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Abstract
The understanding and prediction of sudden changes in flow patterns is of paramount

importance in the analysis of geophysical flows as these rare events relate to critical

phenomena such as atmospheric blocking, the weakening of the Gulf stream, or the

splitting of the polar vortex. In this thesis, our aim is to fully set up a theoretical un-

derstanding of vortex splitting phenomena with concrete real-world applications. To

this end, we firstly study bifurcations of global flow patterns in parameter-dependent

two-dimensional incompressible flows, with the flow patterns of interest corresponding

to specific invariant sets. Based on already known classical bifurcation results from prob-

abilistic approaches, we exploit the discrete spectrum of a perturbed Frobenius-Perron

operator to build almost-invariant sets from perturbed invariant sets and study their

changes as the bifurcation parameter is varied. Even though these almost-invariant sets

are supported in a neighborhood of a critical point that later bifurcates, our spectral

results suggest a novel approach.

We, then, re-describe the underlying dynamics in terms of a reversible finite-state Markov

chain in order to spectrally characterize a set-oriented bifurcation from matrix pertur-

bations theory. Indeed, perturbed eigenvalues and their corresponding eigenvectors

sign patterns are inter-dependently used as observables, to successfully depict generic

indicators for pattern splitting.

These findings are, thus, extended to more realistic time-dependent systems where per-

turbed singular vectors and their singular values yield observables. Therefore, spectral

early-warning signals are proven to be robust, given a specific class of incompressible

time-dependent systems. Our results are confirmed, in application, by studying spectral

indicators of the Antarctic ozone hole sudden break up in September 2002, from satellite

velocity data.
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Zusammenfassung

Das Verständnis und die Vorhersage von plötzlichen Veränderungen in Strömungsmustern

sind bei der Analyse von geophysikalischen Strömungen von großer Bedeutung, da solche

seltenen Ereignisse häufig mit kritischen Phänomenen zusammenhängen, beispielsweise

der atmosphärischen Blockierung, der Abschwächung des Golfstroms oder der Aufspal-

tung der Polarwirbel.

In dieser Dissertation wollen wir ein umfassendes theoretisches Verständnis insbesondere

von Wirbelaufspaltungen entwickeln und dies mit mit konkreten praktischen Anwen-

dungen verbinden. Zu diesem Zweck untersuchen wir zunächst Bifurkationen von glob-

alen Strömungsmustern in parameterabhängigen, zweidimensionalen, inkompressiblen

Strömungen, wobei die interessierenden Strömungsmuster bestimmten invarianten Men-

gen entsprechen. Auf der Grundlage bekannter klassischer Verzweigungsergebnisse aus

probabilistischen Ansätzen nutzen wir das diskrete Spektrum eines gestörten Frobenius-

Perron-Operators, um aus gestörten invarianten Mengen sogenannte fast-invariante

Mengen zu konstruieren und deren Änderungen bei Variation der Bifurkationsparameter

zu untersuchen. Auch wenn diese fast-invarianten Mengen in einer lokalen Umgebung

des sich später verzweigenden kritischen Punktes liegen, deuten unsere spektralen Ergeb-

nisse auf einen neuen Ansatz hin.

Mit einer neuen Beschreibung der zugrunde liegenden Dynamik in Form einer diskreten,

reversiblen, endlichen Markov-Kette erhalten wir dann eine spektrale Charakterisierung

einer mengenorientierten Verzweigung auf Grundlage von Matrix-Störungstheorie. Tatsäch-

lich werden gestörte Eigenwerte und die Vorzeichenmuster der entsprechenden Eigen-

vektoren gemeinsam als Beobachtungsgrößen verwendet, um generische Indikatoren für

die Aufspaltung von Strömungsmustern erfolgreich abzubilden.

Diese Ansätze werden dann auf realistischere, zeitabhängige Systeme ausgedehnt, bei

denen gestörte singuläre Vektoren und ihre Singulärwerte die entsprechenden Beobach-

tungsgrößen liefern. Dabei erweisen sich unsere spektralen Frühwarnsignale in den

betrachteten inkompressiblen, zeitabhängigen Systemen als robust. Die Ergebnisse

bestätigen sich in der Anwendung. Insbesondere untersuchen wir spektrale Indikatoren
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der plötzlichen Aufspaltung des Ozonlochs über der Antarktis im September 2002 auf

Grundlage von durch Satelliten gemessenen Geschwindigkeitsdaten.
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1 Introduction

Understanding critical transitions in the macroscopic behavior of dynamical systems is,

nowadays, of high interest due to the emergence of new scientific challenges towards

developing mathematical theories for bifurcations of complex systems [3]. The ultimate

goal is to provide indicators or early warning signals for the prediction of sudden changes

in flow patterns emerging in real world systems such as the atmosphere. For instance,

the Antarctic polar vortex break up scenario in late September 2002 appears as a rotating

atmospheric pattern that suddenly splits [7, 9, 38]. Figure 1.1 illustrates graphically

this splitting event from velocity data. One may classify this splitting event as a critical

September 20, 2002 September 25, 2002

Figure 1.1: Antarctic polar vortex splitting event in September 2002, visu-
alized using two-dimensional velocity data from the ECMWF Interim data set
(http://data.ecmwf.int/data/index.html).

transition of patterns occurring in a specific natural complex system. Moreover, such

complex system may be modeled as incompressible time-dependent dynamical systems

where the sudden critical change is characterized as a critical transition [3, 5, 6] of

dominant slowly mixing patterns. Thus, a legitimate question arises: How could such an
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Chapter 1. Introduction

event be predicted before it happened? We suggest that a possible answer to this question

can be found by the combination of a model-based approach and its set-oriented analysis.

This means that, first, one needs to find a mathematical model that is representative

enough for the underlying complex system phenomena. Secondly, from the newly built

model, one needs to be able to distinguish and study critical transitions for patterns that,

a priori, behave similar to the polar vortex. Indeed, from the dynamics of the chosen

model, it follows that the task of finding observables as early-warning signals of any

radical split of the resulting pattern will progressively lead to predicting the occurrence

of the critical transition which may emerge as a sudden change.

Fortunately, there is an established mathematical concept to represent dominant slowly

mixing patterns from a time evolving dynamical system [13, 15, 36]. This is mainly

based on a measurable partition of the phase space into regions that are dynamically

almost disjoint and thus material transport between these regions, or patterns is minimal.

In case of autonomous systems, those regions are commonly called almost-invariant

sets [13, 14] since they mitigate transport between their interior and the rest of the

phase space. They are called coherent sets in the context of nonautonomous systems,

as they move over time with minimal dispersion [15, 16]. The theory leading to the

construction of these dominant patterns is mainly based upon the Perron-Frobenius

operator. The latter is an infinite dimensional linear operator which maps the time

evolution of probability densities, see [49] for more details. However, the discrete

spectrum and the corresponding eigenfunctions of a dynamically similar, perturbed linear

operator are systematically used to extract the patterns of interest [13, 15]. Besides, finite

time bifurcation theory has been recently introduced in [58]. There, central concepts

such as finite time attractivity and finite time repulsivity were analytically formulated

and applied mainly to low dimensional dissipative nonautonomous systems undergoing

critical transitions. However, the main concept of finite time dynamical systems can be

transferred to incompressible flows, which will be our main interest in this research study.

To the best of our knowledge, a set-oriented bifurcation analysis is still a broadly open

topic that may require a new theoretical approach beyond classical bifurcation theory.

Known previous works in this direction include using the discrete spectrum of the

deterministic Perron-Frobenius operator (referred to as transfer operator) generated by

dissipative and non-dissipative systems. In [17] a transfer operator based framework

was successfully developed for studying the one-dimensional pitchfork normal form.

Indeed, particular changes in the discrete spectrum of the transfer operator, including
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accumulation of eigenvalues to 1 as the critical parameter is reached, yield indicators of

the pitchfork bifurcation.

The study of the time evolution of deterministic dynamical systems via a probabilistic

approach has been a subject of intense research during the last decades. In particular,

it has been used in many topics including physics and classical statistical mechanics

[48, 49]. For Anosov flows [45, 47], the probabilistic framework is provenly very

suitable for the analytical investigation of statistical properties of the dynamical systems.

Examples include chaos, ergodicity and mixing properties. These dynamical properties

are mathematically formulated after an invariant measure, or invariant distribution is

found, or assumed to exist. In terms of densities, the probability distributions always

converge to the existing unique invariant density when the system is mixing [52]. The

spectrum of the Perron-Frobenius operator generated by an Anosov flow and sometimes

referred to as the mixing spectrum [63], is used to interpret the global mixing properties

of a given dynamical system. It is also relevant for studying bifurcations within a statistical

view point. Indeed, the discrete spectrum of the Perron-Frobenius operators is directly

linked to the hyperbolic stationary points of the underlying dynamical system [17, 46].

Thus, the spectrum captures the stretching or contracting dynamics near stationary states.

Therefore, a critical transition of the dynamical system can be characterized by significant

changes in the spectrum of the Perron-Frobenius operators, when a critical parameter is

reached.

However, despite the mixing nature of a given system, there may exist regions in phase

space that resist mixing under the action of the dynamical system. These regions turn out

to be very relevant in the study of transport processes [41–44]. Hence, it would be very

crucial – but highly challenging – to predict their occurrences, their bifurcations and their

decays. Indeed, to the best of our knowledge, a set-oriented, probabilistic bifurcation

theory is still a broadly open research topic that requires the development of approaches

beyond the traditional bifurcation concepts. Furthermore, a probabilistic description of

critical transitions in flow patterns will help to get a better understanding of possible

early warning signals for sudden changes in geophysical real-world fluid dynamics, such

as Antarctic vortex splitting event.

In [18] early warning indicators for transitions between atmospheric flow regimes were

defined based on the transfer operator of a dissipative atmospheric model. In that work,

the discrete spectrum of the transfer operator was initially used to approximate two

isolated regimes as almost-invariant sets. Closer to the setting of the present work,

3



Chapter 1. Introduction

bifurcations of almost-invariant and almost-cyclic sets in two-dimensional conservative

systems and corresponding changes in the spectrum of the transition matrices were

observed in [19, 20] but not systematically studied.

As a matter of fact, the three major axes of our research study will be as follows:

Firstly, this thesis addresses the problem of characterizing bifurcation of almost-invariant

sets from the classical bifurcation theory approach. That is, we seek qualitative changes

of those sets by studying qualitative changes of local fixed points. This approach is

similar to [17] but we use a perturbed transfer operator, instead of the deterministic

Frobenius-Perron operator. The advantage of using the perturbed transfer operator

resides in the nature of its discrete spectrum, at first sight. Indeed, we can identify a

particular subset of real eigenvalues whose magnitudes are close to 1. In addition to that,

positive/negative level sets of the corresponding eigenfunctions yield almost-invariant

sets. However, bifurcation can only be studied numerically. Thus, with this approach one

can see a spectral signature through significant changes of numerically approximated

real eigenvalues, as a bifurcation parameter crosses its critical value. This result is similar

to what is observed in [17]. However, changes in the approximated real eigenvectors

corresponding to those real eigenvalues do not yield any set-oriented bifurcation insight.

That is why, the second part of this thesis contribution consists of providing first steps

towards predicting bifurcation of patterns that can mathematically be represented as

optimal almost-invariant sets. Our approach is still probabilistic and will be mainly

based on analyzing the spectral behavior of discrete Markov chains subject to external

perturbations. The corresponding stochastic transition matrices are finite rank approx-

imations of the Perron-Frobenius operator and its diffused version. Almost-invariant

sets are numerically approximated by the dominant eigenvector basis of the transition

matrix. Moreover, we use the sign structures of these vectors to systemically design the

meaningful patterns that emerge from the dynamical system under study. Meanwhile, the

behavior of the corresponding dominant eigenvalues under parameter-variation indicates

when radical changes of patterns occur. Indeed, as the bifurcation parameter is varied,

eigenvalues change continuously with respect to the parameter.

Finally, this thesis investigates the finite time bifurcation of coherent sets with the main

goal of establishing a better understanding of early warning signals for sudden pattern

splitting. The latter is motivated by the Antarctic polar vortex sudden break up in

September 2002, as illustrated in figure 1.1. To this end, we study specific classes of

nonautonomous systems who mimic the Antarctic polar vortex dynamics. To the best of

our knowledge the bifurcation analysis of coherent sets as formulated in this work, has

4



remained a widely unexplored topic.

In the following is listed a brief outline of this thesis.

In chapter 2 and chapter 3 we respectively give the background study of the probabilistic

analysis of deterministic systems and the background study of set-oriented dynamical

systems. These two theories are actually in the core of our research study. Indeed, a set-

oriented analysis of a dynamical system (chapter 3) is a particular probabilistic approach

to analyzing dynamical systems (chapter 2). Besides, the particularity of a set-oriented

approach is tied to the fact that the latter focus on extracting optimal coherent sets,

while the probabilistic analysis of deterministic systems may lead to diverse conclusions

including ergodicity. Hence, in addition to defining basics concepts of Frobenius-Perron

operators, we give detailed mathematical constructions of almost-invariant sets and

coherent sets.

In chapter 4, we challenge our understanding about where should the study of a set-

oriented bifurcation really start, compared to already known classical bifurcation theory.

In fact, our approach can only start from the most comprehensive way towards solving

the main question of this thesis. Thus, chapter 4 explores the possibility of extending

already known results about characterizing local bifurcations from a statistical approach.

Namely, in [17], the spectral signature of the one-dimensional pitchfork normal form was

developed. Therefore, in chapter 4 we use the ε-perturbed Frobenius-Perron operator and

study the spectral signature of the pitchfork bifurcation of a two-dimensional Duffing-like

oscillator system. Indeed, the latter yields a center stationary point for negative p and two

center stationary points for positive p. Furthermore, the underlying system’s dynamics

mimics somehow the Antarctic polar vortex rotating dynamics and the undergoing

bifurcations mimics the splitting scenario.

Results in chapter 4 have freed the set-oriented bifurcation study from the local bifur-

cation which is intrinsic to the system. Therefore, in chapter 5 we concretely study

bifurcation of almost-invariant sets, in the sense of pattern splitting. There, we briefly

review the concept of almost-invariant sets within a set-oriented numerical framework,

which yields stochastic transition matrices for reversible finite-state Markov chains. We

address results from the perturbation theory of stochastic matrices and show how their

dominant spectrum is suitable for estimating almost-invariant sets that originate from

invariant structures of the unperturbed dynamics. In order to illustrate the numerical

framework, we discuss the practical computation of the dominant almost-invariant sets

for a two-dimensional non-dissipative flow. Then, we start the foremost step by system-
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Chapter 1. Introduction

atically experimenting Markov chain toy models undergoing bifurcations of specifically

constructed patterns. Finally, we rigorously study two explicit dynamical models, a

Duffing-type oscillator and a single gyre flow, and identify early warning signals for

splittings of patterns through the trends of eigenvalues with respect to a bifurcation

parameter. Findings in chapter 5 have been submitted for publication, see [57].

Patterns emerging from complex dynamics of real world systems, such as the Antarctic

polar vortex break up in late September 2002, suggest an analogous nonstationary

framework. That is, in order to apply this set-oriented formulation of bifurcation analysis

of chapter 5 into real world applications, one may need to reconsider nonautonomous

dynamical systems instead.

Inspired by chapter 5, we address a characterization of finite-time bifurcations of coherent

sets in chapter 6, which emerge from a nonautonomous dynamical system. This has

allowed us to deduce finite-time generic early warning signals for sudden vortex splittings.

These results are used to spectrally describe and characterize the Antarctic polar vortex

splitting event from the recorded velocity data, see figure 1.1. The results in chapter 6

are being prepared for submission to Chaos [60].
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2 Dynamical systems and transfer operators

In this chapter, we briefly introduce basic concepts our research will be built on. Indeed,

we define autonomous and nonautonomous dynamical systems. In particular, we intro-

duce the notion of ensemble evolution of trajectories, as our main approach can also be

classified in the broad range of statistical analysis of deterministic dynamical systems.

Thus, infinite dimensional linear operators which maps the evolution of densities will be

properly defined as as well. Finally, we introduce the main set-oriented objects that will

be at the core of all the ultimately developed frameworks throughout.

2.1 General definition and motivation

The theory of dynamical systems is concerned with the temporal evolution of systems.

As a matter of fact, a dynamical system can be used to describe process in motion, to

predict the future behavior of the underlying systems. Areas where dynamical systems

are relevant include changes in atmospheric flow motions, prediction of climate change

from the dynamics of climate models, etc.

A fast mathematical understanding of dynamical system includes thinking the latter as

being any semigroup acting on a set. Indeed, a semigroup is simply an algebraic structure

made up of a set with an associative binary operation. Let (G, ?) be the semigroup. Thus,

the action of G on a set X is defined as a rule which associates to each element t ∈ G a

transformation Rt of X such that the operation t ? s is associated with the composition

Rt ◦Rs. Therefore, the dynamical system can be modeled as the transformation

R : G×X → X with R(t, x) = Rt(x). (2.1)

7



Chapter 2. Dynamical systems and transfer operators

Equation (2.1) models the final state of an initial data x ∈ X after moving t times, under

the transformation R(t, x). That is, if t is considered as a time duration and x as an

spatial data, then (2.1) represents the time evolution of data x in the domain X.

A more formal definition is given as follows.

Definition 1 A dynamical system is a triplet consisting of a set of time I ∈ {R,N,Z}, an

non-empty topological Hausdorff space X known as the state space or phase space, and a

continuous mapping R : I ×X → X, (t, x) 7→ R(t, x) known as the rule for evolution

with

R(0, x) = x ∀ x ∈ X (2.2)

R(s,R(t, x)) = R(s+ t, x) ∀ s, t ∈ I. (2.3)

The triplet (I,X,R) is called a discrete-time dynamical system if I ⊆ N or I ⊆ Z and

a continuous-time dynamical system if I ⊆ R. Besides, (I,X,R) with the map (2.1) is

called an autonomous dynamical system, as the knowledge of the final time is enough to

understand the evolution of the system, whenever an initial point is given.

Definition 1 can be reformulated by incorporating an explicit initial time. That is, the

transformation (2.1) becomes

R : I × I ×X → X with R(t, s, x) = Rs,t(x). (2.4)

and models the final state of an initial data x at initial time s at time t. Moreover,

conditions (2.2) and (2.3) become

R(s, s, x) = x ∀ x ∈ X (2.5)

R(t, R(s, s0, x)) = R(t, s, x) ∀ s0, s, t ∈ I. (2.6)

Hence, the quadruplet (I1, I2, X,R) where I1 and I2 denote, respectively, the set of

initial and final times and the transformation in definition (1) is called a nonautonomous

dynamical system. More details about the mapping (2.4) and the nonautonomous

dynamical setting (2.5)-(2.6) will be given later in this chapter.

Now, for the sake of motivation we will focus more on the autonomous dynamical system.

Given an initial point x ∈ X and the autonomous dynamical system with the flow map

(2.1), the set of points Ox = {R(t, x) t ∈ I} is called orbit or trajectory of x. In this

setting, one may be interested in the time evolution of an individual orbit Ox. In this case,
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2.1. General definition and motivation

the asymptotic behavior of Ox may be investigated. Alternatively, a more macroscopic

approach may be considered by studying the collective behavior of a swarm of initial

points. That is, given {x1, x2, ..., xN} ⊂ X, we can then seek to understand the global

behavior of the set of trajectories {Ox1 ,Ox2 , ...,OxN } ⊂ X. The latter approach is very

suitable in some contexts. For instance, the need to understand and/or predict the

changes of behavior of ocean eddies or atmospheric vortices, which emerge from ocean or

atmospheric dynamics, may leave us with no other choice than to consider the collective

behavior of the systems dynamics. In addition, depending on the nature of the dynamics,

say chaotic, it may be easier to study the fate of an ensemble of trajectories instead of a

single trajectory Ox. Indeed, two initial data whose spacial positions may be very close

tend to diverge quickly as time runs forward.

In this study, we aim to understand the change in behavior of sets of ensemble of points

(or a clusters of points) that are fixed or move in time together with minimum dispersion

with respect to the flow map. This can be referred to a set-oriented approach. Hence,

this set-oriented approach may be view as an sufficient pretext to analyze the underlying

dynamical system from an ensemble evolution of trajectories approach.

In this pace, given the initial points {x1, x2, ..., xN}, we can associate the probability

density function ρ0(x) = 1
N

∑N
i=1 δ(x − xi), where δ denotes the Dirac distribution, 1

N

is the probability associated to each value xi, i = 1, · · · , N . Thus, ρ0 is a well-defined

probability density function, given ρ0(x) ≥ 0 and
∫
X ρ0(x)dx = 1. Now we define a

smooth observable g : X → R. The value of the observable g at time t is denoted by 〈g〉t
and is given by

〈g〉t =
1

N

N∑
i=1

g(Rt(xi))δ(x− xi) =

∫
X
g(Rt(x))ρ0(x)dx

=

∫
Rt(X)

g(y)ρ0(R−t(y))
∣∣det J(R−t)(y)

∣∣ dy, (2.7)

where J(f) denotes the Jacobian matrix of partial derives of f and the transformation Rt

is supposed to be differentiable and invertible, for simplicity. Note that
∣∣det J(Rt)(y)

∣∣ = 1,

if the transformation Rt is area preserving, which is a characteristic of incompressible

fluid flows. On the other hand, let ρt be the probability density function of the image

points
{
Rt(x1), Rt(x2), ..., Rt(xN )

}
at time t. Thus, we have

〈g〉t =

∫
Rt(X)

g(y)ρt(y)dy (2.8)

9



Chapter 2. Dynamical systems and transfer operators

and it follows that

ρt(y) =
ρ0(R−t(y))

|det J(Rt)(y)|

=

∫
X
δ(x−Rt(y))ρ0(x)dx.

(2.9)

Therefore, given the ensemble evolution of trajectories, the corresponding probability

density functions are transported in a linear fashion. This is very important in the

sense that, even though the evolution of trajectories may be non-linear, the evolution

of corresponding density functions is linear as shown in (2.9). Thus, given the initial

density ρ0, we have then a trajectory of densities {ρt, t ≥ 0} that evolves linearly over

time. One may think of the stochastic kernel k(x, y) := δ(x − Rt(y)) as a matrix with

indices (x, y) and index summation in matrix multiplication replaced by the integral over

Y := Rt(X). Therefore, the linear relation between ρ0 and ρt may be mathematically

formulated via an infinite dimensional operator Lt such that (2.9) becomes

ρt = Ltρ0. (2.10)

Alternatively, the operator Lt in (2.10) could emerge from the nonautonomous setting

(2.5)-(2.6) and denoted by L(s,t). In this case, the finite time evolution of densities within

the time interval [s, t] can modeled as

ρt = L(s,t)ρs. (2.11)

That is, even if a linear relation between densities is preferable to a non-linear evolution

of trajectories, one may pay the cost of dealing with an infinite dimensional operator.

Besides, linear infinite dimensional operators are particularly important when we can

exploit their spectral features and use them to analyze statistical properties of the dynam-

ical system, for instance. By spectral features, we mean a discrete set of eigenfunctions

and their eigenvalues or singular values and their singular functions. Then, relation be-

tween the nonlinear flow map Rt and the linear operator Lt yields a connection between

qualitative properties of a (finite time) dynamical system including bifurcation, ergodicity,

etc., and the spectral theory of infinite dimensional operators, as Koopman [26] and von

Neumann [27] firstly noticed.

Throughout this work, however, we will be investigating changes of magnitude of the

discrete spectra of (2.10) and (2.11) with respect to changes in the dynamics of their

corresponding dynamical systems (2.2)-(2.3) and (2.5)-(2.6), respectively. In particular,

10



2.2. Dynamical systems and transfers operators

with the operator (2.10), we will be targeting special densities 1A, A ⊂ X such that

Lt1A ≈ 1A. (2.12)

and, with the operator (2.11), we will be seeking densities 1A, A ⊂ X and 1B, B ⊂
R(s, t,X) such that

L(s,t)1A ≈ 1B. (2.13)

Equation (2.12) may be interpreted as a functional characterization of the notion of

almost-invariance of the set A, while equation (2.13) yields a functional representation

of the notion of coherence of the sets A and B. Indeed, note that densities 1A and 1B are

supported in A and B, respectively. Thus, in (2.12), we can say that the autonomous

dynamics leaves the set A almost-invariant, whereas in (2.13), the nonautonomous

dynamics carries the set A coherently to the set B in the sense that the set A is mapped

to the set B by the nonautonomous flow. In addition, equations (2.12) and (2.13)

may be cast in more general eigenequations for the operators Lt and L(s,t), respectively.

Therefore, we can already notice that there may be an interdependency between finding

almost-invariant/coherent objects and solving eigenequations of the infinite dimensional

operators Lt and L(s,t). Note that with the operation L(s,t), we might want to solve a

singular value decomposition problem, as 1A and 1B may be very different functions.

Nevertheless, the spectral idea to finding these sets remains there. A set-oriented dynami-

cal system consists of analyzing the behavior of system in the whole phase space with a

special aim of computing and analyzing those sets. Thus, almost-invariant/coherent sets

are the main objects on which our work will be based throughout this thesis. However,

note that we have only partly introduced almost-invariance/coherence notions, since

equations (2.12) and (2.13) only yield necessary conditions for finding these objects

from a probabilistic approach. In the following, we concretely introduce the systems our

study will be based on as well as mathematical definitions of basic concepts including

almost-invariance/coherence.

2.2 Dynamical systems and transfers operators

We are mainly interested in continuous time processes generated by solutions of ordinary

differential equations. Thus, we will define infinite dimensional linear operators gener-

ated from the time evolution of these processes. Throughout this work, we will consider

11



Chapter 2. Dynamical systems and transfer operators

a continuous time interval I ⊂ R and a measure space D ⊂ Rd. Let X ⊂ D.

2.2.1 Dynamical systems

An autonomous ordinary differential equation (ODE) is given by

dx

dt
=: ẋ = F (x), (2.14)

where F : X → X is called the velocity field of (2.14) and is assumed to be smooth. Let

x : I→ X be continuously differentiable. Thus, the function x is said to solve (2.14) if

ẋ(t) := dx
dt = F (x(t)) for all t ∈ I. Moreover, if the initial condition x(t0) = x0 is coupled

with the equation (2.14), then (2.14) is referred to as an initial value problem. Thus, a

solution x solves the initial value problem if x(t0) = x0 and ẋ(t) = F (x(t)). That is, if we

assume global existence and uniqueness of the solutions, then the latter form a mapping

(t, t0, x0) 7→ x(t, t0, x0), ∀ (t, t0, x0) ∈ I× I×X (2.15)

and are called general solution of (2.14). Adding an initial condition to (2.14) makes the

problem simpler in the sense that, once a solution is found, it is translation invariant in

time. That is, only the duration matters since starting, which means that the solutions

depend only on the elapsed time t− t0 since starting and not separately on the actual

time t and the starting time t0. Hence the solution mappings satisfy the relation

x(t− t0, 0, x0) = x(t, t0, x0), ∀ (t0, x0) ∈ I×X. (2.16)

Indeed, let s1(t) = x(t, t0, x0) and s2(t) = x(t− t0, 0, x0). Then we have s1(t0) = s2(t0) =

x0. Moreover, we have

d

dt
s2(t) =

d

dt
x(t− t0, 0, x0) =

∂x

∂t
(t− t0, 0, x0) · d

dt
(t− t0)

= F (x(t− t0, 0, x0)) = F (s2(t)),

which concludes that both s2(t) and s1(t) satisfy the same initial value problem. Hence

by the uniqueness assumption, we have s1(t) = s2(t).

As a matter of fact, we can restrict the initial time to t0 = 0 and write the solutions

12



2.2. Dynamical systems and transfers operators

(2.15)-(2.16) as x(t, x0). Furthermore, the solution mapping

φ : I×X → X

(t, x0) 7→ φ(t, x0)
(2.17)

with φt(x0) ≡ φ(t, x0) := x(t, x0), is continuous in both variables and fulfills the initial

value condition

φ(0, x0) = x0, ∀ x0 ∈ X

and the group property

φ(s+ t, x0) = φ(s, φ(t, x0)), ∀ s, t ∈ I and x0 ∈ X.

The latter relation is a direction consequence of uniqueness of solutions. As, a con-

sequence, the mapping (2.17) is special case of an autonomous dynamical system as

defined in (2.1). One can, thus, see that from an autonomous ODE (2.14) and its so-

lutions (2.15)-(2.16), an autonomous dynamical system can be defined and studied by

tracking the time evolution of the the flow map (2.17), via group property formulation.

However, the latter is only possible due to the translation invariant of the solutions (2.15)

of (2.14). This means, autonomous dynamical systems do not depend separately on

initial time t0 and final time t.

The opposite occurs for nonautonomous systems, since both initial and final times are

important rather than the elapsed time t − t0. Hence, a generalization of the group

property above is a two-parameter group property where both t0 and t are parameters,

which also referred to as a process of a nonautonomous dynamical system [59]. Let

ẋ = F (t, x)

x(t0) = x0

(2.18)

be the time-dependent extension of the ordinary equation (2.14). Let us assume existence

and uniqueness of solutions in forward time. Then, the solutions form a continuous map-

ping (t, t0, x0) 7→ x(t, t0, x0) ∈ X satisfying the initial value condition (i) x(t0, t0, x0) = x0

and the evolution property (ii) x(t2, t0, x0) = x(t2, t1, x(t1, t0, x0)), for all t0 ≤ t1 ≤ t2 in

I and x0 ∈ X. The principle in which solutions are uniquely determined by their initial

values justifies the property (ii). A process can, thus, be defined as a continuous mapping

13
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φ : I× I×X → X

(t, t0, x0) 7→ φ(t, t0, x0),
(2.19)

which satisfies the initial value (i) and the evolution property (ii). Later in this work, we

may write φtt0 in place φ(t, t0, ·) and vice versa, and the same will apply to the autonomous

flow map. Regarding the inverse flow maps, we may choose to work with
(
φtt0
)−1 in

place of φ(t0, t, ·) and vice versa, and the same will apply to the autonomous flow map.

For more details about process formulations and nonautonomous dynamical systems, we

refer the reader to [59].

In order to study the (finite) time evolution of a finite number of initial points{
x

(i)
0 , i = 1, ..., N

}
over time, one may think of considering a statistical evolution of

the autonomous/nonautonomous deterministic dynamical system through its flow map

(2.17) or (2.19). With this approach it helps to define a measure space environment,

since investigating the (finite) time evolution of an initial density of the distribution of

the initial points
{
x

(i)
0 , i = 1, ..., N

}
may be simpler and more rewarding in many ways.

Indeed, we could then study infinite dimensional linear operators whose spectra are

suitable for set-oriented dynamical systems. This is in fact, the importance of the next

section.

2.2.2 Transfer operators

Let (X,ΣX , µ) be a measure space and letD =
{
ρ ∈ L1(X,ΣX , µ) : ρ ≥ 0 and ‖ρ‖1 = 1

}
.

Note that to any measure space (X,ΣX , µ), one can associate the Banach spaces

Lp(X,ΣX , µ) =
{
ρ : X → R : ρ is measurable and

∫
X |ρ|

pdµ <∞
}
, p ≥ 1. Moreover,

for any ρ ∈ Lp ≡ Lp(X,ΣX , µ), ‖ρ‖p =
(∫
X |ρ|

pdµ
)1/p denotes the Lp norm of ‖ρ‖p. A

transformation R : X → X is measurable if R−1(A) ∈ ΣX for all A ∈ ΣX .

We suppose that, for a fixed time t ∈ I, the mapping φt : X → X defined in (2.17) is a non-

singular measurable transformation. That means, µ(
(
φt
)−1

(A)) = 0, whenever µ(A) = 0

for all A ∈ ΣX . The latter is immediately verified for measure preserving transformations

which are flow maps generated by ODEs that model the dynamics of incompressible fluid

flows. The Frobenius-Perron operator P t : L1(X,ΣX , µ)→ L1(X,ΣX , µ) with respect to

the flow φt, t ∈ I is uniquely defined [49] by the mass conservation relation∫
A
P tρdµ =

∫
(φt)−1(A)

ρdµ, ∀ A ∈ ΣX . (2.20)
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2.3. Basic concepts

Moreover, it straightforward to show that the operator P t satisfies the following relations

(a)P t (a1ρ1 + a2ρ2) = a1P
tρ1 + a2P

tρ2

(b)P tρ ≥ 0 if ρ ≥ 0

(c)
∫
X P

tρdµ =
∫
X ρdµ.

Hence, the Frobenius-Perron operator P t, t ≥ 0 is a linear operator, positive and maps

probability densities in D to probability densities in D. Furthermore, P t, t ≥ 0 has a

dual operator called the Koopman operator Kt : L∞(X,ΣX , µ)→ L∞(X,ΣX , µ) defined

by Ktg = g ◦ φt, where the functions g are smooth and are called observables. The

dynamical difference between P t, t ≥ 0 and Kt, t ≥ 0 is that the former pushes densities

forward under the evolution of the underlying dynamics, while the latter pulls backward

observables. Due to the one-to-one property of the flow map (2.17), the explicit formula

of P t is given by

P tρ0(y) =
ρ0

((
φt
)−1

(y)
)

|det J (φt) (y)|
, (2.21)

where ρ0 the initial density of the initial points
{
x

(i)
0 , i = 1, ..., N

}
. Similarly, the finite

time Frobenius-Perron operator P t0,t related to the flow map (2.19) is given by

P t0,tρ0(y) =
ρ0(
(
φtt0
)−1

(y))∣∣det J
(
φtt0
)

(y)
∣∣ , (2.22)

A lot of studies have been carried out around these operators, see [49]. In this work, we

will intensively use these operators to construct particular measurable sets which are

introduced below.

2.3 Basic concepts

Definition 2 (invariance) A subset M of X is called invariant under the autonomous flow

map (2.17) if

φ(t,M) = M for all t ∈ I.

In autonomous settings, as defined in (2.17), invariant sets characterize the local long-

term dynamical behaviors. Thus, simplest examples of invariant sets include equilibria

and periodic solutions. An equilibrium point, φ(t, x) = x for all t ∈ I, is an invariant set

M when M is the singleton {x}. Periodic solutions can also be referred to as periodic

orbit γ where for any x ∈ γ, we have φ(T + s, x) = φ(s, x) and φ(kT, x) = x for any
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Chapter 2. Dynamical systems and transfer operators

integer k. The latter relations are possible due to the group property of φ. Besides, T is

called the period of γ as the minimum positive value for which φ(T, x) = x. Thus, γ is

an invariant set. In this study, periodic orbits will play a key role in the construction of

invariant sets that emerge from the dynamics of incompressible flows. This will be widely

detailed in chapter 4.

Let us assume that M is a compact invariant subset of X and the underlying dynamics is

incompressible. Then M and M c = X \M partition the phase space X into two invariant

sets. We have, thus, a coexistence of two phase spaces with no transport of flow between

them. However, in real-world incompressible dynamics such as ocean or atmospheric

dynamics, an invariant partition of phase space is not possible. Indeed, interesting objects

include sets that move with minimum transport through there boundaries. Examples

include ocean eddies. Motivated by practical examples, this work will deal with almost-

invariant/coherent measurable sets which emerge from the dynamics of incompressible

flows. Let us suppose that µ is an invariant probability measure with respect to the flow

map (2.17). That is, µ(φ−t(A)) = µ(A) ∀ A ∈ ΣX . As a consequence, µ is automatically

nonsingular. Invariant measures in set-oriented autonomous dynamics are fixed with

respect to the flow map. Thus, they are relevant to represent mass distribution of fixed

macroscopic objects, as the underlying dynamics is fixed in time.

Definition 3 (Almost-invariance) A measurable set A ⊂ X is said to be an almost-

invariant set with respect to µ if

µ(A ∩ φ(−t, A))

µ(A)
≈ 1. (2.23)

Definition 2.23 states that the probability to leave the set A in t time steps is very low. In

other words, the set of points that are currently in A and will stay in A after t time steps

is large relative to A in the sense of the µ-measure. The almost-invariant set A partitions

the phase space into A and Ac = X \ A such that both A and Ac satisfy definition 3.

Later in chapter 3, we will seek balanced and maximal almost-invariant sets. That is,

measurable sets of interest should be balanced in the sense that µ(A) = µ(Ac) and

dominant among other sets. Thus, we say that {A,Ac} is a pair of almost-invariant sets,

whenever A and Ac each satisfies (2.23) and µ(A) = µ(Ac). Moreover, we will see in

chapter 3 that equation (2.23) is, in a functional level, equivalent to equation (2.12)

and finding and computing pair of optimal almost-invariant sets will require solving a

functional optimization problem.
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Given the nonautonomous dynamical system with the flow map (2.19) and inspired by

definition 3 in the autonomous setting, we can ask for finding measurable partitions

X1 ∪X2 = X and Y1 ∪ Y2 = Y := φ(t, t0, X) so that

Y1 ≈ φ(t, t0, X1) and Y2 ≈ φ(t, t0, X2) with

µ(X1) = ν(Y1) and µ(X2) = ν(Y2).
(2.24)

These separate both the initial and image phase spaces into two regions with minimal

transport between them. Note that the measure µ is transformed, via the flow map (2.19),

to a final measure ν, which is supported on the corresponding measure space (Y,ΣY , ν).

That is, ν(A) = µ ◦ φ(t0, t, A), ∀ A ∈ ΣY . Moreover, the measure ν represents the mass

distribution of objects of interest at time t. With the time-dependent setting (2.18), note

that the measure µ does not need to be necessarily invariant. In the following is given a

more formal definition regarding set relations in (2.24).

Definition 4 (Coherence) {A,B} is a pair of coherent sets, whenever

µ(A ∩ φ(t0, t, B))

µ(A)
≈ 1 and µ(A) = ν(B). (2.25)

Definition 4 states that the conditional probability of a point initially in A ⊂ X to be

mapped forward into B ⊂ Y at time t is very high. Moreover, the measurable sets

{X1, Y1} and {X2, Y2} in (2.24) are pairs of coherent sets.

Coherent sets are optimal regions that resist mixing with their surroundings over a finite

time span, while almost-invariant sets are fix optimal regions that asymptotically resist

mixing [13–16, 36]. The former emerge from a nonautonomous dynamical system (2.19),

while the latter exist when an autonomous dynamical system (2.17) is considered.

Given that 1Xk is a functional representation of Xk, k = 1, 2 and 1Yk is the functional

representation of Yk, k = 1, 2, relations in (2.24) can be reproduced in a functional

manner. For this we need a suitable linear operator [16] so that our goal will finally

consist of the following

Goals 5

1. L1Xk ≈ 1Yk .

2. µ(Xk) = ν(Yk), k = 1, 2.
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Therefore, the mapping φ(t, t0, Xk) may be operator-wise viewed as the functional

mapping L1Xk . This intuitively makes sense since we are interested in tracking the

evolution of densities that represent the distribution of initial data. Note that the

constraint in goals 5(2) means that there is no loss of mass under the dynamics, while

mapping Xk to its image Yk, under the action of L or the flow φ(t, ·, ·). However, the

operator L should be specified and understood, which requires a particular setting where

L can be gradually constructed. For the moment, one may notice that the operator L,

restricted in goals 5(1), satisfies equation (2.13). That is, L must be built using flow map

information with a functional approach. That is equivalent to think of building L from

the Frobenius-Perron operators in (2.21) and (2.22) which do not always satisfy goals

5(1). A mathematical framework for constructing the operator L in both autonomous and

nonautonomous dynamical systems and for finding optimal almost-invariant/coherent

sets will be carried out in chapter 3.

2.4 Summary

This chapter has served as a brief introduction of dynamical systems and transfer operators

concepts, which will be heavily used throughout this work. There is a broad literature

about these mathematical tools but it is always necessary to introduce key concepts

in order to align with traditional scientific methods. Finally, precise definitions of the

notions of almost-invariant/coherent sets were given. These sets are the main dynamical

objects we are interested in throughout this thesis. That is why an early understanding of

these concepts is necessary.
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3 Diffused transfer operators, set-oriented

dynamics

In this chapter we give a detailed construction process of robust coherent sets as well

as almost-invariant sets. Robust coherent sets are those that exhibit robustness under

external perturbations. They are, thus, suitable to mathematically model transporters of

mass, given the dynamics of a complex system such as the ocean/atmospheric circulation.

In fact, coherent sets can numerically simulate ocean eddies, which are good transporters

of water that is warmer/cooler/saltier than the surrounding water. Hence, coherent sets

can, for instance, very well contribute to change the temperature of the area of their

destinations, according to ocean flow direction. The approach that we follow is analytic

and is, firstly, based on perturbed infinite dimensional linear operators which are built

around transfer operators (2.21) and (2.22) introduced in chapter 2.

3.1 Singuar vectors for compact operators

3.1.1 Operator setting

Let L : X → Y be a compact linear mapping between two Hilbert spaces. Let Q =

L∗L : X → X with L∗ the dual of L. Hence, Q is compact, self-adjoint, and positive,

i.e., 〈Qx, x〉X ≥ 0. As a consequence, Q has a non-negative spectrum ordered as

λ1 ≥ λ2 ≥ · · · ≥ 0. Therefore, by the spectral theorem for compact and self-adjoint

operators ([61], Theorem II.5.1), we can find an orthonormal basis of eigenvectors,

uk ∈ X, Quk = λkuu, so that

Q =

N∑
k=1

λk〈·, uk〉Xuk (3.1)
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Note that N may be finite or infinite.

It follows, thus, the minimax principle ([62], Theorem 9.2.4, p212) :

Theorem 6

λk = min
V :codimV≤k−1<N

max
06=x∈V

〈Qx, x〉X
〈x, x〉X

, k = 1, ..., N. (3.2)

Furthermore, the maximizing x’s are the uk, k = 1, ..., N.

On the other hand, we have that the transformation

〈Qx, x〉1/2X

〈x, x〉1/2X

=
〈Lx,Lx〉1/2Y

‖x‖X
=
‖Lx‖Y
‖x‖X

= max
06=y∈Y

〈Lx, y/‖y‖Y 〉Y
‖x‖X

,

solves the optimization problem

σk := (λk)
1/2 = min

V :codimV≤k−1<N
max

06=x∈V,06=y∈Y

〈Lx, y〉X
‖x‖X‖y‖Y

, k = 1, ..., N, (3.3)

where we call the maximizing units x and y in (3.3) the left and right singular vectors of

L, respectively. Moreover, σk are the corresponding singular values of L.

One can easily observe that the compactness property of the linear operators L and

the existence of inner products were only used to arrive at a singular value decompo-

sition (SVD) in an operator level. Recall that our goal is to find coherent sets, given a

nonautonomous dynamical system between measurable phase spaces. Therefore, we

will see that constructing compact operators from the underlying dynamical systems and

choosing appropriate Hilbert spaces will lead to finding a SVD that will systematically

yield coherent partitions of the phase spaces.

3.1.2 SVD of matrices

To fix understanding, it is important to have in mind that the set-oriented analysis of

the dynamical systems (2.17) and (2.19) will eventually lead to a spectral analysis of
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matricesM∈ Rn×m:

M =


M11 M12 · · · M1m

M21 M22 · · · M21

...
...

. . .
...

Mn1 Mn2 · · · Mnm

 , k > 2. (3.4)

The state space of the system is, thus, subdivided in to smaller sub-states and the entries

Mij 6= 0, i = 1, ..., n, j = 1, ...,m correspond to transition probabilities between states.

In other words, the conditional probability of the flow map to land in a sub-state j given

that it was initially in the sub-state i yields the entry Mij . This will be more explicit

in chapter 5 and chapter 6. Therefore, depending on the nature of the dynamics in

phase space,M is vertical and tall when n� m, horizontal and short when n� m. For

instance, n� m may corresponds to a contraction where the flow (2.19) maps all the

initial data together into a smaller region in the image phase space. The case n � m

may correspond to an expansion where all the initial data are mapped to wider region

within the image phase space. Given the time dependent flow (2.19), the matrixM is

mainly used to determine input and output numerically approximated coherent clusters

of sub-states under the finite time dynamics. Further details about the matrixM will be

given later in this study. Finally,M can be non-uniquely decomposed as

M = UΣV ᵀ, (3.5)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices. That is to say that UUᵀ = UᵀU =

In and V V ᵀ = V ᵀV = Im with In and Im being the identity matrices. The matrix Σ is

diagonal and the diagonal entries σi = Σii are called singular values ofM. The number

of non-zero diagonal entries determine the rank ofM. Equation (3.5) is known as the

SVD ofM and vectors U and V are called left and right singular vectors, respectively. The

SVD is well known to be relevant in extracting dominant patterns from a low dimensional

approximation given a high dimensional data. This is the so called principal component

analysis (PCA). The SVD can also be systematically used to extract dominant coherent

patterns given a matrix of data which is generated from the finite time evolution of a

dynamical system. The SVD is actually a data-driven method since it can help detect

qualitatively relevant features, given complicated set of data. In this study our first

task will always consist of finding dominant coherent patterns, given singular vectors

obtained from (3.5). In the following, we will elaborate more on the different steps

towards connecting the underlying dynamical systems, the transfer operators, the SVD,
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and also the eigenvalue value decomposition. In other words, the matrix (3.4) will later

be more specified as a finite dimensional approximation of compact operators. Note that

the SVD is convenient when studying nonautonomous dynamical systems, see chapter 6.

Furthermore, for an autonomous dynamical system, a square matrix will approximate

the autonomous transfer operators and, instead of SVD, eigenvalue decomposition will

yield almost-invariant patterns, see chapter 5.

3.1.3 Compact linear operators, coherent partitions

Now, we specify our setting by taking the Hilbert spaces L2(X,ΣX , µ) and L2(Y,ΣY , ν)

and a transfer operator

L : L2(X,ΣX , µ)→ L2(Y,ΣY , ν). (3.6)

Note that the measurable spaces X and Y are now different from the Hilbert spaces X

and Y in the previous section. Let 〈·, ·〉µ and 〈·, ·〉ν denote the standard inner products of

L2(X,ΣX , µ) and L2(Y,ΣY , ν), respectively. Under the following assumptions:

Assumption 7

1. (Lf)(y) =
∫
k(x, y)f(x)dµ(x) where K ∈ L2(X × Y,ΣX × ΣY , µ× ν) is non-negative,

2. L1X = 1Y , equivalently
∫
k(x, y)dµ(x) = 1 for ν− a.a y,

3. L∗1Y = 1X , equivalently
∫
k(x, y)dν(y) = 1 for µ− a.a x,

it is proven in [16] that both operators L and L∗ are compact, the largest singular value

of L is σ1 = 1 and is simple (i.e., of multiplicity one) with 1X and 1Y the respective

associated left and right singular vectors, and the second singular value σ2 satisfies

σ2 = max
f∈L2(X,ΣX ,µ), g∈L2(Y,ΣY ,ν)

{
〈Lf, g〉ν
‖f‖µ‖g‖ν

: 〈f,1X〉µ = 〈g,1Y 〉ν = 0

}
< 1. (3.7)

Besides, the maximizing f and g of (3.7) are u2 and Lu2
‖Lu2‖ , respectively. The latter are

the respective left and right singular vector of L corresponding to the singular σ2.

The square integrability of the stochastic kernel k in assumption 7(1) ensures compactness

of L and L∗, which also ensures that the spectrum of the operator Q = L∗L located far

from the origin is discrete. In addition, the non-negativity of k is set to make sure that Lf

represents mass distribution with respect to ν, whenever f represents some distribution
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3.1. Singuar vectors for compact operators

of mass with respect to µ. As 1X represents the density function of the measure µ and

1Y represents the density function of the measure ν, then assumption 7(2) requires 1X
to be mapped to 1Y by L. From assumption 7(3), one can easily prove that L preserves

integrals.

Therefore, assumption 7(1-3) yields necessary conditions to have a meaningful discrete

spectrum of L. Moreover, it provides an intuitive understanding of what the operator L

should look like, given an ultimate explicit nonautonomous dynamics.

Using only results from assumption 7 including (3.7) and the targeted goals in 5, it is

shown in [16] that

max
X1∪X2=X,Y1∪Y2=Y

{
〈L1X1 ,1Y1〉ν

µ(X1)
+
〈L1X2 ,1Y2〉ν

µ(X2)

}
≤ 1 + σ2 (3.8)

Indeed, it all starts from solving the optimization problem

(P) max
X1∪X2=X,Y1∪Y2=Y


〈
L

(√
µ(X2)

µ(X1)
1X1 −

√
µ(X1)

µ(X2)
1X2

)
,

√
ν(Y2)

ν(Y1)
1Y1−

√
ν(Y1)

ν(Y2)
1Y2

〉
ν

: µ(Xk) = ν(Yk), k = 1, 2.

,
(3.9)

where 〈LUX , VY 〉ν with UX =
√

µ(X2)
µ(X1)1X1−

√
µ(X1)
µ(X2)1X2 and VY =

√
ν(Y2)
ν(Y1)1Y1−

√
ν(Y1)
ν(Y2)1Y2

is the objective function and µ(Xk) = ν(Yk), k = 1, 2 is the constraint. The latter agrees

with goals 5(2). Hence, given the constraint, it is straight forward to rewrite the objective

function as

〈LUX , VY 〉ν =
〈L1X1 ,1Y1〉
µ(X1)

+
〈L1X2 ,1Y2〉
µ(X2)

− 1. (3.10)

That is, the set-based optimization (3.9) becomes

(P) max
X1∪X2=X,Y1∪Y2=Y

{
〈L1X1 ,1Y1〉
µ(X1)

+
〈L1X2 ,1Y2〉
µ(X2)

− 1 : µ(Xk) = ν(Yk), k = 1, 2

}
.

(3.11)

As a consequence, a strongly possible way to achieve the goals 5 is to solve the problem

(3.9) which is just problem (3.11). Moreover, given that ‖UX‖µ = ‖VY ‖ν = 1 and

23



Chapter 3. Diffused transfer operators, set-oriented dynamics

〈UX ,1〉µ = 〈VY ,1〉ν = 0, then problem

(RP) max
f∈L2(X,ΣX ,µ), g∈L2(Y,ΣY ,ν)

{
〈Lf, g〉ν
‖f‖µ‖g‖ν

: 〈f,1X〉µ = 〈g,1Y 〉ν = 0

}
is a relaxed version of the problem

max
X1∪X2=X,Y1∪Y2=Y

〈LUX , VY 〉ν .

We, thus, have the following:

(P) ≤ max
X1∪X2=X,Y1∪Y2=Y

〈LUX , VY 〉ν

≤ max
f∈L2(X,ΣX ,µ), g∈L2(Y,ΣY ,ν)

{
〈Lf, g〉ν
‖f‖µ‖g‖ν

: 〈f,1X〉µ = 〈g,1Y 〉ν = 0

}
That is

max
X1∪X2=X,Y1∪Y2=Y

{
〈L1X1 ,1Y1〉
µ(X1)

+
〈L1X2 ,1Y2〉
µ(X2)

: µ(Xk) = ν(Yk), k = 1, 2

}
≤ 1+(RP).

(3.12)

One can, therefore, see that (3.12) is simply (3.8).

The relaxed problem (RP) can be easily solved in reality, given that a numerical approx-

imation of L is available. That requires an explicit operator L whose approximation

yields a matrix similar to (3.4). Then the SVD (3.5) can be computed and dominant left

and right singular vectors (f2, g2) with corresponding singular value σ2 are systemati-

cally used to approximate the coherent partitions (Xk, Yk) , k = 1, 2. Indeed, a heuristic

approach consists of creating coherent partitions {X1, X2} of X and {Y1, Y2} of Y by

choosing thresholds a and b such that µ(Xk) = ν(Yk), k = 1, 2. Then, as performed in

[15], partitions are built from the following classification:

X1 = {f2 > a} , X2 = {f2 < a} and Y1 = {g2 > b} , Y2 = {g2 < b} .

Thus, given that σ2 ≈ 1, (Xk, Yk) is a pair of coherent sets since L1Xk ≈ 1Yk , k = 1, 2.

In other terms, the relation (2.24) holds. Hence, the nonautonomous flow will then

transport Xk to Yk with minimum dispersion.

Remark 8 In this study, approximating coherent sets is only the beginning of the work

towards understanding qualitative changes of the latter. Indeed, we are interested in
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3.2. Nonautonomous dynamics, robust coherent sets

predicting sudden qualitative changes of coherent sets, as the nonautonomous dynamical

system evolves in time. That means, we will be interested in particular coherent partitions

which may not be approximated by the second dominant singular vectors but by other

singular vectors with smaller magnitude singular value. In other words, we will not restrict

ourselves to only finding σ2 and (f2, g2). In fact, the spectral collection of the whole

family {(f1, g1) , (f2, g2) , (f3, g3) , · · · , (fN , gN )} with 1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σN , N ≥ 3 is

necessary for finding the convenient coherent partition to be studied.

3.2 Nonautonomous dynamics, robust coherent sets

Now, we will specify the operator L, given an explicit dynamical system and robustness

constraints of coherent sets. A coherent set is robust when it remains coherent under

external perturbations. The latter will be explicitly modeled so that a perturbed linear

operator, say Lε, satisfying assumption 7 will be derived.

3.2.1 The deterministic setting

Let us consider the nonautonomous flow map φt+τt from time t to time t + τ defined

in (2.19) and acting on a compact set D ⊂ Rd. However, our initial domain of interest

will be X ⊂ D and Y will be its image with respect to the flow. Now, we define a new

measure µ in X which has a density hµ ∈ L2(X, `) with respect to the Lebesgue measure,

i.e, hµ = dµ
d` . The new measure µ may be interpreted as the mass distribution of the

matter we are interested in transporting. In the same vein, we define ν as the image of µ

with respect to the ongoing finite time dynamics. The measure ν is supposed to have a

density hν dνd` . It may be interpreted as the mass distribution of the transported matter at

final time.

Let the time-dependent Frobenius-Perron operator be defined with respect to the Lebesgue

measure ` as P t,t+τ : L1 (X, `)→ L1 (Y, `) . Now we define a transfer operator

L : L1 (X,µ)→ L1 (Y, ν) by

Lf =
P t,t+τ (fhµ)

hν
, (3.13)
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Chapter 3. Diffused transfer operators, set-oriented dynamics

where hν = P t,t+τ (hµ). Note that L1X = 1Y . Now, let L∗ : L∞ (Y, ν) → L∞ (X,µ)

denote the dual operator of L. Then for f ∈ L1 (X, `) and g ∈ L∞ (Y, ν) we have that

〈Lf, g〉ν =

∫
P t,t+τ (fhµ)

hν
gdν =

∫
P t,t+τ (fhµ) gd` =

∫
fg ◦ φt+τt dµ = 〈f, L∗g〉µ.

Note that the use of the standard duality relation between the Koopman operator Kt,t+τ

and the Frobenius-Perron operator was used to make the above relation possible. We

have, thus, L∗ = g ◦ φt+τt and L∗1Y = 1X . Finally, substituting the abstract operator L in

the left hand side of (3.8) by the concrete operator L defined in (3.13), we have

max
X1∪X2=X,Y1∪Y2=Y

{
〈L1X1 ,1Y1〉ν

µ(X1)
+
〈L1X2 ,1Y2〉ν

µ(X2)

}
max

X1∪X2=X,Y1∪Y2=Y
=

{
〈1X1 , L

∗1Y1〉ν
µ(X1)

+
〈1X2 , L

∗1Y2〉ν
µ(X2)

}

max
X1∪X2=X,Y1∪Y2=Y

=

µ
(
X1 ∩

(
φt+τt

)−1
Y1

)
µ (X1)

+
µ
(
X2 ∩

(
φt+τt

)−1
Y2

)
µ (X2)


≤ 1 + σ2.

Therefore, given any two measurable sets {Y1, Y2} such that X1 =
(
φt+τt

)−1
Y1 and

X2 =
(
φt+τt

)−1
Y2, we have that

max
X1∪X2=X,Y1∪Y2=Y

=

µ
(
X1 ∩

(
φt+τt

)−1
Y1

)
µ (X1)

+
µ
(
X2 ∩

(
φt+τt

)−1
Y2

)
µ (X2)

 = 2, (3.14)

which implies directly that σ2 = 1. As a consequence, every pair of measurable sets

{X1, X2} and {Y1, Y2} that satisfy the relationsXk =
(
φt+τt

)−1
Yk, k = 1, 2 yield coherent

sets that partition X and Y . However, constructed this way with the operator (3.13),

these kind of coherent sets are infinitely many. Moreover, these coherent sets do not

have robustness. Indeed, depending on the nature of the dynamics, the coherent couple

(Xk, Yk) , k = 1, 2 may consist of thin and elongated measurable sets. As a consequence,

any external perturbation will easily push points outside these sets. That means, these

coherent sets lack robustness. The robustness property is, however, very important in

practice, since real world physical systems are usually exposed to external perturbations.

For instance, ocean dynamics are subject to perturbations such as wind intensities. In

this context ocean gyres must be modeled as robust coherent sets. As a matter of fact,

the operator (3.13) is not suitable to obtain optimal coherent sets. We should then build

a different transfer operator by incorporating additional perturbations into the dynamics.
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3.2. Nonautonomous dynamics, robust coherent sets

Hence, the deterministic operator (3.13) will be replaced by a non-deterministic linear

operator built from the perturbed nonautonomous dynamics.

3.2.2 Robust operators and robust coherent sets

The robustness property of coherent sets is essential as argued in the previous section.

Hence, we are going to study nonautonomous dynamics which are subject to additional

perturbations. Note that the latter are independent from the dynamics and the reason

why we are adding external perturbation is to find robust coherent sets. Indeed, our study

is motivated by real world applications such as predicting the sudden split of the Antarctic

polar vortex in September 2002. Given that coherent sets are obtained from compact

transfer operators, we are going to construct the latter from the perturbed dynamics.

To construct the perturbed operator L, we should first specify the manner in which

perturbations will be incorporated into the dynamics.

The perturbation process is similar to discontinuously adding small random noise. That

is, firstly, the phase space X will be initially perturbed in the sense of shaking the whole

domain with an amplitude ε > 0. This means every single point in the phase space X

will be perturbed with a radius of ε. Secondly, the flow will be applied to the perturbed

phase space, say Xε. Thirdly, the image phase space, denoted by Y ′ε := φt+τt (Xε), is again

perturbed to yield the final phase space Yε which is the perturbed version of Y and yields

the perturbed dynamics phase space at final time. Hence, it is clear that the underlying

dynamics is only perturbed at initial and final time [16]. That is why, the perturbation is

referred to as a discontinuous addition of small random noise.

A concrete mathematical formulation of the perturbation process is also constructed

progressively. Perturbation is added in form of local diffusion which is modeled using the

diffusion operators

DXε : L1(X, `)→ L1(Xε, `), DXε g(y) =

∫
X
γX,ε(y − x)g(x)dx

DY ′εε : L1(Y ′ε , `) 7→ L1(Yε, `), DY ′εε f(y) =

∫
Y ′ε

γY ′ε ,ε(y − x)f(x)dx
(3.15)

where

γX,ε : D → R+,

∫
Xε

γX,ε(y − x)dy = 1,

γY ′ε : D → R+,

∫
Yε

γY ′ε (y − x)dy = 1.

(3.16)
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Chapter 3. Diffused transfer operators, set-oriented dynamics

are the stochastic kernels. Thus, the operators (3.15) act as convolution with the

stochastic kernels (3.16). To fix thoughts, one may think of the kernels functions (3.16) as

supported on ε-neighborhood of the origin, that Xε = supp
(
DXε 1X

)
, that Y ′ε = φt+τt (Xε)

and that Yε = supp
(
DY

′
ε
ε 1Y ′ε

)
.

From (3.15), we construct the perturbed version of the Lebesgue Frobenius-Perron

operator P t,t+τ as

P t,t+τε : L1(X, `) 7→ L1(Yε, `), P t,t+τε f(y) = DY ′εε ◦ P t,t+τ ◦ DXε f(y).

That is

P t,t+τε f(y) =

∫
X

(∫
Xε

γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
f(x)dx. (3.17)

Given that hµ = dµ
d` , we can operate a change of measure and rewriting (3.17) yields

P t,t+τε f(y) =

∫
X

(∫
Xε

γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
f(x)

hµ(x)
dµ(x).

Besides, we have

P t,t+τε (fhµ)(y) =

∫
X

(∫
Xε

γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
f(x)dµ(x) (3.18)

and

P t,t+τε (hµ)(y) =

∫
X

(∫
Xε

γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
dµ(x). (3.19)

Note that taking f = 1X in equation (3.18) yields equation (3.19). Hence, we can

normalize (3.18) with (3.19) and finally define the perturbed transfer operator Lε as

Lt,t+τε f(x) =
P t,t+τε (f · hµ)(x)

P t,t+τε hµ(x)
(3.20)

which satisfies the relation Lt,t+τε 1X = 1Yε . A more detailed expression of (3.20) is given

as

Lt,tτε f(y) =

∫
X

(∫
Xε
γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
f(x)hµ(x)dx∫

X

(∫
Xε
γY ′ε (y − φt+τt (z))γX,ε(z − x)dz

)
hµ(x)dx

=

∫
X

Γε(x, y)f(x)dµ(x)

(3.21)
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3.3. Autonomous dynamics, robust almost-invariant sets

In [16], it is proven that the operator Lt,tτε will act on functions in L2(X,µ), depending

on the conditions set on the kernels functions (3.16). More precisely, a suitable choice

would be

γX,ε = γY ′ε =
1

`(Bε(0))
1Bε(0)

then (3.21) becomes

Lt,t+τε f(y) =

∫
X

`
(
Bε(x) ∩ (φt+τt )−1 (Bε(y))

)∫
X `
(
Bε(x) ∩ (φt+τt )−1(Bε(y))

)
dµ(x)

f(x)dµ(x)

=

∫
X

Γε(x, y)f(x)dµ(x),

(3.22)

where

Γε(x, y) =
`
(
Bε(x) ∩ (φt+τt )−1 (Bε(y))

)∫
X `
(
Bε(x) ∩ (φt+τt )−1(Bε(y))

)
dµ(x)

. (3.23)

Thus, [16] showed that Γε(x, y) ∈ L2(X × Yε, µ × ν), Lt,t+τε is compact and acts on

L2(X,µ). Moreover, the dual operator L(t,t+τ)∗
ε is compact and satisfies L(t,t+τ)∗

ε 1Yε = 1X .

We arrive then at the conclusion that the operator Lt,t+τε fulfills the conditions to yield σ2

as in (3.7) and then optimal coherent sets can be obtained from its discrete spectrum.

The process of constructing the operator Lt,t+τε looks technical but the end goal consists

of numerically approximating the latter in order to arrive at a matrix similar to (3.4).

Indeed, one may already view the the stochastic kernel Γε in (3.22) as a matrix with

matrix entries entries Γε(x, y) and the evolution of densities Lt,tτε f(y) in (3.21) as a

matrix multiplication. We will see later in this study that a systematic exploitation of

the SVD of the matrix approximation of (3.21) yields approximation of coherent sets. In

chapter 6, the latter will be computed and there qualitative change within the finite time

dynamics will be studied. This will consist of a purely discretized finite time bifurcation

framework and coherent patterns will be extracted from sign patterns of singular vectors.

But from now, we remark that the infinite dimensional operator Lt,t+τε in (3.22) acts on

densities f as a matrix multiplication where the operator Γε(x, y) in (3.23) denotes the

matrix entries. A finite dimensional approximation of Lt,t+τε was fully developed in [36].

3.3 Autonomous dynamics, robust almost-invariant sets

In the autonomous setting, the analytic framework developed in section 3.2 becomes

simpler. Indeed, the dynamics no longer depends on both initial and final time, only
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Chapter 3. Diffused transfer operators, set-oriented dynamics

the flow time matters. Moreover, the dynamics is fixed in space which means we only

consider the domain X ⊂ D and look at fix measurable almost-invariant sets with respect

to an invariant measure µ which is absolutely continuous with respect to the Lebesgue

measure `. Hence, as, in section 3.2 with nonautonomous dynamics, we are particularly

interested in finding an optimal measurable almost-invariant set A. This is equivalent

to finding a measurable partition
{
A,Ac

}
of the domain X with minimal transport

between them. In order to set an optimization problem, a functional representation

of this partition is used as 1A and 1Ac . Thus, under the constraint µ(A) ≈ µ(Ac) and

L1A ≈ 1A, L1Ac ≈ 1Ac , we maximize over measurable sets A the following ratio

rt(A) =

〈
L1A,1A

〉
µ(A)

+

〈
L1Ac ,1Ac

〉
µ(Ac)

. (3.24)

The ratio (3.24) is equivalent to

rt(A) =
µ(A ∩

(
φt
)−1

(A))

µ(A)
+
µ(Ac ∩

(
φt
)−1

(Ac))

µ(Ac)
. (3.25)

Note that, the operator L is the same as (3.6) defined in section 3.1.3 but defined in

L2(X,µ) to itself. Under the specific deterministic autonomous dynamics, the ratio in

the left hand side of (3.14) becomes (3.25). Thus, the framework for finding optimal

almost-invariant sets is just a particular setting of section 3.2.

It is clear that the optimal almost-invariant set A will satisfy rt(A) ≈ 2. However, the

problem (3.25) is not well posed. Therefore, we seek realistic optimal almost-invariant

sets, in the sense of robustness in the presence of noise as described in section 3.2,

or small external random perturbations. Therefore, a perturbed transfer Lε, which is

dynamically similar to P t, is necessary. If ε represents the perturbation strength, a diffused

transfer operator, Lε is constructed in section 3.2 and was proposed in [16]. Robust

almost-invariant sets will eventually be computed from the spectrum of a self-adjoint

operator derived from the diffused transfer operators [36]. As mentioned above, we use

an ε-perturbation to obtain a diffused version of the deterministic transfer operator L.

Thus, as discussed in [16], the following diffusion operator transforms a deterministic

density to a diffused one via a stochastic kernel with a bounded support, Moreover, the

kernel is supported in Bε(0) with an explicit form γε = 1
`(Bε(0))1Bε(0). Therefore, with

this choice of the stochastic kernel, both operators Lε and L∗ε are compact, positive with

Lε1X = 1X and L∗ε1X = 1X . From now on we can address the question of finding robust

almost-invariant sets under the ε-perturbed dynamics. Hence, we set a perturbed version
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3.3. Autonomous dynamics, robust almost-invariant sets

of (3.24) as

rε(A) =

〈
Lε1A,1A

〉
µ(A)

+

〈
Lε1Ac ,1Ac

〉
µ(Ac)

. (3.26)

The optimization problem becomes finding a measurable partition
{
A,Ac

}
that max-

imizes (3.26), i.e., µ(A) ≈ µ(Ac) and Lε1A ≈ 1A, Lε1Ac ≈ 1Ac . The constraint

µ(A) ≈ µ(Ac) is set to ensure that the partition is nontrivial. The expression (3.26)

is equivalent to the following

rε(A) =

〈
Qε1A,1A

〉
µ(A)

+

〈
Qε1Ac ,1Ac

〉
µ(Ac)

. (3.27)

where Qε = Lε+L∗ε
2 . The latter has the same property as Lε and, more importantly, it is

self-adjoint. Therefore, in [16, 36], it is shown that maximizing rε over all measurable

sets is the same as solving the relaxed optimization problem

max
f 6=0

{
〈Qεf, f〉
‖f‖2µ

, 〈f,1X〉 = 0

}
(3.28)

knowing that the solution of the above problem is λ2, the second largest eigenvalue of

Qε, which is realized for f = v2 where v2 is he corresponding eigenfunction. Indeed,

due to the properties of Qε including compactness and self-adjointness with the specific

choice of the stochastic kernel γε, the first dominant eigenvalue, λ1 = 1, is simple and

1D is the corresponding eigenfunction [16]. Moreover, all the eigenvalues of Qε are real.

However, the spectrum of Lε and L∗ε may be complex except for the leading eigenvalue

λ1 = 1, which is also simple with 1X as the corresponding eigenfunction. It is possible to

find bounds of rε [36] as

2− 2
√

(1− λ2) ≤ sup
A⊂D

rε(A) ≤ 1 + λ2. (3.29)

It is clear from (3.29) that supA⊂X r
ε(A) ≈ 2 whenever λ2 ≈ 1. Consequently, the

existence of an eigenvalue λ2 ≈ 1 is linked to the existence of an almost-invariant set A.

Furthermore, the corresponding measurable partition into almost-invariant sets A and Ac

is constructed from the corresponding eigenfunction v2. Indeed, a threshold δ is carefully

chosen so that A and Ac are the upper and lower level sets of v2, respectively.

Numerical approximations of Lε and Qε and computation of almost-invariant sets can

be found in [36]. In this study, we will just use them in case we need them. Note that
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Chapter 3. Diffused transfer operators, set-oriented dynamics

this work addresses bifurcations of almost-invariant/coherent sets. But in chapter 4 and

chapter 5, it will be clear that set-oriented bifurcation is only possible with the discretized

compact operators Lε and Qε.

3.4 Summary

The analytic framework proposed above was widely developed in [16]. Moreover, finite

dimensional approximation of (3.21) and its autonomous version in section 3.3 was

widely developed in [36]. Thus, this chapter can be viewed as a mandatory introduction

for understanding the theoretical background of our current study. Indeed, it is necessary

to have a solid comprehension of measurable coherent/almost-invariant sets before any

further serious work in this regards. A very interesting observation is that there is a

strong interdependency connection between discrete spectra of compact operators and

set-oriented dynamics. That is why, in the upcoming chapters we are going to use this

connection to characterize bifurcation in a set-oriented dynamical system approach. The

latter approach is actually very innovative. Hence, in chapter 4, we will show how to

specifically characterize bifurcation of almost invariant sets based on known classical

bifurcation theory [10, 25, 28].
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4 Bifurcations, spectral signatures and

almost-invariant sets

This chapter is the starting point of the study of qualitative changes of optimal almost-

invariant/coherent sets. Understanding and characterizing changes of optimal almost-

invariant/coherent sets sounds a very unfamiliar task to do despite the rich content of

dynamical system theory. Indeed, by the time we are writing this thesis, there is no

preexisting study in this regard that we know of. Therefore, we will start our work by

briefly reviewing the very classical theory of qualitative changes of a dynamical system

on a microscopic level, before we progressively move forward to address changes in a

macroscopic levels.

4.1 Basic concepts and definitions

Let us define a p-parametrized ODE in the Lebesgue measure space (D,Σ, µ) with D a

compact subset of Rd and let us suppose that p ∈ R is a bifurcation parameter.

ẋ = F (x, p) =: Fp(x). (4.1)

We fix p and assume that the vector field Fp : D → Rd is sufficiently smooth to guarantee

the existence and uniqueness of solutions of (4.1). Thus, there exists a flow map

St : D → D such that for any given initial solution x(0) = x0 and flow time t ∈ R

x0 7→ St(x0) ∈ D, x0 ∈ D (4.2)

yields the solution of the system at time t for the initial value x0. Note that in this chapter

we use the notation St for a flow map, unlike the notation used in chapter 2 (2.17).

Indeed, we want to avoid naming confusions between flow map and eigenfunctions that
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we will introduce later.

Recall that the solution of (4.1) generates a Frobenius-Perron operator

P tf(x) =
f(S−t(x))

|det J(St)(x)|

=

∫
X
δ(x− St(y))ρ0(x)dµ(y), t ≥ 0,

(4.3)

which is actually a strongly continuous semigroup of contraction. Hence, its infinitesimal

generator is given by

Gf := lim
t→0

P tf − f
t

f ∈ D(G). (4.4)

G is linear and its domain is given by

D(G) =
{
f ∈ D(P t) : lim

t→0

P tf − f
t

exists
}
.

In this work, the infinitesimal generator of the Lebesgue Frobenius-Perron operators

generated by (4.1) is particularly given by the so-called transport/continuity equation

Gf := −∇ · (Fpf) = −Fp · ∇f,

for every continuously differentiable function f (Chapter 7, [49]). Given such initial time

density f , the density at time t, g(t, x) = P tf(x), is the solution of the equation

∂g

∂t
= −Fp · ∇g = G(g). (4.5)

Furthermore, the discrete spectra of both P t and G, denoted respectively by σ(P t) and

σ(G), are related by the spectral mapping theorem (Theorem 2.4 [50])

etσ(G) ⊂ σ(P t) ⊂ etσ(A) ∪ {0}, ∀ t > 0. (4.6)

This means that for a given t > 0, if λ ∈ σ(G) then eλt ∈ σ(P t), conversely, if eλt ∈ σ(P t)

then λ+ 2πic
t ∈ σ(G), c ∈ Z. Note that both operators P t and G can also have a continuous

spectrum, since they are infinite dimensional. However, in this work we will only focus

on the discrete spectra of both operators. Moreover, for an appropriate Banach space

D(P t), t ≥ 0, the resolvent operator of G, given by R(z) = (zI − G)−1, z ∈ ρ(G) =

C \ σ(G) with ρ(G) being the resolvent set, is bounded and its explicit form becomes the
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Laplace transform of semigroup P t, t ≥ 0 (see [31], Chapter II, Theorem 1.10). That is,

R(z)f =

∫ ∞
0

e−zsP sfds, f ∈ L1, z ∈ ρ(G), with Re(z) > 0. (4.7)

4.2 Bifurcations

4.2.1 Classical approach

The origin of the term bifurcation was by Henri Poincaré [30] who used it to describe

the ”splitting” of equilibrium solutions, given the family of ODEs (4.1). Indeed, given a

parametrized dynamical system, bifurcation occurs when a change in parameter causes

an equilibrium point to move the system to a qualitively different regime. The equilibrium

solutions of (4.1) are the solutions of the equation F (x, p) = 0. Hence, equilibrium points

can be created or destroyed, or their stability can change, as the parameter p is varied.

Moreover, as p varies, these equilibrium points are described by smooth functions of p,

say x0(p), far from points at which the Jacobian derivative of F (x, p) with respect to x,

denoted by DFp, has a zero eigenvalue. The graphs {(p, x0(p)), p ∈ R} are branches of

equilibria of (4.1). Thus, we say that (p0, x̄0) is a point of bifurcation if DFp has a zero

eigenvalue at (p0, x̄0). In this case, several branches of equilibria may come together

and qualitative changes such as loss or gain of stability may occur. These qualitative

changes in the dynamics are called bifurcations. A bifurcation diagram is a diagram that

depicts the evolution of the graphs {(p, x0(p)), p ∈ R}. The following example illustrates

a bifurcation which occurs as a catastrophic jump. Catastrophe is meant in the sense that

the stability of an equilibrium point will break down and causes the system to suddenly

jump to into another state.

Example 9

ẋ = p− x3 + x, p, x ∈ R. (4.8)

The dynamical system generated by the ODE (4.8) undergoes a qualitative change as an

example of bifurcation with the corresponding diagram shown in figure 4.1. There are two

bifurcation points marked as black dots. The blue branches are stable equilibrium points or

stable states, while the red branch connects unstable equilibrium points or unstable states.

Hence, when the parameter p passes beyond a bifurcation point, the system transitions very

fast to another stable state. This sudden transition is not immediately followed by another
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Figure 4.1: Bifurcation diagram of the (4.8) in Example 9.

sudden jump towards the previous stable state by simply tuning parameters p slightly. In

fact, one needs to put a considerable change in the parameter p in order to get back to the

prior stable state. This lack of immediate reversibility as a parameter is changed is called

hysteresis. Therefore, the bifurcation diagram exhibits oscillations between stable states

where slow and fast motions alternate. This is known as the hysteresis loop. Mathematical

models where the hysteresis bifurcation are found include the Budworm population dynamics.

The latter describes the population dynamics of an insect called spruce budworm (see [25],

chapter 3).

4.2.2 Statistical approach and the trace formula

In example 9, we have illustrated qualitative changes, occurring in the dynamics of a

chosen initial point. The bifurcation of an ensemble of trajectories can also be studied by

relying on the statistical properties of the deterministic system (4.1). The latter suggests

a formulation of a randomly generated set of initial points into a probability distribution

function, as introduced in chapter 2. One then needs to study their evolution under the

deterministic dynamics via the continuity equation (4.5). In this setting, it is possible

to study the bifurcation of the underlying system statistically. This method is spectral

and connects the spectra of the operators (4.3) and (4.4) to the stability eigenvalues of

the stationary points of (4.1). Indeed, a spectral signature of the pitchfork bifurcation

was studied in [17] where, in an appropriate functional space, the spectrum of the

infinitesimal generator could be found as well as the corresponding eigenfunctions. The
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eigenvalues of (4.4) came out as a linear combination of the bifurcation parameters p

and stability eigenvalues. As a result, eigenvalues tend to accumulate at zero as the

bifurcation parameter comes close to 0. The challenging part of this method is choosing

the appropriate functional space for the eigenfunctions.

An easier approach that guarantees a direct computation of the eigenvalues of (4.4)

is based on the so-called trace formula (Chapter 3, [48]). This approach consists of

extracting eigenvalues by computing the trace of the resolvent operator (4.7). Indeed,

from the Laplace transform (4.7), we have that

trR(z)f = tr(zI − G)−1 = tr

∫ ∞
0

e−zsP sds =

∫ ∞
0

e−zstrP sds (4.9)

and

trP t = tr

∫
X
δ(x− St(y))ρ0(x)dµ(y)

=

∫
X
δ(x− St(x))dµ(x)

=
∑
s

1

|det (I − J(St)(xs))|

where xs, s ∈ N denote(s) the stationarity solution(s). A necessary condition to use the

trace formula is to assume that all the stationary points of (4.1) are hyperbolic. That

is, the corresponding stability eigenvalues of xs, denoted by λs,j ∈ C, j = 1, 2, · · · , d,

should satisfy Re(λs,j) 6= 0. Since J(Fp) is the matrix of the linearized vector field, we

have J(St(xs)) = exp(J(Fp)(xs)t), t ≥ 0, and hence

trP t =
∑
s

1

|det (I − exp(J(Fp)(xs)t))|
.

One can see that trP t diverges like 1
|t|n , n ∈ N for t → 0, but it also decays to zero for

t→∞. Indeed, we can rewrite trP t as

trP t =
∑
s

d∏
j=1

1∣∣1− exp(λ(s,j)(p)t)
∣∣
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which can be decomposed as

trP t =
∑
s

 ∏
Re(λ(s,j)(p))>0

exp(−λ(s,j)(p)t)

1− exp(−λ(s,j)(p)t)

 ∏
Re(λ(s,j)(p))<0

1

1− exp(λ(s,j)(p)t)

 .

Therefore, for t→ +∞, we that
exp(−λ(s,j)(p)t)

1−exp(−λ(s,j)(p)t)
→ 0 and 1

1−exp(λ(s,j)(p)t)
→ 1. Moreover,

in the denominators we have
∣∣exp(−λ(s,j)(p)t)

∣∣ < 1 and
∣∣exp(λ(s,j)(p)t)

∣∣ < 1, for positive

real parts and negative real parts, respectively. Thus, we can write trP t as a Taylor

expansion in the following way:

trP t =
∑
s

 ∏
Re(λ(s,j)(p))>0

exp
(
−λ(s,j)(p)t

) ∞∑
nj=0

exp
(
−njλ(s,j)(p)t

)×
 ∏

Re(λ(s,j)(p))<0

∞∑
mj=0

exp
(
mjλ(s,j)(p)t

)
=
∑
s

∏
Re(λ(s,j)(p))>0

∞∑
nj=0

exp
(
−(nj + 1)λ(s,j)(p)t

) ∏
Re(λ(s,j)(p))<0

∞∑
mj=0

exp
(
mjλ(s,j)(p)t

)

=
∑
s

∞∑
nj=0

exp

− ∑
Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p)t

 ∞∑
mj=0

exp

 ∑
Re(λ(s,j)(p))<0

mjλ(s,j)(p)t


=
∑
s

∞∑
nj ,mj=0

exp

− ∑
Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p)t+
∑

Re(λ(s,j)(p))<0

mjλ(s,j)(p)t

 .
The trace of the transfer operator is, thus, a sum of exponential decays, for each stationary

point. Hence, given a hyperbolic stationary point xs

trP t =
∞∑

nj ,mj=0

exp

− ∑
Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p)t+
∑

Re(λ(s,j)(p))<0

mjλ(s,j)(p)t

 ,
and it follows from (4.9) that

tr(zI − G)−1 =

∫ ∞
0

exp(−zs)×

∞∑
nj ,mj=0

exp

− ∑
Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p)t+
∑

Re(λ(s,j)(p))<0

mjλ(s,j)(p)t

 ds.
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Computing the integral above, we have, for z ∈ ρ(G) with Re(z) > 0, that

tr(zI−G)−1 =
∞∑

nj ,mj=0

z +
∑

Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p)−
∑

Re(λ(s,j)(p))<0

mjλ(s,j)(p)

−1

.

(4.10)

Therefore, the discrete spectrum of the generator associated to the stationary point xs is

given by the poles of (4.10). That is,

z = −
∑

Re(λ(s,j)(p))>0

(nj + 1)λ(s,j)(p) +
∑

Re(λ(s,j)(p))<0

mjλ(s,j)(p). (4.11)

Note that z in (4.11) is a function of nj , mj and p and we can write z(nj ,mj , p), to

mean z and vice versa. Thus, the discrete spectrum of G in (4.11) is composed of

isolated eigenvalues of finite multiplicity which are located in the strip −q < Re z < 0,

for some q > 0. As a consequence, due to (4.6), the discrete spectrum of P t, t ≥ 0

consists of isolated eigenvalues of finite multiplicity which are located inside the unit

disc. Since (4.11) is a linear combination of the stability eigenvalues, it follows that

(4.11) is relevant to characterize a bifurcation. As mentioned above, (4.11) and their

corresponding eigenfunctions were used in [17] to characterize the one-dimensional

pitchfork bifurcation. A concrete example is given in the following.

Example 10

ẋ(t) = − (πp sin(2πx) + (1− p)π sin(πx)) , p, x ∈ [0, 1]. (4.12)

For p ∈ [0, 1/3], the stationary points are given by

x1 = 0, x2 = 1 with stability eigenvalues λ1(p) = π2(p+ 1), λ2(p) = −π2(3p− 1).

For p ∈ [0, 1/3], the stationary points are given by

x1 = 0, x2 = 1, x3 = 1
π arccos

(
p−1
2p

)
with corresponding stability eigenvalues

λ1(p) = π2(p+1), λ2(p) = −π2(3p−1), λ3(p) = −
[
2π2 cos(2 arccos(p−1

2p ))− (1−p)2
2p π2

]
.

Thus, one sees that λ1(p) is always negative while λ3(p) is positive and exists only for

p ∈ (1/3, 1]. However, λ2(p) is positive for p ∈ [0, 1/3), negative for p ∈ (1/3, 1], and

λ2(p) = 0 when p = 1/3. Therefore, a bifurcation occurs at p = 1/3. Given that the fixed

point x1 = 0 is always stable, we can only focus on λ2(p) and λ3(p), in order to investigate
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the bifurcation in a spectral level. In figure 4.2, we show the changes of λ2(p) and λ3(p)

with respect to the changes of the bifurcation parameter p. The discrete spectrum (4.11) of

Figure 4.2: In the y−axis: stability eigenvalues λ2(p) in blue (dashed line for p < 1/3
and smooth line for p > 1/3), stability eigenvalues λ3(p) in red and dashed curve of the
system (4.12). In the x−axis the bifurcation parameter p.

the generator at x2 and x3 can be easily computed now.

For p < 1/3 :

at x2 : z2(n, p) = (n+ 1)π2(3p− 1), n = 0, 1, 2, · · ·

For p > 1/3 :

at x2 : z2(n, p) = −nπ2(3p− 1), n = 0, 1, 2, · · · ,

at x3 : z3(n, p) = (n+ 1)

[
2π2 cos(2 arccos(

p− 1

2p
))− (1− p)2

2p
π2

]
, n = 0, 1, 2, · · · .

Hence, changes in these eigenvalues correspond to the spectral signatures of the undergoing

bifurcation. The latter are illustrated in figure 4.3. For each bifurcation parameter p,

n = 10 eigenvalues of the generator (4.4) are plotted. Figure 4.3 agrees perfectly with the

spectral data formula in (4.11). Moreover, as the bifurcation parameter is close to its critical

value, i.e. p = 1/3, the eigenvalues tend to shrink and accumulated near zero. This is a

typical spectral signature of the bifurcation. Compared to the classical bifurcation studied

in example 9, we are able to see the slowing down scenario before the system transitions to

its post-bifurcation state. Indeed, slowing down was observed to occur in the dynamics of

systems before a bifurcation occurs [5]. On the spectral level, we observe an accumulation of

the spectrum of the generator around zero. The same can be observed with the spectra of the

transfer operators P t, t ≥ 0 by simply applying the spectral relation in (4.6) with a chosen

40



4.2. Bifurcations

Figure 4.3: In the y−axis: z2(n, p) in blue and z3(n, p) in red. In the x−axis the
bifurcation parameter p.

time t. For instance, with t = 10−4 we have the changes of the spectrum of P t in figure 4.4.

Figure 4.4: In the y−axis: exp(z2(n, p)t) in blue and exp(z3(n, p)t) in red. In the x−axis
the bifurcation parameter p. The chosen time is t = 10−4.

One then observes a convergence of the eigenvalues of P t, t ≥ 0 towards 1 as p approaches

its critical value. Note that the bifurcation found in (4.12) is similar to a generic pitchfork

normal form ([28], Chapter 2), since the only difference is the lack of symmetry of the

emerged unstable branch λ3(p) for p > 0. Nevertheless, the spectral signature shown in

figure 4.3 has similar trends as in [17]. Therefore, we can say that these spectral trends are

generic indicators of bifurcations including the the pitchfork bifurcation.
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A similar spectral approach was used in [46] using the generic Hopf bifurcation ([28],

Chapter 3). In this study, however, we are more interested in spectral signatures for

bifurcations of pitchfork type. Indeed, our goal is to study and understand critical

changes of almost-invariant/coherent sets. These critical transitions come out as a form

of pitchfork bifurcation in the macroscopic consideration of the dynamical system. Indeed,

a set-oriented pitchfork bifurcation should practically be equivalent to sudden splitting of

rotating gyres/storms/vortices into two.

As illustrated by example 9 and example 10, the statical approach to study classical

bifurcations requires the existence of hyperbolic stationary points. However, in the

present work, we will study bifurcations while there is no prior existence of hyperbolic

stationary points. In other terms, we will study a particular class of Hamiltonian systems

whose dynamics mimic a rotating vortex, before a qualitative change occurs. We will

then consider elliptic stationary points (i.e., Reλ = 0 and Imλ 6= 0) that will bifurcate

to become hyperbolic, as a parameter changes. In addition, we will focus on almost-

invariant sets generated by the underlying dynamics. Note that, as detailed in chapter 3,

the occurrence of almost invariant sets is tight to the existence of dominant eigenvalues.

Thus, the set-oriented bifurcation analysis will consider two indicators: changes in

the eigenvalues and changes in almost-invariant sets, knowing that those sets are just

the corresponding eigenfunctions of the eigenvalues, given the linear operators (see

Chapter 3). Under the robustness constraint of almost-invariant sets (see Chapter 3 ),

we will use the diffused operators P tε and ultimately Gε, instead of their deterministic

version P t and G studied above. Hence, we will look at a spectral signature of the

critical transitions, given the diffused operators. However, spectral relations between

deterministic and diffused operators will be explored, in order to understand spectral

signatures in the diffused setting. We will explore eigenvectors and eigenvalues of these

diffused operators by mainly considering eigenvalues whose corresponding eigenvectors

approximate almost-invariant sets.

4.3 Almost-invariant sets as eigenfunctions level sets

In this section, we prepare for dealing with the specific dynamics that motivates our

research, namely two-dimensional area preserving flows. Here elliptic fixed points are

surrounded by periodic solutions forming a family of invariant sets, which we expect to

appear as almost-invariant sets for the perturbed dynamics. We will later demonstrate

that in order to obtain such almost-invariant sets, it suffices to use the real eigenvalues
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and corresponding eigenvectors of the spectrum of the transfer operator P tε as defined

in chapter 3. We will briefly review some properties of the discrete spectrum of the

deterministic operator P t for general conservative systems before investigating the

spectrum of the diffused operator P tε . Furthermore, the analysis of almost-invariant

sets and their possible bifurcations we will studied and, in this context, the randomly

perturbed infinitesimal generator will be used to better confirm found spectral signatures.

4.3.1 Spectrum of the deterministic transfer operator

We suppose that the dynamical system generated by (4.1) is conservative. Therefore, the

Frobenius-Perron operator defined in (4.3) becomes

P tf(x) = f(S−t(x)).

Thus, P t is stochastic, meaning that P t1D = 1D, and the Lebesgue measure µ is invariant.

In addition, we can restrict the functional domains of P t and its adjoint, the Koopman

operator Kt, to the Lp spaces, p ≥ 1 [29]. We particularly choose p = 2, in order to

benefit from the Hilbert space L2(D,Σ, µ), which allows us to use its scalar product

〈·, ·〉µ. Hence, P t is unitary, meaning P t∗ = P−t, where P t∗ is the adjoint of P t. Indeed,

Kt : L2(D,Σ, µ)→ L2(D,Σ, µ) is explicitly defined as Ktg = g ◦ St, for any observable

g ∈ L2. That is Kt = P−t = P t∗. Thus, Kt maps backward observables, while P t

propagates forward the densities. Beside, due to their isometric properties, the discrete

spectrum of the deterministic operators P t and its adjoint Kt is expressed as

P tfn = λn(t)fn, whereas Ktfn = λn(t)fn, ∀ t > 0,

with |λn(t)| = |λn(t)| = 1. Thus, ||P tfn|| = ||fn|| = ||Ktfn|| and eigenfunctions are

neither contracted nor expanded but rotated.

The set-oriented approach connects the phase space dynamics to a functional dynam-

ics within a functional space such that every function, or density, is supported on µ-

measurable subsets of D. Hence, invariant densities or almost-invariant densities (i.e.

f ∈ L2(D,Σ, µ) such that P tf ≈ f) yield qualitative information of the space dynamics

at equilibrium. Let

S =

{
f ∈ L2(D,Σ, µ) :

∫
D
fdµ = 0, f 6= 0.

}
(4.13)
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be the set of all nontrivial functions f ∈ L2(D,Σ, µ) that are orthogonal to 1D, under the

scalar product 〈·, ·〉µ. Let f ∈ S satisfy the following assumption:

Assumption 11 There exists a measurable partition of D with partition elements Ai, i =

1, .., q, such that

1. f
∣∣
S−t(Ai)

is either positive or negative and if f
∣∣
S−t(Ai)

> 0 then f
∣∣
S−t(Ai+1)

< 0, and vice

versa.

2. P tf ≈ f on Ai, in the sense of the L2 norm (i.e.
∫
Ai

(P tf − f)2dµ ≈ 0).

Then the Ai’s form an almost-invariant measurable partition of D, under the following

reasoning. Indeed,
∫
D fdµ = 〈f,1D〉µ =

∑q
i=1

∫
Ai
fdµ = 0 and,

∫
Ai
P tfdµ ≈

∫
Ai
fdµ for

i = 1, . . . , q, implies
∫
S−t(Ai)

fdµ ≈
∫
Ai
fdµ. Thus, a possible set-oriented solution for the

latter is

S−t(Ai) ≈ Ai (4.14)

wherein it follows
µ(Ai ∩ S−t(Ai))

µ(Ai)
≈ 1, ∀ 1 ≤ i ≤ q.

As a result, the Ai’s form an almost-invariant measurable partition of D. One sees that

for such a real-valued density f ∈ S with the relation (4.14), the ratio

rt(A1, A2, ..., Aq) =

q∑
i=1

µ(Ai ∩ S−t(Ai))
µ(Ai)

(4.15)

is maximized in the sense that rt(A1, A2, ..., Aq) ≈ q.
We, thus, infer that if there is presence of almost-invariant sets that partition the state

space, then we may find almost-invariant densities that belong to S satisfy assumption

11 and that are supported on those sets. This brings us to the idea of searching for

almost-invariant densities in order to identify almost-invariant sets.

Finding densities f that satisfy Assumption (11) in realistic systems is intractable. The

first step would be to find solutions of the equation

P tf = δ(t)f where δ(t) ≈ 1,

requiring to investigate the discrete spectrum of P t, which is, however, an analytically

hard task. Moreover, the spectrum of P t does not immediately yield almost-invariant

measurable partitions. Indeed, Assumption 11 on the density f is not guaranteed by the
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eigenfunctions. Moreover, all the corresponding eigenvalues lie on the unit circle. That is,

from the discrete spectrum of P t, the idea of finding almost-invariant sets must be ruled

out. Nevertheless, the discrete spectrum of P t may provide two types of measurable sets:

almost-cyclic sets and invariant sets that will later become almost-invariant sets, under

external perturbations.

Almost-cyclic sets are measurable sets that undergo a cyclic motion around the elliptic

stationary point. Recall that almost-invariant sets, in contrary, are measurable sets that

are fixed with respect to the flow map and have the property to lessen transport between

their interior and the rest of the phase space. We remind that the dynamical system under

investigation consists of rotating orbits around a global elliptic fixed point.

The following remark yields conditions under which eigenfunctions generate almost-cyclic

sets.

Remark 12 Let
{
λn(t), fn

}
n≥1

be the discrete spectrum of P t. Then |λn(t)| = 1 and

P tfn = λn(t)fn, ∀n ≥ 1, where fn = f ren + if imn . Let us assume that <eλn(t) ≈ 1 while

=mλn(t) ≈ 0. Then P tf ren ≈ f ren and, P tf imn ≈ f imn . Moreover, if f ren , f
im
n ∈ S and

Assumption 11 is satisfied, then f ren and f imn both yield measurable almost-cyclic partitions

of D.

In fact, the push-forward effect of P t on fn is only a rotation and, since λn(t) are complex

with a particularity of having <eλn(t) ≈ 1 while =mλn(t) ≈ 0, we can deduce that f ren
yields almost-cyclic sets. Denote by

E = {<eλn(t) : <eλn(t) ≈ 1, n ≥ 0} (4.16)

the set of these dominant eigenvalues. These are analytically intractable in general as are

the corresponding eigenfunctions, which are indicators of almost-cyclic sets. Instead, we

will later consider the diffused operator P tε , which can be numerically approximated and

its spectrum can be investigated.

Note that, in the present chapter, we study the spectral signature of the bifurcation of the

system described above, with a high presence of almost-invariant sets.

4.3.2 Deterministic spectrum and invariant sets

In this section we are going to show that there exist particular eigenfunctions with eigen-

values λn(t) = 1 that are supported on invariant measurable sets partion which describe
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the deterministic dynamics of the system we are studying. Moreover, these measurable

sets yield measurable almost invariant sets partition, when external perturbations is

added to the system’s dynamics.

In order to construct an invariant set partition of the deterministic system (without

perturbations), we are going to use the Hamiltonian function

Ψp : D → [a, b] (4.17)

(x, y) 7→ Ψp(x, y),

which generates the two-dimensional area-preserving system 4.1. The latter generates

a dynamical system completely described by the 1-degree of freedom scalar function

(4.17), the Hamiltonian. In addition, the value of the Hamiltonian function is constant

along the trajectory
{
St(·), t ≥ 0

}
. That is, every closed orbit can be mapped to a single

value of Ψp(·, ·). Thus, one can think of the Hamiltonian as a smooth function which lifts

the phase space into the interval [a, b]. Hence, for every ai ∈ [a, b], there exist a closed

orbit
{
St(xi), t ≥ 0

}
⊂ D such that

{
St(xi), t ≥ 0

}
= Ψ−1

p (ai). As a consequence, let us

partition [a, b] into N disjoint sub intervals Ii, i = 1, ..., k and build the measurable sets

Ai(p) = Ψ−1
p (Ii), i = 1, ..., k. (4.18)

As a results, every Ai(p) is composed of closed orbits and Ai(p) ∩Aj(p) = ∅, j 6= i with

S−t(Ai(p)) = Ai(p), i = 1, ..., k. In this way, we have a measurable partition of D into

rings-like patterns with a particular invariant set

Ah(p) = Ψ−1
p (Ih), (4.19)

which is supported on a neighborhood of the fixed point and surrounded by all the other

rings Ai, i 6= h. In fact, (4.19) can be understood as a macroscopic representation of

the fixed point. Note that this partitioning is not unique and the trivial case consists of a

partition with an infinite number of closed orbits. That corresponds to the case where

each Ii is a singleton. However, since we are looking at the macroscopic dynamics, we

can set the number of partitions k to be finite.

Now we are going to construct stationary eigenfunctions whose level sets yield the

invariant partition Ai(p), i = 1, ..., k.
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For i = 1, ..., k, we define the functions

ψi(x) = 1Ai(p)(x) =

1 if x ∈ Ai(p)

0 if x /∈ Ai(p).
(4.20)

Then, we have that {ψ1, ψ2, ..., ψk} are eigenfunctions of P t, t ≥ 0 with eigenvalue

λ(t) = 1. Indeed,

P tψi = P t1Ai(p) = 1Ai(p) ◦ S
−t = 1St(Ai(p)) = 1Ai(p).

Note that D =
⋃k
i=1Ai(p) and P t1D = P t

(
1A1(p) + 1A2(p) + ...+ 1Ak(p)

)
= P t1A1(p) +

P t1A2(p) + ... + P t1Ak(p) = 1A1(p) + 1A2(p) + ... + 1Ak(p) = 1D. Thus, 1D is also an

eigenfunction of eigenvalue 1, we refer to it as the trivial eigenfunction.

Let us consider the subspace E1 of the eigenspace corresponding to the eigenvalue 1 and

spanned by only the eigenfunctions {ψ1, ψ2, ..., ψk}. Then E1 ⊂ L2 with dim E1 = k. That

is, every element f ∈ E1 is a linear combination of the functions (4.20) with coefficients

in R. Moreover, the functions ψi are orthogonal, i.e. 〈ψi, ψj〉µ = 0, i 6= j. Hence, let

V1 = {φ1, φ2, ..., φk} be an orthogonal basis of E1. That is,

φi =
k∑
j=1

αijψj , i = 1, ..., k, αij ∈ R. (4.21)

It follows that the basis elements (4.21) of V1, i.e. {φ1, φ2, ..., φk}, are also eigenfunctions

of P t with eigenvalue 1. Indeed, P tφi =
∑k

j=1 αijP
tψj =

∑k
j=1 αijψj = φi. Moreover, to

each φi, i = 1, ..., k, we have the vector-wise correspondence

φi 7→ (αi1, αi2, ..., αik) , (4.22)

and the invariant measurable sets {Aj(p), j = 1, ..., k} can be obtained from the level

sets of the basis elements φi, i = 1, ..., k. Indeed, let us consider the negative level sets

{φi < 0}, for instance. We have then

φi < 0 = {x : φi(x) < 0} = {x ∈ D : αij < 0 : j = 1, ..., k} ,

which is equivalent to

{x : φi(x) < 0} = {Aj(p), such that αij < 0 : j = 1, ..., k} .
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For positive level sets {φi > 0}, we have

{x : φi(x) > 0} = {Aj(p), such that αij > 0 : j = 1, ..., k} .

Equation (4.22) may be written in terms of sign patterns. That is, for i = 1, ..., k,

φi 7→ (sgn(αi1), sgn(αi2), ..., sgn(αik)) . (4.23)

Given φi and (4.23) and the sign pattern structure of the coefficients, it may be possible

to classify the measurable invariant partitions {Ai(p), i = 1, ..., k} into aggregates of

measurable partitions. For instance, if

(sgn(αi1), sgn(αi2), ..., sgn(αik)) = (+,+,+, ...,−,−,−, ...,−) (4.24)

with n+ the number of successive positive sign coefficients and n− the number of

successive negative sign coefficients satisfy n+ + n− = k, we have that

C1 =
n+⋃
j=1

Aj(p)

and

C2 =

n−⋃
j=n++1

Aj(p)

are aggregates of measurable invariant sets. Hence, C1 and C2 partition D into two

measurable

(sgn(αi1), sgn(αi2), ..., sgn(αik)) = (+,−,+,−, ...,+,−,+, ...) (4.25)

and

Cj = Aj(p), j = 1, ..., k.

The coarsest aggregates correspond to a single sign pattern structure corresponding to all

positive or all negative entries. That is,

(sgn(αi1), sgn(αi2), ..., sgn(αik)) = (+,+,+, ...,+,+,+, ...)

= (−,−,−, ...,−,−,−, ...)
(4.26)
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and in both cases

C =
k⋃
j=1

Aj(p) = D.

Therefore, as illustrated in (4.24), (4.25), and (4.26), we can restrict ourselves to the

signs of αij to find aggregates of invariant measurable sets. That is, signs matter more

than their corresponding entries. Note that we assume the αij be non-zero. Besides, the

need of aggregates of measurable sets comes naturally from set-oriented approach for

finding maximal slowly mixing regions [36].

Equation (4.26) is particularly important, since we can then assume the entries αij in

(4.26) to be all equal to one. Let φ1 be the corresponding eigenfunction. Hence, φ1 = 1D
and V1 = {φ1, φ2, ..., φk} = {1D, φ2, ..., φk} with 〈φi, φj〉µ = 0, i 6= j. As a result, we have

∫
D
φidµ = 0, φi 6= 0, and φi ∈ L2(D,Σ, µ), for i = 2, ..., k. (4.27)

Therefore, (4.27) corresponds to (4.13), which means φi ∈ S, for i = 2, ..., k. Note

that φi, i = 2, ..., k yield measurable invariant sets from their positive/negative level

sets. Besides, these invariant sets existed already by construction in (4.18). It is easy to

verify that the eigenfunctions φi, i = 2, ..., k corresponding to eigenvalue λ(t) = 1 only

satisfy assumption 11(1), since we have P tφi = φi, instead of P tφi ≈ φi. From these

observations, we are going to systematically perturb the system so that invariant sets

defined above will simply become almost invariant. As we will see in the following, this

systematic perturbation will result in an perturbed transfer operator P tε . Besides, the

spectrum of P tε may contain a set of k eigenvalues which are clustered near 1 and and the

corresponding eigenfunctions showing a sign pattern structure similar to (4.24), (4.25),

and (4.26) but with little variation.

In the following, we demonstrate how the spectral properties of the perturbed operator P tε ,

which is however, dynamically similar to P t, can be used to obtain actual almost-invariant

partitions of the domain D.

4.3.3 Diffused spectrum and almost-invariant sets

The ε-perturbation ε > 0, which is central to the construction of the operators P tε and its

adjoint P t∗ε , leaves the dynamics undissipated. Indeed, any given density f ∈ L2(D,Σ, µ)

is initially diffused, rotated by the dynamics, and the resulting density is again diffused at
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final time. For more details about the construction of P tε , we refer the reader the chapter

3. Therefore, we have

P tε f = DεP tDεf, whereas P t∗ε f = D∗εKtD∗ε f, ∀ t > 0.

In particular, it follows immediately that the eigenfunctions of P tε and P t∗ε are the specific

densities φn : L2(D,Σ, µ)→ C that satisfy the following relations

P tεφ
ε
n = λεn(t)φεn and P t∗ε φn = λεn(t)φεn, ∀ t > 0 (4.28)

with |λεn(t)| = |λεn(t)|. As a consequence, the two operators P tε and its dual agree in the

subset of real eigenvalues, since eigenfunctions are the same.

We are interested in almost-invariant sets as supports of eigenfunctions of P tε as well as

their corresponding eigenvalues, under the perturbed dynamics. That is, we are going

to characterize spectral signatures of bifurcations exhibited by the underlying system.

We are, thus, going to shed light on the spectral property of P tε , before any spectral

bifurcation analysis.

Proposition 13 Any non-zero real eigenfunction φε 6= 1D ∈ L2(D,Σ, µ) of P tε with corre-

sponding real eigenvalue λε(t) belongs to S defined in (4.13). Furthermore, its corresponding

eigenvalue, λε(t), satisfies the following inequality

2− 2
√

(1− λε(t)) ≤ sup
A⊂D

rε(A) ≤ 1 + λε(t), (4.29)

whenever λε(t) < 1 is the largest real eigenvalue of P tε .

Proof 14 From chapter 3, we have

Qtεφ =
P tε + P t∗ε

2
φ =

λε(t)φ+ λε(t)φ

2
= λε(t)φ

thus, λε(t) ∈ σ(Qtε) and due to the orthogonality of the eigenfunctions of Qtε, it follows that∫
D φdµ = 0, or φ ⊥ 1D

As detailed in chapter 3,

λ2 = max
f 6=0

{
〈Qtεf, f〉
‖f‖2µ

〈f,1D〉 = 0

}
.
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and we have

max
f 6=0

{
〈Qtεf, f〉
‖f‖2µ

, 〈f,1D〉 = 0

}
= max

f 6=0

{
〈P

t
ε+P t∗ε

2 f, f〉
‖f‖2µ

, 〈f,1D〉 = 0

}
,

=
1

2
max
f 6=0

{
〈P tε f, f〉
‖f‖2µ

+
〈P t∗ε f, f〉
‖f‖2µ

, 〈f,1D〉 = 0

}
.

Thus

λ2 ≤
1

2
max
f 6=0

{
〈P tε f, f〉
‖f‖2µ

, 〈f,1D〉 = 0

}
+

1

2
max
f 6=0

{
〈P t∗ε f, f〉
‖f‖2µ

, 〈f,1D〉 = 0

}
.

Note that, with the the chosen diffusion, λε1(t) = 1 is a simple eigenvalue of both P tε and

P t∗ε with corresponding eigenfunction φ1 = 1D. Hence, the right hand side of the above

inequality seeks the largest eigenvalue λε(t) such that φn ⊥ 1D, or
∫
D φndµ = 0.

It follows that

λ2 ≤
λε(t) + λε(t)

2
= λε(t).

Recall that λ2 yields the inequality 2− 2
√

(1− λ2) ≤ supA⊂D r
ε(A) ≤ 1 + λ2 [36]. Hence,

substituting λ2 by λε(t), we obtain (4.29).

One possibility of achieving a measurable partition is to consider the threshold 0, then set

A+ = supp {φ > 0} andA− = supp {φ ≤ 0}. This is indeed the threshold we will consider

in this study. Thus, {A+, A−} yields a measurable balanced partition of D whenever

λε(t) is close to 1. It is clear by now that only real eigenfunctions and corresponding

eigenvalues of P tε are potential candidates to generate almost invariant partitions. Indeed,

a partition of almost-invariant sets can only be done we eigenvalues of Qtε, [16, 36].

Corollary 15 All real eigenfunctions of P tε are orthogonal.

In other words, corollary 15 is highlighting the fact that the subset of real eigenvalues of

P tε and their corresponding eigenfunctions are contained in the spectrum of Qtε which is

composed of orthogonal eigenfunctions.

Let us denote by S ′ =
{
φεn

}N
n=1

the finite set of real eigenfunctions of P tε . We choose

to order the corresponding eigenvalues {λεn(t)}Nn=1 as 1 = λε1(t) > λε2(t) ≥ · · · ≥ λεN (t).
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Hence, φ1 = 1D, the eigenfunction φε2 yields the existing optimal almost-invariant parti-

tion of D into two measurable sets, and λ2 satisfies (4.29).

Corollary 16 Any eigenfunction φεn n ≥ 2, generates at least a measurable

n-partition of D in the sense that

supp {φn > 0} = ∪n+

i=1A
+
i and supp {φn ≤ 0} = ∪n−i=1A

−
i ,

with n = n+ + n−.

This follows directly from the orthogonality of the eigenfunctions as stated in corollary 15.

Let us suppose that N = k and that P tε has a k ≥ 2 distinct eigenvalues {λε1(t), ..., λεk(t)}
clustered near λε(t) = 1 and each has a geometric multiplicity which is equal to one. Then

S ′ = {φεi , i = 1, ..., k} are mutually orthogonal, from corollary 15. Moreover, the eigen-

functions {φεi , i = 2, ..., k} are all elements of S defined in (4.13), given that φε1 = 1D.

Finally corollary 16 stated that eigenfunctions {φεi , i = 2, ..., k} yield almost-invariant

partitions.

It is worth mentioning that it is highly unlikely to find an analytical relationship between

the eigenfunctions {φεi , i = 2, ..., k} from the perturbed dynamics and the eigenfunctions

{φi, i = 1, ..., k} defined in (4.21) from the unperturbed dynamics, except the trivial

eigenfunction φε1 = φ1 = 1D. However, note that the perturbation used here is discon-

tinuous because it only incorporates diffusion at initial and final time. Thus, with this

type of diffusion, invariant sets or aggregates of invariant sets, such as (4.24), (4.25),

(4.26), are simply inflated in the order of the diffusion amplitude ε. We can then propose

a formula for the diffused eigenfunctions in the following way:

φεi = φi + εhi +O(ε2), i = 2, ..., k, (4.30)

where φi is defined in (4.21), hi =
∑k

j=1 βijψj , j = 1, .., k, βij ∈ R. With this formula,

we can see that φεi = φi, whenever the diffusion amplitude ε is zero. The latter corre-

sponds to the deterministic dynamics where only invariant sets are present. If ε is a small
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amplitude, then the pattern structure of φεi can be understood by rewriting (4.30) as

φεi =

k∑
j=1

αijψj + ε

k∑
j=1

βijψj +O(ε2)

=

k∑
j=1

(αij + εβij)ψj +O(ε2).

(4.31)

for i = 2, ..., k, j = 1, ..., k and αij , βij , ∈ R. Similar to (4.22), we have the vector-wise

correspondence of φεi , i = 1, ..., k as

φεi 7→ (αεi1, α
ε
i2, ..., α

ε
ik) , (4.32)

and

φεi 7→ (sgn (αεi1) , sgn (αεi2) , ..., sgn (αεik)) , (4.33)

with αεij = αij + εβij + O(ε2). Indeed, the entries αεij in (4.32) are obtained form the

entries of (4.22) by adding a forward or backward shift εβij and a limiting term O(ε2).

Adding the latter terms does not bring changes in the sign pattern structure of (4.32)

compared to (4.22). Indeed, note that with the formula (4.30), we have

P tφεi = φεi

Moreover, it is trivial to show that the deterministic sign structure (4.23) does not change

by only shifting the constants αij with εβij , ε ≥ 0 and O(ε2). Thus, given the constant

level patterns αεij , there is no significant difference between (4.23) and (4.33). This

means that eigenfunctions {φεi , i = 2, ..., k} are supported in the same aggregates as

the eigenfunctions {φi, i = 2, ..., k} with corresponding eigenvalues {λε2(t), ..., λεk(t)}.
The difference is that in the deterministic setting, we have P tφi = φi, while in the

perturbed setting P tεφ
ε
i = λεi(t)φ

ε
i , 2, ..., k. The latter means that the eigenfunctions

{φεi , i = 2, ..., k} are slightly contracted in all directions by P tε and the {λε2(t), ..., λεk(t)}
are the corresponding contraction rates. Thus, instead of an equality, we can write

P tεφ
ε
i ≈ φεi , i = 2, ..., k. (4.34)

As a result, the eigenfunctions {φεi , i = 2, ..., k} satisfy assumption 11 with the dif-

fused transfer operator P tε , rather than the deterministic operator P t. The eigen-
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functions {φεi , i = 2, ..., k} yield almost-invariant sets with corresponding eigenvalues

{λε2(t), ..., λεk(t)} clustered near 1

With this theoretical setting, we are going to numerically approximate P tε and proceed to

a bifurcation analysis by exploring changes in the spectrum of the numerical operator. A

particular focus will be made on the subset of real eigenfunctions with corresponding

eigenvalues close to 1. We believe that with the class of dynamical systems we are

studying, the existence of real eigenvalues close to 1 is very likely, given the detailed

theory above.

4.4 Numerical approximation of the transfer operator

As illustrated in (4.29), the spectrum of the transfer operator is key to identifying almost-

invariant sets, but a corresponding analysis of specific mathematical models requires

numerical approximations. Here, we propose a discretization of the diffused transfer

operator P tε based on Ulam’s method [22]. Following [13] we subdivide the domain D

into disjoints subsets, or boxes
{
B1, B2, ..., BN

}
of positive volumes. Each box Bi has

the same dimension as the domain and all the boxes have same size.

We then approximate the deterministic Perron-Frobenius operator P t. Let us define

∆N = 〈1B1 , ...,1BN 〉 as a N− dimensional subspace of L2(D,Σ, µ), where µ denotes

Lebesgue measure. Let

ΠN : L1(X,µ)→ ∆N

f 7→ ∆nf =

N∑
j=1

(
1

µ(Bi)

∫
Bi

fdµ

)
1Bj

be the L2−orthogonal projection of L2(D,Σ, µ) onto ∆N . Let

P tN : ∆N → ∆N , with P tN = ΠNP
t

be the finite-rank approximation of P t. The matrix representation PtN with respect to the

basis {1B1 , ...,1BN } is given as

P tN1Bi =

N∑
j=1

(
1

µ(Bi)

∫
Bi

P t1Bidµ
)

1Bj
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and finally,

(PtN )ij =
µ(Bi ∩ S−t(Bj))

µ(Bj)

=
µ(Bi ∩ S−t(Bj))

µ(Bi)

(4.35)

The entries (PtN )ij are numerically estimated by uniformly sampling k test points
{
xi

}k
i=1

in each box Bi and computing the transition probabilities between boxes. Thus, each

matrix entry is given by

(PtN )ij =
#{xi ∈ Bi : St(xi) ∈ Bj}

k

In this way, the matrix PtN represents a transition matrix of an N -states Markov chain;

the states are given by the boxes Bi, i = 1, .., N. Moreover, the entry (PtN )ij represents

the conditional probability that a randomly chosen point in Bi lands in Bj at time t after

application of the flow St.

PtN is row stochastic and has a leading eigenvalue 1. Even though, we are more interested

in the finite dimensional version of the diffused transfer operator P tε , it is enough to

use the matrix PtN . Indeed, the numerical method used to compute PtN adds sufficient

numerical diffusion with ε being of the order of box size. So it suffices to directly use PtN
as a numerical approximation of P tε .

4.5 Simple example systems

As already mentioned above, we are interested in specific types of conservative systems.

Motivated by the Antarctic polar vortex dynamics figure 1.1, we are going to consider

two-dimensional area-preserving systems that, a priori, exhibit a global elliptic stationary

point. Hence, the dynamical behavior is characterized by rotating orbits around that

global elliptic stationary point. We will study numerically approximated almost-invariant

patterns. Moreover, we will explore the spectral signature of the bifurcation of almost-

invariants sets. Under this supposition, the discrete spectra of the deterministic Frobenius-

Perron operator P t and their adjoint Kt are given by

P tfn = eiωntfn, whereas Ktfn = e−iωntfn, ∀ t > 0.
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Thus, eigenfunctions are periodically propagated with period 2π
ωnt

by P t and Kt forward

and backward, respectively.

4.5.1 Harmonic oscillator

As a first numerical investigation, we consider the harmonic oscillator

ẋ = y

ẏ = −ω2x
(4.36)

The stationary point (0, 0) is a stable center and trajectories form a family of ellipses

centered at (0, 0) for each parameter ω 6= 0. This system can be viewed as a simple toy

model of an ocean or atmospheric eddy. The solution of the flow is given by

x(t) = x0 cos(ωt) +
y0

ω
sin(ωt)

y(t) = y0 cos(ωt)− x0ω sin(ωt)
(4.37)

and the Hamiltonian/streamfunction is given by

Ψ(x, y) = x2 +
y2

ω2
+ C, C ∈ R (4.38)

In order to determine the discrete spectrum of the deterministic transfer operator P t, we

use the continuity equation of (4.5) and solve the following equation in ρ with λ ∈ C

y
∂ρ

∂x
− ω2x

∂ρ

∂y
= λρ.

ρ(x, y) = (x − i yω )n solves the above equation ∀ n ≥ 0 with λ = inω, which are the

eigenvalues of the infinitesimal generator G. Therefore, by the spectral mapping the-

orem (4.6), the discrete spectrum of the Perron-Frobenius operator P t is given by

λn(t) = einωt, ∀ t > 0, so all the eigenvalues lie on the unit circle. The correspond-

ing eigenfunctions are the same as those of the generator, i.e. φn(x, y) = (x− i yω )n, which

we rewrite as φn(x, y) = (x2 + y2

ω2 )neinθ with θ = arctan(− y
xω ).

Moreover, as detailed in section 4.3.2 (equation (4.21)), the spectrum of P t contains a

finite number of orthogonal real eigenfunctions, denoted {φ′i, i = 1, ..., k} with eigen-

value 1, which are constructed from the Hamiltonian (4.38). These eigenfunctions, by

construction, are supported on the invariant ring-like patterns, given the circular behavior

of the flow.
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Now, let us assume that Reλn(t) ≈ 1. Then sin(nωt) ≈ 0 and it follows that

nωt ≈ 2mπ, m ∈ Z.

As a consequence, if m is a multiple of n, then the system of solutions (4.37) yields the

almost stationarity relation

(x(t), y(t)) ≈ (x0, y0) with t 6= t0. (4.39)

Indeed, it is enough to substitute wt by 2mπ
n into the equations in (4.37) to obtain (4.39).

Moreover, with respect to the spectrum we immediately have that the corresponding eigen-

function φn satisfies P tφn ≈ φn. This means, P t
[
(x2 + y2

ω2 )n cos(nθ)
]
≈ (x2 + y2

ω2 )n cos(nθ)

and P t
[
(x2 + y2

ω2 )n sin(nθ)
]
≈ (x2 + y2

ω2 )n sin(nθ).

we are going to numerically show that the positive and negative level sets of the latter

partition the domain D into almost-cyclic sets, given the almost stationarity relation

(4.39). On the other hand, we are going to numerically show that the diffused eigen-

functions {φ′εi , i = 1, ..., k} of the diffused transfer operator P tε , which are constructed in

(4.31) from the deterministic eigenfunctions {φ′i, i = 1, ..., k}, are supported on almost-

invariant ring-link patterns with eigenvalues clustered near 1.

The system (4.36) is integrated with a fixed flow time 1 using a RungeKutta scheme of

fourth order and studied in the space domain [−2, 2]× [−2, 2]. The latter is subdivided

into 213 equals subdomains with 900 uniformly distributed test points in each subdomain.

Thus, we compute the transition matrix approximation of the infinite dimensional oper-

ator P tε . Note that diffusion of amplitude ε is artificially including from the numerical

discretization. In fact, the diffusion amplitude is equal to the size of a subdomain. Finally

note that the system (4.36) is open. That is, trajectories of test points may leave the

considered domain at final time integration. To numerically overcome this computational

obstacle, an additional box is added in order to capture all the image points that are

being mapped out of the initial domain D when computing the transition matrix. At the

end of the computation, this temporary subdomain will be removed from the eigenvector

entries by just considering the 213 first entries.

In Figure 4.6 we have plotted the largest magnitude eigenvalues of the approximated

diffused transfer operator P tε in the left panel. The right panel shows the largest real part

eigenvalues. The numerical spectrum was computed for a fixed parameter ω = 1.
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Figure 4.5: Largest magnitude (left) and largest real part eigenvalues (right) for the
linear flow with parameter choice ω = 1.

As shown in figure 4.5, we have a cohabitation between strictly real eigenvalues clustered

near the eigenvalue 1 and complex eigenvalues which have, among them, complex

eigenvalues with real parts close to 1. The latter yield almost-cyclic sets in figure 4.6

in agreement with remark 12, while the former yield ring-like patterns in figure 4.7 as

predicted by our study in section 4.3.3.

In figure 4.7(a)-(d), note the center pattern defined in (4.19), which is present in every

eigenvector pattern. The pattern (4.19) carries the qualitative behaver of the center

fixed point (0, 0). This is a qualitatively important difference with eigenvectors patterns

in figure 4.6, as the latter only cycle around the fix point (0, 0). It may be very helpful

to keep this in mind for a better understanding of results in the upcoming chapters.

Indeed, when the fixed point (0, 0) bifurcates, it may be more logical to investigate the

set oriented response of the bifurcation in the real eigenvectors in figure 4.7 than in the

complex eigenvectors in figure 4.6.

4.5.2 One-dimensional circle dynamics

Let us now consider a macroscopic approach of the circle dynamics

θ̇ = ω (4.40)

This can be interpreted as viewing one periodic orbit in a two-dimensional system. In

this study we illustrate the lack of possibility to construct the real eigenfunctions (4.21)

and their diffused version (4.31) from the Hamiltonian function (4.17). Indeed, we will

show that the only real eigenvalue that one can find is the trivial eigenfunction with
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(a) (b)

(c) (d)

Figure 4.6: Approximations of the leading complex eigenvectors of the transfer operator
for the linear flow for ω = 1 exhibit spatially-periodic pattern that partition the domain
into almost-cyclic sets.

corresponding eigenvalue 1. Therefore, the diffused transfer operator yields the same

eigenfunction with eigenvalue one. However, almost-cyclic sets can always be obtained

from eigenfunctions with eigenvalues whose real parts are close to 1 and imaginary part

close to 0.

Given any initial angle θ ∈ [0, 2π), the flow St is given by

St(θ) = ωt+ θ mod 2π, (4.41)

the Lebesgue measure µ is invariant under St. Then P tf(θ) = f ◦ S−t(θ) = f(θ − ωt)
and any point z(θ) ∈ S1 is given by z(θ(t)) = eiθt = ei(θ+ωt) with θt = St(θ) = ωt + θ

mod 2π. We are able to easily obtain the discrete spectrum of P t, t ≥ 0 by taking

fn(θ) = zn = einθt = einθeinωt. Thus, eigenfunctions and eigenvalues are given by

φn(θ) = einθ and λn(t) = einωt, n ∈ Z.

Note that these eigenfunctions are Fourier basis elements, forming a complete orthogonal
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(a) (b)

(c) (d)

Figure 4.7: Approximations of the leading real eigenvectors of the transfer operator for
the linear flow for ω = 1 exhibit spatially-periodic patterns that partition the domain into
almost-invariant sets.

basis of L2.

Since P tφn(θ) = λn(t)φn(θ), we have

P tφn(θ) =

(
cos(nωt) + i sin(nωt)

)(
cos(nθ) + i sin(nθ)

)
= cos(nωt) cos(nθ)− sin(nωt) sin(nθ)

+ i

(
cos(nωt) sin(nθ) + cos(nθ) sin(nωt)

)
.

Now, let us suppose that Re(λn(t)) ≈ 1. Then sin(nωt) ≈ 0, which implies that

nωt ≈ 2kπ, k ∈ Z. (4.42)

Hence, due to equation (4.42) we have for (4.41) the almost-stationarity relation

θ(t) ≈ θ0 (4.43)
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for the chosen flow time t > 0. From (4.43) it is clear that a measurable almost-cyclic

partition generated by (4.41) must consist of sub-intervals of [0, 2π) of equal length,

which are supported on either real or imaginary parts of the eigenfunctions φn(θ) with

corresponding eigenvalues satisfying Re(λn(t)) ≈ 1. Indeed, with respect to the spectrum,

we have

P tφn(θ) ≈
(

cos(nt) cos(nθ)

)
+ i

(
sin(nθ) cos(nt)

)
.

Therefore, P t cos(nθ) ≈ cos(nθ) and P t sin(nθ) ≈ sin(nθ). As stated in Remark 12, for

such n satisfying equation (4.42), real part eigenfunctions of P tε must be periodic and

their level sets partition the domain into sub-intervals of equal length. That is what either

φn = cos(nθ) or φn = sin(nθ) exactly do. Finally, note that besides the trivial eigenvalue

1 with corresponding eigenfunction 1D, one cannot construct the real eigenfunctions

(4.21) from the underlying system (4.41). In fact, the Hamiltonian (4.17) cannot be

derived from (4.41). Therefore, the spectrum of the diffused operator P tε can only yield

complex eigenvalues and an eigenvalue 1 with corresponding eigenfunction 1D.

In the following, we are going to give numerical illustrations.

The system (4.41) is, thus, integrated using a RungeKutta scheme of forth order with a

fixed flow time of length 1. Thus, (4.41) is studied in the space interval [0, 2π). The latter

is subdivided into 212 equals sub-intervals with 400 uniformly distributed test points in

each sub-interval. Thus, we compute the transition matrix which is the finite dimensional

approximation of P tε . Recall that diffusion of amplitude ε comes in artificially with the

numerical discretization.

As expected, the spectrum lies on the unit circle, see Figure 4.8. There is only one real

eigenvalue, which is the trivial one, as P tε is a stochastic operator. Thus, in the finite

dimensional approximation, we have a stochastic matrix whose stationarity distribution is

the positive/negative entries (i.e. probability distribution over sub-intervals) eigenvector

with eigenvalue 1, see figure 4.9. Moreover, there exists a finite number of eigenvalues

with real part close to 1. The real parts of the corresponding eigenvectors are displayed

in Figure 4.10 corresponding to approximations of cos(nθ). Note that in synchronization

with the circle dynamics, both cos(nθ) and sin(nθ) are oscillations of frequency 2π/n in

the domain [0, 2π). Their zero-level sets yield a finite partition of the domain [0, 2π).

Consequently, eventual critical transitions of almost-invariant sets will be based on the

strictly real spectrum of P tε , which is always numerically accessible. As a matter of fact,

we will be looking for real eigenfunctions of P tε with real eigenvalue close to 1. We
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

Figure 4.8: The numerically approximated eigenvalues of P tε for the circle dynamics
with parameters w = π/34 and t = 1.

Figure 4.9: Numerically approximated real eigenfunction (stationary distribution) of P tε
for the circle dynamics with parameters w = π/34 and t = 1.

will then construct almost-invariant sets as the zero-level sets of the eigenfunctions and

eventually track the changes of this spectrum with respect to a bifurcation parameter.

Special focus will be made on parameter values close to the critical parameter.
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4.6. Spectral signature for set-oriented bifurcation

(a) (b)

(c) (d)

Figure 4.10: Real parts of eigenvectors of the numerical approximation of P tε to eigen-
values with real part close to 1 for the circle dynamics with parameters w = π/34 and
t = 1.

4.6 Spectral signature for set-oriented bifurcation

The spectrum of the operator P tε , is reliable to study the bifurcation of patterns generated

by the real spectrum S ′. In this section we consider a nonlinear version of (4.36)

ẋ = y

ẏ = px− x5.
(4.44)

For p ∈ R, the system displays two different stable phases separated by a critical state as

shown in Figure 4.11.

The transition from one stable phase to another is referred to as a critical transition.

The early indicators before the system shifts to another state are of interest here, mostly

referred to as critical slowing down [3]. In the first part of this section we investigate the

critical slowing down based on the diffused spectrum, i.e., the spectrum of the operator

P tε . In the second part, we investigate the same phenomena with a randomly perturbed
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

Figure 4.11: Phase plane of system (4.44) for parameters p = −1 (left) and p = 1 (right).

version of the deterministic infinitesimal generator defined in (4.4).

4.6.1 Transfer operator approach

Now, we are ready to study the spectral signature of the underlying bifurcation with

respect to the diffused spectrum of P tε . We will show that the transfer operator based

approach gives an indication of a bifurcation before the critical parameter is reached.

The vector fields before and after the bifurcation is illustrated in Figure 4.11.

System (4.44) clearly undergoes a pitchfork bifurcation of elliptic-type equilibria. When

p ≤ 0, (4.44) has a unique fixed point at the origin. The latter is a stable center. Actually,

(4.44) is a nonlinear perturbation of the linear system

u̇ = v

v̇ = pu.
(4.45)

When p ≤ 0, adding the nonlinear term in (4.44) to (4.45) does not change the qualitative

behavior of the latter with respect to the former. Indeed, the two dynamical regimes

consist only of rotating closed orbits around the stationarity point (0, 0) for negative

values of p. Hence, we can say that near a neighborhood of (0, 0), the nonlinear system

(4.44) is qualitatively equivalent to (4.36) and (4.45), for negative values of p. Moreover,

near (0, 0), the discrete spectrum of the deterministic operator P t generated by (4.44)

may be given by

λn(t, p) = ein
√
−pt, n ≥ 0, p ≤ 0.

As mentioned earlier, almost-cyclic partitions require, <e(λn(t, p)) ≈ 1 while=m(λn(t, p)) ≈

64



4.6. Spectral signature for set-oriented bifurcation

0. Let sn(t, p) = <eλn(t, p) ≈ 1. Therefore, we focus on

sn(t, p) = cos(n
√
−pt) ≈ 1

and, as in (4.16), we pick all of them in

E = {sn(t, p) : n ≥ 0}. (4.46)

Note that, even though sn(t, p) ≈ 1, ∀ n ≥ 0, there is a decreasing order among them

since sn(t, p) 6= sm(t, p) when n 6= m. Therefore, near the critical parameter p we have

that

sn(t, p)→ 1 as p→ 0, ∀ n ≥ 0. (4.47)

The spectrum in (4.46) tends to accumulate at 1 when the system is close to the tipping

point p = 0. This is clearly a spectral version of the critical slowing down scenario [3]

which the system faces near the bifurcation. However, (4.47) only concerns the complex

eigenvalues of the deterministic operator P t. Moreover, in example 4.36, it is made clear

that studying real eigenvectors in figure 4.7 may be more relevant to characterize the

set-oriented bifurcation of the center point (0, 0). Indeed, these eigenvectors correspond

to real eigenvalues accumulated near 1, as shown in figure 4.5. In the same vein, we

are going to study the pitchfork bifurcation by relying on these kind of real eigenvalues.

Their existence should be shown first.

Indeed, we have the Hamiltonian of (4.44)

ρ(x, y) =
1

2
y2 − p

2
x2 +

1

6
x6 + C (4.48)

with which we can construct k orthogonal real eigenfunctions {φ′i, i = 1, ..., k} with

eigenvalue 1 of the deterministic operator P t. Note that these eigenfunctions are the

concrete realizations of (4.21). They are, thus, supported on ring-like invariant sets, given

the circular behavior of the phase space of (4.44), see figure 4.11 (left panel). As shown in

section (4.3.3), under the diffused dynamics, the transfer operator P tε yields k orthogonal

eigenfunctions {φ′εi , i = 1, ..., k} with corresponding eigenvalues {λεi(t, p), i = 1, .., k}
eigenvalues near 1, including the eigenvalue λt1(p) = 1.

In the following, we will numerically investigate the pitchfork bifurcation of the underly-

ing system. Thus, we will mainly focus on the changes of the eigenvalues

{λεi(t, p), i = 1, .., k} and their corresponding eigenvalues {φ′εi , i = 1, ..., k}, as the pa-
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

rameter p is varied.

The flow map is approximated by using a fourth order Runge Kutta ODE solver with

a time interval of length 1 and step size of h = 0.1, i.e 100 time steps. The domain

[−2, 2] × [−2, 2] is subdivided into 2depth rectangular grid sets (boxes). Here, we use

depth = 13, which gives N = 213 = 8192 boxes Bi that partition the phase space M . In

each box, we sample 900 test points as initial data for constructing the transition matrix

approximation of P tε . Note that diffusion of amplitude ε is artificially including from the

numerical discretization. That is, the diffusion amplitude ε is equal to the size of the

subdomains which are all equal.

Note that the system (4.44) is open. That is trajectories from initial test points may

leave the domain D = [−2, 2] × [−2, 2] during integration. To numerically overcome

this computational obstacle, an additional box is added in order to capture all the image

points that are being mapped out of the initial domain D when computing the transition

matrix. At the end of the computation, this temporary subdomain will be removed from

the eigenvector entries by just considering the 213 first entries.

For p = 1, we show the eigenvalues of the transition matrix approximation of P tε in figure

4.12. The real eigenvalues are isolated and accumulated near 1. Their corresponding

Figure 4.12: Largest magnitude eigenvalue for the Duffing-type system (4.44) for param-
eter p = −1 (left) and largest real eigenvalues (right).

eigenvectors are shown in figure 4.13, where we only visualize the four largest. These

are rings of almost-invariant sets which depict the stationary behavior of the system.

Note the center pattern defined in (4.19). The latter carries the center fixed point (0, 0).

The set-oriented bifurcation will be investigated by focusing on the changes of both real

eigenvalues and eigenvectors shown, respectively, in figure 4.12 and figure 4.13.

To study the spectral signature of the pitchfork bifurcation shown in figure 4.11, we vary

p in the interval [−0.5, 0.5], first. Then we track the changes of the real eigenvalues and
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4.6. Spectral signature for set-oriented bifurcation

(a) (b)

(c) (d)

Figure 4.13: Four largest real eigenvectors for the Duffing-type system (4.44) for
parameter p = −1 .

their corresponding eigenvectors for different parameters p.

In figure 4.14, the trends of the nine largest real eigenvalues are shown for p ∈ [−0.5, 0.5].

Each panel corresponds to the changes over p of three different eigenvalues. For instance,

left panel (figure 4.14(a)) shows the trends of {λε1(t, p), λε2(t, p), λε3(t, p)}, middle panel

(figure 4.14(b)) yields {λε4(t, p), λε5(t, p), λε6(t, p)}. Finally, in the right panel (figure

4.14(c)), we illustrate the changes of {λε7(t, p), λε8(t, p), λε9(t, p)}.
Looking at figure 4.14(a)-(c), a particularly common shape seems to repeatedly show up.

Indeed, a peek of the eigenvalues trend λεj(t, p), j = 1, 2, ..., 9 at the critical parameter

p = 0 can be seen as we slide from one panel to another. This peek becomes sharper as

we go down to smaller magnitude eigenvalues. To better visualize this particular slope,

we plot the zoomed version of figure (4.14) for p ∈ [−0.05, 0.05]. The corresponding

zoomed picture is shown in figure (4.15).

The spectral signature of the pitchfork bifurcation of the system (4.44) is illustrated

in Figure 4.14. The spectral outcome of the critical slowing down is visible when p is

close to 0. Indeed, one can see that when p enters what we call a critical interval as
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(a) (b) (c)

Figure 4.14: Nine largest real eigenvalues for the Duffing-type system
(4.44), for parameter p ∈ [−0.5, 0.5] in the x-axis and λεj(t, p), j =
1, 2, ..., 9 in the y-axis. (a):{λε1(t, p), λε2(t, p), λε3(t, p)}, (b):{λε4(t, p), λε5(t, p), λε6(t, p)},
(c):{λε7(t, p), λε8(t, p), λε9(t, p)}.

(a) (b) (c)

Figure 4.15: Nine largest real eigenvalues for the Duffing-type system
(4.44), for parameter p ∈ [−0.05, 0.05] in the x-axis and λεj(t, p), j =
1, 2, ..., 9 in the y-axis. (a):{λε1(t, p), λε2(t, p), λε3(t, p)}, (b):{λε4(t, p), λε5(t, p), λε6(t, p)},
(c):{λε7(t, p), λε8(t, p), λε9(t, p)}.

shown in Figure 4.15, eigenvalues start increasing continuously towards 1. This is fairly

comparable to the deterministic version of criticality in (4.47) where all leading real parts

eigenvalues of P t converge to 1 as p approaches 0. Note also that in Figure 4.14 and more

clearly in figure 4.15, the further the eigenvalue is away from 1, the earlier its increasing

process starts. The explanation to that is twofold. First, each eigenvalue measures how

porous are the different almost-invariant sets generated by its corresponding eigenvector.

Based on this fact, the set-oriented dynamics measures transport between different

almost-invariant sets. Note that the external perturbation is responsible for the transport

between almost-invariant sets. Second, the almost-invariant sets appear, in this context,

as ring shapes surrounding a central almost invariant pattern supported on (0, 0) (see

panels (a),(b),(c) and (d) in Figure 4.13 as an example). Therefore, the further an

eigenvalue is away from 1, the stronger is the transport between ring patterns. Thus,

they are more porous, under external perturbations. This implies that the undergoing

dynamics of the system (4.44) is better captured by the smaller eigenvalues. Hence,
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when the dynamics of the latter system slows down, transport between rings decreases

as well. This results in an increase of the corresponding eigenvalues towards 1, which

explains the critical slowing down before the bifurcation. As a consequence, if one only

tracks the second leading eigenvalue, one may not see a spectral signature when the

parameter crosses its critical value. This is due to the fact that second leading eigenvalue

is already pretty close to 1 and cannot be 1 because, due to the underlying dynamics and

the stochastic perturbation applied, the transition matrix is irreducible. The continuous

growth of eigenvalues, which are further away from 1, is better visualized in Figure

4.14(b)-(c). The latter is a zoomed out version of Figure 4.15(b)-(c).

In figure 4.16, we plot the changes of the eigenvectors corresponding to eigenvalues in

figure 4.14. Without missing any qualitative detail in the analysis, we only chose the

eigenvectors corresponding to eigenvalues λε2(t, p) and λε9(t, p) and visualize them before,

at, and after the bifurcation. That is, for parameter values p = −0.5, p = 0, and p = 0.15.

Figure 4.16 shows that the ninth eigenvector corresponding to the eigenvalue λε9(t, p)

(see figure 4.16(b),(d),(f)) has more ring-like patterns that are also finer than the ring-

like patterns displayed by the second eigenvector λε2(t, p) (see figure 4.16(a),(c),(e)).

Therefore, under external perturbations, the transport between rings is stronger in figure

4.16(b),(d),(f) than in figure 4.16(a),(c),(e). This explains why smaller magnitude

eigenvalues are more sensitive to changes of parameter p near the bifurcation point.

However, a bifurcation of almost-invariant sets in the sense of pattern splitting is not clear

with this approach. Indeed, after the bifurcation at p = 0.14, the second eigenvector does

not show any split-like shape (see 4.16(e)). A pattern split can only be seen in the ninth

eigenvector pattern (see 4.16(f)) similar to figure 4.11(right), and this is explained by the

fact that the eigenvector sign pattern partitions the phase space into finer almost-invariant

sets. Thus, the partition element supported in the neighborhood of the fixed point (0, 0),

say the particular invariant set defined in (4.19), will capture the local qualitative change

following the bifurcation.

4.6.2 Infinitesimal generator approach

In this section, we want to confirm the spectral signature of the pitchfork bifurcation of

(4.44) from the spectrum of a randomly perturbed infinitesimal generator. The latter

can thus be understood as the perturbed version of the generator defined earlier in

(4.4). Recall that with the latter operator we could investigate the spectral signature

of the bifurcation that occurred in system (4.12) in example 10 with the deterministic

infinitesimal operator. The approach was based on the trace formula (4.10)-(4.11) which
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Changes of almost-invariant patterns for p ∈ [−0.5, 0.5]. Eigenvector of
λε2(t, p) (a)(left) and eigenvector λε9(t, p) (b)(right) for p = −0.5. Eigenvector of λε2(t, p)
(c)(left) and eigenvector λε9(t, p) (d)(right) for p = 0. Eigenvector of λε2(t, p) (e)(left) and
eigenvector λε9(t, p) (f)(right) for p = 0.14.

is a method that requires existence of hyperbolic stationary fixed points. Hence, changes

of the discrete spectrum of (4.4) which is computed via the trace formula applied to

system (4.12) are shown in figure 4.3. Moreover, the Spectral Mapping Theorem (4.6)

can be used to have the changes of the eigenvalues of the deterministic Frobenius-Perron

operator P t defined in (4.3) as shown in figure 4.4 .

However, in this set-oriented case study, we are using perturbed transfer operators P tε
which yield real eigenvectors generating almost-invariant sets (see figure 4.13 and figure
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4.16) and corresponding eigenvalues that yield signatures of the qualitative change of

(4.44) (see figure 4.14 and figure 4.15).

Adding external perturbations to a deterministic systems such as (4.44) is usually done

to respond to the undergoing physical realities of the phenomena that are being modeled.

Indeed, external perturbations are present in many real world situations. Besides,

it may be difficult to have a complete knowledge of those perturbations. Therefore

a deterministic model might be inappropriate to model those physical system. One

should rather consider the perturbations by adding external relatively small random

perturbations into the mathematical model being used. As a matter of fact, two types

of random perturbations may be used depending on the question being addressed. For,

instance, consider the system defined in (4.1). A discontinuous random perturbation

consists of adding random noise at initial data before applying the flow map (4.2) and

adding random noise at image data after applying the flow map (4.2). This leads to the

transfer operator P tε , which is compact and suitable for numerical approximations. The

discontinuous perturbation of this kind does not only yield a compact operator but it is

also a way of formulating mathematically robust almost-invariant sets which are more

suitable for real life modeling of invariant patters such as ocean vortices.

A continuous random perturbation, however, considers a random (ODE) built from the

deterministic (ODE) (4.1). That is, we deduce a stochastic differential equation (SDE)

ẋ = F (x, p) + ε
dWt

dt
, (4.49)

from (4.1). The noise amplitude ε is positive and W is the Wiener process. In this work,

we will not go through SDE analysis, as it is indeed not in the spectrum of our research

study. For more details about this approach, see [49], Chapter 10.

In the following, we briefly define the perturbed generator and its numerical approxima-

tion before exploring its spectrum for different parameters p.

The solutions of (4.49) are continuous time Markov processes (diffusion processes)

Xt, t ≥ 0 with density f(t, x) satisfying

P(Xt ∈ C) =

∫
C
f(t, x)dx.

However, this density can be found without any explicit knowledge concerning the process

Xt. Indeed, the density f(t, x) appears as a solution of the Fokker Planck equation

∂f

∂t
=
ε2

2
∆f −∇ · (Ff) =: Gεf. (4.50)
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As a consequence, with initial condition at initial time t0, i.e. initial density function

f(t0, x) = f(x), the Partial differential equation (4.50) has a solution

f(t, x) =

∫
X

Γ(t, x, y)f(y)dy (4.51)

and for every g ∈ L2(D,Σ, µ), (4.51) is called the generalized solution of (4.50) ([49],

Chapter 11).

Having the fundamental solution Γ, we define a family of transfer operators
{
Ptε
}

such

that for a given initial density f(t0, x) = f(x), we have

P0
ε f(x) = f, Ptεf(x) =

∫
X

Γ(t, x, y)f(y)dy. (4.52)

The family of operators
{
Ptε
}

forms a semigroup of transfer operators referred to as

stochastic semigroups ( see [49], Chapter 11). Moreover, Gε is the infinitesimal generator

of the transfer operator
{
Ptε
}

, with Neumann boundary conditions [32].

Our main interest is the discrete spectrum of Gε and almost-invariant sets; mainly changes

of these eigenvalues with respect to p. The framework of finding almost invariant sets

from the spectrum of the operator Gε was widely developed in [33], both analytically and

numerically. Indeed, in [33] it is shown that a µ-measurable set A is almost-invariant if

rε(A) :=
P (X0 ∈ A,Xt ∈ A)

P (X0 ∈ A)
≈ 1,

for modest times t with X0 and Xt denote initial and final random variables solutions of

the SDE (4.49). This can be characterized by using the generator Gε. Indeed, we define

the functional Gε,A : D (Gε) 7→ R by

Gε,Af := lim
t→0

∫
A

Ptεf − f
t

dµ f ∈ D (Gε) , (4.53)

where D (Gε) is the linear subspace of L2(D,Σ, µ) where the above limit exists. Let

fA = fχA/
(∫
fχA

)
with the density f ∈ D (Gε). Then for a µ-measurable set A and

t→ 0, it is proven in [33] that

rε(A) = 1 + Gε,AfA + o(t).

As a consequence, a µ-measurable A is almost-invariant if

Gε,AfA ≈ 0.

72



4.6. Spectral signature for set-oriented bifurcation

The connection between almost-invariant set and spectrum of Gε is established in the

following way.

If Gε has a real eigenvalue λ < 0 with corresponding eigenfunction f , then
∫
f = 0.

Moreover, if A+ = {f ≥ 0} , A− = {f < 0}. Then

Gε,A+ |fA+ |+ Gε,A− |fA− | = λ.

Hence the above equality yields Gε,A± |fA± | ≈ 0 for ≈ 0, which means that A+ and A−

will be almost-invariant sets generated by the eigenvector f . Hence, this sets a connection

between almost invariant sets and the spectrum Gε. For spectral signatures of bifurcation,

we will focus on real eigenvalues of Gε which are close to 0 and their corresponding

eigenfunctions.

The finite dimensional approximation of Gε was provided in [33]. It is mainly based on

the discretization of phase space into boxes but, unlike (4.35), a trajectory computation

is not needed. That is actually a huge advantage of using the infinitesimal generator. In

fact, only the knowledge of the vector field is enough to approximate Gε. Once the phase

space is discretized into boxes, the velocity field is considered and inflow/outflow rates

between boxes are computed to yield the matrix approximation of Gε. Note also that, an

explicit noise amplitude ε is required for the numerical computations.

We thus, directly compute the spectrum of finite dimensional approximation of Gε pro-

posed in [33]. We will then analyze the spectral signature of the bifurcation of (4.44).

The phase space [−2, 2]× [−2, 2] is discretized in 200×200 boxes Bi of equal size. We use

a noise amplitude ε = 10−5. In figure, we show the 60 smallest magnitudes eigenvalues of

Gε as the bifurcation parameter p changes in [−0.5, 0.5]. Near p = 0, the real parts eigen-

values tend to accumulate to 0 similar to the imaginary parts converge to 0 as well. Real

eigenvalues trends in figure 4.17 is similar are similar to eigenvalues trend in figure 4.3.

Hence, despite the random perturbation added to the dynamics, the spectral signatures

for pitchfork bifurcation persist and, in the eigenvalues level, the set-oriented approach

does not violate this spectral characterization of the pitchfork bifurcation. Moreover, the

spectrum shown in figure 4.17 has strictly real eigenvalues. Indeed, in figure 4.18 the six

smallest magnitudes eigenvalues are shown. These eigenvalues are real as the imaginary

parts are all zero. The signatures of the real eigenvalues as p changes is the same the

eigenvalues trends of the diffused transfer operator shown in figure 4.14 and figure 4.15.

Therefore, the spectral signature of the pitchfork bifurcation of system 4.44 is robust

under discontinuous additive noise and continuous additive noise. In figure 4.19 we show

the changes of the second and third eigenvectors for p = −0.5, p = 0 and p = 0.5. With
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Chapter 4. Bifurcations, spectral signatures and almost-invariant sets

Figure 4.17: Numerically approximated 60 smallest magnitudes complex eigenvalues
of Gε for p ∈ [−0.5, 0.5]. Real parts eigenvalues (Top), imaginary parts eigenvalues
(Bottom).

Figure 4.18: Numerically approximated 6 smallest magnitudes eigenvalues of Gε for
p ∈ [−0.5, 0.5]. Real parts eigenvalues (Top), imaginary parts eigenvalues (Bottom).

the continuous noise added to the dynamics, the spectrum of the infinitesimal generator

exhibit real eigenvectors patterns for p ∈ [−0.5, 0.5] in figure 4.19, which are similar to

the real eigenvectors patterns of P tε shown in figure 4.16.
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4.7. Summary

(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Changes of almost-invariant patterns for p ∈ [−0.5, 0.5]. (a) eigenvector of
λε2(t, p), (b) eigenvector λε6(t, p) for p = −0.5. (c) eigenvector of λε2(t, p), (d) eigenvector
λε6(t, p) for p = 0. (e) eigenvector of λε2(t, p), (f) eigenvector λε6(t, p) for p = 0.14.

4.7 Summary

This chapter discusses transfer-operator based ideas to characterize spectral signatures of

bifurcations of an autonomous dynamical system by using changes of almost-invariant

patterns. We have restricted our study to a special class of systems such as (4.44). The

reason for this choice is justified by our findings in real world systems. Indeed, we want

to predict the sudden change of Antarctic vortex break up in September 2002, from
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satellite velocity data, see figure 1.1.

Our approach is inspired by results in [17, 48] where a statistical analysis of a deter-

ministic dynamical system was used to characterize bifurcations. In [17], the pitchfork

bifurcation was studied and spectrally characterized from the discrete spectrum of the

infinitesimal generator (4.4). In this work we also consider the statistical evolution

of the underlying dynamical system but we focused on macroscopic almost-invariant

measurable sets. Thus, in practice, our approach is different from [17]. Indeed, while

in [17] the discrete spectrum is used altogether to observe changes as the bifurcation

parameter is varied, in our work we use a perturbed transfer operator and select a subset

of its discrete spectrum which approximates almost-invariant sets. That is, we are only in-

terested in changes of a part of the discrete spectrum (eigenvalues, eigenfunctions) since

the latter yield dominant patterns which are supported on the critical point. Moreover,

this part of the spectrum is composed only of real eigenvalues and real eigenfunctions

which exhibit sign patterns that can be used to extract robust almost-invariant sets. In

order to characterize the qualitative changes of the latter, we track the changes of the

corresponding real eigenvalues as we vary the bifurcation parameter p. Our findings

were very interesting as near the critical parameter (i.e. p = 0), we see particular trends

of the eigenvalues which truly characterize the transport dynamics occurring between

almost-invariant sets. Moreover, these spectral changes agree with the ones in [17].

Most importantly, our findings help us understand how we should specifically define

the notion of bifurcation of almost-invariant sets. Indeed, near the critical parameter

we have evidence of a bifurcation from observing the changes of the eigenvalues as

shown by figure 4.14 and figure 4.15. However, the corresponding eigenvectors in figure

4.16(b)-(d), for instance, do not show any qualitative change near p. Looking at figure

4.16(e), we only become aware of changes of patterns when p is far from its critical value

after the bifurcation. Therefore, the local pitchfork bifurcation as shown by figure 4.11 is

not characterized by dominant patterns, even if it is characterized by the corresponding

eigenvalues.

Hence, we state that a bifurcation of almost-invariant set must be simultaneously charac-

terized by both eigenvectors and corresponding eigenvalues. The next chapter will bring

more details to proving our statement.
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5 Predicting set-oriented bifurcation of

almost-invariant patterns

From chapter 4, it is clear that a spectral characterization of bifurcations of almost-

invariant sets should simultaneously concern dominant real eigenvalues and correspond-

ing eigenvectors. Moreover, the discrete approximation of a diffused transfer operator is

a stochastic matrix whose real leading eigenvectors exhibit sign patterns which approxi-

mate almost invariant sets. The corresponding eigenvalues showed very well signatures

of the pitchfork bifurcation but the eigenvectors did not. Hence, in this study, we are

going to develop a bifurcation theory of almost-invariant sets, which will be strictly based

on the qualitative changes of the almost-invariant patterns, instead of the critical value of

the bifurcation parameter. Indeed, the latter approach makes sense, since the pitchfork

bifurcation is a point bifurcation, while we are interested in the changes of macroscopic

sets.

The aim of the chapter is to provide further methodological steps towards a better un-

derstanding of such global bifurcations. The approach is based on a purely discretized

dynamical systems where the evolution of the flows yield stochastic matrices.

In this chapter, we are going to we rigorously study two explicit dynamical models, a

Duffing-type oscillator and a single gyre flow, and identify early warning signals for

splittings of patterns through the trends of eigenvalues with respect to a bifurcation

parameter. The results of this chapter have been submitted for publication in the SIAM

Journal for Applied Dynamical Systems [57].

5.1 Set-oriented approach and almost-invariant patterns

In this chapter, we follow similar dynamical settings as chapter 4. Indeed, we consider a

p-parametrized ODE as described in (4.1) and the flow map (4.2) which is denoted here
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

by φt and defined in the same measure space (D,Σ, µ). In addition, (4.1) is supposed

to model the evolution of a rotating incompressible steady fluid flow such as a vortex,

throughout the present chapter. The Lebesgue measure µ is, thus, invariant.

5.1.1 Finite number of almost-invariant sets

Following [21], the invariance ratio of a measurable set Ai, i = 1, 2, . . . , k is defined as

ρµ(Ai) =
µ(Ai ∩ φ−t(Ai))

µ(Ai)
. (5.1)

This is interpreted as the probability of a point in Ai to stay in Ai under the mapping φt .

Hence, any measurable invariant set A satisfies ρµ(A) = 1. As defined in chapter 2 and

analytically constructed in chapter 3, {A1, A2, . . . , Ak} is a family of almost-invariant sets

that partitions the phase space D if D = ∪ki=1Ai and

ρµ(Ai) ≈ 1 ∀ i = 1, 2, . . . , k. (5.2)

Finding such a family of almost-invariant sets is intractable in practice. Instead one seeks

optimal solutions of a relaxed problem based on the description of the dynamics in terms

of a finite-state Markov chain and its spectral properties.

5.1.2 Discretization and stochastic matrices

The time evolution of the dynamical system on the discretized phase space yields the

transition matrix

(P tN )ij =
m(Bi ∩ φ−t(Bj))

m(Bi)
, (5.3)

which is already established in chapter 4. Recall that P tN is actually a finite rank approxi-

mation of the Perron-Frobenius operator [22], each (i, j)-th entry is the probability that

a randomly selected point x ∈ Bi has its image in Bj , and P tN is a row stochastic matrix

and is interpreted as the transition matrix associated with an N -state Markov chain over

the finite states
{
Bi

}N
i=1

. Let us define the lumped finite state [21]

CN =

{
A ⊂ D : A =

⋃
j∈I

Bj , I ⊂ {1, 2, . . . , N}
}
.
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5.1. Set-oriented approach and almost-invariant patterns

The Markov chain (5.3) is not in general reversible. However, reversible transition

matrices yield important spectral properties which are dynamically efficient in terms of

checking how mass is transported in both forward and backward time. Moreover, as we

are ultimately interested in the macroscopic dynamics of patterns such as the transport

and critical transition of optimal almost-invariant patterns, it is more relevant to use a

reversibilised Markov chain. The latter comes as straightforward transformation of (5.3)

as

Q =
(L+ P )

2
, (5.4)

where L =

(
πjPji
πi

)N
i,j=1

is the transition matrix of the reversed Markov chain and

P := P tN is assumed to have a unique positive stationary distribution π = [π1, π2, . . . , πN ]

with πP = π; in our case it holds that πi = m(Bi) with m being normalized Lebesgue

measure. Note that Q is exactly the approximation of the operator Qε in chapter 3 with

ε = 0. It follows the approximation of the invariance ratio as follows

ρNµ (A) =

∑
i,j∈I πi(Q

t
N )ij∑

i∈I πi
, I ⊂ {1, 2, . . . , N}, invariance ratio,

= 1 if A is invariant,

≈ 1 if A is almost-invariant.

(5.5)

Q is a transition matrix as the weighted average of two transition matrices P and

L. Moreover, Q is reversible since it satisfies the so-called detailed balance condition,

πjQji = πiQij . Further important properties of Q include:

1. Q is diagonalized by a basis of π-orthogonal right eigenvectors.

2. Q has only real eigenvalues contained in [−1, 1]. Moreover, for any given eigenvalue

with a corresponding right eigenvector x, there is an associated left eigenvector y

such that y = DNx, where DN = diag([π1, π2, . . . , πN ]).

3. Q is symmetric or self-adjoint with respect to the weighted Euclidean space 〈·, ·〉π
defined in RN such that 〈x, y〉π =

∑N
i=1 xiyiπi, and two vectors x, y are orthogonal

if 〈x, y〉π = 0.

Moreover, it is easy to verify that the adjoint of L with respect to 〈·, ·〉π is the transition

matrix P . Therefore, Q is just the average of two adjoint matrices. Besides, in terms of
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

transport, Q is checking how mass is transported in forward and backward at stationarity.

For more details on Markov chains we refer to e.g. [23]. In this work, we will use the

reversibilized transition matrix to almost-invariant patterns and their bifurcations.

5.2 Perturbed invariant patterns and spectral configurations

In this section, we consider a k-state, k > 2, reducible Markov chain which becomes

irreducible when it is subjected to small perturbations. Then we assume the existence of

disjoint strongly connected lumped states {Ai}ki=1 and their perturbed versions {Ai(ε)}ki=1,

ε ∈ R. Thus, under some convenient reordering within the states, the unperturbed and

perturbed Markov chains are respectively given by

Q =


Q1 0 · · · 0

0 Q2 · · · 0
...

...
. . .

...

0 0 · · · Qk

 , Q(ε) =


Q1(ε) E12 · · · E1k

E21 Q2(ε) · · · E2k

...
...

. . .
...

Ek1 Ek2 · · · Qk(ε)

 , k > 2. (5.6)

Every Qi, i = 1, . . . , k, is a primitive ni × ni reversible transition matrix over the “cloud”

of states Ai. Moreover, due to the reducibility of Q, a system described by Q will always

stay in state Ai once it is initialized in Ai. This means that the conditional transition

probability to map to Aj when in Ai, w(Aj , Ai) =
∑
i∈I,j∈J πiQij∑

i∈I πi
, is the Kronecker symbol

δij , j = 1, . . . , k, . Besides, the matrix Q has an eigenvalue 1 of multiplicity k. One may

think of the matrix Q as the reversibilized of version (5.3) generated from (??).

The transition matrices Q(ε), ε ∈ R are, however, irreducible and the magnitude of the

off-diagonal blocks Eij is very small relative to 1 with respect to any chosen matrix norm.

This implies, w(Aj(ε), Ai(ε)) ≈ δij , i, j = 1, . . . , k, and means that when the dynamical

system enters Ai, it will stay in Ai for a long time with high probability before it leaves.

The patterns Ai(ε) are referred to as almost-invariant patterns. Following the settings

in [24], Q(ε) is considered as an operator-valued function of ε, which is analytic in

E ⊂ R, 0 ∈ E. Thus it can be, in general, expressed as Q(ε) = Q(0) + εQ(1), which is the

first order Taylor expansion of Q(ε). As a consequence of this regularity condition, the

eigenvalues of Q(ε) are continuous in ε. From this continuity and the fact that the Qi(ε)

are nearly stochastic matrices [34], we have that the spectrum of Q(ε) includes three

parts:
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5.2. Perturbed invariant patterns and spectral configurations

(a) the Perron root λ1(ε) = 1,

(b) the set of k − 1 non-unit eigenvalues, {λ2(ε), . . . , λk(ε)} that are clustered near 1.

(c) the remaining part of the spectrum which is bounded away from 1, for small ε.

Throughout this work, we set the ordering 1 = λ1(ε) > λ2(ε) ≥ . . . ≥ λk(ε). Note that

this section is motivated by the fact that the class of models we consider in this study

yield invariant sets in their dynamical evolutions. This means that the almost-invariant

patterns will be just considered as perturbed invariant sets.

Example 17 To illustrate this setting, we consider a 60-state Markov chain with S =

{1, 2, . . . , 60}. This is chosen to be reducible with three disjoint invariant patterns A1 =

{1, 2, . . . , 10}, A2 = {11, 12, . . . , 40} and A3 = {41, 42, . . . , 60}. The corresponding transi-

tion matrix is shown in figure 5.1 (left) with the blue dots highlighting the nonzero entries.

An example of a perturbed Markov chain, allowing for small amounts of transport between

the three patterns, is shown in figure 5.1 (right), as the corresponding irreducible transition

matrix Q(ε). The corresponding eigenvalues of both matrices are shown in figure 5.2. As

Figure 5.1: Reducible and irreducible transition matrices Q (left) and Q(ε) (right) of a
60-state Markov chain (example 17) exhibiting three invariant or three almost-invariant
patterns, respectively.

expected, the unperturbed matrix has an eigenvalue 1 of multiplicity 3 (figure 5.2 (left)),

while the perturbed matrix has two eigenvalues near the Perron root (figure 5.2 (right)).

Due to reducibility, the global stationary distribution of the unperturbed transition matrix

Q in (5.6) is not unique. Indeed, each vector Vi, where

Vi = (0, . . . , 0, π(i), 0, . . . , 0), i = 1, . . . , k, with π(i)Qi = π(i), (5.7)
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

Figure 5.2: Eigenvalues (ordered by magnitude) of the unperturbed matrix Q (left) and
the perturbed matrix Q(ε) (right) for the 60-state Markov chain model in example 17.
The perturbation results in two eigenvalues very close to one (right, see also inlet) which
originate from the three-fold eigenvalue 1 (left) in the unperturbed situation.

is a left eigenvector of Q corresponding to the k-fold eigenvalue λ1 = 1 of (5.6). The

eigenspace Eλ1 is, thus, spanned by {Vi, i = 1, . . . , k}. The eigenvectors Vi are only

supported on Ai where they have a constant sign. However, there exists other eigenvector

bases {Ui, i = 1, . . . , k} of Eλ1 given by

Ui =
k∑
j=1

αijVj , i = 1, . . . , k, αij ∈ R. (5.8)

Thus, depending on the choice of αij , each Ui may partition the “clouds” {Ai}ki=1 into

configurations via its sign structure.

Figure 5.3: Eigenvectors Vi (left) and Ui (middle), i = 1, 2, 3, to the 3-fold eigenvalue 1
of the unperturbed matrix Q of the 60-state Markov chain (example 17), and eigenvectors
to leading eigenvalues Ui(ε), i = 1, 2, 3, for the perturbed matrix Q(ε) (right).

Example 18 (cont.) The eigenvectors Vi, i = 1, 2, 3 corresponding to the three-fold eigen-

value 1 of the unperturbed matrix are only supported on the respective invariant patterns
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5.2. Perturbed invariant patterns and spectral configurations

(figure 5.3 (left)). In figure 5.3 (middle), the eigenvector U1 is constructed to have a constant

positive sign on the whole state space S; it can be interpreted as a stationary distribution.

U2 yields a 2-partition of S by lumping together A1 and A2. Finally U3 yields a 3-partition

of S, which corresponds exactly to the three invariant patterns that exist in the state space.

In figure 5.3 (right) the leading eigenvectors for the perturbed matrix Q(ε) are shown. From

their sign structures a 3-partition of S into almost-invariant patterns is obtained.

In the presence of perturbations, an explicit formula of the k analytic eigenvectors

corresponding to the dominant eigenvalues – the eigenvalues clustered near 1 – can be

found as

U1(ε) = π(ε) = [π1(ε), π2(ε), . . . , πN (ε)], πi(ε) > 0,

Ui(ε) =
k∑
j=1

(αij + εβij)Vj

+ ε

N∑
j=k+1

1

1− λj(ε)
〈Uj , Q(1)Ui〉π(ε) +O(ε2), i = 2, . . . , k, αij , βij ∈ R.

(5.9)

Formula (5.9) was stated and proven in [35] for the right eigenvectors of Q(ε). The proof

is mainly based on ([24], Chp. 2) but with a particular focus on reversible stochastic

matrices. Here, we only use left eigenvectors of Q(ε) since left and right dominant

eigenvectors are both analytic for ε ∈ R and are related by Ui(ε) = DNXi(ε), where

DN = diag([π1, π2, . . . , πN ]) and {Xi(ε), i = 1, . . . , N} are the π(ε)−orthogonal right

eigenvectors of Q(ε). Note that sign(Ui(ε)) = sign(Xi(ε)).

The first term in the second equation in (5.9) suggests that the Ui(ε)′s are actually ε-up-

or-down-shifts of the basis Vj in equation (5.7), which were each supported on invariant

patterns Aj . Thus, this shifting does not affect the sign structure of the unperturbed

eigenvectors; see equation (6.14). However, the second term depends on the spectral

gap 1
1−λj(ε) between the Perron root 1 and the N − k small magnitude eigenvalues of

Q(ε). Therefore, this second term may have an influence on the sign structure of the

unperturbed eigenvector, but only when a relatively small ε is chosen [35].

With this setting of the Markov chain and the lumped almost-invariant states, the sign

structure of each dominant eigenvector in equation (5.7) yields a partition of the state

space. Indeed, each Ui(ε) defines a partition into i nearly disjoint aggregates for i =

2, . . . , k, via its sign structure. In addition, k dominant eigenvalues are a consequence

of the occurrence of k almost-invariant patterns given by the supports of Uk(ε). Finally,
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note that the remaining N − k eigenvectors, corresponding to the spectrum {λj(ε), j =

k+ 1, . . . , N} bounded away from 1, cannot be interpreted as (5.9). Indeed, the supports

of these eigenvectors do not correspond to invariant patterns. However, they may play an

important role when it comes to studying the changes of the dominant almost-invariant

patterns with respect to an external bifurcation parameter.

5.3 Incompressible 2D flows and almost-invariant sets

Since our study is motivated by geophysical applications including the splitting pattern of

the Antarctic polar vortex in September 2002 in figure 1.1, we focus on models exhibiting

vortices in their incompressible dynamics. As a first illustrative example, let us consider

the following two-dimensional system of ordinary differential equations:

ẋ(t) = −π sin(πx) cos(πx)

ẏ(t) = π cos(πx) sin(πy)
(5.10)

From the stationary behavior of (5.10), it is clear that every single orbit is periodic, see

Figure 5.4: Phase plane of system (5.10) consisting of periodic orbits.

figure 5.4. Hence, the ensemble evolution of a set of initial points under the flow map φt

yields a bundle of closed curves for sufficiently large t. Under this rotational dynamics,

one can always extract a finite number of disjoint ring-like sets {A1, A2, . . . , Ak} that

partition the phase space D so that the invariance equation ρµ(Ai) = 1 holds, for every

Ai, i = 1, . . . , k. In this context, one may think of a set Ai as a bundle of invariant orbits.

Note that this partition is not unique, given the particular behavior of (5.10). We will,

nevertheless, choose to work with a fixed partition of k invariant sets. Therefore, as in

section 5.1, let us suppose that the stationary dynamics within the discretized phase

space yields a reducible diagonal block transition matrix PN with k blocks. That is, the
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5.3. Incompressible 2D flows and almost-invariant sets

reversibilized transformation QN in (5.4) has the form (5.6). In other words, the k block

matrices of QN consist of clustered states such that each lumped state yields an invariant

set Ai, i = 1, 2, . . . , k.

In what follows, we will add an external perturbation to the reducible macroscopic

dynamics so that the invariant sets persist but become almost-invariant sets

{A1(ε), A2(ε), . . . , Ak(ε)} ⊂ CN . That is, ρµ(Ai(ε)) ≈ 1, i = 1, 2, . . . , k as defined in

equation (5.5). In [16, 36] an explicit model of the perturbation was introduced and

analytically formulated. It consists of ”shaking” every box Bi before and after applying

the flow map φt. As a consequence, only those invariant sets that resist perturbations

will continue to exist as robust almost-invariant sets and are, thus, relevant in real world

settings. Under the perturbed dynamics, the transition matrix is given by

(P tN (ε))ij =
m(Bε(φ

t(Bε(Bi))) ∩Bj)
m(Bε(φt(Bε(Bi)))

. (5.11)

Bε is the ball centered at zero with radius ε, which can be thought of as the perturbation

amplitude. P tN (ε) is actually the finite rank approximation of the explicitly diffused

Perron-Frobenius operator; see [36] for more details and the numerical implementation.

As in section 5.2, the added perturbation yields a reversible row stochastic transition

matrix QtN (ε) from P tN (ε) analogously to (5.4), where π(ε) denotes the unique stationary

density of P tN (ε). Hence, QtN (ε) has k eigenvalues {λti(ε)}ki=1 that satisfy the properties

(a), (b) and (c) outlined in section 5.2. The corresponding eigenvectors, denoted as

{U ti (ε)}ki=1, can be expressed as in equation (5.9).

Let {Xt
i (ε)}ki=1 be the right eigenvectors of QtN (ε) corresponding to the eigenvalues

{λti(ε)}ki=1 . Then due to the self-adjoint property of QtN (ε) with respect to the inner

product 〈·, ·〉πt(ε), we have for j = 2, . . . , k

λtj(ε) = max
x 6=0, x∈RN

{
〈QtN (ε)x, x〉πt(ε)
‖x‖2πt(ε)

}
, (5.12)

under the πt(ε)-orthogonal constraint

〈x,1〉πt(ε) = 〈x,Xt
2(ε)〉πt(ε) = ... = 〈x,Xt

j−1(ε)〉πt(ε) = 0.

Note that 1 = Xt
1(ε) = [1, 1, . . . , 1] denotes the right stationary distribution of QtN (ε).

Besides, (5.12) is a finite dimensional approximation of (3.28) in chapter 3. In [16, 36],
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the eigenvalue λt2(ε) and the corresponding left eigenvector U t2(ε) = DNXt
2(ε), DN =

diag([πt(ε)1, π
t(ε)2, . . . , π

t(ε)N ]) were used to approximate two robust maximal almost-

invariant sets. Indeed, due to the πt(ε)-orthogonality relations among the right eigen-

vectors {Xt
i (ε)}ki=1 and the positive sign of Xt

1(ε), the sign structure of U t1(ε) is given

as

sgn(U t1(ε)) = (+,+,+,+, . . . ,+,+,+,+,+, . . . ,+).

We can therefore predict the sign structure of U t2(ε) as follows

sgn(U t2(ε)) = (+,+,+,+, . . . ,+,−,−,−,−,−, . . . ,−),

subject to a convenient box reordering. Hence, it follows that U t2(ε) yields positive

and negative level sets, which partition the phase space into two dominant almost-

invariant sets, whenever λt2(ε) ≈ 1. Similarly, since further k − 2 eigenvalues are

clustered near 1, each eigenvector U tj (ε) yields a sign structure that may be sorted so

that j almost-invariant sets are obtained. In [35], all k − 1 leading eigenvectors are

used to compute almost-invariant sets. This method does not need the corresponding

eigenvalues, but only the sign structures of the eigenvectors. However, in this work we

use the eigenvectors separately, because we ultimately need to study the trends of the

corresponding eigenvalues to understand bifurcation of patterns.

Given (5.10), we can numerically compute and visualize the eigenvector patterns

U tj (ε), j = 1, 2, . . . , k, as well as their corresponding eigenvalues λj(ε). For this we

use GAIO[37], which is a MATLAB-based software package for set-oriented numerics

in dynamical systems. We approximate the flow map by using a fourth order Runge

Ut1(ε) Ut2(ε) Ut3(ε) Ut4(ε)

Figure 5.5: First 4 dominant eigenvectors of QtN (ε) for model (5.10).

Kutta ODE solver with a time interval of length 1 and step size of h = 0.01, i.e 100 time

steps. The domain is subdivided into 2depth rectangular grid sets (boxes). Here, we use

depth = 13, which gives N = 213 = 8192 boxes Bi that partition the phase space D.

In each box 900 test points are uniformly sampled as initial data for constructing the
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transition probabilities of the N ×N -transition matrix.

In figure 5.5, the k = 4 dominant eigenvectors are plotted, with the corresponding

eigenvalues shown in figure 5.6. These are all clustered near 1, as the result of additional

external perturbations. Note that the numerical discretization induces a small amount of

noise in the order of magnitude of the box diameters ([12], Lemma 2.2). That is, the

numerical discretization directly yields an approximation of (5.11), and, hence, it is not

necessary to add explicit diffusion in practice, although it is required on the theoretical

level. Also note that the leading eigenvector U1(ε) is approximately constant due to area

preservation of the underlying system (5.10), with some small numerical artefacts at the

boundary of the domain.

Figure 5.6: First 4 dominant eigenvalues of QtN (ε) from system (5.10).

A set-oriented bifurcation analysis of a dynamical system will be exclusively based on

studying the changes of the spectral data as a response to qualitative changes in the

underlying dynamics. That is, one needs to focus on both the eigenvectors and their

corresponding eigenvalues. In this way, trends of the spectral data can be used to

understand whether or not there is hint of any qualitative changes of patterns generated

by the corresponding eigenvectors. But, beforehand, we will first consider some toy

models and investigate bifurcations of patterns in an experimental manner.

5.4 Numerical experiments of bifurcation

Now, we start to dive into the main purpose of this work through an experimental

approach. We study the changes in the trends of the dominant spectrum when the

almost-invariant patterns undergo different qualitative changes. This may be understood

as a ”bifurcation analysis” of the stationary macroscopic dynamics of the Markov chain.

The process resulting in qualitative changes of a pattern can only occur in two ways:

Either it starts from the inside towards the outside of the pattern or the other way round.
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Example 19 We revisit the 60-states Markov chain with the perturbed 3 invariant patterns

as introduced in example 17. In this experiment, we want to understand how the spectrum

behaves when the change of the pattern starts from its boundary. Thus, as shown in figure

Figure 5.7: Different transition matrices of example 19, where the outer two almost-
invariant patterns grow at the expense of the center one.

5.7, we manually decrease uniformly the size of the middle invariant pattern A2, while

increasing the size of both A1 and A3, simultaneously. These changes are captured by the

dominant spectrum as illustrated in figure 5.8. Eigenvalue λ3(ε) decreases in magnitude as

Figure 5.8: Spectral signature of the shrinking of one almost-invariant pattern in example
19, with two other patterns growing and becoming more invariant.

the middle pattern A3 shrinks in size. This shrinking process is captured in the eigenvector

U3(ε), where the support of U3(ε) in A3 is becoming smaller and smaller, as demonstrated

in figure 5.9. The opposite is noticed in the changing process of U2(ε). The corresponding

eigenvalue λ2(ε) approaches 1 as λ3(ε) decreases. In this process, one can clearly see that

the system tends to become nearly reducible with two growing lumped states A1(ε) and
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A3(ε). That explains the growth of λ2(ε) towards 1. It is necessary to understand the

Figure 5.9: Changes in the three dominant eigenvectors for the transition matrices
shown in figure 5.7.

behavior of the eigenvalues and their correct interpretation with respect to the dynamics

of the almost-invariant patterns. Indeed, this experiment clearly suggests a relationship

between the eigenvalues and the size of the patterns.

Example 20 Here the qualitative change is provoked from the interior of the middle pattern

A2. The aim is to experiment the behavior of the spectrum with respect to a sudden growing

change from a local region. The corresponding transition matrices of the gradually changed

Markov chain are shown in figure 5.10. The evolution of the dominant eigenvalues shown

in figure 5.11 indicates the importance of the eigenvalue λ4(ε), which is not part of the

dominant spectrum at first. It increases very quickly in magnitude until it crosses λ3(ε). The

corresponding eigenvector, U4(ε), is supported on the newly born almost-invariant pattern

as illustrated in figure 5.12.

Unlike the first example, there is no variation in the trends of the eigenvalues λi(ε), i = 1, 2, 3.

This is because the shapes of the first three invariant patterns Ai, i = 1, 2, 3 have not been

affected by the sudden birth of the new pattern A4. Therefore, in this experiment we clearly

see that the trends of the three dominant eigenvalues are not relevant in order to predict

the changes occurring in the dynamics. This can be understood by the fact that the change

is primarily local and is only happening inside A3. Again, the variation in the size of the

almost-invariant patterns seems to be a crucial component for understanding the trends of

the eigenvalues.

Example 21 Finally, in this experiment we summarize the behaviors observed in the two

previous examples 19-20 within one toy model. At the beginning there are two coexisting
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Figure 5.10: Different transition matrices of example 20, where the split of the central
almost-invariant pattern is provoked locally in its interior.

Figure 5.11: Spectral signature of the splitting of an almost-invariant pattern in example
20.

Figure 5.12: Changes of the previously subdominant eigenvector Uk(ε) (i.e. k = 4) in
example 20.
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almost-invariant patterns. Due to implicitly tuning an parameter, which is external to the

model, a new pattern arises continuously inside one of these almost-invariant sets. While

this new pattern grows, the two other almost-invariant sets shrink. This is captured in the

behavior of the dominant eigenvalues, see figure 5.13. Indeed, as in equation (5.9), λ3(ε)

Figure 5.13: Spectral signature of a splitting of an almost-invariant pattern while another
pattern is decreasing in size as described in example 21.

appears to rise from the small magnitude eigenvalues {λj(ε), j = k + 1, . . . , N}, finally

crossing λ2(ε), which is decreasing.

Although we have only shown very specific settings in examples 19-21, the spectral

effects of the pattern changes that we have illustrated are universal. In particular, it

becomes clear that the study of qualitative changes of patterns, which are visible in

the dominant eigenvectors, depends strongly on an understanding of the trends of

corresponding eigenvalues. Moreover, any changing process within the almost-invariant

patterns Ai(ε), i = 1, . . . , k will be first sensed in the smallest dominant eigenvalue

and corresponding eigenvector eigenvector Uk(ε). Indeed, the sign structure of the

eigenvector Uk(ε) describes the k existing almost-invariant patterns, exhaustively. For

instance, in figure 5.5, the 4th eigenvector corresponds to the partition of the state space

into four almost-invariant patterns. In particular, if k = 2, then U2(ε) partitions the state

space into two almost-invariant patterns. This particular case has been used in many

works [15, 16, 36] in the context of the numerical computation optimal almost-invariant

sets from the global evolution of a dynamical system. The ultimate goal is to be able to

recognize early warning signals of these critical changes of almost-invariant patterns.

The trends of the eigenvalues and behavior of the state space as summarized in table 5.1

will facilitate the understanding of spectral behavior for more realistic systems. Note that

here, we focused a lot on the splitting and/or shrinking behavior in state space, because

we are ultimately interested in understanding such scenarios in real world systems.
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Behavior in state space Spectrum Eigenvectors
Ai(ε) shrinks and disap-
pears. At least one
Aj(ε), j 6= i grows.

λi(ε)↘ while λj(ε)↗. Support of Ui(ε) decreases,
support of Uj(ε) increases.

Ai(ε) splits inside due
to new growing Ak+1(ε).
Aj(ε), j 6= i are unaf-
fected.

λk+1(ε) ↗ and transport
in Ai(ε) decreases due to
increasing barrier inside
Ai(ε).

Uk+1(ε) is supported on
growing new sets inside
Ai(ε).

Ai(ε) shrinks because
Ak+1(ε) increases from
inside Ai(ε).

λi(ε) ↘ while λk+1(ε) ↗,
eventually crossing each
other.
Then λk+1(ε) > λi(ε).

Uk+1(ε) is supported on
growing new sets inside
Ai(ε). Support of Ui(ε) de-
creases.

Table 5.1: Summarized results of the toy model experiments 19-21.

5.5 Bifurcation of almost-invariant patterns

Now we study bifurcations of almost-invariant patterns generated by explicit math-

ematical models. We will consider the setting where there is initially a particular

almost-invariant pattern centered at (0, 0) and surrounded by ring-like patterns, for

each eigenvector of the k dominant eigenvectors such as in figure 5.5. The motivation for

this is that this particular pattern mimics real world vortices. Following our experiments

in examples 19-21, which are summarized in table 5.1, we will track the changes of the k

dominant eigenvectors and eigenvalues with respect to a concrete external bifurcation

parameter p. Thus, for the feasibility of this continuation task, we assume a fixed pertur-

bation strength ε during all of the process. That is, the variations of the k eigenvalues

and eigenvectors will only depend on the bifurcation parameter p ∈ R.

As a first case study, we consider the p-parametrized two-dimensional system

ẋ = y

ẏ = px− x5
(5.13)

p ∈ R. System (5.13) is a conservative Duffing-type oscillator and was introduced in

chapter 4. Recall that the classical bifurcation occuring in (5.13) consists of the qualitative

change of the unique elliptic fixed point (0, 0), for p < 0, into a local saddle fixed point, for

p > 0. That is, a pitchfork bifurcation occurs when p = 0, which has global effects on the

dynamics. For p < 0, the stationary dynamics consists of rotating periodic orbits centered

at the unique fixed point (0, 0). These are destroyed, for p > 0, with the emergence of
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two symmetric elliptic fixed points at ( 4
√
p, 0) and (− 4

√
p, 0), as illustrated in figure 5.14.

Figure 5.14: Phase plane of system (5.13) for parameters p = −1 (left) and p = 1 (right).

To prepare for our spectral analysis, a p-parametrized version of equation (5.9) may now

be restated as follows: For each p, the stationary distribution is given as

π(ε, p) ≡ U1(ε, p) = [π1(ε, p), π2(ε, p), . . . , πN (ε, p)], πi(ε) > 0, ∀ p,

and for each i = 2, . . . , k,

Ui(ε, p) =
k∑
j=1

(αij + εβij)Vj(p)

+ ε

N∑
j=k+1

1

1− λj(ε, p)
〈Uj(p), Q(1)Ui(p)〉π(ε,p) +O(ε2), αij , βij ∈ R,

λi(ε, p) > λj(ε, p), j = k + 1, . . . , N.

(5.14)

Note that with a fixed ε, the additional inequality constraint in (5.14)

λi(ε, p) > λj(ε, p), i = 1, 2, . . . , k, j ≥ k + 1 (5.15)

is always satisfied whenever the changes in p leave the qualitative behavior of system

(5.13) unaffected. Indeed, due to the perturbation effect, λj(ε, p) < 1, j = k + 1, . . . , N

are the small magnitude real eigenvalues which converge to 0 when ε increases. However,

when ε is fixed, the changes in p may qualitatively affect the underlying dynamics. Thus,

it makes sense to measure a susceptible radical growth scenario of the λj(ε, p) < 1,

j = k + 1, . . . , N , among many other possible scenarios.
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5.5.1 Spectral signature of the classical bifurcation

Unlike the dominant eigenvectors (as shown in figure 5.5 for system (5.10)) the remaining

N − k eigenvectors Uj(ε, p), j = k + 1, . . . , N may not be supported on the whole state

space. They are referred as the ”weak modes” eigenvectors and may not carry dynamically

useful information, compared to the k ”dominant modes” eigenvectors. However, due to

the nature of the global behavior of (5.13) illustrated in figure 5.14, the global classical

bifurcation yields a radical change only within a local isolated neighborhood of (0, 0). We

refer to the latter as the critical neighborhood D. Indeed, far from D, closed trajectories

still remain qualitatively the same before and after the bifurcation; see figure 5.14.

Therefore, we will first find a spectral version of the classical bifurcation by means of

the non-dominating N − k part of the spectrum. That is, we will consider ”weak modes”

eigenvectors which are only supported on D. Note that a special technique to finding

those particular eigenvectors is still an open question. Their existence was noticed earlier

in [19], but no particular further study about them was made, whatsoever. In this work,

we use them to design a spectral bifurcation diagram of the global classical bifurcation

occurring in (5.13). They will also play an import role when studying the bifurcation of

”dominant mode” eigenvectors pattern.

The numerical approximation of the spectra is done with exactly the same settings as in

section 5.3. However, the system (5.13) is open, which means that some test points will

leave the domain of interest under the evolution of the flow map. To fix this issue, an

additional box is added in order to capture all the image points that are being mapped

out of the initial domain D when computing the transition matrix. Finally, this temporary

box will be removed from the eigenvector entries by just considering the 2depth first

entries. Figure 5.15 shows the changes of two small magnitude eigenvalues that belong

to {λj(ε, p), j = k+ 1, . . . , N}. We denote by λ′1(ε, p) the green curve of eigenvalues with

corresponding eigenvectors U ′1(ε, p), in figure 5.16. Likewise, λ′2(ε, p) corresponds to the

red curve in figure 5.15; their corresponding eigenvectors U ′2(ε, p) are shown in Figure

5.17.

In figures 5.16-5.17, the patterns of U ′1(ε, p) and U ′2(ε, p) change in size, as the bifurcation

parameter p varies. Note that their sign structure remains the same. Besides, these

eigenvector patterns are only supported on a small isolated neighborhood of (0, 0),

according to the discretization depth of the phase space. In figure 5.15, the eigenvalues

λ′1(ε, p) and λ′2(ε, p) are initially very small compared to 1. They increase linearly fast

together side-by-side until p = 0. Then they part ways: λ′1(ε, p) continues to increase,
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5.5. Bifurcation of almost-invariant patterns

Figure 5.15: Spectral version of the classical bifurcation diagram with a zoomed diagram
in the vicinity of the bifurcation (inlet). Two subdominant eigenvalues λ′1(ε, p) and
λ′2(ε, p) rise towards one.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.16: Changes of the first ”weak modes” patterns from U ′1(ε, p) for increasing p.

while λ′2(ε, p) starts to decrease. That is why figure 5.15 is referred to as the spectral

version of the classical pitchfork bifurcation diagram of system (5.13) in analogy to the

classical pitchfork bifurcation diagram (see e.g. [10], Chapter 3, p. 146).

In figures 5.16-5.17, one sees that the sign structure of U ′1(ε, p) is symmetric with respect

to the y-axis, while the sign structure of U ′2(ε, p) is symmetric with respect to the x-axis. As

p < 0 increases towards zero, both eigenvector patterns expand slowly and symmetrically

along the x-axis, but remain nearly constant in the y-direction. This is intrinsic to the

underlying dynamical system, see figures 5.16-5.17 (a)-(c). At p = 0, the fixed point

(0, 0) bifurcates, which is particularly well observed in figures 5.16-5.17 (d).

Another way to see the classical bifurcation is illustrated in figure 5.18. Indeed, the

linearization of (5.13) around the fixed point (0, 0) yields a two-dimensional matrix
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.17: Changes of the second ”weak modes” patterns from U ′2(ε, p) for increasing
p.

whose eigenvalues are purely imaginary. With γ1 = i
√
−p and γ2 = −i

√
−p being the

eigenvalues of the linearized system, the corresponding (generalized) eigenvectors are

v1 = [x, y = γ1x]ᵀ and v1 = [x, y = γ2x]ᵀ, respectively. Let Ec1(p) and Ec2(p) be the

(generalized) eigenspaces of v1 and v2, respectively, depicted as the two intersecting

red lines in figure 5.18(a)-(c). Then Ec(p) = Ec1(p)
⊕
Ec2(p) yields the two-dimensional

subspace spanned by Ec1(p) and Ec2(p). In figure 5.18(a)-(c), Ec(p) is the plane generated

by the intersection of the two red lines. Therefore, there exists an invariant manifold

denoted by W c(p) that is tangent to Ec(p) at (0, 0). This is known as the center manifold

theorem ([10], Chapter 3, p. 127) and its main purpose is to isolate the complicated

asymptotic behavior of the flow by locating such an invariant manifold W c. In system

(5.13), for negative p, every closed orbit is a boundary of a center manifold which is

tangent to Ec(p) at (0, 0).

Notably, closed orbits are given by q-level sets of the derived Hamiltonian functions

Hq(x, y, p) for different p. Therefore, there is a constant q̄ small enough such that

{Hq̄(x, y, p) = q̄} isolates the asymptotic dynamics of the flow near (0, 0) from the rest.

The blue closed curve shows {Hq̄(x, y, p) = q̄} in figure 5.18(a)-(d). For negative p,

the eigenspace plane Ec(p) partitions the interior of the closed curve {Hq̄(x, y, p) = q̄}
into four regions which are two-by-two symmetric similar to U ′1(ε, p) and U ′2(ε, p) in

figure 5.16 and figure 5.17, respectively. As p increases towards 0, the slopes and the

intersection angles of Ec1(p) and Ec2(p) decrease and the closed curve expands horizontally,

while remaining constant vertically. Again, this is analogous to the variations of U ′1(ε, p)

and U ′2(ε, p), for negative p. In this way, the local behavior of the flow near the origin
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(a) p < 0 (b) p < 0 (c) p < 0

(d) p = 0 (e) p > 0 (f) p > 0

Figure 5.18: Local dynamics of system (5.13) near the origin. For p ≤ 0 we obtain center
manifolds, for p > 0 homoclinic manifolds.

is cast into U ′1(ε, p) and U ′2(ε, p) for negative p. This is another way of providing a

better understanding of complicated asymptotic dynamics near (0, 0), from a probabilistic

approach. Note that the choice of q̄ is heuristic since there no way to have an exact q̄ in

order to have the exact local manifold that supports the corresponding eigenvectors.

For p = 0, Ec1(p) and Ec2(p) disappear as a consequence of the classical bifurcation. Note

that figure 5.18(d) is also in agreement with figure 5.16(d) and figure 5.17(d). For p

positive, there are three fixed points: Two elliptic fixed points (− 4
√
p, 0) and ( 4

√
p, 0) and

one saddle fixed point (0, 0).

The qualitative behavior of the dynamics changes radically with the emergence of two

symmetric homoclinic orbits, as shown in 5.18(e). We refer to the latter as the homoclinic

manifold, since neighboring trajectories are periodic and tangent to it. As p increases,

the homoclinic manifold increases in size (see figure 5.18(e)-(f)) because g(p) := 4
√
p

is an increasing function of p. Nearby solution curves tend to be attracted through the

y-direction and repelled through the x-direction. Indeed, figure 5.18(e)-(f) shows that

the homoclinic manifold is concave in the y-direction and convex in the x-direction.

Besides, the larger p gets, the more does the curvature of the homoclinic manifold grow.

This implies immediately that the global behavior of the dynamics becomes attractive

along the y-direction. Thus, the support of U ′2(ε, p) shrinks symmetrically on both sides

of x-axis, as shown in figure 5.17(e)-(h) and, as a matter of fact, the eigenvalues λ′2(ε, p)

decrease. On the other hand, the dynamics repels along the x-direction. Thus, the support
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of U ′1(ε, p) expands symmetrically on both sides of the y-axis and is simultaneously

enrolled into the two newly co-existing homoclinic orbits; see figure 5.14. The latter

expand as p increases from zero. As a consequence, the eigenvectors U ′1(ε, p) carry almost-

invariant sets bounded by the homoclinic orbits, for p > 0. Moreover, the corresponding

eigenvalues λ′1(ε, p) increase towards 1, see figure 5.15.

Recall that these eigenvalues belong to the set of N−k small magnitude spectrum. Hence,

the continuous rise of λ′1(ε, p) towards 1, as a consequence of the classical bifurcation,

will eventually question the well-definiteness of k dominant eigenvectors and their

corresponding eigenvalues. Indeed, (5.14) is no longer valid if the additional inequality

constraint fails. In the next subsection, this will play a key role for us to characterizing

bifurcations of almost-invariant sets.

5.5.2 Predicting bifurcation of almost-invariant patterns

Here, we will characterize bifurcations of almost-invariant patterns and deduce the

corresponding generic early warning signs. As mentioned before, we are interested in

the changes of the particular pattern centered in (0, 0) and located in each dominant

eigenvector pattern. As shown in figure 5.5, given any dominant eigenvector Uj(ε, p), j =

2, . . . , k, the particular almost-invariant pattern, denoted Pj , j = 2, . . . , k, is the jth

partition element surrounded by all ring patterns. Indeed, every Uj(ε, p), j = 2, . . . , k

yields j almost-invariant patterns which partition the state space. In particular, for j = 2,

the second dominant eigenvector yields two almost-invariant patterns partitioning the

state space. Besides, one of the patterns yields P2, which is known as the maximal

almost-invariant set [16]; see figure 5.5(b). Moreover, (U2(ε, p),P2) is usually a good

candidate for modelling real world isolated patterns such as atmospheric vortices.

Given the bifurcation diagram in figure 5.15 and the inequality constraint (5.15), we set

the relation

λ′1(ε, p) < λj(ε, p), j = 2, . . . , k, (5.16)

which is true whenever p ≤ 0. Moreover, for p ≤ 0, the dominant patterns are stable in

the sense that there is no qualitative change in their sign structure. In figure 5.19, we

plot eigenvector patterns for p ≤ 0. Note that the leading eigenvector is constant and

therefore not shown. Even though there is a classical bifurcation in (5.13) at p = 0, one

notices that the dominant eigenvector patterns U2(ε, p) and U3(ε, p) in figure 5.19 are
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U2(ε, p < 0) U2(ε, p = 0) U3(ε, p < 0) U3(ε, p = 0)

Figure 5.19: Uj(ε, p ≤ 0), j = 2, 3.

qualitatively the same for p < 0 and p = 0. As a matter of fact, it suffices to investigate

the bifurcation of almost-invariant patterns for positive values of p, as it can only happen

in that parameter range. Indeed, when p becomes positive, λ′1(ε, p) continues to increase

monotonically to eventually become the second dominant eigenvalue after the eigenvalue

1. In fact, λ′1(ε, p) will cross, in cascade, all the k − 1 nontrivial dominant eigenvalues, as

illustrated in figure 5.20.

Figure 5.20: Spectral indicators of bifurcations of almost-invariant patterns in system
(5.13). Three dominant eigenvalues λ1(ε, p) = 1 (red), λ3(ε, p) < λ2(ε, p) < 1 (magenta,
blue) and the rising eigenvalue λ′1(ε, p) (green) which intersects first the λ3(ε, p)-curve
and then the λ2(ε, p)-curve.

For p > 0, the global dynamics attracts along the y-axis and repels along the x-axis. As

a consequence, the pattern generated by U ′1(ε, p) expands in size, since it is supported

in the region bounded by the two homoclinic orbits. On the other hand, the attractivity

through the y-axis causes a shrinking process of the k− 1 dominant eigenvectors patterns

Uj(ε, p), j = 2, . . . , k. Thus, as explained in the toy model experiments 19-21, we can

define a set-oriented version of a degeneracy as

λ′1(ε, p) = λj(ε, p), j = 2, . . . , k, ∀ p > 0. (5.17)

It follows that Pj , j = 2, . . . , k, bifurcates in the sense of a splitting, whenever equation

(5.17) holds. Thus, according to figure 5.20, there is a cascade of two bifurcations.
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Every bifurcation occurs at a parameter p > 0 where the support of U ′1(ε, p) expands

far enough to erupt out of Pj , j = 2, 3. Indeed, at p = 0 the support of U ′1(ε, p) is, a

priori, contained in the support of each Uj(ε, p), j = 2, 3, specifically in Pj , j = 2, 3.

This scenario changes radically the sign structures of Uj(ε, p), j = 2, 3 and, hence, the

latter can no longer be expressed as in (5.9). The crossings occur in cascade from the

smallest dominant eigenvalue to the biggest eigenvalue. In figure 5.22 (left), one can

see that λ3(ε, p) is crossed first. Later figure 5.22 (right) shows the last crossing scenario

where λ′1(ε, p) = λ2(ε, p) after which λ′1(ε, p) becomes the dominant eigenvalue after the

eigenvalue 1. The eigenvector patterns from U2(ε, p) and U3(ε, p) undergo, respectively, a

splitting process of P3 in figure 5.21 and of P2 in figure 5.23. Note that the splitting of

the patterns Pj , j = 2, 3 does not occur suddenly but gradually. In fact, one observes the

decreasing process of λj(ε, p), j = 2, 3 before the crossing, which could be classified as

an early warning signal.

Figure 5.21: Splitting process of the pattern P3 for increasing p ≥ 0.

Figure 5.22: Crossings of previously dominant eigenvalues when patterns P3 and P2

bifurcate under variation of p. Left: λ3(ε, p) (magenta) vs. λ′1(ε, p) (green); right: λ2(ε, p)
(blue) vs. λ′1(ε, p) (green).

When the cascade of crossing eigenvalues (bifurcations) ends, λ′1(ε, p) becomes the

second dominant eigenvalue after the eigenvalue 1. Indeed, the global dynamics of

(5.13) becomes nearly reducible with two coexisting symmetric vortices. The dominant

eigenvector pattern for p > 0 is shown in figure 5.24. The corresponding transition matrix
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Figure 5.23: Splitting process of the pattern P2 for increasing p ≥ 0.

is shown in figure 5.25 and it is nearly reducible in accordance with the post-bifurcation

global dynamics. In fact, one can see that the global behavior of the system is now

completely described by the support of U ′1(ε, p).

Figure 5.24: Dominant eigenvector pattern U ′1(ε, p) post-bifurcation.

Figure 5.25: Transition matrix post-bifurcation.

5.5.3 Transition from one vortex to a double vortex dynamics

In this case study, we want to show an example of a transition of vortices that is not a

bifurcation in the sense of a splitting. The aim is to reinforce the results about the spectral

indicators before a pattern splitting. We study an incompressible two-dimensional vortex

transition toy model known as the double gyre. Here, a single gyre pattern transitions to

a double gyre pattern without any splitting process, which is in contrast to the setting

that was studied in the previous paragraphs. The velocity field for the system under
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consideration is given by

V (x, t) = (−∂Ψ

∂y
,
∂Ψ

∂x
)

with

Ψ(x, y, p) = p sin(2πx) sin(πy) + (1− p) sin(πx) sin(πy).

being the parameter-dependent stream function with p ∈ [0, 1]. We obtain the two-

dimensional ordinary differential equation

ẋ(t) = −(1− p)π sin(πx) cos(πy)− πp sin(2πx) cos(πx)

ẏ(t) = (1− p)π cos(πx) sin(πy) + 2πp cos(2πx) sin(πy)
(5.18)

Note that the right hand side of (5.18) is a convex combination of two velocity fields. For

p = 0, the dominant velocity field yields a single rotating vortex centred in the elliptic

fixed point (0, 0), obtaining the system (5.10) used earlier in section 5.3 and figure 5.5.

For p = 1, we have the coexistence of two counter-rotating vortices. These two values of

p correspond to the pre- and post-transition global dynamics of (5.18). The transition

from a single rotating gyre to a rotating double gyre occurs for p ∈ (0 1), where the

onset of the emergence of the second gyre right is observed at p = 1/3. What happens

when p ∈ (0, 1/3) is that the single vortex only moves to the left side of the domain

M = [0, 1]× [0, 1], see figure 5.26, where we illustrate the changes of the velocity field

of (5.18) with respect to p. Note that the motion of this single vortex to the left, before

the transition, does not imply its expansion or shrinking.

p = 0 p = 1/3 p = 1

Figure 5.26: Changes of the velocity field in system (5.18) for different p.

Again, we use GAIO to numerically simulate the set-oriented dynamics of (5.18) and find

dominant patterns corresponding to the almost-invariant sets. For different values of p,

the second and third dominant eigenvectors are shown in figure 5.27.

The corresponding eigenvalues are shown in figure 5.28. One clearly sees that the
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Figure 5.27: Changes of U2(ε, p) (top) and U3(ε, p) vs. p .

Figure 5.28: Spectral signature of the double gyre transition.

changes in the eigenvalues capture very well the behavior of the global dynamics. Indeed,

for p ∈ [0, 1/3] λ2(ε, p) and λ3(ε, p) remain constant, since the single vortex only moves

to the left, without shrinking or expanding. That explains why the eigenvalues have

not decreased. For p ∈ (1/3, 1], the birth of the second vortex separates the global

dynamics into two distinct flow patterns. That is, the corresponding transition matrix

becomes nearly reducible and it follows that the eigenvalues λ2(ε, p) and λ3(ε, p) increase

to become closer to 1. The rise of the eigenvalues λ2(ε, p) and λ3(ε, p) at p > 1/3 can be

compared to the trends of λ′1(ε, p) in figure 5.20.

This simple transition in the dynamics of (5.18) is clearly different from the critical

transition caused by a splitting in the global dynamics of (5.13) as illustrated by figures

5.21 and 5.23. In particular, a decrease of dominant eigenvalues while another previously

weak mode eigenvalue rises appears to be a spectral indicator of a splitting of almost-

invariant patterns.
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Chapter 5. Predicting set-oriented bifurcation of almost-invariant patterns

5.6 Summary

From a set-oriented approach, we studied bifurcations of particular almost-invariant

patterns, which are supported in a neighborhood of an elliptic fixed point. These almost-

invariant sets result from invariant sets when the underlying stationary dynamical system

is diffusively perturbed. Near the splitting of patterns, generic indicators consist of a

decrease of the dominant eigenvalues whose corresponding eigenvector patterns are in

concern. In fact, the Duffing-type oscillator illustrates a cascade of splittings of the pattern

supported in the neighborhood of the initially elliptic fixed point. The splitting occurs at

the crossing between the dominant eigenvalues and a particular rising eigenvalue that

initially belonged to the weak mode eigenvalues. It becomes the largest eigenvalue after

the eigenvalue 1 and its corresponding eigenvector is supported on the dominant phase

space pattern post-bifurcation.

Patterns emerging from complex dynamics of real- orld systems, such as the Antarctic

polar vortex break up in late September 2002, suggest an analogous nonstationary

framework. That is, in order to apply this set-oriented formulation of bifurcation analysis

into real world applications, one may need to reconsider nonautonomous dynamical

systems instead. Thus, inspired by the present study, the next chapter will address

a characterization of finite-time bifurcations of coherent sets, which emerge from a

nonautonomous dynamical system. This will allow us to deduce finite-time generic early

warning signals for sudden vortex splittings. These results will be used to spectrally

describe and characterize the Antarctic polar vortex splitting event from the recorded

velocity data, see figure 1.1.
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6 Early warning signs and critical transitions

of coherent sets

This chapter is a nonautonomous extension of chapter 5. Nonautonomous dynamical

systems are more relevant to model complex systems due to the explicit time parameter

in the velocity field, as explained in chapter 2.

In the present chapter, we study the finite time bifurcation of coherent sets with the

main goal of establishing a better understanding of early warning signals for sudden

pattern splitting. The latter is motivated by the Antarctic polar vortex sudden break up

in September 2002, as illustrated in figure 1.1. To this end, we study specific classes of

nonautonomous systems who mimic the Antarctic polar vortex dynamics. To the best

of our knowledge the bifurcation analysis of coherent sets as formulated in this chapter,

has remained a widely unexplored topic. The previous chapter considers the bifurcation

and splitting of almost-invariant sets, which are interpreted as dominant patterns in

autonomous incompressible flows, see also [57]. There, almost-invariant sets are built

around a global stationary state, whose bifurcation yields the qualitative change of the

underlying flow patterns. The results of this chapter are currently being prepared for

submission to Chaos [60].

6.1 Nonautonomous dynamics and coherent sets

In this work consider the time-dependent ODE (2.18) its corresponding nonautonomous

flow map (2.19) which fulfills the cocycle property [58, 59]:

1. φ(t, t, x) = x;

2. φ(t2, t, x) = φ(t2, t1, φ(t1, t, x)), ∀ t, t1, t2 ∈ R and x ∈ Rd. In this chapter, we will

study explicit nonautonomous flow maps generated by time-dependent ODEs.

Subsets M of the extended phase space R×Rd are referred to as nonautonomous sets and
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Chapter 6. Early warning signs and critical transitions of coherent sets

the set M(t) = {x ∈ Rd : (t, x) ∈M} is called the t-fiber of M . Thus, a nonautonomous

set M is called invariant w.r.t. (2.18) if φ(t + τ, t,M(t)) = M(t + τ) for all t, τ ∈ R.

Moreover, M is closed, compact or linear if all t-fibers are closed, compact or linear.

We are interested in the finite time evolution of macroscopic objects. Thus, we restrict

the time domain to an interval of finite length I ⊂ R and the space domain at initial

time t is restricted to a compact manifold Xt ⊂ Rd. We set Yt+τ = φ(t + τ, t,Xt) ⊆ Rd

to be the image state space at final time t + τ . The backward process is denoted by

φ(t, t+ τ, y) = x, for y ∈ Yt+τ and x ∈ Xt. Notably, such evolved subsets correspond to

compact and invariant nonautonomous sets in the extended phase space I× Rd.

6.1.1 Multiple coherent sets

In this work, we focus on the changes of phase space regions that are minimally dispersive

or maximally coherent over finite time intervals. We introduce the probability measure

space (Xt,Σt, µt) where Σt denotes the Borel-σ algebra and µt is interpreted as the initial

mass distribution of the quantity we are tracking with respect to the underlying dynamics.

Examples include the advective dynamics describing the horizontal distribution of mass

such ozone concentration within the stratosphere or the concentration of salt in the ocean

water.

The measure µt is transformed, via the flow map φ, to a final measure νt+τ , which is

supported on the corresponding measure space (Yt+τ ,Σt+τ , νt+τ ). This means νt+τ (A) =

µt ◦ φ(t, t + τ,A), ∀ A ∈ Σt+τ . The measure νt+τ represents the mass distribution of

objects of interest at time t+ τ . Both measures are absolutely continuous with respect to

Lebesgue measure `.

Let t be the initial time, τ be the flow time and Xt the initial domain. The notion

of coherent set was already introduced in chapter 2 for a single pair of measurable

sets. {A1
t , A

2
t , ..., A

k
t } ⊂ Xt and {A1

t+τ , A
2
t+τ , ..., A

k
t+τ} ⊂ Yt+τ form one-to-one pairs of

coherent sets if µt(Ait) = νt+τ (Ait+τ ) and Ait+τ ≈ φ(t + τ, t, Ait), i = 1, 2, ..., k. More

precisely, the coherence ratio of two measurable sets (Ait, A
i
t+τ ) is defined as[15]

r(Ait, A
i
t+τ ) =

µt(A
i
t ∩ φ(t, t+ τ,Ait+τ ))

µt(Ait)
, i = 1, 2, . . . , k. (6.1)
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6.1. Nonautonomous dynamics and coherent sets

Then (Ait, A
i
t+τ ) is a pair of coherent sets, whenever

r(Ait, A
i
t+τ ) ≈ 1 and µt(A

i
t) = νt+τ (Ait+τ ). (6.2)

Moreover, (6.1) is interpreted as the conditional probability of a point initially in Ait ⊂ Xt

to be mapped forward into Ait+τ ⊂ Yt+τ at time t + τ . In this work, we suppose that

{A1
t , A

2
t , ..., A

k
t } ⊂ Xt and {A1

t+τ , A
2
t+τ , ..., A

k
t+τ} ⊂ Yt+τ are disjoint partitions of Xt and

Yt+τ , respectively.

Recall that the main purpose of this work is to find early warning signals for finite

time bifurcations [58] of coherent sets [15] in the sense of splitting. For setting up the

theory, which should cover realistic scenarios, we are primarily seeking sets that have the

following properties:

1. Coherent sets that are robust under external perturbations.

2. Coherent sets that are supported in a neighborhood of a critical point or orbit (i.e.

one that changes its stability type). This hypothesis is crucial for setting up the

coherent set analogue of a finite time bifurcation as introduced in [58].

3. In conservative flows, the surface to volume ratio of coherent sets is minimal.

6.1.2 Coherent sets-oriented numerical framework

From now on, we work with discrete phase spaces. That is, the following study will be

based on finite time transition probabilities between macroscopic states instead of the

finite time evolution of single trajectories. In fact, eventually computed transition matrices

are just finite dimensional approximations of time-dependent transfer operators defined in

chapter 3. We subdivide Xt and Yt+τ into finite state spaces St =
{
B1, B2, . . . , Bm

}
and

St+τ =
{
C1, C2, . . . , Cn

}
, respectively. The partition elements (boxes) satisfy `(Bi) =

`(Bj) i, j ≤ m and Xt = ∪mj=1Bj with `(Bi ∩ Bj) = 0; the measure ` denotes the

normalized Lebesgue measure on ∪mj=1Bj . The same applies to the boxes Cj ⊂ Yt+τ , j =

1, 2, . . . , n. We define the initial and final time lumped finite state spaces as [14]

Bm =

{
A ⊂ Xt : A =

⋃
j∈I

Bj , I ⊂ {1, 2, ...,m}
}

(6.3)
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Chapter 6. Early warning signs and critical transitions of coherent sets

and

Cn =

{
A ⊂ Yt+τ : A =

⋃
j∈J

Cj , J ⊂ {1, 2, ..., n}
}

(6.4)

respectively. Then, we construct the finite time transition matrix [15]

P t,τij =
`(Bi ∩ φ(t, t+ τ, Cj))

`(Bi)
, (6.5)

from the nonautonomous flow. P t,τ is an m-by-n row stochastic matrix. Each entry P t,τij
is the probability that a randomly chosen point in Bi at time t will be mapped forward to

Cj at time t+ τ . The matrix (6.5) is actually an Ulam based finite rank approximation

[22] of the Perron-Frobenius operator [15, 49] introduced in chapter 3, section 3.2.1.

The numerical estimation of the entries in equation (6.5) is given by [15]

P t,τij ≈
#{xk ∈ Bi : φ(t+ τ, t, xk) ∈ Cj}

N
, (6.6)

which is the proportion of the uniformly distributed initial test points {xk}Nk=1 in box Bi
at time t that are mapped to box Cj at time t + τ . The computation of the transition

matrix is implemented in the MATLAB-based software package GAIO[37].

6.2 Singular vectors and coherent partitions

In this section, we are interested in finding coherent partitions from (6.5). In other words,

from the transition matrix P := P t,τ , we wish to approximate coherent sets, whenever

they exist. Let us define an initial probability distribution p > 0 as pi = µt(Bi), i =

1, 2, . . . ,m; p is the probability vector that approximates the initial distribution µt of

mass being tracked over a finite time interval. The probability vector q = pP is positive

and represents the distribution of mass at final time t+ τ . With these approximations,

we say that {A1
t , A

2
t , . . . , A

k
t } ⊂ Bm and {A1

t+τ , A
2
t+τ , . . . , A

k
t+τ} ⊂ Cn form one-to-one

pairs of coherent sets over the finite time interval [t, t+ τ ], if the following relations are

satisfied: There exists index partitions {I1, I2, . . . , Ik} ⊂ {1, 2, . . . ,m} with Ait = ∪j∈IiBj
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6.2. Singular vectors and coherent partitions

and {J1,J2, . . . ,Jk} ⊂ {1, 2, . . . , n} with Ait+τ = ∪j∈JiCj such that

µt(A
i
t) =

∑
j∈Ii

pj ≈ νt+τ (Ait+τ ) =
∑
j∈Ji

qj and

r(Ait, A
i
t+τ ) =

∑
l∈Ii,r∈Ji plPlr∑

l∈Ii pl
≈ 1, i = 1, 2, . . . , k, k ≥ 2.

(6.7)

In order to numerically approximate coherent sets we seek particular vectors built around

the transition matrix P . This requires a reformulation of (6.5) in terms of separate initial

and final time transition matrices. In the following, we assume there are k ≥ 2 pairs of

coherent sets that partition Bm and Cn, respectively. From P , let us define the transition

matrix

Lij =
piPij
qj

, i = 1, ...,m, j = 1, ..., n. (6.8)

The matrix L is simply the normalization of P and – as P itself – depends both on the

initial time t and the flow time τ . It represents the transition matrix of the macroscopic

dynamics with respect to the initial and final mass distributions p and q. Note that, p and

q are assumed to be positive and L satisfies 1L = 1 [16]. Now we introduce the inner

products 〈x, y〉p =
∑m

i=1 xiyipi in Rm and 〈x, y〉q =
∑n

i=1 xiyiqi in Rn. Two vectors x and

y are said to be p-orthogonal resp. q-orthogonal if 〈x, y〉p = 0 resp. 〈x, y〉q = 0. The matrix

L may be roughly interpreted as the forward time transition matrix between the Hilbert

space
(
Rm, 〈·, ·〉p

)
to the Hilbert space

(
Rn, 〈·, ·〉q

)
. That is, any uniformly distributed

density p on
(
Rm, 〈·, ·〉p

)
is mapped by L to a uniform density q on

(
Rn, 〈·, ·〉q

)
. Let L∗

denote the dual of L with respect to the defined inner products. Then 〈xL, y〉q = 〈x, yL∗〉p
and it is straightforward to show that

L∗ = P ᵀ. (6.9)

Thus, L∗ represents the n-by-m backward time transition matrix. Equation (6.8) and

(6.9) are actually a finite dimensional approximations of the transfer operator (3.13) and

its adjoint, respectively. It follows that Qt := LL∗ is an m-by-m column stochastic matrix

defined on the finite state space
(
Rm, 〈·, ·〉p

)
at initial time t. It can also be interpreted

as the forward-backward time transition matrix at time t in the sense that any probability

distribution in
(
Rm, 〈·, ·〉p

)
is mapped forward with L then mapped backward using

L∗. On the other hand, Qt+τ := L∗L is an n-by-n column stochastic matrix defined on
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(
Rn, 〈·, ·〉q

)
. Likewise, L∗L is the backward-forward time transition matrix describing

the macroscopic behavior of the dynamics at time t+ τ . It is easy to show that both Qt

and Qt+τ are positive definite self-adjoint matrices. With this construction, a coherent

pair (Ait, A
i
t+τ ) can be functionally characterized by 1AitQ

t ≈ 1Ait and 1Ait+τQ
t+τ ≈ 1Ait+τ ,

i.e. coherent sets remain almost invariant under the forward-backward and backward-

forward dynamics [36].

As introduced in [15, 16, 36] coherent sets are approximated by signed vectors, which are

eigenvectors of Qt and Qt+τ to eigenvalues close to one. These can be also viewed as the

singular vectors obtained from SVD of L in (6.8), taking into account the weighted inner

product structures. The corresponding SVD of L (see [15, 16] for the exact construction)

yields the singular values

σl := (λl)
1/2, l = 1, 2, . . . ,min(m,n). (6.10)

where the λl’s are the eigenvalues of both Qt and Qt+τ . These are obtained from the

so-called minimax principles applied to Qt or Qt+τ see (Theorem 9.2.4, p212, [62]

and [15, 16]). Let {ul, l = 1, 2, . . . ,min(m,n)} such that λlul = ulQ
t and {vl, l =

1, 2, . . . ,min(m,n)} such that λlvl = vlQ
t+τ are the corresponding eigenvectors of Qt

and Qt+τ , respectively. In the language of SVD, the ul’s are the left singular vectors of L,

while the vl’s are the right singular vectors. Moreover, both left and right singular vectors

are orthogonal with respect to 〈·, ·〉p and 〈·, ·〉q, respectively and

σlvl = ulL. (6.11)

Since Qt and Qt+τ are both stochastic matrices, we have σ1 = 1, u1 = 1 and v1 = 1. As a

consequence of the orthogonality relation 〈u1, u2〉p = 〈v1, v2〉q = 0, the sign patterns of

the second left and right singular vectors are

sgn(u2) = (+,+,+,+, . . . ,+,−−−−, . . . ,−)

sgn(v2) = (+,+,+,+, . . . ,+,−−−−, . . . ,−),

after a convenient reordering of the entries. Thus, positive and negative level sets of u2

and v2 partition Bm and Cn, respectively. In other words, Bm can be subdivided into two

sets that are the support of the positive and negative sign of u2, respectively. The same

holds for Cn with v2. We can then pick (A1
t , A

1
t+τ ) = (suppu+

2 , supp v+
2 ) as the positive
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6.3. Robust coherent sets under perturbations

level sets of u2, v2 and (A2
t , A

2
t+τ ) = (suppu−2 , supp v−2 ) as the negative level sets. Let us

suppose that σ2 = 1 in (6.11), then from the above construction it immediately follows

that φ(t+ τ, t, A1
t ) = A1

t+τ and φ(t+ τ, t, A2
t ) = A2

t+τ . In particular, any choice of (A1
t , A

2
t )

with their images (A1
t+τ = φ(t+ τ, t, A1

t ), A
2
t+τ = φ(t+ τ, t, A2

t )) would define perfectly

coherent sets and thus the problem of finding coherent pairs turns out to be ill-posed.

However, we are interested in coherent sets that are robust with respect to perturbations.

While including diffusion regularizes the mathematical problem of finding optimal sets

[16], it also makes the setting better applicable to real-world systems with are naturally

influenced by noise.

6.3 Robust coherent sets under perturbations

In this section, we discuss the structure and spectral properties of the self-adjoint stochas-

tic matrices Qt = LL∗ obtained from the discretization of the transfer operators and

relate them to coherent behavior of the underlying system. In particular, we address the

situation of perfectly coherent sets and the influence of small random perturbations.

6.3.1 Perfectly coherent sets

We suppose, with respect to the underlying dynamics, the existence of k pairs of disjoint

coherent sets that partition the discrete state spaces Bm and Cn, respectively. That is,

there exist families of sets {A1
t , A

2
t , . . . , A

k
t } ⊂ Bm and {A1

t+τ , A
2
t+τ , . . . , A

k
t+τ} ⊂ Cn that

satisfy (6.7). In particular, we primarily impose the relation r(Ait, A
i
t+τ ) = 1, i.e. the

considered pairs of sets are perfectly coherent. A convenient reordering of the transition

probabilities between initial and final states (Bi, Cj), where Bi ∈ Bm, i = 1, . . . ,m, and

Cj ∈ Cn, j = 1, . . . , n, yields a block-diagonal self-adjoint matrix Qt = LL∗ with a k-level

partition

Qt =


Qt1 0 · · · 0

0 Qt2 · · · 0
...

...
. . .

...

0 0 · · · Qtk

 , k > 2. (6.12)

EachQti is anmi-by-mi irreducible row stochastic matrix over the aggregates statesAit and∑k
i=1mi = m. We define the forward-backward time conditional transition probabilities

between the initial time coherent sets {Ait, i = 1, 2, . . . , k} as w
(
Ait, A

j
t

)
=

∑
i∈I,j∈J πiQ

t
ij∑

i∈I πi
.
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Under the forward-backward time dynamics, the system will always stay in the state

Ait in which it was initialized. In this case, w
(
Ait, A

j
t

)
is simply the Kronecker symbol

δij , j = 1, . . . , k, since the initial time coherent sets are isolated disjoint aggregates.

In particular, there is zero transition probability between any two distinct aggregates

(Ait, A
j
t ), i 6= j.

Given (6.12), λ1 = 1 is an eigenvalue of Qt with algebraic multiplicity k. Thus Qt has k

left eigenvectors ui = uiQ
t such that

ui = (0, 0, . . . ,1i, 0, . . . , 0), i = 1, 2, . . . , k (6.13)

with 1i = 1iQti. In this way, every left eigenvector ui, which is also the left singular vector

of L as stated previously, may be interpreted as a characteristic function of the aggregate

Ait. Hence, due to (6.10), the singular value σ1 = 1 is also k-fold and the right singular

vector vi = uiL may be interpreted as a characteristic function of Ait+τ , for i = 1, 2, . . . , k.

Let Eλ1 = span{u1, u2, . . . , uk} be the eigenspace spanned by (6.13). Then, there exists

another basis {Ui, i = 1, . . . , k} of Eλ1 such that every basis element is an eigenvector of

Qt with eigenvalue 1 and is given by a linear combination of the ui, i = 1, 2, . . . , k. That

is,

Ui =

k∑
j=1

αijuj , i = 1, . . . , k, αij ∈ R

= (αi1, αi1, . . . , αi1, αi2, αi2, . . . , αi2, . . . , αik, αik, . . . , αik).

(6.14)

Thus, depending on the signs of the αij , each Ui partitions the aggregates {Ait}ki=1 into

unions of aggregates or “clouds”. Likewise,

Vi =
k∑
j=1

βijvj =
k∑
j=1

βijujL, i = 1, . . . , k, βij ∈ R. (6.15)

are the corresponding right singular vectors and yield a partition consisting of the final

time coherent sets {Ait+τ , i = 1, 2, ..., k} via the sign structures of the vector entries. From

this simplified setting, it is clear that under the described finite time dynamics, the sign

patterns of the left singular vectors in (6.14) and the sign patterns of the right singular

vectors in (6.15) yield, each, a partition of the discretized initial and final time state spaces

into union of aggregates or coherent sets. The construction of those aggregates from

singular vectors sign patterns is similar to construction of almost-invariant aggregates in
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6.3. Robust coherent sets under perturbations

chapter 5.

6.3.2 Robust coherent sets

Robustness of the coherent sets is provoked by adding small random perturbations into

the finite time dynamics. Perturbations can be thought of as ”shaking” their initial and

final time state spaces, which are now partitioned by the present, unperturbed coherent

sets. Under the perturbation influence, we suppose that the self-adjoint transition matrix

in (6.12) becomes

Qt(ε) =


Qt1(ε) E12 · · · E1k

E21 Qt2(ε) · · · E2k

...
...

. . .
...

Ek1 Ek2 · · · Qtk(ε)

 , k > 2, (6.16)

where ε ∈ R is the perturbation amplitude. We suppose that the latter is such that

Qt(ε) becomes an irreducible row stochastic matrix. Thus, Qt(ε) has a unique stationary

distribution π(ε).

Let us first suppose that all the unperturbed coherent sets are robust under perturbations.

This implies w
(
Ait, A

j
t

)
=

∑
i∈I,j∈J πiQ

t
ij(ε)∑

i∈I πi
≈ δij , which means that mass may leave a

coherent set to enter another coherent set with very low probability due to the perturba-

tion effect. Additionally the off-diagonal matrices Eij , i, j = 1, 2, . . . , k are very small in

magnitude relative to 1, i.e.,

‖Eij‖∞ = max
l

∑
m e

ij
lm � 1. The matrices Qti(ε), i = 1, ..., k are then nearly stochastic.

Therefore, we have the following spectral properties of Qt(ε) [34, 35]:

(a) The Perron root λ1(ε) = 1,

(b) the set of k − 1 non-unit eigenvalues {λ2(ε) ≤ . . . ≤ λk(ε)}, which are clustered

near 1,

(c) the remaining set of N − k eigenvalues which are bounded away from 1, for small

ε.

Thus, under the perturbation effect we have a set {σ2(ε), . . . , σtk(ε)} of k singular values

clustered near the singular value σ1(ε) = 1. The corresponding p-orthogonal left singular
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vectors {Uj(ε)}kj=1 satisfy

σj(ε)Vj(ε) = Uj(ε)L(ε). (6.17)

{Vj(ε)}kj=1 are the corresponding q-orthogonal right singular vectors. These perturbed

vectors can be estimated from the unperturbed ones[35, 57]. Note that U1(ε) = 1 =

(1, 1, ..., 1) and V1(ε) = 1 = (1, 1, ..., 1). A particular example includes (1, σ2(ε)) where,

due to orthogonality, we have

sgn(U2(ε)) = (+,+,+,+, . . . ,+,−−−−, . . . ,−)

sgn(V2(ε)) = (+,+,+,+, . . . ,+,−−−−, . . . ,−).

It follows that relation (6.17) with l = 2 yields an approximation of the two largest

aggregates which partition each state space into two coherent sets.

Indeed, in most practical problems, it is enough to study the second dominant singular

value and the corresponding singular vectors. In [16, 36], ε was explicitly modeled

and only σ2(ε) and (U2(ε), V2(ε)) were used for one time interval with the purpose of

illustrating how singular vectors can approximate coherent sets. The sign structure of the

second dominant left and right singular vectors are the first patterns to investigate for

finding coherent patterns, whenever σ2(ε) ≈ 1.

However, in this work, we need all the k − 1 singular vectors, because we investigate

critical transitions of patterns supported on local critical solutions, which undergo finite

time local bifurcations. Besides, due to the clustering of the k − 1 singular values near 1,

all the k − 1 singular vectors yield coherent partitions of the state spaces. We will use

them individually and focus on those singular vectors which are supported on the critical

objects of interest.

6.4 Bifurcations of coherent sets and early warning signals

In this section, we study different example systems in order to develop a better under-

standing of the spectral footprints of coherent sets bifurcations.
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6.4.1 Spectral analysis of a finite time bifurcation in 1D

We start the finite time bifurcation analysis of coherent sets with the one-dimensional

ordinary differential equation

ẋ = arctan(t)x− x3, (t, x) ∈ [−20, 20]× [−2, 2],

= x
(

arctan(t)− x2
)
,

(6.18)

which is a nonautonomous version of the supercritical pitchfork bifurcation normal form

(see e.g., ref.[10], Chapter 3, p. 146). Its finite time dynamics is relatively simple to

grasp. However, in this study, a set-oriented approach to analyze (6.18), is crucial for

understanding the changes in the trends of the singular values with respect to the changes

of the corresponding singular vectors pattern generated by the finite time dynamics. In

particular, we experiment spectral analogues of notions such as finite time expansion

and finite time contraction of coherent sets. For all t ∈ [−20, 20], the right hand side

vanishes for x = 0. For t ≤ 0, it also vanishes for x = ±w(t) where

w(t) =
√

arctan(t).

We consider the nonautonomous set M = {(t, 0), t ∈ [−20, 20]}, which is invariant w.r.t.

to (6.18). Thus, every t-fiber consists of the singleton {0}. The set M is finite time

attractive[58], whenever t ≤ 0, and finite time repulsive for t > 0. The supercritical

finite time pitchfork bifurcation occurs when the dynamics of the critical solution shifts

from the finite time attractive regime to the finite time repulsive regime, with the birth of

two finite time attractive solutions {±w(t), t ≥ 0}.

Our spectral analysis of (6.18) is realized using a set-valued approach. For this, we define

the following interval-valued mapping

x ∈ [−2, 2] 7→ [φ(t+ τ, t, x)− σ, φ(t+ τ, t, x) + σ] ⊂ [−2, 2], (6.19)

where σ > 0. The trivial solution {0} then becomes an interval-valued trivial solution

[{0}−σ, {0}+σ], which allows us to look at it as a pattern within a set-oriented analysis.

A set-oriented finite time bifurcation is characterized from the spectral data obtained

from approximated transition matrices defined in (6.8).

The numerical computation settings are as follows. We subdivide the domain [−2, 2] into

28 disjoint sub-intervals Di, i = 1, . . . , 28 of equal length, which implicitly determines the
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numerical perturbation parameter ε. The image of each Di is discretized by 48 test points.

We choose σ = 0.4 and represent [−0.4, 0.4] by 5150 uniformly distributed random

points. The time domain is subdivided into sub-intervals of length 1, i.e., [−20, 20] =⋃19
t=−20 [t, t+ 1]. The system is numerically integrated within every time interval [t, t+ 1],

t = −20, . . . , 19 using a 4th order Runge-Kutta scheme and the corresponding transition

matrices and SVDs are computed. This is referred to as the sliding window approach.

The first three dominant singular values with respect to each time interval [t, t+ 1] with

t = −20,−19, . . . , 19 are shown in figure 6.1, where we observe a remarkable rise of the

second and third singular values when approaching and passing the bifurcation point.

We will come back to this later. The changes in the global dynamics are visible in the

Figure 6.1: First three dominant singular values (depending of t) for different time
windows [t, t+ 1], t = −20,−19, . . . , 19, with t+ 1 in the x-axis.

structure of the transition matrices L in figure 6.2 (a)-(c) and figure 6.3 (a)-(c). Note

that the x−axes correspond to the reachable states at t+ τ , while the y−axes correspond

to the initial state spaces at time t. For t+ τ < 0 the final state space is only a small subset

of the initial state space as consequence of the contraction induced by the presence of

the global attractor {0}. Indeed, subintervals Cj that are not part of the image of [−2, 2]

are simply removed during the computation.

In particular, the finite time global behavior of the dynamics for t + τ < 0, without

applying the interval-valued perturbation [−0.4, 0.4], may be illustrated in terms of

subinterval-wise transition probabilities as{
B1, B2, ..., Bm

2

}
7→
{
Cn1 , Cn2

}
and

{
Bm

2
+1, Bm

2
+2, ..., Bm

}
7→
{
Cn3 , Cn4

}
, (6.20)

where Cn1∪Cn2∪Cn3∪Cn4 is the discretized neighborhood of the t−fiber {0}. To the left

of {0} are the subintervals
{
B1, B2, ..., Bm

2

}
which are mapped to Cn1 ∪ Cn2 , whereas

to the right of {0} are the subintervals
{
Bm

2
+1, Bm

2
+2, ..., Bm

}
which are mapped to

Cn3 ∪ Cn4 . In this way, the mapping (6.20) shows the global behavior of (6.18) for
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[−9, −8] [−4, −3] [−2, −1]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.2: Changes of the transition matrices (6.8), dominant left and right singular
vectors before the finite time bifurcation.

t + τ ≤ 0. Due to the convergence of all initial points to the trivial attractor, there are

no coherent sets. As detailed in section 6.3, the magnitude of the singular values with

respect to 1 determines the presence of coherent sets partitioning of the state space. Thus,

given the singular values magnitude in figure 6.1, there are no coherent sets for t+ τ < 0,

as the singular values are far from 1. The corresponding left and right singular vectors

for t+ τ < 0 are shown in figure 6.2 (d)-(f) and (g)-(i), respectively. Moreover, using the

left and right singular vectors ut2(ε) and vt2(ε) of σt2(ε), we can numerically approximate

the coherence ratio (6.1). This is plotted in figure 6.4 for different time intervals. Indeed,

one observes fluctuations of the coherence ratios with a maximum magnitude less than

0.9, for different time windows with t+ τ < 0. As a consequence, the second condition

of equation (6.7) is not fulfilled in this regime, which means there are no coherent sets.
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[−1, 0] [0, 1] [1, 2]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: Changes of the transition matrices (6.8), dominant left and right singular
vectors near and after the finite time bifurcation.

Let {xt,i}Ni=1 denote the initial test points (used for estimating the transition matrix) at

time t and {xt+τ,i}Ni=1 the image test points at time t+τ under the deterministic flow map

(??) of (6.18). Thus, for t+ τ < 0, we have that {xt+τ,i}Ni=1 are accumulated near x = 0,

from both negative and positive sides. Before applying the set-valued transformation

(6.19), let us subdivide the image test points into negative set of data {x(−)
t+τ,i}

N1
i=1 and

positive set of data {x(+)
t+τ,i}

N2
i=1 with N1 +N2 = N . Now, we apply the set-valued mapping

(6.19) to obtain {x(−)
t+τ,i}

N1
i=1 + [−0.4, 0.4] = S(−)

− ∪ S(−)
+ and {x(+)

t+τ,i}
N2
i=1 + [−0.4, 0.4] =

S(+)
− ∪S

(+)
+ . Here S(−)

− and S(−)
+ denote, the new negative and positive data obtained from

the former negative data points {x(−)
t+τ,i}

N1
i=1, respectively; analogously for the positive

data points {x(+)
t+τ,i}

N2
i=1. The test points {xt+τ,i}Ni=1 + [−0.4, 0.4] are, thus, distributed

in the state space according to two classes of data
{
S(−)
− ,S(+)

−

}
and

{
S(−)

+ ,S(+)
+

}
. For

t+ τ < 0, this is, in fact, a bimodal distribution, separated by a critical region around
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6.4. Bifurcations of coherent sets and early warning signals

Figure 6.4: Coherence ratios (6.1) (depending on t) for different time windows [t, t+ 1],
t = −20,−19, . . . , 19, with t+ 1 in the x-axis.

the attractor {0}, which is a result of the set-valued mapping.

The size of this critical region will be a crucial indicator for tracking the qualitative change

of the attractor from the singular vectors patterns, as we slide the time window [t, t+ τ ]

towards zero. The result of transforming deterministic image data into classes via (6.19)

is captured through the second and third right dominant singular vectors vti(ε), i = 2, 3.

Indeed, the second right singular vector vt2(ε) yields very negative entries left of the

critical region, very positive entries right of the critical region and almost zero entries in

the critical region; see figure 6.2 (g)-(i).

On the other hand, vt3(ε) provides a more detailed classification with two wells holding

the majority of the points in S(+)
− and S(−)

+ each with negative entries, very positive

entries holding separately the majority of the points in S(−)
− and S(+)

+ , and almost zero

entries in the critical region; see figure 6.2 (g)-(i). In figure 6.2 (d)-(f) and (g)-(i), one

notices that, despite the contraction of the support of vti(ε), i = 1, 2, 3, the second and

third left and right singular vectors curves are similar in shape everywhere but in the

critical region, which is the spectral response following the addition of the set-valued

transformation (6.19). Moreover, it is a graphical illustration of the absence of coherent

partitions for t+ τ < 0. Note that, as shown in figure 6.2 (g), the widest critical region

exists for t+ τ � 0, where the attractor is the strongest.

The singular values in figure 6.1, the coherence ratios in figure 6.4, and the critical region

highlighted by the right singular vector patterns in figure 6.2 (g)-(i) are simultaneously

used as observables for identifying early signals prior to the finite time bifurcation of

(6.18).

As [t, t + τ ] slides towards 0, the critical region depicted by vt2(ε) and vt3(ε) starts to

shrink. The attractor {0}, which is an asymptotic pullback attractor [59], loses more and

more its finite time attractivity. As a result the distribution of image test points under
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the set-valued mapping becomes increasingly unimodal. This due to the fact, that less

deterministic image points can be found in the neighborhood of {0} but are mapped to

it by the subsequent set-valued perturbation (6.19). Hence, the closer the time interval

slides to 0, the less resilient becomes the attractor {0}.

The singular values σt2(ε) and σt3(ε) do not vary for [t, t+ τ ] negative and far from zero,

as shown in figure 6.1. This is an indicator of strong resilience of the attractor 0. The

coherence ratios are not close to 1 for [t, t + τ ] when t + τ � 0, as shown in figure

6.4. However, as the time window [t, t + τ ] approaches zero σt2(ε) and σt3(ε) increase

slowly then faster near t+ τ = 0; see figure 6.1. The same is observed for the coherence

ratios in figure 6.4. Indeed, the monotone rise of the coherence ratios indicates the

ultimate presence of coherent patterns as the attractor begins to lose its resilience. The

finite time bifurcation occurs when t+ τ = 0. The trivial solution {0} becomes, hence,

non-hyperbolic, and then repelling. As a consequence, one sees a radical change in the

structure of the right singular vectors vt2,3(ε) in figure 6.3 (g)-(i) and left singular vectors

ut2,3(ε) in figure 6.3 (d)-(f). This is particularly noticeable in the third singular vectors

vt3(ε) and ut3(ε). Note the change of vt3(ε) in the neighborhood of {0}, which merges the

two wells that were visible for t + τ < 0 into one single well. Finally, the early rise of

the singular values near [t, t+ τ ] = [−1, 0], as shown in figure 6.1, can be considered an

early-warning signal for a regime shift, with respect to our setting: The attractor loses

its resilience near the critical transition or bifurcation. The same can be observed in the

coherence ratios in figure 6.4.

For t ≥ 0, the right hand side of (6.18) vanishes for x ∈ {−w(t), 0, w(t)}. M = {(t, 0), t ∈
[−20, 20]} becomes finite time repulsive with the birth of the two symmetric finite time

attractors M± = {(t,±ω(t)), t ≥ 0}. As shown by the matrices of finite time transition

probabilities in figure 6.3(a)-(c), the global dynamics yields transport between three

aggregates each supported on one zero solution from the set {−w(t), 0, w(t)}. Indeed,

the second and third singular values in figure 6.1 converge rapidly towards values close

to 1. This implies the emergence of three coherent sets that partition the state space.

In particular, ut2(ε) and vt2(ε) partition the phase space into two coherent sets. This is

confirmed by the convergence of coherence ratios towards 1, as shown by figure 6.4 for

t+ τ > 0. In addition, as detailed in section 6.2-6.3, the stochastic transition matrix Qt

is best suited to test, a priori, the occurrence of coherent sets. Indeed, robust coherent

sets yield minimum dispersion when transported forward and backward via Qt. Hence,

besides the rise of the coherence ratios near 1 in figure 6.4, coherent sets that emerge
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6.4. Bifurcations of coherent sets and early warning signals

from the new dynamical regime are concretely visible in the structure of the matrix Qt in

figure 6.5. Singular vectors ut3(ε) and vt3(ε) yield a finer partition of three coherent sets

[−1, 0] [0, 1] [1, 2]

(a) (b) (c)

Figure 6.5: Changes of the transition matrices Qt.

with one (in the middle) supported in the neighborhood of the repellor {0}, see figure

6.3(d)-(i) and figure 6.5. The support of vt3(ε) expands as the reachable phase space

expands for t+ τ > 0 due to the repelling nature of the trivial solution, whose radius of

repulsivity is bounded by the attracting pair of solutions. The rise of the singular values,

as shown in figure 6.1, is also a consequence of the expansion of the image phase space

for t > 0. This is similar to the eigenvalue trends in autonomous set-oriented bifurcations

studied in [57].

The system (6.18) is used in this work in order to show how variations of the singular

values and corresponding singular vectors can serve as relevant observables to depict

finite time bifurcations and possible early warning signals. In what follows, we will be

more realistic and closer to our main goal by studying nonautonomous two-dimensional

incompressible systems, which undergo critical changes of coherent sets in their finite

time evolution. A critical transition of a coherent set (or dominant flow pattern) in our

interpretation is a split of a vortex similar to the Antarctic polar vortex break up. Thus,

based on the behavior of the singular values (6.10) for different time windows [t, t+ τ ],

we will study generic early warning-signals of a sudden split of a pattern.

6.4.2 Spectral signatures for the nonautonomous transition dynamics in

the double gyre flow

We study the spectral signature of a vortex transition given the finite time dynamics of an

incompressible two-dimensional toy model known as the double gyre flow. We consider

121



Chapter 6. Early warning signs and critical transitions of coherent sets

the ordinary differential equation

ẋ(t) = −(1− s(t))π sin(πx) cos(πy)− πs(t) sin(2πx) cos(πx)

ẏ(t) = (1− s(t))π cos(πx) sin(πy) + 2πs(t) cos(2πx) sin(πy).
(6.21)

Here s(t) is the time-dependent bifurcation parameter defined by

s(t) =


0 if t ≤ 0⇒ single gyre pattern,

t2(3− 2t) if 0 < t < 1⇒ nonautonomous dynamics,

1 if t ≥ 1⇒ double gyre pattern.

The system (6.21) is actually asymptotically autonomous, given that the bifurcation

parameter, which induces the nonautonomous vector field of (6.21), is only a function of

t in (0, 1). As shown in figure 6.6 the system dynamics displays a single rotating vortex

pattern for t ≤ 0 then a double rotating vortex pattern for t ≥ 1. The nonautonomous

dynamics is restricted to t ∈ [0, 1], where the transition from a single to a double gyre

pattern happens. As in the previous section, singular values (6.10) are used to understand

the finite time changes of the single vortex pattern given by the corresponding singular

vectors (6.11), as the transition occurs. Though the transition of a vortex is different from

a proper splitting, it is crucial to understand the behavior of the singular values during

the changes of the first vortex pattern during this process. This is equivalent to apprehend

the singular values as measures of the finite time changes of their corresponding singular

vectors, provided that they are close to 1.

Figure 6.6: The velocity field of (6.21) for t ≤ 0 (left) and t ≥ 1 (right).

Regarding the numerical integration of (6.21), a time interval of length 1, i.e. τ = 1 given

the time interval [t, t+ τ ], turns out to be necessary to approximate a realistic pattern

or gyre from the singular vectors (6.11). In order to study the changes of the different

singular values within a sliding window approach, we choose the time intervals [t, t+ τ ]
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6.4. Bifurcations of coherent sets and early warning signals

such that τ = 1 but the initial times t ≤ 0. The system (6.21) is integrated using a 4th

order Runge-Kutta scheme and studied in the spatial domain [0, 1]× [0, 1]. The latter is

subdivided into 212 equally sized box with 100 uniformly distributed test points initialized

in each box. We set up the transition matrix (6.8) for each [t, t+ 1] and compute the SVD

to extract coherent patterns from the singular vectors and their corresponding singular

values. We will then explore the spectral changes accompanying the pattern transition.

More specifically, starting from a single pattern when t+ 1 < 0, we track its behavior as

time evolves.

Figure 6.7: Second singular values of (6.8) for different time intervals [t, t+ 1], plotted
with respect to the final times t+ 1.

Figure 6.7 shows the changes of the second singular values of the transition matrices

(6.8) for different time windows [t, t+ 1]. We see three different trends of σt2: A constant

trend, a decreasing trend and an increasing trend. The constant trend corresponds to a

stable regime in the sense that the left and right singular vectors patterns do not change

as the time interval moves and are even both indistinguishable – they both look like the

pattern shown in figure 6.8(a). The corresponding left and right singulars vectors of the

decreasing trend of the singular values in figure 6.7 are shown in figure 6.8.

We clearly see that the left singular vectors (figure 6.8(a)-(d)) at initial times t and the

respective right singular vectors (figure 6.8(e)-(h)) at final times t + 1 are no longer

indistinguishable. Indeed, as the second gyre (red color) starts to rise from the right

hand side of the domain at final times t+ 1, we see that the initial gyre (the blue colored

pattern) starts to shrink (figure 6.8(e)-(h)), while at initial times t it does not (figure

6.8(a)-(d)). This shrinking process of the initial vortex is captured by the singular values

with a decreasing trend (figure 6.7). The more the second gyre emerges and increases in

size, the more the initial gyre undergoes a fold like shrink. Finally, the rising singular

values in figure 6.7 correspond to the singular vectors shown in figure 6.9.

The emerging regime of the second gyre is no longer causing the shrinking of the first gyre.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8: Changes of the second dominant left singular vectors (a)-(d) at initial times
t, corresponding right singular vectors (e)-(h) at final times t + 1, for the decreasing
trend of the singular values in figure 6.7.

In fact, both gyres start to increase in size. This similar to the changes of the coherent

sets generated by vt2(ε) in figure 6.3(e)-(f). The finite time evolution of the system is then

similar to the post bifurcation behavior of the one-dimensional toy model (6.18). Indeed,

the left singular vectors (figure 6.9(a)-(d)) at time t exhibit two coherent sets which are

separately mapped, each, to the coherent sets at times t+ 1 (figure 6.9(e)-(h)). This case

study is particularly interesting in explaining the trends of singular values with respect to

the behavior of the corresponding singular vectors patterns. In the next section, we study

the early warning signals of a proper pattern splitting.

6.4.3 Early-warning signals for a vortex splitting regime

We study a nonautonomous reformulation of the Duffing-type oscillator studied in [57].

It is defined by time-dependent vector field as

ẋ = y

ẏ = arctan(t)x− x5
(6.22)

The autonomous version of this model was studied in [57], where spectral indicators of

the bifurcation of almost invariant sets were broadly investigated. Here, we explore early

warning signals of the critical transition in the sense of splitting of coherent patterns

that are supported in a neighborhood of the origin. The latter is the trivial critical point

of (6.22) which – in the autonomous version – undergoes a pitchfork bifurcation. This

bifurcation was used in [57] to study the splitting of dominant almost-invariant sets
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.9: Changes of the second dominant left singular vectors (a)-(d) at initial times t,
corresponding right singular vectors (e)-(h) at final times t+ 1, for the increasing trend
of the singular values in figure 6.7.

supported in a neighborhood of (0, 0). The present work will also target coherent sets

supported around (0, 0). In fact, since we are also seeking a critical transition which

is related to the local bifurcation, even though the system is now time-dependent. In

addition, we believe that the adequate coherent pattern generated by (6.22) is to the

best of our knowledge, the most suitable simple approximation of the Antarctic polar

vortex by a nonautonomous ordinary differential equation. Nevertheless, note that the

only way to witness early warning signals is actually to let the system evolve in time.

We subdivide the time interval [−10, 10] into subintervals [t, t+1], t = −10,−9, . . . , 9 and

integrate (6.22) with a 4th order Runge-Kutta scheme, that is, we use the sliding window

approach again. The system is studied in the space domain [−2, 2] × [−2, 2], which is

subdivided into 214 square boxes with 400 uniformly distributed test points in each box.

We then obtain the transition matrix (6.8) for each interval [t, t+ 1], and compute the

SVD for extracting coherent patterns from singular vectors and corresponding singular

values.

Unlike the double gyre system studied in section 6.4.2, the patterns generated by the

second dominant singular vectors, vt2 and ut2, are not convenient to study the set-oriented

critical transition for this system. Indeed, the singular vectors patterns are not supported

in a neighborhood of (0, 0), as shown in figure 6.10.

As a matter of fact, the corresponding singular values in figure 6.11 (left) exhibit, for

different time intervals t, t + 1], no trends that are suited to make any early warning

predictions. Moreover, we can observe that the nonautonomous dynamics of the singular
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Changes of second dominant left singular vectors (a)-(d) at initial times t,
corresponding right singular vectors (e)-(h) at final times t+ 1 for increasing time t.

vectors in figure 6.10 within one time interval [t, t+ 1] (figure 6.10(a) and figure 6.10(e),

for instance) yields a clock-wise rotation of the patterns by an angle θ < π. Hence, it

Figure 6.11: Second (left) and sixth dominant singular values (right) for different time
intervals [t, t+ 1]. Final times t+ 1 in the x−axis.

is necessary to have the patterns supported around (0, 0), in order to sense the critical

transition induced by the pitchfork bifurcation. We find that the sixth dominant singular

vectors vt6, u
t
6 fulfil this requirement.

Figure 6.11 (right) shows the changes of the sixth dominant singular values for each

time interval [t, t+ 1]. One sees that, from both sides of t+ 1 = 0, the singular values

in figure 6.11 exhibit two different behaviors separated by the red dashed vertical line:

nearly constant singular values and rapidly decreasing singular values. The singular

vector patterns corresponding to the nearly constant singular values are stable and look

like those shown in figure 6.12 (a) and (e).

As t+ 1 becomes positive, the systems shows prior hints for a radical pattern splitting.

This is clearly seen in figure 6.11 (right), where we see a rapid decreasing of the singular
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values as an early warning signal for pattern splitting. The corresponding singular vectors

are shown in figure 6.12, where we clearly see the splitting process of the coherent

vectors pattern (in blue). The changes are captured by the corresponding singular values

in figure 6.11 (right) with a fast decrease as the pattern is elongated and contracted by

the finite time dynamics. Similar results were obtained in [57], where a bifurcation of

almost-invariant sets was preceded by a decrease of eigenvalues of the transition matrix,

see chapter 5. In the present work, a coherent pattern splitting is preceded by the same

changes in the corresponding singular values. The same was found in section 6.4.2 in

figure 6.8, where the dropping phase of the singular values in figure 6.7 was however not

followed by a splitting. That is to say that the shrinking of the patterns before they split

is captured in the singular values as a generic warning sign. In the next section, we will

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.12: Changes of sixth dominant left singular vectors (a)-(d) at initial times t,
changes of the corresponding right singular vectors (e)-(h) at final times t+ 1, for the
rapidly decreasing singular values in figure 6.11.

confirm these indicators by predicting a concrete real-world application pattern splitting.

6.5 Predicting the Antarctic polar vortex sudden split of Septem-

ber 2002 from recorded satellite data

In the month of September 2002, an unusual critical transition occurred in the Antarctic

polar vortex region: the ozone hole suddenly split into two rotating blobs of air, as a

consequence of the stratospheric warming. This is particularly the first rare event of this

kind, which is recorded in the meteorological history of the Southern Hemisphere [2].

Many scientific studies [7, 11, 38] have focused on understanding the main causes of the
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splitting of the ozone layer. In [11], for instance, the vortex dynamics is associated to

the evolution of chemical constituents such as ozone O3 and chlorine monoxide (CIO),

before, during and after the splitting. Furthermore, based on satellite velocity data, it is

very well understood that the splitting occurred during the last week of September 2002,

more precisely, it between September 24 and September 27, see figure 1.1.

In the present work, we are going to study the early-warning indicators of the sudden

split by analyzing the finite time global dynamics of the vortex from recorded velocity

data. Given the available velocity data from the ECMWF Interim data set1, we track

changes of the pattern corresponding to the daily ozone concentration, as illustrated in

figure 1.1. The ozone hole can be identified as an isolated vortex of air slowly rotating

over Antarctica. Using finite-time Lyapunov exponents, the different geometric shapes of

the Antarctic polar vortex during the splitting event of September 2002 were studied [9].

The global ECMWF data is given at a temporal resolution of 6 hours and a spatial

resolution of a 0.5◦ in longitude and latitude degree, respectively. We focus on the

stratosphere over the southern hemisphere and consider the velocity data from September

1, 2002 to October 1, 2002 on a 600 K isentropic surface. Thus, the equation of motion

of the atmospheric dynamics in that region is interpreted as a two-dimensional time-

dependent ordinary different equation

ẋ = u(x, y, t)

ẏ = v(x, y, t)
(6.23)

defined on discrete points (t, x, y). Using interpolation in space and time we can integrate

solutions again by a 4th order Runge-Kutta scheme and obtain an approximate flow map

(2.19). For the set-oriented analysis of the global dynamics, we use a square domain

centered at the south pole with side lengths 12, 000km. We subdivide the domain using 210

boxes. We choose n = 25 sample points uniformly distributed in each box and compute

the transition matrices (6.8). The polar vortex at different times is then considered as a

coherent set approximated by the singular vectors of (6.8) and the singular values are

used to identify early warning signals.

Previous studies [15] suggest that an initial time interval of length greater or equal to two

weeks is ideal in order to have a good approximation of coherent sets from the second

dominant singular vectors. That is why we set our initial time interval to 15 days, i.e.

1http://data.ecmwf.int/data/index.html
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September 1st, 2002 to September 15, 2002. Hence, if the second time interval has the

same length, then we will not be able to observe the desired critical transition. Therefore,

we set the first 15 days as our reference time interval and use a new technique that we

refer to as the long trajectory approach with singular value scalings.

The long trajectory approach works as follows: Let t0 = September 1 and T = Septem-

ber 15, and [t0, T ] is the reference time interval. We then fix t0 and integrate (6.23) for

increasing time intervals [t0, T + i], i = 0, 1, 2 . . . , 16, given that T + 16 corresponds to

October 1. For every time interval, an SVD of the corresponding transition matrices is

computed. Since the initial time t0 is fixed, the left singular vectors are not expected to

vary noticeably for all the different time intervals. Therefore, we use the right singular

vectors to study the changes of the polar vortex. The second dominant singular values σ̂i2
change as well. But we cannot compare two different singular values, since the different

time intervals under consideration have different lengths. To solve this problem we

propose a singular value scaling technique in the following way:

In addition to the long term trajectories we use the short term sliding window approach

with time intervals [t, t + 1], t = 15, 16, . . . , 30. These are time intervals of one day,

starting at September 15. We then compute the SVD and collect the second dominant

singular values σ̃t2. We neglect the short term singular vectors. Note that t+ 1 = T + i,

i = 1, 2, . . . , 16, t = 15, 16, . . . , 30. From the singular values σ̂i2 and σ̃t2, the principle of

the scaling consists of finding singular values that implicitly represent time intervals of the

same length as the reference time interval [t0, T ]. That is, we fix σ0
2 := σ̂0

2 corresponding

to the reference time interval [t0, T ] and scale the σ̂i2, i = 1, 2, . . . , 16 corresponding to

[t0, T + i], in order to be able to compare them with σ0
2. This is obtained from the scaling

equation

σi2 =
σ̂i2

Πi
j=1σ̃

T+j
2

, i = 1, . . . , 16. (6.24)

In this way, all the singular values σi2, i = 0, . . . , 16 represent time intervals of the same

length as [t0, T ]. Moreover, they can be used to identify early warning signals.

Figure 6.13 shows the scaled singular values σi plotted with respect to the final time T + i,

i = 0, . . . , 16. One observes two separated behaviors: increasing singular values from

September 15 to September 20 and rapidly decreasing singular values from September

21 to September 25.
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Chapter 6. Early warning signs and critical transitions of coherent sets

Figure 6.13: The scaled second singular values σi2 from (6.24) plotted with respect to
final time T + i. The trends correspond to the different behaviors of the polar vortex.

The singular vectors corresponding to the increasing singular values are shown in figure

6.14. Note that, for more clarity, only certain negative level sets that correspond to the

numerical approximation of the ozone hole were plotted.

(a) (b) (c) (d)

Figure 6.14: Right singular vectors from (a)-(d) September 15, 18, 19, 20 corresponding
to the increasing singular values in figure 6.13.

In the previous examples we have observed that rising singular values yield corresponding

singular vectors whose support or level sets expand in size. We consider this as a stable

regime, in the context of this work. Actually, the Antarctic polar vortex is very stable

from September 15 to September 20. However, from September 20 to September 24,

the singular values in figure 6.13 begin to decrease very fast. The corresponding right

singular vectors are shown in figure 6.15. The shape changes of the right singular vector

(a) (b) (c) (d)

Figure 6.15: Right singular vectors from (a) September 21 to (d) September 24 corre-
sponding to the rapidly decreasing singular values in figure 6.13.
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6.6. Summary

pattern are very similar to those in the high order nonautonomous Duffing oscillator

in figure 6.12. The singular values in figure 6.13 have then successfully confirmed the

generic early-warning signals with a rapid changes in magnitude. This sudden change

is characterized by a fast drop in magnitude of the singular values, as shown in figure

6.13. Thus, an early-warning signal of the splitting occurs from (a) September 21 to (d)

September 24, where we start to notice a break up of the rotating vortex into two blobs

of air, as shown in figure 6.15.

The post splitting scenario begins at September 27. From this date onward, the north-

western blob of the ozone hole starts to disappear, while the southwestern blob begins

to increase again in size to recover the initial shape before splitting. This can be clas-

sified as a reformation phase. Besides, the underlying ozone hole pattern is very well

captured by the right singular singular vectors from September 27 to October 1; see figure

6.16. As shown in figure 6.13 the corresponding singular values exhibit a particularly

distinguishable trend with a nearly constant rate of decrease in magnitude.

(a) (b) (c) (d)

Figure 6.16: Right singular vectors from (a)-(c) September 27, 28, 29 to (d) October 1
corresponding to the linearly decreasing singular values in figure 6.13.

6.6 Summary

At the end, one may realise that this study is mainly implemented around singular

value decompositions of transition matrices as mentioned in chapter 3 (section 3.1.2

(3.4)), which are generated from finite time evolutions of time-dependent systems. Thus,

dominant singular vectors and their sign patterns yield numerical approximations of

slowly mixing regions, while corresponding singular values exhibit the potential to

measure their shape changes. On this basis, trends of the singular values and sign

patterns of singular vectors are mutually used, as observables, to design and anticipate

imminent sudden changes in the nonautonomous dynamics of vortex-like patterns. This

technique is used to identify early indicators of the sudden split of the Antarctic polar
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Chapter 6. Early warning signs and critical transitions of coherent sets

vortex in September 2002, from recorded satellite velocity data. This real-world critical

transition may be classified as a rare event. Nevertheless, our probabilistic approach can

be applied to a wider family of incompressible flow patterns undergoing similar changes.

In a theoretical perspective, future studies may address a combination of geometric

methods and the above probabilistic approach to find lower bounds of the dominant

singular values, in order to abstractly control the changes of the patterns.
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7 Conclusion

In this thesis, we were preoccupied to answering the following question: Suppose we

have at our disposal the Antarctic vortex rotating dynamics velocity data of the year

2002. Is it possible to design early-warning signs prior to the sudden splitting regime that

occurred between the days of September 24 and September 25, 2002, as shown in figure

1.1?

To answer this question, we chose two main mathematical frameworks: Set-oriented

dynamical systems and nonautonomous bifurcation theory. With these two frameworks,

we aimed to develop an analytical set-oriented bifurcation theory with numerical illus-

trations and use our results to propose a mathematically justifiable answer of the above

question. However, the approach seems unusual with respect to the known traditional

bifurcation theory but also innovative with respect to the chosen frameworks. Moreover,

a legitimate question may also address the “why” of our choice, given the amount of

mathematical frameworks that can exist. Indeed, we choose a set-oriented dynamical

system approach to be able to study the ensemble evolution of dynamical systems, as

with this method the phase space can be divided into distinct subsets such that there is a

very small probability that trajectories in one subset will leave the subset in a relatively

short time. We thus, hope that the dynamics of one of these subsets mimic the dynamics

of the Antarctic polar vortex. In other words, we choose subsets that are able to flow in

space and time with a possibility of changing shape, which suppose that these subsets

are generated by a nonautonomous dynamical systems. Hence, a set-oriented nonau-

tonomous dynamical system approach was a promising starting idea and was actually

the idea adopted to conducted our research. Nonautonomous dynamical systems are

highly relevant to model the dynamics of complex systems such as the dynamics of the

Antarctic polar vortex. Indeed, complex systems are known to exhibit self-organization
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and self-adaptation in their dynamical behavior and, most importantly, they can show

dynamically independent behaviors in different time intervals. The latter is a typical

property of nonautonomous dynamical system, since time-dependent systems exhibit

independent dynamics within different time intervals. Finally, given measurable subsets

from the set-oriented time-dependent dynamics, the challenging task was to find suitable

criteria in order to characterize a shape change as a bifurcation. In the context of this

work, shape change in the sense of splitting, as illustrated in figure 1.1, is of interest.

Changes in the dynamical behavior of a complex systems, such as the Antarctic polar

vortex 2002 break up, are referred to as critical transitions. Therefore, the splitting

regime observed in figure 1.1 can be classified as a critical transition. Moreover, empirical

evidence of early-warning signals before a critical transition was brought to prominence

by scientists in ecology. However, mathematical foundations of early-warning signals

observables were largely lacking. That is why, in order to predict the regime shift

illustrated in figure 1.1, we reformulated our research study as a combination of set-

oriented dynamics and finite time bifurcation theory for findings observables that can

design early-warning signals.

In this thesis, we considered a special class of dynamical systems that are able to dy-

namically mimic the the Antarctic polar vortex rotating dynamics. Indeed, we consider

incompressible systems whose dynamics consist of rotating trajectories around a global

fixed point (i.e., solution of the zero of the velocity field). The discrete spectrum of

the perturbed transfer operator yields almost-invariant sets/coherent sets which are

supported on the whole phase space and, in particular, on a neighborhood of the fixed

point. Moreover, these special systems are built in such a way that they undergo a

(finite time) bifurcation which leads to a splitting of the phase space into two rotating

gyre-like trajectories. Note that the main concept of finite time dynamical systems can

be transferred to incompressible flows, even though [58] was developed by considering

dissipative systems. In this context, the discrete spectrum of the perturbed transfer

operator is used as observables to characterize early-warning signs of critical transition

of patterns in the sense of splitting.

The lack of prior studies of set-oriented bifurcations in the sense of a splitting of patterns

made this work challenging. In fact, a statistical approach to analyze bifurcation of

deterministic systems is not a widely investigated topic. Known works include [17]

who characterized the one-dimensional pitchfork normal form based on changes of

the deterministic Frobenius-Perron operator’s discrete spectrum. Results in [17] served
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somehow as a referential work for the beginning of our research. Indeed, a set-oriented

approach is just a particular statistical approach which, besides analyzing the ensemble

evolution of the underlying dynamics, extract optimal almost-invariant/coherent sets.

That is why, in chapter 4, we studied changes of the discrete spectrum of the perturbed

transfer operators P tε as a bifurcation parameter is varied. Moreover, as mentioned earlier,

we consider two-dimensional incompressible systems undergoing a pitchfork bifurcation.

Findings in chapter 4, were critically interesting in the sense that they allowed us to

understand the manner in which we should concretely approach the study bifurcation

of almost-invariant patterns using dominant real eigenvalues and their eigenvectors of

the perturbed transfer operator as indicators. Indeed, from chapter 4, we understood

that a set-oriented bifurcation should not be directly linked to the local bifurcation that

is intrinsic to the local properties of the underlying dynamical system. This implies a

shift in the critical parameter p value. That means, the critical parameter value p for

the bifurcation of almost invariant sets may not coincide with the critical parameter

value pfor the system’s local bifurcation. That is why, in chapter 5 the bifurcation of

almost-invariant sets is studied from a purely global approach. Besides, finding a critical

value of p that determines the set-oriented bifurcation did not matter. What really

mattered was only the change of dominant patterns as an external parameter p is varied.

The study was developed from scratch due to the lack of previous work in this regard.

Results from chapter 5 were extended to time-dependent dynamical systems in chapter

6 where dominant singular values and their singular vectors were used as observables

to characterize early-warning signs of pattern splitting. Our findings were successfully

confirmed in application with the Antarctic polar vortex velocity data. Indeed, the spectral

warning signs for the splitting of the Antarctic polar vortex in September 2002 were

successfully identified. Trends of the singular values and sign patterns of singular vectors

are mutually used, as observables, to design and anticipate imminent sudden changes in

the nonautonomous dynamics of vortex-like patterns.

This thesis has proved that there is a scientific answer for mathematically characterizing

empirical evidence of early-warning signals for the sudden split of the Antarctic polar

vortex in September 2002. Furthermore, this work may open the door to addressing more

general research questions including problems involving vortex splitting phenomena in

the wide field of (geophysical) real world fluid dynamics.
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