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Abstract

In this thesis, we study mathematical models that describe the morphology of a gen-
eralized biological cell in equilibrium or under the influence of external forces. Within
these models, the cell is considered as a thermodynamic system, where streaming effects
in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell
membrane. The governing evolution equations for the cell given in a continuum formula-
tion are derived using an energy variation approach. Such two-phase flow problems that
combine streaming effects with a free boundary problem that accounts for bending and
surface tension can be described effectively by a diffuse interface approach. An advantage
of the diffuse interface approach is that models for e.g. different biophysical processes can
easily be combined. That makes this method suitable to describe complex phenomena
such as cell motility and multi-cell dynamics. Within the first model for cell motility, we
combine a biological network for GTPases with the hydrodynamic Helfrich-type model.
This model allows to account for cell motility driven by membrane protrusion as a result
of actin polymerization. Within the second model, we moreover extend the Helfrich-type
model by an active gel theory to account for the actin filaments in the cell bulk. Caused
by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking
event occurs that lead to cell motility. In this thesis, we further study the dynamics of
multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply
the diffuse interface framework, we introduce several phase field variables to account
for several cells that are coupled by a local interaction potential. In a first application,
we study white blood cell margination, a biological phenomenon that results from the
complex relation between collisions, different mechanical properties and lift forces of red
blood cells and white blood cells within the vascular system. Here, it is shown that
inertial effects, which can become of relevance in various parts of the cardiovascular
system, lead to a decreasing tendency for margination with increasing Reynolds num-
ber. Finally, we combine the active polar gel theory and the multi-cell approach that is
capable of studying collective migration of cells. This hydrodynamic approach predicts
that collective migration emerges spontaneously forming coherently-moving clusters as a
result of the mutual alignment of the velocity vectors during inelastic collisions. We fur-



ther observe that hydrodynamics heavily influence those systems. However, a complete
suppression of the onset of collective migration cannot be confirmed. Moreover, we give
a brief insight how such highly coupled systems can be treated numerically using finite
elements and how the numerical costs can be limited using operator splitting approaches
and problem parallelization with OPENMP.



Kurzfassung

Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von
Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen.
Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungs-
effekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für
Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-
Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrpha-
sen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich
physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen.
Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode
verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die
verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe
biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewe-
gung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches
Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfi-
lamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell
kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgeru-
fenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpo-
lymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile
Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollek-
tive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare
Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung
mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen
jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspoten-
tial gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die
Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Pro-
zess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen,
den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft in-
nerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten
Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das



Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für
die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive
Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu un-
tersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung
sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisio-
nen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat,
deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung
vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppel-
ten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode
und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von
Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
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Chapter 1

Introduction

Biological cells are the smallest unit of life and are for itself of utmost complexity.
Understanding the basic processes within a cell helps to understand life. A basic instru-
ment of understanding those processes are mathematical models that assist to bridge
the gap between experiments and a fundamental understanding of several biological ex-
planations. In recent years the simulation science supported by exponentially growing
computer power made fundamental progress giving rise to the development of more and
more complex models. Contributing to this evolution, in this thesis we study math-
ematical models for cell mechanics that describe equilibrium and dynamic properties
of biological cells based on a hydrodynamic diffuse interface Helfrich-type model. In
fact, cells are very complex structures mostly embedded in a fluid environment com-
prising several parts such as cytosol, cytoskeleton and different organelles that behave
mechanically different. Depending on the spatial scale as well as on the time scale which
can range anywhere from milliseconds (cell in micro channel), seconds (blood flow) to
hours (migrating cell on a substrate) each biological component can become more or less
dominant.

At long time scales elastic contributions from the bulk can be neglected since the
cell can restore its shape and dissipate stress. Consequently, as a first approach the
shape of the cell is determined by the bending properties of its membrane, regarded as
lipid bilayer. This allows us to approximate cells as lipid vesicles that are fluid-filled sacs
surrounded by a lipid membrane. Those vesicles, which serve as simple model, have been
extensively studied in literature e.g. [46, 94, 227]. As a very first attempt to understand
vesicles, Helfrich [121] mentioned that the basic component determining their shape is
the bending strain of a two-dimensional lipid membrane Γ and came up with the idea
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1. Introduction

that vesicles minimize the functional that is nowadays known as the Helfrich energy,

ES(Γ) =
∫

Γ
bn(H −H0)2 ds,

under the conditions of volume and surface area conservation and without topological
transitions. Here, bn is the bending rigidity, H the mean curvature and H0 the spon-
taneous curvature. In the last years, the Helfrich model has been adopted to more
complicated biological phenomena because many of these results have proven in good
agreement with experiments. Although the model neglects contributions from the cell
bulk, it covers the basic shapes of red blood cells (RBCs) in equilibrium.

The evolution of the cell and its membrane are considered as a free boundary prob-
lem where the dynamics are determined by a minimization process of an internal energy
of a thermodynamic system that contains the cell interior and the surrounding media.
The cell membrane here is presented as interface between both phases on which for a
hydrodynamic system a jump condition holds that relates the fluid stress tensor to the
variation of the Helfrich energy with respect to Γ. Accordingly, this includes the consid-
eration of the Navier-Stokes equations for the fluid flow. If only the equilibrium state
is of interest, we can neglect the fluid flow and we obtain non-hydrodynamic geometric
evolution equations.

Different modeling strategies have been developed to numerically solve free bound-
ary methods. These methods are basically classified into interface tracking and interface
capturing methods. Interface tracking methods are for instance the immersed boundary
method [120, 126, 135, 136], non-continuum particle-based mesoscale simulation methods
[99, 100, 182, 195], boundary integral methods [98, 247, 248] and surface finite-elements
methods [25, 84, 85]. However, these methods require an explicit tracking of the mem-
brane and are based on a Lagrangian description with moveable grid points. Interface
capturing methods, on the other hand, use an Eulerian description with a fixed mesh as
the interface is implicitly defined by a level-set of an auxiliary function. Representatives
are the level set method e.g. [64, 144, 145, 218] and the diffuse interface or phase field
method e.g. [31, 67, 74, 129, 151] that we will apply in this thesis as it provides a simple
means of handling moving boundaries.

Diffuse interface methods can be traced back to the study on gas-liquid interfaces by
van der Walls in 1893. Using a similar formalism, Landau [146] developed a mean-field
approach for phase transitions. An underlying free energy E(ϕ) defines the physics of
the system. Cahn and Hilliard [39] extended this theory and came up with a diffuse
interface theory of phase transitions to describe phase separation of a binary alloy. We
also refer to the reviews given in [17, 89, 234]. Within the diffuse interface approach, the
interface Γ is smeared out with thickness ε and implicitly defined by the zero level-set
of ϕ. The interior and exterior are labeled with different but constant values. Then, the
diffuse Helfrich energy is given by

EH(ϕ) = bn

2ε

∫
Ω

(
ε∆ϕ− 1

ε
(ϕ2 − 1)(ϕ+

√
2H0ε)

)2
dx. (1.1)
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The basic principle of the phase field calculus is that it converges to the geometric anal-
ogon as the diffuse interface goes to zero. The convergence can be shown by asymptotic
analysis that is not trivial. However, diffuse interface methods have a robust physical
basis since their evolution equations are derived from the physical principle of energy
dissipation.

In Chapter 2, we give an introduction to underlying mathematical techniques and
modeling approaches we use in this thesis. In Chapter 3, we show how the diffuse inter-
face method can be applied to the hydrodynamic free boundary problem that considers
the Helfrich bending energy. Performing an energy variation approach, we obtain the
diffuse interface Navier-Stokes-Helfrich system [77] that serves as basis for our further
studies within this thesis. Moreover, the diffuse interface method allows us to easily
extend our model to additional models. This makes the method suitable to describe
complex biological phenomena such as cell motility (Part I) and multi-cell dynamics
(Part II).

Cell motility is a self-propelled motion emerged spontaneously or in response to
external signals, where an internal force is mediated to its surrounding. Cell motility
plays a crucial role within various biological processes. In wound healing processes, for
instance, keratinocytes as part of the epidermis try to migrate into the destroyed parts
and close the wound. Moreover, cancer cells spread out from their initial tumor and can
create new metastases in the whole body. Certainly, an understanding of those processes
is of basic interest, see [55, 103, 124, 189] for a review. In this thesis, we develop and
study two models for cell motility that combine the mechanical Navier-Stokes-Helfrich
model to further active processes. These processes are membrane protrusion due to actin
polymerization and contractile stress due to actin-myosin reactions. Preceding to the
mechanical mechanisms for cell motility is a polarization of the cell, where a front and
a rear has to be defined as a result of a spatial stimulus.

In Chapter 5, we study a biochemical network for GTPases, where a Turing instabil-
ity characterizes the polarity of the cell and determines the membrane protrusion coming
from the actin polymerization. Usually such diffusion driven instabilities require large
differences in the diffusion coefficients of the involved species. This might not be realistic
in our case as diffusion coefficients for proteins are similar to each other. Here, we con-
sider a biochemical network [209] with reaction-diffusion equations for membrane-bound
and cytoplasmic GTPases, where, as a result of different association and disassocia-
tion rates between membrane and cytoplasm, a much more realistic Turing instability
is formed [152]. The diffuse interface approach hereby allows us to account for the
different dimensionalities of the biochemical network, which can easily be coupled to
mechanical Navier-Stokes-Helfrich model. In Chapter 6, we append an active polar gel
model [58, 101, 203] to our previous Navier-Stokes-Helfrich model [242]. Here, the di-
rection of the actin filaments and accordingly the polarity of the cell is represented by a
macroscopic orientation field. Both systems for cell motility become active and far from
equilibrium as a result of a propelling mechanism that consumes energy and mediates
a force to its surrounding. Within the first model we relate the concentration of active

3



1. Introduction

GTPases to protrusion force acting on the surface membrane and within our second
model we account for the contractile stress between actin filaments by a phenomenolog-
ical contractile stress tensor [206] that can break the symmetry of the orientation field
and cause an active motion of the cell. These models allow us to simulate the dynamics
of cells and to reproduce the primary phenomenology

In many biological systems, however, cells appear with various other cells. As a
result of their interaction, systems of multiple cells offer a rich non-linear behavior. For
instance the F̊ahræus–Lindqvist effect [96] describes that the complex microstructure
of the blood, where the elasticity of the RBCs and their collision rate, which highly
depends on the flow rate, affect the macroscopic viscosity. Moreover, actively driven
cells can form stable clusters in absence of any attractive potential known as motility-
induced phase separation [114]. To understand and describe such phenomena we extend
the framework for a single cell to multiple cells, see Chapter 7. We therefore consider
one phase field for a single cell and couple all cells via a local interaction potential.
Within our thermodynamic consistent approach the most expensive part, i.e. computing
the distance between cells, has been avoided as this information is already contained in
the phase field description of the cells. In Chapter 8, we apply this model to describe
white blood cell margination within the vascular system, a biological phenomenon oc-
curring as a result the interplay between collisions and different mechanical properties
of RBCs and white blood cells (WBCs), which can easily be treated with our approach.
Reproducing previous results [99], we subsequently show that inertial effects, which can
become of relevance in various parts of the cardiovascular system, suppress the tendency
for margination.

Finally, in Chapter 9, we combine the active polar gel theory to our multi-phase
approach to study the onset of collective motion in systems of self-propelled cells. We
derive different models that are either non-hydrodynamic or hydrodynamic. We first
study interactions between two cells that can be used as a benchmark problem to pre-
dict how bigger systems evolve. Moreover, we conduct several simulations to investigate
the collective behavior of multiple cells and the ordering processes in an initially disor-
dered crowd. We show that the for growing elasticity of the cell the collective motion
is suppressed. Within the hydrodynamic model, the collision modeling is completely
different but it allows us to account for multiple orientation fields. To our knowledge,
or model is the first that combines the advantages of the diffuse interface method where
we can account for various microscopic properties of the cell bulk and membrane in a
hydrodynamic continuum formulation to the dynamics of multiple cells. It is thereby a
promising model for the study of multi-cell dynamics in hydrodynamic suspensions. We
further give a brief insight how such highly coupled systems can be treated numerically
and how the numerical costs can be limited using operator splitting approaches, problem
parallelization with OPENMP and multi-mesh strategies.

Some shown results have already been published in Marth and Voigt [174], Marth
et al. [176, 177] and partially in Haußer et al. [118] and Ling et al. [156] and are submitted
for publication, see Marth and Voigt [175].

4



Chapter 2

Mathematical preliminaries

In this thesis, we study mathematical models for cells and cell membranes. These models
are given in a continuum formulation and consist of several partial differential equations
(PDEs). The fundamental idea is to consider the cell evolution as a free boundary
problem. There are developed different modeling and computational strategies to nu-
merically solve free boundary methods. In this thesis, we consider the diffuse interface
or phase field approach. This approach requires a basic understanding of mathematical
techniques that are given in a brief review in this chapter. To be more precise, we give
an overview of the basic notation used in this thesis, see Section 2.1 and Section 2.2.
The geometric evolution equations are developed using a gradient flow approach based
on the physical principle, the energy dissipation, see Section 2.3. A general introduction
to phase field modeling is given in Section 2.4. An advantage of the diffuse interface
models is that we can easily append additional equations such as continuity equations
that account for the different dimensionality of bulk and surface. An introduction to
these models and its diffuse interface description is shown in Section 2.6. In Section 2.5,
we give some examples of surface energies. Moreover, in Section 2.7, we give an intro-
duction to two-phase flows that describe the flow in two separated phases connected by
an interface whose evolution is determined by surface energies. Depending on the choice
of the underlying surface energy, we can describe different physical phenomena e.g. fluid
drops or lipid membranes. Combining geometric evolution equations in a diffuse inter-
face description with fluid flow that distinguishes between the inside and the outside of
the surface yields the so-called diffuse two-phase flow derived in a general description in
Section 2.8.
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2. Mathematical preliminaries

2.1. Domain and notation

In this section, we briefly introduce some basic notations that will be used in this thesis.
We consider the spatial domain Ω ⊂ Rs bounded by ∂Ω. The time domain is an interval
I := [0, T ] ⊂ R with T > 0. Furthermore, Ω contains a smooth closed surface Γ ⊂ Rs−1.
See Fig. 2.1 for an illustration. Usually, Γ is time dependent. Therefore, we may also
write Γ := Γ(t), for t ∈ I. For our purposes, it is sufficient to set s = 2, 3. We denote
the interior of Γ with Ω1 := Ω1(t) ⊂ Ω. With respect to its interior, the surface is
sometimes called Γ1. The exterior is denoted by Ω0 := Ω0(t) ⊂ Ω. Ω0 and Ω1 are open
and bounded. We claim Ω1 ∩ Ω0 = ∅ and it holds Ω = Ω1 ∪ Γ ∪ Ω0. The length, area or
volume of a domain Ω ⊂ Rs, for s = 1, 2, 3 is denoted by |Ω|. Here, we will always call
|Ω1| the volume of Ω1 ⊂ R2,3 and |Γ| the area of Γ ⊂ R1,2.

In connection to the topic of the thesis, we will later call Ω1 the cell interior or bulk,
Ω0 the extra-cellular matrix or surrounding fluid, Γ the cell membrane and Ω̄1 := Ω1 ∪ Γ
the whole cell.

We denote a scalar by a ∈ R and a vector b := (b1, . . . , bs)⊤ ∈ Rs with s = 2, 3.
It is clear that b⊤ = (b1, . . . , bs). All functions f := f(t,x) : I × Ω → R as well
as f := f(t,x) := (f1(t,x), . . . , fs(t,x))⊤ : I × Ω → Rs are usually space and time
dependent. The gradient of f in x ∈ Ω is defined through

∇f = ( ∂f
∂x1

, . . . ,
∂f

∂xs
)⊤ ∈ Rs

and for f we have the Jacobian matrix ∇f =
(

∂fi
∂xj

)
i,j

∈ Rs×s, which is quadratic since

Ω ⊂ Rs,i, j = 1, . . . , s. The directional derivative of f is ∇f · b =: ( ∂f
∂b1
, . . . , ∂f

∂bs
)⊤ ∈ Rs,

for b ∈ Rs, where · denotes the inner product, defined below. The divergence is defined
through

∇ · f =
s∑

i=1

∂fi

∂xi
∈ R

and for a matrix A = (aij)i,j ∈ Rn×n we have ∇ · A = (∑s
i=1

∂ai1
∂xi

, . . . ,
∑s

i=1
∂ais
∂xi

)⊤ ∈
Rs. The Laplacian of f is

∆f = ∇ · ∇f =
s∑

i=1

∂2f

∂x2
i

∈ R

and can be defined element-wise for ∆f = ∇ · ∇f = (∑s
i=1

∂2f1
∂x2

i
, . . . ,

∑s
i=1

∂2fs

∂x2
i

)⊤ ∈
Rs. In this thesis ∇∇f also appears which identifies the Hessian matrix i.e. ∇∇f =(

∂2f
∂xi∂xj

)
i,j

∈ Rs×s. The inner product is understood for b, c ∈ Rs as b· c := ∑n
i=1 bici ∈

R and can also be denoted by b⊤c. We thus consider the norm of a vector to be the
Frobenius norm |a| :=

√
a· a ∈ R if not stated otherwise. The outer product or tensor

product is b⊗ c := (bicj)i,j ∈ Rs×s and can also be denoted by bc⊤. We further consider
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2.2. Surface analysis and integral theorems

Ω1

Γ = Γ1

Ω0

Ω

∂Ω

Figure 2.1. – Illustration of the two-dimensional mathematical domain Ω

the Frobenius inner product defined for B,C ∈ Rs×s with B : C := ∑n
i=1

∑n
j=1 bijcij ∈

R.

2.2. Surface analysis and integral theorems

Γ(t) is a free moving boundary embedded in Ω with prescribed velocity v = V n + T.
Here, the differentiable function n(x) denotes the surface normal of Γ in x ∈ Γ pointing
from Ω1, V = vn is the normal velocity and T is the tangential velocity. We further
assume that ∂Γ(t) is empty. Two appropriate parameters to characterize the shape of Γ
are the mean curvature given as

H(x) = 1
s− 1

s−1∑
i=1

ki(x),

with ki the principle curvatures and the Gaussian curvature given as

K(x) =
s−1∏
i=1

ki(x).

In addition, the mean curvature is given by H(x) = 1/(s− 1)∇ · n(x). We furthermore
introduce the surface delta function δΓ(x) defined in its support Γ such that we have∫

Ω δΓ(x)f(x) dx =
∫

Γ f(x) ds for a sufficient smooth test function f . We can also define
differential operators on Γ. Given a differentiable function f in the neighborhood of Γ,
the surface gradient reads

∇Γf = PΓ∇f,

where PΓ = I − n ⊗ n is the projection operator, with I the identity matrix. It is clear
that PΓn = 0 holds. Since P is a matrix, we might also write ∇Γf = PΓ · ∇f , denoting
a matrix-vector multiplication. The surface divergence is given through

∇Γ · v = PΓ : ∇v.
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2. Mathematical preliminaries

Since ∇Γf is in the tangential plane of Γ, we have ∇Γf · n = 0. The Laplace-Beltrami
operator on Γ is defined as the surface divergence of the surface gradient i.e.

∆Γf = ∇Γ · ∇Γf = ∇ · (PΓ∇f) .

Now, we refer some useful integral theorems. So we consider the scalar functions u, v
and the vector valued function f = (f1, . . . , f2). We recall the divergence theorem or
Gauß’s theorem ∫

Ω1
∇ · f =

∫
Γ

f · n ds,

from which the formulas for integration by parts or Green’s formulas clearly follow with
wv := f ∫

Ω1
w · ∇v dx =

∫
Γ

w · nv ds −
∫

Ω1
(∇ · w)v dx

and with ∇u := w ∫
Ω1

∇u· ∇v dx =
∫

Γ
∇u· nv ds −

∫
Ω1

(∆u)v dx.

This can also be done on the surface Γ that gives∫
Γ

∇Γu· ∇Γv ds =
∫

∂Γ
∇Γu· n∂Γv ds −

∫
Γ
(∆Γu)v ds.

2.3. Variational derivative and gradient flow

We consider a biological cell as a thermodynamic system. The governing evolution equa-
tions for the cell are derived using an energy variation approach following the second
law of thermodynamics. Then, the evolution of the cell is understood as an energy
minimizing process. In this section, we give a short introduction to these physical con-
cepts. A broader introduction is given in De Groot and Mazur [59]. It is clear that the
determination of extrema requires dealing with derivatives. Since the underlying space
of those energy functionals is infinite dimensional, we need more general approach, the
variational derivatives. For a deeper insight, we refer to the work of Cowan [54].

2.3.1. Variational derivative

H will denote a Hilbert space with ∥ · ∥H , the inner produkt ⟨ · , · ⟩H and the dual
pair [ · , · ]H∗×H . Given ϕ ∈ H and a functional E : H → R, i.e. E ∈ H∗. Then, the
derivative of E is given by

lim
ξ→0

1
ξ

(E(ϕ+ ξh) − E(ϕ)) =
[
E′(ϕ), h

]
H∗×H , ∀h ∈ H.
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2.3. Variational derivative and gradient flow

If this limit exists, we may also write

d
dξE(ϕ+ ξh)

⏐⏐⏐⏐
ξ=0

=
[
E′(ϕ), h

]
H∗×H , ∀h ∈ H.

By using the representation theorem of Riesz, we are able to express the derivative
E′(ϕ) ∈ H∗ by a function gradE ∈ H such that

[
E′(ϕ), h

]
= ⟨gradE, h⟩H , ∀h ∈ H,

then gradE is denoted as variational derivative. Furthermore, we introduce δE
δϕ denoting

the result that can be derived from

d
dξE(ϕ+ ξh)

⏐⏐⏐⏐
ξ=0

=
∫

Ω

δE

δϕ
h dx.

Note that the choice of H determines the shape of gradE. Let Ω ⊂ Rs. In case of L2(Ω)
with gradE, h ∈ L2(Ω), we have

⟨gradE, h⟩L2 =
∫

Ω
gradEhdx =

∫
Ω

δE

δϕ
h dx,

where δE
δϕ := gradE denotes the variational derivative in L2 with respect to ϕ. Consid-

ering the space H−1(Ω), gradE, h∗ ∈ H−1(Ω) and its inner product given by

⟨gradE, h∗⟩H−1 =
∫

Ω
−∆−1gradEh∗ dx =

∫
Ω

δE

δϕ
h∗ dx,

where −∆ δE
δϕ := gradE denotes the variational derivative in H−1 with respect to ϕ.

In this thesis, the functional E is regarded as energy of a thermodynamic system
with a thermodynamic quantity ϕ(t) being time dependent. To determine the variational
derivative, we can also derive E with respect to time. Accordingly, we have

d
dtE(ϕ(t)) = lim

ε→0

1
ε

(E(ϕ(t+ ε)) − E(ϕ(t)))

= lim
ε→0

1
ε

(
E(ϕ(t) + εϕ′(t) + O(ε2)) − E(ϕ(t)

)
= lim

ε→0

1
ε

(
E(ϕ(t) + εϕ′(t)) − E(ϕ(t))

)
= ⟨gradE, ϕ′(t)⟩H .

In the following, we will see the importance of the concepts of variational derivatives in
the theory of variations, where the significance of using the spaces L2 or H−1 can be
applied to the physics of a non-conserved and conserved thermodynamic quantity.
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2. Mathematical preliminaries

2.3.2. Energy dissipation and gradient flow

We consider a thermodynamic system out of equilibrium in Ω and suppose the system
is adiabatic, i.e there is no heat flux or flux of the energy across ∂Ω. According to the
second law of thermodynamics, the entropy production or rate of dissipation Π within
this system is non-decreasing, hence, we have

Π ≥ 0.

The equal sign holds if the system is reversible and the greater-than sign holds if the
system irreversible. Since we can write the time derivative of the overall energy of a
thermodynamic quantity ϕ(t) [59] as

d
dtE(ϕ(t)) = −Π,

it clearly follows that

d
dtE(ϕ(t)) =

⟨
gradE, ϕ′(t)

⟩
H ≤ 0, (2.1)

where we implicitly assume the temperature to be constant. Moreover, the gradient flow
is given by

ϕ′(t) = −γgradE, (2.2)

for t > 0 and ϕ(0) = ϕ0 ∈ H. With gradE being the variational derivative in L2 we have

ϕ′(t) = −γ δE
δϕ
, (2.3)

which we call L2-gradient flow, and with gradE being the variational derivative in H−1

we have

ϕ′(t) = γ∆δE

δϕ
, (2.4)

which we call H−1-gradient flow. From a physical point of view, gradE is the force
pushing the system toward its equilibrium, which is the state with the minimal energy
where gradE = 0. Furthermore, the flux ϕ′(t) is represented as a linear relation to
gradE, which is consistent to the linear response theory of Onsager [197] for systems
close to equilibrium. The parameter γ > 0 is a phenomenological coefficient that is not
known a priori. Inserting eq. (2.2) in eq. (2.1) gives

d
dtE(ϕ(t)) =

⟨
gradE, ϕ′(t)

⟩
H = −γ ⟨gradE, gradE⟩H ≤ 0

and shows that the gradient flow is consistent to the second law of thermodynamics.
In fact, choosing the negative variational derivative that points in the direction of the
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2.3. Variational derivative and gradient flow

deepest descent of the energy is an efficient way for minimization procedures. Moreover,
the H−1-gradient flow is volume preserving, i.e

d
dt

∫
Ω
ϕ dx = 0. (2.5)

We can easily verify this if we multiply eq. (2.4) with a constant test function ψ = 1 and
integrate over the domain Ω: ∫

Ω
ψ∂tϕdx = γ

∫
Ω
ψ∆δE

δϕ
dx.

Partial integration and applying homogeneous Neumann boundary conditions for the
variation gives ∫

Ω
ψ∂tϕdx = −γ

∫
Ω

∇ψ· ∇δE

δϕ
dx,

and for constant ψ we have eq. (2.5).
Now, we consider a system with several thermodynamic quantities ϕ1, . . . , ϕn. Ac-

cordingly, the time derivative of the energy is given by

d
dtE(ϕ1(t), . . . , ϕn(t)) =

n∑
i=1

∫
Ω

δE

δϕi
ϕ′

i(t) dx, (2.6)

where we applied the L2-gradient flow. The linear response theory allows us to ex-
press the fluxes by a linear combination of all thermodynamics forces δE

δϕj
. This can be

understood as generalized gradient flow given by

ϕ′
i(t) = −

n∑
j=1

αij
δE

δϕj
, (2.7)

in the L2 sense. Here αij , i, j = 1, . . . , n denote the Onsager coefficients that are phe-
nomenological coefficients, which are not known a priori but can be determined from
a knowledge of the microscopic properties of the system. All non-diagonal elements
describe the coupling between each thermodynamic quantity, which can either be dissi-
pative or reactive. Inserting the fluxes eq. (2.7) into the time derivative eq. (2.6) gives

d
dtE(ϕ1(t), . . . , ϕn(t)) = −

n∑
i=1

n∑
j=1

αij

∫
Ω

δE

δϕi

δE

δϕj
dx. (2.8)

It was shown by Onsager that αij underlie the following relations for i ̸= j:

αr
ij = −αr

ji, if the coupling is reactive, (2.9)
αd

ij = αd
ji, if the coupling is dissipative, (2.10)

where a reactive coupling as well as a dissipative coupling are again identified if ϕ′
i(t)
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2. Mathematical preliminaries

and δE
δϕj

have the same and the opposite time reversal signature, respectively, see [59] for
further explanations. Rewriting the time derivative gives

d
dtE(ϕ1(t), . . . , ϕn(t)) = −

n∑
i=1

n∑
j=1

αr
ij

∫
Ω

δE

δϕi

δE

δϕj
dx −

n∑
k=1

n∑
l=1

αd
kl

∫
Ω

δE

δϕk

δE

δϕl
dx

= −
n∑

i=2

i−1∑
j=1

(αr
ij + αr

jr)
∫

Ω

δE

δϕi

δE

δϕj
dx −

n∑
k=1

n∑
l=1

αd
kl

∫
Ω

δE

δϕk

δE

δϕl
dx,

using eq. (2.9) yields

d
dtE(ϕ1(t), . . . , ϕn(t)) = −

n∑
k=1

n∑
l=1

αd
kl

∫
Ω

δE

δϕk

δE

δϕl
dx ≤ 0, (2.11)

which imposes that the Onsager matrix αd has to be positive semi-definite. These results
show that only the dissipative coupling are responsible for the energy decay. In contrast,
the reactive couplings transfer the energy from one quantity into another one.

A simple example shows how we derive partial differential equation using a gradient
flow. We consider a thermodynamic quantity, say the temperature T , with its given
energy functional

E(T (t)) = 1
2

∫
Ω

|∇T |2 dx,

which tries to minimize the transition of T within the system. Applying a L2-gradient
flow to E we have

δE

δT
= −∆T

and the evolution equation reads, finally,

∂tT = γ∆T in Ω,

with initial conditions T (t = 0) = T0 and zero flux boundary conditions. This PDE
is known as the heat equation and is usually derived using the constraints of mass
conservation and applying Fick’s law. Thus, γ is denoted as the thermal diffusivity.

2.4. Phase field modeling

In this thesis, we consider various free boundary problems that are solved with a diffuse
interface method, also known as phase field method. So far, there have been devel-
oped various numerical methods to solve free boundary problems. Examples are level
set methods, front tracking methods, volume-of-fluid methods and immersed boundary
methods. The idea of diffuse interface methods is that the surface is approximated by a

12



2.4. Phase field modeling

ϕ
1

0

−1

Figure 2.2. – diffuse interface approximation of a 1D (left) and a 2D surface (right)

smooth phase field function ϕ := ϕ(t,x) : I × Ω → R defined as

ϕ(t,x) := tanh
(
r(t,x)√

2ε

)
, (2.12)

where r(t,x) : I × Ω → R is a signed-distance function assigning each x ∈ Ω its shortest
distance to Γ. We pick r such that Ω1 := {x : ϕ(t,x) ≈ 1} and Ω0 := {x : ϕ(t,x) ≈
−1}. Because ϕ is continuous, we have to smooth out the transition of ϕ between these
subdomains characterized by the interface width parameter ε. For small ε the transition
becomes sharper and for bigger ε the interface is more smoothed out. Thus, Γ is implicitly
defined by the zero level-set of ϕ i.e. Γ(t) := {x : ϕ(t,x) = 0}. Fig. 2.2 shows how Γ ⊂ R
(left) and Γ ⊂ R2 (right) is approximated by ϕ. As a result of the diffuse interface
method, the problem is reformulated in a higher dimension. Furthermore, the interfacial
width ε has to be chosen sufficiently small so that the consistency between the computed
results based on the diffuse interface models and that based on the sharp interface
descriptions can be numerically confirmed. However, diffuse interface models have many
advantages. For instance, as we have seen in the further section, we can define our
order parameter ϕ as a thermodynamic variable and can construct numerical methods
that are a priori thermodynamically consistent. We furthermore can easily deal with
topological changes and guarantee mass conservation. Moreover, it is straightforward to
couple additional equations and we are able to solve those equations with a standard
finite element toolbox. Within the diffuse interface description, we are able to recover
some basic features of the surface:

n = − ∇ϕ
|∇ϕ|

(normal vector),

H = ∇ ·
(

− ∇ϕ
|∇ϕ|

)
(mean curvature),

V = ∂tϕ

|∇ϕ|
(normal velocity).
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2. Mathematical preliminaries

We can further reformulate the characteristic function χΩ1 for Ω1 defined as

χΩ1

⎧⎨⎩1 in Ω1,

0 otherwise,
(2.13)

within the diffuse interface context:

ϕ̃ = 1
2(ϕ+ 1). (2.14)

In addition, the surface delta function δΓ can be approximated by

δϕ := ε

2 |∇ϕ|2 + 1
4ε(ϕ2 − 1)2 → sδδΓ, (2.15)

δϕ := ε|∇ϕ|2 → sδδΓ, (2.16)

δϕ := 1
ε

(ϕ2 − 1)2 → 2sδδΓ, (2.17)

with a scaling parameter sδ = 2
√

2
3 . Hence, the length/area of Γ can be calculated by∫

Γ ds ≈
∫

Ω sδδϕ dx. The projection operator PΓ can also be translated and written as

Pϕ = I − ∇ϕ
|∇ϕ|

⊗ ∇ϕ
|∇ϕ|

. (2.18)

For the evolution of ϕ, we presume, if not stated otherwise, the following Dirichlet
boundary condition

ϕ(t,x) = −1 on I × ∂Ω, (2.19)

which neglects any contact of Γ with ∂Ω.

2.5. Surface energies

From a mathematical point of view, surface energies are functionals E : Γ → R. They can
serve as basis for geometric evolution equations that describe the evolution of a surface
minimizing this particular energy. Several physical phenomena follow those rules: a
water droplet minimizes its surface area and a biomembrane minimizes its Willmore or
Helfrich energy.

2.5.1. Surface area and tension energy

We first consider the surface area (energy)

E(Γ) =
∫

Γ
ds, (2.20)
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2.5. Surface energies

and its variation given by

δE

δΓ · n = H, (2.21)

is called mean curvature flow. The minimum, or critical point of E, is reached if the
mean curvature flow vanishes i.e. δE

δΓ · n = 0. For the corresponding phase field calculus
[67] the Cahn-Hilliard energy introduced by Cahn and Hilliard [39] is

ECH(ϕ) =
∫

Ω

ε

2 |∇ϕ|2 + 1
ε
W (ϕ) dx, (2.22)

with W (ϕ) a double well potential defined as

W (ϕ) = 1
4(ϕ2 − 1)2.

In this particular shape, W (ϕ) adopts its minimum W (ϕ) = 0 for ϕ = −1 and ϕ = 1.
The double well penalizes any mixing of the two phases and holds the phase field in the
values -1 and 1 while the first term accounts for the fact that gradients in the phase field
are energetically unfavorable. It has been shown that ECH(ϕ) → 2

√
2

3 E(Γ) as ε → 0 in
the sense of Γ-convergence [38, 95, 188]. Its variation

δECH

δϕ
= −ε∆ϕ+ 1

ε
W ′(ϕ), (2.23)

with W ′(ϕ) = (ϕ2 − 1)ϕ is then called diffuse mean curvature flow and converges as
δECH

δϕ →
√

2 δE
δΓ n for ϕ = 0 as ε → 0, see [215]. Adopting the L2-gradient flow to the

Cahn-Hilliard energy eq. (2.20) gives

∂tϕ = −γ(−ε∆ϕ+ 1
ε
W ′(ϕ)) in I × Ω, (2.24)

which is called Allen-Cahn equation that describes order–disorder kinetics or so-called
Model-A dynamics of a non-conserved variable. These dynamics are slightly different to
the H−1-gradient flow

∂tϕ = ∇ ·
(
γ∇(−ε∆ϕ+ 1

ε
W ′(ϕ))

)
in I × Ω, (2.25)

which is known as Cahn-Hilliard equation that can be used to describe the kinetics of
spinodal decomposition and it is also called Model-B dynamics of a conserved variable.
Since ϕ is conserved, the evolution of the phase field has changed. In case of a constant
mobility, it has been proved that the evolution of ϕ = 0 converges to the Mullins-
Sekerka model, which is also called the Hele-Shaw model with surface tension [13, 201].
For a phase field depended mobility γ(ϕ) = 1 − ϕ2 Cahn et al. [40] showed by formal
asymptotics that the zero level set of the phase field follows the law of the surface
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2. Mathematical preliminaries

diffusion flow i.e.

V = ∆ΓH.

The Cahn-Hilliard equation is a fourth order equation. Sometimes it might be favored,
due to computational reasons, to extend the second order Allen-Cahn equation by a
Lagrange multiplier λvolume to preserve to volume:

∂tϕ = −γ(−ε∆ϕ+ 1
ε
W ′(ϕ) + λvolume) in I × Ω, (2.26)

which is the so called non-local Ginzburg–Landau equation. For the derivation of λvolume

we integrate eq. (2.26) over Ω∫
Ω
∂tϕ dx = −γ(−ε

∫
Ω

∆ϕ dx + 1
ε

∫
Ω
W ′(ϕ) dx + |Ω|λvolume).

The first term on the left-hand side vanishes due to our assumption. Moreover, we can
show that the first term on the right-hand side also vanishes and we arrive at

λvolume = − 1
|Ω|

1
ε

∫
Ω
W ′(ϕ) dx. (2.27)

In physical applications, the surface area energy can be used to describe the dynamics
of a surface under the influence of a surface tension σ. The surface tension energy, thus,
reads

EST (Γ) =
∫

Γ
σ ds (2.28)

and within the diffuse interface context

EST (ϕ) := σECH(ϕ) =
∫

Ω
σ

(
ε

2 |∇ϕ|2 + 1
ε
W (ϕ)

)
dx. (2.29)

2.5.2. Willmore energy

The Willmore energy [260] is given by

E(Γ) =
∫

Γ
H2 ds, (2.30)

with H denoting the mean curvature defined as H = 1
2(k1 +k2), where k1 and k2 denote

the principle curvatures. As a fundamental topic in differential geometry, the theory
of minimal surfaces, the Willmore energy and its the variational problem is of basic
interest. Surfaces minimizing the Willmore energy such that

δE

δΓ · n = 0 (2.31)
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holds, are called critical points of the Willmore energy or Willmore surfaces. As proved
by Willmore, round spheres have the least possible Willmore energy of all compact
surfaces in R3 with E(Γ) = 4π. For surfaces with genus one, the Willmore surface is a
torus with E(Γ) = 2π2. The Willmore flow can be specified by

δE

δΓ · n = ∆ΓH + 2H(H2 −K),

with the Gaussian curvature K = k1k2. As already mentioned, the round sphere is a
critical surface because we can show

δE

δΓ · n = ∆ΓH + 2H(H2 −K) = 2
r

((1
r

)2
− 1
r2

)
= 0.

The evolution of Γ can differ depending on the dimension. A circle in 2D cannot fulfill
eq. (2.31):

δE

δΓ · n = 2
r

((1
r

)2
− 1
r

)
̸= 0.

The Willmore energy can be reformulated within the phase field calculus as

E(ϕ) = 1
2ε

∫
Ω

(
ε∆ϕ− 1

ε
W ′(ϕ)

)2
dx,

which has been derived by Du et al. [72] and was comprehensively discussed in the
author’s further publications. It has been shown in [74, 255] by asymptotic analysis that
E(ϕ) → 4

√
2

3 E(Γ) if ε → 0. Its variation is given by

δE
δϕ

= −∆µ+ 1
ε2W

′′(ϕ)µ,

µ = −ε∆ϕ+ 1
ε
W ′(ϕ),

with W ′(ϕ) = (ϕ2 −1)ϕ and W ′′(ϕ) = 3ϕ2 −1 and analog to eq. (2.24) and eq. (2.25), we
can construct the evolution equations for a non-conserved or conserved Willmore flow,
respectively.

2.6. Continuity equations on moving domains

In the further section, we discuss continuity equations for a microscopic quantity and
its concentration c(t,x). The quantity c is advected by a velocity field, and accordingly
time derivative describing the change of c along the velocity field or stream line reads

D
Dtc(t, (x1(t), x2(t), x3(t))⊤) = ∂c

∂t
+ ∂c

∂x1

∂x1
∂t

+ ∂c

∂x2

∂x2
∂t

+ ∂c

∂x3

∂x3
∂t

= ∂c

∂t
+ v · ∇c,
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2. Mathematical preliminaries

with vi = ∂xi
∂t , i = 1, 2, 3 is called material derivative.

2.6.1. Bulk equation

We consider the domain Ω1(t) to be time-dependent. Then, the mass conservation
equation for the bulk concentration C reads

DC
Dt + C∇ · v = DC∆C in I × Ω1, (2.32)

∇C · n = j on I × Γ, (2.33)

with initial condition C(t,x) = C0(x) for t = 0 and x ∈ Ω1, DC a bulk diffusion
coefficient and j a flux. eq. (2.32) can be rewritten to

∂tC + ∇ · (vC) = DC∆C in I × Ω1, (2.34)

and extended to Ω by using the characteristic function χΩ1 from eq. (2.13) and applying
it to eq. (2.32) gives

∂t(χΩ1C) + ∇ · (χΩ1vC) = DC∇ · (χΩ1∇C) + δΓj in I × Ω (2.35)

in a sharp interface formulation, where we also extended C to Ω. Within the diffuse
interface context, we approximate χΩ1 by ϕ̃, eq. (2.14). Li et al. [153] have shown by
matched asymptotic analysis that the reformulated eq. (2.35) converges to eq. (2.34) as
the interface thickness, represented by ε, goes to zero. Additional boundary conditions
on Γ are treated by adding a lower order term to eq. (2.35), see [153]. Accordingly, we
have

∂t(ϕ̃C) + ∇ · (ϕ̃vC) = DC∇ · (ϕ̃∇C) + |∇ϕ̃|j in I × Ω, (2.36)

where |∇ϕ̃| ≈ δΓ.

2.6.2. Surface equation

PDEs on surfaces are off broad interest offering a large variety of applications in science.
The fundamental principle of mass conservation can also be formulated on a surface
that can additionally change in time. We refer to the work of Cermelli et al. [50] for a
brief introduction to this topic. However, the numerical treatment of those problems are
challenging and still in focus of current research. Here, we give an overview of a mass
conservation equation and a description for a suitable numerical treatment. We consider
the time-dependent surface Γ(t) and a concentration c fulfilling the mass conservation
equation

Dc
Dt + c∇Γ · v = dc∆Γc on I × Γ, (2.37)
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2.6. Continuity equations on moving domains

with dc a surface diffusion coefficient and an appropriate initial condition c(t,x) = c0(x)
for t = 0 and x ∈ Γ. Decomposing the advective term in its normal and tangential part,
with I = PΓ + n ⊗ n gives

v · (I · ∇c) = v · (PΓ + n ⊗ n)∇c
= v · PΓ∇c+ v · n ⊗ n · ∇c
= v · ∇Γc+ v · n ∇c· n,

where we split up the gradient in its tangential and normal part. Inserting in eq. (2.37)
gives

∂tc+ ∇Γ · (vc) + V∇c· n = dc∆Γc on I × Γ,

with v = V n + T, where V is the normal velocity and T is the tangential velocity. A
useful assumption is to extend c away from Γ to be constant in normal direction i.e
∇c· n = 0. Accordingly, we arrive at

∂tc+ ∇Γ · (vc) = dc∆Γc on I × Γ, (2.38)

which we can numerically treat by using the diffuse domain approach. A numerical
approach with surface finite elements is specified in [78, 81] and a diffuse interface method
for an evolving surface Γ, using a fixed Eulerian mesh, is proposed in [79, 80, 83, 86].
We focus on the latter approach, extend c to Ω, apply the surface delta function δΓ and
obtain the extension of (2.38) to the whole domain:

∂t(δΓc) + ∇ · (δΓvc) = dc∇ · (δΓ∇c) in I × Ω. (2.39)

In the diffuse interface context we might use δΓ ≈ |∇ϕ|. Rätz and Voigt [210] showed
that eq. (2.39) converges to eq. (2.38) as ε → 0 for a stationary surface. This was
extended to a moving surface in [238]. Other publications applying this method are e.g.
[9, 209, 211, 238].

2.6.3. Bulk-surface-coupling

Combining a mass conservation equation on the surface and within the bulk by a flux
boundary condition yields a coupled bulk surface system given by

∂tC + ∇ · (vC) = DC∆C in I × Ω1, (2.40)
DC∇C · n = −j on I × Γ, (2.41)

∂tc+ ∇Γ · (vc) = dc∆Γc+ j on I × Γ, (2.42)
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2. Mathematical preliminaries

which satisfies the conservation of both concentrations

D
Dt

(∫
Ω1
C dx +

∫
Γ
cds

)
= 0. (2.43)

This can be shown by multiplying eq. (2.40) with an appropriate test function ψ, inte-
grating over Ω1 and setting v = 0 for simplicity. Hence, we have∫

Ω1
∂tCψ dx = DC

∫
Ω1

∆Cψ dx.

Now, partial integration gives∫
Ω1
∂tCψ dx = −DC

∫
Ω1

∇c· ∇ψ dx +DC

∫
Γ

∇C · nψ ds

and an insertion of the boundary condition eq. (2.41) and picking ψ = 1 lead to∫
Ω1
∂tC dx = −

∫
Γ
j ds.

If we treat the surface eq. (2.40) similarly, we have
∫

Γ ∂tcds =
∫

Γ j ds, which is clear as
we restricted any inflow and outflow to j and diffusion and advection within Γ and Ω1
does not change the mass. Putting the last two equations together, we arrive at∫

Ω1
∂tC dx +

∫
Γ
∂tcds = 0,

shifting the time derivative, we arrive at eq. (2.43).

In physical or biological applications, the flux j depends on both concentrations
describing adsorption to and desorption from Γ, then we have

j = raC − rdc,

with parameters ra and rd denoting adsorption and desorption, respectively and C being
the bulk concentration adjacent to Γ. In specific applications e.g. soluble surfactants,
the concentration on Γ may become saturated with c∞ the maximal concentration and
the adsorption has to vanish:

j = raC(c∞ − c) − rdc. (2.44)

To numerically solve this system, we reformulate it within the diffuse interface context
as

∂t(ϕ̃C) + ∇ · (ϕ̃vC) = DC∇ · (ϕ̃∇C) + |∇ϕ̃|j in I × Ω, (2.45)
∂t(|∇ϕ|c) + ∇Γ · (|∇ϕ|vc) = dc∇ · (|∇ϕ|∇c) + |∇ϕ|j in I × Ω, (2.46)

and it was shown by Teigen et al. [238] that the diffuse interface approach matches the
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sharp interface approach as ε → 0.

2.7. Two-Phase flow

The flow field of an isothermal, Newtonian and incompressible fluid can be described
by the Navier-Stokes equation. We consider two immiscible phases denoted by Ωi, with
i = 0, 1 with densities ρi and viscosities ηi. In each phase, the conservation of momentum
and mass holds yielding in two separate Navier-Stokes equations, for i = 0, 1 we have

ρi(∂tv + (v · ∇)v) = ∇ · Si + Fi in I × Ωi, (2.47)
∇ · v = 0 in Ωi, (2.48)

where Fi denotes a body force or force density, e.g. Fi = (0, ρig)⊤ and

Si = −pI + ηiD (2.49)

is the stress tensor, which is symmetric and describes the change of the fluid elements
with respect to normal stresses and shear stresses, respectively. Here, p denotes the
pressure and D = 1

2(∇v + ∇v⊤) is also known as the strain rate tensor. The interface
Γ(t) separating the different phase is determined by several interfacial conditions. As
the two phase are viscous and no phase transitions occur, we have

[v]Γ = 0, (2.50)

which means that the velocity is continuous across Γ(t). The jump condition can be
expressed by [f ]Γ = f0 − f1 or more formal [f ]Γ = [f ]Γ(x) = limh→+0 f(x − hn1(x)) −
f(x + hn1(x)) for all x on Γ, with n1 being the normal vector pointing out of Ω1.
Furthermore, we have to take into account the physical behavior of the interface denoted
by its interfacial energy. Then, we arrive at

[S · n]Γ = δE

δΓ . (2.51)

If we choose the surface tension energy eq. (2.28), we arrive at

[S · n]Γ = σHn, (2.52)

which is the jump condition for a simple fluid interface. Picking the Willmore energy
scaled with the bending rigidity bn, we have

[S · n]Γ = bn

2 (−∆ΓH − 2H(H2 −K)). (2.53)

We will later see how this jump condition can be modified by additional Lagrange multi-
pliers for surface area conservation taking the physics of a biomembrane into account. A
stretchable membrane can be described by a linear combination of the mean curvature
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and Willmore flow. For the sake of completeness, we introduce the kinetic energy of a
fluid defined as

Ekin(v) = ρ

2

∫
Ω

|v|2 ds, (2.54)

with ρ0 = ρ1 = const.

2.8. General diffuse interface approach of a two-phase flow

Hohenberg and Halperin [123] published several models for critical phenomena close to
phase changes. The model H, in their nomenclature, describes binary-fluid mixtures i.e.
two-phase flows where they combined a Navier-Stokes equation for the fluid flow and a
Cahn-Hilliard equation for the phase separation of two conserved phases. Model E, on the
other hand, combines fluid flow with an Allen-Cahn equation to describe the dynamics of
non-conserved variable. In this section, we generalize both models where the underlying
interfacial energy is not specified in order to cover a wide range of physical phenomena.
This energy is given in a diffuse interface approach where the interfacial layer has a
certain thickness ∼ ε. To derive the governing equations, we use an energy variation
approach. At first, we consider a thermodynamic system with constant temperature
whose overall energy

E(v, ϕ) = Ekin(v) + ES(ϕ)

is composed by Ekin, the kinetic energy of the fluid and ES , a non specified surface
energy depending on ϕ. The order parameter ϕ, on the other hand, can be considered as
a non-dimensional concentration of a species within a phase or just as diffuse interface
approximation of the surface. According to the seconds law of thermodynamics, see
Section 2.3.2, we claim

dE
dt =

∫
Ω
ρv · ∂tv + δES

δϕ
∂tϕ dx

!
≤ 0, (2.55)

where we choose ρ = const. The conservation of mass and momentum for the velocity
field v is

ρ∂tv = −ρ(v · ∇)v − ∇p+ ∇ · (η(ϕ)D) + F in I × Ω, (2.56)
∇ · v = 0 in Ω, (2.57)

where we now describe the viscosity η(ϕ) = η1
ϕ+1

2 + η0
ϕ−1

2 as an interpolation between
the two phases. Furthermore, the conservation of mass for the phase field is

∂tϕ = −v · ∇ϕ− ∇ · J in I × Ω, (2.58)
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where F is a body force and J is a flux that are both yet unspecified. Now, we plug in
eq. (2.56) and eq. (2.58) into the energy derivative eq. (2.55) and determine the unknowns
such that the overall free energy decreases:

dE
dt =

∫
Ω

v · (−ρ(v · ∇)v − ∇p+ ∇ · (η(ϕ)D) + F) + δES

δϕ
(−v · ∇ϕ− ∇ · J) dx.

Using the vector identity

(v · ∇)v = 1
2∇|v|2 − v × (∇ × v),

multiplying with v and taking into account that v × (∇ × v) is perpendicular to v gives

v · (v · ∇)v = 1
2v · ∇|v|2. (2.59)

Inserting in eq. (2.55) yields

dE
dt =

∫
Ω

v ·
(

−ρ

2∇|v|2 − ∇p
)

+ v · ∇ · (η(ϕ)D) − δES

δϕ
∇ · J

+ v ·
(

F − δES

δϕ
∇ϕ
)

dx.

Now, partial integration, using the incompressibility eq. (2.57) and choosing the body
force

F = δES

δϕ
∇ϕ

and the flux given by

∇ · J = γ
δES

δϕ
,

with γ > 0 the mobility coefficient yield

dE
dt =

∫
Ω

−∇v : η(ϕ)D − γ
δES

δϕ

2
dx,

Taking into account that

∇v : D = D : ∇v
2 + D : ∇v

2

= D : ∇v
2 + D⊤ : ∇v⊤

2

= D : ∇v
2 + D : ∇v⊤

2
= D : D, (2.60)
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where we used the symmetry of the strain rate tensor D, we end up with

dE
dt =

∫
Ω

−η(ϕ)D : D − γ
δES

δϕ

2
dx ≤ 0, (2.61)

which is the energy law of the thermodynamic system. The viscous friction of the fluid
and the variation of the surface energy are responsible for the energy dissipation, as
η(ϕ) > 0 and γ > 0. In fact, the unknowns are determined and we arrive at the general
diffuse interface approach for a two-phase flow of the non-conserved variable (general
model E):

ρ(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ in I × Ω,

∇ · v = 0 in Ω,

∂tϕ+ v · ∇ϕ = −γ δES

δϕ
in I × Ω,

with unspecified surface energy ES . The physical properties of the interface are now
represented by the body force term added to the Navier-Stokes equation, which is only
nonzero along the interface. The phase field equation advects the interface and uses a
regularization term on the right-hand side, which is why we choose γ > 0 as small as
possible. A pure advection equation with γ = 0 would still fulfill the energy dissipation
law, eq. (2.55), however, it was numerically problematic. This system is also used for
the dynamics of a conserved phase field, e.g. [76], by applying a Lagrange multiplier or a
penalty term for the volume conservation. An advantage is that the phase field equation
is two orders smaller than that of a conserved variable (see below), which can prevent
numerical complexities. A conserved phase field evolution caused by an H−1-gradient
flow considers a flux given as J = −γ∇ δES

δϕ . Accordingly, the energy dissipation law
reads as

dE
dt =

∫
Ω

−η(ϕ)D : D − γ

⏐⏐⏐⏐∇δES

δϕ

⏐⏐⏐⏐2 dx ≤ 0. (2.62)

Finally, the system for a general diffuse interface approach for a two-phase flow of a
conserved variable (general model H) becomes

ρ(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ in I × Ω,

∇ · v = 0 in Ω,

∂tϕ+ v · ∇ϕ = ∇ ·
(
γ∇δES

δϕ

)
in I × Ω.

Both systems require initial conditions ϕ(t,x) = ϕ0(x), the initial shape of the two
phases as well as v(t,x) = v0(x) for t > 0, x ∈ Ω and additional boundary conditions
for ϕ, v and δES

δϕ .
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There has been done a lot of work considering a simple fluid interface applying the
surface tension energy eq. (2.29), see [2, 17, 36, 127, 155, 157, 232, 264]. The governing
equations are given by

ρ(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ in I × Ω,

∇ · v = 0 in Ω,

∂tϕ+ v · ∇ϕ = ∇ ·
(
γ(ϕ)∇δES

δϕ

)
in I × Ω,

δES

δϕ
= 3σ

2
√

2

(
−ε∆ϕ+ 1

ε
W ′(ϕ)

)
in Ω,

with a phase field dependent mobility γ(ϕ) = γ̄W (ϕ), γ̄ = const. and appropriate initial
conditions for v and ϕ and boundary conditions for t > 0 and x ∈ Ω:

v(t,x) = g(t,x) (no slip),

∇δES

δϕ
· n = 0 (no flux),

∇ϕ· n = 1
ε
√

2
cos θ(1 − ϕ2) (contact angle).

That this system is a suitable model to treat two-phase flows has been shown in several
benchmark computations [6, 10, 11]. It has been extended to different densities [3,
161] and applied to a diffuse domain approach [7]. These systems have a wide field of
application. For instance, the dynamics of the interface has been changed by adding
surfactants [239] or colloid particles [8, 9]. For sake of completeness, a thermodynamic
consistent model for different densities is now specified below:

ρ(ϕ)(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + dρ
dϕγ(ϕ)∇δES

δϕ
· ∇v

− σ

ε

3
2
√

2
∇ · (∇ϕ⊗ ∇ϕ) in I × Ω,

∇ · v = 0 in Ω,

∂tϕ+ v · ∇ϕ = ∇ ·
(
γ(ϕ)∇δES

δϕ

)
in I × Ω,

δES

δϕ
= 3σ

2
√

2

(
−ε∆ϕ+ 1

ε
W ′(ϕ)

)
in Ω.

As already mentioned, we can choose the surface energy depending on the physical
problem. If we apply the Helfrich energy eq. (3.4) we can describe the evolution of a
closed lipid membrane in an aqueous solution. The corresponding diffuse Navier-Stokes-
Helfrich model is developed in Section 3.4.2. We can further influence the physics of the
interface by additional Lagrange multipliers or penalty terms to enforce global surface
area conservation, see eq. (3.37) or local surface area conservation, see eq. (3.66) or by
an additional force term to describe active motion, see eq. (5.7).
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Chapter 3

Diffuse interface models for cell
morphology based on the Helfrich

energy

In order to develop mathematical models that help us to describe and understand bio-
logical cells, we need to identify the main features of cells to be captured in our models.
Therefore, we first outline the basic components of a cell, its physical interpretation and
we further illustrate a general principle to derive mathematical models, see Section 3.1.
Depending on the length and time scale as well as the nature of the cell different compo-
nents of the cell determine its evolution. As a first step within this thesis, we consider the
cell membrane to play a fundamental role. This is basically described by the so-called
Helfrich energy [121] accounting for the bending physics of the membrane, introduced
and discussed in Section 3.2. We consider the whole cell and its surroundings to be a
thermodynamic system. The evolution of the cell can then be understood as a mini-
mization procedure of a given energy that, as shown in Section 2.3.2, leads to a free
boundary problem. In order to treat such a free boundary problem, we use a diffuse
interface approach to develop the governing equations, see Section 2.4 and Section 2.5.
For our models we further consider two cases: a non-hydrodynamic evolution where
fluid environment is supposed to play a minor role, see Section 3.4.1 and a hydrody-
namic two-phase flow model considering the influence of fluid flow in the outside and
inside of the cell that is derived in Section 3.4.2. This so-called hydrodynamic diffuse
interface Navier-Stokes-Helfrich model serves as our basic approach to describe biologi-
cal phenomena such as cell motility and collective flow of cells. To account for different
properties of the cell, the model is reformulated regarding an inextensibility condition
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3. Diffuse interface models for cell morphology based on the Helfrich energy

(local surface conservation), Section 3.4.3 and surface tension, Section 3.5. It is further
the starting point for the development of the active polar gel model derived in Chapter 6
and for the multi-phase approach for collective motion, see Chapter 7.

3.1. Classification and hydrodynamic approaches for cells

An eukaryotic cell is a highly complex structure consisting of several parts that behave
mechanically different. In this section, we give a classification of the constituents of the
cell and their physical properties. We further show how we can account for these prop-
erties within a continuum formulation of a two-phase flow approach that distinguishes
between the cell bulk and the surrounding medium.

The cell bulk mainly comprises the cytoplasm and organelles. The cytoplasm, which
typically accounts for 50% of the cell volume, is made up of two components: the cytosol
and the cytoskeleton. The cytosol is a fluid structure and encloses organelles such as
the nucleus or mitochondria. It further supports the organelles with different molecules
that are dissolved in the cytosol. The cytoskeleton, on the other hand, determines
the shape of the cell and is also responsible for cell motility [29]. It consists of actin
filaments, microtubules and intermediate filaments. For an eukaryotic cell it is common
to ignore the nucleus [246, 263] and to represent the interior as viscoelastic bulk material
by applying e.g. the Oldroyd-B model [33, 187, 265, 269]. Another approach focuses on
streaming effects within the cytosol and considers the cell bulk as a purely viscous fluid
with an effective viscosity [105, 229]. In order to account for a more complex behavior of
the cell bulk that goes beyond purely viscous or viscoelastic approaches, an active polar
gel theory has been used to describe the physics of the actin cytoskeleton [131, 242, 259].
Other models, especially for cell motility, apply a two-phase flow only to the cell bulk and
account for the two main components of the cytoplasm: the cytosol and cytoskeleton,
see [15, 61] and [51] for a review.

The second phase is the exterior of the cell that is either an extracellular matrix,
which is a tissue connecting and supporting the cells (in case of cell motility), or a fluid
(in case of red blood cells or vesicles). However, in our approach we always assume a
Newtonian fluid.

The interface i.e. the cell membrane separates the interior of a cell from its exterior.
It is completely closed, impermeable and gives rise to bending forces described by a
Helfrich energy [121], see Section 3.2. The cell membrane is a lipid bilayer and consists
of two chains of small lipid proteins where the hydrophilic head points outwards and
hydrophobic tail points inwards, see also Fig. 3.1c for an illustration. The cell membrane
is an essential element in the development and evolution of cells and its functionality is
not restricted to its structural role. It plays a crucial role during interactions of cells and
the exchange of several proteins as well as for endocytosis and exocytosis. Moreover,
actin filaments form the cell cortex, which is connected to the cell membrane. These
filaments are elastic and responsible for membrane elasticity [30, 220]. They further lead
to an effective surface tension of the membrane due to the contractility of the filaments
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biological property effective physical interpretation
impermeable membrane volume conservation
lipid bilayer bending stiffness
myosin in actin cortex surface/cortical tension
actin cortex membrane elasticity
cytoplasm in the bulk Newtonian fluid

active polar gel
viscoelastic material

Table 3.1. – Effective physical interpretation of the components of a general eukaryotic
cell

caused by myosin [88]. Therefore, it is also known as cortical tension in the literature.
Tab. 3.1 gives a classification of the properties of a general eukaryotic cell and its effective
physical interpretation.

However, not every cell has such a complex cell interior. Red blood cells, for in-
stance, lose much of their organelles during their growth in order to obtain space for the
binding of hemoglobin. A vesicle is an organelle whose interior completely consists of
fluid, see Fig. 3.1c and [226] for a review. Vesicles have been widely used in the litera-
ture, see also Section 8, to describe red blood cells as the structure of a red blood cell is
much simpler than that of an eukaryotic cell. Moreover, bulk and membrane elasticity
can be neglected due to the high deformability of the cytoskeleton of RBCs. Because of
the large stretch elasticity of the lipid bilayer, the surface of a vesicle is inextensible (i.e.
locally conserved), see Section 3.4.3. Subsequently, Tab. 10.1 in conclusions, Chapter 10
shows the different physical properties that were considered within our models.

Depending on the spatial scale as well as on the time scale that can range anywhere
from milliseconds (cell in micro channel) to hours (migrating cell on the substrate), each
biological component can become more or less dominant. At long time scales elastic
contributions can be neglected since the cell can restore its shape and dissipate stress.
However, on short time scale they can become dominant. In our model for cell motility,
Chapter 5.2, we therefore neglect membrane elasticity. Moreover, we treat the bulk as
a viscous fluid considering streaming effects in the cytoplasm and it can likewise be
understood as first order approximation of the viscoelastic properties. In conclusions,
Chapter 10, we give a brief outlook to approaches including elastic contributions. In
Chapter 6, we choose an approach to account for the elastic behavior of the bulk. Here,
the bulk is assumed to be an active polar gel, where the actin filaments considered
as small rod-like molecules, so-called liquid crystals, are represented by a continuum
formulation of a polarization field. These gels represent an intermediate state of the
bulk which exhibits a degree of order that is between that of ordinary liquids and solids
and can furthermore exert a distortion stress during their translation. This allows us to
describe the active nature of actin-myosin solutions by an additional contractile stress
tensor.

To derive mathematical models, we consider the cell as thermodynamic system that

29



3. Diffuse interface models for cell morphology based on the Helfrich energy

(a) (b) (c)

Figure 3.1. – Different Types of cells - (a) Cytoskeleton and nucleus (blue) of eukaryotic
cells (keratinocytes). Shown are the actin filaments (red) and microtubles (green) (Picture
self-taken from microscopy) (b) Red blood cells (c) Illustration of a vesicle (liposome) and
further structures formed by a lipid bilayer. ((a) self-taken, (b) and (c) licensed under Public
Domain via Commons, retrieved from https://www.wikipedia.org)

minimizes its energy and dissipates this energy in another state measured by the entropy.
It has been shown that a cell membrane minimizes the Helfrich bending energy in order
to develop an optimal shape. We extend this energy by additional Lagrange multipliers
or penalty terms to conserve surface and volume of the cell, or if the surface conservation
is not intended by a surface tension leading to an overall surface energy ES(Γ). Then,
neglecting the hydrodynamics, the evolution of the cell can be described by the surface
velocity v and is thus given by

v = −γ̃ δES

δΓ , (3.1)

with γ̃ > 0, which is consistent with the second law of thermodynamics since the overall
energy is decaying in time:

dE
dt =

∫
Γ

δE

δΓ · v ds = −γ̃
∫

Γ
v · v ds ≤ 0.

This evolution can be translated to the diffuse interface approach where Γ is now implic-
itly defined by the zero level set of ϕ, see Section 2.4. Denoting ES the diffuse interface
formulation of the surface energy, the evolution now reads for γ > 0

∂tϕ = −γ δES

δϕ
, (3.2)

which is the L2-gradient flow, see eq. (2.3). Within these models the energy is only
dissipated by the variation of the surface energy. Here, fluid flow is not considered,
which is appropriate if only the stationary state is of interest. These models are therefore
called non-hydrodynamic and given by a geometric evolution equation. If the dynamics
of the fluid is taken into account, a kinematic force balance at the membrane Γ is posed
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between the membrane and the hydrodynamic forces

[S · n]Γ = δES

δΓ , (3.3)

with the stress tensor S given in eq. (2.49). We now consider the surrounding medium
as well as the cell bulk as viscous Newtonian fluid denoted by the domain Ω0(t) and
Ω1(t), respectively. Then, the evolution given by eq. (3.3) with additional Navier-Stokes
equations and interface advection is thermodynamically consistent. To prove this, we
thus consider the overall energy

E = Ekin + ES

and its evolution in time

dE
dt =

∫
Ω0
ρv · Dv

Dt dx +
∫

Ω1
ρv · Dv

Dt dx +
∫

Γ

δES

δΓ · v,

with Dv
Dt denoting the material derivative of v. Using the Navier-Stokes equations ρDv

Dt =
∇ · Si, we obtain

dE
dt =

∫
Ω0

v · ∇ · S0 dx +
∫

Ω1
v · ∇ · S1 dx +

∫
Γ

δES

δΓ · v

= −
∫

Ω0∪Ω1
∇v : S dx +

∫
Γ

v · (n0 · S0 + n1 · S1) +
∫

Γ

δES

δΓ · v

= −
∫

Ω0∪Ω1
D : D dx −

∫
Γ

v · [S · n]Γ +
∫

Γ

δES

δΓ · v

= −
∫

Ω0∪Ω1
D : D dx ≤ 0,

where we performed integration by parts, reformulated the jump condition with n :=
n1 = −n0, inserted eq. (3.3), neglected the pressure within Si = −pI + ηiD using the
incompressibility ∇ · v = 0, and after all applied eq. (2.60). Hence, the energy decreases
due solely to viscous dissipation. Within our diffuse interface formulation the energy
dissipation is additionally determined by the variation of the surface energy that is used
due to the numerical stabilization of the advection of the phase field, see eq. (3.51) and
(6.10).

3.2. Helfrich energy

3.2.1. Sharp interface formulation

The theoretical study of the elasticity of biomembranes was first performed by Canham
[46], Helfrich [121] and Evans [94]. They tried to explain the specific discocyte shape of
a RBC by focusing on the relevant elastic properties of the cell membrane. The main
assumption of their approaches is to consider the cell membrane as a two-dimensional
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3. Diffuse interface models for cell morphology based on the Helfrich energy

manifold embedded in R3, because the thickness of the cell membrane (≈ 5 nm) [121] is
much smaller than its length (∼ µm). In addition, they neglected any contribution from
the bulk. Helfrich proposed that the cell membrane and its containing lipids undergo
three type of strain: stretching, tilt and curvature. However, Helfrich mentioned that
only the curvature is responsible for the shape change of the membrane, and accordingly
the membrane minimizes the functional given by

EH(Γ) =
∫

Γ
bn(H −H0)2 + bkK ds, (3.4)

which we call Helfrich energy, Canham-Helfrich energy or bending energy. To be more
precise, Helfrich defined the energy as ES(Γ) =

∫
Γ

1
2bn(H̃−H̃0)2 +bkK ds using the total

curvature H̃ = k1 + k2. We, however, follow the notation of [68, 75]. Here, bn denotes
the bending rigidity, bk the Gaussian bending rigidity and H0 the spontaneous curva-
ture reflecting a possible asymmetry of the membrane justified by a different chemical
environment on both sides of the lipid layers. It can also be a function of a protein con-
centration, see e.g. [249]. In this thesis, H0 is assumed to be spatially homogeneous. For
a review of models including spontaneous curvature, we refer to [118, 224, 227]. For our
purposes, it is sufficient to suppose that cell membranes do not undergo any topological
transitions. Due to the theorem of Gauß-Bonnet, which reads for the previous defined
surface Γ as ∫

Γ
K ds = 4π(1 − ge),

where ge is the genus of the surface being e.g. zero for a sphere and one for a torus,
the second term in eq. (3.4) is constant for all Γ and can accordingly be neglected. The
Helfrich energy becomes

EH(Γ) =
∫

Γ
bn(H −H0)2 ds, (3.5)

its variation is given by

δEH

δΓ · n = bn

(
∆ΓH + 2H(H2 −K) + 2KH0 − 2HH2

0

)
and the critical point fulfills

∆ΓH + 2H(H2 −K) + 2KH0 − 2HH2
0 = 0.

Additionally, we consider an impermeable membrane, which means that the volume of
the cell interior is conserved. It has been observed, that for vesicles the attachment and
detachment of lipids on the membrane is hindered [121]. The membrane surface area can
therefore be assumed to be constant that can be understood in two different ways: global
surface area conservation where

∫
Γ ds = const. allows us to stretch or compress surface

elements locally and local surface area conservation or inextensibility constraint where

32



3.2. Helfrich energy

local shape changes are forbidden. Here, we consider the lipids within the membrane
as fluid moving along the surface with velocity v and fulfilling the incompressibility
condition ∇Γ · v = 0. In the following, we consider the global surface conservation, but
we will describe the treatment of the inextensibility condition later on, see Section 3.4.3.

Finally, we denote the Helfrich minimization problem: find Γ∗ ∈ L, with L := {Γ ⊂
R3 : Γ smooth and closed} with

Γ∗ := min
Γ∈L

bn

∫
Γ
(H −H0)2 ds, (3.6)

subject to the constraints

|Ω1| := vol(Γ) = const. (3.7)

|Γ| :=
∫

Γ
ds = const. (3.8)

In summary, the Helfrich energy is an appropriate model to study the shape of cells
whose surface is mainly determined by the impermeability, surface area conservation
and bending properties of the membrane. It has been successfully used to study the
equilibrium shape of cells and comparisons with experiments showed that a minimal
surface of this energy reproduces the discocyte shape of a RBC. Although it neglects
any elastic or viscous contribution from the cell bulk, it recovers the shape of a red blood
cell admissibly, see Fig. 3.2.

For that reason, a lot of studies are based on the minimization of the Helfrich energy.
Starting with single-component vesicles [223, 227] over the years more and more complex
and fundamental components of cell membranes have been taken into account. These
include lipids, proteins and cholesterol and their interplay on the morphology, structure
and dynamics of membranes [14, 164, 256]. The coupling of the dynamics with the
surrounding fluid has been applied to understand the complex motions and shape changes
of RBCs within a flow field, e.g. tank-treading and tumbling motion [102]. Within a
low Reynolds number regime, the Stokes limit is valid and various numerical approaches
have also been considered in this limit to analyze the tank-treading and tumbling motion
[26, 31, 32, 111, 135, 137, 233, 247, 267]. However, in regimes with Reynolds number of
order unity or higher the Stokes limit is at least questionable. Modeling approaches that
consider also inertial effects have recently been introduced by [12, 144, 219]. Models that
consider multicomponent vesicles can be found in [118, 162, 164, 233]. In addition, the
Helfrich energy has been applied to study open vesicles [217], protrusion and contraction
forces within the cell bulk to describe cell motility [228, 229] and the flow single or
multiple red blood cells e.g. [99, 100, 105, 125, 177, 182, 262].

Mathematical techniques and numerical methods developed for the Helfrich prob-
lem with or without fluid flow are parametric approaches [22–25, 60, 82, 216], level-set
methods [64, 66, 144, 218], immersed boundary methods [120, 126, 135, 136], boundary
integral methods [98, 247, 248], a particle-based simulation methods [99, 100, 125, 182,
195, 262] and the diffuse interface method, which we will focus on in the following sec-
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Figure 3.2. – Scanning electron micrograph of human red blood cells (left)(Picture li-
censed under Public Domain via Commons, retrieved from https://www.wikipedia.org)
and stationary solution of an ellipsoid minimizing the Helfrich energy with volume and sur-
face area conservation (middle) and cut through the surface (right). The Helfrich energy is
an appropriate model to describe the equilibrium shape of RBCs.

tions. Finally, a comparison between a level-set and phase field methods is given in [167]
and between level-set and parametric methods in [28].

3.2.2. Diffuse interface approximation

In this section, we review a diffuse interface approach for the minimization of the Helfrich
energy. As shown in Section 2.4, we implicitly describe the surface Γ by the phase field
function ϕ eq. (2.12). Using a gradient flow approach, we are able to derive the evolution
equations for the surface Γ. Resulting equations are solved with adaptive finite elements.
In this thesis our models follow the diffuse interface approximation of the Helfrich energy
and the involved theory that was introduced by Du et al. in [72] and subsequent papers.
Further theoretical and numerical investigations can be found in his recent publications.
Moreover, reviews of existing diffuse interface models for the minimization of the Helfrich
energy can be found in [67, 151].

The diffuse interface Helfrich energy is given by

EH(ϕ) = bn

2ε

∫
Ω

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

dx, (3.9)

where W ′
0(ϕ) = (ϕ2 − 1)(ϕ+

√
2H0ε) stands for the modified double-well potential and

was first indroduced by Du et al. [73], where they extended their previous studies of
a diffuse interface approximation for the Willmore energy [72, 74]. In [73] and more
rigorously in [255], the authors showed that EH(ϕ) → 4

√
2

3 EH(Γ) (eq. (3.5)) as ε → 0.
We additionally take into account the constraints arising from volume conservation, see
eq. (3.7) and surface area conservation, see eq. (3.8) that can be translated into the
phase field calculus as

V(ϕ) =
∫

Ω
ϕ dx = V0 = const. since V(ϕ) → |Ω1| − |Ω0|, (3.10)

ECH(ϕ) =
∫

Ω

ε

2 |∇ϕ|2 + 1
ε
W (ϕ) dx = A0 = const. since ECH(ϕ) → 2

√
2

3 |Γ|, (3.11)
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3.3. Nondimensionalization

with desired states V0 =
∫

Ω ϕ(t = 0,x) dx and A0 = ECH(ϕ(t = 0,x)) corresponding
to the initial or desired volume and surface area, respectively. Finally, we specify the
diffuse Helfrich minimization problem:
Find ϕ∗ ∈ Lϕ, with Lϕ := {ϕ ∈ H2(Ω) : ϕ(t,x) = 1, ∇ϕ(t,x) · n = 0, t > 0, x ∈ ∂Ω},
with

ϕ∗ = min
ϕ∈Lϕ

ES(ϕ),

under the constraints

V(ϕ) = V0, ECH(ϕ) = A0.

3.3. Nondimensionalization

Before we introduce the governing equations for the diffuse interface models, we consider
a non-dimensional formulation of the proposed equations and energies. Accordingly,
we choose the characteristic values for space x = Lx̂, velocity v = V v̂ and energy
E = ηV L2Ê, with characteristic length L, characteristic velocity V and fluid viscosity
η. This yields a time scale t = L

U t̂ and a pressure p = ηV
L p̂. Thus, the kinetic energy of

a fluid eq. (2.54) becomes

Êkin(v̂) = Re
∫

Ω̂

1
2 |v̂|2 dx̂ (3.12)

in non-dimensional form. Moreover, the diffuse surface tension energy is given by

ÊST (ϕ) = 1
Ca

∫
Ω̂

ε̂

2 |∇̂ϕ|2 + 1
ε̂
W (ϕ) dx̂, (3.13)

and the non-dimensional Helfrich energy is

ÊH(ϕ) = 1
Be

∫
Ω̂

1
2ε̂

(
ε̂∆̂ϕ− 1

ε̂
W ′

0(ϕ)
)2

dx̂, (3.14)

with W ′
0(ϕ) = (ϕ2 − 1)(ϕ +

√
2Ĥ0ε), where Ĥ0 is the non-dimensional spontaneous

curvature. We have introduced tree dimensionless quantities:

• the Reynolds number Re= ρV L
η , which is the ratio of inertial forces to viscous

forces,

• the capillary number Ca= 2
√

2
3

ηV
σ , which is the ratio of viscous forces to surface

tension or capillary forces,

• and the bending capillary number Be= 4
√

2
3

ηV L2

bn
, which is the ratio of viscous

forces to bending or Helfrich forces similarly defined in [32, 218].

The factors 2
√

2
3 and 4

√
2

3 take the scaling between diffuse and sharp interface energy
into account. Please note, that we have to rescale the non-dimensional sharp interface
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energies with these factors:

ÊST (Γ) = 2
√

2
3

1
Ca

∫
Γ

ds (3.15)

and

ÊH(Γ) = 4
√

2
3

1
Be

∫
Γ
(H −H0)2 ds. (3.16)

Next, we rewrite the two phase flow problem, eq. (2.47)-(2.48) in non-dimensional form.
As reference values for density and viscosity, we pick ρ0 and η0 from the surrounding
phase Ω0, respectively. Hence, we have

V 2

L
ρi(∂t̂v̂ + (v̂ · ∇̂)v̂) + 1

L
∇̂p = V

L2 ∇̂ ·
(
ηi(∇̂v̂ + ∇̂v̂⊤)

)
+ F,

where p and F are still dimensional. A division by η0 and V
L2 and extension of the inertia

term with ρ0 gives

ρ0V L

η0

ρi

ρ0
(∂t̂v̂ + (v̂ · ∇̂)v̂) + L

V η0
∇̂p = ∇̂ ·

(
ηi

η0
D̂
)

+ L2

V η0
F.

Defining the Reynolds number with Re = ρ0V L
η0

and scaling the pressure with p = η0V
L p̂,

we arrive at

Re ρi

ρ0
(∂t̂v̂ + (v̂ · ∇̂)v̂) + ∇̂p̂ = ∇̂ ·

(
ηi

η0
D̂
)

+ StF̂ (3.17)

with the Stokes number St= L2

V η0
representing the ratio of body forces to viscous forces.

Another representation of eq. (3.17) is

Re ρi

ρ0

Dv̂
Dt = ∇̂ · Ŝi + StF̂, (3.18)

with

Ŝi = −p̂I + ηi

η0
D̂ (3.19)

the non-dimensional stress tensor. Moreover, if we divide eq. (3.17) or eq. (3.18) by Re,
we arrive at further dimensionless quantities, which can also by found in the literature:

• the Weber number We=Re · Ca,

• the Reynolds bending number Rb=Re · Be,

• the Froude number Fr= St
Re .

Remark 3.1 We classify the flow into two basic regimes with Re ≫ 1 where inertial
forces dominate and with Re ≪ 1 that is called Stokes regime where inertia can be
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neglected and viscous forces dominate. The following example illustrates why cells in
fluid flow live in a Stokes regime: considering equal viscosity η = 10−3 Pa s and density
ρ = 103 kg/m3, the characteristic velocity and length for a bacterium E. coli are V =
30 · 10−6 m/s and L = 2 · 10−6 m, accordingly we have Re = 6 · 10−5, whereas a
human swimmer with V = 1 m/s and L = 2 yields Re = 2 · 106. As a consequence,
eq. (3.17) becomes an Euler equation for Re ≫ 1 and for Re ≪ 1 we obtain the Stokes
equation

∇̂p̂ = ∇̂ ·
(
ηi

η0
D̂
)

+ StF̂i, (3.20)

with ∇̂ · v̂ = 0. These regimes are essential for the choice of the numerical technique
to solve these equations and of course for the physics of the flow itself. Especially, for
actively driven particles or so-called swimmers the linearity of the Stokes equation would
not lead to an active motion if the swimming mechanism is symmetric. On the other
hand, the same mechanism would lead to a motion in regimes where inertia is dominating.
This phenomenon is known as Scallop theorem in the literature. Furthermore, we will
see in Chapter 8 that the Reynolds number influences the lift force of a white blood cell
and is therefore crucial for the occurrence of white blood cell margination. For a wide
introduction into dimensional analysis, we refer to Papanastasiou et al. [199] and for
flow in the Stokes regime see Happel and Brenner [117].

If not stated otherwise we only consider non-dimensional variables and energies
therefore we drop the hats.

3.4. Evolution equations for diffuse Helfrich energy with
surface conservation

In this section, we derive evolution equations for the surface membrane Γ that minimize
the diffuse Helfrich energy. As already discussed, we classify all models either to be non-
hydrodynamic eq. (3.1), see Section 3.4.1 or to be hydrodynamic eq. (3.3) and eq. (2.47)-
(2.48), see Section 3.4.2. To derive the non-hydrodynamic model, we apply a gradient
flow approach to the diffuse Helfrich energy and account for further volume and surface
area constraints by adding Lagrange multipliers or penalty terms. Resulting geometric
evolution equations are given in Section 3.4.1. Simulations of non-hydrodynamic models
that can be used to describe an equilibrium shape of vesicles have been performed in
[72, 73, 75]. More analytic studies that discuss existence and convergence can be found
in [71, 74]. A numerical analysis that considers the finite element method is given in
[69, 70]. Topological considerations including the calculation of the Euler number are
investigated in [75, 92]. Other diffuse interface models can be found in [42–45, 149].

The hydrodynamic model -derived in Section 3.4.2- requires additional incompress-
ible Navier-Stokes equations for the fluid flow. The physical property of the membrane,
which is presented as interface between two fluid phases, is represented by an additional
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stress or body force term within the momentum equation. Thus, the phase field equa-
tion simplifies to a simple advection equation that is driven by the updated velocity
field. Since the numerical treatment of an advection equation is unfavorable, we extend
the phase field equation by small relaxation term, represented by the energy variation.
There are similar approaches that are based on the model H derived in Hohenberg and
Halperin [123], where the interfacial stress comes from the surface tension in order to
describe a simple two-phase flow [36, 127, 155, 157, 264]. In Section 2.8, we have derived
a thermodynamically consistent model for general two-phase flow. Since the underlying
energy is now familiar, we are able to determine the particular Helfrich stress perform-
ing a similar procedure that considers the material derivative of the thermodynamic
variables.

In this thesis, we follow the work of Du et al. [76], where the authors developed
and analyzed a hydrodynamic model for vesicles. It has been applied in [12, 68, 77, 150,
174, 176, 177, 217]. Another hydrodynamic diffuse interface model has also been used in
[31, 32, 129] with a different phase field formulation and without an explicit formulation
of the diffuse Helfrich energy. More recently, in [97] a very general approach was given,
that covers both diffuse interface formulations. A further approach can be found in [150].

3.4.1. Non-hydrodynamic model

Without fluid flow the minimization of the Helfrich problem is a geometric evolution
equation, whose dynamics are given in eq. (3.2). We first review the evolution equations
in absence of any constraints. Using the L2-gradient flow eq. (2.3) we have on I × Ω

∂tϕ = −γ δEH

δϕ
, (3.21)

δEH

δϕ
= ∆µ− 1

ε2W
′′
0 (ϕ)µ, (3.22)

µ = ε∆ϕ− 1
ε
W ′

0(ϕ), (3.23)

with W ′′
0 (ϕ) = 3ϕ2 + 2ϕ

√
2H0ε− 1. Here, we split up the 4th order equation for ϕ as a

system of 2nd order equations. Furthermore, it holds(
δEH

δϕ
= 0

)
→
(
∆ΓH + 2H(H2 −K) + 2KH0 − 2HH2

0 = 0
)
,

i.e. the critical point of the diffuse interface approach asymptotically converges to the
critical point of the sharp interface formulation as ε → 0 [255]. We further introduce
the variation of the Cahn-Hilliard energy denoted by

κ := δECH

δϕ
= −ε∆ϕ+ 1

ε
W ′(ϕ), (3.24)

being a diffuse interface approximation of the mean curvature H with κ →
√

2HδΓ if ε →
0. In order to account for volume and surface area conservation during the minimization
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3.4. Evolution equations for diffuse Helfrich energy with surface conservation

process, we either add Lagrange multipliers or penalty terms to the evolution equations.
Moreover, it can be useful to adapt an H−1-gradient flow eq. (2.4) to save the volume
conservation. The resulting models are specified in the following.

Lagrange-Multipliers

First, we extend the diffuse Helfrich energy eq. (3.14) by two Lagrange multipliers ac-
counting for the volume and surface area conservation

ES(ϕ) = EH(ϕ) + 1
Be (λvolume (V(ϕ) − V0) + λarea (ECH(ϕ) − A0)) (3.25)

and adapt a L2-gradient flow

∂tϕ = −γ δES

δϕ
, (3.26)

where the variation with respect to ϕ is given by

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ+ λvolume + λareaκ

)
. (3.27)

Then

λvolume|Ω| + λarea

∫
Ω
κ dx = −

∫
Ω

∆µ− 1
ε2W

′′
0 (ϕ)µ dx, (3.28)

λvolume

∫
Ω
κdx + λarea

∫
Ω
κ2 dx = −

∫
Ω
κ(∆µ− 1

ε2W
′′
0 (ϕ)µ), dx (3.29)

where eq. (3.28) can easily be derived from the evolution eq. (3.26), where we integrate
over Ω and apply the volume conservation d

dt
∫

Ω ϕ dx =
∫

Ω ∂tϕ = 0. For eq. (3.29), we
consider the surface area conservation, which is d

dtECH =
∫

Ω κ∂tϕ dx = 0. Now, we
multiply the evolution eq. (3.26) by κ, given in eq. (3.24), and integrate over Ω.

The resulting system of integro-partial differential equations is a challenging prob-
lem. An explicit treatment, where we first solve the linearized system of PDEs and
afterward solve the linear system of the Lagrange multipliers, slightly violates the con-
straints [75].

Penalty terms

Another widely used and easily adoptable approach to fulfill the constraints are penalty
terms. Now, we extend the diffuse Helfrich energy eq. (3.14) by two additional terms:

ES(ϕ) = EH(ϕ) + p1
2Be(V(ϕ) − V0)2 + p2

2Be(ECH(ϕ) − A0)2 dx

= 1
Be

1
2ε

∫
Ω

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ p1
2Be(V(ϕ) − V0)2

+ p2
2Be(ECH(ϕ) − A0)2 dx, (3.30)
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3. Diffuse interface models for cell morphology based on the Helfrich energy

which adopt their minimum during the minimization process. The penalty parameters
p1, p2 > 0 have to be chosen carefully. The corresponding evolution equations in I × Ω
are

∂tϕ = −γ δES

δϕ
, (3.31)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ+ p1(V(ϕ) − V0) + p2(ECH(ϕ) − A0)κ

)
. (3.32)

Dealing with two different penalty terms can be problematic under certain circumstances.
We can save at least the volume conservation constraint by applying a H−1-gradient flow.
As result of that, the evolution can differ but the equilibrium shape is similar. However,
the system becomes of 6th order which might be numerically unfavourable. Accordingly,
we consider the diffuse Helfrich energy that is only extended with the surface area penalty
term

ES(ϕ) = 1
Be

1
2ε

∫
Ω

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ p2
2Be(ECH(ϕ) − A0)2 dx. (3.33)

and we derive

∂tϕ = γ∆δES

δϕ
, (3.34)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ+ p2(ECH(ϕ) − A0)κ

)
. (3.35)

Such an approach was already considered without flow interactions in [44] and for hy-
drodynamic models in [156, 176, 177].

For all non-hydrodynamic models we assume the initial conditions given by

ϕ(t,x) = ϕ0(x), for t = 0,x ∈ Ω

and the boundary conditions as

ϕ(t,x) = −1, ∇µ· n = 0, for t > 0,x ∈ ∂Ω

and additionally for the 6th order system

∇δES

δϕ
· n = 0, for t > 0,x ∈ ∂Ω.

Please note, for the system given by eq. (3.31) and (3.32) well-posedness can be estab-
lished [52, 53] in case of homogeneous Neumann boundary conditions for ϕ. The authors
further proved existence and uniqueness of the solution ϕ using the gradient flow struc-
ture and a time-discrete minimization structure. The numerical treatment can be found
in [69–71, 75, 173, 174, 176, 177] and -as part of our numerical models- in the following
sections.

40



3.4. Evolution equations for diffuse Helfrich energy with surface conservation

Alternatively, a combination of Lagrange multipliers and penalty terms [75] can
also be applied. The approach overcomes the error accumulation during the explicit
treatment of the Lagrange multipliers. Moreover, it limits the error caused by a penalty
formulation. Here, however, we focus on the treatment with penalty terms due to its
simplicity.

3.4.2. Hydrodynamic Navier-Stokes-Helfrich model

Within a hydrodynamic approach we consider a two-phase flow for a Newtonian fluid
eq. (2.47)-(2.48) with distinct viscosities η0 in the surrounding fluid and η1 in the cell
interior. We further assume ρ0 = ρ1, for simplicity. Accordingly, the flow can be
described by the kinetic energy of the fluid Ekin =

∫
Ω

Re
2 |v|2 dx. Across the interfaces

the following jump conditions hold:

[v]Γ = 0 zero velocity jump, (3.36)

[S · n]Γ = δES

δΓ energy variation with global area constraint (3.37)

with the variation of the surface energy δES
δΓ = δEH

δΓ + p2
Be (ECH(ϕ) − A0)Hn accounting

for bending and surface area conservation. In order to derive a thermodynamically
consistent diffuse interface approach, we consider the overall energy given in a diffuse
interface formulation as

E(v, ϕ) = Ekin(v) + ES(ϕ) (3.38)

=
∫

Ω

Re
2 |v|2 + 1

Be
1
2ε

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ p2
2Be (ECH(ϕ) − A0)2 dx, (3.39)

where ES(ϕ) is taken from eq. (3.33). Now, we have to ensure that the overall free energy
decays in time. Therefore, we calculate its time derivative

dE
dt =

∫
Ω

Re v · Dv
Dt + 1

Beµ
(D∆ϕ

Dt − 1
ε2W

′′
0 (ϕ)Dϕ

Dt

)
+ p2

Be(ECH(ϕ) − A0)
(
ε∇ϕD∇ϕ

Dt + 1
ε
W ′(ϕ)Dϕ

Dt

)
dx, (3.40)

where we now consider the material derivative of ϕ and v being defined by

Dϕ
Dt = ∂tϕ+ v · ∇ϕ, (3.41)
Dv
Dt = ∂tv + (v · ∇)v. (3.42)
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3. Diffuse interface models for cell morphology based on the Helfrich energy

Hence, the conservation of momentum and mass for v as well as the conservation of
mass for ϕ read

ReDv
Dt = −∇p+ ∇ · (η(ϕ)D) + ∇ · SH + ∇ · Spen, (3.43)

∇ · v = 0, (3.44)
Dϕ
Dt = −∇ · J, (3.45)

respectively. Here, the unknowns J as well as SH and Spen denote the flux of ϕ and
the stresses resulting from the Helfrich energy and the penalty term, respectively. We
now determine these unknowns such that the overall energy decreases. In eq. (3.40) we
observe the following term and rewrite it

D∆ϕ
Dt = ∆∂tϕ+ v · ∇∆ϕ

= ∆
(Dϕ

Dt − v · ∇ϕ
)

+ v · ∇∆ϕ

= ∆Dϕ
Dt − ∆v · ∇ϕ− 2∇v : ∇∇ϕ, (3.46)

where we use eq. (3.41). In the same manner we rewrite

D∇ϕ
Dt = ∇∂tϕ+ v · ∇∇ϕ

= ∇
(Dϕ

Dt − v · ∇ϕ
)

+ v · ∇∇ϕ

= ∇Dϕ
Dt − ∇v · ∇ϕ, (3.47)

where we used eq. (3.42). Inserting eq. (3.46) and eq. (3.47) into the time derivative of
the energy eq. (3.40) gives

dE
dt =

∫
Ω

Re v · Dv
Dt + 1

Beµ
(

∆Dϕ
Dt − 1

ε2W
′′
0 (ϕ)Dϕ

Dt − ∆v · ∇ϕ− 2∇v : ∇∇ϕ
)

+ p2
Be(ECH(ϕ) − A0)

(
(−ε∆ϕ+ 1

ε
W ′(ϕ))Dϕ

Dt − ε∇ϕ· (∇v · ∇ϕ)
)

dx

=
∫

Ω
Re v · Dv

Dt + δE
δϕ

Dϕ
Dt − 1

Beµ∆v · ∇ϕ− 2
Beµ∇v : ∇∇ϕ

− p2
Be(ECH(ϕ) − A0)ε∇ϕ· (∇v · ∇ϕ) dx.
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3.4. Evolution equations for diffuse Helfrich energy with surface conservation

We now plug in the time evolution eq. (3.41) and eq. (3.42) and we arrive at

dE
dt =

∫
Ω

v · (−∇p+ ∇ · (η(ϕ)D) + ∇ · SH + ∇ · Spen) + δE
δϕ

(−∇ · J)

+ 1
Be∇v : ∇(µ∇ϕ) + 2

Bev · ∇ · (µ∇∇ϕ)

− p2
Be(ECH(ϕ) − A0)ε∇v : (∇ϕ⊗ ∇ϕ) dx

=
∫

Ω
v · ∇ · (η(ϕ)D) + v · (∇ · SH + ∇ · Spen) + δE

δϕ
(−∇ · J)

− 1
Bev · (∇ · (∇ϕ⊗ ∇µ) + ∇ · (µ∇∇ϕ))

+ p2
Be(ECH(ϕ) − A0)εv · ∇ · (∇ϕ⊗ ∇ϕ) dx,

where we use partial integration and incompressibility as well as the definition for µ
(eq. (3.23)). Setting

J = −γ∇δE
δϕ
, (3.48)

SH = 1
Be(∇ϕ⊗ ∇µ− µ∇∇ϕ), (3.49)

Spen = − p2
Be(ECH(ϕ) − A0)ε∇ϕ⊗ ∇ϕ, (3.50)

neglecting advection and pressure terms coming from the momentum equation after
applying eq. (2.59), using eq. (2.60) and partial integration, leads to the following energy
law

dE
dt =

∫
Ω

−η(ϕ)D : D − γ

⏐⏐⏐⏐∇δE
δϕ

⏐⏐⏐⏐2 ≤ 0, (3.51)

which was already proposed in eq. (2.62) for a conserved order parameter ϕ. Putting ev-
erything together, we arrive at the following momentum equation containing the Helfrich
and surface conservation stress:

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + 1
Be∇ · (∇ϕ⊗ ∇µ− µ∇∇ϕ)

− p2
Be(ECH(ϕ) − A0)ε∇ · (∇ϕ⊗ ∇ϕ) , (3.52)

with µ defined below and an advection equation for ϕ given in eq. (3.45). We have seen
that we are able to derive thermodynamically consistent systems in two ways. During
the derivation of the overall energy with respect to time we can understand occurring
time derivatives of the thermodynamic quantities as material or partial derivative. Con-
sidering the material derivative gives us the particular stress resulting from a specific
interfacial energy. Certainly, this is advantageous for theoretical considerations. For
numerical purposes, however, it is not necessary since we have to solve the divergence
of the stress tensor and the Hessian of ϕ. Accordingly, it is favorable is to account for
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3. Diffuse interface models for cell morphology based on the Helfrich energy

partial time derivatives that yield the treatment of the variation of the interfacial energy
in the momentum equation. In the following Remark, we will see that these two arising
forces can be converted in each other.

Remark 3.2 It holds ∇ · (SH + Spen) = δES
δϕ ∇ϕ with surface energy ES defined in

eq. (3.33).

To show this, we calculate the divergence of the stress tensors SH and Spen:

∇ · SH = 1
Be(∆µ∇ϕ− µ∆∇ϕ), (3.53)

∇ · Spen = − p2
Be(ECH(ϕ) − A0)

(
ε

2∇|∇ϕ|2 + ε∆ϕ∇ϕ
)
. (3.54)

Additionally, we consider the energy densities of eq. (3.33)

e = eH + epen = 1
Be

1
2ε

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ p2
2 (ECH(ϕ) −A0)2 .

Determining the gradient of e and rearranging gives

1
Beµ∆∇ϕ = ∇eH + 1

Be
1
ε2W

′′
0 (ϕ)µ∇ϕ, (3.55)

p2
Be (ECH(ϕ) − A0) ε2∇|∇ϕ|2 = ∇epen − 1

ε
W ′(ϕ)∇ϕ. (3.56)

Inserting eq. (3.55) into eq. (3.53) and eq. (3.56) into eq. (3.54) we have

∇ · SH = −∇eH + 1
Beµ∇ϕ, (3.57)

∇ · Spen = −∇epen + p2
Be (ECH(ϕ) − A0)κ∇ϕ. (3.58)

Inserting into the momentum equation (3.43) gives

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) − ∇eH − ∇epen + δES

δϕ
∇ϕ

and redefining the pressure as p = pold + eH + epen, we finally arrive at the following
diffuse interface Navier-Stokes-Willmore model with surface conservation in I × Ω:
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3.4. Evolution equations for diffuse Helfrich energy with surface conservation

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ, (3.59)

∇ · v = 0, (3.60)

∂tϕ+ v · ∇ϕ = γ∆δES

δϕ
, (3.61)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ+ p2(ECH(ϕ) − A0)κ

)
, (3.62)

µ = ε∆ϕ− 1
ε
W ′

0(ϕ), (3.63)

κ = −ε∆ϕ+ 1
ε
W ′(ϕ). (3.64)

The initial conditions are

ϕ(t,x) = ϕ0(x), v(t,x) = v0(x), for t = 0,x ∈ Ω

and the boundary conditions read as

ϕ(t,x) = −1, ∇µ· n = 0, ∇δES

δϕ
· n = 0, v(t,x) = 0, for t > 0,x ∈ ∂Ω.

For the given system eq. (3.59) - (3.64), where eq. (3.61) is replaced by a L2-gradient
flow, i.e. ∂tϕ+v · ∇ϕ = −γ δES

δϕ with an additional penalty term for volume conservation
Du et al. [76] could prove the existence of global weak solutions and the uniqueness under
extra regularity. Local time existence and uniqueness of strong solutions are shown in
Liu et al. [158]. The introduced H−1-gradient flow approach is not commonly used in the
literature as it yields a system of 6th order. However, it provides a more stable system.
For instance, we save the treatment of an additional penalty and the calculated chemical
potential is much more smoother. Simulations have shown that this allows larger time
steps. Nevertheless, the evolution is not completely different to a L2-gradient flow as
the term is only used for the stabilization of the phase field and its physical relevance is
restricted by small γ.

3.4.3. Hydrodynamic model for inextensibility

Due to its physiological conditions, the lipid bilayer can be considered as fluid-like mem-
brane, where the lipids can move freely and diffuse like a fluid whose motion is restricted
to the surface. However, when it comes to stretching, the binding forces between each
lipid are high and forbid any extension of the membrane. The membrane is therefore
inextensible or in the fluid context incompressible along the surface Γ, accordingly, we
have

∇Γ · v = PΓ : ∇v = 0. on Γ (3.65)

It is clear, that every membrane fulfilling this condition conserves its global surface area.
The numerical treatment of the inextensibility condition is a serious problem and leads
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a further nonlinear coupling that implies the calculation of a Lagrange multiplier λlocal

being both time and space dependent. The numerical treatment of the inextensibil-
ity constraint has been considered within a level-set approach [64, 144, 218, 219], im-
mersed boundary methods [120, 126, 135, 136], boundary integral methods [98, 247, 248],
a particle-based mesoscale simulation method [99, 100, 182, 195], parametric finite-
elemtens methods [25] and the phase field method [31, 32, 129]. A comparison between
phase field and level-set method is given in [167]. Here, we review the thermodynamically
consistent phase field model proposed by Aland et al. [12], which has successfully been
applied to our models, see Chapter 7 and Chapter 8. The basic idea of this approach is
first to construct a tension force

Finext = ∇ · (δΓPΓλlocal),

where we introduce a local Lagrange parameter λlocal = λlocal(t,x) that fulfills the
following jump condition across the interface

[S · n]Γ = δE

δΓ + λlocalHn + ∇Γλlocal. (3.66)

By solving ∇ · (δΓPΓλlocal) = δΓ(λlocalHn+∇Γλlocal), we see that Finext is the extension
of the jump condition, eq. (3.66), to Ω. This term can also be found in [31, 32, 129, 218]
as basis of their approaches. Finally, we insert Finext in a diffuse interface formulation
to the right-hand side of the momentum equation (3.59) and arrive at

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ+ ∇ · (δϕPϕλlocal), (3.67)

in I × Ω. Furthermore, the inextensibility equation (3.65) is extended to the domain Ω:

ξε2∇ · (ϕ2∇λlocal) + δϕPϕ : ∇v = 0, (3.68)

where ξ > 0 is a parameter, independent of ε, determining the accuracy of the method.
Small ξ tend to increase the region along the interface where the inextensibility is en-
forced, whereas higher ξ lead to larger errors in the method. According to the authors
ξ = 1 is an appropriate choice. We pick δϕ = |∇ϕ|/2 and the projection operator
Pϕ = I − ∇ϕ⊗∇ϕ

|∇ϕ|2 . In [12] it has been shown, performing an asymptotic analysis, that
the diffuse interface approach converges to the sharp interface constraint as ε → 0, more
precisely we obtain ∆λlocal = 0 away from Γ and ∇Γ · v = 0 near Γ.

The disadvantage of the proposed model is that eq. (3.68) may lead to an accu-
mulation of errors over time, violating the local inextensibility constraint. Hence, the
membrane becomes stretched and compressed, similarly to the global surface area con-
servation. Nevertheless, we have applied this model, because on small time scales the
method is still convincing and provides the behavior of inextensible membranes. Addi-
tionally, we restrict the error accumulation by adopting the global surface area constraint,
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yielding the jump condition

[S · n]Γ = δE

δΓ + λlocalHn + ∇Γλlocal + λglobalHn (3.69)

In order to overcome these problems Aland et al. [12] improved their approach by intro-
ducing a concentration c, normalized to 1, that is advected by the flow and stabilized
by diffusion. Hence, its evolution reads

∂tc+ v · ∇c+ cPΓ : ∇v = dc∇ · (PΓ∇c) in Ω, (3.70)

where dc is a small diffusion coefficient. A restriction of the evolution of c to the surface, a
diffuse interface approach, see eq. (2.39), may also be used. The concentration identifies
those parts of the membrane that becomes stretched (c < 1) and compressed (c > 1).
Finally, they extend eq. (3.68) to

ξε2∇ · (ϕ2∇λlocal) + δϕPϕ : ∇v = ξ2
c− 1
c

δϕ in Ω (3.71)

by a penalty term. This approach is similar to that proposed by [32] and can be related
to an elastic energy

Eel =
∫

Γ

K

2 (1 − c)2 ds. (3.72)

It has been shown in [12] that the second approach is more accurate but it is necessary
to deal with an additional equation for c, whose diffusion parameter dc has to be chosen
carefully. Dealing with the evolution equation for c may also lead to further time and
mesh restriction that can increase the computational costs.

Remark 3.3 We can show that the first approach fulfills thermodynamic consistency.
To show this, we repeat the overall energy, eq. (2.55) with constant density ρ = 1:

dE
dt = Re

∫
Ω

v · ∂tv + δES

δϕ
∂tϕ (3.73)

Setting the flux as

J = −γ∇δES

δϕ
(3.74)

and body force as

F = δE
δϕ

∇ϕ+ ∇ · (δϕPϕλlocal), (3.75)

inserting eq. (2.56) and eq. (2.58) into eq. (3.73), perfoming the same steps as in Sec-
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tion 2.8, inserting eq. (3.68) and partial integration yield the energy law

dE
dt =

∫
−D : η(ϕ)D − γ

⏐⏐⏐⏐∇δES

δϕ

⏐⏐⏐⏐2 − ξε2ϕ2|∇λlocal|2 dx ≤ 0. (3.76)

3.5. Hydrodynamic Navier-Stokes-Helfrich model with surface
tension

Experiments have shown that especially crawling cells do not conserve their surface
area [133]. As already mentioned in Section 3.1, myosin motors within the actin cell
cortex lead to contraction of the cortex. As the cortex is highly connected to the cell
membrane we observe a curvature minimizing effect [88] that can be understood as an
effective surface tension. Thus, we extend the Helfrich energy with the surface tension
energy eq. (2.29) [228] that reads

ES(Γ) = EH(Γ) + EST (Γ) = 4
√

2
3

1
Be

∫
Γ
(H −H0)2 ds + 2

√
2

3
1

Ca

∫
Γ

ds (3.77)

in a non-dimensional sharp interface formulation. Within the diffuse interface formula-
tion the surface energy becomes

ES(ϕ) =
∫

Ω

1
Be

1
2ε

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ 1
Ca

(
ε

2 |∇ϕ|2 + 1
ε
W (ϕ)

)
dx. (3.78)

If ε tends to zero ES(ϕ) → ES(Γ), which has shown for the first part e.g. in [27] and
for the second part in [188]. The Γ-convergence of the whole energy for ε → 0 was
shown in [212]. We also refer to the literature mentioned in previous sections. Similar
to Section 3.4.2 the diffuse interface Navier-Stokes-Helfrich model with surface tension
can be derived from the inner energy of the system that is given by

E(v, ϕ) = Ekin(ϕ) + ES(ϕ).

Performing the steps of the energy variation approach the resulting momentum equation
reads

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + 1
Be∇ · (∇ϕ⊗ ∇µ− µ∇∇ϕ)

− 1
Caε∇ · (∇ϕ⊗ ∇ϕ) , (3.79)

where Spen is replaced by the surface tension stress

SST = − 1
Caε∇ϕ⊗ ∇ϕ. (3.80)
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From the definition of the surface energy eq. (3.78), we can reformulate the momentum
equation using Remark 3.2 which together with the incompressibility condition yield

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ, (3.81)

∇ · v = 0, (3.82)

If we adopt a L2-gradient flow for the evolution of ϕ we get

∂tϕ+ v · ∇ϕ = −γ δES

δϕ
, (3.83)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ

)
+ 1

Caκ+ λvolume, (3.84)

λvolume = 1
|Ω|

∫
Ω

1
Be

(
−∆µ+ 1

ε2W
′′
0 (ϕ)µ

)
− 1

Caκdx, (3.85)

we where we achieve volume conservation using a Lagrange multiplier, with µ and κ

defined above in eq. (3.63) and eq. (3.64). Applying an H−1-gradient flow, we obtain

∂tϕ+ v · ∇ϕ = γ∆δES

δϕ
, (3.86)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ

)
+ 1

Caκ, (3.87)

which together with eq. (3.81) and eq. (3.82) constitute the conserved diffuse interface
Navier-Stokes-Helfrich model with surface tension. Here, all equations are defined on
I × Ω. In fact, neglecting the Helfrich stress, we have the stress resulting from a normal
fluid-fluid interface, see Section 2.8. The initial and boundary conditions are obtained
from Section 3.4.1.
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Chapter 4

Introduction to Cell Motility

In various applications of living things cell motility plays a crucial role. As part of the
immune system neutrophils respond to bacterial invasion and follow their signals. In
wound healing processes keratinocytes as part of the epidermis try to migrate into the
destroyed parts and close the wound. Furthermore, cancer cells spread out from their
initial tumor and can create new metastases in the whole body. See Fig. 4.1 for some
examples. Understanding these processes in many biological and biomedical processes
helps to improve current medical therapies. Because of their complexity and the involved
small length scales, a full understanding of the mechanisms behind cell motility is still
missing. Certainly, the movement can be very different and span several physical scales.
For instance the motion of a neutrophil can be compared to that of a sports car while
the movement of a keratinocyte is more like a caterpillar. Although not mathematical,
Abercrombie [4] proposed a model for cell motility (Fig. 4.2) that paved the way for
all following models. Since the early attempts [15, 61, 62] to understand cell motility,
mathematical models have been playing an important role and a large community has
evolved. To get a broad overview we refer to [55, 103, 124, 189] for a review.

Different generic mechanisms have been proposed to describe motility in different
situations. Many eukaryotic cells for example move using a crawling motion that can be
relatively stable steady-state or constantly deforming. Responsible for this are processes
of protrusion and retraction that are both driven by the turnover and reorganization of
the actin cytoskeleton consisting of small rod-like protein bundles, the actin filaments.
Two abilities of actin filaments are exploited by the cell in order to move: the ability to
push by polymerization and the ability to contract by interacting with myosin. Together
with the creation of new and the release of old adhesion sites, forces are mediated to the
substrate that push the cell forward, see also Fig. 4.2. To be more precise, actin filaments
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4. Introduction to Cell Motility

Figure 4.1. – Diverse shapes of motile cells obtained from microscopy. (a) stationary
keratocyte (b) motile keratocyte (c) moving fibroblast (d) growth cone of a rat neuron (e)
human neutrophil surrounded by red blood cells (Picture retrieved from [189])

polymerize at their front and drive the extension of sheet-like and rod-like protrusions
of the cell membrane, while depolymerization takes place at the rear of the filaments.
The underlying treadmilling process at the cell front if combined with local adhesion of
the cell on a substrate leads to macroscopic motion. The treadmilling process and the
associated crawling motion have been studied from a microscopic point of view, see e.g.
[63, 190]. Continuum models, which allow for spatial and temporal resolution, have been
considered for such a crawling motility mechanism in [87, 194, 214, 228, 229, 270, 272].

Preceding to the mechanical mechanisms for cell motility is a polarization of the cell,
where a front and a rear has to be defined as a result of a spatial stimulus. Polarization
is understood as a redistribution of several proteins, e.g. Rho family GTPases, and
can be described by complex reaction kinetics within a signaling network [87, 174, 228,
246]. All these approaches use a reaction-diffusion system along the cell membrane
and/or within the bulk to effectively account for actin polymerization and retraction
and combine it with a mechanical or hydrodynamic model for cell dynamics. This allows
us to describe the morphology and evolution of eukaryotic cells and link it to realistic
signaling networks, e.g. as considered in [208, 209]. A mathematical model describing
those phenomena is developed in Chapter 5. Since polymerization yields a reorganization
of the actin cytoskeleton, other approaches describe polarity with an active gel theory
where the direction of the filaments and consequently the polarity is represented by a
macroscopic orientation field [176, 242, 270–272].

The active gel theory can be applied to other motility mechanisms that are less
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Figure 4.2. – Cartoon for cell motility. (a) Actin filaments polymerize at the cell front
and push against the cell membrane. (b) New adhesion sites are created to the substrate
at the front. (c) Release of old adhesion sites at the cell rear. (d) Contractile stress pushes
the whole cell body forward. (d) Forces are mediated through the adhesion sites to the
substrate. (Picture retrieved from [55])

explored but necessary in situations in which local adhesion is less evident [112, 119, 131,
202, 259]. In Chapter 6 we consider the motility mechanism arising by contractile stress
due to the interaction of myosin and the actin filaments. Microscopically, myosin motor
complexes use the energy from ATP hydrolysis to grab on neighboring actin filaments and
exert stress. This process is also known for eukaryotic cells where it shapes the rear of the
cell but it can also lead to motility itself. Here, the exerted stress is contractile and leads
to a microscopic quadrupole flow around the myosin-actin complexes. A hydrodynamic
active polar gel theory can be used to model these phenomena on a continuum level, see
[131, 139–141, 203].

Cellular shapes change dynamically in striking ways as a result of mechanical in-
teractions and complex reactions within the cell interior and on the cellular membrane.
Many studies neglect the influence of the cell membrane to the shape of motile cells, but
in [181] it has been argued that the actin filaments play a crucial role in the generation
and remodeling of high membrane curvature regions. Moreover, depending on the ob-
served time scales and cell types the physics of the membrane lipid bilayer cannot be
neglected, see also Section 3.1.

Accordingly, we apply the Helfrich energy [121] where we consider the elastic prop-
erties of the membrane accounting for bending and surface tension. Within such an
approach the membrane is considered as an elastic sheet and its evolution is driven by
energy minimization. The surface tension is motivated since experiments have shown
that especially crawling cells do not conserve their surface area [133]. As already men-
tioned in Section 3.1, myosin motors within the actin cell cortex lead to a contraction of
the cortex. As the cortex is highly connected to the cell membrane, we observe a curva-
ture minimizing effect [88] that can effectively be described by surface tension. Previous

55



4. Introduction to Cell Motility

attempts in this direction have e.g. been considered in [87, 169, 170, 228, 229, 246, 272].
Within our approach, we consider a two-dimensional description of the cell since the

height of the cell is small compared to its length. The underlying mathematical model
is given in Section 3.5, where the bulk and the surrounding of the cell are regarded
as Newtonian fluids. In fact, a crawling cell is strongly affected by the physics of its
cytoskeleton within the bulk [29, 131, 251]. The first model accounts for viscous stress
in the cell interior where we can adjust the viscosity ratio between bulk and extracellular
matrix. Additionally, the second model considers the bulk as a solution of actin filaments
described by active polar gel approach. Both models are far from equilibrium as a
spontaneously occurring symmetry breaking event causes cell motility: a Turing-type
instability within a biochemical network in the first model, Chapter 5 and a generic
splay instability within an orientation field in the second model, Chapter 6.
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Chapter 5

A model for membrane
protrusion using a signaling

network for GTPases

The processes of protrusion and retraction during cell movement are driven by the
turnover and reorganization of the actin cytoskeleton. Within a reaction-diffusion model
that combines processes along the cell membrane with processes within the cytoplasm,
a Turing type instability is used to form the necessary polarity. This polarity distin-
guishes between cell front and rear and initiates the formation of different organizational
arrays within the cytoplasm leading to protrusion and retraction. We use a simplified
biochemical network model for the activation of GTPase which accounts for the differ-
ent dimensionality of the cell membrane and the bulk. Moreover, it is combined it with
a classical Helfrich-type model to account for bending and stiffness effects of the cell
membrane. In addition, streaming within the cytoplasm and the extracellular matrix is
taken into account. Combining these phenomena allows us to simulate the dynamics of
cells and to reproduce the primary phenomenology.

This chapter is organized as follows: in Section 5.1 we introduce a minimal biochem-
ical network model for the activation of GTPase to initiate the crawling motion. We
further extend the diffuse interface Navier-Stokes-Helfrich model with surface tension by
an active force that links the mechanical and biochemical model, as shown in Section 5.2.
In Section 5.3, we also briefly describe the numerical approach to solve the coupled sys-
tem and we furthermore perform convergence tests to numerically validate our method.
Simulation results are discussed in Section 5.4, which include the formation of lamellipo-
dia and filopodia-like structures, the response of the cell according to a chemoattractant
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5. A model for membrane protrusion using a signaling network for GTPases

in the extracellular matrix and various parameter studies on the influence of bending
rigidity and surface tension. Conclusions are drawn in Section 5.5, which also includes
a discussion of generalizations of the model, extensions towards specific cell types and
the combination with an additional orientation field describing the direction of the actin
filaments, which is studied in Chapter 6.
The basic concepts, such as modeling, numerical methods and results discussed in this
chapter are already published in Marth [173].

5.1. Cell polarity as a result of a Turing type instability

Proteins associated with actin are generally classified as actin binding-, actin associated-
or actin modulating-proteins. Members of the Rho family of small GTPases have been
shown to operate in distinct pathways signaling the formation of different organizational
arrays of the actin filaments in the actin cytoskeleton. Rac and Cdc42 signal the forma-
tion of lamellipodia and filopodia, respectively, and Rho signals the formation of actin
stress fibre bundles for the cell retraction. We thus need a detailed signaling network of
small GTPases with the ability to distinguish between cell front and rear, which can be
achieved through polarization. Various models have been proposed, see [130] for a re-
view and comparison of mathematical models for single eukaryotic cells. One of the most
detailed models is based on a Turing-type instability [115]. Such models are useful to
consider, as the Turing instability can lead to spontaneous polarization. However, such a
diffusion driven instability typically requires large differences in the diffusion coefficient
of the involved species. This might not be realistic in our case as diffusion coefficients
for proteins are similar to each other. However, diffusion along the cell membrane and
within the cytoplasm can be different. Moreover, association and disassociation between
the cell membrane and the cytoplasm might differ for various proteins. Taking these
processes into account might form more realistic Turing mechanism [152]. Models that
distinguish between cytoplasm and cell membrane have already been proposed for the
investigation of cell polarity. In [16] a model of positive feedback is considered in which a
single species of diffusible, membrane-bound signaling molecules can self-recruit from a
cytoplasmic pool in the bulk. In this model, the polarization frequency has an inverse de-
pendence on the number of signaling molecules. The frequency of polarization decreases
as the number of molecules becomes large, which suggests that positive feedback can
work alone or with additional mechanisms to create robust cell polarity. The results of
[258] on the regulation of GTPase Cdc42 suggest that cell polarity is established through
coupling of transport and signaling pathways and maintained actively by balance of flux
between the cytoplasm and the membrane. A similar cytoskeleton-dependent mecha-
nism that could account for the intrinsic ability of cells to polarize in response to Cdc42
activation was proposed in [257] and [170]. The mechanism involves a positive feedback
loop between Cdc42-dependent actin polymerization and the delivery of Cdc42 to the
plasma membrane. The detailed model that we introduce in the following section for
signaling networks of the GTPase cycle accounting for the coupling of membrane bound
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and cytoplasmic processes has been shown to lead to a Turing instability in [207–209].

5.2. Mathematical model

5.2.1. Biochemical model for GTPases

The biochemical model for GTPases considers diffusion in the cell bulk and a reaction-
diffusion system along the membrane combined with a flux boundary condition. The
different dimensionality of the membrane and the bulk, as we have introduced in Sec-
tion 2.6.3, is taken into account within the reaction-diffusion processes. Moreover, the
model distinguishes between membrane-bound active and inactive state of the GTPases
for which the concentrations are denoted by c1 and c2, respectively, and complexes of a
cytoplasmic GTPase, denoted by C, see Fig. 5.1 for a schematic description.

Figure 5.1. – Schematics of GTPase cycle. Colored arrows indicate various molecular
transport mechanisms: red - diffusion along the membrane, purple - diffusion within the
cytoplasm, green - association with the membrane, blue - disassociation from the membrane.

The model accounts for activation of GTPase by exchange of GDP by GTP, and
inactivation by hydrolysis and dephosphorylation of GTP to GDP that are catalyzed by
GEF and GAP protein, respectively. The resulting model reads in dimensionless form

∂tC + ∇ · (Cv) = DC∆C in I × Ω1, (5.1)
∂tc1 + ∇Γ · (vc1) = dc1∆Γc1 + γ̄h(c1, c2) on I × Γ, (5.2)
∂tc2 + ∇Γ · (vc2) = dc2∆Γc2 − γ̄h(c1, c2) + γ̄q(c1, c2, C) on I × Γ, (5.3)

with the flux boundary condition

−DC∇C · n = γ̄q(c1, c2, C) on I × Γ, (5.4)

coupling the equations along the membrane and within the cytoplasm. The first equation
is valid in the cytoplasm denoted by Ω1 and the last two equations are defined on the
cell membrane Γ. Since the cell moves in time with velocity v, we also have to account
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c1

r5

C

r4

c2

r1

r2

r3

Figure 5.2. – Reaction network. The bipartite graph has two types of nodes, molecular
species c1, c2 and C, and the reactions between them, denoted by ri, i = 1, . . . , 5, the index
corresponds to the index of the kinetic coefficients. Directed edges of the graph represent
the flow of the reaction fluxes. Solid edges indicated processes on the membrane and dashed
edges processes within the cytoplasm, including association and disassociation.

for advection within the reaction-diffusion system. All quantities are assumed to be
defined off the membrane. We assume a constant extension in normal direction n, which
is defined to point outwards. Similar reaction-diffusion models have been considered e.g.
in [239] for related surfactant models on a deformable surface. The reaction kinetics in
the equations are denoted by

h(c1, c2) = a1c2 + a2
c1

b1 + c1
c2 − a3

c1
b2 + c1

, (5.5)

and the association and disassociation are modeled by

q(c1, c2, C) = a4C(1 − c1 − c2)+ − a5c2, (5.6)

which follows from a Langmuir law as we have seen in eq. (2.44) following [238]. It models
the membrane association as a reaction between the cytoplasmic GTPase complex and
a free site on the membrane. (.)+ thereby denotes the positive part of (.) and takes into
account that association of inactive GTPases occurs until the membrane is saturated.
The system is given in dimensionless form with diffusion coefficients DC , dc1 and dc2

in the cytoplasm and along the membrane, respectively. ai are kinetic coefficients, bi

kinetic parameters, γ̄ a dimensionless scaling factor. Fig. 5.2 shows the corresponding
reaction network as a bipartite graph, distinguishing processes along the membrane and
within the cytoplasm.

In [208] the velocity terms in the equations are neglected and the system is further
reduced by assuming C to be spatially constant as a result of a larger diffusivity in the
cytoplasm as along the membrane. Moreover, a linear stability analysis for the reduced
system was shown to lead to a Turing instability for appropriate parameters. More
recently, a Turing instability has also been found for the biologically more interesting
regime in which dc1 = dc2 , see [207, 209]. Now, only different diffusivities within the
cytoplasm and along the cell membrane as well as different association/disassociation
coefficients are required to form Turing patterns. We will consider these parameters also
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for the evolving situation.

5.2.2. Coupling the mechanical and biochemical model

We combine the biological network with the hydrodynamic diffuse interface Navier-
Stokes-Helfrich model with surface tension eq. (3.81)-(3.85). Here, we account for
streaming effects within the cytoplasm. The Helfrich model considers a non-conserved
L2-gradient flow of the surface energy. In order to ensure the impermeability of the cell
membrane, the model includes the calculation of a Lagrange multiplier. Consequently,
the dynamics of the cell are modeled as a combined process of energy minimization for
kinetic, bending and surface tension energy. A migrating cell is a thermodynamic system
far from equilibrium where an active force constantly consumes energy to exert work to
propel the cell. Accordingly, the jump condition becomes

[S · n]Γ = δE

δΓ + 1
Fac1n, (5.7)

accounting for bending and surface tension and the active component associated with
actin polymerization associated with the active state of the membrane bound GTPase
c1. The resulting protrusion force from the last contribution acts in normal direction
[213] and its strength is related to c1 [229, 229, 246] and scaled by the dimensionless
quantity

Fa = η0V

αL
, (5.8)

called the active surface force number. Within our diffuse interface approach, the active
force term reads − 1

ReFac1∇ϕ and is added to the right-hand side of the momentum
equation eq. (3.81). For simplicity, we neglect any retraction force. In the current
model, we also do not consider adhesion explicitly. Possible extensions of the model in
these directions are discussed in the Section 5.5.

5.2.3. Governing equations

We extend the reaction-diffusion system eq. (5.1)-(5.1) to the whole domain Ω by ap-
plying a diffuse interface approach, see Section 2.6.3 and eq. (2.45)-(2.46) in particular.
So far, all quantities defined within the bulk, within the extracellular matrix and along
the membrane are extended to the larger domain Ω and the governing equations are
reformulated using the phase field variable. This allows us to circumvent the numerical
subtleties in solving differential equations on evolving surfaces or within evolving do-
mains. The dynamics of the cell is now governed by equations that couple the velocity
field to the actual physical degrees of freedom along the membrane, in the bulk and
the extracellular matrix. Finally, we may write down the highly coupled system that
involves many nonlinearities and can be separated into three parts defined in I × Ω:
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First, the Navier-Stokes equations read as

Re (∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ, (5.9)

∇ · v = 0, (5.10)

determining the flow field. The second part determines the evolution of the interface
given by a regularized advection equation for the phase field:

∂tϕ+ v · ∇ϕ = −γ δES

δϕ
, (5.11)

δES

δϕ
= 1

Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ

)
+ 1

Caκ+ λarea, (5.12)

µ = ε∆ϕ− 1
ε
W ′

0(ϕ), (5.13)

κ = −ε∆ϕ+ 1
ε
W ′(ϕ), (5.14)

where γ > 0 is set as small as possible. In this case, we ensure volume conservation
applying a Lagrange parameter given by

λarea = 1
|Ω|

∫
Ω

1
Be

(
−∆µ+ 1

ε2W
′′
0 (ϕ)µ

)
− 1

Caκ dx. (5.15)

Within the third part, we now determine the GTPase concentration in the updated
domain

∂t(ϕ̃C) + ∇ · (ϕ̃vC) = DC∇ ·
(
ϕ̃∇C

)
− γ̄|0.5∇ϕ|q(c1, c2, C), (5.16)

∂t(|∇ϕ|c1) + ∇ · (|∇ϕ|vc1) = dc1∇ · (|∇ϕ|∇c1) + γ̄|∇ϕ|h(c1, c2), (5.17)
∂t(|∇ϕ|c2) + ∇ · (|∇ϕ|vc2) = dc2∇ · (|∇ϕ|∇c2) − γ̄|∇ϕ|h(c1, c2), (5.18)

with ϕ̃ = 1
2(1 + ϕ) a rescaled phase-field function, which serves as an approximation of

the characteristic function of Ω1(t), ϕ̃ ≈ 1 in the cytoplasm and ϕ̃ ≈ 0 in the extracellular
matrix.

The primary unknowns are velocity v, pressure p, phase-field variable ϕ, and the
concentrations c1, c2 and C. All other quantities are introduced to reformulate the
higher order equation for ϕ into a system of second order equations, and λ1 and ϕ̃

are the Lagrange parameter, introduced to fulfill the volume constraint, and a rescaled
phase-field function, respectively.

The coupled system obeys the following initial conditions

v(t,x) = v0(x), ϕ(t,x) = ϕ0(x), C(t,x) = C0(x), c1(t,x) = c0
1(x), c2(t,x) = c0

2(x),

for t = 0 and x ∈ Ω, which are specified below, and the following Dirichlet boundary
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conditions

v(t,x) = 0, ϕ(t,x) = −1,

and Neumann boundary conditions

∇µ· n = ∇κ· n = ∇C · n = ∇c1 · n = ∇c2 · n = 0,

which hold for t > 0 and x ∈ ∂Ω. We use the same dimensionless quantities as be-
fore: the Reynolds number Re, the bending capillary number Be, which was similarly
defined in [32, 218], the capillary number Ca and the active surface force number Fa
that characterizes the strength of the cell protrusion.

Formal matched asymptotic analysis results showing the convergence to the sharp
interface equations are not available. However, numerical convergence studies in [70, 74,
75] confirm the diffuse interface approximation without the protrusion force.

Furthermore, for the diffuse formulation of the reaction-diffusion system formal con-
vergence to the sharp interface equations can be achieved following the general treatment
in [153, 210, 238]. See also Section 2.6 for an overview.

5.2.4. Parameters

The parameters in our model follow either from experimental measurements or other
simulation approaches. In order to relate the dimensionless numbers to measured val-
ues, we introduce a characteristic length L = 5 · 10−6 m, a typical cell radius and a
characteristic velocity V = 0.14 · 10−6 m/s, a typical velocity of a moving cell, see e.g.
[228, 229] and the references therein. We further consider the density of the cytoplasm
ρ = 103 kg/m3, which corresponds to that of water. As already mentioned, for simplic-
ity, we consider a constant value for the viscosity in the cytoplasm and the extracellular
matrix, which is estimated to be η = 10 Pa s. For the Reynolds number, we thus obtain
Re = 7 · 10−11, which is much smaller than the considered values in [32, 217, 218], where
Re = 10−3 is used. To allow for comparison with these studies, we also use Re = 10−3

in our simulations. Hence, in both cases, inertia can be neglected. However, we still
consider these terms for sake of completeness.

The bending capillary number Be and the capillary number Ca are determined by
bN = 10−17 J and σ = 5 · 10−6 N/m, respectively, which are measured for Dictyostelium
cells in [231] and used in [228] we obtain Be = 6.6 and Ca = 0.264. For simplicity,
we neglect the spontaneous curvature and set H0 = 0 in all computations. Finally,
the active surface force number Fa characterizes the cell protrusion. The corresponding
parameter is denoted by α, which has the dimension N/m2 and measures the strength
of the protrusion. As this is an effective term there are no experimental data available
for α. We define the strength of the protrusion force to be in the same order as the
elasticity force due to bending. With α = 5.6 N/m2, we obtain Fa = 0.05 and together
with the other parameters the considered characteristic velocity V .

The diffusion coefficients along the membrane are 7 · 10−13 m2/s and within the
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cytoplasm 1.4 · 10−11 m2/s, see [208] and the references therein. Realistic reaction pa-
rameters are not available. The parameters adapted here follow from a stability analysis
of the system leading to a Turing instability, see [209]. All parameters used in the
simulations are given in Tab. 5.1.

Symbol Description Value
L typical cell radius 5 · 10−6 m
V typical velocity of crawling cell 0.14 · 10−6 m/s
ρ fluid density 103 kg/m3

η dynamic viscosity of the fluid 10 Pa s
bN bending rigidity 10−18 − 10−17 J
σ surface tension 10−6 − 10−5 N/m
α coefficient protrusion force 0.39 N/m2 and 5.6 N/m2

ε boundary layer parameter 0.03
γ mobility γ

Be = 0.01
DC diffusion coefficient of cytoplasm 20
dc1 diffusion coefficient along the membrane for c1 1
dc2 diffusion coefficient along the membrane for c2 1
a1 kinetic coefficient 0
a2 kinetic coefficient 160
a3 kinetic coefficient 1
a4 membrane attachment parameter 0.333
a5 membrane detachment parameter 10
b1 kinetic parameter 20
b2 kinetic parameter 0.5
γ̄ scaling parameter 400

Table 5.1. – Mechanical and chemical parameters. The values for bN correspond to mea-
surements for artificial vesicles, erythrocytes, neutrophils and dictyostelium [93, 231, 235,
268], respectively. The values for σ follow from [231]. The boundary layer parameter ε is a
numerical parameter and determines the width of the diffuse interface. The regularization
parameter γ is chosen to depend on Be, see [217]. All parameters of the reaction-diffusion
system are given in dimensionless form. The diffusion coefficients are defined as follows
DC = D̃C/d̃c1 and dc1 = d̃c1/d̃c1 = 1, dc2 = d̃c2/d̃c1 = 1, where the ·̃ notation denotes the
dimensionful diffusion coefficients. Together with kinetic parameters ai, bi and γ̄ obtained
from [209], they lead to a Turing instability.

5.3. Numerical approach

The systems of partial differential equations are discretized using the adaptive finite
element toolbox AMDiS [252, 254]. We use an adaptively refined triangular mesh with a
high resolution along the cell membrane to guarantee at least five grid points across the
diffuse interface. We further explore an operator splitting approach [19, 109] that allows
us to solve the subproblems of the flow field, the phase-field evolution, the Lagrange
multiplier and the reaction-diffusion problem separately in an iterative process. This
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coupling is of linear order in time [19] and yields small time steps. A P 2/P 1 Taylor-
Hood element is used for the flow problem. All other quantities are discretized in space
using P 2 elements. Here, we do not specify a fully discretized scheme, because the space
discretization is straightforward. However, for a fully discrete finite element scheme of a
related system, we refer to Section 6.3. In time, a semi-implicit discretization is used that
together with an appropriate linearization of the involved non-linear terms leads to a set
of linear systems in each time step for which the direct solver UMFPACK [57] is used.
We split the time interval I = [0, T ] into equidistant time instants 0 = t0 < t1 < . . .

and define the time steps τ := tn+1 − tn. We use τ = 10−3 for all computations. Of
course, adaptive time steps may also be used. We define the discrete time derivative
dt · n+1 := ( · n+1 − · n)/τ , where the upper index denotes the time step number.

The numerical approach for each subproblem is adapted from existing algorithms
for the Navier-Stokes problem, the Helfrich model and reaction-diffusion models. In each
time step we solve:

1. The flow problem for vn+1 and pn+1:

Re
(
dtvn+1 + (vn · ∇)vn+1

)
= −∇pn+1 + ∆vn+1 + δES

δϕ

n

∇ϕn − 1
Fac

n∇ϕn,

∇ · vn+1 = 0.

2. The phase field evolution for ϕn+1:

dtϕ
n+1 = −vn+1 · ∇ϕn+1 − γ

δES

δϕ

n+1
,

δES

δϕ

n+1
= 1

Be

(
∆µn+1 − 1

ε2W
′′
0 (ϕn,n+1)µn,n+1

)
+ 1

Ca

(
−ε∆ϕn+1 + 1

ε
W ′(ϕn,n+1)

)
+ λn

area,

µn+1 = ε∆ϕn+1 − 1
ε
W ′

0(ϕn,n+1).

We further linearize the non-linear terms by a Taylor expansion of order one:

W ′′
0 (ϕn,n+1)µn,n+1 = (3(ϕn)2 − 1)µn +

(
6ϕnµn

3(ϕn)2 − 1

)(
ϕn+1 − ϕn

µn+1 − µn

)
,

W ′(ϕn,n+1) = ((ϕn)2 − 1)ϕn + (3(ϕn)2 − 1)(ϕn+1 − ϕn),

and W ′
0(ϕ)n,n+1 similarly.
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3. The Lagrange multiplier λn+1
area:

λn+1
area = 1

|Ω|

∫
Ω

1
Be

(
−∆µn+1 + 1

ε2W
′′
0 (ϕn+1)µn+1

)
− 1

Ca

(
−ε∆ϕn+1 + 1

ε
W ′(ϕn,n+1)

)
dx

+ 1
2τ (V(ϕn+1) − V0).

This approach uses an additional penalty term, as proposed by [75] and given by
eq. (3.83), because the explicit treatment violates the constraint, where V0 denotes
the desired cell volume and V(ϕn+1) =

∫
Ω ϕ

n+1 dx its actual state. The penalty
parameter is related to the time step size τ .

4. The concentrations Cn+1, cn+1
1 and cn+1

2 :

dt(ϕ̃n+1Cn+1) + ∇ · (ϕ̃n+1vn+1Cn+1) = DC∇ ·
(
ϕ̃n+1∇Cn+1

)
− γ̄|0.5∇ϕn+1|q(cn+1

1 , cn+1
2 , Cn+1),

dt(|∇ϕn+1|cn+1
1 ) + ∇ · (|∇ϕn+1|vn+1cn+1

1 ) = dc1∇ · (|∇ϕn+1|∇cn+1
1 )

+ γ̄|∇ϕn+1|h(cn+1
1 , cn+1

2 ),
dt(|∇ϕn+1|cn+1

2 ) + ∇ · (|∇ϕn+1|vn+1cn+1
2 ) = dc2∇ · (|∇ϕn+1|∇cn+1

2 )
− γ̄|∇ϕ|n+1|h(cn+1

1 , cn+1
2 )

+ γ̄|∇ϕ|n+1|q(cn+1
1 , cn+1

2 , Cn+1),

with ϕ̃n+1 = 1
2(1 + ϕn+1). We again further linearize the non-linear terms q and h

according to the proposed approach in [208].

The numerical approach for each subproblem has already been validated elsewhere. We
therefore consider here only convergence tests for the coupled problem. After reaching
the desired pattern on the cellular membrane to distinguish between cell front and rear,
which can be obtained by solving subproblem 4 on a stationary circular shape using the
proposed parameters in [209], the whole system is solved. A deformation of the cell can
be observed and a movement in the direction of the cell front. After an initialization
state a stationary form and a constant velocity is reached. We measure the following
quantities:

1. the x1-coordinate of the center of mass, which is defined as

xcm =
∫

Ω ϕ̃x1 dx∫
Ω ϕ̃ dx

, (5.19)

where x = (x1, x2),

2. the circularity of the cell, which is defined as the quotient of the perimeter of an
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area-equivalent circle and the perimeter of the cell

ccell = 2(
∫

Ω ϕ̃π dx)1/2

3
2
√

2ECH
, (5.20)

where ECH serves as an approximation of the surface area, see e.g. eq. (3.11),

3. the velocity of the cell, which is defined as vcm = |v(xcm, x2)|,

4. and the Helfrich energy EH = 1
2ε

1
Be
∫

Ω

(
ε∆ϕ− 1

εW
′
0(ϕ)

)2
dx.

All defined quantities are time dependent. A relative error can be defined to measure
their temporal evolution. We use the following error norm:

∥e∥2 = ((
∑

I

|qt,ref − qt|2)/(
∑

I

|qt,ref |2))1/2,

where qt is the temporal evolution of quantity q. The solution on the finest grid serves as
reference solution qt,ref . Tab. 5.2 shows the relative error norms as well as the relative
order of convergence (ROC) for the desired quantities if ε is reduced. Together with
ε, we also refine the mesh size to guarantee the same number of grid points within the
diffuse interface layer for all simulations and the time step to ensure the same relation
between mesh size and time step. The time interval is I = [0, 3.5], which corresponds to
an end time of T = 123 s. Other parameters are obtained from Tab. 5.1, in particular
Be = 6.6, Ca = 0.264 and Fa = 0.05. We see at least first order convergence, the higher
numbers in ROC for xcm, vcm and EH are probably due to the fact that additionally for
higher ε the interfacial profile of ϕ may be seriously distorted out of equilibrium so that
the solution deviates far from the sharp-interface solution.

center of mass xcm cell velocity vcm circularity ccell energy EH

ε ∥e∥2 ROC ∥e∥2 ROC ∥e∥2 ROC ∥e∥2 ROC
0.060 0.0530 0.1895 0.0094 0.1177
0.042 0.0168 3.3081 0.0630 3.1734 0.0075 0.6807 0.0771 1.2190
0.030 0.0044 3.8812 0.0272 2.4244 0.0045 1.4408 0.0334 2.4180
0.021 0.0004 6.7472 0.0094 2.9673 0.0024 1.7358 0.0127 2.7072

Table 5.2. – Relative error norms and convergence orders for critical parameters.

As a further consistency test, we consider conservation of mass and cell volume.
The total mass is measured as c =

∫
Ω(c1 + c2)|ϕ̃| dx +

∫
ΩC∇ϕ̃ dx and the volume is

estimated as V =
∫

Ω ϕ̃ dx. Fig. 5.3 shows the evolution of both quantities over time for
the same parameters as above, and demonstrates the required conservation.

5.4. Simulations and results

We consider the dependency of cell motility on various parameters: the bending stiff-
ness bN , the surface tension σ and the protrusion force parameter α. Modifying the
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Figure 5.3. – Evolution of cell volume and mass of the GTPases for various parameters ε.

reaction-diffusion parameters also allows us to form either lamellipodia- or filopodia-
like structures, which we demonstrate in an example. We further extend the model
to consider chemotactic and compute the cell path according to a varying chemotaxis
signal.

5.4.1. Mechanical dependency of motile cells

As initial condition, we consider a circular membrane of radius 1. To speed up the
development of the Turing pattern, the simulation starts with a constant value C = 9.25
in Ω1(0), c1 = 0.1758 and c2 = 0.2186 on the right-hand side of the cellular membrane
and c1 = 0 and c2 = 0 on the left hand side. After a few iterations of the whole system,
a stable Turing pattern with the desired polarity is formed. The resulting protrusion
force leads to a movement to the right and a deformation of the cell shape forming a
lamellipodia-like structure. Fig. 5.4 shows the time evolution of the phase field variable
ϕ and the concentrations c1, c2 and C, respectively. The maximum of c1 that signals
the polymerization of the actin filament meshwork in our model is sharply localized at
the cell front. The concentration profile of c2 is less pronounced and the concentration
of C within the cytoplasm shows only a small gradient towards the cell front. Both c2
and C do not directly correspond to the cell movement in the considered model. We
also show the velocity that reaches a maximum after the acceleration of the cell at the
beginning before it is slowed down into a stationary profile leading to a stationary cell
shape. During the stationary motion, two vortices over and beneath the cell occur.
In this state, the shear stress and the stress corresponding to the Helfrich forces are in
balance. The simulation is performed with bN = 10−17 J, σ = 5 · 10−6 N/m and α = 5.6
N/m2.

The stationary shape strongly depends on these parameters. To quantify the depen-
dency, Fig. 5.5 shows the obtained stationary cell shapes for different bending stiffness
bN and different surface tension σ. For Fig. 5.5a, we vary the bending stiffness parameter
and use a constant surface tension σ = 2.5 · 10−6 N/m. For Fig. 5.5b, we use different
values for the surface tension and keep the bending stiffness bN = 10−17 J constant.
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Figure 5.4. – Cell movement. First row - shape of the cell at different times evolving from
left to right. Shown is the phase field variable ϕ. Second row - concentration of c1 on cell
membrane. Third row - concentration of c2 on cell membrane. Forth row - concentration
of C in the cytoplasm. Fifth row - magnitude and direction of u. The maximum of |u|
corresponds to 0.31 · 10−6 m/s, which is in good agreement with the value reported in [229].
To visualize the concentrations along the cell membrane or in the cytoplasm the values of
c1 and c2 and C are shown at the [−0.9, 0.9] and [0, 1] level sets of the phase field variable,
respectively. The times t shown are 0.013, 0.3, 0.6, 1.2 and 8 which correspond to 4.64 s,
10.71 s, 21.43 s, 42.86 s and 250 s, from left to right.

α = 5.6 N/m2 is kept constant in all simulations.

As expected the cell remains more circular as stronger the bending stiffness and
surface tension. More important, the results indicate that the influence of bending
stiffness compared to surface tension is relatively small.

We now consider the influence of the protrusion force on the stationary cell shape.
Fig. 5.5c shows the stationary cell shapes for different protrusion coefficients α. The
other parameters are bN = 10−17 J and σ = 5 · 10−6 N/m. The dependency between
protrusion and circularity as well as protrusion and velocity are shown in Fig. 5.6.
These diagrams show that increasing α lead to more deformed (Fig. 5.6a) and faster
cell (Fig. 5.6b). We further see that the difference between velocity peak and stationary
velocity increases for increasing α. Additionally, the cell’s stationary state is reached
later. This is because the relaxation between Helfrich and surface tension on one side
and protrusion on the other side also increases for higher protrusion and for smaller
membrane stiffness, which is not shown here.
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bN = 5 · 10−18 J
bN = 10−17 J
bN = 10−18 J

(a) σ = 2.5 · 10−6 N/m, α = 5.6 N/m2

σ = 2.5 · 10−6 Nm−1

σ = 5 · 10−6 Nm−1

σ = 10−5 Nm−1

(b) bN = 10−17 J , α = 5.6 N/m2

α = 2.8 Nm−2

α = 4.2 Nm−2

α = 5.6 Nm−2

(c) bN = 10−17 J, σ = 5 · 10−6 N/m.

Figure 5.5. – Contour of the stationary cell shapes for varying bending, surface tension
and protrusion values proposed in Tab. 5.1.

5.4.2. Formation of filipodia-like structures

In the previous example, the diffusion coefficients and kinetic parameters are chosen to
form a Turing pattern that defines a polarity to distinguish between cell front and cell
rear. Different parameters can lead to different patterns, but it has also been shown
that the cell size influences these patterns [207]. We here focus on the parameters
and demonstrate this by using again a circular initial shape of radius 1, a constant
value of C = 9.25 in the cytoplasm and random initial conditions for c1 and c2 within
[0.1758−0.01, 0.1758+0.01] and [0.2186−0.01, 0.2186+0.01], respectively. We here also
modify the diffusion coefficient dc2 along the membrane, which is set to be dc2 = 750 and
now differs from dc1 . The second change in parameters concerns the active surface force
number Fa, which now becomes Fa = 0.71, corresponding to α = 0.39 N/m2. The elastic
parameters of the membrane are set to be bN = 10−18 J and σ = 10−6 N/m. Fig. 5.7
shows the time evolution of the phase field variable, the concentrations of c1 and c2
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Figure 5.6. – Variation of α leads to different cell shapes, the larger the protrusion force
the stronger the deformation and the faster the cell movement for bN = 10−17 J, σ =
5 · 10−6 N/m.

along the membrane, the concentration of C within the cytoplasm as well as the velocity
field. Due to the developing of various maxima in c1, the cell only deforms but it does

Figure 5.7. – Cell forming filopodia-like structures. First row - shape of the cell at
different times evolving from left to right. Shown is the phase field variable ϕ. Second row -
concentration of c1 on cell membrane. Third row - concentration of c2 on the cell membrane.
Fourth row - concentration of C within the cytoplasm and last row - velocity field. The
concentrations along the cell membrane and in the cytoplasm are shown at the [−0.9, 0.9]
and [0, 1] level sets of the phase field variable, respectively. The times t corresponding to
the columns are 0.1, 1, 2, 3 and 4 and are equal at 3.6 s, 35.7 s, 71.4 s, 107.1 s and 142.9 s,
from left to right.
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not move along one direction. In contrast to our previous simulations, we also achieve
a pattern in C. A stationary shape is not reached within the simulation time. Please
note that the correlation between the formation of filopodia and a more complex Turing
pattern for the GTPase network model may be questionable. The presented results serve
for an illustration of the influence of certain parameters to the cell’s shape.

5.4.3. Reaction to spatial signals

It remains to be determined to what extent such an intrinsic polarization mechanism
contributes under physiological conditions where cell polarization is controlled by spatial
signals. In neutrophils, the actin cytoskeleton plays an important role in the amplifica-
tion of the spatial signal provided by gradients of chemoattractants.

To demonstrate this effect, we modify eq. (5.17) by adding ∇Γ · (c1∇Γc̃) to the
left-hand side, with c̃ a given concentration of a chemoattractant in the extracellular
matrix. A similar approach has been used in [87, 147]. The modified diffuse interface
equation reads

∂t(|∇ϕ|c1) + ∇ · (|∇ϕ|vc1) + ∇ · (|∇ϕ|c1Pϕ∇c̃) = dc1∇ · (|∇ϕ|∇c1) + γ̄|∇ϕ|h(c1, c2),
(5.21)

where Pϕ = I − ∇ϕ · ∇ϕ
|∇ϕ|2 denotes the projection operator. To illustrate the applicability

of the approach, we use different modes of c̃ and its gradient:

1. ∇c̃ = ξ(cosωt, sinωt)T , the chemoattractant rotates with the angular velocity ω,

2. ∇c̃ = ξ(1, sinωt)T , the chemoattractant changes its direction sinusoidally,

3. ∇c̃ = ξR(χ⌊ n
ϑ

⌋+1) · ∇c̃(χ⌊ n
ϑ

⌋), the chemoattractant randomly changes its direction
by a specific angle ω. The random variable χ is determined every ϑ-th time step
and has the possible values {−ω, 0, ω}. R denotes a rotation matrix and ∇c̃(χ⌊ n

ϑ
⌋)

determines the old direction of the chemoattractant. Similar rules are proposed in
[87].

4. ∇c̃ = −ξ( x−x0
||x−x0||2 ), where the chemoattractant is space depended given by the

distance between x = (x1, x2)⊤ ∈ Ω and x0 = (x01 , x02)⊤ /∈ Ω, denoting the
direction. This is used to qualitatively compare our simulation results with the
work of Lautenschläger et al. [148] where a myeloid cell is following a signal coming
out of a microtube.

The parameter ξ models the strength of the chemotactic signal, which is set to ξ = 5 in all
simulations and thus dominates the reaction-diffusion system, leading to a pronounced
maximum of c1 in the direction of the strongest gradient of the chemoattractant. Fig. 5.8,
corresponding to case 1, shows the resulting rotation of the cell together with the velocity
field.

The maximum in c1 always points in the direction of the highest gradient of the
chemoattractant. We again observe the formation of a stationary shape here influenced

72



5.4. Simulations and results

Figure 5.8. – Cell responds to a rotating spatial signal leading to a rotation, corresponding
to case 1. The cell shape and velocity in the cytoplasm and in the extracellular matrix is
shown for times t equal 21.4 s, 107.1 s, 214.3 s, 321.4 s and 428.6 s, from left to right.

by the spatial signal. Fig. 5.9, corresponding to case 2, shows the evolution of the cell
from t = 0 s to t = 428 s for ω = 0.014 s−1 (Fig. 5.9a) and ω = 0.056 s−1 (Fig. 5.9b). The
third configuration, corresponding to case 3, is shown in Fig. 5.10 demonstrating a more
chaotic movement, which becomes stronger for larger ω and smaller ϑ. Finally, Fig. 5.11
shows the qualitative results of our approach with a migrating myeloid, corresponding
to case 4. The domain contains a microtube with 10µm thickness and an ellipsoid cell
is placed on the right side of the domain. The chemoattractant is constructed such that
its maximum holds inside the tube. Given the cell its initial polarization, it immediately
follows the signal into the tube. However, we also observe that the shape of the cell
differs from the experimental results in [148] because we did not perform a rigorous
data fit. Possible improvements are a higher viscosity of the cytoplasm or an adhesion
potential between cell and channel wall. Other approaches such as elastic or viscoelastic
approximations of the cell might also be meaningful.

(a) ω = 0.014 s−1 (b) ω = 0.056 s−1

Figure 5.9. – Cell responds to a sinusoidal spatial signal, corresponding to case 2.
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(a) ω = 30◦, ϑ = 400 (b) ω = 60◦, ϑ = 400 (c) ω = 60◦, ϑ = 100

Figure 5.10. – Cell evolution corresponding to case 3. The staring point is labeled by S

and the end point by E.

Figure 5.11. – Cell migration into a micro channel following a prescribed chemical signal
(right), corresponding to case 4. Experimental results (pictures retrieved from [148]) are
shown in the first row and the corresponding simulation results are shown in the second
row.

5.5. Discussion

The movement of crawling cells is described using an effective model for the reorgani-
zation of the actin cytoskeleton, which is combined with a Helfrich model for the cell
membrane and streaming within the cytoplasm and the extracellular matrix. The actin
polymerization leading to cell protrusion is thereby initiated by a membrane-bound ac-
tive state of the GTPase, as one component of a biochemical network model, taking into
account the different dimensionality of the cytoplasm and the cell membrane. The model
forms a Turing pattern in a parameter regime in which diffusion along the membrane
can be equal for all components. The used network model is a minimal model with
these characteristics and only takes into account the active and inactive state of the
membrane-bound GTPase as well as complexes of cytoplasmic GTPase. However, the
minimal model for the GTPases cycle already shows a large variety of different dynam-
ical behavior, which range from sheet-like formation of lamellipodia and the evolution
of stationary cell shapes, to fingering phenomena that are filopodia-like. The difference
is achieved by changing the strength of the reaction and the diffusion parameters along
the membrane.

74



5.5. Discussion

The system of equations is formulated in a diffuse interface approach, which allows
for an efficient numerical treatment. In particular, the reaction-diffusion model along the
membrane and within the cytoplasm can be formulated as a coupled system in a fixed
domain using the diffuse interface and diffuse domain approach. The same approach
can be applied for more detailed biochemical network models, e.g. as proposed in [115].
The protrusion force can be generalized by taking into account various concentrations
along the membrane and within the cytoplasm. In addition, a retracting force can be
considered as well. If we denote concentrations along the membrane by ci and within the
cytoplasm by Ci, the general form for the non-dimensional momentum equation reads

Re (∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ−

∑
i

1
Fai

ci∇ϕ

+
∑

i

1
Fai

CiP (5.22)

with Fai = ηV/(αiL) the active surface force numbers and Fai = ηV/(αiL) the active
bulk force numbers. To describe protrusion and retraction we have αi > 0 and αi < 0,
respectively. In [228, 229] only the last terms are considered, one for a protrusion and
one for a retraction force. The importance of retraction for cell motility is e.g. considered
in [90, 91] and needs to be taken into account for quantitative comparisons with specific
cells. The last term in eq. (5.22) describes a force acting in the direction of the actin
filaments, where P is a vector field indicating the averaged orientation field of the actin
filament network, see Chapter 6. We can label this flow with a further cytoplasmic
concentration Ci denoting the area of high activity or adhesion. Such macroscopic
vector field P was of basic interest in [160, 270, 272] but without hydrodynamic effects.
Tjhung et al. [242] developed a hydrodynamic model accounting for P but the active
terms for the cell protrusion are directly inserted into the phase field:

∂tϕ+ ∇ · (v +
∑

i

1
Fai

P) = γ∆ϕ♮.

An additional contribution being essential for cell motility is adhesion. Within the ad-
hesion process, the actin network is connected to the substrate where a force is mediated
that pushes the cell forward. In our previous model using a protrusive force to advect
the cell, adhesion was not neglected, but in this sense, it was accounted for implicitly.
A first step to consider adhesion is to introduce friction between the substrate and the
cell by adding an effective friction term that is proportional to the local speed, similar
to [228]:

Re (∂tv + (v · ∇)v) + ∇p+
∑

i

1
Fai

Ciϕ̃v = ∇ · (η(ϕ)D) + δES

δϕ
∇ϕ− 1

Fac1∇ϕ.

This effect on the cell motion is primarily to slow it down. Here, the adhesion can be
considered either to be constant Ci = 1 or space depending. An active contribution of
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adhesion is e.g. considered [21, 160, 229, 270, 272]. We will now focus on an approach
for adhesion considering a three dimensional cell. In [56] adhesion is modeled in the
context of a Helfrich model using an effective contact potential W , as already proposed
in [225]. W is thereby modeled as a function of the distance between the membrane and
the substrate, e.g. in Lennard-Jones form W (r) = −

(
(β1/r)β

2 − (β1/r)β2/2
)
, with r the

signed distance function to the substrate, β1 and β2 the thickness of the repulsive region
and the rate of change of the adhesion potential, respectively. The generalized diffuse
non-dimensional Helfrich energy reads

E(ϕ) = 1
2ε

1
Be

∫
Ω

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

dx + 1
Ca

∫
Ω

(
ε

2 |∇ϕ|2 + 1
4ε(ϕ2 − 1)2

)
dx

+ 1
Ad

∫
Ω
W (r)

(
ε

2 |∇ϕ|2 + 1
4ε(ϕ2 − 1)2

)
dx,

with the adhesion strength number Ad = 2
√

2/3 ηV/δ and δ the strength of the adhesion
interaction.

5.6. Conclusion

To summarize, the introduced model combines the main contributions to cell motility
enabling to reproduce its primary phenomenology. The diffuse interface approach pro-
vides an easy to handle and efficient numerical approach to deal with the highly coupled
system of equations. Although the model incorporates several simplifications, we are
able to analyze the interplay between protrusion, membrane and fluid forces. We can
recover the basic shapes and important aspects of motile cells. The approach can also be
extended to incorporate additional phenomena. The simulation results are obtained not
for a specific cell type, but within a realistic parameter range spanning a large class of
cells and their environment. We therefore expect the model and the numerical approach
to be useful also for quantitative simulations of specific cells.
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Chapter 6

A model for contractile stress
using active polar gels

We analyze a generic motility model with the motility mechanism arising by contractile
stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory
is used to model the bulk of a cell and is combined with a hydrodynamic Helfrich-type
model to account for membrane properties. The overall model allows us to consider
motility without the necessity for local adhesion.

This chapter has the following structure: after a brief motivation, we introduce the
mathematical model in Section 6.2 that combines the previous diffuse interface Navier-
Stokes-Helfrich model with bending and surface tension together with fluid flow. More-
over, an orientation field equation can be derived from an active polar gel theory that
hereby considers the actin filaments as liquid crystals. We show that this model is ther-
modynamically consistent and extend it by an active contractile stress tensor leading to
the model introduced in [242]. A numerical approach is given Section 6.3. Besides the
reproduction of previous results, we undertake convergence studies for the highly non-
linear free boundary problem and show the robustness of the approach, see Section 6.4.
In Section 6.5, we further compare the flow field of the motile cell with that of classical
squirmer models and identify the motile cell as a puller or pusher depending on the
strength of the myosin-actin interactions. In this chapter, we restrict our simulations
to 2D. However, the described model can also be used for 3D cell motility, where the
myosin-actin interactions are assumed to dominate and treadmilling only plays a minor
role. The 3D simulations require an adequate preconditioner/solver for the system and
its development is still current research.

The basic concepts, such as modeling, numerical methods and results in this chapter
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6. A model for contractile stress using active polar gels

are already published in Marth et al. [176].

6.1. Contractile stress as a basic component of cell motility

As already discussed, cell motility can be decomposed into three basic steps: actin
polymerization at the front, focal adhesion i.e. force mediation to the substrate, and
contractile stress in the back. In recent experiments, Friedl and Wolf [107] found out
that tumor cells migrate without any substrate. It has been argued that within these
fluid environments a cortical flow, as a result of contractile stress between actin filaments
is the dominant mechanism for motility [119, 131]. This mechanism creates an internal
flow of actin that pushes the cell forward without the necessity for local adhesion and
has been described by a hydrodynamic active polar gel theory. See [58, 101, 203] for
a general review. Within the active polar gel approach, the bulk, or more specific the
actin cytoskeleton consisting of actin filaments, is therefore considered as a liquid crystal
i.e. microscopic small rod-like particles with a distinct polarization. Moreover, the cell
interior represents an intermediate state which exhibits a degree of order that is between
that of ordinary liquids and solids and can furthermore exert an elastic distortion stress
during their translation in contrast to classical fluids. Actin filaments are strongly en-
tangled and connected by cross-linking proteins, so-called myosin motors, that transform
chemical energy from the ATP hydrolysis into mechanical energy and exert contractile
stress [132]. In [242] the authors showed how such a phenomenological introduced con-
tractile stress tensor [206] within a hydrodynamic system can spontaneously break the
symmetry of the actin solution that leads to cell motility.

6.2. Mathematical model

The used model is an extension of the approach in [242] and provides a generic route
to study individual processes leading to cell motility. It combines the Helfrich-Navier-
Stokes Model with surface tension for a conserved order variable, i.e. eq. (3.81), eq. (3.82),
eq. (3.86) and eq. (3.87), with an active polar gel theory that necessitates the treatment
of an additional director or orientation field for the actin filaments. We show how such a
thermodynamically consistent model can be derived. This model describes the evolution
as a combined minimization process for kinetic, surface and Frank-like energy (defined
below). Together with an active force accounting for the contractile stress, we can
describe cell migration.

6.2.1. Energy

We consider the free energy of the system:

E(P, ϕ,v) = Ekin(v) + ES(ϕ) + EP (ϕ,P), (6.1)
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Figure 6.1. – Snapshot of vibrated copper-wire segments illustrating liquid crystals which
in our approach serves as model for actin filaments within the bulk of the cell. (Picture
retrieved from [206])

which consists of the kinetic energy Ekin inside and outside of the cell, characterized by
the velocity v. For the sake of simplicity, we consider equal density ρ and viscosity η

for the cell bulk Ω1(t) and the fluid outside Ω0(t), which is considered as an isotropic
Newtonian fluid. The cell membrane is implicitly defined by the zero level set of ϕ.
In [242] the cell has been considered as a droplet considering a simple surface tension
energy. In addition, we account for the Helfrich energy similar to Chapter 5 and consider
the surface energy ES given in eq. (3.78). EP denotes the energy of the filament network
and is given within a diffuse interface approximation [242] as

EP (P, ϕ) =
∫

Ω

k

2 (∇P)2 + c0
4 |P|2(−2ϕ+ |P|2) + β0P · ∇ϕ dx, (6.2)

where P is the mesoscopic average orientation of the actin filaments in the cell bulk
Ω1(t). eq. (6.2) is derived from a general distortion or Frank energy for liquid crystals
that is given by

EF (P) =
∫

Ω

K1
2 (∇ · P)2 + K2

2 (P · (∇ × P))2 + K3
2 (P × (∇ × P))2 dx. (6.3)

The three terms in eq. (6.3) stand for the stiffness associated with splay, twist and bend
deformations, respectively, see e.g. [58] for a broad introduction. Considering equal
K1 = K2 = K3 =: k yields the first term in EP with k a general elasticity parameter.
Linking ϕ to the second term of eq. (6.2) allows us to restrict P to the cell interior: if
ϕ < 0 the minimum is obtained for |P| = 0 and thus the term does not contribute to
the energy, and for ϕ > 0 the term forms a double-well with two minima with |P| = 1
and the form specified by the parameter c0. The last term in eq. (6.2) guarantees for
β0 > 0 that P points outwards in normal direction to the cell boundary. This is expected
to be of relevance for polymerization and depolymerization of actin filaments and used
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Figure 6.2. – (A) Schematic description for a moving cell. Shown is the splayed orientation
field P in a motile steady state, with constant velocity vcell as well as the streamlines of
the velocity profile v and the phase field ϕ with the cell membrane Γ(t) corresponding to
the zero-level set of ϕ. (B) The orientation field serves as a model for the average aligned
microscopic actin filaments which are connected by myosin motors.

in [160, 270, 272], but for the motility mode considered here a strong preference of the
orientation of P at the cell boundary cannot be seen. They further applied β to obtain
the same splayed orientation field for their non-hydrodynamic models, which we obtain
by generic instability as a result of the interplay between the elasticity of the orientation
field and the fluid flow. In [242] it is argued that small β0 values can resemble the effect
of a weak external field. We will therefore consider both cases β0 = 0 and 0 < β0 < 1.
Fig. 6.2 provides a schematic picture of the used variables.

Before we introduce the governing equations, we consider the orientation energy
in a non-dimensional form. We use the same characteristic values introduced in Sec-
tion 3.3. We further define the constants c1 = c0L2

k and β = β0L
k and in addition to the

already introduced non-dimensional quantities Re, Be, Ca, we obtain the dimensionless
polarization elasticity number

Pa = ηV L

k
.

Accordingly, the orientation field energy in a non-dimensional form is written as

EP (P, ϕ) = 1
Pa

∫
Ω

1
2(∇P)2 + c1

4 |P|2(−2ϕ+ |P|2) + βP · ∇ϕ dx. (6.4)

Together with the non-dimensional kinetic energy eq. (3.12) and the surface energy given
in non-dimensional form in eq. (3.78), we can construct the system’s overall energy.

6.2.2. Derivation of a thermodynamic model for active polar gels

In the following, we derive a thermodynamic model for active polar gels [264]. In our
approach, the phase field serves as indicator of two different phases. Another approach
considers ϕ as a density of a chemical species ATP [202, 203, 259]. The derivation is
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similar to Section 2.8 and extended by EP (P, ϕ). The free energy eq. (6.1) is written as

E(v, ϕ,P) =
∫

Ω

Re
2 |v|2 + 1

Be
1
2ε

(
ε∆ϕ− 1

ε
W ′

0(ϕ)
)2

+ 1
Ca

(
ε

2 |∇ϕ|2 + 1
ε
W (ϕ)

)
+ 1

Pa

(1
2(∇P)2 + c1

4 |P|2(−2ϕ+ |P|2) + βP · ∇ϕ
)

dx.

Its time derivative reads

dE
dt =

∫
Ω

Re v · Dv
Dt + 1

Beµ
(D∆ϕ

Dt − 1
ε2W

′′
0 (ϕ)Dϕ

Dt

)
+ 1

Ca

(
ε∇ϕD∇ϕ

Dt + 1
ε
W ′(ϕ)Dϕ

Dt

)
+ 1

Pa

(
∇P : D∇P

Dt +
(
c1|P2|P − c1Pϕ+ β∇ϕ

)
· DP

Dt

+c1
2 |P|2 Dϕ

Dt + βP · D∇ϕ
Dt

)
dx,

where we consider the material derivative for v, ϕ and P as given in eq. (3.42), eq. (3.41)
and

DP
Dt = ∂tP + (P · ∇)P. (6.5)

Now, we consider the conservation of momentum and mass for v as well as the conser-
vation of mass for ϕ that are given by

ReDv
Dt = ∇ · S, , (6.6)

∇ · v = 0, (6.7)
Dϕ
Dt = −∇ · Jϕ, (6.8)

respectively, with the stress defined as S = −pI + (η(ϕ)D) + SH + SST + SP. Here,
the unknowns Jϕ, SH and SST denote the flux of ϕ and the stresses resulting from the
Helfrich energy and the surface tension energy, respectively. In addition, SP denotes
the distortion stress coming from the orientation field that is also yet unspecified. We
further consider an orientation field equation for P given as

DP
Dt = −Ω · P + ξD · P − ∇ · JP , (6.9)

where, the left-hand side is the co-moving and co-rotational derivative, where the vortic-
ity tensor defined as Ω = 1

2(∇v⊤ − ∇v) takes rotational effects from the flow field into
account and the deformation tensor D = 1

2(∇v + ∇v⊤) describes the flow alignment.
Additionally, the flux JP is unknown. Further explanations are given below. To sum-
marize we have to determine the unknown stresses SH , Sσ, SP and the unknown fluxes
Jϕ and JP such that the overall energy is decreasing. To achieve this, we first rewrite
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D∆ϕ
Dt and D∇ϕ

Dt as in eq. (3.46) and eq. (3.47) and in the same manner we rewrite

D∇P
Dt = ∇DP

Dt − ∇P · ∇v

and insert these results in the time derivative of the energy, which yields

dE
dt =

∫
Ω

Re v · Dv
Dt + 1

Beµ
(

∆Dϕ
Dt − 1

ε2W
′′
0 (ϕ)Dϕ

Dt − ∆v · ∇ϕ− 2∇v : ∇∇ϕ
)

+ 1
Ca

(
(−ε∆ϕ+ 1

ε
W ′(ϕ))Dϕ

Dt − ε∇ϕ· (∇v · ∇ϕ)
)

+ 1
Pa

(
∇P : ∇DP

Dt − ∇P : (∇P · ∇v) + (c1|P2|P − c1Pϕ+ β∇ϕ) · DP
Dt

)
+ 1

Pa

(
(c1

2 |P|2 − β∇ · P)Dϕ
Dt − βP · (∇v · ∇ϕ)

)
dx.

In addition, we define the non-dimensional chemical potentials as

ϕ♮ := δE
δϕ

= δES

δϕ
+ δEP

δϕ

= 1
Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ

)
+ 1

Ca

(
−ε∆ϕ+ 1

ε
W ′(ϕ)

)
+ 1

Pa

(
c1
2 |P|2 − β∇ · P

)
,

P♮ := δE
δP = 1

Pa
(
−∆P + c1|P2|P − c1Pϕ+ β∇ϕ

)
,

which helps us to rewrite

dE
dt =

∫
Ω

Re v · Dv
Dt + ϕ♯ Dϕ

Dt + P♯ DP
Dt − 1

Beµ∆v · ∇ϕ− 2
Beµ∇v : ∇∇ϕ

− 1
Caε∇ϕ· (∇v · ∇ϕ) − 1

Pa
(
∇v : (∇P⊤ · ∇P) + β∇v · (P ⊗ ∇ϕ)

)
dx.

Plugging in the time evolutions for ϕ, v and P, eq. (6.8), (6.6) and (6.9), respectively,
we arrive at

dE
dt =

∫
Ω

v · (−∇p+ ∇ · (η(ϕ)D) + ∇ · SP ) + ϕ♮(−∇ · Jϕ) + P♮ · (−∇ · JP )

+ P♮ · (−Ω · P + ξD · P) + 1
Pav · ∇ ·

(
(∇P⊤ · ∇P) + β(P ⊗ ∇ϕ)

)
dx,

where we already neglected the stress from the membrane using the definitions from
eq. (3.49) and eq. (3.80) that are repetitively given by

SH = 1
Be(∇ϕ⊗ ∇µ− µ∇∇ϕ),

SST = − 1
Caε∇ϕ⊗ ∇ϕ.
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Rewriting gives

dE
dt =

∫
Ω

v · (∇ · (η(ϕ)D) + ∇ · SP ) + ϕ♮(−∇ · Jϕ) + P♮ · (−∇ · JP )

− v · ∇ ·
(1

2P♮ ⊗ P − 1
2P ⊗ P♮ + ξ

2P♮ ⊗ P + ξ

2P ⊗ P♮
)

+ 1
Pav · ∇ ·

(
(∇P⊤ · ∇P) + β(P ⊗ ∇ϕ)

)
dx,

where we neglected the pressure term after integrating by parts and applied the incom-
pressibility condition. Defining the fluxes and the remaining stress as

Jϕ = −γ∇ϕ♮,

∇ · JP = 1
κ

P♮,

SP = − 1
Pa
(
(∇P⊤ · ∇P) + β(P ⊗ ∇ϕ)

)
+ 1

2
(
P♮ ⊗ P − P ⊗ P♮

)
+ ξ

2
(
P♮ ⊗ P + P ⊗ P♮

)
,

we obtain at the following energy law

dE
dt =

∫
Ω

−η(ϕ)D : D − γ
⏐⏐⏐∇ϕ♮

⏐⏐⏐2 − 1
κ

⏐⏐⏐P♮
⏐⏐⏐2 ≤ 0, (6.10)

which is similarly proposed in Section 2.8 and only extended by the dissipative term for
the evolution of P.

6.2.3. Active stress

The active stress forces the system out of equilibrium. Here, myosin motor proteins
that are connected to actin filaments destroy this delicate balance as they continu-
ously perform mechanical work from an ATP hydrolysis and add energy to the system.
Within our approach, myosin is equal distributed, implicitly bounded to P and in-
finitely available. Other models consider further models describing the hydrolysis of
ATP [131, 203]. Finally, the active stress that describes the phenomenologically intro-
duced activity [206, 241] reads in non-dimensional form

Sactive = 1
Fa ϕ̃P ⊗ P, (6.11)

with ϕ̃ = 1
2(ϕ+1). In general, we can write this term without ϕ̃ since P is restricted to the

cell interior as a result of the double well potential. However, the inclusion of this term
seems more robust. The non-dimensional parameter Fa = ηV/ζL is similarly defined
as in eq. (5.8), where ζ denotes the activity parameter. It characterizes contractile
(ζ > 0) and extensile stress (ζ < 0). In Fig. 6.3a, we see how the contractile active stress
contributes to the flow field. For equal aligned filaments, we observe a force balance and
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(a) (b)

Figure 6.3. – Schematic pictures of contractile stress. (a) Contractile stress generated by
myosin motor protein connected to two actin filaments. The resulting fluid flow consists of
four vortices. Here, the force balance is zero and the system is not propelled. (b) Bundle
of actin filaments. If the symmetry and the force balance is broken, a directed jet occurs
caused by active stress that propels the system.

accordingly the system is stationary. However, if the symmetry within the alignment
of the filaments is broken, the force balance vanishes and the active stress causes a
directed jet that propels the system [206], see Fig. 6.3b. In this chapter, we will see how
such a stationary system can become a motile non-equilibrium system by a spontaneous
symmetry breaking instability [131, 242].

6.2.4. Governing equations

In the previous Sections, we have determined the unknowns such that the overall energy
is decreasing in time and therefore fulfills thermodynamic consistency. In addition, we
extend this model by the active stress term eq. (6.11) and consequently arrive at the
following system of equations defined in I × Ω.

Flow equations

The physics of the flow are described by the Navier-Stokes equations with ∇ · v = 0
and

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D)

+ 1
Be∇ · (∇ϕ⊗ ∇µ− µ∇∇ϕ) − 1

Ca∇ · (ε∇ϕ⊗ ∇ϕ)

− 1
Pa∇ ·

(
(∇P⊤ · ∇P) + β(P ⊗ ∇ϕ)

)
+ 1

2∇ ·
(
P♮ ⊗ P − P ⊗ P♮

)
+ ξ

2∇ ·
(
P♮ ⊗ P + P ⊗ P♮

)
+ 1

Fa∇ ·
(
ϕ̃P ⊗ P

)
, (6.12)

where the right-hand side denotes the stresses i.e the viscous stress (first line), the
Helfrich and surface tension stresses arising from the coupling to the phase field (second
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line), the distortion stress and the stress from the aligning of P perpendicular to the
interface (third line) and the flow alignment stress coming from the coupling between
ΩP and ξDP within the orientation field equation. We reformulate the stress from the
second and third line by solving the divergence, similarly to Remark 3.2, and obtain a
simpler formulation consisting of the chemical potentials ϕ♯ and P♯, defined below, see
also [48, 108]. Finally, we have

Re(∂tv + (v · ∇)v) + ∇p = ∇ · (η(ϕ)D)
+ ϕ♮∇ϕ
+ ∇PT · P♮

+ 1
2∇ ·

(
P♮ ⊗ P − P ⊗ P♮

)
+ ξ

2∇ ·
(
P♮ ⊗ P + P ⊗ P♮

)
+ 1

Fa∇ ·
(
ϕ̃P ⊗ P

)
. (6.13)

Phase field equation

Analog to previous sections, we consider the phase field as an implicit representation of
the cell surface and consider a regularized advection equation for the phase field variable
ϕ with the advected velocity given by the fluid velocity v. The introduced diffusion term
is scaled with a small mobility coefficient γ > 0. The evolution equation reads

∂tϕ+ v · ∇ϕ = γ∆ϕ♮, (6.14)

with non-dimensional chemical potential

ϕ♮ = 1
Be

(
∆µ− 1

ε2W
′′
0 (ϕ)µ

)
+ 1

Ca

(
−ε∆ϕ+ 1

ε
W ′(ϕ)

)
+ 1

Pa

(
c1
2 |P|2 − β∇ · P

)
,

(6.15)

describing the contribution of bending, surface tension and the orientation field to the
energy minimization of ES with respect to ϕ. Since we apply a H−1-gradient flow, ϕ is
volume conserving. We further introduce the variable µ = ε∆ϕ − 1

εW
′
0(ϕ) in order to

write the higher order equation for ϕ as a system of 2nd order equations.

Orientation field equation

The orientation field equation can be derived from the polar gel theory, see e.g. [35, 168,
178, 184, 206] and most recently Prost et al. [203] for a review, and is given by

∂tP + (v · ∇)P = −Ω · P + ξD · P − 1
κ

P♮, (6.16)

where the left hand side is the co-moving and co-rotational derivative. The right-hand
side is composed of the non-dimensional constant ξ that relates the coupling between
the orientation field and the flow field and describes the alignment on P with the flow,
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where ξ > 0 for rod-like and ξ < 0 for oblate cells. Furthermore, κ = ηrot/η is a
scaling factor between rotational and dynamic viscosity. The non-dimensional chemical
potential reads

P♮ = 1
Pa
(
−∆P + c1|P2|P − c1Pϕ+ β∇ϕ

)
. (6.17)

6.2.5. Initial and boundary conditions

We consider a cell in a channel and consider Ω as a rectangular domain. We assume
periodic boundary conditions on the left and right boundary for all variables. At the
upper and lower boundary, we use homogeneous Neumann boundary conditions for t > 0
and x ∈ ∂Ω that read

∇P · n = 0, ∇µ· n = ∇κ· n = ∇ϕ♮ · n = 0,

as well as Dirichlet boundary conditions given by

v(t,x) = 0, ϕ(t,x) = −1.

As initial condition (t = 0, x ∈ Ω) we have ϕ(t,x) = ϕ0(x) describing the initial
cell shape and for P we apply an equal aligned filament network P(t,x) = P0(x) =
(P1, P2)⊤ + δ, where δ is a vector-valued random number generated from a uniform
distribution on the interval [−0.05, 0.05] in order to break the symmetry. For all simu-
lations, we start with a circular cell with the radius R = 5, which is placed in the center
of Ω = [0, 160] × [0, 40]. The initial condition for the orientation field is P = (1, 0)⊤ + δ.

6.2.6. Material parameters

We consider the following material parameters, see Tab. 6.1, which are adapted from
[174, 242] and the references therein. The low Reynolds number allows us to restrict the
flow equation to a Stokes system, see also Remark 3.1.

6.3. Numerical approach and fully discrete finite element
scheme

There have been several attempts to numerically simulate hydrodynamic active polar
gels. At a microscopic scale Brownian dynamics simulation are used [193]. At larger
length scales lattice Boltzmann simulations were applied in [49, 171, 172, 241, 242] and
most recently in [205], where the authors described a hybrid particle-mesh method.
In [176], we have presented an approach for adaptive finite elements, where the partial
differential equations are treated with the parallel adaptive finite element toolbox AMDiS
[252, 261]. Within this approach, we further explore an operator splitting approach,
allowing us to solve the subproblems of the flow field, the orientation field and the phase-
field evolution separately in an iterative process. In time, a semi-implicit discretization
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Symbol Description Value
L characteristic length 10−6 m
V characteristic velocity 10−6 m/s
ρ fluid density 103 kg/m3

η dynamic viscosity of the fluid 2 · 103 Pa s
σ surface tension 0.0188 N/m
bN bending rigidity 1.26 · 10−14 Nm
k Frank constant 2 · 10−9 N, [58, 242]
ξ shape factor 1.1, [242]
ηrot rotational viscosity 3.3 · 103 Pa s, [242]
ζ activity parameter 2 · 103 N/m2, [259]
ε boundary layer parameter 0.21
γ mobility 0.025
c1 double well parameter for P 5
β forcing normal direction of P at interface 0, 0.005, 0.05

Table 6.1. – Material parameters of the system. For the given values, we obtain the
following characteristic numbers: Ca = 0.1, Be = 0.3, Pa = 1, Fa = 1 and Re = 5 · 10−13.

is used, which, together with an appropriate linearization of the involved non-linear
terms, leads to a set of linear systems in each time step. A further approach using finite
elements focusing on strategies for time discretization and decoupling can be found in
Shen and Yang [230].

The fully discrete finite element scheme follows in a straightforward manner. Fully
discrete schemes for related problems such as simple two-phase flows can be found in
[6, 7] and for the non-hydrodynamic Helfrich model we refer to [71, 173, 266]. Now, let
Th be a triangulation of the domain Ω of mesh size h. We introduce the finite element
spaces

Vh = {χ ∈ H1(Ω)|χ|K ∈ Plχ(K)},
V0h = {θ ∈ H1

0 (Ω)|θ|K ∈ Plθ (K)},
Wh = {q ∈ L2(Ω)|q|K ∈ Plq (K)}

where Pl(K) is the space for polynomials with degree equal than or less equal to l on
triangle K. We denote the space of vector test functions with dimension d by Vh = (Vh)d.
We discretize in time as done in Section 5.3 and apply an operator splitting approach,
where the upper index n denotes the time step number of the discretized time interval
I. Finally, we arrive at the following scheme, where we solve in each time step:
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1. The flow problem i.e. find (vn+1, pn+1) ∈ V0h ×Wh such that

⟨η(ϕn)Dn+1,∇ν⟩ = ⟨pn+1,∇ · ν⟩ + ⟨ϕ♮n∇ϕn + ∇Pn⊤ · P♮n
,ν⟩

+ 1
Fa⟨∇ ·

(
ϕ̃nPn ⊗ Pn

)
,ν⟩

+ 1
2⟨∇ ·

(
P♮n ⊗ Pn − Pn ⊗ P♮n

)
,ν⟩

+ ξ

2⟨∇ ·
(
P♮n ⊗ Pn + Pn ⊗ P♮n

)
,ν⟩,

⟨∇ · vn+1, q⟩ = 0,

∀(ν, q) ∈ V0h ×Wh.

2. The orientation field i.e. find (P♮n+1
,Pn+1) ∈ Wh × Vh such that

⟨dtPn+1,p♮⟩ = −⟨(vn+1 · ∇)Pn+1,p♮⟩ − ⟨Ωn+1 · Pn+1,p♮⟩ + ⟨ξDn+1 · Pn+1,p♮⟩

− ⟨ 1
κ

P♮n+1
,p♮⟩,

⟨P♮n+1
,p⟩ = 1

Pa
(
−⟨c1ϕ

nPn+1 + c1(Pn,n+1)2Pn,n+1,p⟩ + ⟨∇Pn+1,∇p⟩

+⟨β∇ϕn,p⟩) ,

∀(p♮,p) ∈ Wh × Vh. Here, we linearize (Pn,n+1)2Pn,n+1 = (Pn)2Pn+1 + 2(Pn ⊗
Pn)Pn+1 − 2(Pn)2Pn.

3. The phase field evolution i.e. find (ϕ♮n+1
, µn+1, ϕn+1) ∈ Vh × Vh × V0h such that

⟨dtϕ
n+1, ψ♮⟩ = ⟨vn+1ϕn+1,∇ψ♮⟩ − ⟨γ∇ϕ♮n+1

,∇ψ♮⟩,

⟨ϕ♮n+1
,m⟩ = 1

Be

(
−⟨∇µn+1,∇m⟩ − ⟨ 1

ε2W
′′
0 (ϕn,n+1)µn,n+1,m⟩

)
+ 1

Ca

(
⟨ε∇ϕn+1,∇m⟩ + ⟨1

ε
W ′(ϕn,n+1),m⟩

)
− 1

Pa⟨c1
2 |Pn+1|2 + β∇ · Pn+1,m⟩,

⟨µn+1, ψ⟩ = −⟨ε∇ϕn+1,∇ψ⟩ − ⟨1
ε
W ′

0(ϕn,n+1), ψ⟩,

∀(ψ♮,m, ψ) ∈ Vh ×Vh ×V0h, where we again linearize the non-linear terms as done
in Section 5.3.

The specified linear systems are solved using the direct solver UMFPACK [57]. We
employ an adaptively refined triangular mesh Th with a high resolution along the cell
membrane to guarantee at least six grid points across the diffuse interface as well as a
high resolution within the cell interior to appropriately resolve the orientation field. The
criteria to refine or coarsen the mesh is purely geometric and related to the phase field
variable ϕ. Due to the use of adaptivity, we need to interpolate the old solution defined
on T n

h onto the new mesh T n+1
h . To do this without violating the conservation of cell
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volume, we solve ⟨ϕn,old, θ⟩ = ⟨ϕn,new, θ⟩ in every adaption step with θ and ϕn,new defined
on T n+1

h and ϕn,old on T n
h . We use a multi-mesh strategy [254] to virtually integrate

the first term on the finest common mesh T n
h ∪ T n+1

h , which guarantees a constant cell
volume as long as time steps are appropriately chosen. We require the interface not to
propagate over a whole element within one time step. With this restriction, all numerical
tests show that

∫
Ω ϕ dx is conserved.

6.4. Simulations and results

6.4.1. Motility due to contractile and extensile stress

As proposed by [242], motility can be achieved by means of a spontaneous splay de-
formation. This highly complex process is explained by a cartoon in Fig. 6.4 (bottom)
and later on the simulation results are shown in Fig. 6.5. First, the cell elongates as
a consequence of a quadrupolar straining flow, marked by the circular dashed arrows,
resulting from the active stress tensor Sactive. The elongation stops if the surface forces
characterized by Ca and Be balance the active stress. Four flow vortices within the
cell can be observed. The orientation field P that remains rather uniform during the
elongation starts to fluctuate and then induces a shear flow parallel to the orientation
field, which results in a splay instability. The splayed configuration breaks the axial
symmetry of the system and transforms the quadrupolar flow in a dipolar flow with two
large vortices running across the cell. This has an influence on the cell shape and causes
the cell to move with constant shape and at constant velocity along the symmetry axis.

In addition, we demonstrate an example for cell motility due to extensile stress,
sketched by Fig. 6.4 (top) and the simulation results are given in Fig. 6.6. Here, the
vortices are reverse and the cell is stretched in the x1-direction. Together with the active
stress, which now generates a flow normal to the filaments, a bend instability occurs.
This is characterized by an alignment of the filaments along the curved shape of the cell,
which results in a downward motion. The only modification needed to achieve this, is
1/Fa = −3/2.

During the inclination of the filaments, a delicate split happens, where one side of
the filaments dominates the other one leading in different directions of the instabilities,
Fig. 6.4. The dominating side and therefore the shape and the direction of both instabil-
ities depend on the initial conditions and small disturbances due to external influences.
Fig. 6.7 shows the opposite splay instability (first row) and the opposite bend instability
(second row). Although the cell moves in the contrary direction the velocity profile has
a similar shape as before. All these results qualitatively agree with [242]. We now turn
to more quantitative comparisons and test the robustness of the instabilities.

6.4.2. Onset of motility

In this model a generic instability is used to describe a motile cell. The instability is a
result of a delicate balance between active stress and elasticity of the filament network:
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Figure 6.4. – Illustration of the formation of the bend and splay instability. The inter-
play between flow and elasticity together with the active stress determine the generic splay
instability

the resulting fluid flow tries to incline the actin filaments and opposed the diffusion
within the orientation field related to the Frank constant k, which is here carefully
chosen, smooths out any perturbation. Any parameter influencing this balance can be
responsible for the generation of an instability. In any case, the active stress plays a
crucial role, because it intensifies the inclination of the filaments if the symmetry is
already broken. Hence, motility is only possible if the strength of the myosin-actin
interactions exceeds a critical value. Within our simulations we obtain a critical activity
parameter 1/Facrit ≈ 0.75. Below 1/Facrit no instability occurs and the cell does not
move. This is at least the case for β = 0 and in qualitative agreement with [242].
The bending capillary number Be does not influence the behavior within the considered
parameter regime. However, a quantitative comparison with the results in [242], where
1/Facrit ≈ 0.5 is measured, cannot be achieved as not all parameters used in [242]
are known and the critical value turns out to be highly sensitive to various parameters,
which will be analyzed below. Fig. 6.8 shows the upper branch of the bifurcation diagram
separating a stationary state from a splayed and moving state by plotting the constant
velocity of the cell. For β > 0 the transition to an immotile cell is smoothed out. We
no longer have a sharp transition and observe motility also below 1/Facrit, again in
agreement with [242].

The onset of the instability and the time required to reach a constant shape moving
with constant velocity depends on the used parameters. As stronger the myosin-actin
interactions, as faster this shape is reached. This effect is most pronounced for β = 0 and
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Figure 6.5. – Cell movement for contractile stress, movement to the right: first row -
shape of the cell at different times evolving from left to right. Shown is the magnitude and
the direction of the orientation field. second row - velocity field in a laboratory frame with
different maxima: |v| = 0.1, |v| = 0.12, |v| = 0.19 and |v| = 0.42, which correspond to the
cell speed vcell of 0, 0.016, 0.054 and 0.125 from left to right. third row - velocity field of
the co-moving frame, i.e. (v1 − vcell, v2)T . The times t shown are 100, 220, 250, 340, which
correspond to seconds. The values used are from Tab. 6.1 and we changed 1/Fa = 1.125
and take β = 0 (no explicit forcing for P to point outwards at the cell boundary).
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6. A model for contractile stress using active polar gels

Figure 6.6. – Cell movement for extensile stress, movement downwards. first row - shape
of the cell at different times evolving from left to right. Shown is the magnitude and the
direction of the orientation field. second row - velocity field in a laboratory frame with
different maxima: |v| = 0.117, |v| = 0.138, |v| = 0.266 and |v| = 0.73, which correspond
to the cell speed vcell of 0, 0.02, 0.07 and 0.16 from left to right. third row - velocity field
in a co-moving frame, i.e. (v1 − vcell, v2)T . Note that bend instabilities generate a moving
direction normal to the initial direction of the orientation field. The times t shown are 10,
80, 100, 170, again corresponding to seconds. The parameters are the same as in Fig. 6.5.
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6.4. Simulations and results

Figure 6.7. – Opposite instabilities: depending on the initial conditions as well as on the
external effects the splay instability (first row) and bend instability (second row) draw a
different pattern (left) and the cell moves in the opposite direction, to the left and upwards,
respectively.
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Figure 6.8. – Bifurcation diagram showing the symmetry breaking from a stationary state
to a splayed and moving state for increasing 1/Fa. For 1/Fa < 1/Facrit the cell remains
stationary and for 1/Fa > 1/Facrit the cell is moving, shown is the absolute value of vcell.
This transition is smoothed out for β > 0. The inlet shows both branches of the diagram
with opposite velocities which occur only for the case β = 0.
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decreases for β > 0. The time to reach a constant shape moving with constant velocity
also depends on membrane properties of the cell. Here, the influence of the capillary
number Ca is significant. The smaller the surface tension, the longer it takes to reach
the desired shape. Again, this effect is less pronounced for β > 0.

6.4.3. Convergence tests

As already mentioned, all obtained results are very sensitive to various parameters. Due
to this sensitivity on the physical parameters, we would like to consider the influence
of numerical parameters on the described phenomena. We consider convergence tests.
Since we are primarily interested in cell motility, we first consider a parameter regime for
which our cell becomes motile and moves with a constant shape and constant velocity.
We consider the case of contractile stress and thus, movement in horizontal direction.
We use shape and velocity for validation and measure the following quantities:

• the x1-coordinate of the center of mass xcm as defined in eq. (5.19),

• the circularity of the cell ccell as defined in eq. (5.20), and

• the mean velocity of the cell

vcell =
∫

Ω ϕ̃v1 dx∫
Ω ϕ̃ dx

,

as an average of the x1-component of the velocity in Ω1, where v = (v1, v2)⊤.

We used absolute values for all quantities and the following error norm: ∥e∥2 = ((∑I |qt,ref −
qt|2)/(∑I |qt,ref |2))1/2, where qt is the temporal evolution of quantity q. The solution
on the finest grid serves as reference solution qt,ref . Tab. 6.2 shows the relative error
norms as well as the relative order of convergence (ROC) for the desired quantities if ε
is reduced. We consider two cases β = 0 and β = 0.05. Together with ε, we also refine
the mesh size to guarantee the same number of grid points within the diffuse interface
layer for all simulations and the time step to ensure the same relation between mesh
size and time step. The time interval is I = [0, 500]. Other parameters are obtained
from Tab. 6.1. We see essentially first order convergence, the higher numbers in ROC
are probably due to fortunate circumstances. Fig. 6.9 shows the shape and position
for various ε, visualizing the convergence and confirming the choice of ε = 0.21 for the
previous and further studies.

The second test considers the onset of motility. How sensitive is the obtained critical
parameter 1/Facrit on ε? The relation is shown in Fig. 6.10. A deeper analysis of the
interface profile, as shown for a 1D cut of a cell in Fig. 6.11 explains this dependency
as |P| is slightly more smeared out than ϕ. This has an influence on the active stress
σactive. Its divergence is reduced at the interface for increasing ε and therefore a larger
activity is needed to initiate the instability.
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x2

x1

ε ≈ 0.42
ε ≈ 0.30
ε ≈ 0.21
ε ≈ 0.15
ε ≈ 0.11

x2

x1

Figure 6.9. – Relative cell positions and cell shapes for different interface thicknesses ε in
case of β = 0 (left) and β = 0.05 (right) at time t = 300. If the cell moves to the left (in
case of β = 0), we reflect the cell shape with respect to the x2 axis of the initial center of
mass.

center of mass xcm cell velocity vcell circularity ccell

ε ∥e∥2 ROC ∥e∥2 ROC ∥e∥2 ROC

β = 0

0.42 0.0600 0.3988 0.0398
0.30 0.0177 3.5298 0.1659 2.5316 0.0314 0.6823
0.21 0.0047 3.8355 0.0787 2.1516 0.0179 1.6157
0.15 0.0028 1.4912 0.0273 3.0575 0.0061 3.1225

β = 0.05

0.42 0.0569 0.2575 0.0430
0.30 0.0298 1.8715 0.1302 1.9691 0.0316 0.8921
0.21 0.0129 2.4195 0.0511 2.6938 0.0174 1.7122
0.15 0.0025 4.7328 0.0095 4.8514 0.0059 3.1431

Table 6.2. – Relative error norms and convergence orders for critical parameters, upper
part β = 0 and lower part β = 0.05.
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Figure 6.10. – Phase diagram distinguishing between stationary and motile state as func-
tion of 1/Fa and ε. 1/Facrit can be considered as a function of ε with the limiting value for
ε → 0 presumably within the shaded region.
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Figure 6.11. – 1D cut of the phase field function ϕ and norm of the polarization field P
for ε = 0.3

6.4.4. Influence of different viscosities

Up to now we, have considered equal viscosity for the cytoplasm and the fluid outside, i.e.
η(ϕ) = η. Adopting a phase depending viscosity, where we interpolate between different
viscosities η0 and η1 as shown in [6] the results for this approach are comparable to other
more advanced approaches. In the following we only consider rescaled dimensionless
viscosity ratios, see Section 3.3 and eq. (3.17). Fig. 6.12 shows the dependency of 1/Facrit

on the values of η0 and η1. Decreasing the viscosity, but keeping both values equal, leads
to a reduction of the required activity for motility, but increasing the viscosity in the
cytoplasm and keeping the viscosity in the outside fluid constant, in all cases, leads to
an increase of the required activity. This can be explained by the necessity to induce
a characteristic flow pattern in Ω1 to induce the instability, which becomes harder to
achieve for larger viscosities. The viscosity also has an influence on the cell velocity. The
reached stationary velocity vcell increases if η0 is reduced. For more realistic parameters,
with an even larger ratio of η0/η1 we thus expect faster moving cells. The slope of
the corresponding bifurcuation branch, as in Fig. 6.8, above 1/Facrit is reduced if η1 is
increased. The sharp transition to motility for β = 0 and the smoothed out transition
for β > 0 remains.

6.5. Discussion

We already emphasized, that this model describes cell motility without adhesion. Can
we relate the motility mode to any freely-swimming microorganism? In order to answer
this question, we first compare the induced flow field with theoretical predictions for a
squirmer model [34, 154] and e.g. [191]. The surface tangential velocity for a circular
squirmer in a co-moving frame in polar coordinates is given by

vT,squirmer(α) = n1(sinα+m sin 2α), (6.18)

where n1 determines the velocity of the cell, whereas m = n2
n1

defines whether the swim-
mer is a pusher (m < 0), a puller (m > 0) or a neutral (stealth) swimmer (m = 0), and
α is the angle between the swimmers fixed swimming axis and the vector pointing to the
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Figure 6.12. – Dependency of 1/Facrit on viscosity ratio between outside fluid and the
cytoplasm. η0 = η1 = 1 corresponds to the previously considered case.

surface. Fig. 6.13 shows the surface tangential velocity for different swimmers, where we
choose n1 = 0.15 as well as m = 0 (stealth), m = 0.5 (puller) and m = −0.5 (pusher).
The profiles significantly differ with the extrema in that part of the swimmer, which is
responsible for the motion. In case of a puller it is the cell front (0 < α < π/2) and
(3π/2 < α < 2π), whereas as the pusher is driven by the rear, so the extrema appear
for (π/2 < α < 3π/2). For a neutral swimmer the extrema are at π/2 and 3/2π.

We now compare these results with our simulations. We therefore extract the surface
tangential velocity in the co-moving frame from our simulations. We use a contractile
stress and consider vT = (v1 − vcell, v2)⊤

⏐⏐⏐
ϕ(x,t)=0

for t > 0 such that the stationary
profile and velocity is reached. Fig. 6.14 shows the profile for various parameters 1/Fa
and β = 0.05. In comparison with the analytical results, we find puller dynamics for
1/Fa ≤ 0.5, similarities to neutral swimmers for 1/Fa = 0.75 and pusher dynamics for
1/Fa ≥ 1. For β = 0 we qualitatively obtain the same results for 1/Fa ≥ 1/Facrit and
thus only pusher dynamics. The corresponding velocity profiles from the squirmer model
are obtained from a data fit, see Fig. 6.14: n1 = 0.086, m = 0.357 (puller), n1 = 0.172,
m = 0.059 (neutral) and n1 = 0.291, m = −0.139 (pusher), respectively. Although we
compare results for nearly circular shapes, see Fig. 6.15 for the corresponding stationary
profiles, with that from analytic results for circular shapes, we observe a reasonable
agreement.

The analytical flow field of a circular squirmer particle can be described by a su-
perposition of a uniform background velocity, in our case, the constant velocity of the
moving cell vcell, a Stokeslet, a stresslet and a source doublet. In [65] this is used to
identify typical experimental flow fields. We here consider the same approach and use
the velocity field of a circular cell with center of mass xcm = (0, 0)⊤ in a co-moving
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Figure 6.15. – Stationary shapes moving with constant velocity to the right for different
1/Fa: 0.5, 0.75, 1, from left to right. Polarization field (first row), velocity field in co-moving
domain (second row). With increasing activity, the splay instability is enhanced, which
moves the maximum of the velocity field along the interface (indicated by short angular
arrow) from the front to the rear, visible also through the position of the vortices in the cell
(indicated by long arrow), which are located more towards the front for puller dynamics and
more towards the rear for pusher dynamics.

frame, given by

u(r) = −vcelle1 − Ast

r
(I + r · r)e1 − Astr

r2 (1 − 3
(
x1
r

)2
)r − Asd

r3

( I
3 − r · r

)
e1, (6.19)

where r = x/r is the polar axis, scaled with the distance r =
√
x2

1 + x2
2, e1 the unity

vector in x1-direction and I the identity matrix. We prepared our numerical solution:
v = (v1 − vcell, v2)T , x = (x1 − xcm, x2 − ycm)T and claim |v − u| → min outside the
circular cell shape with radius R = 5 to determine vcell, Ast, Astr and Asd. Tab. 6.3
shows the parameters obtained from the data fit. For 1/Fa = 0.5 the stresslet parameter
Astr is negative, which indicates a puller-like velocity profile and for 1/Fa = 1 Astr is
positive, indicating a pusher-like velocity profile. For 1/Fa = 0.75 the data fit suggests
a low puller-like velocity profile. However, we should keep in mind that we compare
velocity profiles of a circular and a non-circular shape. This discrepancy can be seen
by analyzing the relative error |v − u|/vcell between the numerical results and the fitted
analytical solution, see Fig. 6.16. The maximum of the error appears at the part of the
cell, where it is compressed and does not overlap with the circular shape.

Even if a transition from puller-like to pusher-like dynamics can be observed for
increasing actin-myosin interactions, the flow characteristics are much less developed
than in typical squirmer models [191] and are dominated by the Stokeslet contribution.
Within the analytical treatment of a circular droplet in [259] it was found that the droplet
behaves like a puller. However, for the small splay considered, the corresponding flow
field is not sufficient for motility and it is the quadrupole moment that characterizes the
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1/Fa vcell Ast Astr Asd

0.50 0.0294 0.0387 -0.3541 12.5882
0.75 0.0701 0.0872 -0.1744 28.8854
1.00 0.1089 0.1460 0.3910 47.3611

Table 6.3. – Optimal parameters for background velocity vcell, the Stokeslet Ast, the
stresslet Astr and the source doublet Asd obtained from a data fit with the numerical solu-
tion.
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Figure 6.16. – Magnitude of the velocity profile of the numerical solution |v| (left), the
fitted analytical solution |u| (middle) and the relative error (right) for 1/Fa = 0.5 (first row),
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motility mechanism, resembling the motility mechanism of a squirmer. This is consistent
with our findings for low 1/Fa.

In [65] the same fitting approach is used to analyze the flow topology for swimming
microorganisms, such as Cloamydomonas reinhardtii and Volvox carteri. Here, the flow
is also strongly dominated by the Stokeslet contribution and puller-like dynamics are
only mildly developed. However, for a quantitative comparison of our results with the
flow fields of such microorganisms, or that of bacteria, which typically show pusher-like
dynamics, more experimental data are required. It would be interesting how predictions
of the considered model in 3D compare with such measured flow fields in the future.

6.6. Conclusion

We here reviewed and extended a proposed generic model for cell motility [242], which
is based on spontaneous symmetry breaking in active polar gels. It models the inter-
action of myosin and actin as the driving mechanism for motility and does not require
adhesion. It further accounts for a more complex behavior of the cell bulk by a dis-
tinct elasticity of the filaments. The model is extended to include further membrane
properties, in particular bending properties, which however turn out to be of minor rel-
evance for motility in the considered parameter regime. Detailed numerical studies are
performed and convergence studies considered to demonstrate the stability of the used
algorithm, which is based on a diffuse interface description. The results clearly indicate
the independence of the physical instabilities, the splay or bend instability, which are
responsible for cell motility in the considered model, and possible numerical instabilities
and show the robustness of the motility mode. With this confidence in the model and
the developed numerical algorithm, the results are compared with model and experimen-
tal data for swimming microorganisms. Within certain parameter regimes a transition
from puller-like to pusher-like dynamics can be found for increasing myosin-actin inter-
actions, demonstrating the generic properties of the model. A quantitative comparison
with swimming microorganism is not yet possible, requires 3D simulations and proba-
bly further model extension. One possible way to extend the model is a combination
of the myosin-actin interactions with the treadmilling process of actin polymerization
and depolymerization, described in Chapter 5. However, qualitative similarities with
generated flow fields of microorganisms, such as Volvox carteri could already be found.
The simulated flow field as well as the measured flow field is dominated by the Stokeslet
contribution. In [65] it is argued that this behavior is going to have an effect on the
rheology of suspensions of such microorganisms. With these properties, suspensions of
our modeled cells would probably behave more like suspensions of sedimenting particles,
as higher order moments are negligible in flow fields dominated by the Stokeslet contri-
bution. However, if this assumption holds, or the weakly developed puller- or pusher-like
dynamics in the considered model are already sufficient to observe typical phenomena
in active fluids, e.g. as phase-separation, have to be tested. A general model for this is
developed in Chapter 9.
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Part II.

Dynamics of multiple cells
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Chapter 7

A hydrodynamic model for
multiple cells

In our previous work, we only considered a single cell. However, in many biological
systems cells appear with various other cells. They can collide, connect or influence the
flow field for other cells. Migrating cells can trace the signal of the leading cell and red
blood cells in a vessel show various non-linear behavior, such as the F̊ahræus–Lindqvist
effect [96]. This effect describes that the macroscopic viscosity of the blood depends on
the thickness of the blood vessels and therefore depends on the velocity of the blood
flow, which differs from the classic Newtonian dynamics. In order to understand this
phenomenon, we consider the complex microstructure of the blood, where the elasticity
of the RBCs and their collision rate, which highly depend on the flow rate, affect the
macroscopic properties of the blood. Moreover, actively driven cells or particles are of
wide interest for many biological or soft matter physicists. So called active systems
can lead to variety of non-linear phenomena, such as motility-induced phase separation,
where active particles form stable clusters in absence of any attractive potential, see e.g.
[114] for a review.

Up to now, there here have been various numerical approaches for multi-particle
systems, especially in the sense of collective migration using particle-based methods
[165, 166, 180] or Vicsek-type models [183, 253]. But all of them neglect the deforma-
bility of the particles. The deformability, in contrast, has been taken into account
within a non-hydrodynamic model in [185]. Other approaches such as Level-Set methods
[218], particle-based mesoscale simulation methods [100, 182], parametric finite-elements
methods [25] or a combined approach that uses finite elements, immersed-boundary and
lattice-Boltzmann methods [138] consider passive and not self-propelled deformable ob-
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jects in fluid flow. In [41, 160, 196] the diffuse interface method has successfully been
applied to multiple cells, but non of them consider fluid flow.

As a lot of those non-linear phenomena are poorly understood especially with the
consideration of fluid flow, we develop a mathematical model for multiple cells based
on a multi-phase approach of the diffuse interface Navier-Stokes-Helfrich model, which
accounts for bending, surface tension or surface conservation and fluid flow. In Chapter 7,
we describe the framework for the treatment of multiple phase field variables, where we
introduce an interaction potential in order to prevent the cells from overlapping. We
classify the collective motion into two groups: a passive motion, where the cells are only
advected by the fluid flow and an active migration, where the cells are propelled by their
own impetus resulting from cell motility or swimming mechanisms. An application for a
passive motion is given in Chapter 8. Here, we simulate the flow of red and white blood
cells to understand the dependency between WBC margination and the flow regime. In
Chapter 9, we extend our passive model by an active polar gel theory to study binary
collisions and the onset of collective migration in systems of self-propelled cells, see
Chapter 6.

Within this chapter, we extend our theory for diffuse interface Navier-Stokes-Helfrich
model based on a two-phase flow description for a single cell to a multi-phase flow ap-
proach that considers several cells embedded in a fluid environment. The structure of
this chapter is given as follows: we introduce the notation for the multi-phase flow.
We introduce the model that considers an interaction potential between different cells
using a sharp interface formulation, Section 7.1.1. Then, we apply a diffuse interface
approach using multiple phase field variables that leads to a thermodynamically consis-
tent hydrodynamic model, see Section 7.1.2 and Section 7.1.3. In Section 7.2, we briefly
describe the numerical treatment of all equations and point out how such highly coupled
systems can be treated numerically and how its numerical costs can be limited using
operator splitting approaches and problem parallelization with OPENMP. We further
conduct several benchmark computations in Section 7.3 where we compare our approach
with other strategies within the phase field approach and investigate its dependency on
various model parameters.

The hydrodynamic approach for multiple cells, which we describe in this chapter,
has recently been published in Marth et al. [177] and Ling et al. [156].

7.1. Mathematical model

7.1.1. Sharp interface formulation

We now consider multiple cells and extend the definition for cell bulk and surface as
given in Section 2.1 to N cells Ω̄i = Ωi ∪ Γi where Ωi denotes the cell interior and Γi the
membrane of cell i. Thus, the Helfrich energy eq. (3.5) becomes

E(Γi) =
∫

Γi

1
2bn,i(H −H0,i)2 ds
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Figure 7.1. – Illustration of the two-dimensional domain Ω containing multiple cells

and accordingly assigns the different physical properties bn,i and H0,i to a specific mem-
brane. Furthermore, the surrounding fluid is still defined as Ω0. As before, the membrane
Γi = Ω̄0∩Ω̄i for i = 1, . . . , N is considered as interface between the cell and the surround-
ing fluid. We claim that all phases do not overlap, i.e. Ωi ∩ Ωj = ∅ for i ̸= j. Moreover,
we introduce the domain Ωcell = ∪N

i=1Ωi containing of cell interiors and Γcell = ∪N
i=1Γi

containing all surfaces. It is clear that Ω = (Ωcell ∪ Γcell) ∪ Ω0, see Fig. 7.1 for an il-
lustration. We assume each phase Ω0, . . . ,ΩN to be an incompressible Newtonian fluid
described by the Navier-Stokes equations as given in the eq. (2.47) -(2.48). The jump
conditions across the interfaces for the velocity field is given by

[v]Γi = 0, zero velocity jump, (7.1)

and for the stress in normal direction, we can choose between

[S · n]Γi = δE

δΓi
+ λglobal,iHn, with a global area constraint, and

[S · n]Γi = δE

δΓi
+ λlocalHn + ∇Γiλlocal,with a local inextensibility constraint,

with [f ]Γi = f0 − fi the jump across Γi(t) and n the outward normal pointing out of
Ωi(t). The surface gradient is ∇Γi = PΓi∇ with PΓi the projection operator. Because
λlocal := λlocal(t,x) is a local variable, we do not assign λlocal to each cell.

In order to prevent the cells from overlapping, we model a steric interaction poten-
tial, which in the sharp interface description reads for each cell i

Ei,int(Γ1, . . . ,ΓN ) =
N∑

j=1
j ̸=i

αij

∫
Γi

wj ds,

where wj is an interaction function and describes the influence of cell j to its environment.
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The interaction parameter αij > 0 determines the strength of the repulsive interaction
between cell i and cell j with respect to the evolution of cell i. By setting αij < 0, we
can further describe an adhesive interaction [266]. Usually, such a contact potential is
defined as

wj(rj(x)) =

⎧⎨⎩∞ if rj(x) = 0,
0 otherwise.

A much more appropriate way is to consider the short range repulsion by a Gaußian
potential [266]

wj(t,x) = exp
(

−
r2

j (t,x)
ε2

)
, (7.2)

where ε is a smoothing parameter, determining the range of the interaction. Here, the
signed distance function rj(t,x) specifies the distance between x ∈ Ω and its nearest
point on Γj . The calculation of rj(t,x) may be computationally expensive. Applying
the diffuse interface approach, as discussed in the following section, will overcome this
problem.

7.1.2. Diffuse interface approach

The extension to the diffuse interface is straightforward and similarly to previous sec-
tions. In addition, we introduce multiple phase field variables ϕ1, . . . , ϕN , labeling the
inside and outside of each cell. The membrane Γi is regarded as the diffuse layer between
the two phases and implicitly defined by the zero level set of ϕi. The phase field variables
are defined as

ϕi(t,x) := tanh
(
ri(t,x)√

2ε

)
, (7.3)

analog to the definition for one phase field. Here, the interface thickness parameter ε
is set to be constant for all phases, but the method allows us to choose different ε, for
instance, to treat cells with different sizes. Moreover, the phase containing all cells, pre-
viously defined by Ωcell, can thus be defined as ϕcell = 1 with ϕcell = maxx∈Ω(ϕ1, . . . , ϕN )
and its counterpart, the phase of the surrounding fluid as ϕ0 = −ϕcell. Interaction in
principle is computationally costly, as it turns the problem into a non-local one and
requires the coupling of all phase field variables ϕ1, . . . , ϕN and computations of the
distance between cells. Using eq. (7.3), the signed distance function rj can be computed
within the diffuse interface region as

rj = − ε√
2

ln 1 + ϕj

1 − ϕj
, for all x : |ϕj | < 1.
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cell j

cell k

Γj

Γi

Γk

cell i, Ωi

φi ≈ 1

φi ≈ −1

wk

wj

dj < 0, |φj | < 1

dk < 0, |φk| < 1

Figure 7.2. – Illustration of the interaction potential. The red and blue colored parts
of Γi are in contact with the interfaces of cell j and cell k (dashed contours around those
cells), where the signed functions rj and rk can be calculated and thus also the interaction
functions wj and wk. They do not vanish in the overlapping regions.

Accordingly, we can write the short range interaction function wj as

wj =

⎧⎨⎩exp
(
−1

2(ln 1+ϕj

1−ϕj
)2
)
, if |ϕj | < 1,

0, otherwise,

and consider the interaction potential for cell i within the diffuse interface description,
which reads

Ei,int(ϕ1, . . . , ϕN ) =
∫

Ω
B(ϕi)

N∑
j=1
j ̸=i

αijwj dx,

with B(ϕi) = 1
ε (ϕ2

i − 1)2, being nonzero only within the diffuse interface region around
Γi. In addition, B(ϕi) serves as approximation of the surface delta function δΓ as δϕ :=

3
4
√

2B(ϕi) → δΓ, if ε → 0. Other approaches for δϕ, e.g. the Cahn-Hilliard energy
eq. (2.22), may also be used. Fig. 7.2 gives a schematic illustration of the interaction
terms. The algorithm considers only these cells, for which the diffuse interfaces overlap.
All other cells do not contribute to the interaction. In addition, the most expensive part,
computing the distance between cells, has been avoided as this information is already
contained in the phase field description of the cells. The approach, thus, scales with N ,
the number of cells. Similar ideas to model interactions within phase field approaches
have been considered in [116, 266] to model substrate adhesion for a single cell. Other
approaches, such as [41, 160], consider multi-phase systems. However, all models neglect
fluid flow.

Finally, we specify the non-dimensional overall energy of the system in a fluid do-
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main containing N cells

E(v, ϕ1, . . . , ϕN ) = Ekin(v) +
N∑

i=1
ES,i(ϕi) + Eint(ϕ1, . . . , ϕN ). (7.4)

We choose the surface energy to be the Helfrich energy with surface area conservation
eq. (3.33)

ES,i(ϕi) = 1
Bei

1
2ε

∫
Ω

(
ε∆ϕi − 1

ε
W ′

0,i(ϕi)
)2

+ p2,i

2Be(ECH(ϕi) − A0,i)2 dx,

where the volume constraint is removed since an H−1-gradient flow will directly ensure
the volume conservation. Furthermore, we have W ′

0,i(ϕi) = (ϕ2
i − 1)(ϕi + H0,i), A0,i =

ECH(ϕi(t = 0,x)) and the interaction energy in non-dimensional form for all cells

Eint(ϕ1, . . . , ϕN ) =
N∑

i=1

∫
Ω
B(ϕi)

N∑
j=1
j ̸=i

1
Inij

wj dx (7.5)

with Inij = 4
√

2
3

η0U
αij

the interaction number. In the following we review the governing
equations and we show that the complete system fulfills thermodynamic consistency. All
further PDEs are defined in I × Ω.

Phase field equations

The evolution equation for ϕi reads in I × Ω

∂tϕi + v · ∇ϕi = γ∆ϕ♮
i , (7.6)

with a small positive mobility coefficient γ and the non-dimensional chemical potential

ϕ♮
i := δE(ϕ1, . . . , ϕN )

δϕi
= δES,i(ϕi)

δϕi
+ δEint(ϕ1, . . . , ϕN )

δϕi
, (7.7)

where the variation of the surface energy, similar to eq. (3.62)-(3.64), is

δES,i

δϕi
= 1

Bei

(
∆µi − 1

ε2W
′′
0,i(ϕi)µi + p2,i(ECH(ϕi) − A0,i)κi

)
, (7.8)

µi = ε∆ϕi − 1
ε
W ′

0,i(ϕi), (7.9)

κi = −ε∆ϕi + 1
ε
W ′(ϕi), (7.10)

and the variation of the interaction energy is

δEint(ϕ1, . . . , ϕN )
δϕi

= B′(ϕi)
N∑

j=1
j ̸=i

1
Inij

wj + w′
i

N∑
j=1
j ̸=i

1
Inji

B(ϕj), (7.11)
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with

w′
i =

⎧⎨⎩
2

ϕ2
i −1 ln 1+ϕi

1−ϕi
exp

(
−1

2(ln 1+ϕj

1−ϕj
)2
)
, if |ϕj(t,x)| < 1,

0, otherwise.

Please note, for simplicity we only consider equal interaction numbers i.e. In = Inij .
Therefore, the variation eq. (7.11) becomes

δEint(ϕ1, . . . , ϕN )
δϕi

= 1
In

⎛⎜⎝B′(ϕi)
N∑

j=1
j ̸=i

wj + w′
i

N∑
j=1
j ̸=i

B(ϕj)

⎞⎟⎠ .

Navier-Stokes equations

Finally, the non-dimensional Navier-Stokes equations are given by

ρ(ϕ)Re(∂tv + v · ∇v) + ∇p =∇ · (η(ϕ)D) +
N∑

i=1
ϕ♮

i∇ϕi, (7.12)

∇ · v = 0, (7.13)

with ρ(ϕ) := ρ(ϕ1, . . . , ϕN ) = 1 and η(ϕ) := η(ϕ1, . . . , ϕN ) = 1−ϕcell
2 + ∑N

i=1
ηi
η0

ϕi+1
2 .

Different densities could be handled similarly, but are omitted here for simplicity.

Inextensibility for multiple cells

To enforce the local inextensibility constraint, we follow the first approach as described
in Section 3.4.3 and [12] and extend it to multiple cells. We use the local Lagrange
multiplier λlocal in order to enforce the inextensibility within the Navier-Stokes system.
For that we consider ϕcell to merge all cells. Then, the Navier-Stokes equations become

Re(∂tv + v · ∇v) + ∇p− ∇ · (η(ϕ)D) =
N∑

i=1
ϕ♮

i∇ϕi + ∇ ·
( |∇ϕcells

2 |Pϕλlocal

)
,

(7.14)
∇ · v = 0, (7.15)

ξε2∇ · (ϕ2
cells∇λlocal) + |∇ϕcells|

2 Pϕ : ∇v = 0, (7.16)

where ξ > 0 is a parameter independent of ε. For ε → 0 we obtain ∆λlocal = 0 away
from Γcells and PΓ : ∇v = ∇Γ · v = 0 near Γcells, as shown in [12] for n = 1.

Initial and boundary conditions

The coupled system obeys the following initial conditions

v(t,x) = v0(x), ϕi(t,x) = ϕ0
i (x), i = 1, . . . , N,
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for t = 0 and x ∈ Ω, which are specified in each simulation. We further have to guarantee
that the ϕi do not overlap. In the case of solid i.e. not periodic boundaries, we consider
Dirichlet boundary conditions

v(t,x) = 0, ϕi(t,x) = −1, i = 1, . . . , N,

and Neumann boundary conditions

∇µi · n = ∇κi · n = ∇ϕ♮
i · n = ∇λlocal · n = 0, i = 1, . . . , N,

which hold for t > 0 and x ∈ ∂Ω.

7.1.3. Thermodynamic consistency

The proposed system of equations (7.6) and (7.7) for i = 1, . . . , N and eq. (7.14)-(7.16)
fulfills thermodynamic consistency. To show this, we prove that the time derivative

dE
dt =

∫
Revvt +

N∑
i=1

ϕ♮
i∂tϕi dx (7.17)

of the overall energy eq. (7.4) is less or equal to zero. Inserting

∂tϕi = −v · ∇ϕi + γ∆ϕ♮
i,

Re∂tv = −Re(v · ∇)v − ∇p+ ∇ · (η(ϕ)D) +
N∑

i=1
ϕ♮

i∇ϕi + ∇ ·
( |∇ϕcells|

2 Pϕλlocal

)
,

into eq. (7.17) yields

dE
dt =

∫
Ω

v ·
(

−Re(v · ∇)v − ∇p+ ∇ · (η(ϕ)D) +
N∑

i=1
ϕ♮

i∇ϕi

+∇ ·
( |∇ϕcells|

2 Pϕλlocal

))
+

N∑
i=1

ϕ♮
i(−v · ∇ϕi + γ∆ϕ♮

i) dx

=
∫

−∇v : η(ϕ)D − γ
N∑

i=1
|∇ϕ♮

i |
2 −

(
∇v : |∇ϕcells|

2 Pϕ

)
λlocal dx

=
∫

−η(ϕ)D : D − γ
N∑

i=1
|∇ϕ♮

i|
2 − ξε2ϕ2

cells|∇λlocal|2 dx ≤ 0,

where we have performed the same procedure as in Section 2.8. In particular, we inserted
eq. (7.16) in the last line that describes the energy law for this problem.
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7.2. Numerical approach

7.2.1. Time discretization

For the time discretization, we explore an operator splitting approach and adapt the
same strategy as in the previous sections. In an iterative process, we first solve the flow
problem and substitute its solution into the phase-field equations, which are then solved
separately with a parallel splitting method. We again split up the time interval I = [0, T ]
as done in previous sections. For each system, a semi-implicit time discretization is used,
which together with an appropriate linearization of the involved non-linear terms leads
to a set of linear system in each time step:

1. the flow problem for vn+1, pn+1 and λn+1
local:

Re
(
dtvn+1 + (vn · ∇)vn+1

)
= −∇pn+1 + ∇ · (η(ϕn)Dn+1) +

N∑
i=1

ϕ♮n∇ϕn
i

+ ∇ · ( |∇ϕn
cells|
2 Pn

ϕλ
n+1
local),

∇ · vn+1 = 0,

ξε2∇ · ((ϕn
cells)2∇λn+1

local) = −|∇ϕn
cells|
2 Pn

ϕ : ∇vn+1,

where Pn
ϕ = I − ∇ϕn⊗∇ϕn

|∇ϕn|2 .

2. the phase field equations for ϕn+1
i , i = 1, . . . , N :

dtϕ
n+1
i = −vn+1 · ∇ϕn+1

i + γ∆ϕ♮
i

n+1
,

ϕ♮
i

n+1 = 1
Bei

(
∆µn+1

i − 1
ε2W

′′
0,i(ϕ

n,n+1
i )µn,n+1

i

)
+ ci

Bei
(ECH(ϕn

i ) − A(ϕn
i ))

(
−ε∆ϕn+1

i + 1
ε
W ′(ϕn,n+1

i )
)

+ 1
In

⎛⎜⎝B′(ϕn
i )

N∑
j=1
j ̸=i

wn
j + w′

i
n

N∑
j=1
j ̸=i

B(ϕn
j )

⎞⎟⎠ ,
µn+1

i = ε∆ϕn+1
i − 1

ε
W ′

0,i(ϕ
n,n+1
i ).

We further linearize the non-linear terms by a Taylor expansion of order one ac-
cording to Section 5.3.

7.2.2. Implementation

We apply the finite element method to discretize in space, where a P 2/P 1 Taylor-Hood
element is used for the flow problem. All other quantities are discretized in space using
P 2 elements as done in Section 6.3. The fully discretized system of partial differential
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equations is implemented using the adaptive finite element toolbox AMDiS [252, 261].
We use an adaptively refined triangular mesh Th with a high resolution along the cell
membranes to guarantee at least six grid points across the diffuse interface. We further
conduct a shared memory OPENMP parallelization, to solve the phase field evolutions
via a parallel splitting method. Each linear system of equations is solved using the direct
solver UMFPACK [57].

7.3. Model justification

In [12, 218] it has been shown that two inextensible objects in an extensional flow do
not coalesce due to the inextensibility of the membrane, even without an interaction
potential. If this would also be true in more general cases, it would allow us to use one
phase field variable for all objects and drastically simplify the considered model. We
therefore consider the interaction of two objects in more detail and demonstrate that
the introduced model is indispensable for approaches without inextensibility and even
indispensable for approaches with inextensibility as this condition is only asymptotically
fulfilled for diffuse interface models.

7.3.1. Collision of two cells

We set up two elliptical objects at (1.45, 0.88) and (3.8, 0.875), with axis length 0.5
√

2
in x2-direction and 0.5 in x1-direction, where the first object is placed a little higher
in order to have comparable situations at coalescence. The computational domain is
[0, 5.25] × [0, 1.75]. We apply Dirichlet conditions on each boundary. To provide a
collision, we adopt a space dependent volume force F = (0.5(ϕ+1) 1

Frf1, 0)⊤, with f1 = 1,
if x1 < 2.625 and f1 = −1 if x1 > 2.625, and choose the Froude number Fr=10−5. We set
Re = 0.01, Bei = 5, mobility γ = 10−5 and a viscosity ratio ηi/η0 = 10. The evolution
of the objects at time 0.2, 0.4, 0.6 and 2.5 is shown in Fig. 7.3. Each row considers a
different modeling approach. We consider six cases: one phase field without (a) and with
(b) inextensibility constraint, two phase fields without (c) and with (d) inextensibility
constraint and two phase fields and an interaction potential without (e) and with (f)
inextensibility constraint. The last situation describes the used model in the paper. The
black lines show the zero level set and the outer interface, e.g. the [−0.8, 0] level sets,
are colored blue in order to visualize the effects at coalescence.

The simulations show a strong influence of the inextensibility constraint on the
dynamics, the objects move more slowly. However, the strongest effect can be seen on
coalescence. For one phase field variable the objects come into contact, but do not merge,
as merging would cost energy, due to a violation of the tanh profile. With the inextensi-
bility constraint, which should inhibit the objects from touching according to [12, 218],
the objects come into contact only at two points. However, also in this situation the
phase field is irreversibly connected. The results of [12, 218] thus cannot be generalized.
However, in our approach the inextensibility condition is only asymptotically fulfilled,
which seems to avoid an entire adhesion but cannot prevent the objects from touching.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.3. – Snapshots of the object collision for time 0.2, 0.4, 0.6 and 2.5 (from left to
right). The rows indicate the used approaches: (a) one phase field, (b) one phase field with
inextensibility, (c) two phase fields, (d) two phase fields with inextensibility, (e) two phase
fields with interaction potential (Id= 0.01) and finally (f) two phase fields with interaction
potential (Id= 0.01) and inextensibility. Shown are the streamlines of the velocity field as
well as the [−0.8, 1] level set of the ϕcell and the zero level set (black line)

Figure 7.4. – eight RBC placed in a symmetric bifurcated vessel, initial condition
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Figure 7.5. – Eight objects in a symmetric bifurcated channel (only half of the domain is
shown). a) - f) are the same cases as in figure 7.3.

Overall, in our setting a single phase field is not sufficient to simulate more than one
cell if contact cannot be avoided. With two phase fields but no interaction potential the
situation is similar. Here, merging of objects by definition is not possible and due to the
incompressibility of the fluid, overlapping objects should also not occur. However, the
simulations show that objects touch each other, adhere and overlap slightly. This can
be reduced by using the inextensibility constraint but not be prevented. Thus, this ap-
proach is not sufficient as well. Only with an interaction potential, contact or adhesion of
objects was not observed, neither without nor with the inextensibility constraint. Only
the remaining distance between the objects differs and is bigger if the inextensibility
constraint is considered.

7.3.2. RBC in a bifurcated vessel

In the following, we consider a more realistic setting, where we put eight objects in a
flow inside a bifurcated channel. The initial shape is a Cassini oval that is close to the
discoidal shape of a RBC. We consider similar parameters as before, Re= 1.125 · 10−4,
Bei = 2.5, Id= 0.01, γ = 10−7 and a viscosity ratio ηi/η0 = 10. Flow is considered
through the force term F = ( 1

Fr , 0)⊤, with Fr= 2.4 · 10−6 leading to a maximal velocity
of magnitude 10. Figure 7.5 shows the results for the same eight cases as considered
above. Also for this situation, only the cases with one phase field for each object and an
interaction potential lead to acceptable results. Differences in the dynamics still can be
observed for the case with and without the inextensibility constraint.
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(a) In = 0.001 (b) In = 0.01 (c) In = 0.1 (d) In = 1. (e) 1/In = 0

Figure 7.6. – Clip from the simulation for case 5 at time 1 for different interaction strength
from high interaction strength (left) to no interaction strength (right). The interaction
strength should be chosen carefully as for low interaction a contact and adhesion cannot be
prevented. On the other hand, a high interaction strength can compromise the simulation.

7.3.3. Variation of the interaction strength

We again start the simulation from above for case 5 and vary the strength of the inter-
action potential. Due to this parameter, we can adjust the distance between each vesicle
during a collision. Fig. 7.6 shows that for smaller interaction strength (higher In) the
distance between cells decrease unless they come directly into contact. Moreover, the
choice of an interaction parameter has also direct influence to the cell’s shape and posi-
tion: smaller interaction strength can lead to temporary or permanent adhesion between
cells and higher interaction strength can lead to a stronger deformation while a collision
as the interaction potential becomes dominant in the total energy and an increasing of
the Helfrich part becomes irrelevant.

7.4. Discussion and conclusion

In this chapter, we showed an approach for the treatment of multiple cells. We introduced
an interaction potential that locally prevents the cells from overlapping. This approach
only considers these cells for which the diffuse interfaces interfere. All other cells do
not contribute to the interaction. The most expensive part, computing the distance
between cells, has been avoided, as this information is already contained in the phase
field description of the cells. Since our approach is given in a hydrodynamic multi-phase
formulation, it offers a wide range of application.

In the previous studies, our model considers only a repulsive interaction. This
approach can easily be extended to adhesion dynamics. For instance, Zhang et al.
[266] modeled substrate adhesion, where they place a three-dimensional vesicle on a
substrate that is implicitly defined by a signed distance function. Applications for cell-
cell adhesion can be found in [160], where the authors studied collective cell migration.
If an overlapping of the cell can be excluded, e.g. by a boundary condition, the adhesion
interaction function is w̃j = −wj . In general, an adhesion potential should still prevent
overlapping. This can be fulfilled by using a linear combination of long range adhesion
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−0.5 −0.25 0 0.25 0.5

−1

−0.5

0

0.5

1

r(x)

wj

w̄j

φ

(a)
(b)

Figure 7.7. – (a) Graph of potential functions in 1D. The cell membrane is given for r(x) =
0. Values for r(x) < 0 can be neglected. (b) Comparison of a repulsive potential function wj

(top) and a Lennard-Jones-like potential w̄j (bottom) for eight RBC in a bifurcated vessel.
Because of the adhesive part the cells are much more attached and form chains of RBCs.
Parameters: ε = 0.04; r1 = 1, r2 = 4, a1 = 0, (wj); r1 = 2, r2 = 1, a1 = 1, a2 = 0, a3 = 20
(w̄j).

and short range repulsion interaction functions, similar to a Lennard-Jones potential:

w̄j =

⎧⎪⎨⎪⎩r1 exp
(

−d2
j

r2ε2

)
− a1 exp

(
−(dj−a2ε)2

a3ε2

)
, if |ϕj(x)| < 1

0 otherwise.

Here, r1 and a1 denote the strength of repulsion and adhesion, respectively and a2 sets
the adhesion maximum at dj − a2ε. The parameters r2 and a3 set the thickness of
the repulsion and adhesion area, respectively. Fig. 7.7a shows the graph of a Lennard-
Jones-like potential w̄j compared to a normal repulsive potential wj eq. (7.2), Moreover,
Fig. 7.7b shows a comparison between w̄j (bottom) and wj (top) applied to the problem
discussed in Section 7.3.2. As a result of adhesion, the RBCs are much more attached.
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Chapter 8

White blood cell margination

In this chapter, we apply a multi-phase approach of the Helfrich-type model to describe
white blood cell margination, a biological phenomenon that can be understood as a
result of the interplay between collisions, different mechanical properties and lift forces
of the red blood cells (RBCs) and white blood cells (WBCs) within the vascular system.
At first, we give a short introduction of the biological problem. Then, we review existing
modeling approaches before we show our model, see Chapter 7, accounting for bending
and inextensibility, can be applied to this problem. In Section 8.4, the model is applied
in the low Reynolds number regime. It is shown that the tendency of margination is
decreased for increasing deformability and a non-monotonic dependency on hematocrit
e.g. as reported before in Fedosov et al. [100]. We further study the lift force on a single
RBC and a single WBC, which is the determining physical effect for WBC margination,
for various Reynolds numbers. This results lead to the study of the influence of inertia
to WBC margination. Finally, we observe a decreasing tendency for margination with
increasing Reynolds number.

The contents of this chapter such as motivation of the problem and the observed
results have already been published in Marth et al. [177]. The underlying mathematical
model and its numerical treatment has already been discussed in the last chapter and
can also be found in Marth et al. [177] and Ling et al. [156].

8.1. Introduction

Various experimental and simulation studies of flowing blood have shown that RBCs
concentrate in the center of the blood vessel. This can be explained by a non-inertial lift
force, arising from cell-wall and cell-cell hydrodynamic interactions, the high deforma-
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bility of RBCs and their nonspherical shapes, see e.g. [143] for a recent review. The
non-inertial lift force results in a migration of RBCs towards the center of the vessel
and a RBC free layer near the wall. Differences in size, shape, and deformability are
assumed to lead to different non-inertial lift forces and thus a separation of cells with dif-
ferent mechanical properties within the blood vessel [186]. WBCs have a near-spherical
shape and are not very deformable and thus mechanically different from RBCs. The
non-inertial lift force of WBCs is expected to be much lower than that on RBCs, or even
zero in the limit of a rigid body approximation for WBCs [37, 113]. This suggests, that
WBCs may get marginated to the RBC free layer near the wall. This effect requires the
interaction of RBCs and WBCs and is of utmost importance for the functioning of the
immune system, which requires the adhesion of WBCs to the vessel wall.

While for low Reynolds numbers in principle understood, detailed investigations also
in this regime show a non-trivial dependence of WBC margination on various blood flow
properties including hematocrit Ht, vessel geometry, and RBC aggregation [1, 128, 200],
e.g. a pronounced margination within an intermediate range of Ht ≈ 0.2 − 0.3, and
reduced WBC margination for lower and higher Ht. Only recently, such behavior could
be explained through simulation studies in 2D [100]. It is argued that for low Ht, WBC
margination turns out to be weak due to a low concentration of RBCs and thus less
interaction, while at high Ht WBC margination is attenuated due to interactions of
marginated WBCs with RBCs near a wall, which significantly limit the time WBCs
spend near a wall. This argumentation is confirmed by 3D simulations in an idealized
blood vessel [99, 236]. The situation changes if inertial effects come into play. Now,
an inertial lift force is present, which acts on all cells at intermediate Reynolds number
flows [110]. Thus, also WBCs experience a lift force, even in the limit of a rigid body
approximation. This contradicts the simple explanation for WBC margination given
above and leads to decreasing margination for increasing Reynolds number. We vary
the Reynolds number, considering values of order 10−4, 10−2, 1 and 10, corresponding
to different regions in the cardiovascular system [104]. Reynolds numbers of order unity
or higher, have been reported in large blood vessels, such as arterioles and arteries
[142, 204], especially if the vessels are constricted due to diseases such as thrombosis,
see e.g. [20, 250].

8.2. Previous models

Previous simulation studies that have been performed to describe WBC margination
are based on strong model assumptions. The simulation approach by Freund [105] as-
sumes an incompressible Stokes flow, where the cells are modeled with a linear elastic
membrane and a global area constraint is enforced. A boundary integral formulation is
used for numerical discretization. More recently, a particle-based Lagrangian approach
was used [99, 100]. Here, RBCs and WBCs are described by a network model, where
the cells are represented through triangulated surfaces. Penalty terms are used to en-
sure global volume and global area conservation as well as local area conservation for
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8.3. Applying the diffuse interface model

each surface element. The approach thus guarantees inextensibility for sufficiently small
surface elements. Each membrane point is connected to the fluid through viscous fric-
tion. The dynamics of the fluid flow is described by the smoothed dissipative particle
dynamics (SDPD) method using an approximation for the Navier-Stokes equations that
is only precise if the particle density is large enough. Furthermore, the incompressibility
of the fluid is not guaranteed a priori and has to be controlled. In [236] a finite element
approach is used for the RBCs, which are modeled as biconcave capsules and a Lattice-
Boltzmann method for the fluid flow. The models are coupled through an immersed
boundary method.

8.3. Applying the diffuse interface model

We will here use a different modeling approach and first reproduce the findings of previ-
ous models. We apply our model, a Helfrich-type model from Section 3.4.2, which was
extended in Chapter 7 to a multi-phase flow with cell-cell interaction. This approach
accounts for bending [121] with various constraints concerning membrane inextensibility
and area conservation for the RBCs. Here, the inextensibility constraint goes beyond
the linear elastic membrane network model or biconcave capsule approach considered
previously. Moreover, we consider a rigid body approximation or a Helfrich-type model
with a weakly extensible membrane for the WBCs. The fluid flow of the blood plasma
and the internal fluid of the RBCs and WBCs, according with previous studies [192],
will be considered as incompressible Newtonian fluid, neglecting internal structures and
the nucleous in WBCs. We account for inertial effects in the plasma as well. This ap-
proach requires only measurable parameters as input and thus in principle allows for
quantitative predictions. However, we will restrict our simulations to 2D. For a much
more detailed modeling approach for a WBC, we refer to [263].

The governing equations for the Helfrich-type model for multiple cells are given in
Section 7.1.2. We consider N − 1 RBCs and label the phase containing all RBCs with
ϕRBC := maxx∈Ω(ϕ1, . . . , ϕN−1). The WBC is modeled either as rigid body or again
with a Helfrich-type model, where the inextensibility is at least questionable, and we
thus apply global surface area conservation. To model the WBC as rigid body with a
fixed spherical shape, we use the fluid particle dynamics (FPD) approach [237]. The
approach uses the average fluid velocity inside

vW BC(t) =
∫

Ω ϕ̃W BC(t,x)v(x, t) dx∫
Ω ϕ̃W BC(t,x) dx

,

where ϕ̃W BC(t,x) = 0.5(ϕW BC(t,x)+1) and a high viscosity inside ηW BC/η0 = 50. The
motion of the WBC is given by

xW BC(t+ ∆t) = xW BC(t) + τvW BC(t),

121



8. White blood cell margination

with

xW BC(t) =
∫

Ω ϕ̃W BC(t,x)x( dx∫
Ω ϕ̃W BC(t,x) dx

,

being the center of mass of the WBC and τ the simulation time step, see [237]. For
the rigid body approach, the local interaction potential works as well since RBCs obtain
their potential from the given phase field of the WBC. For more than one rigid body,
other models with a nonlocal potential have to be applied that necessarily consider the
spherical shape and a given radius of the cell.

8.4. Results and discussion

We study WBC margination for different WBC stiffnesses, different hematocrit values
and different Reynolds numbers. We consider a blood vessel of thickness 20µm and
length 40µm with periodic conditions on the in- and outflow. The relatively small
length results from compromising computational efficiency and physical accuracy and
has been obtained through detailed investigations on the influence of the periodicity on
WBC margination. We consider RBCs with perimeter 22µm, area 19.5µm2, bending
rigidity bN,RBC = 2 · 10−19 J, viscosity ηRBC = 1 · 10−3 Pa s. WBCs are initially set to
be circular with radius 5µm. They have a viscosity ηW BC = 50 · 10−2 Pa s. In order to
study the influence of the stiffness of the WBCs, we consider three types: soft WBCs with
bN,W BC = 2 · 10−19 J, hard WBCs with bN,W BC = 2 · 10−18 J and rigid WBCs. The
interaction strength is constant between all cell types and reads α = 4.24 · 10−7 N/m.
For the fluid phase, we consider the viscosity η0 = 1 · 10−3 Pa s. We consider a constant
flow rate, which is realized by applying a time-dependent force term F = ( 1

Fr(t) , 0)⊤,
where Fr denotes the Froude number. If the current flow rate Q(t) is lower or greater
than the desired flow rate Q0, we increase the force term by multiplying it with the
ratio of Q0/Qt. The initial force term can be estimated from its Newtonian value:
1/Fr(t = 0) = 12Q0/(h3

l Re), where hl is the channel height. We pick Q0 = 15 for all
simulations, which implies an averaged velocity of 8.44 · 10−5 m/s for all simulations
and thus allows us to compare the results for different settings. An overview of all used
parameters is given in Tab. 8.1.

In non-dimensional units, the computational domain becomes Ω = [0, 8] × [0, 4],
with periodic boundary conditions in the x1 direction. The WBC has the radius 1 and
is put at (5,2). RBCs are placed randomly such that they do not overlap. The non-
dimensional numbers read: Re= 1.125 · 10−4, BeRBC = 5.3, BeW BC = 0.53 (hard),
BeW BC = 5.3 (soft), In= 0.1 and Fr(t = 0) = 4 · 10−5. In x2 direction we specify the
Dirichlet conditions ϕi = −1 for i = 1, . . . , N , which ensures that all cells stay within
the computational domain.

We first vary the deformability of the WBC and keep Ht = 0.293 constant. The
results are presented in Fig. 8.1, where the lower left diagram shows the x2- coordinate
of the trajectory of the midpoint of the WBC. After an initial phase, the WBC moves
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8.4. Results and discussion

Symbol Description Value
L radius of a perimeter-equivalent circular cell 5 · 10−6 m
V characteristic velocity 2.25 · 10−5 m/s
ρ fluid density 103 kg/m3

η0 dynamic viscosity of the fluid 10−3 Pa s
ηRBC dynamic viscosity of the RBC 10−3 Pa s
ηWBC dynamic viscosity of the WBC 5 · 10−2 Pa s
bN,RBC bending rigidity of the RBC 2 · 10−19 J
bN,WBC bending rigidity of the hard WBC 2 · 10−18 J
bN,WBC bending rigidity of the soft WBC 2 · 10−19 J
ε diffuse interface thickness 0.04
γ regularization parameter 10−7

α repulsion parameter 8.44 · 10−4 N/m

Table 8.1. – Mechanical and numerical parameters used in the simulations. Mechanical
parameters correspond to the considered values in [100, 236].

towards the wall, but only the rigid WBC can attach to the wall, while the soft WBC
moves away after a certain time. The lower right diagram shows the probability that
the midpoint of the cell is within the upper part of the channel with height 0.1. The
results nicely confirm the findings in [100], that WBC margination is high for rigid cells
and decreases for softer cells.

The second test concerns the influence of Ht. We vary the number of RBCs, which
lead to different values of Ht, ranging from 0.098 to 0.39. Fig. 8.2 shows the obtained
results for a rigid WBC and Fig. 8.3 for a hard one.

For a rigid WBC, margination can be observed for all considered Ht. However,
our simulations show a lower tendency to move to the wall for the smallest value of
Ht = 0.098 and the largest tendency for Ht = 0.195 and Ht = 0.293. For the highest
value Ht = 0.39, the probability slightly decreases. It seems more likely that due to the
larger number of RBCs interaction between WBC and RBCs are possible also close to
the wall, which moves the WBC away from the wall, see t = 10, t = 22 and t = 30. This
results give evidence for a decreasing WBC margination for high Ht, as also observed in
[100]. In the case of a hard WBC and the lowest Ht, the cell remains in the center. In
contrast to Fig. 8.2, no margination occurs. Increasing Ht leads to WBC margination.
However, contact with the wall cannot be achieved. We also do not see the tendency for
decreasing WBC margination for Ht = 0.39. A further increasing bN,W BC or Ht is not
possible due to numerical reasons.

So far only know results have been reproduced by the hydrodynmaic phase field
model that can be viewed as a validation of the modeling approach. We now turn to
the effect of the Reynolds number on WBC margination, Fig. 8.4. We consider Ht =
0.293 and a rigid WBC. Considering a constant flow rate, we obtain WBC margination
for Re=1.125 · 10−4, Re=0.05 and Re=1. However, the tendency to adhere entirely
decreases already for Re =1. The simulation results for Re=10 indicate no margination.
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Figure 8.1. – Simulation snapshot at late time for Ht = 0.293 for rigid, hard and soft
WBC from left to right (top), x2 coordinate for the trajectory of the midpoint of the WBC
(bottom right) and the probability that the midpoint of the WBC is inside a defined interval
(bottom left). x2 axis is split into 20 intervals of length 0.1.
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Figure 8.2. – Simulation snapshot at late time for a rigid WBC for Ht = 0.098, Ht = 0.195
and Ht = 0.39 from left to right (Ht = 0.293 is shown in figure 8.1) (top). x2 coordinate
for the trajectory of the midpoint of the WBC (bottom right) and the probability that the
midpoint of the WBC is inside a defined interval (bottom left). x2 axis is split into 20
intervals of length 0.1.
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Figure 8.3. – Simulation snapshot at late time for a hard WBC for Ht = 0.098, Ht = 0.195
and Ht = 0.39 from left to right (Ht = 0.293 is shown in figure 8.1), (top). x2 coordinate
for the trajectory of the midpoint of the WBC (bottom right) and the probability that the
midpoint of the WBC is inside a defined interval (bottom left). x2 axis is split into 20
intervals of length 0.1.
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Figure 8.4. – Simulation snapshot at late time for a rigid WBC and Ht = 0.293 for
Re=0.05, Re = 1 and Re=10 from left to right, (top). (Re = 1.125 · 10−4 is shown in figure
8.1) (top). x2 coordinate for the trajectory of the midpoint of the WBC (bottom right) and
the probability that the midpoint of the WBC is inside a defined interval (bottom left). x2
axis is split into 20 intervals of length 0.1. For Re= 0.05 a movie is provided in the online
supplementary material.
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Figure 8.5. – Distribution of RBCs for different Re computed over time interval t = 10 to
t = 50. The shaded region shows the interquartile range, the difference between the upper
and lower quartiles together with the median.

126



8.4. Results and discussion

10−4 10−3 10−2 10−1 100 101

0

10

20

30

40

50

Re

R
e

·
F

L

uT uT uT

uT
* *

*

*

bC bC

bC

bC

WBC (rigid)
WBC (hard)
WBC (soft)

uT

*
bC

10−4 10−3 10−2 10−1 100 101

0

10

20

30

40

50

Re

R
e

·
F

L

+ +
+

+

RBC+

Figure 8.6. – Computed lift force for a WBC (left) and a RBC (right) as a function of Re.

Various explanations can be given. First the tendency of RBCs to aggregate in the
center of the vessel might decrease with increasing Re due to the increased hydrodynamic
interactions. This would increase the concentration of RBCs near the wall and thus lead
to a stronger interaction with marginated WBCs, which, similar to the situation for
large Ht, limits the time WBCs spend near the wall. However, this explanation cannot
be justified by our numerical results. Fig. 8.5 shows the distribution of RBCs in the
vessel averaged over the simulation time, which does not, or only very weakly show a
dependency on Re. The median is shifted towards the lower part due to the presence of
the WBC in the upper part. The peak in the distribution for Re = 1 and Re = 10 in the
upper part close to the wall results from RBCs, which are trapped behind the WBC, see
Fig. 8.4. The lower half of the vessel thus gives a clearer description of the distribution,
with no clear dependency on Re. This is in agreement with the results of [138] where a
qualitative similar distribution profile is observed for a suspension of soft capsules. Up
to Re = 50, the profile shows no dependency on Re but for larger Re the soft capsules
are even strongly concentrated in the central region.

The second attempt considers the effect of Re on the lift force directly. The inves-
tigation of inertial forces on rigid particles dates back to [222] and its dependency on
Re is today well understood for spherical objects [18, 47, 122, 179, 221]. For deformable
objects this is much less investigated. [138] show that the Segre-Silberberg effect is es-
sentially suppressed for deformable objects. We here consider the effect numerically and
compute the lift force (density) as a function of Re for different cell types. We thereby
follow the approach in [186] and adapt a gravitational force Fg acting on the cell. In
the hydrodynamic phase field models eq. (7.12) and (7.14). This is realized by adding
−ϕi+1

2 Fg to the right-hand side. The strength of Fg is varied to achieve a balance at a
fixed height, which is chosen such that the lowest point of the cell is at x2 = 0.2. Due to
the strong deformability of the cell the usually used center of mass position of the cell
is not appropriate to achieve comparable results for the same cell type. The magnitude
of Fg thus determines the lift force (density) at position x2 = 0.2. Fig. 8.6 shows the
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8. White blood cell margination

computed values for WBCs (considered as rigid, hard and soft cells) and RBCs as a
function of Re. We observe an increase of the lift force (density) with increasing Re for
all cell types. The increase is strongest for the soft WBC. However, also the increase of
the lift force for the hard WBC is significant and explains the decrease in margination
for increasing Re, as now both cell types feel a lift force and thus compete for a position
away from the vessel wall. However, quantifying this effect is difficult, as the computed
values for WBCs and RBCs are not directly comparable, as the actual lift force depends
on cell size, viscosity and distance from the vessel wall[186], which all differ for WBCs
and RBCs. The larger size of the WBCs and their higher viscosity moreover indicate a
stronger increase of the lift force with Re if compared with RBCs.

8.5. Conclusion

We investigate margination of WBCs using a diffuse interface Navier-Stokes-Helfrich
model. For RBCs various constraints concerning membrane inextensibility and area
conservation are considered, while WBCs are modeled using a rigid body approximation
or a Helfrich-type curvature model with a weakly extensible membrane. We also consider
cell-cell interactions. The fluid flow of the blood plasma and the internal fluids of the
cells are modeled using the incompressible Navier-Stokes equations. An idealized two-
dimensional blood vessel is used as computational domain. In the low-Re regime we
reproduced previous results, e.g. a decreasing tendency for margination with increasing
deformability and a non-monotonic dependency on hematocrit, which quantitatively
agree with results of Fedosov et al. [100]. Here, the non-inertial lift force of WBCs is
much lower than that on RBCs, or even zero in the limit of a rigid body approximation.
This results in margination of the WBCs to the RBC free layer near the wall. With
inertial effects that can occur in small arteries and in the aorta, the simulations show
a decreasing tendency for margination with increasing Re. The effect is explained by
analyzing the lift force on a single WBC and a single RBC as a function of Re. We now
have an additional inertial lift force that for all cell types increases if Re increases. This
is also true for the hard and even the rigid WBC. These forces lead to a competition
between WBCs and RBCs for a position away from the vessel wall, which suppresses
margination. Due to the huge parameter space, flow confinement, deformability of the
WBCs, hematocrit and inertial effects, we had to restrict our simulations to specific
combinations, which show the most significant effect on WBC margination.
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Chapter 9

Collective migration of cells

9.1. Introduction

Collective migration is the second principal mode of cell movement. While the study
of the first mode, the single cell migration, made great progress, the processes within
collective cell migration are however poorly understood. Collective cell migration is
present in various physiological processes like tissue growth or cell invasion [106]. These
processes reveal a rich non-linear behavior such as motility induced phase separation
(MIPS) [114, 240], where clusters of cells are formed as a result of the feedback between
the fact that cells accumulate where they move slowly and move more slowly, where
crowded. Moreover, cell suspensions have complex rheological properties. Systems of
migrating objects where an active force, arising from a motility mechanism within the
microscopic constituents, constantly consumes energy are far from equilibrium and can
be observed at very different scales: these can range from the actin cytoskeleton within
the cell bulk [131, 203], so-called living crystals [198], motile cells and microswimmers
[165, 166] to flocks and birds [244, 245].

Recently, Löber et al. [160] developed a non-hydrodynamic model that goes fur-
ther than previous attempts as it considers the crucial dynamics of a single motile cell
associated with cell deformations. Here, the authors used a diffuse interface model for
multiple cells based on their model for single cell motility [159, 270–272].

In a hydrodynamic environment, the physics of the flow influence the dynamics of
collectively migrating cells in a highly nontrivial way [240]. For instance, it has been
argued that moving particles set up flow fields that influence their neighbors that can
suppress motility induced phase separation (MIPS) [180]. It is supposed that collective
cell migration occurs as part of the phenomenon MIPS when multiple cells form a mov-
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ing cluster. However, if collective migration is suppressed, the formation of a moving
cluster and finally MIPS will also be suppressed. As the influence of hydrodynamics
to such complex active systems with deformable cells is poorly understood, we develop
a hydrodynamic model for multi-cell dynamics. For this purpose, we extend the ap-
proach for a single migrating cell that considers the actin filaments within the cell bulk
as a macroscopic orientation field determining a distinct polarization of the cell as dis-
cussed in Chapter 6 to a multi-flow approach, introduced in Chapter 7. The multi-phase
approach requires one phase field for a single cell. All cells are coupled via a local in-
teraction potential. Moreover, the approach uses one orientation field for a single cell,
which ensures that the collision modeling is purely hydrodynamic as the realignment of
the orientation field can only be achieved through fluid flow.

To understand how the hydrodynamics influence the collective migration of cells,
we additionally consider a non-hydrodynamic model that is a simplification of [160].
Although the simplified model (model 1) neglects contractile stress and substrate ad-
hesion, it recovers the basic dynamics of a non-hydrodynamic motion. This approach
models the collision as diffusion process between two cells, which share one orientation
field for the actin filaments, yielding a realignment of the orientation field and hence
the direction of motion. This can be questionable from a biological point of view. We
therefore extend model 1 to multiple orientation field variables (model 1B). All models
are introduced in Section 9.2. In Section 9.5.1, we perform several benchmark compu-
tations for a binary collision to study if the developed models are capable of describing
elastic and inelastic collisions and to predict how bigger systems of collectively migrating
cells evolve. Finally, in Section 9.5.2, we study the onset of collective motion depend-
ing on various parameters for an initially disordered crowd. We show that within the
non-hydrodynamic system the elasticity of the actin network in the bulk allows us to
determine the length of the transient phase within the ordering process. Here, the onset
of collective motion is attenuated for a high elasticity of the active polar gel. Moreover,
the simulations of the hydrodynamic model do not indicate a suppression of collective
motion due to fluid flow.

The considered model and some of the results are submitted for publication, see
Marth and Voigt [175].

9.2. Mathematical models for multiple active cells

In the following section, we specify the mathematical models, that are based on the
models from Chapters 6 and 7. All given equations are defined in I × Ω. In the
following, we consider N cells. A variable is associated to a specific cell by the in-
dex i, with i = 1, . . . , N . Appropriate initial and boundary conditions can be ob-
tained from further sections. Moreover, we denote the phase containing all cells as
ϕcell = maxx∈Ω(ϕ1, . . . , ϕN ).
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9.2.1. Non-hydrodynamic model with one orientation field - Model 1

The Non-Hydrodynamic model considers the elastic Frank energy eq. (6.4) and the
surface energy accounting for bending and surface tension eq. (3.78). Together with our
approach for multiple cells that includes multiple phase field variables and an interaction
energy eq. (7.5), the overall energy reads

E(ϕ1, . . . , ϕN ,P) = EP (P, ϕcell) +
N∑

i=1
ES,i(ϕi) + Eint(ϕ1, . . . , ϕN )

= 1
Pa

∫
Ω

1
2(∇P)2 + c1

4 |P|2(−2ϕcell + |P|2) + βP · ∇ϕcell dx

+
N∑

i=1

∫
Ω

1
Bei

1
2ε

(
ε∆ϕi − 1

ε
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0,i(ϕi)
)2

+ 1
Cai

(
ε

2 |∇ϕi|2 + 1
ε
W (ϕi)

)
dx

+ 1
In

N∑
i=1

∫
Ω
B(ϕi)

N∑
j=1
j ̸=i

wj dx. (9.1)

Within an energy variation approach the following equations can be derived for the phase
field ϕi:

∂tϕi = −∇ · (v0ϕiP) + γ∆ϕ♮
i , (9.2)

ϕ♮
i = 1

Bei

(
∆µi − 1

ε2W
′′
0,i(ϕi)µi

)
+ 1

Cai

(
−ε∆ϕi + 1

ε
W ′(ϕi)

)

+ 1
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(
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2 |P|2 − β∇ · P

)
+ 1

In

⎛⎜⎝B′(ϕi)
N∑

j=1
j ̸=i

wj + w′
i

N∑
j=1
j ̸=i

B(ϕj)

⎞⎟⎠ . (9.3)

For the orientation field P, we obtain the following system

∂tP + (v0P · ∇)P = − 1
κ

P♮, (9.4)

P♮ = 1
Pa
(
−c1ϕcellP + c1P2P − ∆P + β∇ϕcell

)
, (9.5)

which is similar to eq. (6.16) and eq. (6.17), but without flow coupling. For a further
description of all parameters, we refer to Section 6.2.4.

9.2.2. Non-hydrodynamic model with multiple orientation fields - Model 1B

However, a single orientation field P for all cells might not be appropriate as the actin
filaments of the cells usually do not interact. To account for this, we assign a specific
orientation field Pi to each cell ϕi. Accordingly, the overall energy for model 1B reads
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as

E(ϕ1, . . . , ϕN ,P1, . . . ,PN ) =
n∑

i=1
EP (Pi, ϕi) +

N∑
i=1

ES,i(ϕi) + Eint(ϕ1, . . . , ϕN ), (9.6)

=
n∑

i=1

1
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∫
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j=1
j ̸=i

wj dx, (9.7)

which now prevents any diffusion between the orientation fields of each cell. The evolu-
tion equations for ϕi are given by

∂tϕi = −∇ · (v0ϕiPi) + γ∆ϕ♮
i,B, (9.8)
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⎛⎜⎝B′(ϕi)
N∑

j=1
j ̸=i

wj + w′
i

N∑
j=1
j ̸=i

B(ϕj)

⎞⎟⎠ . (9.9)

Moreover, we consider multiple equations for Pi that read

∂tPi + (v0Pi · ∇)Pi = − 1
κ

P♮
i, (9.10)

P♮
i = 1

Pa
(
−c1ϕiPi + c1P2

i Pi − ∆Pi + β∇ϕi

)
. (9.11)

9.2.3. Hydrodynamic model with multiple orientation fields - Model 2

The hydrodynamic model is based on the active polar gel approach from Chapter 6 that
is extended to multiple phase field variables. Here, we combine model 1B with fluid flow
such that the overall energy reads

E(v, ϕ1, . . . , ϕN ,P1, . . . ,PN ) =
∫ Re

2 |v|2 dx + E(ϕ1, . . . , ϕN ,P1, . . . ,PN ), (9.12)
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which is an extension of eq. (9.7) with the kinetic energy of the fluid. Within the
Navier-Stokes equation each orientation field induces a specific stress:

Re(∂tv + (v · ∇)v) + ∇p = −θv + ∇ · (η(ϕcell)D) +
n∑

i=1
ϕ♮

i,B∇ϕi +
n∑

i=1
∇ · Si,P

+ 1
Fapoly

n∑
i=1

Pi + 1
Facon

n∑
i=1

∇ · (Pi ⊗ Pi), (9.13)

∇ · Si,P = ∇ ·
(1

2(P♮
i ⊗ Pi − Pi ⊗ P♮

i) + ξ

2(P♮
i ⊗ Pi + Pi ⊗ P♮

i)
)

+ ∇PT
i · P♮

i, (9.14)
∇ · v = 0. (9.15)

The phase field equations are regularized with the chemical potential obtained from
eq. (9.9) and read

∂tϕi + v · ∇ϕi = γ∆ϕ♮
i,B. (9.16)

(9.17)

Finally, the orientation field equations are given by

∂tPi + (v · ∇)Pi + Ω · Pi = ξD · Pi − 1
κ

P♮
i, (9.18)

P♮
i = 1

Pa
(
−c1ϕiPi + c1P2

i Pi − ∆Pi + β∇ϕi

)
. (9.19)

9.3. Parameters

All models are given in a very general formulation accounting for several physical prop-
erties. Re denotes the Reynolds number, Ca the capillary number, Be the bending
capillary number, Pa the elasticity number of the actin solution and In the interaction
number. For simplicity, we simplify our models by choosing

ϕ♮
i = 1

Cai

(
−ε∆ϕi + 1

ε
W ′(ϕi)

)
+ 1

In

⎛⎜⎝B′(ϕi)
N∑

j=1
j ̸=i

wj + w′
i

N∑
j=1
j ̸=i

B(ϕj)

⎞⎟⎠ , (9.20)

which is a Cahn-Hilliard potential accounting for surface tension and interaction. We
furthermore restrict the coupling between Navier-Stokes equation and orientation field
equation to the polymerization force: Fapoly > 0. The contractile stress 1/Facon = 0 and
the orientation stress SP = 0 are neglected. Other parameters are given in Tab. 9.1 for
models 1/1B and in Tab. 9.2 for model 2. Tab. 9.3 incorporates the parameters for the
orientation field equation(s).
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9. Collective migration of cells

Symbol Description Value
ε diffuse interface thickness 0.2
γ mobility 1
Ca capillary number 0.0281
In interaction number 0.1125
v0 activity 2.25

Table 9.1. – List of numerical and physical parameters for the defaults case for the non-
hydrodynamic models 1/1B

Symbol Description Value
ε diffuse interface thickness 0.2
γ mobility 3 · 10−3

Re Reynolds number 10−3

Ca Capillary number 0.025
In interaction number 0.1
Facon contractile stress number 1/Facon = 0
v0 activity 4
Fapoly=1/v0 polymerization stress number 0.25
θ friction parameter 1
ρ/ρi density ratio in phase i 1
η/ηi viscosity ratio in phase i 1

Table 9.2. – List of numerical and physical parameters for hydrodynamic model 2

Symbol Description Value
Pa polarity elasticity number 0.1
κ scaling factor between rotational and dynamic viscosity 1
c1 double well parameter for P 10
β forcing normal direction of P on the interface, polymerization rate 0.5
ξ shape factor (for hydrodynamic model) 0

Table 9.3. – The parameters for orientation field are the same for all models.
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9.4. Numerical approach and implementation

Similar to the previous chapters, the numerical scheme is straightforward. We use a
semi-implicit time discretization and an operator splitting approach that allows us to
decouple all subproblems. We further conduct a shared memory OPENMP problem
parallelization to solve the phase field equations and the orientation field equations in
models 1B/2 via a parallel splitting method. Each linear system of equations is solved
using the direct solver UMFPACK [57]. We discretize in space using finite elements,
similar to further sections. Since the computational mesh has to be fine along the
interface, adaptive mesh refinement is heavily used within diffuse interface models. It
allows us to increase the numerical efficiency of the method while the numerical error does
not rise. Usually, the mesh is coarser outside the interface. Using a single mesh for all
variables is not appropriate in this case as it would lead to redundant grid points for one
variable where another variable needs a fine grid. This yields a quadratic complexity of
the problem depending on the number of cells. The multi-mesh strategy overcomes these
numerical problems [254] and assigns a single mesh to a single phase field or orientation
field. This allows us to carry out an independent adaptive mesh refinement for each
variable. Furthermore, it provides an adequate treatment of coupling terms that live
on different meshes as it interpolates between these meshes without loss of information
[156, 254].

9.5. Simulations and results

We first study binary collisions of cells. These simulations are useful to understand
the interactions between the two cells and are therefore often used as a benchmark
problem to predict how bigger systems evolve. Then, we perform simulations to study the
onset of collective cell migration. In both cases, we choose a quadratic two-dimensional
computational domain with size [0, 50]2 and apply periodic boundary conditions in each
direction.

9.5.1. Binary collisions

For our computational setting, we set up two circular cells with radius R = 4 and with
the initial direction of P such that the cells collide with incidence angle αin = 45◦. We
observe the trajectories of the cell’s center of mass and denote a collision elastic if the
emergent angle αout ≈ αin and inelastic if αout < αin, see e.q. Fig. 9.3 for an elastic (top)
and inelastic collision (bottom). We first analyze model 1 and vary one of the parameters
set by default to v0 = 2.25, Ca = 0.056, Pa = 0.1 and β = 0.5. As Ca and γ have the same
physical meaning, we pick γ = 1 and vary Ca. Fig. 9.1 shows the trajectories for the cell
collisions. It turns out that all parameters except v0 heavily influence the collision. To
be more precise, the higher the surface tension (decreasing Ca), the lower the elasticity
within P (increasing Pa) and the less pronounced the splay (decreasing polymerization
rate β) (Fig. 9.3), the more inelastic is the collision. Interestingly, v0 does not influence
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9. Collective migration of cells

the collision. Various explanations can be given. For small v0 the cells stay longer in
contact and for higher v0 the cells are more deformed. Both phenomena increase the
tendency of the orientation field to realign.

For model 1B, we do not observe any elastic collision, see Fig. 9.2. This can espe-
cially be observed for β = 0. However, for increasing β the collision becomes slightly
more elastic. As the diffusion between different Pi is prevented, we observe a differ-
ent collision mechanism that results from the deformation of the cells and the coupling
between Pi and ϕi [185].
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Figure 9.1. – Cell trajectories of a binary collision for non-hydrodynamic model 1 with
single orientation field for v0 = 2.25, Ca = 0.056, Pa = 0.1 and β = 0.5 for varying (a) Ca,
(b) v0 and (c) Pa. Further parameters are obtained from Tab. 9.1.

Now, we consider the hydrodynamic model 2. We vary one of the parameters set
by default to v0 = 4, Ca = 0.025, Pa = 0.1, β = 0.5 and Re = 10−3. Model 2 shows only
slight dependencies on v0, β and Ca, see Fig. 9.4, as the orientation field and accordingly
the collision is mostly influenced by fluid flow. We observe that the advection of the
cells causes two vortices above and under the cell in the direction of motion. During a
collision, the vortices close to the neighboring cell vanish and the cell is rotated away
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Figure 9.2. – Cell trajectories of a binary collision for non-hydrodynamic model 1B with
multiple Pi for varying (a) v0 and (b) β. Other parameters are similar to Fig. 9.3. All
collisions are strongly inelastic. As the diffusion between different Pi is prevented, a different
effect determines the collision for β > 0.

from the other cell, see Fig. 9.5b. However, for varying Pa, the trajectories differ much
more within the observed parameter range, see Fig. 9.4c. We observe slight to strong
inelastic collisions for decreasing diffusion rates. Up to now, all collisions for model 2
are inelastic. For Re = 10, as shown in Fig. 9.5a, we obtain a nearly elastic collision,
which can be a result of the decreased viscous drag. Moreover, we observe that the cells
are much more stretched for higher Re.

9.5.2. Collective motion

We now investigate how bigger systems of cells evolve within the different models. To
show this, we position 23 cells in the domain with randomly chosen initial orientations.
However, the initial direction of the cells are kept constant for different simulations.
Here, we study how certain parameters determine the onset of collective motion and how
hydrodynamics influence this process. It is assumed that the onset of collective motion
is even more suppressed if the binary collisions become more elastic. To characterize the
collective motion, we introduce an order parameter

ω(t) = 1
N

|
N∑

i=1
v̄i(t)|,

the measure the translational direction of all cells. Here, N denotes the number of cells
and v̄i is the unity velocity vector of the i-th cell. The parameters ω is 1 if all cells move
in the same direction and 0 if no correlation exists. The unity velocity vector can be
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Figure 9.3. – Cell trajectories of a binary collision for non-hydrodynamic model 1 with
single orientation field for v0 = 2.25, Ca = 0.056, Pa = 0.1 and varying β. Cell evolution for
β = 0.5 (top) and β = 0 (bottom). Shown are the cell shapes, the orientation field P (small
arrows) and the main direction (big arrow) of four states at various times. For increasing β
the collision becomes more elastic as a result of the increasing splay in the orientation field.
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Figure 9.4. – (a) Cell trajectories for hydrodynamic model 2 for v0 = 4, Ca = 0.025,
Pa = 0.1, β = 0.5 for one varying (a) Ca, (b) v0, (c) Pa and (d) β. Further parameters are
obtained from Tab. 9.2. All collisions are mostly inelastic.
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Figure 9.5. – (a) Cell trajectories for hydrodynamic model 2 with multiple orientation fields
for v0 = 4, Ca = 0.025, Pa = 0.1, β = 0.5 and varying Re. Cell evolution for Re = 10 (top)
and Re = 10−3 (bottom). Shown are the cell shapes, the union of all orientation fields Pcell

(small arrows) and the main direction (big arrow) of four states at various times. Model 2
provides an elastic collision for high Re. (b) Clips of the cell evolution and velocity field for
corresponding case as shown in (a)(bottom). We observe two vortices above and under the
cell in the direction of motion. During a collision the vortices close to the neighbouring cell
vanish and the cell is rotated away from the other cell.
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obtained from the orientation field (model 1/1B) and velocity field (model 2):

v̄i =
∫

Ω ϕ̃iP dx∫
Ω ϕ̃ dx

model 1,

v̄i =
∫

Ω Pi dx∫
Ω ϕ̃ dx

model 1B,

v̄i =
∫

Ω ϕ̃iv dx∫
Ω ϕ̃ dx

model 2.

First, we adopt model 1 with the parameters given in Tab. 9.1 and Tab. 9.3 and
vary the polymerization rate β. As shown in Fig. 9.6, for β = 0, Pa = 0.1, we observe
collective motion after a transient of t = 80 whereas for β = 0.5, Pa = 0.1 collective
motion is suppressed. Accordingly, β and is crucial for the onset of collective motion.
Moreover, the elasticity influences collective motion as well. For increasing elasticity of
the cells (decreasing Pa), we notice a longer transient phase from undirected motion to
directed motion. The results of model 1B, see Fig. 9.7a, show a collective motion for
β > 0, where the used parameters are the same as in the last simulation. For both
models, we observe that the onset of collective motion is suppressed if the results of
the binary collision indicate an elastic collision and supported if the collision is mostly
inelastic. However, this is not true for model 1B for β = 0. Accordingly, the alignment
parameter ω stays constant as an external influence to the orientation field is missing
and the realignment is prevented.

Finally, Fig. 9.7b shows the evolution of ω for the hydrodynamic model 2 where we
vary Re and the viscosity ratio. The parameters are obtained from Tab. 9.2 and Tab. 9.3.
In general, we observe a collective migration in all cases. The difference between Re = 1
and Re = 10−3 is negligible. If we decrease the viscosity of the surrounding fluid by factor
10, the influence from neighboring cells is reduced and therefore the onset of collective
motion is supported. However, it can not be justified by our results that hydrodynamics
suppress collective motion.

9.6. Conclusion

In this chapter, we developed a hydrodynamic model for collective migration account-
ing for deformable cells. We therefore coupled a multi-phase model, which considers
bending and surface tension along the cell membrane, to an active polar get theory that
describes the orientation of the actin filaments in the cell bulk. Within our approach,
which is formulated in a diffuse interface approach, we assign a single orientation field
to a single cell (model 2). This guarantees that the collision mechanism is purely hy-
drodynamic. To compare this model, we further developed a non-hydrodynamic model
based on a simplification of [160] using one orientation field for all cells (model 1) and a
further non-hydrodynamic approach using multiple orientation fields (model 1B). For all
models, we performed several benchmark computations for a binary collision to study
the underlying collision modeling and its dependence on various parameters. We found
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Figure 9.6. – The diagram shows the temporal evolution of ω for the non-hydrodynamic
model 1. All simulations start with the same initial direction. For increasing elasticity
(decreasing Pa) and increasing β (higher polymerization rate) the onset of collective motion
is suppressed. The bottom line shows the simulation snapshot for t=200, where the small
arrows are the direction of P and the big arrow indicate the averaged direction v̄i.
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Figure 9.7. – (a) Temporal evolution of ω for various β for model 1B. We observe a
collective motion for β > 0. For β = 0, the alignment parameter ω stays constant as no
external influence can realign the orientation. (b) Temporal evolution of ω for model 2 for
Re = 10−3 and Re = 1 with varying viscosity ratios. For all cases, we observe a collective
migration. A reduction of the viscosity of the surrounding fluid by factor 10 decreases the
transient phase and supports the onset of collective motion.
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out that, in general, multiple orientation fields within models 1B/2 suppress elastic col-
lisions. However, this is not true for higher Re in the hydrodynamic case. We further
investigated the collective motion of cells. For model 1, we observed that the transient
phase increases if the cells are more elastic. Moreover, we showed that hydrodynamics do
not completely suppress the onset of collective motion, within the considered parameters
space of model 2. However, if hydrodynamics suppress or support collective motion is
difficult to verify as this model is not easily to compare to non-hydrodynamic models.
Nevertheless, our model 2 is a promising approach for the study of the dynamics of
multiple deformable cells in hydrodynamic suspensions.
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Chapter 10

Conclusions and outlook

In this thesis, we have studied different mathematical models that describe the morphol-
ogy of a generalized biological cell considered as a thermodynamic system. Applications
are given for cell motility, blood flow and collective cell migration. Our basic model
uses a diffuse interface approach for a Helfrich-type membrane model. Here, the cell
membrane is considered as a closed lipid bilayer that underlies bending and inextensi-
bility. A further approach incorporates surface tension. We considered streaming effects
in the cytoplasm and the surrounding of the cell that are described by the Navier-Stokes
equations, which together with the membrane evolution yield a two-phase flow problem.
It was shown how such a two-phase flow problem can be reformulated within the diffuse
interface method in order to use the effectiveness and the robust physical basis of phase
field simulations. We used an energy variation approach to derive the diffuse interface
Navier-Stokes-Helfrich model that served as basis for further studies.

In the first part of this thesis, we studied models for cell motility. Within a first
model, we combined the diffuse interface Navier-Stokes-Helfrich model with a biochemi-
cal network model given by reaction-diffusion equations for membrane-bound and cyto-
plasmic GTPases. Within the biochemical network model, the required polarization is
achieved by a Turing-type instability as a result of different association and disassocia-
tion rates between membrane and cytoplasm. In contrast to previous models, the Turing
instability is also formed in case of equal diffusion rates along the membrane. The diffuse
interface approach, hereby, circumvents the numerical subtleties in solving differential
equations on evolving domains with different dimensionalities. Within the first model,
we assume that the actin polymerization is related to the concentration of the active
membrane-bound GTPase enforcing membrane protrusion in the normal direction.

In a second model, we extended the diffuse interface Navier-Stokes-Helfrich model
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with an active polar gel theory. We reviewed an existing model and showed how this
model can be derived by an energy variation approach. Here, the polymerization of the
cell is achieved through an orientation field that moreover describes the alignment of the
actin filament solution within the cell bulk. Besides actin polymerization, contractile
stress within the actin meshwork caused by myosin motors is a fundamental part during
cell motility. Within the model, the active stress can cause a generic splay instability
that is responsible for cell motion even in the case without adhesion.

For both models, the motility mechanism arises from a delicate balance of the used
parameters. Accordingly, we performed detailed numerical and convergence studies to
demonstrate the stability of the used algorithm and to confirm the independence of the
instability from the numerical approach. In the first model, we analyzed the interplay
between protrusion, membrane and fluid forces and their effect on the cell shape. It
turned out that, in particular, bending properties are of minor relevance for motility
in the considered parameter regime. Moreover, we could reproduce characteristic cell
motions according to external signals, so-called chemoattractants. Furthermore, we com-
pared the second model with experimental data for swimming microorganisms. Within
certain parameter regimes, a transition from puller-like to pusher-like dynamics can be
found for increasing myosin-actin interactions, demonstrating the generic properties of
the model. A quantitative comparison with swimming microorganism is not yet possible,
requires 3D simulations and probably further model extension.

Within the used models, we considered the bulk of the cell as a single phase. How-
ever, it would be meaningful to consider an additional phase for the viscoelastic or fully
elastic nucleus in order to study its influence to the shape of the cell. Moreover, the
coupling to the active polar gel approach would allow us to investigate how the actin
cytoskeleton determines the movement of the nucleus to the back of the cell during the
onset of motility [134, 203, 243]. Finally, the application of the active polar gel theory is
not only restricted to cell motility, it rather offers extensive opportunities for modeling
approaches for cellular processes [203].

Although, both models incorporate several simplifications, we are able to qualita-
tively recover the basic shapes and important aspects of motile cells. Both approaches
can also be extended to incorporate additional phenomena. The simulation results are
obtained not for a specific cell type, but within a realistic parameter range spanning
a large class of cells and their environment. We therefore expect the model and the
numerical approach to be useful for quantitative simulations of specific cells.

In the second part of this thesis, we considered multiple cells that are of wide interest
as their collective behavior shows a rich non-linear behavior. We extended the diffuse
interface Navier-Stokes-Helfrich model to a multi-phase flow for several cells. Here,
each cell is described by a single phase field that is combined to other cells by a local
interaction potential. This approach is not restricted to a specific surface energy and
has a wide applicability for multi-phase problems. Here, the most expensive part, i.e.
computing the distance between cells, has been avoided as this information is already
contained in the phase field description of the cells. We applied a Gaußian potential
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effective physical property
cell types (Chapter) bending

stiffness
surface
tension

cell bulk active force

cell motility (5) yes yes viscous polymerization related
to biochemical network

cell motility (6) yes yes act. polar gel contractile stress from
polar field

RBC (8) yes inext. viscous -
WBC hard/soft (8) yes yes viscous -
active cells (9) yes yes act. polar gel polymerization, con-

tractile stress from
polar field

Table 10.1. – Effective physical properties considered in our models

in our model. However, the computed distance allows us to construct more complex
potentials within the interface region. We applied this model in order to describe WBC
margination. We reproduced previous findings in the low Reynolds number regime that
have been achieved by particle methods and we moreover studied regimes with higher
Re numbers where we found out that inertial effects suppress margination.

Finally, we combined the multi-cell approach with the active polar gel theory. We
conducted several benchmark computations and compared this model to similar but non-
hydrodynamic approaches. As the collision modeling between the cell is hydrodynamic,
we do not observe elastic collisions within low Reynolds number regimes. Moreover, we
studied the onset of collective migration. Within the considered parameters space, we
showed that hydrodynamics do not suppress the onset of collective motion. However, as
our approach combines active motion, deformable cells and hydrodynamics, it may help
to give a better understanding of the processes determining collective cell migration.

In this thesis, we accounted for different physical properties of the cell depending on
the considered cell or the spacial and temporal scale of the biological phenomenon. In
Tab. 10.1, we summarize the accounted effective physical properties within our models.
So far, the cell bulk was considered as a viscous fluid or active polar gel. For further
studies, however, an appropriate model might account for viscolelasticity and membrane
elasticity that are outlined in following. In addition to the viscous stress, a viscoelastic
approach incorporates an elastic stress tensor: so let u(t,x) be a displacement field, then
the elastic stress tensor is given by

Sel = E

3 (∇u + ∇u⊤) in Ω1,

Sel = 0 in Ω0,

∂tu + v · ∇u = v in Ω1,

see also [33, 187, 265, 269]. Membrane elasticity, caused by the actin cortex attached to
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the membrane, can be described by the following functional [30, 220]

Eel(Γ) = E2D

1 − ν2

∫
Γ
(1 − ν)e2D : e2D + νtr(e2D) ds,

and the jump condition [S · n]Γ = δES
δΓ + δEel

δΓ , where ES is a surface energy.
Several numerical methods have been developed to solve free moving boundary

problems. Each of those methods exhibits advantages and disadvantages. The applied
diffuse interface or phase field method allows to combine the numerical method and the
physical model. Accordingly, the resulting systems can be derived from physical laws
and fulfill thermodynamical consistency. Topological changes may be treated without
any problems and can be used for the description of e.g. endocytosis, see [163]. We have
seen that further equations can easily be coupled to describe more and more complex
phenomena. Moreover, it is simple to extend the method from 2D to 3D simulations
and to calculate surface parameters such as curvature and normal vector. Furthermore,
the method can easily be implemented with standard finite elements and therefore can
serve as a first or a reference solution. On the other hand, we should be aware of
the disadvantages or challenges of the diffuse interface method. Introducing a diffuse
interface adds a further error to the approach. This error is mostly much smaller than
the modeling error. However, to verify the approximation, an asymptotic analysis has
to be performed which is not trivial. Finally, the considered method is computationally
expensive. Considering many cells, especially in 3D, the method lags behind fast particle
methods. To offset the distance, further numerical studies have to be performed.

In this thesis, we numerically solved our models using the finite element toolbox
AMDiS. The numerical treatment was straightforward. We performed a linearization
and operator splitting approach for the highly coupled and nonlinear system, which,
however, led to small time steps. A deeper investigation of stabilization and time dis-
cretization techniques, as it was done for Navier-Stokes-Cahn-Hilliard fluids in [5], for
both explicit and implicit coupling, might be meaningful. We further applied some fea-
tures of the toolbox AMDiS to decrease the computational costs. In time, we performed
an OPENMP problem parallelization that nearly reached an ideal speedup. In space,
we used adaptive mesh refinement and multi-mesh strategies. To solve occurring linear
systems of equation, we used the direct solver UMFPACK. However, for the treatment
of larger systems, that occur especially in 3D, an iterative solver has to be used that
requires the development of suitable preconditioners for the conserved Helfrich flow or
for the implicit coupled Helfrich-Navier-Stokes system.

In this thesis, we have seen that the diffuse interface method is a powerful tool to
describe and numerically solve highly complex phenomena. We studied hydrodynamic
free boundary problems that result from a mathematical description of cells, their mem-
brane and their surrounding. We produced qualitative results for the evolution of cells.
Moreover, such hydrodynamic diffuse interface models signify the need for further math-
ematical analysis and quantitative comparison to experimental data that also requires
intensive 3D simulations.
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motor: spontaneous flows of active polar fluids between two coaxial cylinders. New
J. Phys., 14(2):023001, 2012.

[109] J. Geiser. Iterative operator-splitting methods with higher-order time integration
methods and applications for parabolic partial differential equations. J. Comput.
Appl. Math., 217(1):227–242, 2008.

[110] T. M. Geislinger and T. Franke. Hydrodynamic lift of vesicles and red blood cells
in flow - from F̊ahraeus & Lindqvist to microfluidic cell sorting. Adv. Colloid
Interface Sci., 208:161–176, 2014.

[111] G. Ghigliotti, T. Biben, and C. Misbah. Rheology of a dilute two-dimensional
suspension of vesicles. J. Fluid Mech., 653:489–518, 2010.

156



Bibliography

[112] L. Giomi and A. DeSimone. Spontaneous division and motility in active nematic
droplets. Phys. Rev. Lett., 112:147802, 2014.

[113] H. L. Goldsmith and S. G. Mason. Axial migration of particles in poiseuille flow.
Nature, 190:1095–1096, 1961.

[114] G. Gonnella, D. Marenduzzo, A. Suma, and A. Tiribocchi. Motility-induced phase
separation and coarsening in active matter. C. R. Phys., 2015.

[115] A. B. Goryachev and A. V. Pokhilko. Dynamics of cdc42 network embodies a
turing-type mechanism of yeast cell polarity. FEBS Lett., 582:1437–1443, 2008.

[116] R. Gu, X. Wang, and M. Gunzburger. Simulating vesicle-substrate adhesion using
two phase field functions. J. Comput. Phys., 275:626–641, 2014.

[117] J. Happel and H. Brenner. Low Reynolds number hydrodynamics: with special
applications to particulate media, volume 1. Springer Science & Business Media,
2012.

[118] F. Haußer, S. Li, J. Lowengrub, W. Marth, A. Rätz, and A. Voigt. Thermody-
namically consistent models for two-component vesicles. Int. J. Biomath. Biostat.,
2(1):19–48, 2013.

[119] R. J. Hawkins, R. Poincloux, O. Bénichou, M. Piel, P. Chavrier, and R. Voituriez.
Spontaneous contractility-mediated cortical flow generates cell migration in three-
dimensional environments. Biophys. J., 101(5):1041–1045, 2011.

[120] A. Heintz. A numerical method for simulation dynamics of incompressible lipid
membranes in viscous fluid. J. Comput. Appl. Math., 289:87–100, 2015.

[121] W. Helfrich. Elastic properties of lipid bilayers: theory and possible experiments.
Z. Naturforsch., 28:693–703, 1973.

[122] B. P. Ho and L. G. Leal. Inertial migration of rigid spheres in two-dimensional
unidirectional flows. J. Fluid Mech., 65:365–400, 1974.

[123] P. Hohenberg and B. Halperin. Theory of dynamic critical phenomena. Rev. Mod.
Phys., 49:435–479, 1977.

[124] W. R. Holmes and L. Edelstein-Keshet. A comparison of computational models
for eukaryotic cell shape and motility. PLoS Comput. Biol, 8(12):e1002793, 2012.

[125] S. M. Hosseini and J. J. Feng. How malaria parasites reduce the deformability of
infected red blood cells. Biophys. J., 103(1):1–10, 2012.

[126] W.-F. Hu, Y. Kim, and M.-C. Lai. An immersed boundary method for simulating
the dynamics of three-dimensional axisymmetric vesicles in navier–stokes flows. J.
Comput. Phys., 257:670–686, 2014.

157



Bibliography

[127] D. Jacqmin. Calculation of two-phase navier–stokes flows using phase-field mod-
eling. J. Comput. Phys., 155(1):96 – 127, 1999.

[128] A. Jain and L. L. Munn. Determinants of leukocyte margination in rectangular
microchannels. PLoS One, 4(9):e7104, 2009.

[129] D. Jamet and C. Misbah. Towards a thermodynamically consistent picture of the
phase-field model of vesicles: Local membrane incompressibility. Phys. Rev. E, 76
(5):051907, 2007.

[130] A. Jilkine and L. Edelstein-Keshet. A comparison of mathematical models for
polarization of single eukaryotic cells in response to guided cues. PLoS Comput.
Biol., 7, 2011.

[131] J.-F. Joanny and J. Prost. Active gels as a description of the actin-myosin cy-
toskeleton. HFSP J., 3(2):94–104, 2009.
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[138] T. Krüger, B. Kaoui, and J. Harting. Interplay of inertia and deformability on
rheological properties of a suspension of capsules. J. Fluid Mech., 751:725–745,
2014.
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[205] R. Ramaswamy, G. Bourantas, F. Jülicher, and I. F. Sbalzarini. A hybrid particle-
mesh method for incompressible active polar viscous gels. J. Comput. Phys., 291:
334–361, 2015.

[206] S. Ramaswamy. The mechanics and statistics of active matter. Annu. Rev. Con-
dens. Matter Phys., 1(1):323–345, 2010.

[207] A. Rätz. Turing-type instabilities in bulk–surface reaction–diffusion systems. J.
Comput. Appl. Math., 289:142–152, 2015.
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[209] A. Rätz and M. Röger. Symmetry breaking in a bulk–surface reaction–diffusion
model for signalling networks. Nonlinearity, 27(8):1805, 2014.

[210] A. Rätz and A. Voigt. Pde’s on surfaces - a diffuse interface approach. Comm.
Math. Sci., 4:575–590, 2006.

163



Bibliography

[211] A. Rätz and A. Voigt. A diffuse-interface approximation for surface diffusion
including adatoms. Nonlinearity, 20(1):177, 2007.
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