
corresponding eigenvalues. Moreover, any changing process within the almost-invariant
patterns A;(e), i = 1,...,k will be first sensed in the smallest dominant eigenvalue
and corresponding eigenvector eigenvector Ui (¢). Indeed, the sign structure of the
eigenvector Uy (e) describes the k existing almost-invariant patterns, exhaustively. For

4t eigenvector corresponds to the partition of the state space

instance, in figure 5.5, the
into four almost-invariant patterns. In particular, if £ = 2, then Us(e€) partitions the state
space into two almost-invariant patterns. This particular case has been used in many
works [15, 16, 36] in the context of the numerical computation optimal almost-invariant
sets from the global evolution of a dynamical system. The ultimate goal is to be able to

recognize early warning signals of these critical changes of almost-invariant patterns.

The trends of the eigenvalues and behavior of the state space as summarized in table 5.1
will facilitate the understanding of spectral behavior for more realistic systems. Note that
here, we focused a lot on the splitting and/or shrinking behavior in state space, because

we are ultimately interested in understanding such scenarios in real world systems.
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Behavior in state space

Spectrum

Eigenvectors

A;i(e) shrinks and disap-
pears. At least one
Aj(e), j # i grows.

Xi(e) \, while X, (e)

Support of U;(e€) decreases,
support of Uj(e) increases.

A;(e) splits inside due
to new growing Agiq(e).
Aj(e), j # 1 are unaf-
fected.

Aik+1(€)  and transport
in A;(e) decreases due to
increasing barrier inside
AZ(G)

Ug+1(€) is supported on
growing new sets inside
Az(e)

because
from

Ai(e) shrinks
Aps1(e) increases
inside A;(e).

AZ(E) \( while )\k+1(6) /‘,
eventually crossing each
other.

Uk+1(€) is supported on
growing new sets inside
A;(e). Support of U;(e) de-

creases.

Then )\k—i-l(e) > )\1(6)

Table 5.1: Summarized results of the toy model experiments 19-21.

5.5 Bifurcation of almost-invariant patterns

Now we study bifurcations of almost-invariant patterns generated by explicit math-
ematical models. We will consider the setting where there is initially a particular
almost-invariant pattern centered at (0,0) and surrounded by ring-like patterns, for
each eigenvector of the k£ dominant eigenvectors such as in figure 5.5. The motivation for
this is that this particular pattern mimics real world vortices. Following our experiments
in examples 19-21, which are summarized in table 5.1, we will track the changes of the &
dominant eigenvectors and eigenvalues with respect to a concrete external bifurcation
parameter p. Thus, for the feasibility of this continuation task, we assume a fixed pertur-
bation strength e during all of the process. That is, the variations of the k eigenvalues

and eigenvectors will only depend on the bifurcation parameter p € R.

As a first case study, we consider the p-parametrized two-dimensional system

Y (5.13)
j=pr—a°

p € R. System (5.13) is a conservative Duffing-type oscillator and was introduced in
chapter 4. Recall that the classical bifurcation occuring in (5.13) consists of the qualitative
change of the unique elliptic fixed point (0, 0), for p < 0, into a local saddle fixed point, for
p > 0. That is, a pitchfork bifurcation occurs when p = 0, which has global effects on the
dynamics. For p < 0, the stationary dynamics consists of rotating periodic orbits centered

at the unique fixed point (0,0). These are destroyed, for p > 0, with the emergence of
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5.5. Bifurcation of almost-invariant patterns

two symmetric elliptic fixed points at (,/p,0) and (—./p,0), as illustrated in figure 5.14.
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Figure 5.14: Phase plane of system (5.13) for parameters p = —1 (left) and p = 1 (right).
To prepare for our spectral analysis, a p-parametrized version of equation (5.9) may now
be restated as follows: For each p, the stationary distribution is given as

W(Evp) = Ul(f,p) = [71'1(6,;0),%2(6,]?), s awN(Evp)]a 7'['1'(6) > 07 v b,

and foreachi=2,...k,

j=1
N 1
+e Z 1— )\ ‘(6 p) <Uj(p)7 Q(l)Ui(p)>7T(€,p) + 0(62), Qg ,Bij c R, (5.14)
j=k+1 IR

Xi(e,p) > Aj(e,p), j=k+1,...,N.

Note that with a fixed ¢, the additional inequality constraint in (5.14)
Ai(e,p) > Aj(e,p), i=1,2,....k, j>k+1 (5.15)

is always satisfied whenever the changes in p leave the qualitative behavior of system
(5.13) unaffected. Indeed, due to the perturbation effect, \;j(e,p) < 1,j=k+1,...,N
are the small magnitude real eigenvalues which converge to 0 when ¢ increases. However,
when ¢ is fixed, the changes in p may qualitatively affect the underlying dynamics. Thus,
it makes sense to measure a susceptible radical growth scenario of the \;(e,p) < 1,

j=k+1,..., N, among many other possible scenarios.
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5.5.1 Spectral signature of the classical bifurcation

Unlike the dominant eigenvectors (as shown in figure 5.5 for system (5.10)) the remaining
N — k eigenvectors Uj(e,p), j = k+ 1,..., N may not be supported on the whole state
space. They are referred as the "weak modes” eigenvectors and may not carry dynamically
useful information, compared to the & "dominant modes” eigenvectors. However, due to
the nature of the global behavior of (5.13) illustrated in figure 5.14, the global classical
bifurcation yields a radical change only within a local isolated neighborhood of (0,0). We
refer to the latter as the critical neighborhood D. Indeed, far from D, closed trajectories
still remain qualitatively the same before and after the bifurcation; see figure 5.14.
Therefore, we will first find a spectral version of the classical bifurcation by means of
the non-dominating N — k part of the spectrum. That is, we will consider "weak modes”
eigenvectors which are only supported on D. Note that a special technique to finding
those particular eigenvectors is still an open question. Their existence was noticed earlier
in [19], but no particular further study about them was made, whatsoever. In this work,
we use them to design a spectral bifurcation diagram of the global classical bifurcation
occurring in (5.13). They will also play an import role when studying the bifurcation of

”dominant mode” eigenvectors pattern.

The numerical approximation of the spectra is done with exactly the same settings as in
section 5.3. However, the system (5.13) is open, which means that some test points will
leave the domain of interest under the evolution of the flow map. To fix this issue, an
additional box is added in order to capture all the image points that are being mapped
out of the initial domain D when computing the transition matrix. Finally, this temporary
box will be removed from the eigenvector entries by just considering the 29¢Pt" first
entries. Figure 5.15 shows the changes of two small magnitude eigenvalues that belong
to {\j(e,p),j =k+1,...,N}. We denote by \| (¢, p) the green curve of eigenvalues with
corresponding eigenvectors U (¢, p), in figure 5.16. Likewise, A} (e, p) corresponds to the
red curve in figure 5.15; their corresponding eigenvectors Uy (¢, p) are shown in Figure
5.17.

In figures 5.16-5.17, the patterns of Uj (¢, p) and Uj (e, p) change in size, as the bifurcation
parameter p varies. Note that their sign structure remains the same. Besides, these
eigenvector patterns are only supported on a small isolated neighborhood of (0, 0),
according to the discretization depth of the phase space. In figure 5.15, the eigenvalues
A (e,p) and X, (e, p) are initially very small compared to 1. They increase linearly fast

together side-by-side until p = 0. Then they part ways: )| (e, p) continues to increase,
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Figure 5.15: Spectral version of the classical bifurcation diagram with a zoomed diagram
in the vicinity of the bifurcation (inlet). Two subdominant eigenvalues \ (e, p) and
A, (e, p) rise towards one.
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Figure 5.16: Changes of the first "weak modes” patterns from Uy (e, p) for increasing p.

while X, (e, p) starts to decrease. That is why figure 5.15 is referred to as the spectral
version of the classical pitchfork bifurcation diagram of system (5.13) in analogy to the

classical pitchfork bifurcation diagram (see e.g. [10], Chapter 3, p. 146).

In figures 5.16-5.17, one sees that the sign structure of U7 (¢, p) is symmetric with respect
to the y-axis, while the sign structure of Uj (e, p) is symmetric with respect to the x-axis. As
p < 0 increases towards zero, both eigenvector patterns expand slowly and symmetrically
along the x-axis, but remain nearly constant in the y-direction. This is intrinsic to the
underlying dynamical system, see figures 5.16-5.17 (a)-(c). At p = 0, the fixed point
(0,0) bifurcates, which is particularly well observed in figures 5.16-5.17 (d).

Another way to see the classical bifurcation is illustrated in figure 5.18. Indeed, the

linearization of (5.13) around the fixed point (0,0) yields a two-dimensional matrix
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Figure 5.17: Changes of the second "weak modes” patterns from U} (e, p) for increasing
p.

whose eigenvalues are purely imaginary. With v, = iy/—p and 72 = —i,/—p being the
eigenvalues of the linearized system, the corresponding (generalized) eigenvectors are
v1 = [z, y = mz|T and v; = [z, y = voz|T, respectively. Let E{(p) and ES(p) be the
(generalized) eigenspaces of v; and v9, respectively, depicted as the two intersecting
red lines in figure 5.18(a)-(c). Then E¢(p) = E{(p) @ E$(p) yields the two-dimensional
subspace spanned by E{(p) and ES(p). In figure 5.18(a)-(c), E¢(p) is the plane generated
by the intersection of the two red lines. Therefore, there exists an invariant manifold
denoted by W¢(p) that is tangent to £°(p) at (0, 0). This is known as the center manifold
theorem ([10], Chapter 3, p. 127) and its main purpose is to isolate the complicated
asymptotic behavior of the flow by locating such an invariant manifold W¢. In system
(5.13), for negative p, every closed orbit is a boundary of a center manifold which is
tangent to £¢(p) at (0,0).

Notably, closed orbits are given by ¢-level sets of the derived Hamiltonian functions
Hy(z,y,p) for different p. Therefore, there is a constant ¢ small enough such that
{Hgz(z,y,p) = g} isolates the asymptotic dynamics of the flow near (0,0) from the rest.
The blue closed curve shows {Hg(x,y,p) = ¢} in figure 5.18(a)-(d). For negative p,
the eigenspace plane E(p) partitions the interior of the closed curve { Hy(z,y,p) = ¢}
into four regions which are two-by-two symmetric similar to Uj(e,p) and Uj(e,p) in
figure 5.16 and figure 5.17, respectively. As p increases towards 0, the slopes and the
intersection angles of E{(p) and ES(p) decrease and the closed curve expands horizontally,
while remaining constant vertically. Again, this is analogous to the variations of Uj (¢, p)

and U)(e, p), for negative p. In this way, the local behavior of the flow near the origin
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Figure 5.18: Local dynamics of system (5.13) near the origin. For p < 0 we obtain center
manifolds, for p > 0 homoclinic manifolds.

is cast into Uj(e,p) and Uj(e,p) for negative p. This is another way of providing a
better understanding of complicated asymptotic dynamics near (0, 0), from a probabilistic
approach. Note that the choice of g is heuristic since there no way to have an exact 7 in

order to have the exact local manifold that supports the corresponding eigenvectors.

For p = 0, E{(p) and ES(p) disappear as a consequence of the classical bifurcation. Note
that figure 5.18(d) is also in agreement with figure 5.16(d) and figure 5.17(d). For p
positive, there are three fixed points: Two elliptic fixed points (—/p,0) and (/p,0) and
one saddle fixed point (0, 0).

The qualitative behavior of the dynamics changes radically with the emergence of two
symmetric homoclinic orbits, as shown in 5.18(e). We refer to the latter as the homoclinic
manifold, since neighboring trajectories are periodic and tangent to it. As p increases,
the homoclinic manifold increases in size (see figure 5.18(e)-(f)) because g(p) := /p
is an increasing function of p. Nearby solution curves tend to be attracted through the
y-direction and repelled through the x-direction. Indeed, figure 5.18(e)-(f) shows that
the homoclinic manifold is concave in the y-direction and convex in the x-direction.

Besides, the larger p gets, the more does the curvature of the homoclinic manifold grow.

This implies immediately that the global behavior of the dynamics becomes attractive
along the y-direction. Thus, the support of U (¢, p) shrinks symmetrically on both sides
of xz-axis, as shown in figure 5.17(e)-(h) and, as a matter of fact, the eigenvalues \, (e, p)

decrease. On the other hand, the dynamics repels along the z-direction. Thus, the support
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

of U] (e, p) expands symmetrically on both sides of the y-axis and is simultaneously
enrolled into the two newly co-existing homoclinic orbits; see figure 5.14. The latter
expand as p increases from zero. As a consequence, the eigenvectors U] (¢, p) carry almost-
invariant sets bounded by the homoclinic orbits, for p > 0. Moreover, the corresponding

eigenvalues \) (e, p) increase towards 1, see figure 5.15.

Recall that these eigenvalues belong to the set of N —k small magnitude spectrum. Hence,
the continuous rise of \| (¢, p) towards 1, as a consequence of the classical bifurcation,
will eventually question the well-definiteness of £ dominant eigenvectors and their
corresponding eigenvalues. Indeed, (5.14) is no longer valid if the additional inequality
constraint fails. In the next subsection, this will play a key role for us to characterizing

bifurcations of almost-invariant sets.

5.5.2 Predicting bifurcation of almost-invariant patterns

Here, we will characterize bifurcations of almost-invariant patterns and deduce the
corresponding generic early warning signs. As mentioned before, we are interested in
the changes of the particular pattern centered in (0,0) and located in each dominant
eigenvector pattern. As shown in figure 5.5, given any dominant eigenvector Uj (e, p), j =
2,...,k, the particular almost-invariant pattern, denoted P;, j = 2,...,k, is the 4
partition element surrounded by all ring patterns. Indeed, every Uj(e, p), j = 2,...,k
yields j almost-invariant patterns which partition the state space. In particular, for j = 2,
the second dominant eigenvector yields two almost-invariant patterns partitioning the
state space. Besides, one of the patterns yields P», which is known as the maximal
almost-invariant set [16]; see figure 5.5(b). Moreover, (Us(¢, p), P2) is usually a good

candidate for modelling real world isolated patterns such as atmospheric vortices.

Given the bifurcation diagram in figure 5.15 and the inequality constraint (5.15), we set

the relation
A,1(67p) <)‘j(67p)7 j:27"'7k7 (516)

which is true whenever p < 0. Moreover, for p < 0, the dominant patterns are stable in
the sense that there is no qualitative change in their sign structure. In figure 5.19, we
plot eigenvector patterns for p < 0. Note that the leading eigenvector is constant and
therefore not shown. Even though there is a classical bifurcation in (5.13) at p = 0, one

notices that the dominant eigenvector patterns Usz(e, p) and Us(e, p) in figure 5.19 are
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5.5. Bifurcation of almost-invariant patterns

Figure 5.19: Uj(e,p <0), j =2,3.

qualitatively the same for p < 0 and p = 0. As a matter of fact, it suffices to investigate
the bifurcation of almost-invariant patterns for positive values of p, as it can only happen
in that parameter range. Indeed, when p becomes positive, A (¢, p) continues to increase
monotonically to eventually become the second dominant eigenvalue after the eigenvalue
1. In fact, N (e, p) will cross, in cascade, all the k£ — 1 nontrivial dominant eigenvalues, as

illustrated in figure 5.20.
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Figure 5.20: Spectral indicators of bifurcations of almost-invariant patterns in system
(5.13). Three dominant eigenvalues \;(¢,p) = 1 (red), A3(e, p) < A2(e,p) < 1 (magenta,
blue) and the rising eigenvalue )| (¢, p) (green) which intersects first the A3 (e, p)-curve
and then the Xz (e, p)-curve.

For p > 0, the global dynamics attracts along the y-axis and repels along the z-axis. As
a consequence, the pattern generated by Uj (¢, p) expands in size, since it is supported
in the region bounded by the two homoclinic orbits. On the other hand, the attractivity
through the y-axis causes a shrinking process of the £ — 1 dominant eigenvectors patterns
Uj(e,p), j = 2,...,k. Thus, as explained in the toy model experiments 19-21, we can

define a set-oriented version of a degeneracy as
Ni(e,p) = Nj(e,p), 5=2,...,k, Vp>0. (5.17)

It follows that P;, j = 2,...,k, bifurcates in the sense of a splitting, whenever equation

(5.17) holds. Thus, according to figure 5.20, there is a cascade of two bifurcations.
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

Every bifurcation occurs at a parameter p > 0 where the support of Uj (e, p) expands
far enough to erupt out of P;, j = 2,3. Indeed, at p = 0 the support of Uj(e,p) is, a
priori, contained in the support of each Uj(e,p), j = 2,3, specifically in P;, j = 2,3.
This scenario changes radically the sign structures of Uj(¢, p), j = 2,3 and, hence, the
latter can no longer be expressed as in (5.9). The crossings occur in cascade from the
smallest dominant eigenvalue to the biggest eigenvalue. In figure 5.22 (left), one can
see that A\3(e, p) is crossed first. Later figure 5.22 (right) shows the last crossing scenario
where \| (e, p) = Xa2(¢, p) after which N (¢, p) becomes the dominant eigenvalue after the
eigenvalue 1. The eigenvector patterns from Us(e, p) and Us(e, p) undergo, respectively, a
splitting process of Ps in figure 5.21 and of P in figure 5.23. Note that the splitting of
the patterns P;, j = 2,3 does not occur suddenly but gradually. In fact, one observes the
decreasing process of \j(e,p), j = 2,3 before the crossing, which could be classified as

an early warning signal.
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Figure 5.21: Splitting process of the pattern Ps for increasing p > 0.
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Figure 5.22: Crossings of previously dominant eigenvalues when patterns P; and P,
bifurcate under variation of p. Left: A\3(e, p) (magenta) vs. N, (e, p) (green); right: Aa (e, p)
(blue) vs. X (e, p) (green).

When the cascade of crossing eigenvalues (bifurcations) ends, X (e, p) becomes the
second dominant eigenvalue after the eigenvalue 1. Indeed, the global dynamics of
(5.13) becomes nearly reducible with two coexisting symmetric vortices. The dominant

eigenvector pattern for p > 0 is shown in figure 5.24. The corresponding transition matrix
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Figure 5.23: Splitting process of the pattern P, for increasing p > 0.

is shown in figure 5.25 and it is nearly reducible in accordance with the post-bifurcation
global dynamics. In fact, one can see that the global behavior of the system is now

completely described by the support of Uj (e, p).
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Figure 5.24: Dominant eigenvector pattern U] (¢, p) post-bifurcation.
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Figure 5.25: Transition matrix post-bifurcation.

5.5.3 Transition from one vortex to a double vortex dynamics

In this case study, we want to show an example of a transition of vortices that is not a
bifurcation in the sense of a splitting. The aim is to reinforce the results about the spectral
indicators before a pattern splitting. We study an incompressible two-dimensional vortex
transition toy model known as the double gyre. Here, a single gyre pattern transitions to
a double gyre pattern without any splitting process, which is in contrast to the setting

that was studied in the previous paragraphs. The velocity field for the system under
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

consideration is given by
ov oV

V(Ia t) = (_@7 %)
with

V(z,y,p) = psin(2rz) sin(my) + (1 — p) sin(7zx) sin(my).

being the parameter-dependent stream function with p € [0, 1]. We obtain the two-
dimensional ordinary differential equation
z(t) = —(1 — p)wsin(mx) cos(my) — mpsin(27x) cos(mz)

(5.18)
y(t) = (1 — p)mwcos(mx) sin(my) + 27p cos(2mz) sin(my)

Note that the right hand side of (5.18) is a convex combination of two velocity fields. For
p = 0, the dominant velocity field yields a single rotating vortex centred in the elliptic
fixed point (0, 0), obtaining the system (5.10) used earlier in section 5.3 and figure 5.5.
For p = 1, we have the coexistence of two counter-rotating vortices. These two values of
p correspond to the pre- and post-transition global dynamics of (5.18). The transition
from a single rotating gyre to a rotating double gyre occurs for p € (01), where the
onset of the emergence of the second gyre right is observed at p = 1/3. What happens
when p € (0, 1/3) is that the single vortex only moves to the left side of the domain
M = [0, 1] x [0, 1], see figure 5.26, where we illustrate the changes of the velocity field
of (5.18) with respect to p. Note that the motion of this single vortex to the left, before

the transition, does not imply its expansion or shrinking.
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Figure 5.26: Changes of the velocity field in system (5.18) for different p.

Again, we use GAIO to numerically simulate the set-oriented dynamics of (5.18) and find
dominant patterns corresponding to the almost-invariant sets. For different values of p,

the second and third dominant eigenvectors are shown in figure 5.27.

The corresponding eigenvalues are shown in figure 5.28. One clearly sees that the
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Figure 5.28: Spectral signature of the double gyre transition.

changes in the eigenvalues capture very well the behavior of the global dynamics. Indeed,
for p € [0, 1/3] X2(e, p) and A3(e, p) remain constant, since the single vortex only moves
to the left, without shrinking or expanding. That explains why the eigenvalues have
not decreased. For p € (1/3, 1], the birth of the second vortex separates the global
dynamics into two distinct flow patterns. That is, the corresponding transition matrix
becomes nearly reducible and it follows that the eigenvalues A2 (¢, p) and As(e, p) increase
to become closer to 1. The rise of the eigenvalues A\ (e, p) and As3(e,p) at p > 1/3 can be

compared to the trends of )| (¢, p) in figure 5.20.

This simple transition in the dynamics of (5.18) is clearly different from the critical
transition caused by a splitting in the global dynamics of (5.13) as illustrated by figures
5.21 and 5.23. In particular, a decrease of dominant eigenvalues while another previously
weak mode eigenvalue rises appears to be a spectral indicator of a splitting of almost-

invariant patterns.
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

5.6 Summary

From a set-oriented approach, we studied bifurcations of particular almost-invariant
patterns, which are supported in a neighborhood of an elliptic fixed point. These almost-
invariant sets result from invariant sets when the underlying stationary dynamical system
is diffusively perturbed. Near the splitting of patterns, generic indicators consist of a
decrease of the dominant eigenvalues whose corresponding eigenvector patterns are in
concern. In fact, the Duffing-type oscillator illustrates a cascade of splittings of the pattern
supported in the neighborhood of the initially elliptic fixed point. The splitting occurs at
the crossing between the dominant eigenvalues and a particular rising eigenvalue that
initially belonged to the weak mode eigenvalues. It becomes the largest eigenvalue after
the eigenvalue 1 and its corresponding eigenvector is supported on the dominant phase

space pattern post-bifurcation.

Patterns emerging from complex dynamics of real- orld systems, such as the Antarctic
polar vortex break up in late September 2002, suggest an analogous nonstationary
framework. That is, in order to apply this set-oriented formulation of bifurcation analysis
into real world applications, one may need to reconsider nonautonomous dynamical
systems instead. Thus, inspired by the present study, the next chapter will address
a characterization of finite-time bifurcations of coherent sets, which emerge from a
nonautonomous dynamical system. This will allow us to deduce finite-time generic early
warning signals for sudden vortex splittings. These results will be used to spectrally
describe and characterize the Antarctic polar vortex splitting event from the recorded

velocity data, see figure 1.1.
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Early warning signs and critical transitions

of coherent sets

This chapter is a nonautonomous extension of chapter 5. Nonautonomous dynamical
systems are more relevant to model complex systems due to the explicit time parameter
in the velocity field, as explained in chapter 2.

In the present chapter, we study the finite time bifurcation of coherent sets with the
main goal of establishing a better understanding of early warning signals for sudden
pattern splitting. The latter is motivated by the Antarctic polar vortex sudden break up
in September 2002, as illustrated in figure 1.1. To this end, we study specific classes of
nonautonomous systems who mimic the Antarctic polar vortex dynamics. To the best
of our knowledge the bifurcation analysis of coherent sets as formulated in this chapter,
has remained a widely unexplored topic. The previous chapter considers the bifurcation
and splitting of almost-invariant sets, which are interpreted as dominant patterns in
autonomous incompressible flows, see also [57]. There, almost-invariant sets are built
around a global stationary state, whose bifurcation yields the qualitative change of the
underlying flow patterns. The results of this chapter are currently being prepared for

submission to Chaos [60].

6.1 Nonautonomous dynamics and coherent sets

In this work consider the time-dependent ODE (2.18) its corresponding nonautonomous
flow map (2.19) which fulfills the cocycle property [58, 59]:

1. ¢(t,t,z) = x;

2. P(ta,t,x) = ¢(ta, t1, d(t1,t,x)), Y t,t1,t2 € R and z € R? In this chapter, we will
study explicit nonautonomous flow maps generated by time-dependent ODE:s.

Subsets M of the extended phase space R x R? are referred to as nonautonomous sets and
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Chapter 6. Early warning signs and critical transitions of coherent sets

the set M(t) = {x € R?: (t,x) € M} is called the t-fiber of M. Thus, a nonautonomous
set M is called invariant w.r.t. (2.18) if ¢(t + 7,t, M (t)) = M(t+ 7) for all t, 7 € R.

Moreover, M is closed, compact or linear if all ¢-fibers are closed, compact or linear.

We are interested in the finite time evolution of macroscopic objects. Thus, we restrict
the time domain to an interval of finite length T C R and the space domain at initial
time ¢ is restricted to a compact manifold X; ¢ R%. We set Y;,, = ¢(t + 7,t, X;) C R?
to be the image state space at final time ¢ 4+ 7. The backward process is denoted by
o(t,t+1,y) =z, fory € Y4, and = € X;. Notably, such evolved subsets correspond to

compact and invariant nonautonomous sets in the extended phase space I x R¢.

6.1.1 Multiple coherent sets

In this work, we focus on the changes of phase space regions that are minimally dispersive
or maximally coherent over finite time intervals. We introduce the probability measure
space (Xy, Xy, 1) where ¥, denotes the Borel-o algebra and y is interpreted as the initial
mass distribution of the quantity we are tracking with respect to the underlying dynamics.
Examples include the advective dynamics describing the horizontal distribution of mass
such ozone concentration within the stratosphere or the concentration of salt in the ocean

water.

The measure i, is transformed, via the flow map ¢, to a final measure v, ,, which is
supported on the corresponding measure space (Yi,, X¢ir, V4 ). This means vy, (A) =
e o o(t,t +71,A), VA€ X ,. The measure v, represents the mass distribution of
objects of interest at time ¢ + 7. Both measures are absolutely continuous with respect to

Lebesgue measure /.

Let ¢ be the initial time, 7 be the flow time and X; the initial domain. The notion
of coherent set was already introduced in chapter 2 for a single pair of measurable
sets. {A},A?,...,AF} C X, and {A}, A7, ., .., AF } C Y4, form one-to-one pairs of
coherent sets if p(A}) = v- (Al ) and A}, =~ ¢(t + 7,t, A), i = 1,2,....k. More

precisely, the coherence ratio of two measurable sets (Aj, A%, ) is defined as[15]

_ :u't(A% N ¢<t7 t+ T, A%-‘r‘l‘))

r(Af Ay, L) = T L i=1,2,...,k (6.1)
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Then (Af, A, ) is a pair of coherent sets, whenever
r(Ap A 2 1 and (A} = v (Ap). 6.2)

Moreover, (6.1) is interpreted as the conditional probability of a point initially in A} C X;
to be mapped forward into A}, . C Y,|. at time ¢ 4+ 7. In this work, we suppose that
{A}, A2, AF} C Xy and {A} ., A7, ., ..., A}, } C Vi, are disjoint partitions of X; and

Y;. ., respectively.

Recall that the main purpose of this work is to find early warning signals for finite
time bifurcations [58] of coherent sets [15] in the sense of splitting. For setting up the
theory, which should cover realistic scenarios, we are primarily seeking sets that have the

following properties:

1. Coherent sets that are robust under external perturbations.

2. Coherent sets that are supported in a neighborhood of a critical point or orbit (i.e.
one that changes its stability type). This hypothesis is crucial for setting up the

coherent set analogue of a finite time bifurcation as introduced in [58].

3. In conservative flows, the surface to volume ratio of coherent sets is minimal.

6.1.2 Coherent sets-oriented numerical framework

From now on, we work with discrete phase spaces. That is, the following study will be
based on finite time transition probabilities between macroscopic states instead of the
finite time evolution of single trajectories. In fact, eventually computed transition matrices
are just finite dimensional approximations of time-dependent transfer operators defined in
chapter 3. We subdivide X; and Y}, into finite state spaces S; = {Bl, B, ..., Bm} and
Siyr = {Cl, Cy,..., Cn}, respectively. The partition elements (boxes) satisfy ¢(B;) =
((Bj)i,j < m and Xy = UL, B; with {(B; N Bj) = 0; the measure ¢ denotes the

normalized Lebesgue measure on U", B;. The same applies to the boxes Cj C Yy4-, j =

1,2,...,n. We define the initial and final time lumped finite state spaces as [14]
Bm:{ACXt : A:UBJ-, IC{I,Z,...,m}} (6.3)
JET
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and

C, = { ACYr : A= U Cj, J C {1,2,...,n}} (6.4)
JjET

respectively. Then, we construct the finite time transition matrix [15]

Pt,T _ E(Bz N ¢(ta L+, CJ))

L% g(Bz) ) (65)

from the nonautonomous flow. P is an m-by-n row stochastic matrix. Each entry PZZ?T
is the probability that a randomly chosen point in B; at time ¢ will be mapped forward to
C; at time t + 7. The matrix (6.5) is actually an Ulam based finite rank approximation
[22] of the Perron-Frobenius operator [15, 49] introduced in chapter 3, section 3.2.1.

The numerical estimation of the entries in equation (6.5) is given by [15]

Pt,T ~ #{.’Ek S Bl : ¢(t + T7t7 ‘/L‘k) € C]}

& ~ (6.6)

which is the proportion of the uniformly distributed initial test points {xk}{cvzl in box B;
at time ¢ that are mapped to box C; at time ¢t 4+ 7. The computation of the transition
matrix is implemented in the MATLAB-based software package GAIO[37].

6.2 Singular vectors and coherent partitions

In this section, we are interested in finding coherent partitions from (6.5). In other words,
from the transition matrix P := P»7, we wish to approximate coherent sets, whenever
they exist. Let us define an initial probability distribution p > 0 as p; = u(B;), i =
1,2,...,m; p is the probability vector that approximates the initial distribution u; of
mass being tracked over a finite time interval. The probability vector ¢ = pP is positive
and represents the distribution of mass at final time ¢ + 7. With these approximations,
we say that {A}, A?,..., A}} C By, and {A}, ., A? ..., AF } C C, form one-to-one
pairs of coherent sets over the finite time interval [¢, ¢ + 7], if the following relations are
satisfied: There exists index partitions {Z1,Zs, ...,Zx} C {1,2,...,m} with A} = Ujez, B;
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and {jl,jg, R ,jk} C {1, 2,... ,n} with Aa_,r = UjeJiCj such that

Nt(Ai) = ij ~ Vt+T(Ai+T) = Z qj and
JETL; JE€T:
; ; . ~pl-Plr i
r(AL AL ) = 2iez s ~1,i=1,2,... .k k>2.
ZZGL' b

6.7)

In order to numerically approximate coherent sets we seek particular vectors built around
the transition matrix P. This requires a reformulation of (6.5) in terms of separate initial
and final time transition matrices. In the following, we assume there are k£ > 2 pairs of
coherent sets that partition 13,,, and C,, respectively. From P, let us define the transition

matrix
Lij=""Y i=1,.,m, j=1,.,n. (6.8)

The matrix L is simply the normalization of P and — as P itself — depends both on the
initial time ¢ and the flow time 7. It represents the transition matrix of the macroscopic
dynamics with respect to the initial and final mass distributions p and ¢. Note that, p and
g are assumed to be positive and L satisfies 1. = 1 [16]. Now we introduce the inner
products (z,y), = Y., ziy;p; in R™ and (z,y)q = D14 #;¥;¢; in R™. Two vectors = and
y are said to be p-orthogonal resp. g-orthogonal if (z, y), = O resp. (x,y), = 0. The matrix

L may be roughly interpreted as the forward time transition matrix between the Hilbert

space <]Rm, (-, ->p> to the Hilbert space <R”, (-, ~)q>. That is, any uniformly distributed

density p on | R™, (-, -), | is mapped by L to a uniform density g on ( R", (-, ‘>q>. Let L*

denote the dual of L with respect to the defined inner products. Then (xL,y), = (z,yL*),

and it is straightforward to show that
L* = pPT. (6.9)

Thus, L* represents the n-by-m backward time transition matrix. Equation (6.8) and
(6.9) are actually a finite dimensional approximations of the transfer operator (3.13) and

its adjoint, respectively. It follows that Q! := LL* is an m-by-m column stochastic matrix
defined on the finite state space (Rm, (-, ->p) at initial time ¢. It can also be interpreted
as the forward-backward time transition matrix at time ¢ in the sense that any probability
distribution in <Rm, (-, ~>p> is mapped forward with L then mapped backward using

L*. On the other hand, Q""" := L*L is an n-by-n column stochastic matrix defined on
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<R", (-, ~>q> . Likewise, L* L is the backward-forward time transition matrix describing

the macroscopic behavior of the dynamics at time ¢ + 7. It is easy to show that both Q°
and Q' are positive definite self-adjoint matrices. With this construction, a coherent

i (Al A i i Ot ~ 1 .. C OttT 1
pair (A}, A, ;) can be functionally characterized by 1,:Q" ~ 1,; and 1 Ai+7Q Tl

i.e. coherent sets remain almost invariant under the forward-backward and backward-

forward dynamics [36].

As introduced in [15, 16, 36] coherent sets are approximated by signed vectors, which are
eigenvectors of Q! and Q'*" to eigenvalues close to one. These can be also viewed as the
singular vectors obtained from SVD of L in (6.8), taking into account the weighted inner
product structures. The corresponding SVD of L (see [15, 16] for the exact construction)

yields the singular values
o] = ()\1)1/2, l=1,2,...,min(m,n). (6.10)

where the )\;’s are the eigenvalues of both Q* and Q'*7. These are obtained from the
so-called minimax principles applied to Q! or Q'*™ see (Theorem 9.2.4, p212, [62]
and [15, 16]). Let {u;, I = 1,2,...,min(m,n)} such that \ju; = Q" and {v;, | =
1,2,...,min(m,n)} such that \ju; = vy;Q'™™ are the corresponding eigenvectors of Q*
and Q'*", respectively. In the language of SVD, the w;’s are the left singular vectors of L,
while the v;’s are the right singular vectors. Moreover, both left and right singular vectors

are orthogonal with respect to (-, -), and (-, -)4, respectively and
g = ulL. (6-11)

Since Q! and Q'*7 are both stochastic matrices, we have o0y = 1, u; = landv; = 1. Asa
consequence of the orthogonality relation (u1, u2), = (vi,v2)q = 0, the sign patterns of

the second left and right singular vectors are
sgn(uz) = (+,+,+, 4, .., = — ==, )

Sgn(’UQ):(—i—,—i—,—i—,—i—,...,—i—,————,...7—),

after a convenient reordering of the entries. Thus, positive and negative level sets of s
and v9 partition B,, and C,, respectively. In other words, B,, can be subdivided into two
sets that are the support of the positive and negative sign of us, respectively. The same

holds for C,, with vo. We can then pick (4}, A}, ) = (suppug,suppvy ) as the positive
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level sets of us, vy and (A7, A7, ) = (suppu; , supp v, ) as the negative level sets. Let us
suppose that o5 = 1 in (6.11), then from the above construction it immediately follows
that ¢(t +7,t, A}) = A}, and ¢(t +7,t, A7) = A? . In particular, any choice of (A}, A7)
with their images (A}, , = ¢(t + 7, ¢, A}), A7 . = ¢(t + 7,t, A?)) would define perfectly
coherent sets and thus the problem of finding coherent pairs turns out to be ill-posed.
However, we are interested in coherent sets that are robust with respect to perturbations.
While including diffusion regularizes the mathematical problem of finding optimal sets
[16], it also makes the setting better applicable to real-world systems with are naturally

influenced by noise.

6.3 Robust coherent sets under perturbations

In this section, we discuss the structure and spectral properties of the self-adjoint stochas-
tic matrices Q' = LL* obtained from the discretization of the transfer operators and
relate them to coherent behavior of the underlying system. In particular, we address the

situation of perfectly coherent sets and the influence of small random perturbations.

6.3.1 Perfectly coherent sets

We suppose, with respect to the underlying dynamics, the existence of & pairs of disjoint
coherent sets that partition the discrete state spaces B,, and C,, respectively. That is,
there exist families of sets {A}, A?,..., Af} C B,, and {A}, [, A?, ..., A} } C C, that
satisfy (6.7). In particular, we primarily impose the relation r(A4i, A}, ) = 1, i.e. the
considered pairs of sets are perfectly coherent. A convenient reordering of the transition
probabilities between initial and final states (B;, C;), where B; € B,,,,i =1,...,m, and
C; €Cp, j=1,...,n,yields a block-diagonal self-adjoint matrix Q" = LL* with a k-level

partition
Qp 0 0
. 0 5 o0
Q=1. T ], B> (6.12)
0 0 Q.

Each Q! is an m;-by-m; irreducible row stochastic matrix over the aggregates states A% and

Zle m; = m. We define the forward-backward time conditional transition probabilities
Yictjes TR

ier T

between the initial time coherent sets {A!, i = 1,2,...,k} as w(Ai, Ai) =
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Under the forward-backward time dynamics, the system will always stay in the state
A! in which it was initialized. In this case, w( ‘ A{ ) is simply the Kronecker symbol
dij, j = 1,...,k, since the initial time coherent sets are isolated disjoint aggregates.
In particular, there is zero transition probability between any two distinct aggregates
(AL AD, i # .

Given (6.12), A\; = 1 is an eigenvalue of Q! with algebraic multiplicity k. Thus Q! has k

left eigenvectors u; = u; Q" such that
u; = (0,0,...,1;,0,...,0), i=1,2,...,k (6.13)

with 1; = 1,Q’. In this way, every left eigenvector w;, which is also the left singular vector
of L as stated previously, may be interpreted as a characteristic function of the aggregate
Al. Hence, due to (6.10), the singular value o; = 1 is also k-fold and the right singular

vector v; = u; L may be interpreted as a characteristic function of A’ i fori=1,2,... k.

Let E), = span{uy, ua,...,u;} be the eigenspace spanned by (6.13). Then, there exists
another basis {U;, i = 1,...,k} of E\, such that every basis element is an eigenvector of
Q! with eigenvalue 1 and is given by a linear combination of the u;, i = 1,2, ..., k. That

is,

k
U; = OéijUj,izl,...,k, OéijER
; (6.14)

= (@1, Q1 o Q1 G2, QG2 ey G2, oy Qs Qi+ - 5 Qi)

Thus, depending on the signs of the «;;, each U; partitions the aggregates {A{}¥_, into

unions of aggregates or “clouds”. Likewise,
k k
Vi = Zﬁiﬂ}j = ZﬂijujL, i=1,...,k, ﬂz‘j eR. (6.15)
j=1 j=1

are the corresponding right singular vectors and yield a partition consisting of the final
time coherent sets { A% +r» 1 =1,2,..., k} via the sign structures of the vector entries. From
this simplified setting, it is clear that under the described finite time dynamics, the sign
patterns of the left singular vectors in (6.14) and the sign patterns of the right singular
vectors in (6.15) yield, each, a partition of the discretized initial and final time state spaces
into union of aggregates or coherent sets. The construction of those aggregates from

singular vectors sign patterns is similar to construction of almost-invariant aggregates in
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6.3. Robust coherent sets under perturbations

chapter 5.

6.3.2 Robust coherent sets

Robustness of the coherent sets is provoked by adding small random perturbations into
the finite time dynamics. Perturbations can be thought of as “shaking” their initial and
final time state spaces, which are now partitioned by the present, unperturbed coherent
sets. Under the perturbation influence, we suppose that the self-adjoint transition matrix
in (6.12) becomes

Qi(e) Ein -+ Ey
E. t ... E

Q= QQ.(G) _ L ks (6.16)
Ewi  Ep - Qe

where ¢ € R is the perturbation amplitude. We suppose that the latter is such that
Q'(€) becomes an irreducible row stochastic matrix. Thus, Q'(¢) has a unique stationary

distribution 7 (e).

Let us first suppose that all the unperturbed coherent sets are robust under perturbations.

This implies w(A@, Al ) = M ~ d;j, which means that mass may leave a
ie1 T

coherent set to enter another coherent set with very low probability due to the perturba-

tion effect. Additionally the off-diagonal matrices E;;, 7,5 = 1,2,...,k are very small in

magnitude relative to 1, i.e.,

| Eijlloc = max Yom e% < 1. The matrices Q!(e), i = 1,..., k are then nearly stochastic.

Therefore, we have the following spectral properties of Q*(¢) [34, 35]:

(a) The Perron root A;(e) =1,

(b) the set of £ — 1 non-unit eigenvalues {\z(e) < ... < A\g(€)}, which are clustered

near 1,

(c) the remaining set of N — k eigenvalues which are bounded away from 1, for small

€.

Thus, under the perturbation effect we have a set {o3(¢), ..., 0% (e)} of k singular values

clustered near the singular value o4 (¢) = 1. The corresponding p-orthogonal left singular
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vectors {U;(e)}r_, satisfy

oj(€)Vj(e) = Uj(e)L(e). (6.17)

{Vj(e)}g‘?zl are the corresponding g-orthogonal right singular vectors. These perturbed
vectors can be estimated from the unperturbed ones[35, 57]. Note that U;(¢) = 1 =
(1,1,...,1) and Vi(e) = 1 = (1,1,...,1). A particular example includes (1, 02(¢)) where,

due to orthogonality, we have
sgn(Us(e)) = (+,+,+,+y .oy +y— — —— oty —)

sgn(Va(e)) = (+,+,+,+, .. s+, — — ——, ..., —).

It follows that relation (6.17) with [ = 2 yields an approximation of the two largest

aggregates which partition each state space into two coherent sets.

Indeed, in most practical problems, it is enough to study the second dominant singular
value and the corresponding singular vectors. In [16, 36], ¢ was explicitly modeled
and only o2(€) and (Ua(e), Va(e)) were used for one time interval with the purpose of
illustrating how singular vectors can approximate coherent sets. The sign structure of the
second dominant left and right singular vectors are the first patterns to investigate for

finding coherent patterns, whenever o9 (€) ~ 1.

However, in this work, we need all the & — 1 singular vectors, because we investigate
critical transitions of patterns supported on local critical solutions, which undergo finite
time local bifurcations. Besides, due to the clustering of the & — 1 singular values near 1,
all the k — 1 singular vectors yield coherent partitions of the state spaces. We will use
them individually and focus on those singular vectors which are supported on the critical

objects of interest.
6.4 Bifurcations of coherent sets and early warning signals

In this section, we study different example systems in order to develop a better under-

standing of the spectral footprints of coherent sets bifurcations.
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6.4.1 Spectral analysis of a finite time bifurcation in 1D

We start the finite time bifurcation analysis of coherent sets with the one-dimensional

ordinary differential equation

@ = arctan(t)r — z3, (t,2) € [~20, 20] x [~2, 2],

= at(arctan(t) - ;1;2>, (6.18)

which is a nonautonomous version of the supercritical pitchfork bifurcation normal form
(see e.g., ref.[10], Chapter 3, p. 146). Its finite time dynamics is relatively simple to
grasp. However, in this study, a set-oriented approach to analyze (6.18), is crucial for
understanding the changes in the trends of the singular values with respect to the changes
of the corresponding singular vectors pattern generated by the finite time dynamics. In
particular, we experiment spectral analogues of notions such as finite time expansion
and finite time contraction of coherent sets. For all ¢ € [-20, 20|, the right hand side

vanishes for z = 0. For ¢ < 0, it also vanishes for z = +w(t) where

w(t) = /arctan(t).

We consider the nonautonomous set M = {(¢,0), t € [-20, 20]}, which is invariant w.r.t.
to (6.18). Thus, every ¢-fiber consists of the singleton {0}. The set M is finite time
attractive[58], whenever ¢ < 0, and finite time repulsive for ¢ > 0. The supercritical
finite time pitchfork bifurcation occurs when the dynamics of the critical solution shifts
from the finite time attractive regime to the finite time repulsive regime, with the birth of

two finite time attractive solutions {f+w(t), ¢t > 0}.

Our spectral analysis of (6.18) is realized using a set-valued approach. For this, we define

the following interval-valued mapping
x €[22 [p(t+ 1, t,x) — 0, (t+T,t,x) + 0] C [-2, 2], (6.19)

where o > 0. The trivial solution {0} then becomes an interval-valued trivial solution
[{0} — o, {0} + o], which allows us to look at it as a pattern within a set-oriented analysis.
A set-oriented finite time bifurcation is characterized from the spectral data obtained

from approximated transition matrices defined in (6.8).

The numerical computation settings are as follows. We subdivide the domain [—2, 2] into

28 disjoint sub-intervals D;, i = 1, ..., 2% of equal length, which implicitly determines the
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Chapter 6. Early warning signs and critical transitions of coherent sets

numerical perturbation parameter e¢. The image of each D; is discretized by 48 test points.
We choose ¢ = 0.4 and represent [—0.4, 0.4] by 5150 uniformly distributed random
points. The time domain is subdivided into sub-intervals of length 1, i.e., [-20, 20] =

tlifzo [t, t+ 1]. The system is numerically integrated within every time interval [¢, ¢ + 1],
t = —20,...,19 using a 4th order Runge-Kutta scheme and the corresponding transition

matrices and SVDs are computed. This is referred to as the sliding window approach.

The first three dominant singular values with respect to each time interval [¢,¢ + 1] with
t =—20,-19,...,19 are shown in figure 6.1, where we observe a remarkable rise of the
second and third singular values when approaching and passing the bifurcation point.

We will come back to this later. The changes in the global dynamics are visible in the

1 2 \ ]

0.8

0.61

0.4

-10 ] 10 20

Figure 6.1: First three dominant singular values (depending of t) for different time
windows [¢, ¢ + 1], t = —20,—19,...,19, with ¢ + 1 in the z-axis.

structure of the transition matrices L in figure 6.2 (a)-(c) and figure 6.3 (a)-(c). Note
that the x—axes correspond to the reachable states at ¢ + 7, while the y—axes correspond
to the initial state spaces at time ¢. For ¢ +7 < 0 the final state space is only a small subset
of the initial state space as consequence of the contraction induced by the presence of
the global attractor {0}. Indeed, subintervals C; that are not part of the image of [—2, 2]

are simply removed during the computation.

In particular, the finite time global behavior of the dynamics for ¢ + 7 < 0, without
applying the interval-valued perturbation [—0.4, 0.4], may be illustrated in terms of

subinterval-wise transition probabilities as

{Bl,Bg, ...,B%} — {Cm,(}m,} and {B%H,B%H, ...,Bm} — {cn3,0n4}, (6.20)

where C,, UC,,, UC,, UC)y, is the discretized neighborhood of the ¢t—fiber {0}. To the left
of {0} are the subintervals {Bl, By, ..., B%} which are mapped to C,,, U Cy,, whereas

to the right of {0} are the subintervals {B%er Bm s, ..., Bm} which are mapped to
Chy U Cp,. In this way, the mapping (6.20) shows the global behavior of (6.18) for
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Figure 6.2: Changes of the transition matrices (6.8), dominant left and right singular
vectors before the finite time bifurcation.

t + 7 < 0. Due to the convergence of all initial points to the trivial attractor, there are
no coherent sets. As detailed in section 6.3, the magnitude of the singular values with
respect to 1 determines the presence of coherent sets partitioning of the state space. Thus,
given the singular values magnitude in figure 6.1, there are no coherent sets for ¢t + 7 < 0,
as the singular values are far from 1. The corresponding left and right singular vectors
for t + 7 < 0 are shown in figure 6.2 (d)-(f) and (g)-(i), respectively. Moreover, using the
left and right singular vectors u}(¢) and v} (¢) of o%(€), we can numerically approximate
the coherence ratio (6.1). This is plotted in figure 6.4 for different time intervals. Indeed,
one observes fluctuations of the coherence ratios with a maximum magnitude less than
0.9, for different time windows with ¢ + 7 < 0. As a consequence, the second condition

of equation (6.7) is not fulfilled in this regime, which means there are no coherent sets.
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Figure 6.3: Changes of the transition matrices (6.8), dominant left and right singular
vectors near and after the finite time bifurcation.

Let {z:;}YY, denote the initial test points (used for estimating the transition matrix) at
time ¢ and {z44,,}Y ; the image test points at time ¢+ 7 under the deterministic flow map
(??) of (6.18). Thus, for ¢t + 7 < 0, we have that {a:t+77,~}i]i1 are accumulated near x = 0,
from both negative and positive sides. Before applying the set-valued transformation
(6.19), let us subdivide the image test points into negative set of data {x:ll}f\gl and
positive set of data {xgil’i}fvjl with N1+ No = N. Now, we apply the set-valued mapping
(6.19) to obtain {z{,) 1M +[-0.4, 0.4] = ST UST) and {2{F) }N2 +[-0.4, 04] =

st USJ(:F). Here S and SEL_) denote, the new negative and positive data obtained from

the former negative data points {:L“E;)” fV:ll, respectively; analogously for the positive

data points {$£i)m}f\;21 The test points {21, }, + [-0.4, 0.4] are, thus, distributed
in the state space according to two classes of data {8(__),8(_+)} and {SS:), Sf)}. For

t+ 7 < 0, this is, in fact, a bimodal distribution, separated by a critical region around
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Figure 6.4: Coherence ratios (6.1) (depending on ¢) for different time windows [¢, ¢ + 1],
t =-20,-19,...,19, with ¢ + 1 in the z-axis.

the attractor {0}, which is a result of the set-valued mapping.

The size of this critical region will be a crucial indicator for tracking the qualitative change
of the attractor from the singular vectors patterns, as we slide the time window [¢, ¢ + 7]
towards zero. The result of transforming deterministic image data into classes via (6.19)
is captured through the second and third right dominant singular vectors v{(¢), i = 2, 3.
Indeed, the second right singular vector vi(e) yields very negative entries left of the
critical region, very positive entries right of the critical region and almost zero entries in

the critical region; see figure 6.2 (g)-(i).

On the other hand, v}(¢) provides a more detailed classification with two wells holding
the majority of the points in S™) and SJ(:) each with negative entries, very positive
entries holding separately the majority of the points in S and SJ(:F), and almost zero
entries in the critical region; see figure 6.2 (g)-(i). In figure 6.2 (d)-(f) and (g)-(i), one
notices that, despite the contraction of the support of v}(e), i = 1,2, 3, the second and
third left and right singular vectors curves are similar in shape everywhere but in the
critical region, which is the spectral response following the addition of the set-valued
transformation (6.19). Moreover, it is a graphical illustration of the absence of coherent
partitions for ¢t + 7 < 0. Note that, as shown in figure 6.2 (g), the widest critical region

exists for ¢t + 7 < 0, where the attractor is the strongest.

The singular values in figure 6.1, the coherence ratios in figure 6.4, and the critical region
highlighted by the right singular vector patterns in figure 6.2 (g)-(i) are simultaneously
used as observables for identifying early signals prior to the finite time bifurcation of
(6.18).

As [t, t 4+ 7] slides towards 0, the critical region depicted by v4(e) and v}(e) starts to
shrink. The attractor {0}, which is an asymptotic pullback attractor [59], loses more and

more its finite time attractivity. As a result the distribution of image test points under
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the set-valued mapping becomes increasingly unimodal. This due to the fact, that less
deterministic image points can be found in the neighborhood of {0} but are mapped to
it by the subsequent set-valued perturbation (6.19). Hence, the closer the time interval

slides to 0, the less resilient becomes the attractor {0}.

The singular values o} (¢) and o} (¢) do not vary for [¢, ¢ + 7] negative and far from zero,
as shown in figure 6.1. This is an indicator of strong resilience of the attractor 0. The
coherence ratios are not close to 1 for [t, t + 7] when ¢ + 7 < 0, as shown in figure
6.4. However, as the time window [t, ¢ + 7] approaches zero o’ (¢) and o(¢) increase
slowly then faster near ¢ + 7 = 0; see figure 6.1. The same is observed for the coherence
ratios in figure 6.4. Indeed, the monotone rise of the coherence ratios indicates the
ultimate presence of coherent patterns as the attractor begins to lose its resilience. The
finite time bifurcation occurs when ¢ + 7 = 0. The trivial solution {0} becomes, hence,
non-hyperbolic, and then repelling. As a consequence, one sees a radical change in the
structure of the right singular vectors v} 3(¢) in figure 6.3 (g)-(i) and left singular vectors
u 5(¢) in figure 6.3 (d)-(f). This is particularly noticeable in the third singular vectors
vi(e) and u}(e). Note the change of v4(¢) in the neighborhood of {0}, which merges the
two wells that were visible for ¢t + 7 < 0 into one single well. Finally, the early rise of
the singular values near [¢, ¢t + 7] = [—1, 0], as shown in figure 6.1, can be considered an
early-warning signal for a regime shift, with respect to our setting: The attractor loses
its resilience near the critical transition or bifurcation. The same can be observed in the

coherence ratios in figure 6.4.

For ¢ > 0, the right hand side of (6.18) vanishes for x € {—w(t),0,w(t)}. M = {(¢,0), t €
[—20,20]} becomes finite time repulsive with the birth of the two symmetric finite time
attractors My = {(¢, £w(t)), t > 0}. As shown by the matrices of finite time transition
probabilities in figure 6.3(a)-(c), the global dynamics yields transport between three
aggregates each supported on one zero solution from the set {—w(¢),0,w(¢)}. Indeed,
the second and third singular values in figure 6.1 converge rapidly towards values close
to 1. This implies the emergence of three coherent sets that partition the state space.
In particular, u}(e) and v&(e) partition the phase space into two coherent sets. This is
confirmed by the convergence of coherence ratios towards 1, as shown by figure 6.4 for
t + 7 > 0. In addition, as detailed in section 6.2-6.3, the stochastic transition matrix Q°
is best suited to test, a priori, the occurrence of coherent sets. Indeed, robust coherent
sets yield minimum dispersion when transported forward and backward via Q°. Hence,

besides the rise of the coherence ratios near 1 in figure 6.4, coherent sets that emerge
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from the new dynamical regime are concretely visible in the structure of the matrix Q! in

figure 6.5. Singular vectors u}(e) and v4(e) yield a finer partition of three coherent sets

[-1, 0] [0, 1] 1, 2]

o 50 100 150 200 250 100 150 200 250
nz = 49884 nz = 34440

100 150
nz = 31532

(@ ) ©

Figure 6.5: Changes of the transition matrices Q.

with one (in the middle) supported in the neighborhood of the repellor {0}, see figure
6.3(d)-(1) and figure 6.5. The support of v}(e) expands as the reachable phase space
expands for ¢t + 7 > 0 due to the repelling nature of the trivial solution, whose radius of
repulsivity is bounded by the attracting pair of solutions. The rise of the singular values,
as shown in figure 6.1, is also a consequence of the expansion of the image phase space
for ¢ > 0. This is similar to the eigenvalue trends in autonomous set-oriented bifurcations
studied in [57].

The system (6.18) is used in this work in order to show how variations of the singular
values and corresponding singular vectors can serve as relevant observables to depict
finite time bifurcations and possible early warning signals. In what follows, we will be
more realistic and closer to our main goal by studying nonautonomous two-dimensional
incompressible systems, which undergo critical changes of coherent sets in their finite
time evolution. A critical transition of a coherent set (or dominant flow pattern) in our
interpretation is a split of a vortex similar to the Antarctic polar vortex break up. Thus,
based on the behavior of the singular values (6.10) for different time windows [t, ¢ + 7],

we will study generic early warning-signals of a sudden split of a pattern.

6.4.2 Spectral signatures for the nonautonomous transition dynamics in
the double gyre flow

We study the spectral signature of a vortex transition given the finite time dynamics of an

incompressible two-dimensional toy model known as the double gyre flow. We consider
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the ordinary differential equation

z(t) = —(1 — s(t))msin(mwz) cos(my) — ws(t) sin(27wx) cos(mwx) 6.21)
y(t) = (1 — s(t))m cos(mx) sin(my) + 27s(t) cos(2mx) sin(my).

Here s(t) is the time-dependent bifurcation parameter defined by

0 if t <0 = single gyre pattern,
s(t)=<t3(3-2t) if0<t< 1= nonautonomous dynamics,
1 if t > 1 = double gyre pattern.

The system (6.21) is actually asymptotically autonomous, given that the bifurcation
parameter, which induces the nonautonomous vector field of (6.21), is only a function of
tin (0, 1). As shown in figure 6.6 the system dynamics displays a single rotating vortex
pattern for ¢ < 0 then a double rotating vortex pattern for ¢ > 1. The nonautonomous
dynamics is restricted to ¢ € [0, 1], where the transition from a single to a double gyre
pattern happens. As in the previous section, singular values (6.10) are used to understand
the finite time changes of the single vortex pattern given by the corresponding singular
vectors (6.11), as the transition occurs. Though the transition of a vortex is different from
a proper splitting, it is crucial to understand the behavior of the singular values during
the changes of the first vortex pattern during this process. This is equivalent to apprehend
the singular values as measures of the finite time changes of their corresponding singular

vectors, provided that they are close to 1.
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Figure 6.6: The velocity field of (6.21) for ¢t < 0 (left) and ¢ > 1 (right).

Regarding the numerical integration of (6.21), a time interval of length 1, i.e. 7 = 1 given
the time interval [¢, ¢ + 7], turns out to be necessary to approximate a realistic pattern
or gyre from the singular vectors (6.11). In order to study the changes of the different

singular values within a sliding window approach, we choose the time intervals [¢, ¢ + 7]
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such that 7 = 1 but the initial times ¢ < 0. The system (6.21) is integrated using a 4th
order Runge-Kutta scheme and studied in the spatial domain [0, 1] x [0, 1]. The latter is
subdivided into 2'? equally sized box with 100 uniformly distributed test points initialized
in each box. We set up the transition matrix (6.8) for each [¢, ¢ + 1] and compute the SVD
to extract coherent patterns from the singular vectors and their corresponding singular
values. We will then explore the spectral changes accompanying the pattern transition.
More specifically, starting from a single pattern when ¢ + 1 < 0, we track its behavior as

time evolves.
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Figure 6.7: Second singular values of (6.8) for different time intervals [t, ¢ + 1], plotted
with respect to the final times ¢ + 1.

Figure 6.7 shows the changes of the second singular values of the transition matrices
(6.8) for different time windows [t, ¢ + 1]. We see three different trends of %: A constant
trend, a decreasing trend and an increasing trend. The constant trend corresponds to a
stable regime in the sense that the left and right singular vectors patterns do not change
as the time interval moves and are even both indistinguishable — they both look like the
pattern shown in figure 6.8(a). The corresponding left and right singulars vectors of the

decreasing trend of the singular values in figure 6.7 are shown in figure 6.8.

We clearly see that the left singular vectors (figure 6.8(a)-(d)) at initial times ¢ and the
respective right singular vectors (figure 6.8(e)-(h)) at final times ¢ + 1 are no longer
indistinguishable. Indeed, as the second gyre (red color) starts to rise from the right
hand side of the domain at final times ¢ + 1, we see that the initial gyre (the blue colored
pattern) starts to shrink (figure 6.8(e)-(h)), while at initial times ¢ it does not (figure
6.8(a)-(d)). This shrinking process of the initial vortex is captured by the singular values
with a decreasing trend (figure 6.7). The more the second gyre emerges and increases in
size, the more the initial gyre undergoes a fold like shrink. Finally, the rising singular

values in figure 6.7 correspond to the singular vectors shown in figure 6.9.

The emerging regime of the second gyre is no longer causing the shrinking of the first gyre.
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Figure 6.8: Changes of the second dominant left singular vectors (a)-(d) at initial times
t, corresponding right singular vectors (e)-(h) at final times ¢ + 1, for the decreasing
trend of the singular values in figure 6.7.

In fact, both gyres start to increase in size. This similar to the changes of the coherent
sets generated by v} (e) in figure 6.3(e)-(f). The finite time evolution of the system is then
similar to the post bifurcation behavior of the one-dimensional toy model (6.18). Indeed,
the left singular vectors (figure 6.9(a)-(d)) at time ¢ exhibit two coherent sets which are
separately mapped, each, to the coherent sets at times ¢ + 1 (figure 6.9(e)-(h)). This case
study is particularly interesting in explaining the trends of singular values with respect to
the behavior of the corresponding singular vectors patterns. In the next section, we study

the early warning signals of a proper pattern splitting.

6.4.3 Early-warning signals for a vortex splitting regime

We study a nonautonomous reformulation of the Duffing-type oscillator studied in [57].
It is defined by time-dependent vector field as
T=y

. (6.22)

y = arctan(t)r — x
The autonomous version of this model was studied in [57], where spectral indicators of
the bifurcation of almost invariant sets were broadly investigated. Here, we explore early
warning signals of the critical transition in the sense of splitting of coherent patterns
that are supported in a neighborhood of the origin. The latter is the trivial critical point
of (6.22) which - in the autonomous version — undergoes a pitchfork bifurcation. This

bifurcation was used in [57] to study the splitting of dominant almost-invariant sets
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6.4. Bifurcations of coherent sets and early warning signals
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Figure 6.9: Changes of the second dominant left singular vectors (a)-(d) at initial times ¢,
corresponding right singular vectors (e)-(h) at final times ¢ + 1, for the increasing trend
of the singular values in figure 6.7.

supported in a neighborhood of (0,0). The present work will also target coherent sets
supported around (0,0). In fact, since we are also seeking a critical transition which
is related to the local bifurcation, even though the system is now time-dependent. In
addition, we believe that the adequate coherent pattern generated by (6.22) is to the
best of our knowledge, the most suitable simple approximation of the Antarctic polar
vortex by a nonautonomous ordinary differential equation. Nevertheless, note that the

only way to witness early warning signals is actually to let the system evolve in time.

We subdivide the time interval [—10, 10] into subintervals [¢, ¢+1], t = —10,—9,...,9 and
integrate (6.22) with a 4th order Runge-Kutta scheme, that is, we use the sliding window
approach again. The system is studied in the space domain [—2, 2] x [—2, 2], which is
subdivided into 2'* square boxes with 400 uniformly distributed test points in each box.
We then obtain the transition matrix (6.8) for each interval [¢, ¢ + 1], and compute the
SVD for extracting coherent patterns from singular vectors and corresponding singular

values.

Unlike the double gyre system studied in section 6.4.2, the patterns generated by the
second dominant singular vectors, v and u}, are not convenient to study the set-oriented
critical transition for this system. Indeed, the singular vectors patterns are not supported

in a neighborhood of (0, 0), as shown in figure 6.10.

As a matter of fact, the corresponding singular values in figure 6.11 (left) exhibit, for
different time intervals ¢, ¢ + 1], no trends that are suited to make any early warning

predictions. Moreover, we can observe that the nonautonomous dynamics of the singular
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Figure 6.10: Changes of second dominant left singular vectors (a)-(d) at initial times ¢,
corresponding right singular vectors (e)-(h) at final times ¢ + 1 for increasing time ¢.

vectors in figure 6.10 within one time interval [¢, ¢ + 1] (figure 6.10(a) and figure 6.10(e),

for instance) yields a clock-wise rotation of the patterns by an angle § < 7. Hence, it
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Figure 6.11: Second (left) and sixth dominant singular values (right) for different time
intervals [¢, ¢ + 1]. Final times ¢ + 1 in the z—axis.

is necessary to have the patterns supported around (0, 0), in order to sense the critical
transition induced by the pitchfork bifurcation. We find that the sixth dominant singular

vectors vg, uf, fulfil this requirement.

Figure 6.11 (right) shows the changes of the sixth dominant singular values for each
time interval [¢, ¢t + 1]. One sees that, from both sides of t + 1 = 0, the singular values
in figure 6.11 exhibit two different behaviors separated by the red dashed vertical line:
nearly constant singular values and rapidly decreasing singular values. The singular
vector patterns corresponding to the nearly constant singular values are stable and look

like those shown in figure 6.12 (a) and (e).

As t + 1 becomes positive, the systems shows prior hints for a radical pattern splitting.

This is clearly seen in figure 6.11 (right), where we see a rapid decreasing of the singular
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6.5. Predicting the Antarctic polar vortex sudden split of September 2002 from
recorded satellite data

values as an early warning signal for pattern splitting. The corresponding singular vectors
are shown in figure 6.12, where we clearly see the splitting process of the coherent
vectors pattern (in blue). The changes are captured by the corresponding singular values
in figure 6.11 (right) with a fast decrease as the pattern is elongated and contracted by
the finite time dynamics. Similar results were obtained in [57], where a bifurcation of
almost-invariant sets was preceded by a decrease of eigenvalues of the transition matrix,
see chapter 5. In the present work, a coherent pattern splitting is preceded by the same
changes in the corresponding singular values. The same was found in section 6.4.2 in
figure 6.8, where the dropping phase of the singular values in figure 6.7 was however not
followed by a splitting. That is to say that the shrinking of the patterns before they split

is captured in the singular values as a generic warning sign. In the next section, we will
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Figure 6.12: Changes of sixth dominant left singular vectors (a)-(d) at initial times ¢,
changes of the corresponding right singular vectors (e)-(h) at final times ¢ + 1, for the
rapidly decreasing singular values in figure 6.11.

confirm these indicators by predicting a concrete real-world application pattern splitting.

6.5 Predicting the Antarctic polar vortex sudden split of Septem-

ber 2002 from recorded satellite data

In the month of September 2002, an unusual critical transition occurred in the Antarctic
polar vortex region: the ozone hole suddenly split into two rotating blobs of air, as a
consequence of the stratospheric warming. This is particularly the first rare event of this

kind, which is recorded in the meteorological history of the Southern Hemisphere [2].

Many scientific studies [7, 11, 38] have focused on understanding the main causes of the
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Chapter 6. Early warning signs and critical transitions of coherent sets

splitting of the ozone layer. In [11], for instance, the vortex dynamics is associated to
the evolution of chemical constituents such as ozone O3 and chlorine monoxide (CIO),
before, during and after the splitting. Furthermore, based on satellite velocity data, it is
very well understood that the splitting occurred during the last week of September 2002,
more precisely, it between September 24 and September 27, see figure 1.1.

In the present work, we are going to study the early-warning indicators of the sudden
split by analyzing the finite time global dynamics of the vortex from recorded velocity
data. Given the available velocity data from the ECMWF Interim data set!, we track
changes of the pattern corresponding to the daily ozone concentration, as illustrated in
figure 1.1. The ozone hole can be identified as an isolated vortex of air slowly rotating
over Antarctica. Using finite-time Lyapunov exponents, the different geometric shapes of

the Antarctic polar vortex during the splitting event of September 2002 were studied [9].

The global ECMWEF data is given at a temporal resolution of 6 hours and a spatial
resolution of a 0.5° in longitude and latitude degree, respectively. We focus on the
stratosphere over the southern hemisphere and consider the velocity data from September
1, 2002 to October 1, 2002 on a 600 K isentropic surface. Thus, the equation of motion
of the atmospheric dynamics in that region is interpreted as a two-dimensional time-

dependent ordinary different equation

& =u(w,y,1) 6.23)
y=v(z,y,t)

defined on discrete points (¢, z, y). Using interpolation in space and time we can integrate
solutions again by a 4th order Runge-Kutta scheme and obtain an approximate flow map
(2.19). For the set-oriented analysis of the global dynamics, we use a square domain
centered at the south pole with side lengths 12, 000km. We subdivide the domain using 2'°
boxes. We choose n = 25 sample points uniformly distributed in each box and compute
the transition matrices (6.8). The polar vortex at different times is then considered as a
coherent set approximated by the singular vectors of (6.8) and the singular values are

used to identify early warning signals.

Previous studies [15] suggest that an initial time interval of length greater or equal to two
weeks is ideal in order to have a good approximation of coherent sets from the second

dominant singular vectors. That is why we set our initial time interval to 15 days, i.e.

Thttp://data.ecmwf.int/data/index.html
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6.5. Predicting the Antarctic polar vortex sudden split of September 2002 from
recorded satellite data

September 1%¢, 2002 to September 15, 2002. Hence, if the second time interval has the
same length, then we will not be able to observe the desired critical transition. Therefore,
we set the first 15 days as our reference time interval and use a new technique that we

refer to as the long trajectory approach with singular value scalings.

The long trajectory approach works as follows: Let ¢, = September 1 and 7' = Septem-
ber 15, and [to, 7] is the reference time interval. We then fix ¢y and integrate (6.23) for
increasing time intervals [to, 7'+, = 0,1,2..., 16, given that 7' + 16 corresponds to
October 1. For every time interval, an SVD of the corresponding transition matrices is
computed. Since the initial time ¢ is fixed, the left singular vectors are not expected to
vary noticeably for all the different time intervals. Therefore, we use the right singular
vectors to study the changes of the polar vortex. The second dominant singular values 63
change as well. But we cannot compare two different singular values, since the different
time intervals under consideration have different lengths. To solve this problem we

propose a singular value scaling technique in the following way:

In addition to the long term trajectories we use the short term sliding window approach
with time intervals [¢, ¢ + 1], ¢ = 15,16,...,30. These are time intervals of one day,
starting at September 15. We then compute the SVD and collect the second dominant
singular values 5. We neglect the short term singular vectors. Note that ¢t + 1 =T + i,
i=1,2,...,16,t = 15,16,...,30. From the singular values 5% and &%, the principle of
the scaling consists of finding singular values that implicitly represent time intervals of the
same length as the reference time interval [t, T]. That is, we fix o3 := 69 corresponding
to the reference time interval [ty, T] and scale the 63, i = 1,2,...,16 corresponding to

[to, T + 1i], in order to be able to compare them with ¢J. This is obtained from the scaling

equation
P =1 16 6.24
O'Q—W,’L— yoeey . (. )
j=192
In this way, all the singular values 0%, i = 0, ..., 16 represent time intervals of the same

length as [tg, T']. Moreover, they can be used to identify early warning signals.

Figure 6.13 shows the scaled singular values o plotted with respect to the final time 7'+,
i =0,...,16. One observes two separated behaviors: increasing singular values from
September 15 to September 20 and rapidly decreasing singular values from September
21 to September 25.
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Figure 6.13: The scaled second singular values o4 from (6.24) plotted with respect to
final time 7" + 4. The trends correspond to the different behaviors of the polar vortex.

The singular vectors corresponding to the increasing singular values are shown in figure
6.14. Note that, for more clarity, only certain negative level sets that correspond to the

numerical approximation of the ozone hole were plotted.

Figure 6.14: Right singular vectors from (a)-(d) September 15, 18, 19, 20 corresponding
to the increasing singular values in figure 6.13.

In the previous examples we have observed that rising singular values yield corresponding
singular vectors whose support or level sets expand in size. We consider this as a stable
regime, in the context of this work. Actually, the Antarctic polar vortex is very stable
from September 15 to September 20. However, from September 20 to September 24,
the singular values in figure 6.13 begin to decrease very fast. The corresponding right

singular vectors are shown in figure 6.15. The shape changes of the right singular vector

Figure 6.15: Right singular vectors from (a) September 21 to (d) September 24 corre-
sponding to the rapidly decreasing singular values in figure 6.13.

130



6.6. Summary

pattern are very similar to those in the high order nonautonomous Duffing oscillator
in figure 6.12. The singular values in figure 6.13 have then successfully confirmed the
generic early-warning signals with a rapid changes in magnitude. This sudden change
is characterized by a fast drop in magnitude of the singular values, as shown in figure
6.13. Thus, an early-warning signal of the splitting occurs from (a) September 21 to (d)
September 24, where we start to notice a break up of the rotating vortex into two blobs

of air, as shown in figure 6.15.

The post splitting scenario begins at September 27. From this date onward, the north-
western blob of the ozone hole starts to disappear, while the southwestern blob begins
to increase again in size to recover the initial shape before splitting. This can be clas-
sified as a reformation phase. Besides, the underlying ozone hole pattern is very well
captured by the right singular singular vectors from September 27 to October 1; see figure
6.16. As shown in figure 6.13 the corresponding singular values exhibit a particularly

distinguishable trend with a nearly constant rate of decrease in magnitude.

Figure 6.16: Right singular vectors from (a)-(c) September 27, 28, 29 to (d) October 1
corresponding to the linearly decreasing singular values in figure 6.13.

6.6 Summary

At the end, one may realise that this study is mainly implemented around singular
value decompositions of transition matrices as mentioned in chapter 3 (section 3.1.2
(3.4)), which are generated from finite time evolutions of time-dependent systems. Thus,
dominant singular vectors and their sign patterns yield numerical approximations of
slowly mixing regions, while corresponding singular values exhibit the potential to
measure their shape changes. On this basis, trends of the singular values and sign
patterns of singular vectors are mutually used, as observables, to design and anticipate
imminent sudden changes in the nonautonomous dynamics of vortex-like patterns. This

technique is used to identify early indicators of the sudden split of the Antarctic polar
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Chapter 6. Early warning signs and critical transitions of coherent sets

vortex in September 2002, from recorded satellite velocity data. This real-world critical
transition may be classified as a rare event. Nevertheless, our probabilistic approach can
be applied to a wider family of incompressible flow patterns undergoing similar changes.
In a theoretical perspective, future studies may address a combination of geometric
methods and the above probabilistic approach to find lower bounds of the dominant

singular values, in order to abstractly control the changes of the patterns.
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74 Conclusion

In this thesis, we were preoccupied to answering the following question: Suppose we
have at our disposal the Antarctic vortex rotating dynamics velocity data of the year
2002. Is it possible to design early-warning signs prior to the sudden splitting regime that
occurred between the days of September 24 and September 25, 2002, as shown in figure
1.1?

To answer this question, we chose two main mathematical frameworks: Set-oriented
dynamical systems and nonautonomous bifurcation theory. With these two frameworks,
we aimed to develop an analytical set-oriented bifurcation theory with numerical illus-
trations and use our results to propose a mathematically justifiable answer of the above
question. However, the approach seems unusual with respect to the known traditional
bifurcation theory but also innovative with respect to the chosen frameworks. Moreover,
a legitimate question may also address the “why” of our choice, given the amount of
mathematical frameworks that can exist. Indeed, we choose a set-oriented dynamical
system approach to be able to study the ensemble evolution of dynamical systems, as
with this method the phase space can be divided into distinct subsets such that there is a
very small probability that trajectories in one subset will leave the subset in a relatively
short time. We thus, hope that the dynamics of one of these subsets mimic the dynamics
of the Antarctic polar vortex. In other words, we choose subsets that are able to flow in
space and time with a possibility of changing shape, which suppose that these subsets
are generated by a nonautonomous dynamical systems. Hence, a set-oriented nonau-
tonomous dynamical system approach was a promising starting idea and was actually
the idea adopted to conducted our research. Nonautonomous dynamical systems are
highly relevant to model the dynamics of complex systems such as the dynamics of the

Antarctic polar vortex. Indeed, complex systems are known to exhibit self-organization
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Chapter 7. Conclusion

and self-adaptation in their dynamical behavior and, most importantly, they can show
dynamically independent behaviors in different time intervals. The latter is a typical
property of nonautonomous dynamical system, since time-dependent systems exhibit
independent dynamics within different time intervals. Finally, given measurable subsets
from the set-oriented time-dependent dynamics, the challenging task was to find suitable
criteria in order to characterize a shape change as a bifurcation. In the context of this

work, shape change in the sense of splitting, as illustrated in figure 1.1, is of interest.

Changes in the dynamical behavior of a complex systems, such as the Antarctic polar
vortex 2002 break up, are referred to as critical transitions. Therefore, the splitting
regime observed in figure 1.1 can be classified as a critical transition. Moreover, empirical
evidence of early-warning signals before a critical transition was brought to prominence
by scientists in ecology. However, mathematical foundations of early-warning signals
observables were largely lacking. That is why, in order to predict the regime shift
illustrated in figure 1.1, we reformulated our research study as a combination of set-
oriented dynamics and finite time bifurcation theory for findings observables that can

design early-warning signals.

In this thesis, we considered a special class of dynamical systems that are able to dy-
namically mimic the the Antarctic polar vortex rotating dynamics. Indeed, we consider
incompressible systems whose dynamics consist of rotating trajectories around a global
fixed point (i.e., solution of the zero of the velocity field). The discrete spectrum of
the perturbed transfer operator yields almost-invariant sets/coherent sets which are
supported on the whole phase space and, in particular, on a neighborhood of the fixed
point. Moreover, these special systems are built in such a way that they undergo a
(finite time) bifurcation which leads to a splitting of the phase space into two rotating
gyre-like trajectories. Note that the main concept of finite time dynamical systems can
be transferred to incompressible flows, even though [58] was developed by considering
dissipative systems. In this context, the discrete spectrum of the perturbed transfer
operator is used as observables to characterize early-warning signs of critical transition

of patterns in the sense of splitting.

The lack of prior studies of set-oriented bifurcations in the sense of a splitting of patterns
made this work challenging. In fact, a statistical approach to analyze bifurcation of
deterministic systems is not a widely investigated topic. Known works include [17]
who characterized the one-dimensional pitchfork normal form based on changes of

the deterministic Frobenius-Perron operator’s discrete spectrum. Results in [17] served
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somehow as a referential work for the beginning of our research. Indeed, a set-oriented
approach is just a particular statistical approach which, besides analyzing the ensemble
evolution of the underlying dynamics, extract optimal almost-invariant/coherent sets.
That is why, in chapter 4, we studied changes of the discrete spectrum of the perturbed
transfer operators P! as a bifurcation parameter is varied. Moreover, as mentioned earlier,
we consider two-dimensional incompressible systems undergoing a pitchfork bifurcation.
Findings in chapter 4, were critically interesting in the sense that they allowed us to
understand the manner in which we should concretely approach the study bifurcation
of almost-invariant patterns using dominant real eigenvalues and their eigenvectors of
the perturbed transfer operator as indicators. Indeed, from chapter 4, we understood
that a set-oriented bifurcation should not be directly linked to the local bifurcation that
is intrinsic to the local properties of the underlying dynamical system. This implies a
shift in the critical parameter p value. That means, the critical parameter value p for
the bifurcation of almost invariant sets may not coincide with the critical parameter
value pfor the system’s local bifurcation. That is why, in chapter 5 the bifurcation of
almost-invariant sets is studied from a purely global approach. Besides, finding a critical
value of p that determines the set-oriented bifurcation did not matter. What really
mattered was only the change of dominant patterns as an external parameter p is varied.
The study was developed from scratch due to the lack of previous work in this regard.
Results from chapter 5 were extended to time-dependent dynamical systems in chapter
6 where dominant singular values and their singular vectors were used as observables
to characterize early-warning signs of pattern splitting. Our findings were successfully
confirmed in application with the Antarctic polar vortex velocity data. Indeed, the spectral
warning signs for the splitting of the Antarctic polar vortex in September 2002 were
successfully identified. Trends of the singular values and sign patterns of singular vectors
are mutually used, as observables, to design and anticipate imminent sudden changes in

the nonautonomous dynamics of vortex-like patterns.

This thesis has proved that there is a scientific answer for mathematically characterizing
empirical evidence of early-warning signals for the sudden split of the Antarctic polar
vortex in September 2002. Furthermore, this work may open the door to addressing more
general research questions including problems involving vortex splitting phenomena in

the wide field of (geophysical) real world fluid dynamics.
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