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Abstract

In this thesis, we are dealing with modelling and numerical treatment of epitax-
ial growth of thin crystalline films, where we concentrate on diffuse-interface ap-
proximations of two descriptions of this process. In the first part, we consider a
semi-continuous model resolving atomic distances in the growth direction but being
coarse grained in the lateral directions. Mathematically, this leads to a free bound-
ary problem proposed by Burton, Cabrera and Frank for steps separating terraces
of different atomic heights coupled to a diffusion equation for the adatom (adsorbed
atom) concentration fulfilling certain boundary conditions at the steps. For this
sharp-interface model, a diffuse-interface approximation can be given by a viscous
Cahn-Hilliard equation, which is based on a Ginzburg-Landau free energy. Great em-
phasis is put on the incorporation of an Ehrlich-Schwoebel barrier — a higher energy
barrier for attachment to a step down, which leads to a jump in the adatom concen-
tration at the steps — as well as diffusion along step edges and anisotropic effects
into a diffuse-interface model. We provide a justification by matched asymptotic
expansions formally showing the convergence of the diffuse-interface model towards
the sharp-interface model as the interface width shrinks to zero. The numerical
treatment of the viscous Cahn-Hilliard is based on a semi-implicit finite element
discretization, where an adaptive strategy of local mesh refinement and coarsening
has been applied. Computational results include the numerical reproduction of the
results of the asymptotic analysis in one dimensional situations, the investigation
of the stability of a circular island and simulations of anisotropic island growth and
spiral growth.

The second model is continuous in all directions. We thereby assume that the
interface between the film and the vapour is represented by a smooth surface, whose
evolution is given by a geometric law that combines surface diffusion and interface
kinetics, which can again be approximated by a viscous Cahn-Hilliard equation. In
principle, we reuse the previous numerical approach and validate it with an inves-
tigation of an instability caused by an additional elastic energy. Further examples
show the smoothing property for closed curves and surfaces as well as the evolution
towards anisotropic shapes.
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Chapter 1

Introduction

This work is concerned with modelling and numerical aspects of thin film epitaxy,
which is a technology of growing single crystals that inherit atomic structures from
substrates. It produces almost defect-free, high quality materials that have a wide
range of device applications. One of the most typical and important examples of
thin film epitaxy is MBE (molecular beam epitaxy), where the deposition material
is thermally evaporated from a source and forms a directed beam of neutral atoms
inside the chamber. Due to chemical bonding, such atoms in the vapour are adsorbed
by a given substrate or crystal surface. In this thesis, we are interested in two
mathematical models for this process, where the first one is semi-continuous in the
sense that it resolves atomic distances in the growth direction but is coarse grained in
the remaining directions, whereas the second approach is continuous in all directions.

For the semi-continuous model studied in Chapter 2, we first consider a micro-
scopic picture of a stepped surface (see Figure 1.1 for a scanning tunnelling mi-
croscopy (STM) image of steps on a Si(001) surface). Once adsorbed by the surface,
the deposited atoms are called adatoms. Different mechanisms such as adatom dif-
fusion and desorption, deposition of atoms as well as attachment of adatoms from
terraces to steps leading to a movement of steps and detachment from steps to ter-
races play a role (see Figure 1.2 for a schematic microscopic picture). Furthermore,
coalescence of a finite number of adatoms may lead to the nucleation of a new ter-
race or island and thus contribute to the growth of the film. Burton, Cabrera and
Frank [BCF51] proposed a model (“BCF model”) for this situation, which is coarse
grained in the lateral directions but still discrete in the growth direction (see e.g.
[Kru05, MK04, PV98] for overviews on the BCF model). To be more precise, the
steps are thought of as continuous curves separating terraces of different atomic
height. Then, one is interested in a free boundary problem, which is similar to the
Stefan problem modelling solidification processes and includes a diffusion equation
for a continuous adatom concentration ρ : Ω × I → R with some domain Ω ⊂ R2

and time interval I = [0, tend]. The adatom concentration is then coupled to the
movement of the steps whose normal velocities are mainly given by the sum of the
adatom fluxes into the step from the upper and lower terraces, respectively. On the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: STM image of a stepped Si(001)-surface (≈ 355nm×355nm) [Polop, Bleikamp,

Michely, I. Phys. Institut, RWTH Aachen].

adatom

adatom

atom
deposition

terrace kink

desorption

step diffusion

Figure 1.2: Microscopic processes on a stepped surface.

boundaries, we assume in this work either a condition related to the Gibbs-Thomson
boundary condition in the context of a Stefan problem including the curvature of
the step, or we study the influence of the so-called Ehrlich-Schwoebel (ES) barrier
(the denomination going back to [EH66, SS66, Sch69]), a higher energy barrier that
must be overcome by an adatom in order to attach from the upper terrace to a step.
This is illustrated in Figure 1.3 showing the potential V having a maximum corre-
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sponding to an uncomfortable position with few neighbours that has to be crossed
for attachment to a step down. In the BCF model, this asymmetry in attachment

V

Figure 1.3: Ehrlich Schwoebel barrier.

is modelled by an asymmetry in the so-called kinetic boundary conditions, where
one assumes that the adatom fluxes from the upper and lower terraces into the step
are each proportional to the deviation from the thermodynamic equilibrium with
different proportionality factors, which display the asymmetry in the attachment.
This choice of boundary conditions leads to a discontinuity of the adatom density
at the step. During growth, the ES barrier may be responsible for a step mean-
dering instability [BZ90] of a train of straight steps, which is due to the fact that
diffusing adatoms prefer attachment to a protrusion of a non-straight step as well
as attachment from the lower terrace, which leads to an enhancement of the protru-
sion. A second consequence of the asymmetry in attachment on a more macroscopic
scale is a roughening of the growing film caused by reduced filling of valleys and en-
hanced nucleation on top of mounds, where the adatom concentration is increased.
Moreover, during growth the ES barrier stabilizes step trains with respect to step
bunching perpendicular to the steps.

For numerical reasons, we study a diffuse-interface approximation of this free
boundary problem, where the discrete function counting the atomic monolayers is
smeared out on a length of O(ε). This approach is based on a Ginzburg-Landau free
energy for the smeared out height function φ. The evolution of the steps given by the
evolution of φ is coupled to a diffusion equation for the adatom density ρ. This leads
to a viscous Cahn-Hilliard equation (an interpolation between Allen-Cahn [AC79]
and Cahn-Hilliard equation [CH58] proposed by Novick-Cohen [NC88]), which can
be written as a system of two partial differential equations of second order. One
numerical advantage of this ansatz compared to sharp interface approaches (see e.g.
[BHL+04, BHV05]) is then that one can use the same grid for the discretization of ρ
and φ. In addition, such a diffuse-interface approach automatically handles topolog-
ical changes such as coalescence and vanishing of terraces. For the approximation of
the BCF model with thermodynamic boundary conditions, diffuse-interface models



4 CHAPTER 1. INTRODUCTION

have been treated in [LM94, KP98, RV04], and following [CENC96] and introduc-
ing a degenerate mobility (increased to O(ε−1) in the diffuse-interface region) one
can treat in a diffuse-interface model an additional term in the velocity law of the
BCF model mainly proportional to the second tangential derivative of the curvature
[RV05] modelling the diffusion of atoms along a step edge . For the approximation of
the BCF model with kinetic boundary conditions, the asymmetry in the attachment
from upper and lower terraces, respectively, is modelled by a degenerate (decreased
to O(ε) in the diffuse-interface region) and asymmetric mobility function [OPR+04].
Thereby, the degeneracy is crucial for the resolution of the jump in the adatom con-
centration at the step in a diffuse-interface approximation. The incorporation of
edge diffusion into a diffuse-interface model approximating a BCF model with ki-
netic boundary conditions is not treated in this thesis. For both types of boundary
conditions, we introduce a model which accounts for anisotropic attachment kinetics,
mobilities and step stiffnesses.

After introducing the details of this approach in Section 2.1, we combine in
Section 2.2 the procedure of [RV05] and [OPR+04] with the anisotropic one presented
in [RRV06] and provide a justification by matched asymptotic expansions formally
showing the convergence towards the desired sharp-interface limits as the width of
the diffuse interface shrinks to zero. In Section 2.3, a semi-implicit finite element
(FEM) discretization — implemented in the FEM toolbox AMDiS [VV07] — of
the diffuse-interface model is described including an adaptive strategy of local mesh
refinement and coarsening. As a numerical test, we reproduce the results of the
asymptotic analysis for one dimensional examples, where analytic solutions of the
BCF model are available. After the numerical investigation of the stability of a
circular epitaxial island and anisotropic island growth, we finally obtain similar
results as Karma and Plapp [KP98] for spiral growth and, furthermore, study the
influence of edge diffusion and an Ehrlich-Schwoebel barrier on the shape of growth
spirals.

In the second approach of modelling epitaxial growth processes presented in
Chapter 3, we assume that the growth of the film is described by the evolution of
a continuous interface between vapour and solid. Thus, the interface is a (d − 1)-
dimensional hypersurface in Rd. Based on Mullins’ work [Mul57], where he derived
the isotropic surface diffusion equation stating that the normal velocity is propor-
tional to the surface Laplacian (Laplace-Beltrami operator) of the mean curvature,
Cahn and Taylor [CT94] introduced a growth law which combines surface diffusion
with interface kinetics (see also [GJ02]). In [CENC96], a matched asymptotic analy-
sis has been performed in order to formally show that a Cahn-Hilliard equation with
a degenerate mobility function (being zero outside and increased to O(ε−1) inside the
diffuse-interface region) can approximate motion by the surface Laplacian of mean
curvature as ε → 0. Taylor and Cahn [TC94] extended this diffuse-interface model
to a viscous Cahn-Hilliard equation accounting for anisotropic as well as kinetic
effects. Asymptotic expansions have been performed for this model in [RRV06].

In Section 3.1, we briefly describe the sharp- and diffuse-interface models and
some basic properties. In Section 3.2, some details of the discretization of the vis-
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cous Cahn-Hilliard equation in this application are described. We validate both the
numerical and the modelling approach by investigating the stability of a flat inter-
face, where a (prescribed) elastic energy (as proposed in [BMN05]) is incorporated
into the model leading to an instability. With this instability, we compare for curves
numerical results of the viscous Cahn-Hilliard equation with numerical results of
sharp-interface simulations and analytic results of a linear stability analysis for the
two extreme cases motion by mean curvature and motion by surface diffusion. As
a second example, we consider the smoothing property of the model starting with
different closed curves and surfaces including a simulation showing a pinch-off pre-
dicted by sharp-interface simulations in [BMN05]. Furthermore, numerical results
showing anisotropic evolutions of curves and surfaces are presented.
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Chapter 2

Diffuse-Interface Approximation

of Discrete-Continuous Models

In this chapter, we consider a model proposed by Burton, Cabrera and Frank
[BCF51], which is semi-continuous in the sense that it resolves atomic distances
in the growth direction but is coarse grained in the lateral directions. That means
that we study islands and terraces of discrete atomic heights bounded by continuous
curves. Mathematically, this leads to a free boundary problem which is closely re-
lated to the Stefan-problem arising in the description of solidification processes and
to the Mullins-Sekerka model appearing in phase separation of alloys.

In Section 2.1, we first briefly introduce the sharp-interface model, before we
propose diffuse-interface approximations for different types of boundary conditions
at the free boundary, which lead to different choices of mobility functions. Justifica-
tion of this approach is given by matched asymptotic expansions in Section 2.2 and
by numerical results in Section 2.3 including a comparison with analytic solutions of
the sharp-interface model, investigations of the stability of a circular island as well
as studies concerning anisotropic island growth and spiral growth.

2.1 Model Description

Here, we briefly describe the sharp-interface model studied in this chapter, before
a diffuse-interface approximation of this model is proposed. For overviews on the
sharp-interface model, we refer to [MK04, Kru05, PV98]. Reviews on Cahn-Hilliard
systems can be found in [Ell89, NC98, Fif00], whereas overviews on phase-field
modelling can be found in [Che02, BWBK02], for example.

2.1.1 Sharp-Interface Model

On an atomic level, we consider a situation, where atoms are deposited from the
vapour phase onto a solid surface. Once adsorbed by the surface, these atoms are
called adatoms and are able to diffuse on the surface searching for an energetically

7



8 CHAPTER 2. DISCRETE-CONTINUOUS MODELS

favourable position. In this scenario, processes such as atom deposition and diffusion,
desorption of adatoms as well as attachment of adatoms from terraces to steps and
detachment from steps to terraces are of interest (see Figure 1.2). An additional
aspect is related to nucleation of new islands, which is not theoretically studied in
this work.

Steps and Terraces

In this chapter, we consider the so-called BCF model introduced by Burton, Cabrera
and Frank [BCF51]. This model is discrete in the growth direction and continuous in
the lateral directions (see Fig. 2.1) and studied in a time interval [t0, tend]. Projecting
the film surface normal to the growth direction, we obtain a fixed domain Ω ⊂ R2.
Introducing the discrete function φ0 = φ0(x, t) counting the atomic monolayers at

Ω2
Ω2

Ω1

Ω1
Ω3Ω3

Ω0 Top View

(continuous)

Side View

(discrete)

Figure 2.1: Discrete-continuous model for epitaxial islands.

point x ∈ Ω, we can define the terraces Ωi = Ωi(t) := {x ∈ Ω : φ0(x, t) = i}
of atomic height i ∈ {0, . . . ,K} for a number K ∈ N. The corresponding island
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or terrace boundaries Γi = Γi(t) are then given by Γi(t) = Ωi−1(t) ∩ Ωi(t), i ∈
{1, . . . ,K}. Furthermore, we denote by Ni = Ni(t), vi = vi(t) and κi = κi(t) the
normal, the normal velocity and the curvature of the boundary Γi(t). Thereby, we
use the conventions that Ni points from the upper terrace Ωi to the lower terrace
Ωi−1 and the curvature κi of the step is positive, if a closed upper island terrace Ωi

is convex or, if, in a step flow case, the interface is given by the graph of a concave
function, and the normal Ni has a positive x2-component (see also Figure 2.2).

Ωi

Ωi−1

κi > 0

Ni

Ωi

Ωi−1

κi > 0

κi < 0

Ni

Figure 2.2: Sign conventions for normal Ni and curvature κi for islands (left) and step flow

(right).

Step Free Energy

Now, we want to present some details on the thermodynamic properties of steps,
which are described by the energy

(2.1) Sϕ(Γ) :=

∫

Γ
ϕ(N) ds

of a step Γ, where ds denotes the line element and ϕ = ϕ(N) the specific surface
free energy depending on the normal N of Γ. The functional derivative with respect
to Γ is normal (see Lemma 2 in Section 3.1.1) and yields

δSϕ

δΓ
·N = (ϕ+ ϕ′′)κ = ϕ̃κ

including the step stiffness
ϕ̃ = ϕ+ ϕ′′,

where ϕ′ denotes the derivative

ϕ′(N) :=
d

dθ
φ((cos θ, sin θ)) for N = (cos θ, sin θ), θ ∈ [0, 2π).

Let Ω̃ denote the area of an adsorption site. The step chemical potential µc = Ω̃ϕ̃κ
is then the free energy change upon adding an atom to the step.
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In order to mathematically describe equilibrium shapes of islands related to the
step free energy (2.1), we introduce a dimensionless anisotropy function γ : S1 → R
satisfying ϕ = µ1γ for some dimensional constant quantity µ1. Concerning the
variational problem

(2.2) Minimize Sγ(Γ) =

∫

Γ
γ(N) ds such that |Ω| :=

∫

Ω
dx = constant

with Ω ⊂ R2 a smooth domain satisfying ∂Ω = Γ, it is known that the so-called
Wulff set (the denomination going back to [Wul01])

(2.3) Wγ :=
{

x ∈ R2 : x · n ≤ γ(n) ∀n ∈ S1
}

is a solution of (2.2) (see e.g. [Tay78]), where, for completeness, we mention that
x · y denotes the Euclidean standard scalar product for x, y ∈ Rd. For uniqueness
results, we refer to [FM91]. According to the functional derivative

κγ :=
δSγ

δΓ
·N = (γ + γ′′)κ = γ̃κ,

leading to the weighted curvature κγ , one obtains that the curvature of the Wulff
shape

(2.4) Wγ := ∂Wγ

is inversely proportional to γ̃ = γ + γ′′. As a consequence, the curvature of an
equilibrium island shape is inversely proportional to the stiffness ϕ̃.

Free Boundary Problem

For the adatom concentration ρ = ρ(x, t), (x, t) ∈ Ω × [t0, tend], we assume the
diffusion equation

(2.5) ∂tρ+ ∇ · J = F − τ−1ρ in Ωi

with deposition flux rate F , the desorption rate τ−1, the divergence operator ∇· and
the diffusion flux

(2.6) J = −D∇ρ

including the diffusion coefficient D. In addition, we prescribe initial conditions
Γi(t0) = Γ0

i for some initial curves Γ0
i and ρ(x, t0) = ρ0(x), x ∈ Ω, for some initial

adatom concentration ρ0 = ρ0(x), x ∈ Ω. Moreover, one assumes Dirichlet or no
flux boundary conditions

ρ = ρ∂ or ∇ρ ·N = 0 on ∂Ω
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with some function ρ∂ = ρ∂(x), x ∈ ∂Ω, and the outer normal N to ∂Ω, or one
assumes in the case of rectangular domains Ω that ρ is Ω-periodic. We set ρi := ρ|Ωi

and Ji := J |Ωi
, and, on the boundaries Γi, we define the fluxes

J−
i := Ji ·Ni − viρi on Γi,(2.7)

J+
i := −Ji−1 ·Ni + viρi−1 on Γi(2.8)

into the steps from the upper and lower terraces, respectively, and we assume for
the adatom density one of the following two types of boundary conditions.

1. Thermodynamic Boundary Conditions (TBC)

(2.9) ρ = ρi = ρi−1 = ρ∗(1 + σ̃(Ni)κi) +
1

k(Ni)a

vi

Ω̃
on Γi,

2. Kinetic Boundary Conditions (KBC)

J−
i = ak−(Ni)(ρi − ρ∗(1 + σ̃(Ni)κi)) on Γi,(2.10)

J+
i = ak+(Ni)(ρi−1 − ρ∗(1 + σ̃(Ni)κi)) on Γi.(2.11)

Here, ρ∗ denotes the equilibrium density of a straight step and

σ̃ :=
Ω̃ϕ̃

kBΘ

the capillarity length, where kB denotes the Boltzmann’s constant and Θ the temper-
ature. Furthermore, a is the atomic distance and k = k(Ni) is a kinetic coefficient.
Then, the right hand side of (2.9) is closely related to the Gibbs-Thomson bound-
ary condition associated with the Stefan problem in the context of solidification
processes. It includes the thermodynamic equilibrium

(2.12) ρ∗(1 + σ̃(Ni)κi)

of the step. In (2.10), (2.11) k− = k−(Ni) and k+ = k+(Ni) denote the attachment
rates from the upper and the lower terrace to the boundary, respectively, where, for
simplicity, we assume

(2.13) k− = a−k0 and k+ = a+k0

for a dimensionless anisotropy function k0 : S1 → R and positive constants a±. The
boundary conditions (2.10) and (2.11) describe a balance between the adatom flux
into the step and the deviation from the thermodynamic equilibrium (2.12). In the
presence of an Ehrlich-Schwoebel barrier — a higher energy barrier for attachment
to a step down [EH66, SS66, Sch69] —, the relation k+ > k− models a preferred
attachment from the lower terrace to the boundary.
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Irrespective of the type of boundary condition, one can assume the evolution of
the free boundaries Γi is given by

(2.14)
vi

Ω̃
= J−

i + J+
i + ∂s

(

ν(Ni)∂s

(

Ω̃ϕ̃(Ni)κi +
kBΘ

ρ∗k(Ni)a

vi

Ω̃

))

on Γi,

where the first term on the right hand side of (2.14) is due to mass conservation. In
addition, ∂s denotes the derivative with respect to arc length, and the second term
is dedicated to model diffusion of adatoms along the boundaries Γi, where ν = ν(Ni)
denotes the mobility of this diffusion. It should be mentioned that this term is mass
conserving (see Proposition 1 in Section 3.1.1) and neglected for the diffuse-interface
approximation in the case of kinetic boundary conditions.

Quasi-Stationary Approximation

In the following, we will introduce several simplifications and changes in dimensions
and notations, before a diffuse-interface approximation will be presented. For this
purpose, we assume for the diffusion equation (2.5) a quasi-stationary approximation
for the adatom concentration, which yields

∇ · J = F − τ−1ρ in Ωi.

In this regime, one neglects the convective terms in (2.7) and (2.8), and, therefore,
we obtain the fluxes

J−
i = Ji ·Ni on Γi,

J+
i = −Ji−1 ·Ni on Γi

appearing in the velocity formula and in the kinetic boundary conditions.

Non-Dimensional Quantities

In order to further simplify the notations, we assume Ω̃ = a2 and introduce the
transformations

x 7→ x

a
, ρ 7→ a2ρ, D 7→ D

a2
, ρ∗ 7→ a2ρ∗, σ̃ 7→ σ̃

a
, ϕ̃ 7→ ϕ̃

a
, ν 7→ ν

a
, F 7→ a2F,

which means that lengths are measured in units of the atomic distance a. Further-
more, we consider non-dimensional times and assume that energies are measured
in units of kBΘ. In addition, we will consider in the following the excess density
w := ρ− ρ∗ with wi := w|Ωi

, introduce F̃ := F − τ−1ρ∗ and denote F̃ with F again.
Finally, we introduce µ := ρ∗σ̃. Then, we obtain the diffusion equation

(2.15) ∇ · J = F − τ−1w in Ωi

with the adatom flux

(2.16) J = −D∇w.
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Furthermore, we obtain the boundary conditions

(2.17) w = µ(Ni)κi +
1

k(Ni)
vi on Γi

in the TBC case and

J−
i = k−(Ni)(wi − µ(Ni)κi) on Γi,(2.18)

J+
i = k+(Ni)(wi−1 − µ(Ni)κi) on Γi(2.19)

in the KBC case. The velocity formula is now given by

(2.20) vi = J−
i + J+

i + ∂s

(

ν(Ni)∂s

(

ϕ̃(Ni)κi + (ρ∗k(Ni))
−1vi

))

.

Before we introduce a Cahn-Hilliard approximation of this model, we write

(2.21) µ = µ0γ̃ = µ0(γ + γ′′)

with a constant quantity µ0 and an anisotropy function γ : S1 → R, for which we
assume γ = 1, if we regard the isotropic situation as a special case. Therefore and
by the choice of non-dimensionalization, one can rewrite

ϕ̃ = σ̃ =
µ

ρ∗
=
µ0γ̃

ρ∗
,

and, therefore, (2.20) reads

(2.22) vi = Ji ·Ni − Ji−1 ·Ni + ∂s

(

(ρ∗)−1ν∂s

(

µκi + k−1vi

))

.

Energy Dissipation

One essential property of the BCF model with diffusion equation (2.15) and (2.16)
and either thermodynamic boundary condition (2.17) or kinetic boundary conditions
(2.18), (2.19) and velocity law (2.22) is that it is thermodynamically consistent in
the sense that for F = 0, τ−1 = 0 and no adatom flux boundary conditions on
the boundary ∂Ω the total energy of the steps — which, in the isotropic case, is
proportional to the total length of the steps — is reduced during time (see[OPR+04])

(2.23)
d

dt

K
∑

i=1

∫

Γi

ϕ(Ni) ds ≤ 0.

To the author’s knowledge existence results for the BCF model are only in one
dimensional situations and for thermodynamic boundary conditions without edge
diffusion (see e.g. [Rad91, CR92]) available. A linear stability analysis for step flow
is presented in [BZ90]. The result is the morphological Bales-Zangwill instability
which shows up for perturbations with small wave numbers. For circular shaped
islands, there have been stability investigations performed in [Avi71, Avi72, LRV04].
Numerically, the BCF model has been investigated in a framework of a finite element
method (FEM) in [BHL+04] in the KBC case and in [BHV05] in the TBC case (see
also [HV05b]). Level set approaches for island growth can be found in [CMK+01],
for example.
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2.1.2 Diffuse-Interface Model

We provide a diffuse-interface approximation for this type of free boundary problems.
The basic idea in this context is to introduce a small parameter ε > 0 and a function
φ : Ω × [t0, tend] → R obtained by smearing out the discrete function φ0 : Ω ×
[t0, tend] → R counting the atomic monolayers on a length scale of O(ε) (see Figure
2.3). This approximation is based on a Ginzburg-Landau free energy

O(ε)

O(ε)

Ωi+2

Ωi+1

Ωi
φ

Figure 2.3: Idea of smeared out height function φ.

(2.24) E(φ) :=

∫

Ω
E(φ,∇φ) dx :=

∫

Ω

(

1

2
ε|γ∇φ|2 + ε−1G(φ)

)

dx,

where the energy density E = E(z, p) : Q ⊂ R × R2 → R contains a multi well
potential G = G(φ)

(2.25) G(φ) = 18(φ− i)2(φ− (i− 1))2, φ ∈ [i− 1, i], i ∈ Z
attaining its minimum G(φ) = 0 in all integer values φ ∈ Z representing the terraces
(see Figure 2.4). In this context, the moving boundaries are given by the level sets

G

φ
0 1 2 3 K. ....

Figure 2.4: Multi well potential G.

Γi(t; ε) :=

{

x ∈ Ω : φ(x, t) = i− 1

2

}

for i ∈ Z.
The gradient term in the free energy (2.24) accounts for the interactions between
the terraces. Furthermore, it includes a function γ : S1 → R leading to anisotropic
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contributions to the free energy, where the normal to the level set Γi(t; ε) is
given by ni(∇φ) := − ∇φ

|∇φ| |Γi . Therefore, we have γ = γ(− ∇φ
|∇φ|), where neither

n(∇φ) := − ∇φ
|∇φ| is defined for ∇φ = 0 nor γ̂(p) := γ(− p

|p|) for p = 0. However, the

corresponding term in the energy (2.24) includes the positively one-homogeneous
function

γ0(p) := γ

(

− p

|p|

)

|p| for p ∈ R2 \ {0}.

By defining γ0(0) := 0 one obtains Lipschitz-continuity of γ0 : R2 → R, which
ensures the existence of the energy (2.24), if φ ∈ H1(Ω) holds.

A diffuse-interface approximation of the quasi-stationary BCF model is then
given by a viscous Cahn-Hilliard-like equation

∂tφ+ ∇ · j = F − τ−1w,(2.26)

j = −Mε∇w,(2.27)

εk̃−1∂tφ = −µ0
δE
δφ

+ w = µ0

(

∇ ·Ep(φ,∇φ) − ε−1G′(φ)
)

+ w(2.28)

for φ,w : Ω× [t0, tend] → R, j : Ω× [t0, tend] → R2 and an initial condition φ(x, t0) =
φ̃(x) for some φ̃ : Ω → R obtained by smearing out the discrete function φ0(x, t0).
Moreover, one assumes Dirichlet or no flux boundary conditions

φ = φ∂ , w = w∂ or ∇φ ·N = ∇w ·N = 0 on ∂Ω

for φ∂ , w∂ : ∂Ω → R, or one may assume Ω-periodicity of φ and w or a combination
of these boundary conditions. In addition, the concrete choices of kinetic coefficient k̃
and mobility function Mε depend on the type of boundary conditions assumed in the
BCF model at the steps. Due to the fact that the energy (2.24) is an approximation
of the total energy of steps, one can state that the energy dissipation

d

dt
E(φ) ≤ 0

one obtains for system (2.26)–(2.28) (see [OPR+04]) displays the reduction of the
total energy of the steps (2.23) one gets for the BCF model. Furthermore, one
concludes that (2.28) is a parabolic equation if the anisotropy function γ is convex,
which is assumed throughout this paper.

Mobility for TBC

Phase-field approximations of an isotropic BCF model with thermodynamic bound-
ary conditions (2.17) have been proposed by Liu and Metiu [LM94] for the numerical
investigation of one dimensional step trains, whereas Karma and Plapp used a sim-
ilar model in order to study spiral growth [KP98], which will also be a topic in
Section 2.3.5. Formal justification by matched asymptotic analysis has been pro-
vided in [RV04] and in [RV05] for the incorporation of an additional edge diffusion
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term in the velocity law into a diffuse-interface model. An anisotropic phase-field
model in a solidification application has been proposed in [MWB+93].

Here, we combine the approach in [RV05] for the isotropic case with the one in
[RRV06], where a model for anisotropic surface diffusion has been treated. Defining

(2.29) ν̃(n(∇φ)) :=
ν(n(∇φ))

ρ∗γ(n(∇φ))
and B(φ) := 2G(φ),

we use the mobility function

(2.30) Mε(φ,∇φ) := D + ε−1ν̃(n(∇φ))B(φ) = D + 2ε−1ν̃(n(∇φ))G(φ),

which is based on ideas in [CENC96], where a degenerate mobility has been used van-
ishing in the phases and being increased to O(ε−1) at the interface in order to obtain
a diffuse-interface approximation of motion by surface diffusion. This corresponds
to setting D = 0 in (2.30). A similar approach with a mobility being increased at the
interface has been proposed by Fife and Penrose in order to incorporate a surface
diffusion term into the formula for the normal velocity of a Mullins-Sekerka model
([FP95]). From (2.30) one obtains that for φ ∈ Z, i.e. on the terraces, one has
Mε(φ,∇φ) = D, whereas for φ /∈ Z the mobility Mε is increased to O(ε−1) leading
in the sharp-interface limit to an additional term in the velocity formula modelling
the diffusion of atoms along step edges (see (2.22)).

Furthermore, for reasons explained in Section 2.2.1, the kinetic coefficient

(2.31) k̃(n(∇φ)) :=
k(n(∇φ))

γ(n(∇φ))

has to be introduced in order to obtain the desired asymptotics for ε→ 0.

Mobility for KBC

In order to provide a diffuse-interface approximation of a BCF model with kinetic
boundary conditions (2.18), (2.19), we generalize the matched asymptotic analysis
presented in [OPR+04] to the anisotropic situation, again using the approach pre-
sented in [RRV06]. The basic idea thereby, in turn, lies in the mobility function
Mε, which is now degenerate in a different sense compared to (2.30). A different
approach for the approximation of a BCF model with kinetic boundary conditions
has been proposed in [PL03].

The question is, how kinetic boundary conditions modelling the ES barrier can
be incorporated into the diffuse-interface approximation. The ES barrier is a higher
energy barrier that must be overcome by an adatom in order to attach to a step
from the upper terrace, i.e. the attachment of an adatom to a step down is penalized
compared to a step up (see Figure 2.5). This asymmetry in attachment of adatoms
is modelled in the BCF system (2.15), (2.18), (2.19), (2.22) by the asymmetry in the
boundary conditions. These yield a discontinuity in the adatom density at the steps,
which requires a degenerate diffusion coefficient, and the idea is now to introduce
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a variable mobility, which is O(ε) at the steps but constant on the terraces. This
mobility is asymmetric in the sense that it is reduced for adatoms coming from the
upper terrace to the step and kept constant for adatoms coming from the lower
terrace to the step (see Figure 2.5).

0

D

Mε

V

Figure 2.5: Idea of asymmetric mobility Mε.

These ideas are now fixed by the concrete choice of the mobility function

(2.32) Mε(φ,∇φ) :=
D

1 + ε−1k−1
1 (n(∇φ))ζ(φ)

,

where k1 := γk0 : S1 → R is an anisotropy function and ζ = ζ(φ) is periodic
and asymmetric. Furthermore, we require ζ to vanish at all integer values of φ,
i.e. on the different terraces (see Figure 2.6). This can be achieved by a choice
ζ(φ) ∼ φ2(1 − φ)2φp

ζ for φ ∈ [0, 1] and periodically extended to all φ ∈ R with
p

ζ
∈ R, p

ζ
> 0 (see (2.95) in Section 2.2.2). Such a choice of the function ζ implies

that the mobility is asymmetric and Mε = D on the terraces. Moreover, we see from
(2.32) that

(2.33) Mε(φ,∇φ) = ε
Dk1(n(∇φ))

ζ(φ)
+ O(ε2) whenever ζ(φ) > 0,

if we expandMε in powers of ε. Finally, the asymmetric function ζ can be interpreted
as an additional friction coefficient for the adatom movement. As the position of
the steps can be given by the level sets, where φ attains half numbered values, the
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G

ζ

φ
0 1 2 3 K.....

Figure 2.6: Multi well potential G, asymmetric friction ζ.

friction coefficient increases for an adatom coming from the upper terrace to the
step (Figure 2.6).

Again, by the results of the asymptotic analysis in Section 2.2.2, one obtains
that a choice k̃ ∼ k0

γ yields the desired asymptotics as ε → 0. For the precise

choice of ζ and k̃ we refer to (2.95), (2.99), (2.98) and (2.100) in Section 2.2.2.
Furthermore, it should be mentioned that for the approximation of the BCF model
with kinetic boundary conditions we have to restrict ourselves to a velocity law
(2.22) with ν = 0, i.e. we are not able to include the edge diffusion term modelling
the diffusion of atoms along the step edges.

Derivative of Energy Density E

Here, we want to calculate the derivative of the energy density Ep needed in (2.28),
where E(z, ·) ∈ C1(R2), since the function p 7→ γ(− p

|p|) belongs to C1(R2 \{0}) and

is bounded, and, therefore, γ2
0(p) := |p|2γ2(− p

|p|) ∈ C1(R2) holds with Dpγ
2
0(0) = 0.

Thus, for the given anisotropy function

γ : S1 → R,
we consider an extension

γ̂ : R2 \ {0} → R, γ̂(p) := γ

(

− p

|p|

)

.

Furthermore, we are interested in

(2.34) h : I := [0, 2π) → S1, h = h(θ) = (cos(θ), sin(θ))

and in the angle θ := h−1 : S1 → I of n ∈ S1 with the x-axis

(2.35) θ = θ(n) =











arctan(n2/n1) for n1 ≥ 0, n2 ≥ 0,

π + arctan(n2/n1) for n1 < 0,

2π + arctan(n2/n1) for n1 ≥ 0, n2 < 0.

This leads to the anisotropy function

γ ◦ h : I → R.



2.1. MODEL DESCRIPTION 19

Then, we have

Dpγ̂(p) = (γ ◦ h)′(θ(−p/|p|))|p|−2(−p2, p1)

= γ′(−p/|p|)|p|−2(−p2, p1).(2.36)

For the proof of (2.36), we write

n : R2 \ {0} → S1, n(p) := − p

|p|

and compute

Dpγ̂ = Dp(γ ◦ h ◦ h−1 ◦ n) = γ′Dp(h
−1 ◦ n),

where

Dp(h
−1 ◦ n)(p) = Dp arctan(p2/p1) = |p|−2(−p2, p1),

from which one gets (2.36). This yields for the Lagrange function E the derivative

DpE(z, p) = εDpγ
2
0(p) = ε

{

γ̂2(p)p + γ̂(p)|p|2Dpγ̂(p)
}

= ε

{

γ2

(

− p

|p|

)

p+ γ

(

− p

|p|

)

γ′
(

− p

|p|

)

(−p2, p1)

}

for p 6= 0 and DpE(z, 0) = 0 and, therefore,

(2.37) Ep(φ,∇φ) = ε
{

γ2(n(∇φ))∇φ+ γ(n(∇φ))γ′(n(∇φ))(−∂x2
φ, ∂x1

φ)
}

and Ep(φ, 0) = 0. In (2.37), one can recognize a splitting of Ep into a normal and a
tangential component.

Regularization of Mobility and Kinetic Coefficient

One difficulty that has not been addressed yet is due to the fact that the anisotropy
functions ν̃ and k1 appearing in the mobility functions in the TBC and KBC case,
respectively, as well as the kinetic coefficient k̃ are not defined for p = ∇φ = 0,
unless they are constant, or, in other words, ν̃ ◦ n, k1 ◦ n and k̃ ◦ n are only of class
C0(R2 \ {0}) and discontinuous in p = 0. As a consequence, it is not clear how to
define a weak formulation of the viscous Cahn-Hilliard equation (2.26)–(2.28) in the
anisotropic situation. One can avoid this difficulty by introducing regularizations of
the form ν̃ε ◦ n ∈ C0(R2) satisfying

ν̃ε(n(p)) = ν̃(n(p)) for |p| > α(ε)

with α(ε) = O(ε) with corresponding regularizations for k1 and k̃ (see [EPS96] for
analytic results concerning the anisotropic Allen-Cahn equation).
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2.2 Asymptotic Analysis

In this section, we want provide matched asymptotic expansions (see e.g. [Peg89]) for
the approximation of the quasi-stationary BCF model with thermodynamic bound-
ary conditions and of the quasi-stationary BCF model with kinetic boundary con-
ditions by a viscous Cahn-Hilliard equation (2.26)–(2.28). In order to achieve more
rigorous results, one would have to apply techniques from [ABC94].

2.2.1 Quasi-stationary BCF Model with Thermodynamic Bound-

ary Conditions

Matched asymptotic expansions showing formal convergence towards a BCF model
with thermodynamic boundary conditions have been provided in [RV04] and [RV05].
For the treatment by asymptotic analysis of anisotropic phase-field models in dif-
ferent applications, we refer to [MWB+93, RRV06]. Here, both approaches are now
combined.

New Coordinates

New coordinates are established in a neighbourhood of the curve Γi. To this end,
r = r(x1, x2, t; ε) is defined as the signed distance of (x1, x2) from Γi(t; ε), where
r < 0, if (x1, x2) ∈ Ωi and r > 0 if (x1, x2) ∈ Ωi−1. Then for 0 < ρε ≪ 1 there exists
a neighbourhood

Ui(t; ε) = {(x1, x2) ∈ Ω : |r(x1, x2, t; ε)| < ρε}

of Γi(t; ε) such that a orthogonal curvilinear coordinate system (r, s) in Ui can be
defined, where for (x1, x2) ∈ Γi(t; ε) one defines s = s(x1, x2, t; ε) to be the arc length
along Γi(t; ε) to (x1, x2) from some point (x1, x2) ∈ Γi(t; ε). The curve Γi then can
be parametrized with respect to arc length by

Xi = Xi(s, t; ε) : I ⊂ R→ Γi(t; ε), I := [0, L(Γi)].

Now, one transforms w, j and φ to the new coordinate system:

ŵi(r, s, t; ε) : = w(Xi(s, t; ε) + rNi(s, t; ε), t; ε), (x1, x2) ∈ Ui(t; ε),

ĵi(r, s, t; ε) : = j(Xi(s, t; ε) + rNi(s, t; ε), t; ε), (x1, x2) ∈ Ui(t; ε),

φ̂i(r, s, t; ε) : = φ(Xi(s, t; ε) + rNi(s, t; ε), t; ε), (x1, x2) ∈ Ui(t; ε).

Furthermore, a stretched variable is introduced by z := r
ε , and one defines

W i(z, s, t; ε) : = ŵi(r, s, t; ε),

J i(z, s, t; ε) : = ĵi(r, s, t; ε),

Φi(z, s, t; ε) : = φ̂i(r, s, t; ε).
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In addition, the following Taylor expansion approximations for small ε are assumed
to be valid:

w(x1, x2, t; ε) = w0(x1, x2, t) + O(ε),(2.38)

ŵi(r, s, t; ε) = ŵi
0(r, s, t) + O(ε),(2.39)

W i(z, s, t; ε) = W i
0(z, s, t) + O(ε),(2.40)

j(x1, x2, t; ε) = j0(x1, x2, t) + O(ε),(2.41)

ĵi(r, s, t; ε) = ĵi0(r, s, t) + O(ε),(2.42)

J i(z, s, t; ε) = ε−2J i
−2(z, s, t) + ε−1J i

−1(z, s, t) + J i
0(z, s, t) + O(ε),(2.43)

φ(x1, x2, t; ε) = φ0(x1, x2, t) + O(ε),(2.44)

φ̂i(r, s, t; ε) = φ̂i
0(r, s, t) + O(ε),(2.45)

Φi(z, s, t; ε) = Φi
0(z, s, t) + εΦi

1(z, s, t) + O(ε2).(2.46)

Thereby, (2.38), (2.39), (2.41), (2.42), (2.44) and (2.45) are called outer expansions
while (2.40), (2.43) and (2.46) are called inner expansions. It is assumed that these
hold simultaneously in some overlapping region and represent the same functions,
which yields the matching conditions

lim
r→±0

ŵi
0(r, s, t) = lim

z→±∞
W i

0(z, s, t),(2.47)

lim
r→±0

ĵi0(r, s, t) = lim
z→±∞

J i
0(z, s, t),(2.48)

lim
r→±0

φ̂i
0(r, s, t) = lim

z→±∞
Φi

0(z, s, t).(2.49)

Let Ti = Ti(s, t; ε) := ∂sXi(s, t; ε), Ni = Ni(s, t; ε), vi = vi(s, t; ε) := ∂tXi(s, t; ε)·
Ni(s, t; ε) and κi = κi(s, t; ε) denote the tangent, the normal, the normal velocity
and the curvature, where the normal is pointing from the subset of Ui(t; ε) where
φ > i − 1/2 to the subset of Ui(t; ε) where φ < i − 1/2, i.e. from the upper to the
lower terrace. Due to the Frenet formulas (note that the sign is different from the
usual notation, where the normal points into the opposite direction)

∂sTi = −κiNi, ∂sNi = κiTi,

one can transform the derivatives into the new coordinates (r, s) as follows:

∂sφ̂
i = ∇φ · (∂sXi + r∂sNi) = ∇φ · (∂sXi + rκi∂sXi) = (1 + rκi)∇φ · Ti,

which yields

(2.50) ∇φ · Ti = (1 + rκi)
−1∂sφ̂

i.

Moreover, we get

(2.51) ∂rφ̂
i = ∇φ ·Ni
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as well as

∂tφ̂
i = ∂tφ+ ∇φ · (∂tXi + r∂tNi),

in which one plugs in (2.50) and (2.51) in order to obtain

∂tφ = ∂tφ̂
i −∇φ · {(∂tXi ·Ni)Ni + (∂tXi · Ti)Ti + r∂tNi}

= ∂tφ̂
i −∇φ · {viNi + (∂tXi · Ti)Ti + r∂tNi}

= ∂tφ̂
i − vi∂rφ̂

i −∇φ · {(∂tXi · Ti)Ti + r∂tNi}
= ∂tφ̂

i − vi∂rφ̂
i − (1 + rκi)

−1∂sφ̂
i(∂tXi + r∂tNi) · Ti.(2.52)

By (2.50) and (2.51), one can express the gradient of φ as follows

(2.53) ∇φ = (∇φ · Ti)Ti + (∇φ ·Ni)Ni = ∂rφ̂
i Ni + (1 + rκi)

−1∂sφ̂
i Ti.

From this, one computes the divergence of a vector field j in terms of the transformed
one ĵi

∇ · j = ∂r ĵ
i ·Ni + (1 + rκi)

−1∂sĵ
i · Ti

= ∂r(ĵ
i ·Ni) + (1 + rκi)

−1(∂s(ĵ
i · Ti) − ĵi · ∂sTi)

= ∂r(ĵ
i ·Ni) + (1 + rκi)

−1(∂s(ĵ
i · Ti) + κiĵ

i ·Ni).(2.54)

Thus, (2.52), (2.53) and (2.54) read in the (z, s)-coordinate system

∂tφ = −ε−1vi∂zΦ
i + ∂tΦ

i − (1 + εzκi)
−1∂sΦ

i(∂tXi + εz∂tNi) · Ti,(2.55)

∇φ = ε−1∂zΦ
i Ni + (1 + εzκi)

−1∂sΦ
i Ti,(2.56)

∇ · j = ε−1∂z(J
i ·Ni) + (1 + εzκi)

−1(∂s(J
i · Ti) + κiJ

i ·Ni).(2.57)

As consequence of (2.56), one has

(2.58) |∇φ| = ε−1
{

|∂zΦ
i|2 +

(

ε(1 + εzκi)
−1∂sΦ

i
)2
}1/2

.

For later purposes in the inner expansion, we need

Lemma 1. For sufficiently smooth γ : S1 → R, one has

(2.59) ∂sγ(Ni) = γ′(Ni)κi and ∂sγ
′(Ni) = γ′′(Ni)κi.

Proof. First, we drop the index i, and with N = (N1, N2) we write, with h defined
in (2.34),

∂s(γ(N)) = ∂s(γ ◦ h ◦ h−1 ◦N) = γ′(N)∂s(h
−1 ◦N),

where T = (−N2, N1) and the Frenet formula

∂sN = κT
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yield

∂s(h
−1 ◦N) =

1

1 +N2
2 /N

2
1

∂sN2N1 −N2∂sN1

N2
1

= ∂sN2N1 −N2∂sN1 = ∂sN · T = κT · T = κ,

which completes the proof.

Outer Expansion

By inserting the outer expansion (2.45) into (2.28), one obtains

(2.60) G′(φ0) = 0 ⇒ φ0 ∈ Z
and

lim
r→+0

φ̂i
0 = i− 1, lim

r→−0
φ̂i

0 = i,

which, by matching condition (2.49), yields

(2.61) lim
z→+∞

Φi
0 = i− 1, lim

z→−∞
Φi

0 = i.

Now, we insert the outer expansions (2.38) and (2.41) into (2.26) and (2.27), which
yields

∇ · j0 = F − τ−1w0,(2.62)

j0 = −D∇w0(2.63)

corresponding to (2.15) and (2.16) in the BCF model.

Inner Expansion

The main difficulty in the inner expansion of (2.28) is the inner expansion of the
term ∇ ·Ep(φ,∇φ), which is denoted by C := ∇ ·Ep(φ,∇φ). Then, by introducing

n = n(z, s, t; ε) := − ∇φ
|∇φ|

and by using

(−∂x2
φ, ∂x1

φ) = ε−1∂zΦ
iTi − (1 + εzκi)

−1∂sΦ
iNi,

(2.56) as well as (2.37), one obtains

C = ∇ · ε
{

γ2(n)∇φ+ γ(n)γ′(n)(−∂x2
φ, ∂x1

φ)
}

= ∂z

{

γ2(n)ε−1∂zΦ
i − γ(n)γ′(n)(1 + εzκi)

−1∂sΦ
i
}

+ ε(1 + εzκi)
−1κi

{

γ2(n)ε−1∂zΦ
i − γ(n)γ′(n)(1 + εzκi)

−1∂sΦ
i
}

+ ε(1 + εzκi)
−1∂s

{

γ2(n)(1 + εzκi)
−1∂sΦ

i + γ(n)γ′(n)ε−1∂zΦ
i
}

.
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Then, we introduce the formal expansions

C = ε−1C−1 + C0 + O(ε) and n = n0 + εn1 + O(ε2)

and obtain in highest order

(2.64) C−1 = ∂z(γ
2(n0)∂zΦ

i
0).

Inserting the inner expansion (2.46) into (2.28) yields for O(ε−1) in (2.28)

∂z(γ
2(n0)∂zΦ

i
0) −G′(Φi

0) = 0.

From this and (2.61), one easily gets ∂zΦ
i
0 < 0. Now, we use (2.58), expand

n = − ∇φ
|∇φ| = − ∂zΦ

iNi + ε(1 + εzκi)
−1∂sΦ

iTi

[ (∂zΦi)2 + (ε(1 + εzκi)−1∂sΦi)2]1/2

and, thus, obtain

(2.65) n0 = −∂zΦ
i
0Ni

|∂zΦi
0|

= Ni

as well as

n1 =
d

dε
n
∣

∣

ε=0
= −∂zΦ

i
1Ni + ∂sΦ

i
0Ti

|∂zΦ
i
0|

+
∂zΦ

i
02∂zΦ

i
0∂zΦ

i
1Ni

2|∂zΦ
i
0|3

= − ∂sΦ
i
0

|∂zΦi
0|
Ti =

∂sΦ
i
0

∂zΦi
0

Ti.(2.66)

Using (2.65) and (2.66) and additionally taking (2.36) into account, one ends up
with

γ(n)
∣

∣

ε=0
= γ(n0) = γ(Ni),(2.67)

d

dε
(γ(n))

∣

∣

ε=0
= γ′(Ni)n1 · Ti = γ′(Ni)

∂sΦ
i
0

∂zΦ
i
0

.(2.68)

Finally, by (2.67) and (2.68), we arrive at

C0 =
d

dε
C
∣

∣

ε=0
= ∂z

(

γ2∂zΦ
i
1 + 2γγ′∂sΦ

i
0 − γγ′∂z∂sΦ

i
0

)

+ κiγ
2∂zΦ

i
0 + ∂s(γγ

′∂zΦ
i
0)

= γ2∂2
zΦi

1 + 2γγ′∂s∂zΦ
i
0 + κiγ

2∂zΦ
i
0 +

(

(γ′)2 + γγ′′
)

κi∂zΦ
i
0,(2.69)

where we have used (2.59) in Lemma 1. Because of (2.64) and (2.65) one obtains

(2.70) γ2∂2
zΦi

0 −G′(Φi
0) = 0.
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Here, we want to remark that in contrast to isotropic situations the solution Φi
0 of

(2.70) depends on the arc length s. By multiplying (2.70) by ∂zΦ
i
0 and integrating

along the z-axis
γ2(∂zΦ

i
0)

2 = 2G(Φi
0),

which yields

(2.71) ∂zΦ
i
0 = −

√

2G(Φi
0)

γ

leading to

(2.72)

∫ +∞

−∞
(∂zΦ

i
0)

2 dz =
1

γ

∫ i

i−1

√

2G(φ) dφ =
1

γ
,

by the concrete choice of G = G(φ) (see (2.25)). This will be used for the inner
expansions in (2.26) and (2.27). The transformation rules (2.55)–(2.57) thereby
yield for (2.26)

− ε−1vi∂zΦ
i + ∂tΦ

i − (1 + εzκi)
−1∂sΦ

i(∂tXi + εz∂tNi) · Ti

+ ε−1∂z(J
i ·Ni) + (1 + εzκi)

−1(∂s(J
i · Ti) + κiJ

i ·Ni)(2.73)

= F − τ−1W i

and for (2.27)

J i = −(ε−1ν̃(n)B(Φi) +D)(ε−1∂zW
iNi + (1 + εzκi)

−1∂sW
iTi)

= −ε−2ν̃(n)B(Φi)∂zW
iNi − ε−1ν̃(n)B(Φi)(1 + εzκi)

−1∂sW
iTi(2.74)

− ε−1D∂zW
iNi −D(1 + εzκi)

−1∂sW
iTi.

Then, we get to O(ε−3) in (2.73)

∂z(J
i
−2 ·Ni) = 0.

From this, one gets to O(ε−2) in (2.74)

const = J i
−2 ·Ni = −ν̃(Ni)B(Φi

0)∂zW
i
0

the constant being zero because of lim|z|→∞B(Φi
0) = 0. So, one finally arrives at

(2.75) J i
−2 ·Ni = 0

and

(2.76) ∂zW
i
0 = 0 ⇒ W i

0 ≡W i
0(s, t).

Using (2.75), (2.76) and
J i
−2 · Ti = 0,
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one obtains to O(ε−2) in (2.73)

∂z(J
i
−1 ·Ni) = 0.

As before, this yields to O(ε−1) in (2.74)

(2.77) J i
−1 ·Ni = 0.

Finally, one makes use of (2.75) and (2.77) to obtain to O(ε−1) in (2.73)

(2.78) −vi∂zΦ
i
0 + ∂z(J

i
0 ·Ni) + ∂s(J

i
−1 · Ti) = 0,

where we have to O(ε−1) in (2.74)

J i
−1 · Ti = −ν̃(Ni)B(Φi

0)∂sW
i
0.

Integrating (2.78) along the z-axis, one obtains

vi = lim
z→−∞

J i
0 ·Ni − lim

z→+∞
J i

0 ·Ni + ∂s

(

ν̃

∫ +∞

−∞
B(Φi

0) dz∂sW
i
0

)

,

where
∫ +∞

−∞
B(Φi

0) dz =

∫ +∞

−∞
2G(Φi

0) dz = γ2

∫ +∞

−∞
(∂zΦ

i
0)

2 dz = γ.

So, using matching condition (2.48) and the definition (2.29) of ν̃, one ends up with

(2.79) vi = lim
r→−0

ĵi0 ·Ni − lim
r→+0

ĵi0 ·Ni + ∂s((ρ
∗)−1ν∂sW

i
0),

where

(2.80) lim
r→±0

ĵi0 ·Ni = − lim
r→±0

D∇ŵ0 ·Ni.

Now, we consider O(ε0) in (2.28)

−k̃−1(Ni)vi∂zΦ
i
0 = µ0

(

C0 −G′′(Φi
0)Φ

i
1

)

+W i
0

with C0 given by (2.69). Testing this equation with ∂zΦ
i
0, one gets

−k̃−1vi

∫ +∞

−∞
(∂zΦ

i
0)

2 dz = µ0γ
2

∫ +∞

−∞
∂2

zΦi
1∂zΦ

i
0 dz + µ0γγ

′∂s

∫ +∞

−∞
(∂zΦ

i
0)

2 dz

+ µ0γ
2κi

∫ +∞

−∞
(∂zΦ

i
0)

2 dz

+ µ0

(

(γ′)2 + γγ′′
)

κi

∫ +∞

−∞
(∂zΦ

i
0)

2 dz

− µ0

∫ +∞

−∞
G′′(Φi

0)Φ
i
1∂zΦ

i
0 dz +W i

0

∫ +∞

−∞
∂zΦ

i
0 dz
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First, we use integration by parts in order to obtain

γ2

∫ +∞

−∞
∂2

zΦi
1∂zΦ

i
0 dz −

∫ +∞

−∞
G′′(Φi

0)Φ
i
1∂zΦ

i
0 dz

= γ2

∫ +∞

−∞
Φi

1∂
3
zΦi

0 dz −
∫ +∞

−∞
∂z(G

′(Φi
0))Φ

i
1 dz

=

∫ +∞

−∞
Φi

1∂z(γ
2∂2

zΦi
0 −G′(Φi

0)) dz = 0.

Using (2.72), we then arrive at

− k̃
−1vi

γ
= µ0

(

γγ′∂s
1

γ
+ γκi +

(

(γ′)2 + γγ′′
) κi

γ

)

−W i
0

and, by (2.59) and the definition (2.31) of k̃, finally get

W i
0 =

k̃−1vi

γ
+ µ0

(

−(γ′)2

γ
κi + γκi +

(γ′)2

γ
κi + γ′′κi

)

= k−1vi + µ0(γ + γ′′)κi = k−1vi + µ0γ̃κi.(2.81)

Thus, by matching condition (2.47) and by (2.21), one arrives at the equilibrium
condition

lim
r→±0

w0 = k−1vi + µ0γ̃κi = k−1vi + µκi

as desired in (2.17). Furthermore, by inserting (2.81) into (2.79), one arrives at

vi =

(

lim
r→−0

ĵi0 − lim
r→+0

ĵi0

)

·Ni + ∂s((ρ
∗)−1ν∂s(k

−1vi + µκi)),

and, due to the convention that r > 0 holds on the lower terrace and r < 0 on the
upper terrace and (2.80), we have obtained the velocity law (2.22) to leading order.

2.2.2 Quasi-stationary BCF Model with Kinetic Boundary Condi-

tions

For the approximation of the BCF model with kinetic boundary conditions (2.18),
(2.19), we have to restrict ourselves to a velocity law without additional edge diffu-
sion term, i.e. in (2.22) one has to set ν = 0. For the asymptotic analysis in this
case, we follow the approach described in [OPR+04] and adjust it to the anisotropic
situation using the framework in [RRV06]. Thereby, we assume the expansions
(2.38)–(2.46) with (2.43) replaced by

(2.82) J i(z, s, t; ε) = J i
0(z, s, t) + O(ε).
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Outer Expansion

The outer expansion of (2.28) of the TBC case remains valid in this situation. Be-
cause of this, one obtains, by the definition of the mobility function (2.32) and from
(2.60), the relation

Mε(φ0) = D

and, therefore, the same stationary diffusion equation (2.62), (2.63) as in the TBC
case.

Inner Expansion

As in the TBC case, we obtain from (2.28) the expressions (2.70), (2.71) and (2.72).
Again, by the transformation rules (2.55)–(2.57) inserted in (2.26), one ends up with

− ε−1vi∂zΦ
i + ∂tΦ

i − (1 + εzκi)
−1∂sΦ

i(∂tXi + εz∂tNi) · Ti

+ ε−1∂z(J
i ·Ni) + (1 + εzκi)

−1(∂s(J
i · Ti) + κiJ

i ·Ni)(2.83)

= F − τ−1W i

and in (2.27)

(2.84) J i = − D

1 + ε−1k−1
1 (n)ζ(Φi)

(ε−1∂zW
iNi + (1 + εzκi)

−1∂sW
iTi).

From this, one gets to O(ε−1) in (2.83)

(2.85) −vi∂zΦ
i
0 + ∂z(J

i
0 ·Ni) = 0.

Integration of this equation and matching conditions (2.48) and (2.49) yield

vi = lim
z→−∞

J i
0 ·Ni − lim

z→+∞
J i

0Ni = lim
r→−0

ĵi0 ·Ni − lim
r→+0

ĵi0 ·Ni,

where
lim

r→±0
ĵi0 ·Ni = − lim

r→±0
D∇ŵ0 ·Ni

yields the desired velocity law (2.22) with ν = 0. Besides, one obtains from (2.85)
that there exists a function λi = λi(s, t) independent of z such that

(2.86) −viΦ
i
0 + λi = −J i

0 ·Ni,

which yields in the limit z → −∞

(2.87) λi = − lim
r→−0

ĵi0 ·Ni + ivi,

and for z → +∞ one gets

(2.88) λi = − lim
r→+0

ĵi0 ·Ni + (i− 1)vi.
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Now, we consider the terms of order O(ε0) in (2.84) and keep (2.33) in mind and
obtain

(2.89) J i
0 = −Dk1(Ni)

ζ(Φi
0)

∂zW
i
0Ni,

which together with (2.86) and (2.87) yields

(2.90) ∂zW
i
0 =

ζ(Φi
0)

Dk1(Ni)
(λi − viΦ

i
0) =

ζ(Φi
0)

Dk1(Ni)

(

− lim
r→−0

ĵi0 ·Ni + vi(i− Φi
0)

)

.

Similarly, (2.89), (2.86) and (2.88) lead to

(2.91) ∂zW
i
0 =

ζ(Φi
0)

Dk1(Ni)

(

− lim
r→+0

ĵi0 ·Ni + vi(i− 1 − Φi
0)

)

.

As in the TBC case, we get to O(ε0) in (2.28)

−k̃−1(Ni)vi∂zΦ
i
0 = C0 −G′′(Φi

0)Φ
i
1 +W i

0.

The only difference is that W i
0 does not have to be constant in z. Again, we test the

above equation with ∂zΦ
i
0. Thus, by using (2.91) we compute

∫ +∞

−∞
W i

0∂zΦ
i
0 dz =

∫ +∞

−∞
W i

0∂z(Φ
i
0 − i) dz

= − lim
z→+∞

W i
0 −

∫ +∞

−∞
∂zW

i
0(Φ

i
0 − i) dz

= − lim
z→+∞

W i
0 +

∫ +∞

−∞

ζ(Φi
0)

Dk1
lim

r→+0
ĵi0 ·Ni(Φ

i
0 − i) dz

+

∫ +∞

−∞

ζ(Φi
0)

Dk1
vi(Φ

i
0 − (i− 1))(Φi

0 − i) dz

= − lim
r→+0

ŵi
0 +

limr→+0 ĵ
i
0 ·Ni

Dk1

∫ +∞

−∞
ζ(Φi

0)(Φ
i
0 − i) dz

+
vi

Dk1

∫ +∞

−∞
ζ(Φi

0)(Φ
i
0 − (i− 1))(Φi

0 − i) dz

= − lim
r→+0

ŵi
0 − γ

limr→+0 ĵ
i
0 ·Ni

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
(1 − φ) dφ

− γ
vi

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ.

As in the TBC case, we use (2.70) and (2.72) in order to obtain

−
∫ +∞

−∞
W i

0∂zΦ
i
0 dz =

vi

k̃γ
+ µ0(γ + γ′′)κi
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and, finally, the boundary condition

lim
r→+0

ŵi
0 − µ0(γ + γ′′)κi = − lim

r→+0
ĵi0 ·Ni

γ

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
(1 − φ) dφ

+
vi

k̃γ
− γvi

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ.

If one chooses the friction function ζ and k1 such that

(2.92)
γ

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
(1 − φ) dφ =

1

k+
=

1

a+k0

as well as k̃ such that

(2.93)
1

k̃γ
=

γ

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ,

one arrives at

k+

(

lim
r→+0

ŵi
0 − µκi

)

= − lim
r→+0

ĵi0 ·Ni,

which is the desired boundary condition (2.19) for attachment from the lower terrace.

To obtain the appropriate boundary condition for attachment to a step down,
we use (2.90) and similarly compute

∫ +∞

−∞
W i

0∂zΦ
i
0 dz =

∫ +∞

−∞
W i

0∂z(Φ
i
0 − (i− 1)) dz

= − lim
z→−∞

W i
0 −

∫ +∞

−∞
∂zW

i
0(Φ

i
0 − (i− 1)) dz

= − lim
z→−∞

W i
0 +

∫ +∞

−∞

ζ(Φi
0)

Dk1
lim

r→−0
ĵi0 ·Ni(Φ

i
0 − (i− 1)) dz

−
∫ +∞

−∞

ζ(Φi
0)

Dk1
vi(i− Φi

0)(Φ
i
0 − (i− 1)) dz

= − lim
r→−0

ŵi
0 +

limr→−0 ĵ
i
0 ·Ni

Dk1

∫ +∞

−∞
ζ(Φi

0)(Φ
i
0 − (i− 1)) dz

− vi

Dk1

∫ +∞

−∞
ζ(Φi

0)(Φ
i
0 − (i− 1))(i − Φi

0) dz

= − lim
r→−0

ŵi
0 + γ

limr→−0 ĵ
i
0 ·Ni

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φdφ

− γ
vi

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ.
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So, we obtain the boundary condition

lim
r→−0

ŵi
0 − µ0(γ + γ′′)κi = lim

r→−0
ĵi0 ·Ni

γ

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φdφ

+
vi

k̃γ
− γvi

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ.

Besides (2.92), we are able to choose the asymmetric friction coefficient ζ such that

(2.94)
γ

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φdφ =

1

k−
=

1

a−k0
.

The choice (2.93) of k̃ then yields

k−

(

lim
r→−0

ŵi
0 − µκi

)

= lim
r→−0

ĵi0 ·Ni

and, therefore, the boundary condition (2.18) to leading order.

Precise Choice of the Functions ζ, k1 and k̃

Now, we want to present the concrete choices of the functions ζ, k1 and k̃, which yield
for given γ, k± and D the relations (2.92), (2.94) and (2.93). Here, we concentrate
on the non-inverse ES barrier modelled by the relation k− ≤ k+. Thereby, we define

k1 := k0γ,

and we make the ansatz

(2.95) ζ(φ) := ζ0φ
2(1 − φ)2φ

p
ζ

with p
ζ
, ζ0 ∈ R satisfying ζ0 > 0 and p

ζ
≥ 0. With this definition of ζ, one easily

verifies that

∫ 1

0

ζ(φ)
√

2G(φ)
(1 − φ) dφ =

ζ0
3(p

ζ
+ 2)(p

ζ
+ 3)(p

ζ
+ 4)

.

With this relation, (2.92) yields

(2.96)
γζ0

3Dk1(pζ
+ 2)(p

ζ
+ 3)(p

ζ
+ 4)

=
1

k+
.

Similarly, one obtains

∫ 1

0

ζ(φ)
√

2G(φ)
φdφ =

ζ0
6(p

ζ
+ 3)(p

ζ
+ 4)

,
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which is inserted into (2.94), and, therefore, we arrive at

(2.97)
γζ0

6Dk1(pζ
+ 3)(p

ζ
+ 4)

=
1

k−
.

Now, we divide (2.96) by (2.97) in order to obtain for

q := k−/k+ = a−/a+

the relation

q =
2

p
ζ
+ 2

,

from which we derive

(2.98) p
ζ

=
2

q
− 2.

We insert (2.98) into (2.97) and get

(2.99) ζ0 =
6D(p

ζ
+ 3)(p

ζ
+ 4)

a−
=

6D

a−

(

2

q
+ 1

)(

2

q
+ 2

)

.

From the definitions of p
ζ

and q, it is clear that p
ζ

displays the strength of the
asymmetry in the attachment rates k±, whereas ζ0 is determined by the precise
values of k± for a given ratio q. Finally, we use (2.93) in order to derive

1

k̃
=

γ2

Dk1

∫ 1

0

ζ(φ)
√

2G(φ)
φ(1 − φ) dφ =

γ

6Dk0

∫ 1

0
ζ(φ) dφ

=
ζ0γ

3Dk0(pζ
+ 3)(p

ζ
+ 4)(p

ζ
+ 5)

=
2γ

k0a−(p
ζ
+ 5)

=
2γ

2k+ + 3k−
.(2.100)

Thus, one concludes that defining k̃ by (2.100) and ζ by (2.95) with p
ζ

and ζ0 given
by (2.98) and (2.99), respectively, yields the equations (2.92), (2.94) and (2.93) as
desired. If one is interested in a situation, where the attachment rates k± additionally
include an asymmetry in the anisotropy — that means that q = q(Ni) is anisotropic
—, one obtains by (2.98) an anisotropic choice of p

ζ
. Moreover, one sets k1 = 1 and

defines ζ0 = ζ0(Ni) by the relation

ζ0 =
6D(p

ζ
+ 3)(p

ζ
+ 4)

γk−
=

6D

γk−

(

2

q
+ 1

)(

2

q
+ 2

)

and obtains, with (2.100) unchanged, the desired conditions (2.92), (2.94) and (2.93)
in this situation. In order to model an inverse ES barrier implying k− > k+, one
would have to make the ansatz

ζ(φ) = ζ0φ
2(1 − φ)2(1 − φ)pζ

for the asymmetric friction function ζ.



2.3. NUMERICAL TREATMENT 33

2.3 Numerical Treatment

In order to numerically treat the viscous Cahn-Hilliard equation (2.26)–(2.28), we
apply an adaptive FEM strategy implemented in the FEM toolbox AMDiS [VV07].
After that, we validate in (2.3.2) the results of the asymptotic analysis in Section
2.2 in a simple one dimensional as well as in a rotationally symmetric situation. In
Section 2.3.4, the influence of different anisotropies in different quantities on the
island shape is discussed. Finally, following [KP98], a diffuse-interface approach is
applied to spiral growth in Section 2.3.5.

Finite differences schemes have been applied for the simulation of one dimensional
step trains [LM94] and spiral growth [KP98] by phase-field approximations of BCF
models with thermodynamic boundary conditions. An Ehrlich-Schwoebel barrier in
a diffuse-interface approximation has numerically been treated by finite differences
in [OPR05] for a quantitative investigation of step bunching and the Bales-Zangwill
instability of a periodic train of straight steps, which has also been numerically
studied in [PL03].

2.3.1 Discretization

In this section, we present some details of a FEM discretization of the viscous Cahn-
Hilliard equation, where we first show time- and space-discretizations of a semi-
implicit scheme. Furthermore, a strategy of local mesh refinement and coarsening,
based on an L2-like error indicator for the phase-field variable φ, is described.

Weak Formulation and Discretization

First, we write the system of the viscous Cahn-Hilliard equation (2.26)–(2.28) as a
system of two second order equations

∂tφ = ∇ · (Mε(φ,∇φ)∇w) + F − τ−1w,(2.101)

εk̃−1(n(∇φ))∂tφ = µ0

(

∇ ·Ep(φ,∇φ) − ε−1G′(φ)
)

+ w(2.102)

with Ep(φ,∇φ) given by (2.37). In the simulation presented here, we will consider
circular shaped domains with radius r > 0

Ω = Br(x0) = {x ∈ R2 : |x− x0| < r}

and square shaped domains

Ω = (a, b) × (a, b), b > a.

In the first case, we assume no flux boundary conditions

∇φ ·N = ∇w ·N = 0 on ∂Ω,

N denoting the outer normal to the boundary ∂Ω, whereas, in the second case, we
will assume either no flux boundary conditions on ∂Ω or (in Chapter 3) φ and w
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to be Ω-periodic or different types of boundary conditions on different parts of the
boundary ∂Ω.

The time interval [0, tend] is split by discrete time instants 0 = t0 < t1 < . . . ,
from which one gets the time steps ∆tm := tm+1 − tm, m = 0, 1, . . . . The derivative
of the multi well potential is linearized by

G′(φ(m+1)) ≈ G′(φ(m)) +G′′(φ(m))(φ(m+1) − φ(m))

= G′′(φ(m))φ(m+1) +G′(φ(m)) −G′′(φ(m))φ(m).(2.103)

Since n(p) = − p
|p| is not defined for p = 0, one has to decide how to define the

anisotropy functions γ, k0 and ν occurring in the mobility Mε and in the kinetic
coefficient k̃ for p = 0. For the applications in this chapter, we choose anisotropy
functions depending on the angle θ = θ(n), where we rewrite those functions as
polynomials in n. Then, we obtain by introducing a regularization of the form

nε(p) = − p

|p| + α(ε)
, α(ε) = O(ε),

continuous anisotropy functions γ ◦ nε, ν ◦ nε and k0 ◦ nε for the use in kinetic
coefficients and mobility functions. Similarly, for applications in Chapter 3, we
choose anisotropy functions (also for higher dimensions), where a regularization of
the form nε(p) = − p

|p|+α(ε) leads to well defined anisotropic quantities for all vectors
p. In the following of this section, we drop the ε in nε, and, in addition, we do not
change the notation Mε for the mobility function and denote the mobility function
including regularized anisotropy functions with Mε. Furthermore, we set

A = A(∇φ) :=

(

γ2 −γγ′
γγ′ γ2

)

(n(∇φ)).

By explicit treatment of the phase-field variable in the mobility Mε and in all
anisotropy functions, one ends up with the weak formulation and semi-implicit time
discretization (see also [BP03])

1

∆tm

∫

Ω
φ(m+1)ψ +

∫

Ω
Mε(φ

(m),∇φ(m))∇w(m+1) · ∇ψ + τ−1

∫

Ω
w(m+1)ψ

=
1

∆tm

∫

Ω
φ(m)ψ +

∫

Ω
Fψ ∀ψ ∈ X,

ε

∆tm

∫

Ω
k̃−1(n(∇φ(m)))φ(m+1)ψ + εµ0

∫

Ω
A(∇φ(m))∇φ(m+1) · ∇ψ

+ ε−1µ0

∫

Ω
G′′(φ(m))φ(m+1)ψ −

∫

Ω
w(m+1)ψ

=
ε

∆tm

∫

Ω
k̃−1(n(∇φ(m)))φ(m)ψ

+ ε−1µ0

∫

Ω
(G′′(φ(m))φ(m) −G′(φ(m)))ψ ∀ψ ∈ X,



2.3. NUMERICAL TREATMENT 35

where X := H1(Ω) in the case of no flux boundary conditions and X := H1
per(Ω) in

the periodic case, where H1
per(Ω) := H1(Ta,b) denotes the Sobolev space on the torus

Ta,b := (R/(b− a)Z)2.

Furthermore, a simple strategy of time adaptivity is used, where the time step is
inversely proportional to the maximum of the normal velocity of the Cahn-Hilliard
interface. The concrete choice of the time step, thereby, guarantees that the interface
is not able to move in one time step through a whole element.

To discretize in space, let T m
h be a conforming triangulation of Ω at time instant

tm. Denote the set of polynomials of degree 1 with P
1 and define the finite element

space of globally continuous, piecewise linear elements

V
m
h =

{

vh ∈ X : vh|T ∈ P
1 ∀T ∈ T m

h

}

.

The space discretization now reads: Find φm+1
h , wm+1

h ∈ V
m
h such that

1

∆tm

∫

Ω
φ

(m+1)
h ψh +

∫

Ω
Mε(φ

(m)
h ,∇φ(m)

h )∇w(m+1)
h · ∇ψh + τ−1

∫

Ω
w

(m+1)
h ψh

=
1

∆tm

∫

Ω
φ

(m)
h ψh +

∫

Ω
Fψh ∀ψh ∈ V

m
h ,

ε

∆tm

∫

Ω
k̃−1(n(∇φ(m)

h ))φ
(m+1)
h ψh + εµ0

∫

Ω
A(∇φ(m)

h )∇φ(m+1)
h · ∇ψh

+ ε−1µ0

∫

Ω
G′′(φ

(m)
h )φ

(m+1)
h ψh −

∫

Ω
w

(m+1)
h ψh

=
ε

∆tm

∫

Ω
k̃−1(n(∇φ(m)

h ))φ
(m)
h ψh

+ ε−1µ0

∫

Ω
(G′′(φ

(m)
h )φ

(m)
h −G′(φ

(m)
h ))ψh ∀ψh ∈ V

m
h .

With (ψi)i the standard nodal basis of V
m
h and φ

(m+1)
h =

∑

i
Φ

(m+1)
i ψi and w

(m+1)
h =

∑

i
W

(m+1)
i ψi, these equations lead to a linear system of equations

1

∆tm
MΦ(m+1) + A

1W (m+1) + τ−1
MW (m+1) = F +

1

∆tm
MΦ(m),

ε

∆tm
M

kΦ(m+1) + εµ0A
2Φ(m+1) + ε−1µ0G

implΦ(m+1) − MW (m+1)

= ε−1µ0G
expl +

ε

∆tm
M

kΦ(m)
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for Φ(m+1) and W (m+1) with

M = (Mij) Mij = (ψi, ψj)Ω,

M
k = (Mk

ij) Mk
ij = (k̃−1(n(∇φ(m)

h ))ψi, ψj)Ω,

A
1 = (A1

ij) A1
ij = (Mε(φ

(m)
h ,∇φ(m)

h )∇ψi,∇ψj)Ω,

A
2 = (A2

ij) A2
ij = (A(∇φ(m)

h )∇ψi,∇ψj)Ω,

F = (Fi) Fi = (F,ψi)Ω,

G
impl = (Gimpl

ij ) Gimpl
ij = (G′′(φ

(m)
h )ψi, ψj)Ω,

G
expl = (Gexpl

i ) Gexpl
i = (G′′(φ

(m)
h )φ

(m)
h −G′(φ

(m)
h ), ψi)Ω,

where (·, ·)Ω denotes L2-scalar product. Thus, written in block-matrix-form the
non-symmetric linear system

(

A
1 + τ−1M

1
∆tm

M

−M
ε

∆tm
M

k + εµ0A
2 + ε−1µ0G

impl

)(

W (m+1)

Φ(m+1)

)

=

(

F + 1
∆tm

MΦ(m)

ε−1µ0G
expl + ε

∆tm
M

kΦ(m)

)

has to be solved in every time step, which is done by a stabilized bi-conjugate
gradient method (BiCGStab). In order to verify the regularity of the system matrix
on the left hand side of the above system (see [RV06]), we assume that (W,Φ) is a
solution of the homogeneous linear system. We denote the corresponding functions
in Vh by wh and φh. Then, we arrive at the homogeneous system

1

∆tm

∫

Ω
φhψ +

∫

Ω
Mε(φ

0,∇φ0)∇wh · ∇ψ + τ−1

∫

Ω
whφ = 0,(2.104)

−
∫

Ω
whψ + ε

∫

Ω
A(∇φ0)∇φh · ∇ψ(2.105)

+ ε−1

∫

Ω
G′′(φ0)φhψ +

ε

∆tm

∫

Ω
k̃−1(∇φ0)φhψ = 0

for all ψ ∈ Vh and for some φ0 ∈ Vh. Then, by using in (2.104) the test function
ψ = wh, we obtain

1

∆tm
(φh, wh)Ω + (Mε(φ

0,∇φ0)∇wh,∇wh)Ω + τ−1(wh, wh)Ω = 0

and, therefore,

(2.106) (φh, wh)Ω ≤ 0.

Now, we use in (2.105) the test function ψ = φh and arrive at

− (φh, wh)Ω +
ε

∆tm
(k̃−1(∇φ0)φh, φh)Ω

+ ε(A(∇φ0)∇φh,∇φh)Ω + ε−1(G′′(φ0)φh, φh)Ω = 0.
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Using (2.106) and
(A(∇φ0)∇φh,∇φh)Ω ≥ 0,

one gets with ‖φh‖Ω :=
√

(φh, φh)Ω

ε

∆tm
‖φh‖2

Ω ≤ ε−1 sup
(

k̃
)

sup
(

|G′′|
)

‖φh‖2
Ω.

If we choose ∆tm sufficiently small, we obtain ‖φh‖Ω = 0 and, therefore, φh = wh = 0
showing the regularity of the system matrix in the above linear system.

Adaptive Strategy of Local Refinement and Coarsening

To obtain satisfactory computational results, a mesh with a sufficiently fine resolu-
tion near the interface (φ changes rapidly) is needed. Noting that a uniform refine-
ment would be prohibitive from the computational point of view, we are naturally
led to adopt local mesh refinement. Since the interface is moving, it is indispensable
to use some adaptive strategy for local mesh refinement and coarsening. At every
time step, the finite element mesh from the previous time step is locally refined
and/or coarsened. For local mesh adaptation, we use an L2-like error indicator for
the smeared height function φ. For every element T , we define

(2.107) ηT (φh) :=

(

∑

e∈∂T

∫

e
h3

∣

∣

∣

∣

[

∂φh

∂ne

]∣

∣

∣

∣

2
)1/2

,

where
[

∂φh
∂ne

]

denotes the jump of the normal derivative of φh across an edge e ⊂ ∂T .

This can be used to define an indicator for the error ‖φ− φh‖ on the whole domain

η(φh) :=





∑

T∈T m
h

η2
T (φh)





1/2

.

The criterion for refinement and coarsening is based on an equidistribution strategy,
which attempts to enforce ηT (φh) = ηT ′(φh) for all T, T ′ ∈ T m

h . If this condition
was enforced, at least approximately, then, we would have

η(φh) ≈ N1/2
m ηT (φh),

where Nm is the number of triangular finite elements in T m
h . Thus, we mark an

element T ∈ T m
h for refinement and/or coarsening, if

ηT (φh) >
η(φh)

N
1/2
m

, ηT (φh) ≤ ξ
η(φh)

N
1/2
m

,

respectively, with some ξ ∈ (0, 1). Heuristic arguments yield that the local indicator
(2.107) is large, where the graph of φ has a large curvature, i.e. in exactly those
regions, where one wants to have a high resolution.
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2.3.2 Comparison with Analytic Solutions

In this section, we compare numerical solutions of the diffuse-interface approximation
(2.26)–(2.28) with analytic solutions of the BCF model in one dimension and radially
symmetric solutions in two dimensions, where both types of boundary conditions
(TBC and KBC) are considered. Furthermore, no anisotropy functions are used.

Single Step in One Dimension

To be more precise, we first consider the system (2.15), (2.16), (2.17), (2.22) in the
interval I := [−1, 1] without the curvature terms in (2.17) and (2.22), which are
meaningless in the one dimensional case. We assume no flux boundary conditions
for the adatom concentration

w′(±1) = 0

on the boundary of I. In addition, the time interval [0, 1] and the initial interface
Γ(0) = {0}, representing a single step, are considered, where I0 = (0, 1) and I1 =
(−1, 0) denote the lower and upper terrace, respectively, at time t = 0. Let R = R(t)
denote the interface position, i.e. Γ(t) = {R(t)}. Then, the analytic solution to the
quasi-stationary BCF model with thermodynamic boundary conditions is then given
by

w0(x) = − F

2D

(

x2 −R2
)

+
F

D
(x−R) +

2

k
F for x > R,

w1(x) = − F

2D

(

x2 −R2
)

− F

D
(x−R) +

2

k
F for x ≤ R,

where

(2.108) R(t) = 2Ft

holds. For the viscous Cahn-Hilliard equation, we assume no flux boundary condi-
tions

φ′(±1) = w′(±1) = 0

on ∂I and the initial condition

φ(x, 0) =
1

2

(

1 − tanh

(

3x

ε

))

.

Additionally, we have used constant time steps of length ∆t = 2 · 10−4 and uniform
meshes. Then, we choose the following set of academic parameters

(2.109) k = 1; µ = 1; D = 10; F = 0.1; τ−1 = 0.

First, we consider for ε = 0.1 the behaviour of the discrete adatom density wh for
different grid sizes h with the adatom profile at time t = 1 in Figure 2.7 (left). One
can see in Figure 2.7 in the left picture a monotone convergence of wh as h decreases
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to a function which differs from the analytic solution due to the ε-error of the
diffuse-interface model. One can investigate this more quantitatively by introducing
the relative L2-error

ewh
:=

‖w − wh‖L2(I)

‖w‖L2(I)

,

which is considered in the time interval [0, 1] in the picture on the right of Figure 2.7,
where, for the analytic adatom density, we have used the numerically by φh = 1/2
determined interface position. Now, we want to numerically reproduce the results of

w
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h = 1/256
h = 1/512

Figure 2.7: Behaviour of profiles of wh at t = 1.0 (left) and of relative L2-error ewh
(right)

as h→ 0 (TBC).

the asymptotic analysis, i.e. we compare the numerical results for decreasing ε with
the analytic solution in the right picture of Figure 2.8 and in the relative L2-error
on the right. Here, we have used a constant resolution of the diffuse interface region
determined by 2ε/h = 51.2.
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Figure 2.8: Convergence of profiles of wh at t = 1.0 towards analytic solution w (left) and

relative L2-error ewh
(right) as ε→ 0 (TBC).

In the case of kinetic boundary conditions, we consider in a one dimensional
situation the same interval with the same initial and boundary conditions. Here,
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the analytic solution of the adatom concentration in the quasi-stationary BCF model
is

w0(x) = − F

2D

(

x2 −R2
)

+
F

D
(x−R) +

F

k+
(1 −R) for x > R,

w1(x) = − F

2D

(

x2 −R2
)

− F

D
(x−R) +

F

k−
(1 +R) for x ≤ R

with the interface position given by (2.108). We have reused the parameters (2.109),
where instead of k, we have used

(2.110) k+ = 10; k− = 1.

The pictures corresponding to Figure 2.7 in the KBC case showing the convergence
of the discrete adatom densities wh as h→ 0 can be found in Figure 2.9. The results

w
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h = 1/512

Figure 2.9: Behaviour of profiles of wh at t = 1.0 (left) and of relative L2-error ewh
(right)

as h→ 0 (KBC).

of the numerical validation of the asymptotic analysis are given in Figure 2.10,
where on the left one can see the excellent resolution of the jump at the interface
for decreasing ε for t = 1. This convergence can again be recognized in the plots of
the relative L2-errors on the right.

Circular Epitaxial Island

In the two dimensional case, we consider for the isotropic situation (γ = 1, µ = µ0)
a circular shaped domain Ω := BR∞

(0) with R∞ = 5 and the time interval [0, t∞]

with t∞ := 1−(R0/R∞)2

F . Besides no flux boundary conditions

∇w(x, t) ·N = 0 for x ∈ ∂Ω,

the initial circular shaped epitaxial island Γ(t = 0) = ∂BR0
(0) with R0 = 2 is

introduced. The quasi-stationary rotationally symmetric analytic solution of the
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Figure 2.10: Convergence of profiles of wh at t = 1.0 towards analytic solution w (left) and

relative L2-error ewh
(right) as ε→ 0 (KBC).

adatom density in this situation is (see [LRV04])

w0(r) =
F

4D

(

R2 − r2
)

+
FR2

∞

2D
log
( r

R

)

+
µ

R
+
FR2

∞

2kR
for r > R,

w1(r) =
F

4D

(

R2 − r2
)

+
µ

R
+
FR2

∞

2kR
for r ≤ R

with r := |x| and Γ(t) = ∂BR(t)(0), where

(2.111) R(t) =
√

R2
0 + FR2

∞t.

By (2.111) one obtains the relation R(t∞) = R∞. As before, for the viscous Cahn-
Hilliard equation, no flux boundary conditions

∇w(x, t) ·N = ∇φ(x, t) ·N = 0 for x ∈ ∂Ω

are assumed, and the initial condition corresponding to the ones of the sharp-
interface model is

(2.112) φ(x, 0) =
1

2

(

1 − tanh

(

3(|x| −R0)

ε

))

.

Furthermore, we use the same parameters as in the one dimensional case, except
µ = 0.1 instead of µ = 1 and k = 100 instead of k = 1 and ν = 0. For this test
case, a simple adaptive strategy of mesh refinement and coarsening has been applied,
where a basic mesh with 4096 elements and uniform local refinement with at least
P ∈ N vertices in the diffuse interface region (see mesh for P = 10 in Figure 2.11
and details of meshes for different values of P in Figure 2.12). Moreover, we have
used the constant time steps ∆t = 2 · 10−4. With this in mind, we consider cross
sections of profiles of the discrete adatom density wh at time t = 0.5 for different
resolutions in Figure 2.13. In the first picture on the left, one can hardly notice a
difference in the plots. The zoomed in one on the right shows a slight difference
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Figure 2.11: Mesh for P = 10.

Figure 2.12: Meshes for P = 10, P = 15, P = 20 and P = 25 (top left to bottom right).

for different resolutions and that the graphs for 20 and 25 grid points per interface
region are indistinguishable. For a more detailed investigation, we consider the
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Figure 2.13: Behaviour of wh at t = 0.5 for x1 ∈ [−5, 5] (left) and zoomed in (right) as

h→ 0 (TBC).

relative L2-error ewh
of the discrete adatom density wh

ewh
:=

‖w − wh‖L2(Ω)

‖w‖L2(Ω)

.

In Figure 2.14, one can see, how ewh
behaves in the time interval [0, 0.5]. Here, it is

remarkable that the convergence of the relative error with h→ 0 does not have to be
monotone, one gets a better approximation of the analytic solution with a coarser
mesh due to the fact that there is also an error contribution from ε-approximation
of the diffuse-interface model. However, these differences are on a very fine level. In
the case of kinetic boundary conditions, the situation is different due to the jump
of the adatom concentration at the interface, which has to be resolved and is there
responsible of the main error contribution.

0.1 0.50

0.01
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0.004

0.2 0.40.3

e w
h
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P = 15
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P = 25

t

Figure 2.14: Relative L2-error ewh
of the discrete adatom density wh in the time interval

[0, 0.5] for different values of h (TBC).

Denoting by φ0 = φ0(x, t) the indicator function being one on the upper terrace
and zero on the lower and given by (2.111) we consider the approximation of φ0
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for t = 0.5 for different values of ε with fixed resolution P = 20 (see Figure 2.15
for cross sections through the profile of the smeared out height function φ) by the
solution of the diffuse-interface approximation. One can see that the diffuse-interface

0.5

0
0
−5 52.5 2.5

1

φ0

ε = 0.2
ε = 0.1
ε = 0.05

φ

x1

0.5

0

1

1.8 2 2.2 2.4 2.6

φ0

ε = 0.2
ε = 0.1
ε = 0.05

φ

x1

Figure 2.15: Approximation of indicator function φ0 by smeared out height function φh at

t = 0.5 for x1 ∈ [−5, 5] (left) and zoomed in (right) as ε→ 0.

approximation is “behind” φ0 (see also the comparison of the numerically determined
radii with the theoretical one for t = 0.5 in Table 2.1), however, this distance
shrinks to zero as ε → 0. The reason for this is that the values of the smeared out
height function are slightly above zero on the lower terrace and above one on the
upper terrace. According to this aspect some part of the mass is not used for the
propagation of the step given by the level set {φ = 1/2}. This property of a diffuse-
interface approximation of a BCF model has already been pointed out in [OPR05].

R(ε = 0.2) R(ε = 0.1) R(ε = 0.05) R(theory)

2.265 2.278 2.284 2.291

Table 2.1: Comparison of numerically and theoretically determined radii for t = 0.5.

Now we want to investigate the behaviour of solutions of the viscous Cahn-
Hilliard equation for decreasing ε, where the resolution at the interface has been
fixed by P = 20. Figure 2.16 shows cross sections of profiles of the analytic adatom
concentration and of discrete adatom densities for different values of ε at time t = 0.5
illustrating the convergence of the solutions of the diffuse-interface approximations
towards the analytic solution as ε→ 0. This convergence can also be demonstrated
by the plots of the relative error in the time interval [0, 0.5] in Figure 2.17. It also
indicates that it takes some time for the adatom concentration to build up and that
this time decreases with decreasing ε as stated in [OPR05].

Now similar considerations are presented in the case of kinetic boundary condi-
tions (KBC), where one obtains for the quasi-stationary BCF model in this situation
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Figure 2.16: Approximation of the analytic adatom concentration w by discrete adatom

concentrations at t = 0.5 for x1 ∈ [−5, 5] (left) and zoomed in (right) as ε→ 0 (TBC).
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Figure 2.17: Relative L2-error ewh
of the discrete adatom density wh in the time interval

[0, 0.5] for different values of ε (TBC).

the rotationally symmetric analytic adatom concentration (see [LRV04])

w0(r) =
F

4D

(

R2 − r2
)

+
FR2

∞

2D
log
( r

R

)

+
µ

R
+

F

2k+

(

R2
∞

R
−R

)

for r > R,

w1(r) =
F

4D

(

R2 − r2
)

+
µ

R
+
FR

2k−
for r ≤ R

with R = R(t) still given by (2.111). Again, we have used the same adaptive strategy
and basic mesh as well as the same constant time steps and parameters as in the case
of thermodynamic boundary conditions (additionally using the kinetic coefficients
(2.110)). Then we first look at the adatom concentration wh at time t = 0.5 for
different resolutions in Figure 2.18, where one can observe a monotone convergence
for increasing P , which can also be noticed in Figure 2.19 showing the relative errors
of wh in the time interval [0, 0.5]. This error is one order of magnitude larger than
the corresponding errors in the case of thermodynamic boundary conditions.

Now, we concentrate on the resolution of the jump in the adatom density at the
interface as ε → 0, where in Figure 2.20, again cross sections of the profiles of the
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Figure 2.18: Behaviour of wh at t = 0.5 for x1 ∈ [−5, 5] (left) and zoomed in (right) as

h→ 0 (KBC).
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Figure 2.19: Relative L2-error ewh
of the discrete adatom density wh in the time interval

[0, 0.5] for different values of h (KBC).

adatom concentrations for different values of ε are compared to those of the analytic
solution of the rotationally symmetric problem. This convergence is also illustrated
in the relative L2-errors in Figure 2.21.

Thus, the numerical results for mathematically one dimensional situations in this
section support the results of the asymptotic expansions in (2.2) showing that the
viscous Cahn-Hilliard equation (2.26)–(2.28) with either mobility function (2.30)
or (2.32) yields a reasonable quantitative approximation of the BCF model with
either thermodynamic or kinetic boundary conditions for small ε. Especially the
resolution of a jump in the adatom concentration for kinetic boundary conditions
by a diffuse-interface approximation could be shown.

2.3.3 Comparison with Stability Analysis

In this section, we follow the stability analysis for a single circular island presented
in [LRV04] and consider the circular domain Ω := BR∞

(0), the boundary of a
circular island ∂BR0

and a perturbed interface Γ̃ := ∂BR̃(0) with a perturbation
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Figure 2.20: Approximation of the analytic adatom concentration w by discrete adatom

concentrations at t = 0.5 for x1 ∈ [−5, 5] (left) and zoomed in (right) as ε→ 0 (KBC).
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Figure 2.21: Relative L2-error ewh
of the discrete adatom density wh in the time interval

[0, 0.5] for different values of ε (KBC).

R̃ := R0 +A0 cos lθ of the radius R0 with amplitude A0 and wavenumber l. For the
growth rate ω = ω(l, t), one obtains (see [LRV04])

∂tω(l, t) = − F

2A −
Dl
(

F
2 + k−FR∞A1/2

2D + k−µ(l2−1)
R2

∞
A

)

Dl + k−R∞A1/2

+
Dl
(

1 −Al
)

(

F
2

(

1 + 1
A

)

+ k+FR∞A1/2

2D

(

1
A − 1

)

− k+µ(l2−1)
R2

∞
A

)

k+R∞A1/2 (Al + 1) +Dl (1 −Al)
,(2.113)

where A = A(t) := R2(t)/R2
∞ denotes the rescaled area of the unperturbed island

(see (2.111)). For the extreme case k+ = ∞, k− = 0, µ = 0 relation (2.113) reduces
to

∂tω(l, t) = − F

2A − F

2
− Fl(1 −Al)

2(1 + Al)
+
Fl(1 −Al)

2A(1 + Al)
.
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Hence, one obtains ∂tω(l, t) > 0, if

− 1

A − 1 − l
1 −Al

1 + Al
+

l

A
1 −Al

1 + Al
> 0

holds, which is the case, if A (i.e. the island) is sufficiently small and the wavenumber
l ≥ 2 sufficiently large. For moderate values of k± and µ and for F/D sufficiently
large, one can, therefore, expect unstable behaviour of sufficiently small islands.
Here, we choose

k+ = 10; k− = 1; F = 1; D = 1; µ = 0.05.

In addition, we have used ε = 0.025, R∞ = 5 and the initial condition

φ(x, 0) =
1

2



1 − tanh





3
(

|x| − R̃
)

ε









with R0 = 1, A0 = 0.025 and an unstable wavenumber l = 6. This leads to the
numerical results of the viscous Cahn-Hilliard equation in Figure 2.22 showing the
level sets {φ = 1/2} at different times. Thereby, one observes an unstable behaviour

5
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−5

−5

0

0

t = 0.0 t = 0.4

t = 0.2 t = 0.7

∂Ω

Figure 2.22: Unstable growth of perturbed circular island.

at the beginning and a stabilization starting, when the island is sufficiently large,



2.3. NUMERICAL TREATMENT 49

which corresponds to the fact that ∂tω(l, t) < 0 holds for any wavenumber l and for
islands satisfying

A(t) ≥ k+/(k+ + k−)

as shown in [LRV04]. However, a quantitative comparison of the numerical approach
with the dispersion relation (2.113) is difficult due to the facts that the diffuse-
interface simulation is behind the actual solution as stated in the previous section
and that for t = t∞ the island vanishes (see also Figure 2.23 for a comparison of

1
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3

0

0

0.5

ω
(l
,t

)

t

theory
numerics

Figure 2.23: Comparison of theoretical and numerical growth rate.

the growth rate determined by numerical integration (with Mathematica [Wol01]) of
(2.113) with the one obtained by numerical treatment of the viscous Cahn-Hilliard
equation).

2.3.4 Anisotropic Island Growth

Here, we will concentrate on the case of kinetic boundary conditions and present
results similar to those obtained in [HV05b] by sharp-interface simulations with
edge diffusion included, which is not incorporated into the diffuse-interface model
in the case of kinetic boundary conditions. In the numerical results presented in
this section, we consider anisotropies in the attachment/detachment rates k− and
k+ and in the step free energy density ϕ, which is proportional to the anisotropy
function γ. Note that for the viscous Cahn-Hilliard equation (2.26)–(2.28) this also
yields an angle dependence for the mobility Mε and the kinetic coefficient k̃ due to
(2.32) and (2.93).

We have used the anisotropy function

γ(θ) = 1 + aγ cos(kγθ)

with kγ = 6 and aγ = 0.028 (see Figure 2.24 for polar plot parametrized by
{

γ(θ)

(

cos(θ)
sin(θ)

)

: θ ∈ [0, 2π)

}



50 CHAPTER 2. DISCRETE-CONTINUOUS MODELS

1

1

−1

−1

0

0 aγ = 0.028

1

1

−1

−1

0

0 aγ = 0.028

Figure 2.24: Polar plot of anisotropy function γ (left); Wulff shape Wγ corresponding to γ

(right).

and corresponding Wulff shape Wγ (defined in (2.4) and (2.3)) and (2.35) for the
definition of the angle). This choice yields that γ has a sixfold symmetry and is
convex, i.e. γ + γ′′ > 0, and, therefore, the viscous Cahn Hilliard equation is
parabolic. A parametrization for the Wulff shape Wγ is given by (see [POMZ99])

Wγ =
{

c(ϑ) = γ(ϑ)n̂(ϑ) + γ′(ϑ)τ̂ (ϑ) : ϑ ∈ [0, 2π)
}

,

where

n̂(ϑ) :=

(

cos(ϑ)
sin(ϑ)

)

and τ̂ (ϑ) :=

(

− sin(ϑ)
cos(ϑ)

)

.

This parametrization has been used for the plot in Figure 2.24.
For a comparison of a Wulff shape obtained by a numerical investigation of a

viscous Cahn-Hilliard equation with the one with the same enclosed area obtained
by theoretical considerations in Figure 2.25, we have started the diffuse-interface
approximation with a circular island, i.e. with the initial condition (2.112) with
R0 = 2, and let the model find its stationary solution (with F = 0). The solid line
in Figure 2.25 then shows the level set {φ = 1/2}, whereas the points are obtained by
theory, which demonstrates the applicability of the diffuse-interface approximation
in this anisotropic situation. For the theoretical Wulff shape we chose a parameter
λ ∈ R such that the enclosed area of the curve

λ(γ(ϑ)n̂(ϑ) + γ′(ϑ)τ̂ (ϑ)), ϑ ∈ [0, 2π)

is the same as the area of the level set of the stationary solution of the viscous
Cahn-Hilliard equation.

Next, we want to study the growth of an island initially given by the Wulff
shape in Figure 2.25. Thus, we start the phase-field simulation with a smeared out
height function given by a stationary solution of the viscous Cahn-Hilliard equation
obtained by the procedure just mentioned. For this purpose, we introduce kinetic
coefficients with a threefold symmetry (see Figure 2.26)

k−(θ) = k+(θ) = a−k0(θ) = a+k0(θ) = a±
1 + ak cos2(kk

θ
2 − β)

1 + ak
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Figure 2.25: Comparison of numerically by diffuse-interface approach determined Wulff

shape (solid line) with theoretically determined Wulff shape of same enclosed area (points).

with kk = 3, β = 3π
4 , a± = 10 and different values of ak. Thereby, we use a set
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Figure 2.26: Polar plots of anisotropy function k0 for different values of ak.

of parameters similar to the one used for the simulation of the growth of circular
shaped islands in the isotropic situation in Section 2.3.2

F = 0.1; D = 10; τ−1 = 0; µ0 = 0.1; ε = 0.1.

In Figure 2.27, one can see the results of phase-field simulations for different values
of ak at corresponding time steps. To be more precise, one has in each picture of
Figure 2.27 the level sets {φ = 1/2} at different time steps, i.e. the growth of an
island starting with a Wulff shape corresponding to the step free energy. The first
picture shows the evolution in the case of isotropic attachment rates, whereas the
following examples show the formation of more and more triangular and facetted
shapes for increasing values of ak.
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Figure 2.27: Anisotropic growth of initially “Wulff shaped” islands for different strengths

of anisotropic attachment rates, i.e. for different values of ak.

Further examples of Wulff shapes (including 2-dimensional shapes) are shown in
Section 3.2.

2.3.5 Spiral Growth

Here, we are concerned with a slightly different application of the diffuse-interface
approximation of the BCF model. Following [KP98], we introduce a phase-field
model for the simulation of spiral growth.
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Phase-field Model in Spiral Growth

Before the details of the model and the numerical results are presented, a few ideas
of the physics behind spiral growth are shown. The origin of a growth spiral is a
screw dislocation (see Figure 2.28 for a schematic picture). Due to a pinning of the
singularity of the screw dislocation, one can observe a spiral shaped step formation,
which makes the BCF model applicable. This application has already been a topic
in the original work [BCF51].

added
atom

Figure 2.28: Schematic picture of screw dislocation.

Let θ := θ(x) : R2 \ {0} → [0, 2π) denote the function returning the angle
the point x = (x1, x2) makes with the positive x1-axis (see (2.35)). Then, for the
diffuse-interface approximation of the BCF model, the basic idea is to model the
screw dislocation by the function φs : Ω → [0, 1) as

φs(x) :=

{

1
2πθ(x) for x 6= 0,

0 for x = 0,

where we consider the domain Ω = (−L/2, L/2)2 for some L > 0. The height
field of φs is shown in Figure 2.29 (top left) showing the singularity in x = 0. Then,
following [KP98], we modify the viscous Cahn-Hilliard equation (2.26)–(2.28) for the
application in spiral growth, where we restrict ourselves to the isotropic situation.
By adding ∂tw to (2.26), we then obtain the phase-field model

∂tφ+ ∂tw + ∇ · j = F − τ−1w(2.114)

j = −Mε(φ− φs)∇w(2.115)

εk−1∂tφ = µ

(

ε∆φ− ε−1 ∂G

∂φ
(φ− φs)

)

+ g(φ− φs)w,(2.116)
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where the multi well potential G as well as the mobility function Mε have been
shifted by the above defined function φs. In addition, for the case of thermodynamic
boundary conditions we have replaced in (2.116) w by g(φ−φs)w with a stabilizing
function g(φ) = 30φ2(1 − φ)2 for φ ∈ [0, 1] and periodically extended to all φ ∈ R
which has been used in order to enforce the phase-field variable to stay in the phases
(given by the relation φ(x, t)−φs(x) ∈ Z) outside the diffuse interface region without
changing the asymptotics for ε→ 0. However, this stabilization is not possible for a
proper approximation of the BCF model with kinetic boundary conditions. For the
application in spiral growth, the interface or step Γ = Γ(t) is now given by

Γ(t) =

{

x ∈ Ω : φ(x, t) − φs(x) −
1

2
∈ Z} .

For the case of thermodynamic boundary conditions, the change from the viscous
Cahn-Hilliard equation to the phase-field model, thereby, corresponds to the change
from the quasi-stationary BCF model to the BCF model including the diffusion equa-
tion (2.5) for the adatom density (see [RV05] for matched asymptotic expansions).
However, for the inclusion of an ES barrier by an asymmetric degenerate mobility
function (2.32) the phase-field model does not yield the correct asymptotics as ε→ 0
towards the BCF model with kinetic boundary conditions. Therefore, one interprets
the additional term ∂tw as a numerical regularization and ensures by a parameter
choice with F

D sufficiently small that the system is in the quasi-stationary regime.
In all cases, we have assumed the initial condition w(x, 0) = 0.

For all computations in this section, we have used uniform grids, and the deriva-
tive of the multi well potential has explicitly been treated in contrast to the previous
cases, where we have used the linearization (2.103).

Numerical Results (TBC)

First, we present numerical investigations of spiral growth for the case of thermody-
namic boundary conditions (TBC) (see also [KP98, BCE+06]), where we have used
the following set of parameters:

D = 10; µ = 0.1; τ−1 = 0; k−1 = 0.1; ε = 1,

where we first exclude edge diffusion by setting ν = 0. As a first numerical example,
one can see in Figure 2.29 profiles (shifted to the same height) of the smeared out
height function φ at different times. In addition, Figure 2.30 showing cross sections
of profiles of φ at different time steps further illustrates the shape of the spirals.
Thereby, starting with a screw dislocation given by the function φs, one obtains
after deposition of 20 monolayers the formation of a spiral, and after deposition of a
sufficient number of monolayers, one notices a constant step spacing and a periodic
growth, where after deposition of one monolayer one gets the same shape shifted by
height 1 (see also [KP98]). In the following, the above mentioned stepspacing will
be denoted by l. Then, one can investigate the dependency of the stepspacing on
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Figure 2.29: Profiles of smeared height function φ after growth of different numbers of

monolayers (ML) with F = 0.2, ν = 0 and L = 100 (TBC).

the deposition flux F . In [KP98], theoretical considerations lead to the relation

(2.117) 19µ =
Fl3

4D

(

1 +
4D

kl

)

.

Tab. 2.2 shows a comparison of the physical relevant solution of the cubic equation
(2.117) with numerically determined values of l illustrating the dependency of l on
F and a deviation of the numerical results (with L = 0) from the theoretically
predicted of less than 10%.

deposition flux F 0.2 0.1 0.05 0.025

step spacing l theory 6.1 8.0 10.3 13.3

step spacing l numerics 6.7 8.7 11.3 14.4

Table 2.2: Step spacing l versus deposition flux F .
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Figure 2.30: Cross sections (x1 = 0) of profiles of smeared height function φ after growth

of different numbers of monolayers (ML) with F = 0.2, ν = 0 and L = 100 (TBC).

As a second interesting property of the film, we consider the surface width

W = W (t) =
1

2

(

1

|Ω|

∫

Ω

(

φ2 −
(

φ̄
)2
)

dx

)1/2

,

which is a measure for the roughness of the film (see e.g. [MK04, KP98]). One
obtains

W (t→ ∞) ∼ L

l
.

Plotting W (t)/(L/l) versus Ft/(L/l)3 (see Figure 2.31 and [KP98]) for fixed F = 0.1,
one can see that the data collapse, from which one concludes that the time to reach
steady state scales as (L/l)3, which can be confirmed by theoretical considerations
[KP98].

Further numerical investigations deal with the incorporation of edge diffusion
into the model corresponding to the case ν 6= 0. In Figure 2.32, cross sections of
height profiles with (ν = 100) and without (ν = 0) edge diffusion are presented,
where we have used L = 100 and F = 0.2. These show that for ν = 100 the
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Figure 2.31: Rescaled surface width as a function of rescaled time for different edge lengths

L of the domains Ω = (−L/2, L/2)2 and for F = 0.1 (TBC).
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Figure 2.32: Cross sections of profile of smeared out height function with (ν = 100) and

without (ν = 0) edge diffusion after deposition of 400 ML (TBC).

stepspacing is not constant. In the lower part of the spiral it is decreased compared
to the example with ν = 0, while in the upper part the stepspacing is the same with
and without edge diffusion. Thus, the decrease in the lower part of the spiral leads
to a steepening in this part, which is also displayed in the surface width plotted
in Figure 2.33 for different edge mobilities ν, where one can see an increase of the
surface width for increasing values of ν. However, these plots suggest that there
exists a limit of the curves W = W (t) as ν → ∞.
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Figure 2.33: Surface width as a function of rescaled time for different values of edge mobility

ν (TBC).

Numerical Results (KBC)

As a last example, we study the influence of the ES barrier, which is modelled in
the diffuse-interface approach by the asymmetric mobility function (2.32). Here, we
consider the domain Ω = (−L,L)2 with L = 75 and the attachment rates k+ = 10
and k− = 1 as well as the deposition flux rate F = 0.1. In Figure 2.34, one can
see the smeared out height function φ at different time steps. These pictures and
the cross sections shown in Figure 2.35 demonstrate that a remarkable steepening
occurs in the case of kinetic boundary conditions, which yield a behaviour completely
different from the case of thermodynamic boundary conditions (see Figure 2.29 and
Figure 2.30). One also observes that there is a plateau-like part on the top of the
spiral with a larger stepspacing. The steepening below this plateau is similar to
results known for the growth of so-called wedding cakes, where the film grows due
to nucleation of new islands on the top of the top island (see e.g. [MK04]). However,
there is a limitation to the steepening in the diffuse-interface model due to the finite
value of the diffuse interface width. This results in a maximal slope at the side of
the spiral.

By defining g ≡ 1 one can reformulate (2.116) as

εk−1∂tφ = −µδE
δφ

with a changed free energy

E(φ) =

∫

Ω

(

ε
1

2
|∇φ|2 + ε−1G(φ− φs) − µ−1φw

)

dx.

Thus, one can interpret the term −µ−1φw as a reduction of the energy-barrier
between two terrace heights. Consequently, for moderate values of ε and sufficiently
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Figure 2.34: Profiles of smeared height function φ after growth of different numbers of

monolayers (ML) with F = 0.1, L = 75 (KBC).

small step stiffness, the diffuse-interface model contains a nucleation, which can be
seen in Figure 2.36, where we have a growth spiral in the centre of the domain
surrounded by several mounds formed due to nucleation. Again, one can see a
plateau on the top of the spiral and steepening in the lower part. Furthermore, one
recognizes that the height of the spiral is larger compared to the height of the mounds
surrounding it. However, a quantitative justification of the nucleation contained in
this model has not been given yet. Although it does not contain stochastic aspects of
a nucleation theory, it is in so far reasonable as nucleation occurs, where the adatom
concentration is sufficiently large. At least, one gets realistic boundary conditions
for the spiral in this way.
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Figure 2.35: Cross sections (x1 = 0) of profiles of smeared height function φ after growth

of different numbers of monolayers (ML) with F = 0.1, L = 75 (KBC).
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Figure 2.36: Profiles of smeared height function φ after growth of different numbers
of monolayers (ML) with F = 0.1, L = 75 and µ = 0.025 (KBC).
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Chapter 3

Diffuse-Interface Approximation

of Continuous Surface Models

In contrast to Chapter 2, we consider here epitaxial growth on a more coarse
grained level. That means, we study the vapour-solid-interface of a film grown
from the vapour onto a substrate on a continuum level. Starting from Mullins’
work [Mul57] there has been a large interest in such continuum descriptions (see e.g.
[CT94, GJ02]). Here, we concentrate on the homoepitaxial case, i.e. in principle,
we neglect elastic energies resulting from a lattice mismatch between film and sub-
strate in the case of heteroepitaxial growth, where the so-called Asaro-Tiller-Grinfeld
(ATG) instability [AT72, Gri86, Sro89] may lead to a breakup of an unstable film into
islands [GN99]. Following [CENC96, TC94], we will investigate a diffuse-interface
approximation of motion by surface diffusion. In Section 3.1, we describe the sharp-
and diffuse-interface model, which will be of interest here. Afterwards, in Section
3.2, we briefly discuss the numerical algorithm used in this case, which is nearly
the same as the one presented in Section 2.3. As a numerical test case, we intro-
duce in one dimension an artificial elastic energy density depending only on the
film height in order to quantitatively reproduce a theoretically predicted instability.
Afterwards, we investigate the smoothing property of the model in different one di-
mensional isotropic situations, before, for two dimensional surfaces, the evolution of
initially prism-shaped surfaces is studied, where a pinch-off numerically predicted in
[BMN05] by sharp-interface simulations is reproduced by a diffuse-interface approx-
imation. Furthermore, we will investigate closed equilibrium shapes for anisotropic
free energy densities and the behaviour under growth, if an additional anisotropy in
the attachment is included.

Numerical investigations of elastically stressed films can be found in [ZB99,
ZBL03, RS04] with a sharp-interface method and [EV02, WLKJ04, RRV06] us-
ing diffuse-interface approximations, and, in 1 + 1 dimensions, approaches towards
a continuum description derived from a step flow perspective have been performed
by [Xia02, XE04, SF02], for example.

63
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3.1 Model Description

In the following, a sharp-interface model similar to the one proposed by Cahn and
Taylor [CT94] is described, before we introduce a diffuse-interface approximation
based on the works [CENC96, TC94].

3.1.1 Sharp-Interface Model

The principle physical scenario we want to consider here is a film grown from the
vapour onto a solid substrate (see Figure 3.1 for a simple discrete picture in one
dimension).

substrate

film

deposition
flux

vapour

Figure 3.1: Schematic picture of a film grown from the vapour onto a substrate.

Geometric Objects and Quantities

However, here we concentrate on a continuum description of the above situation
(see Figure 3.2), where the interface between the vapour and the solid is given by
smooth (d − 1)-dimensional orientable surface Γ = Γ(t) ⊂ Ω ⊂ Rd evolving during
a time interval t ∈ [t0, tend], where we assume Γ(t0) = Γ0 as an initial condition
for a given (d − 1)-dimensional surface Γ0 ⊂ Rd. Thus, Γ(t) separates Ω into two
domains Ω1(t) and Ω0(t) satisfying Ω1(t) ∪ Ω0(t) = Ω and Ω1(t) ∩ Ω0(t) = Γ(t) and
representing the two phases solid and vapour. The evolution of Γ can, therefore,
also be displayed by the characteristic function φ0 : Ω × [t0, tend] → R, φ0 = χ

Ω1
of

Ω1. Let X(t, ·) : Γ(t) → Rd, t ∈ [t0, tend] be an immersion. Then, we define the basic
geometric properties of Γ by denoting the normal pointing from the solid phase to
the vapour phase with N = N(t) and defining the normal velocity v := ∂tX · N .
Furthermore, we consider the mean curvature

H =

d−1
∑

i=1

κi

of Γ with the principal curvatures κi, where we assume the sign convention similar
to the one in Chapter 2 (see Figure 2.2) stating that, if Γ is a closed surface with
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Figure 3.2: Continuous picture of a film; sign convention.

Γ = ∂Ω1, the mean curvature H is positive, if Ω1 is convex. In addition, we assume
that H > 0 holds, if Γ is given by the graph of a concave function with Ω1 below Γ
(see Figure 3.2). With ∇Γ and ∆Γ, we denote the surface gradient and the Laplace-
Beltrami operator on Γ, respectively, whereas ∇Γ · Y is defined as the divergence of
a vector field Y on Γ. Moreover, we have the induced metric 〈·, ·〉Γ for vector fields
V,W ∈ TΓ given by

〈V,W 〉Γ := DX(V ) ·DX(W ).

Surface Free Energy

Similar to the situation in Section 2.1.1, where we studied the free energy of a step,
we consider here the surface free energy

(3.1) Sϕ(Γ) :=

∫

Γ
ϕ(N) dA

including the (d−1)-dimensional Hausdorff measure dA = dHd−1 and a free energy
density ϕ = µ2γ, where µ2 > 0 is a constant dimensional quantity and γ : Sd−1 → R
a positive dimensionless anisotropy function. Furthermore, we assume that the one-
homogeneous extension of γ defined by

γ̄(p) :=

{

|p|γ
(

p
|p|

)

for p ∈ Rd \ {0},
0 for p = 0

is a convex function and γ̄ ∈ C2(Rd \ {0}). If one considers then the variational
problem

(3.2) Minimize Sγ(Γ) =

∫

Γ
γ(N) dA such that |Ω| = constant
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with Ω ⊂ Rd a smooth domain satisfying ∂Ω = Γ, one obtains that the Wulff set

Wγ :=
{

x ∈ Rd : x · n ≤ γ(n) ∀n ∈ Sd−1
}

is a solution of (3.2) (see [Tay78]), and one defines the Wulff shape Wγ := ∂Wγ .

Weighted Mean Curvature

In order to state the result of the variational derivative
δSγ

δΓ , we define the divergence
of a non-tangential vector field (see [Cla02, CvdM01]).

Definition 1. The divergence of a non-tangential vector field Z : Γ → Rd on Γ
given by an immersion X : Γ → Rd is defined as

(3.3) ∇Γ · Z := tr
(

(DX)−1DZ(·)tan
)

,

where DX(p) : TpΓ → [N(p)]⊥ and DZ(p)tan : TpΓ → [N(p)]⊥, and ηtan := (Id −
N ⊗ N)η denotes the tangential part of η ∈ Rd in [N(p)]⊥ with [N(p)]⊥ := {y ∈Rd : y ·N(p) = 0}.

With this definition in mind, we now present the result of the computation of
the variational derivative

δSγ

δΓ in

Lemma 2. Let Γ ⊂ Rd be a compact hypersurface of dimension d − 1 given by
an immersion X : Γ → Rd of class C2 with normal N . For a smooth mapping
Ψ : Γ → Rd, one gets the first variation

(3.4) δSγ(X,Ψ) :=
d

dε
Sγ(X + εΨ)

∣

∣

ε=0
=

∫

Γ
∇Γ · (Dγ̄(N))N · Ψ dA

or, in other words,

δSγ

δΓ
= ∇Γ · (Dγ̄(N))N

and, therefore, one obtains for the weighted mean curvature

Hγ :=
δSγ

δΓ
·N = ∇Γ · (Dγ̄(N)).

For a proof, we refer to [Cla02, CvdM01]. Thus, one obtains for surfaces of fixed
enclosed volume an equilibrium condition stating that the weighted mean curvature
is constant. Furthermore, in an isotropic case γ = 1, one has

Hγ = ∇Γ ·N = H.
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Surface Diffusion and Interface Kinetics

Now, following [Mul57] and [CT94], we establish a model for surface diffusion in this
situation. For this purpose, we first define the surface flux

(3.5) J := −νΩ̃∇Γw

with the positive mobility ν = ν(N) and the potential w which will later be deter-
mined. Then, we assume the mass/volume preserving law for the normal velocity

(3.6) v = −∇Γ · J.

For the chemical potential w, we introduce the equation

(3.7) v = k

(

−Ω̃
δSϕ

δΓ
+ w

)

,

with a positive kinetic coefficient k = k(N).
We measure length scales in atomic distances (i.e. Ω̃ = 1), energies in units of

kBΘ and consider non-dimensional times (cf. Section 2.1.1), and we rewrite system
(3.5)–(3.7) as

v = −∇Γ · J,(3.8)

J = −ν∇Γw,(3.9)

v = k (−Hϕ + w) .(3.10)

Two Extreme Cases

There are two extreme cases of the system (3.8)–(3.10) which are of special interest.
For the first one, we define the weighted mean value

Hϕ :=

∫

Γ kHϕ dA
∫

Γ k dA
.

Then, for ν → ∞, the system (3.8)–(3.10) turns into volume preserving weighted
mean curvature flow

(3.11) v = −k
(

Hϕ −Hϕ

)

,

whereas the limit k → ∞ yields the evolution law for classical (anisotropic) motion
by surface diffusion

(3.12) v = ∇Γ · (ν∇ΓHϕ).

Note that in contrast to (3.11) the fourth order equation (3.12) is local. With the
two extreme cases of volume preserving weighted mean curvature flow (3.11) and
anisotropic surface diffusion (3.12), the system (3.8)–(3.10) can be viewed as an
interpolation between these two cases.
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Mass Conservation and Energy Dissipation

Now, we want to establish some basic properties of the model (3.8)–(3.10). The first
result states volume/mass conservation, whereas the second one states the decrease
of the energy Sϕ of the surface. To be more precise, we have

Proposition 1. For a family of hypersurfaces Γ(t) ⊂ Rd with interior Ω1(t) ⊂ Rd

and without boundary satisfying the evolution law (3.8)–(3.10), we have the following
two properties

d

dt
|Ω1(t)| = 0,(3.13)

d

dt
Sϕ ≤ 0.(3.14)

The results of Proposition 1 easily follow from

Lemma 3.

d

dt
|Ω1(t)| =

∫

Γ
v dA,(3.15)

d

dt
Sϕ =

∫

Γ
vHϕ dA,(3.16)

where (3.15) is a consequence of the transport theorem, and a proof of (3.16)
can be found in [Law80] in the isotropic and in [DDE05a] in the anisotropic case or
can be derived in a similar way as Lemma 2.

Proof of Proposition 1. For the proof of (3.13), we compute

d

dt
|Ω1(t)| =

∫

Γ
v dA = −

∫

Γ
∇Γ · J dA =

∫

Γ
〈J,∇Γ1〉Γ dA = 0.

Now, we prove (3.14).

d

dt
Sϕ =

∫

Γ
vHϕ dA =

∫

Γ
v

(

w − 1

k
v

)

dA

= −
∫

Γ

1

k
v2 dA+

∫

Γ
∇Γ · (ν∇Γw)w dA

= −
∫

Γ

1

k
v2 dA−

∫

Γ
〈ν∇Γw,∇Γw〉Γ dA ≤ 0,

which completes the proof of Proposition 1.

Remark 1. One could also derive (3.14) by interpreting the evolution law (3.8)–
(3.10) as a gradient flow of the energy functional Sϕ [TC94].
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Existence results for the system (3.8)–(3.10) are only available for curves
([EG97]). For the non volume preserving isotropic version v = −H of the extreme
case (3.11), it could proven that for a smooth, compact and uniformly convex hy-
persurface Γ0 ⊂ Rd there exists a finite time interval [0, t1) and a solution Γ(t) with
t ∈ [0, t1) and Γ(0) = Γ0 such that the Γ(t) converge to a point as t → t1, where the
according to fixed volume rescaled surface shows a convergence towards a sphere as
t → t1 (see [Hui84] for d ≥ 3 and [GH86, Gra87] for a stronger result for d = 2).
In [BMN07], a regularization method for mean curvature flow through higher order
equations is established, where the convergence of the regularized problem towards
the mean curvature flow for all times before the first singularity could be proven.

For a theoretical treatment in the anisotropic case v = −Hϕ, we refer to [CGG91,
Son93, Gag93]. Numerical studies of this model can be found in [DD02] in a graph
formulation and in [Dzi99] in a parametric framework, for example. For level set
approaches, we refer to [DDE05a] and references therein.

In the isotropic case of the volume preserving version of mean curvature flow
(3.11) with φ = k = 1, one was able to show that there exists a smooth solution Γ(t)
for t ∈ [0,∞), if Γ0 is compact, uniformly convex and smoothly embedded in Rd.
Furthermore, Γ(t) converges to a round sphere as t→ ∞ (see [Hui87] and [ES98] for
generalization, if Γ0 is sufficiently near to a sphere, as well as [Gag86] in the case of
curves). Extensions to the anisotropic volume preserving situations can be found in
[And01]. Numerical treatment of isotropic volume preserving mean curvature flow
can be found in [May00].

In order to allow strong (non-convex) anisotropies in ϕ, a regularization of the
energy

ϕ ; ϕ+
1

2
ε0H

2, ε0 > 0

by a Willmore energy term has been proposed in [DGPG92]. The resulting regular-
ized mean curvature flow has numerically been studied in [HV06] by a parametric
approach. The regularization, thereby, leads to a smearing out of sharp corners on
a length scale of order of ε0. In a level set description, this has been studied in
[BHSV07].

Now, we consider the second extreme case (3.12) of (3.8)–(3.10), where existence
results are restricted to the isotropic case (see [EG97] for curves and [EMS98] for
surfaces near spheres). A basic property of solutions to (3.12) is that perturbations
of a sphere are smoothened. Obviously, spheres are stationary solutions of (3.12).

Numerically, the evolution law (3.12) has been investigated for graphs in
[BMN04] in the isotropic case and in [DDE05b] in the anisotropic case. Parametric
studies in isotropic situations can be found in [BMN05]. For level set approaches,
we refer to [CHR+05] and references therein. Regularized approaches similar to the
ones for weighted mean curvature are applied in [HV05a] in the parametric case, in
[Bur05] for graphs and in [BHSV07] in a level set framework.
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Deposition Flux

Finally, we want to mention that a vector valued deposition flux F ∈ Rd can be
incorporated into the model (3.8)–(3.10) by adding the term −F ·N to (3.8)

(3.17) v = −∇Γ · J − F ·N,

where for later applications it is assumed that F = F (N) ∈ Rd may depend on the
normal of the interface.

3.1.2 Diffuse-Interface Model

In the following, it is assumed that the interface Γ(t) ⊂ Ω is contained in a fixed
domain Ω ⊂ Rd for all times t ∈ [t0, tend]. Based on the idea of a degenerate
mobility as introduced in [CENC96], Cahn and Taylor proposed in [TC94] for a
small parameter ε > 0 and an energy density E = E(z, p) : Q ⊂ R × Rd → R a
viscous Cahn-Hilliard equation

∂tφ+ ∇ · j = 0,(3.18)

j = −Mε∇w,(3.19)

εk̃−1∂tφ = −µ2
δE
δφ

+ g(φ)w = µ2

(

∇ · Ep(φ,∇φ) − ε−1G′(φ)
)

+ g(φ)w(3.20)

as a diffuse-interface approximation of (3.8)–(3.10) with φ,w : Ω × [t0, tend] → R,
j : Ω × [t0, tend] → Rd and an initial condition φ(x, t0) = φ̃(x) for some φ̃ : Ω → R
obtained by smearing out the discrete function φ0(x, t0) and, therefore, representing
the initial surface Γ0. As in Chapter 2, one additionally assumes Dirichlet or no flux
boundary conditions for φ and w on ∂Ω, or one assumes Ω-periodicity for φ and w
or some combination of these boundary conditions on ∂Ω. In this diffuse-interface
model, the width of the interface is of order of ε. Similar to the case in Chapter 2
(see (2.24)), we, thereby, use the energy

(3.21) E(φ) :=

∫

Ω
E(φ,∇φ) dx :=

∫

Ω

(

1

2
ε|γ∇φ|2 + ε−1G(φ)

)

dx

with the double well potential

(3.22) G(φ) = 18φ2(1 − φ)2

attaining its minimum G = 0 in φ = 0 and φ = 1 representing the two phases vapour
and solid. Furthermore, the degenerate mobility function Mε given by

(3.23) Mε(φ) := ε−1ν̃(n(∇φ))B(φ)

with B(φ) = 2G(φ) = 36φ2(1−φ)2 restricts diffusion to the interface. Moreover, we
define the rescaled diffusion coefficient

(3.24) ν̃(n(∇φ)) :=
ν(n(∇φ))

γ(n(∇φ))
.
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Similarly, one introduces the kinetic coefficient

(3.25) k̃(n(∇φ)) :=
k(n(∇φ))

γ(n(∇φ))
,

for reasons explained in the asymptotic analysis in Section 2.2.1. In this diffuse-
interface approach, the interface is given by the level set

Γ(t; ε) :=

{

x ∈ Ω : φ(x, t) =
1

2

}

.

The viscous Cahn-Hilliard equation (3.18)–(3.20) in so far differs from the usual and
in [TC94] proposed one as it contains a stabilizing function

(3.26) g = g(φ) = 30φ2(1 − φ)2,

which enforces the phase-field variable φ to stay in the phases outside the diffuse in-
terface region without influencing the result of the asymptotic analysis (see [KR98]).

In addition, one can incorporate a deposition flux into the diffuse-interface model
(3.18)–(3.20) by adding the term

ε−1F̃ = −ε−1 1

γ(n(∇φ))
B(φ)F (n(∇φ)) · n(∇φ)

to the right hand side of (3.18), which yields

(3.27) ∂tφ+ ∇ · j = −ε−1 1

γ(n(∇φ))
B(φ)F (n(∇φ)) · n(∇φ),

see also [EV02]. As in Section 2.1.2, one gets a well defined weak formulation of
the system (3.18)–(3.20) by regularizing the anisotropy functions ν̃ ◦ n, k̃ ◦ n and
F ◦ n · n/γ ◦ n in (3.27) by continuous anisotropy functions coinciding with the
previous ones for |p| > α(ε) = O(ε) (see Section 2.1.2).

For existence results of (3.18)–(3.20) in the isotropic case, we refer to [EG96].
Cahn-Hilliard models with a degenerate mobility as in (3.23) have numerically been
treated in many different applications in [BBG99, BBG01, EV02, WLKJ04], for ex-
ample. Anisotropic phase-field models have been proposed and justified by matched
asymptotic expansions in [MWB+93]. A matched asymptotic analysis formally
showing the convergence of the viscous Cahn-Hilliard equation (3.18)–(3.20) towards
the sharp-interface model (3.8)–(3.10) as ε→ 0 has been given in [RRV06] and also
follows from the analysis in Section 2.2 by setting D = 0, i.e. by forbidding diffusion
outside the interface. In order to achieve more rigorous results, one would have to
apply techniques from [ABC94].

3.2 Numerical Treatment

In this section, we mainly use the algorithm presented in Section 2.3.1, in order to
obtain numerical results for the viscous Cahn-Hilliard equation in the continuous
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application described in Section 3.1. In Section 3.2.1, we briefly specify the cor-
responding changes to the discretization in Section 2.3.1 which have been carried
out. Afterwards, the model and the algorithm are validated for d = 2 by simula-
tions of the ATG instability, where a prescribed analytic expression for the elastic
energy density as in [BMN04] has been applied. Thereby, a comparison with results
of sharp-interface simulations (the algorithm being described in [BHL+04]) and of
a stability analysis are shown for the two extreme cases volume preserving mean
curvature flow (3.11) and surface diffusion (3.12) without anisotropy. As a second
example, the smoothing property of the model is studied for closed curves and sur-
faces, and, finally, we investigate evolutions for d = 2 and d = 3 in anisotropic
situations.

3.2.1 Discretization

We apply the algorithm presented in Section 2.3.1 (see also [RRV06]). In order to
regularize the degenerate mobility (3.23), we add a small positive constant δ ≪ ε to
the mobility

Mε(φ) := δ + ε−1ν̃(n(∇φ))B(φ).

In the numerical results, we have used the value δ = 10−4.
We solve the system in a cubic domain Ω = (−L,L)d ⊂ Rd with L > 0 and

d = 2 or d = 3. For the definition of the boundary conditions of φ and w on ∂Ω, we
divide ∂Ω into the three parts (see Figure 3.3)

Γ1 := {x ∈ ∂Ω : xd = L},
Γ3 := {x ∈ ∂Ω : xd = −L},

and

Γ2 := {x ∈ ∂Ω : |x1| = L or |x2| = L} for d = 3,

Γ2 := {x ∈ ∂Ω : |x1| = L} for d = 2.

On the top of the cube, i.e. on Γ1, the boundary conditions are prescribed by
φ = w = 0. The boundary conditions between film and substrate, i.e. on Γ3 are
zero flux for φ and w. On the lateral parts of the boundary Γ2, we assume φ and w
to be periodic.

For the weak formulation, we use the space of test functions

X :=
{

ψ ∈ H1(Ω) : ψ|Γ1
= 0, ψ|Γ2

periodic
}

,

and for the discretization, the finite element space of globally continuous, piecewise
linear elements

V
m
h =

{

vh ∈ X : vh|T ∈ P
1 ∀T ∈ T m

h

}

with a conforming triangulation T m
h of Ω at time instant tm. Concerning the term in

(3.20) involving the function g (see (3.26)), we have explicitly treated the phase-field
variable.
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Figure 3.3: Computational domain and boundary conditions.

3.2.2 Crack Formation

In this section, we consider for d = 2 the physical situation as described in Figure
3.2. An elastic energy density Ψ resulting from a misfit in lattice parameters of film
and substrate can be incorporated into the sharp-interface model (3.8)–(3.10) by
changing (3.10) into

v = k (−Hϕ + w − Ψ) ,

where one usually considers an elasticity problem, in order to determine the elastic
energy density Ψ (see e.g. [RRV06]). Here, we follow [BMN04] and introduce a
simplified (and unphysical) prescribed energy density depending only on the height
of the film. This can easily be incorporated into the diffuse-interface model by
changing (3.20) into

εk̃−1∂tφ = µ2

(

∇ ·Ep(φ,∇φ) − ε−1G′(φ)
)

+ g(φ)w − g(φ)Ψ

with Ψ = Ψ(x2) as defined below in (3.29).

In order to further demonstrate the validity of the viscous Cahn-Hilliard equation
with elasticity, we compare the numerical solutions with the corresponding sharp-
interface models in the limits k → ∞ and ν → ∞ for d = 2, i.e. in the case of
curves (see [RRV06]). For these equations and a prescribed elastic energy density,
the Asaro-Tiller-Grinfeld instability can be used as a test case in two dimensions.
In all simulations, we keep the parameter ε = 0.1 fixed.
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Extreme Case k → ∞

According to the extreme case k → ∞, we introduce the evolution equation

(3.28) v = ∂ss(H + Ψ),

with ∂s the derivative with respect to the arc length. The elastic energy density Ψ
is given by

(3.29) Ψ(x2) = − C

x2 + L+ r
, −L = inf

x∈Ω
x2, r > 0.

In the case of a graph formulation, (3.28) and (3.29) with r = 0 have been considered
in [BMN04], in order to study crack formation. Here, the positive number r in (3.29)
has a regularizing meaning. We consider the domain Ω := (−1, 1)× (−1, 1), the flat
interface

Γ := {(x1, x2) ∈ Ω : x2 = 0}
and a perturbed (with wavenumber l = 1 and amplitude A0 = 0.05) interface

(3.30) Γ̃ := {(x1, x2) ∈ Ω : x2 = −0.05 cos(πx1)}.

Following the linear stability analysis in [BMN04], one obtains the growth rate

(3.31) ω(l = 1) = −π4 +
C

(1 + r)2
π2.

For the numerical results presented here, the parameters C = 50 and r = 1/2 have
been used, which yield the growth rate ω = π2(200

9 − π2) ≈ 121.92. According to
the perturbed interface (3.30), we assume for the viscous Cahn-Hilliard equation the
initial condition

φ(x, 0) =
1

2

(

1 − tanh

(

3(x2 −A0 cos(lx1))

ε

))

.

In Figure 3.4, a comparison of a sharp-interface simulation of (3.28) with a diffuse-
interface simulation of (3.18)–(3.20) with ϕ = 1, ν = 1 and k = 500 at different times
is shown. For the sharp-interface simulations, the algorithm in [BHL+04] is used.
We show the plots of the evolving curve at three different times compared to the
level sets {φ = 1/2} at corresponding times, which illustrates the good agreement
of the two approaches. Figure 3.5 for one time t shows the approximation of the
sharp-interface solution by the level sets of the results of the viscous Cahn-Hilliard
equation for increasing kinetic coefficient k. This approximation can also be seen in
the plots of the logarithm of the amplitudes

A = A(t) =
1

2

(

max
x∈Γ(t)

x− min
x∈Γ(t)

x

)

versus time in Figure 3.6, where Γ is either the numerically determined level set
{φ = 1/2} or the result of the sharp-interface simulation. In order to compute the
growth rate, linear fits of these plots have been performed to determine the slope
(fit-interval: [0,0.01]). The result of this procedure can be seen in Table 3.1.
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Figure 3.4: Sharp-interface versus diffuse-interface at times t = 0.0108, t = 0.0171 and

t = 0.0189, where k = 500.
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Figure 3.5: Comparison of sharp-interface results with level sets of diffuse-interface model

for increasing k at time t = 0.0189.

analytic sharp-interface k = 500 k = 200 k = 100

growth rate 121.92 121.45 120.17 116.41 110.69

Table 3.1: Comparison of growth rate computed by diffuse-interface model for increasing

k with result of sharp-interface simulation and theoretically determined growth rate.
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Figure 3.6: Approximation of amplitude computed by sharp-interface simulation by am-

plitude computed by diffuse-interface model for increasing k.

Extreme Case ν → ∞

As a second example, we introduce for the extreme case ν → ∞ the evolution law

(3.32) v = −(H −H + (Ψ − Ψ)),

where

H :=
1

|Γ|

∫

Γ
H ds and Ψ :=

1

|Γ|

∫

Γ
Ψ ds

and Ψ given by (3.29). Similar to the case of (3.28), a linear stability analysis yields
the growth rate

(3.33) ω(l = 1) = −π2 +
C

(1 + r)2
= −π2 +

50

2.25
≈ 12.35

with C and r as before.
Concerning this weaker instability, a similar comparison as for the extreme case

k → ∞ is now presented for the second extreme case ν → ∞ corresponding to volume
preserving mean curvature flow. Figure 3.7, thereby, shows the approximation of the
result of a sharp-interface simulation of (3.32) by level sets of the phase-field function
φ computed as a solution of the system (3.18)–(3.20) with ϕ = 1, k = 1 and ν = 16
at different times. Again, the details of the algorithm used for the sharp-interface
solution can be found in [BHL+04]. In Figure 3.8, the convergence of the level
sets resulting from phase-field computations with increasing ν to the sharp-interface
solution for a selected time is indicated. Figure 3.9 shows the convergence of the
logarithm of the amplitudes for increasing parameter ν towards the result of the
sharp-interface computation. Table 3.2 shows the growth rates obtained from the
linear fits of the curves in Figure 3.9 (fit interval [0,0.05]).
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Figure 3.7: Sharp-interface versus diffuse-interface at times t = 0.106, t = 0.163 and

t = 0.177, where ν = 16.
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Figure 3.8: Comparison of sharp-interface results with level sets of solutions of diffuse-

interface model for increasing ν at time t = 0.177.

analytic sharp-interface ν = 16 ν = 2 ν = 1

growth rate 12.35 12.58 12.52 11.97 11.41

Table 3.2: Comparison of growth rate computed by diffuse-interface model for increasing

ν with result of sharp-interface simulation and theoretically determined growth rate.
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Figure 3.9: Approximation of amplitude computed by sharp-interface simulation by am-

plitude computed by diffuse-interface model for increasing ν.

For both extreme cases, the viscous Cahn-Hilliard equation shows excellent agree-
ment with the sharp-interface results and the theoretically predicted growth rates.
As a consequence, the viscous Cahn-Hilliard equation can be assumed to be valid in
the whole parameter range going from surface diffusion to attachment-detachment
dominated evolution.

3.2.3 Smoothing Property

In this section, we want to present basic properties of the evolution equations (3.8)–
(3.10) and their extreme cases volume preserving mean curvature flow (3.11) and
motion by surface diffusion (3.12) in the isotropic situation (ϕ = 1) by studying
numerical results of the viscous Cahn-Hilliard equation (3.18)–(3.20), where we ap-
proximate the sharp-interface models with k = 104 and ν = 1 for the extreme case
(3.12), with k = 1 and ν = 16 for the extreme case (3.11) and with k = 100 and
ν = 1 for an intermediate case. In all cases, we fix Ω := (−1, 1)2 and ε = 0.1.

As a first test case, we consider closed curves in Ω. In Figure 3.10, one can see
the evolution of a perturbed circle (wavenumber l = 12, amplitude A0 = 0.1, radius
0.5), i.e. we have started the simulations with

φ(x, 0) :=
1

2

(

1 − tanh

(

3(|x| − 0.5 +A0 cos(lθ(x)))

ε

))

,

where θ(x) is the angle of x (see (2.35)). One notices that the interface converges
in time towards the stationary solution given by a circle and that the amplitude
of the perturbation shrinks fastest in the case of surface diffusion followed by the
intermediate case and the extreme case of mean curvature flow.
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Approximation of extreme case surface diffusion (k = 10000, ν = 1)

t = 0 t = 2.9 · 10
−6

t = 8.0 · 10
−6

t = 4.5 · 10
−5

Approximation of intermediate case (k = 100, ν = 1)

t = 0 t = 1.1 · 10
−5

t = 3.1 · 10
−5

t = 3.5 · 10
−4

Approximation of extreme case mean curvature flow (k = 1, ν = 16)

t = 0 t = 8.6 · 10
−4

t = 2.4 · 10
−3

t = 2.7 · 10
−2

Figure 3.10: Evolution of perturbed circle (wavenumber 12) for different times and in

different parameter regimes.

The second example in Figure 3.11 shows evolutions starting with a square-
shaped interface in the same three cases as above. So, we change the initial condition
into

φ(x, 0) :=
1

2

(

1 − tanh

(

3(|x|∞ − 0.5)

ε

))

,

where | · |∞ denotes the maximum norm

|x|∞ := max(|x1|, . . . , |xd|) for x ∈ Rd.

Again, one notices the differences in the smoothing properties according to the time
scales on which the equations relax. Furthermore, in the extreme case of surface
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Approximation of extreme case surface diffusion (k = 10000, ν = 1)

t = 0 t = 4.2 · 10
−5

t = 3.4 · 10
−4

t = 2.4 · 10
−3

Approximation of intermediate case (k = 100, ν = 1)

t = 0 t = 6.5 · 10
−5

t = 4.4 · 10
−4

t = 4.4 · 10
−3

Approximation of extreme case mean curvature flow (k = 1, ν = 16))

t = 0 t = 2.2 · 10
−3

t = 1.3 · 10
−2

t = 9.5 · 10
−2

Figure 3.11: Evolution of square for different times in different parameter regimes.

diffusion one can see temporary non-convex shapes, which are more distinct than in
the intermediate case. In the extreme case of mean curvature flow, however, these
non-convex shapes do not appear.

3.2.4 Isotropic Evolution for d = 3

In this section, we follow [BMN05] and provide simulations describing the evolution
of initial conditions φ(x, 0) with prism-shaped level sets {φ(x, 0) = 1/2} for d = 3.
To be more precise, we use the initial condition

φ(x, 0) :=
1

2

(

1 − tanh

(

3(r(x))

ε

))

,
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where r = r(x) denotes the signed distance of a point x ∈ Ω := (−5, 5)3 to the
prism being positive inside and negative outside the prism. Furthermore, we assume
throughout this section φ and w to be Ω-periodic and ε = 0.25. First, we consider
for d = 3 an example similar to the one presented in Figure 3.11. Thereby, we begin
with the parameters

k = 1000, ν = 1.

Thus, we are interested in an approximation of the extreme case (3.12) in the
isotropic situation. In Figure 3.12, one can see the evolution of an initially cubic
(with edge length 1) level set towards a sphere showing slightly non-convex shapes
at intermediate times.

t = 0 t = 7 · 10
−5

t = 2.4 · 10
−4

t = 2.28 · 10
−3

t = 1.110 · 10
−2

Figure 3.12: Evolution of 1 × 1 × 1 prism to a sphere.

As a second example, we have in Figure 3.13 the evolution of a 4 × 1 × 1 prism
towards a sphere, again, with non-convex intermediate shapes. Thereby, we have
chosen in Figure 3.13 similar times as in the presentation of sharp-interface results
for the same example in [BMN05], and we obtain a good qualitative agreement.

t = 0 t = 1.6 · 10
−4

t = 9.7 · 10
−4

t = 0.01866 t = 0.16787 t = 0.32288

Figure 3.13: Evolution of 4 × 1 × 1 prism to a sphere.

Doubling the proportions of the edge lengths, i.e. considering the evolution
of an 8 × 1 × 1 prism, leads to a pinch-off (see Figure 3.14). As the stationary
solution, we obtain two spheres of equal size. Again, the results of the diffuse-
interface approximation qualitatively agree with those presented in [BMN05] for
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corresponding time steps. Furthermore, the pinch-off time in the case of the diffuse-
interface approximation has a deviation of ≈ 7.8% compared to the sharp-interface
pinch-off time in [BMN05]. Due to the fact that the entire surface area of two
spheres of equal size is larger than the surface area of a single sphere enclosing the
same volume as the two spheres together, this example shows that the evolution law
(3.12) does not necessarily lead to the globally minimal equilibrium shape.

t = 0 t = 1.5 · 10
−4

t = 8.7 · 10
−4

t = 0.12003

t = 0.30029 t = 0.39616 t = 0.39699 t = 0.50372

Figure 3.14: Evolution of a 8 × 1 × 1 prism including pinch-off and two spheres of equal

size as stationary solution.

Now, in Figure 3.15, we present results of a simulation in an intermediate pa-
rameter regime, where we chose

k = 10, ν = 1.

In contrast to the previous case, in Figure 3.14, a pinch-off does not occur and
the equilibrium shape is a single sphere. However, one can still see rather strong
non-convexities at several time steps.

Finally, in Figure 3.16, one can see in Figure 3.16 numerical results of a diffuse-
interface approximation for the parameters

k = 1, ν = 20

as an approximation of the sharp-interface evolution law (3.11) in the isotropic
situation, where the non-convex shapes from the previous example have vanished in
this case.

3.2.5 Anisotropic Evolution for d = 2 and d = 3

As a last example, we analyze for d = 2 and d = 3 various anisotropies in the viscous
Cahn-Hilliard equation (see [RRV06]). We consider a weak anisotropy in the free
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t = 0 t = 1.04 · 10
−3

t = 0.12825 t = 0.31383

t = 0.41841 t = 0.69982 t = 1.01077 t = 2.01043

Figure 3.15: Evolution of a 8× 1× 1 prism without pinch-off and with one sphere of equal

size as stationary solution for intermediate parameters k = 10 and ν = 1.

t = 0 t = 0.02805 t = 0.14591 t = 0.28709

t = 0.51824 t = 0.74045 t = 1.06781 t = 2.07458

Figure 3.16: Evolution of a 8× 1× 1 prism without pinch-off and with one sphere of equal

size as stationary solution for parameters k = 1 and ν = 20.

energy density ϕ(N) = µ2γ(N) and a strong anisotropy in the kinetic coefficient
k(N). The computational domain is Ω := (−1, 1)d, and we fix ε = 0.1, ν = 1,
µ2 = 1 as well as the initial condition

φ(x, 0) :=
1

2

(

1 − tanh

(

3(|x| − 0.2)

ε

))

representing a circle or sphere, respectively.
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Anisotropic Free Energy Density

We first use an anisotropy function (see [Bur05]) γ(N) of the form

(3.34) γ(N) = 1 + ε4

d
∑

i=1

N4
i ,

with ε4 = 0.3, providing γ to be convex (see Figure 3.17 for a polar plot for d = 2).
Figure 3.18 and Figure 3.19 show the evolution of a closed curve or surface towards

1

1

−1

−1

0

0

Figure 3.17: Polar plot of anisotropy function (3.34) for d = 2.

its Wulff shape in two and three dimensions, respectively, where we have solved
the system (3.18)–(3.20) with isotropic kinetic coefficient k = 1, still leading to an
anisotropic coefficient k̃ (see (3.25)).

t = 0 t = 0.0014 t = 0.0032 t = 0.021

Figure 3.18: Evolution of level set {φ = 1/2} towards the Wulff shape for d = 2.
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t = 0 t = 0.00012 t = 0.012 t = 0.019

Figure 3.19: Evolution of level set {φ = 1/2} towards the Wulff shape for d = 3.

Anisotropic Kinetic Coefficient

Now, we additionally account for an anisotropy in the kinetic coefficient k(N) (see
[US03] for a similar anisotropic kinetic coefficient and Figure 3.20 for a polar plot)

(3.35) k(N) = 1 − ε̃4 + 2ε̃4 tanh

{

k4

(

√
d−

d
∑

i=1

|Ni|
)/(

1 −
d
∑

i=1

N4
i

)}

with k4 = 50 and ε̃4 = 0.9. Figure 3.21 and Figure 3.22 then show the evolution of a

2

2

−2
−2

0

0

Figure 3.20: Polar plot of anisotropy function (3.35) for d = 2.

closed curve or surface towards its kinetic Wulff shape in two and three dimensions,
respectively, where we solve (3.18)–(3.20) with an additional deposition flux (see
(3.27)) with F (N) = −10N , for which (3.27) simplifies into

∂tφ+ ∇ · j = ε−1 10

γ(n(∇φ))
B(φ).
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t = 0 t = 0.0010 t = 0.010 t = 0.025

Figure 3.21: Evolution of level set {φ = 1/2} towards the kinetic Wulff shape for d = 2.

t = 0 t = 0.0052 t = 0.0087 t = 0.015

Figure 3.22: Evolution of level set {φ = 1/2} towards the kinetic Wulff shape for d = 3.
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