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Abstract

In this thesis we study the asymptotic behavior of bi-Lipschitz diffeomorphic weighted
Riemannian manifolds with techniques from the theory of homogenization. To do so
we re-interpret the problem as different induced metrics on one reference manifold.

Our analysis is twofold. On the one hand we consider second-order uniformly elliptic
operators on weighted Riemannian manifolds. They naturally emerge when studying
spectral properties of the Laplace-Beltrami operator on families of manifolds with
rapidly oscillating metrics. We appeal to the notion of H-convergence introduced
by Murat and Tartar. In our first main result we establish an H-compactness result
that applies to elliptic operators with measurable, uniformly elliptic coefficients on
weighted Riemannian manifolds. We further discuss the special case of locally periodic
coeflicients and study the asymptotic spectral behavior of submanifolds of R™ with
rapidly oscillating geometry.

On the other hand we study integral functionals featuring non-convex integrands with
non-standard growth on R™ in a stochastic framework. Our second main result is a I'-
convergence statement under certain assumptions on the statistics of their integrands.
Such functionals provide a tool to study the Dirichlet energy on non-uniformly bi-
Lipschitz diffeomorphic manifolds. We show Mosco-convergence of the Dirichlet energy
and deduce conditions for the spectral behavior of weighted Riemannian manifolds with
locally oscillating random structure, especially in the case of submanifolds of R™.
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Introduction

In this thesis we study the asymptotic behavior of Riemannian manifolds under differ-
ent conditions, especially of fast oscillating surfaces, in terms of the Dirichlet energy
and the spectrum of the Laplace-Beltrami operator.

The convergence of metric measure spaces in general, and Riemannian manifolds in
particular, has attracted an enormous amount of attention and many different notions
of convergence has been considered, focusing on different aspects of the geometry and
topology of the spaces. Especially convergence of spectral structures has been intensely
studied over the last years, and geometric conditions were established, see e.g. |[Fuk87;
KK94; KK96; KU97; KS03; LMV08; KS08; MV09; Mas11; CCK15; GMS15; Kasl7].

Our point of view is different from these geometric examinations. We consider weighted
Riemannian manifolds and associate the respective Laplace-Beltrami operators with el-
liptic differential operators on some reference manifold. This interpretation simplifies
the problem of varying manifolds to the setting of elliptic operators with varying co-
efficients on one manifold, so we can avail ourselves of the techniques of the theory
of homogenization. We choose two different approaches: H-convergence of uniformly
elliptic coefficient fields, and Mosco-convergence of energy functionals.

On the one hand, we establish a compactness result that shows that any family of
uniformly elliptic coefficient fields on a Riemannian manifold admits an H-convergent
subsequence. The notion of H-convergence has been introduced in the context of
homogenization of elliptic PDEs on R™ by Murat and Tartar in [MT97]. In our setting
it reads, roughly speaking, that the solutions u. (and the fluxes L.Vu.) of the elliptic
second-order PDEs

—div(L:Vue) = f

on a Riemannian manifold converge to the solution of a limiting PDE of the same form.
We will see that, applied to the coefficient fields associated with the Laplace-Beltrami
operators on uniformly bi-Lipschitz diffeomorphic families of weighted Riemannian
manifolds, H-convergence implies convergence of the spectra of the Laplace-Beltrami
operators to the spectrum of the Laplace-Beltrami operator on a limiting manifold (as
well as Mosco-convergence of the Dirichlet energies).

In this context one should mention that Kuwae and Shioya in [KS03| established spec-
tral convergence for families of manifolds, which are locally bi-Lipschitz diffeomorphic
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to a reference manifold with Lipschitz constants converging to 1. But for manifolds
with rapidly oscillating structures, the diffeomorphisms between the manifolds may be
indeed uniformly bi-Lipschitz, but usually not (locally) close to an isometry, so the
approach of [KS03| does not apply in this setting. In contrast, our H-compactness
result provides spectral convergence at least along subsequences.

In general, the limiting manifold depends on the extracted subsequence. However,
under specific conditions on the geometric structure of the manifolds, the limit can
be uniquely determined by appealing to suitable homogenization formulas. A natural
geometric condition in the flat case is periodicity of the coefficient fields. We show how
the notion of periodicity can be translated to coefficient fields on manifolds, and even
to families of manifolds itself featuring special structures, by using local coordinate
charts.

On the other hand, we present a I'-convergence result for integral functionals with
non-uniformly elliptic random potentials, providing an explicit formula for the limiting
potential. While homogenization of uniformly elliptic integral functionals has been
studied for long and is well understood (e.g. [Mar78; Gia83; MDMS86; Miil87; BDO0T7]),
the case of integrands satisfying non-standard growth conditions is still purpose of re-
cent research, see e.g. [MM94; Mar96; AMO01; BD07; BF07; JP14], or [KG42; AB0O;
ACG11,; Bisll; GLTV14; NSS17| for the discrete or discrete-to-continuum case. There-
fore it is mentionable that our result, even though it is not required for the studies of
Riemannian geometries via the Dirichlet energy, covers integral functionals of vector
valued functions with non-convex integrands satisfying the growth condition

Amin () (G| F|P = C) < W(z, F) < Amax(2)C(|F P +1).

With I'-convergence for non-uniformly elliptic integral functionals we gain a method
to handle oscillating geometries of manifolds that are not uniformly bi-Lipschitz diffeo-
morphic, and therefore out of reach for our H-compactness result. Typical situations,
where our method applies, are oscillating surfaces with random amplitude (which might
yield unbounded volume), or periodic surfaces with random deformation parameters
(which might yield unbounded curvature). We discuss examples of Euclidean subman-
ifolds of both types.

Both approaches in particular allow us to treat Riemannian manifolds which oscillate
rapidly on a small length scale (periodically or randomly). In several examples we
demonstrate how our results can be used to prove Mosco- and spectral convergence
and even present algorithms to find the limiting manifold. While our results are of
mathematical interest in its own right, they might be also of interest for applications,
especially to diffusion models in bio-mechanics. In this context, diffusion and reaction-
diffusion processes in biological membranes and through interfaces are studied, see
e.g. |[AG82; JII87; Sba+06; NRJO7]. One observation made is that “diffusion in bio-
logical membranes can appear anisotropic even though it is molecularly isotropic in



Outline

all observed instances” ([Sba+06]). In accordance with that our examples show that
isotropic diffusion on surfaces with rapidly oscillating geometry can yield an-isotropic
effective diffusion on large scales.

Outline

Part L We give a short overview over the most important concepts, which we are
going to consider, and their background. In Chapter 1 we collect some notions of con-
vergence for Riemannian manifolds. In particular, we introduce Hausdorff-, Gromov-
Hausdorff, Mosco-, and spectral convergence and discuss how beneficial they are with
respect to the asymptotical study of geometries. Chapter 2 gives a short insight in the
theory of both periodic and stochastic homogenization. This puts the later application
of homogenization formulas in Section 3.4 into context, as well as provides a reference
for the ergodic theorems frequently used in Chapter 5.

Part II. This part is twofold. In Chapter 3 we deal with uniformly elliptic op-
erators on a Riemannian manifold and present with the H-compactness statement
Theorem 3.2.2 our first main result. In the symmetric case (e.g. for the Laplace-
Beltrami operator) we therewith deduce Mosco-convergence of the associated energy
forms, cf. Proposition 3.2.4, as well as convergence of the spectra of the associated
second-order elliptic operators, cf. Propositions 3.2.6 and 3.2.7. In Section 3.4 we ad-
dress the problem of identifying the limiting coefficient field. In particular, we provide a
homogenization formula for manifolds that feature periodicity in local coordinates. We
discuss two exemplary structures of periodic coefficient fields in Section 3.5. All proofs
of the results in this chapter are presented in Section 3.6. In Chapter 4 we discuss
the application to families of parametrized manifolds that are uniformly bi-Lipschitz
diffeomorphic. In particular, for such families, we establish Mosco- and spectral conver-
gence (along subsequences) in Propositions 4.1.4 to 4.1.6 and discuss the special case
of families of submanifolds of R™. In section 4.2 we discuss concrete examples. The
proofs are contained in Section 4.3. Part II relies on basically [HMN19] written by Jun
Masamune, Stefan Neukamm and the author, but also contains new and unpublished
refinements and extensions of the results.

Part 111 This part is again twofold. In Chapter 5 we introduce the setting of
rapidly oscillating random integral functionals, whose integrands satisfy a non-uniform
elliptic growth condition. Our second main result of the thesis—the I'-convergence
result Theorem 5.2.2—is presented in Section 5.2, and comes together with a compact
embedding statement Proposition 5.2.1. The main properties of the limiting potential
are processed in Proposition 5.2.4. In Section 5.3 we state some technical lemmas,
which are required to show the results. The proofs are collected in Section 5.4. Chap-
ter 6 is devoted to the application of the I'-convergence result to families of Riemannian
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manifolds. Therefor we introduce the notion of manifolds with rapidly oscillating struc-
tures and discuss the differences to the uniformly bi-Lipschitz diffeomorphic case. We
deduce Mosco-convergence of the associated Dirichlet energies, cf. Proposition 6.1.3,
and under some conditions even convergence of the spectra of the Laplace-Beltrami
operators, cf. Proposition 6.1.5. We reformulate our results for the special case of sub-
manifolds of R", see Corollary 6.1.6, and give some illustrative concrete examples in
Section 6.2. The proofs can be found in Section 6.3. The results of Part III are new
and yet unpublished.

Notation

e Sequences (z.) indexed with ¢ are usually considered to converge as € \ 0, which
should be understood as convergence of every subsequence (z¢;)jen With £; \, 0
as j — 00.

e We write U’ € U if U’ is an open set, whose closure U’ is compact and U’ C U.

e We frequently use the notation fU f to denote the average ‘—[1” fU f, where |U|
denotes the Lebesgue measure of U, if not specified otherwise. In this context
we often make use of the reference cell Y :=[0,1)" C R".

e We consider weighted Riemannian manifolds (M, g, 1) with metric g and measure
w. We assume that M is n-dimensional (with n > 2), smooth, connected, without
boundary, and that p has a smooth positive density against the Riemannian
volume associated with g. For the background of the analysis on manifolds, we
refer to [Gri09; Jos11].

e For a diffeomorphism h: M — N between manifolds M and N we denote its
differential by dh: TM — TN. In the special case of a function f: R" — R™ we
denote its derivative by Df.

o [{lg(x) = /9(& &) (z) induced norm in T, M at x € M. If the meaning is clear
from the context, we simply write |€].

e For a (sufficiently regular) function v and vector field £ on U, the gradient of
u is denoted by Vg u and the divergence of £ is denoted by divy,§, ie. we
have g(Vgu, &) = &u = du(§) and [i; g(divy, &, u)dp = — [;; 9(&, Vgu) dp pro-
vided either u or { are compactly supported. In particular, we write —A, , =
—divy, V4 to denote the (weighted) Laplace-Beltrami operator. If the meaning
is clear from the context, we shall simply write V, div and A.
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e For U C M open we denote by L?(U, g, 1) the Hilbert space of square integrable
functions and denote by

A /U ful? du

the associated norm. We denote by L?(TU) the space of measurable sections &
of TU such that |¢| € L3(U, g, u).

e We denote by C2°(U) the space of smooth compactly supported functions, and
by WHP(U, g, 1) the usual Sobolev space on (U, g, 1), i.e. the space of functions
u € L?(U, g, 1) with distributional first derivatives in L?(U, g, 1), equipped with
the norm

DI /M [ + |Vl da.

For p = 2, this is a Hilbert space, which we denote by HY(U, g, u) = W12(U, g, u).

e We denote by Wol’p(U, g, 1) (or HY(U, g, 1)) the closure of C°(U) in WHP(U, g, i)
(or HY(U, g, 1), resp.). We denote by H~(U, g, i) the dual space to HZ (U, g, 1)
and use the notation (F,u) ) to denote the dual pairing of F € H~ (U, g, 1)
and u € H} (M, g, ).

We tacitly simply write U (instead of (U, g, 1)), L*(U), H*(U), | - lr2@ws || - 1 @),
(-,-), if the meaning is clear from the context.
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1. Convergence of Riemannian
Manifolds

When talking about convergence of Riemannian manifolds, various notions of conver-
gence have been introduced and developed, taking different aspects into account. In
the following we give a brief survey of a few concepts. For a more detailed introduction
see e.g. [KK94; KK96|

1.1. Hausdorff-Convergence

For two (embedded) n-dimensional submanifolds M and N of R™ we recall the Hausdorff-
distance

dg (M, N) :=maxq sup inf |x — y|, sup inf |z — y|}.

1(M,N) { sup inf |z —y| sup inf | ul}

A family (M) of n-dimensional submanifolds of R™ is called to be Hausdorff-convergent
to a manifold My, if dg (M., Mpy) — 0 as € \ 0.

Hausdorff-convergence describes the asymptotic behavior of the extrinsic appearance
of the manifolds, in the sense that from an external point of view the deviations from
the limiting manifold vanish. But it gives no information about the intrinsic geometry
of the manifolds, like for instance the length of geodesics or the volume form.

We illustrate this contrast with an elementary, one-dimensional example. For ¢ = %
with & € N we consider the 1-dimensional submanifold M, C R?,

M. = { (chx)) z € [o,L]}, (1.1)

where L € N, fe(z) := ef(%) for some smooth, 1-periodic function f, which satisfies
f(0) = f(1) = 0, but is not identically 0. Then the sequence (M.) Hausdorff-converges

to the submanifold
My := { (S) ;s € [O,L]}.
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e\0
Hausdorff

NN s

_ 1 1
e=1 €E=7 £=3

Figure 1.1.: A one-dimensional example. The three pictures on the left show M, de-
fined by (1.1) with f(y) = 5 sin(27y) and L = 2 for decreasing values of
€. As ¢ — 0 these mamfolds Hausdorff-converge to the limiting manifold
My = [0,2] x {0}, shown on the right. But the spectrum of the Laplace-
Beltrami operator on M. converges to the spectrum of the Laplace-
Beltrami operator on a submanifold Ny C R?, see (1 4). Note that Ny
is (as Mp) a straight line, but its length is 2pp = = [ \/1 + cos?(y) dy—
the length of the oscillating curves M, which is strlctly larger than 2 the
length of Mj.

The sequence (M) (for f(y) = 5= sin(2my) and L = 2) and the Hausdorff-limit M are
illustrated in Figure 1.1. On the other hand we note that the density of the volume
form on My is 1, while the density of the Riemannian volume form p. associated with
M. by periodicity weakly-* converges in L*°((0, L)):

1
= V1+[[]? = 1+\f’(;)\23/0 L+ [/ ()P dy =: po.

and pg > 1, since f # 0. Moreover, by periodicity (and the conditions on € and L),
the volume of M. (which here is just the one-dimensional Hausdorfl-measure of M,)
is independent of €; more precisely, voly (M,) = fOL pedy = fOL pody = Lpy. But the
Hausdorff-limit Mj has the volume vol; (M) = L. The latter is strictly smaller than
the volume of M, and the loss of volume is due to the emergence of rapid oscillations
in the limit € ~\, 0.

As the example demonstrates, Hausdorff-convergence of an embedding is not the right
choice to study the asymptotic behavior of the intrinsic geometry of manifolds. It is
always connected to the embedding and the geometry of the ambient space.

1.2. Gromov-Hausdorff-Convergence

A resort of the problems of Hausdorff-convergence is offered by the Gromov-Hausdorft-
distance dgy of two Riemannian manifolds, which is the minimal Hausdorfl-distance
that can be achieved by any isometric embeddings into any metric space, i.e.

iso iso

dau (M, N) := inf {dy (¢(M),(N)); X metric space, ¢: M = X, ¢: N = X }.

Here “isometric embedding” (denoted by E;) is to be understood in the global sense. To
be precise, if dj; denotes the geodesic distance on M, an embedding ¢: M — X into a

10



1.3. Spectral Convergence

metric space (X, d) is called isometric, if d(¢(x), #(y)) = dar(z,y) for every x,y € M.
Therefore, if we understand the manifolds M. in the example in Section 1.1 equipped
with the geodesic distance induced from R?, they are not isometrically embedded.

The Gromov-Hausdorff distance provides a good measurement on how far two mani-
fold are from being isometric, as it turns out to be a metric on the isometry classes
of manifolds. But for a Gromov-Hausdorff-converging sequence of manifold, there is
no guarantee that the limit is a manifold, too, and even if it is, it does not need
to be of the same dimension. For example a sequence of 2-dimensional rectangles of
the same width, but decreasing height can Gromov-Hausdorff-converge to a straight
1-dimensional line. On the other hand, Perelman’s Stability Theorem tells that un-
der certain assumptions on the curvature and the volume, almost all manifolds in a
Gromov-Hausdorff-convergent sequence are homeomorphic to the limit.

We will not further concern the Gromov-Hausdorff-distance in the following, because
there are other concepts being much more convenient to consider for homogenization,
as we will see below.

1.3. Spectral Convergence

On a Riemannian manifold (M, g) the intrinsic geometry is strongly related to the heat
equation —Awu = Jyu, where —A denotes the Laplace-Beltrami operator on M. The
most obvious link is of course Varadhan’s formula

d(z,y)* = lim —4tlogh(t,z,y),

which gives a connection between the heat kernel h on a manifold and the geodesic
distance d(x,y) between x and y.

The study of the heat kernel leads to the spectrum of the Laplace-Beltrami operator and
the associated eigenfunctions. We call (A, u) an eigenpair of the Laplace-Beltrami A
operator on (M, g, i), consisting of an eigenfunction u € H} (M) and the corresponding
eigenvalue A € R, if —Au = \u in H1(M), i.e.

/ g(Vu, Vap) dp = A/ wpdp  for all ¢ € HY(M).
M M

It is well known, that for compact manifolds without boundary the spectrum of the
Laplace-Beltrami operator consists only of a real, non-negative point spectrum. We
denote by (Ar) the sequence of increasingly ordered eigenvalues, where eigenvalues are
repeated according to their multiplicity, and let (uy) denote the sequence of associated

11



1. Convergence of Riemannian Manifolds

eigenfunctions, forming a basis of L?(M). Then the heat kernel on M takes the form

Bt y) =S e M ug(@)u(y).
k=1

The spectrum of the Laplace-Beltrami operator (and the corresponding eigenfunctions)
is therefore closely connected to the geodesic distance via the heat kernel.

For different manifolds, the eigenfunctions of the Laplace-Beltrami operator are defined
on different spaces. To make them comparable, we introduce in the following the setting
of bi-Lipschitz diffeomorphic manifolds and the notion of LP-convergence for functions
defined on the variable spaces.

Definition 1.3.1 (Bi-Lipschitz Diffeomorphic Families of Manifolds). A family of
weighted Riemannian manifolds (M, ge, p1e) is called bi-Lipschitz diffeomorphic, if
there exils a weighted Riemannian manifold (Mo, go, j10) such that for all € > 0 there
are a diffeomorphism h.: Mo — M. and a constant C. > 0 with

C%|£|gO < |dhe(2)€lg. < Cel€lgo for all x € My and & € T, M.

We call (Mo, go, o) reference manifold.

Definition 1.3.2 (Weak and Strong Convergence in LP on Varying Spaces). Let
1 < p < o0, and let (M, ge, pie) be a family of weighted Riemannian manifolds be-
ing bi-Lipschitz diffeomorphic to a reference manifolds (Mo, go, o). For functions
fe € LP(M., ge,pe) and fo € LP(Moy,go, o) we say (f-) weakly converges to fy in
L?, and use the notation

fE - fO weakly 7/71 Lp((M&‘a,uE) — (M()?/’I’O))?

o fe(ohZt)dus — L Jovdpo  for all ¥ € LY (Mo, po), (1.2)

where ¢ = 1% denotes the dual exponent to p (with ¢ = oo for p =1). We say (f:)

strongly converges to fo in LP, and shortly write

fe = fo strongly in LP((Mz, pe) — (Mo, o)),

fe(pohZ)dpe — | foyduo  for all ¢ € LY (Mo, po), and
M. Mo

/|fs|pdus—>/ [fol? dpo.
M. My

12



1.3. Spectral Convergence

Note that in the definition of strong LP-convergence above, it is sufficient to assume
the first condition to be satisfied for all ¢ € C2°(Mo, go, po)-

Remark 1.3.3. If the manifolds M. and My are n-dimensional submanifolds of R™,
an alternative way to think about convergence of functions u.: M; — R would be to
extend the functions u. to functions on R™ by u. = 0 outside of M., and consider weak
convergence of the signed measures u.dH"™ on R™, where H™ denotes the n-dimensional
Hausdorff-measure on R™. Howewver, this only yields a natural notion of convergence
for functions defined on (embedded) submanifolds and is, in contrast to Definition 1.3.2,
not considerable in the case of abstract manifolds.

We are now able to formulate the following notion of spectral convergence:

Definition 1.3.4 (Spectral Convergence of Manifolds). Let (M., ge, ue) for € > 0
be a family of compact, bi-Lipschitz diffeomorphic weighted Riemannian manifolds.
Consider the Laplace-Beltrami operators

_Ags,us: H&(Maagé‘?/’ts) — Hil(M87g‘€7,U’6)7

and let
Og)\s,l g)\s,2 g)\s,é’. S

denote the list of increasingly ordered eigenvalues with eigenvalues being repeated ac-
cording to their multiplicity. Let uc 1,uz2,us3,... denote the associated eigenfunctions,
forming an orthonormal basis of L*(M:, ge, j1c). We say that the family (M.) spectral
converges to Mo w.r.t. L?, if for all k € N,
Aek = Aok
and if s € N is the multiplicity of Ao, i-e.
A0 k=1 < A0k =" = A0 hts—1 < A0 kts (with the convention Ao = —o0),

there exists a sequence (Ue ). of linear combinations of ucj, ..., Ue fys—1 Such that

Uk — Uok strongly in L2((Me,u5) — (Mo, uo))-

Regarding the example in Section 1.1, our results (see Corollary 4.1.7 and Remark 4.1.8)
will show that the M. spectral converges (w.r.t. L?) to a weighted Riemannian mani-
fold, whose Riemannian volume form indeed has pg as the density against the Lebesgue
measure. This weighted Riemannian manifold is isometrically isomorphic to a subman-
ifold of R?, for example to

Np = { (\//%3) x e [O,L}}, (1.4)

which is a straight line with the same volume as M,, i.e., vol;(Np) = poL. Note that
Ny is just one (of many) illustrative isometric embeddings of the limit manifold in
R2.
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1. Convergence of Riemannian Manifolds

1.4. Mosco-Convergence

A much weaker approach than spectral convergence is to consider the Dirichlet energy
£: L*(M) — RU {400} on a weighted Riemannian manifold (M, g, ), given by
£(u) = Jy IVul?dp, if w e Hg(M),
+00, otherwise.
The Dirichlet energy is related to the intrinsic geometry of the manifold M in the
sense that the minimizers of £ are the solutions in H}(M) of the steady-state heat

equation
~Au=0 in HY(M).

The asymptotic behavior of minimizers of a series of Dirichlet energies is captured by
the notion of Mosco-convergence, which is a common tool to study the convergence
properties of the evolution associated to energy forms, see e.g. [KS03; KU97; Kol08;
Mas11; Lob15], and has also been generalized to the case of non-symmetric forms (see
[Hin98]). We recall that a sequence of functionals F.: X — RU{+o0} on a topological
space X is called I'-convergent to a functional F: X — RU{+o0}, if the following two
conditions are satisfied:

(i) (Lower Bound) for every sequence (z:) in X with z. — = € X we have

lim inf Fe (2c) > ;
1211\}61]:(16) F(x)

(ii) (Recovery Sequence) for every x € X there is a sequence (z.) in X with

Te — T and Fe(xe) = F(x) as € \( 0.

The sequence (F:) is called Mosco-convergent to F, if it is I'-convergent w.r.t. the
strong and the weak topology on X, i.e.

(i) (Lower Bound) for every sequence (x.) in X with . = z € X weakly in X

we have
lim inf 7. (z) > F(z),
(ii) (Recovery Sequence) for every x € X there is a sequence (z.) in X with

xe — x  strongly in X and Fe(ze) — F(x) as € N\ 0.
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1.4. Mosco-Convergence

A key feature of I'- and Mosco-convergence, that can easily be seen from the definition,
is that cluster points of minimizers are minimizers itself. Remember that x € X is a
minimizer of the functional F, if F(z) < F(y) for every y € X. An even stronger
result holds in the case of equi-coercive functionals F;, i.e. for every ¢ > 0 the set
U.solz € X; Fo(x) <t} is countably compact in X.

Lemma 1.4.1 (Convergence of Minimizers). Let (F:) be a sequence of functionals on
a topological space X I'-converging to F.

(a) Let z. € X be a minimizer of F.. If xo — xo weakly in X, then xq is a minimizer
of F, and we have
f5($5) — fo(l‘g).

(b) If (F:) is equi-coercive, then F is coercive and

evie S

If additionally F has a unique minimizer xg € X, then for every minimizer
re € X of F. we have xo — xg.

For a more comprehensive survey over I'-convergence see e.g. [DM93].

Definition 1.4.2 (Mosco-Convergence of bi-Lipschitz Diffeomorphic Manifolds). Let
(Mg, ge, pte) be a family of weighted Riemannian manifolds being bi-Lipschitz diffeo-
morphic to the reference manifold (Mo, go, o) via the diffeomorphisms he: My — M.,
and let (M, g, 1) be another weighted Riemannian manifold providing a diffeomorphism
ho: Mg — M. Denote by E: L*(M., ge,pe) — R U {+o00} and &: L*>(M,g,p) —
R U {+o0} the Dirichlet energy on M. and M, resp., given by

£ty = v (Voculy. dpie, if u € H(Me, g, ),
) +00, otherwise,

and
Eolu) = {fM Vgulgdu, if u € Hy(M, g, 1),

400, otherwise.

We say that the family of manifolds (M.) Mosco-converges to M w.r.t. L?, if the pulled
back Dirichlet energies (£.) on My, defined by E-(u) := E-(u o h.), Mosco-converge to
the pulled back Dirichlet energy Eo, given by Eo(u) = Ey(uo hg) w.r.t. weak and strong
L?(My, go, pio)-convergence.

15



1. Convergence of Riemannian Manifolds

In practice, the limiting manifold (M, g, ) in the Definition above will be the refer-
ence manifold My equipped with a different metric and measure. In this setting, the
diffeomorphism hg becomes the identity on My, but of course the integral functionals
& and & differ, due to the change of geometry.

An alternative way to define Mosco-convergence of manifolds would be to request the
Dirichlet energies to Mosco-converge with respect to the weak and strong L?((M;, p1c) —
(M, g))-convergence from Definition 1.3.2. This is in general not equivalent, if we do
not want to make any assumptions about convergence of the measures (uz) to p.

Mosco-convergence of the manifolds (M) to M implies that if u. € H(M.) is a
harmonic function on M. and u. o h — ug o hg weakly in LQ(MO,gO,,u,O), then ug €
HE (M, g, 1) is a harmonic function on M. (This implication extends also to the Poisson
equation with right-hand sides f. such that f. o h. is strongly L?-convergent, since
Mosco-convergence is stable under continuously convergent perturbations.)

16



2. Homogenization

As we have seen in the previous chapter, both spectral convergence as well as Mosco-
convergence of Riemannian manifolds rely on the study of the Laplace-Beltrami op-
erators. For n-dimensional manifolds (M., ge, pe) being bi-Lipschitz diffeomorphic to
a reference manifold (Mo, go, to) in the sense of Definition 1.3.1 the Laplace-Beltrami
operator on M, gives rise to a second-order elliptic operator — div(L:V) on M, with
an elliptic coefficient field L., i.e.

g0(§, L&) > ﬁl&!ﬁo, go(&, L) > CIP2IEl2 forevery £ € TMy,  (2.1)

see Section 4.1 for further details. It is therefore natural to consider homogenization of
elliptic operators on the reference manifold with oscillating coefficients and measure.

In the following we collect some basic concepts of the theory of periodic and stochastic
homogenization of elliptic PDEs in the flat Euclidean case, i.e. on R™. See the seminal
works [PV79] or [Neul8| for a more detailed presentation of periodic and stochastic
homogenization.

2.1. Periodic Homogenization

Consider a measurable coefficient field a: R™ — R™*™ being uniformly elliptic, i.e. there
is a constant C' > 0 such that for a.e. x € R"

a(x)- &> %|§]2 and la(x)¢| < C|¢] for every £ € R".
For every bounded open set U C R and every f € H~!(U) the equation
—div(aVu) = f  in H}(U) (2.2)

provides a unique solution u € Hg(U). If the coefficient field a is Y periodic (with the
periodicity cell Y = [0,1)"), i.e. a = a(- + z) for every z € Z", it is a standard result
(see e.g. [Al192, Theorem 2.2]) that there is a constant matrix apem € R™™ such that
the solutions u.,up € HE(U) of

—div(a(:)Vue) = — div(anom Vuo) = f in H~1(U)

17



2. Homogenization
satisfy

Ue — UQ weakly in H'(U),
a:Vue — anomVug weakly in L2(U).

Moreover, the homogenized matrix apen is characterized by the homogenization for-
mula

Ahom€j = /Ya(fzr)(Vqu(I) +e;)dz, (2.3)

where (e;) is the standard basis in R”, and the periodic corrector ¢; € HJ..(Y') denotes
the unique solution to

/Ya(x)(Vqﬁj(x) +e;) - Vip(x)dz =0 for all ¢ € Héer(Y), (2.4)

where H!, (Y) denotes the Hilbert space of Y-periodic functions ¢ € H'(Y') with zero

per
average, i.e. [, 1) =0.

This behavior is reflected by the definition of H-convergence, which goes back to the
seminal work by Murat and Tartar ([MT97]), where the notion is introduced in the
flat case M = R"™. It is a generalization of the notion of G-convergence by Spagnolo
and De Giorgi.

Definition 2.1.1 (H-Convergence). We say a sequence (ac) of uniformly elliptic coef-
ficient fields H-converges to a coefficient field anom, if for any bounded open set U C R™
and any f € H-Y(U) the unique solutions us,ug € Hi(U) to

—div(a:Vue) = —div(apemVuo) = f  in H Y(U)

satisfy

Ue — Up weakly in H*(U),
a:Vu: — anomVug weakly in L*(U).

In this manner the result above can be summarized as follows:

Lemma 2.1.2 (Periodic Homogenization). For every uniformly elliptic, Y -periodic
coefficient field a the sequence (a(2)) H-converges to the matriz anom defined by (2.3).

In [MT97] Murat and Tartar deduce an even stronger H-compactness result, stating
that every sequence of (not necessarily periodic) uniformly elliptic coefficient fields
provides an H-convergent subsequence. It has been extended to a large class of elliptic
equations on R" including e.g. linear elasticity |[FM86| and monotone operators for
vector valued fields ([FMT09]). See also [Waul8| for a variant that applies to non-local
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operators. Our main goal of part IT will be to adapt this result to the case of uniformly
elliptic operators on manifolds (Theorem 3.2.2).

The crucial point in the proof of H-compactness (as well as for the periodic result)
is to pass to the limit in [;; Vue - a(2)TV occurring in the weak formulation of the
equation, as it contains the product of two weakly converging sequences. To fix this
problem, there are basically two solutions in the literature: On the one hand the notion
of two-scale convergence or periodic unfolding, which we will not concern any further,
and on the other hand the method of oscillating test functions in combination with the
so-called Div-Curl-Lemma ([MT97]):

Lemma 2.1.3 (Div-Curl Lemma). Let U C R" be open and let (&) and (v:) be
sequences in L?(U;R™) and H'(U), resp., such that

& — & weakly in L*(U),

ve = v weakly in H'(U) and i ) .
divé, — dive  strongly in H-1(U).

Then
/(ée Vo )ip — / (€-Vo)p  forallp € C2(U).
U U

2.2. Stochastic Homogenization

The theory of stochastic homogenization deals with random coefficient fields in (2.2)
instead of periodic ones. That means, while in periodic homogenization all the informa-
tion about the coefficients lie in the periodicity cell, the behavior of random coefficients
in the limit is only predictable up to a certain probability. In order to make these un-
certainty handable, Papanicolaou and Varadhan introduced in [PV79] the following
convenient abstract framework:

Let (2, A, P) be a probability space and denote by E the expectation with respect to P.
Assume 7: R" x Q — ) to be a group action on €, i.e. 7,4, w = 7,7yw for all z,y € R",
and w € 2, such that the following properties are satisfied:

e (Stationarity) For every random variable f € L}(Q2) and every x € R” we have

E[f o 7] = E[f].

e (Ergodicity) If for A € A holds 7, A = A for every x € R", then P(A) € {0,1}.
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2. Homogenization

We call a measurable random coefficient field a: Q x R™ — R™*" stationary, if
a(w,z +y) = a(tyw, x)
for every z,y € R™ and every w € (.

Note that the case of periodic coefficients can be included in this setting by adding a
random offset. Precisely, let ax: R® — R™ " be a measurable, Y-periodic coefficient
field and set Q := {w: R" — R™ "™ w(y) = ax(z +y),z € Y}. If we equip Q with
the Borel-o-algebra, the probability measure generated by uniform distribution of the
offsets z € Y, and the group action 7w = w(x + ) for x € R", w € Q, we gain a
stationary ergodic probability space. Then the coefficient field defined by a*(x) := T,w
for x € R™, w € Q, is stationary. In particular, for every w € {2 by construction there
is € Y such that a¥ = ay(x + ).

For stationary random fields an analog result to the periodic result Lemma 2.1.2 is
true (see e.g. [Neul8).

Lemma 2.2.1 (Stochastic Homogenization). Let (2, A,P,7) be a stationary, ergodic
probability space, and let a be a stationary random coefficient field. Then there is
a deterministic matriz anom € R™™ such that for a.e. w € Q the sequence (a*(2))
H-converges to apom- In particular, anom 1S characterized by

thome; =E| [ ala)(Va;(a) + ;) da],
Y
where the stochastic corrector ¢ € Hlloc(R”) 15 the unique solution of

/ (a“V¢ +ej) - Vip=0  forallyp € C°(R")

with sublinear growth, i.e. imsupp_, o #JrRY |p~|?

that [, ¢* = 0.

= 0, and anchored in the sense

A key element in the proof is the application of the famous Birkhoff’s Ergodic Theo-
rem ([DVJ08, Theorem 12.2.11]), which we recall in the following form for continuous
processes:

Lemma 2.2.2 (Birkhoff’s Individual Ergodicity Theorem). Let (0, A, P, 7) be station-
ary and ergodic. There is a subset ' C Q of full measure such that for every random
variable f € LY(Q) and every open bounded set A C R™ we have

lim][ f(rzw) dz = E[f] Jor every w € Q.
eNO0 J 4 €
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2.2. Stochastic Homogenization

In some sense more general is the Subadditive Ergodic Theorem introduced by Akcoglu
and Krengel ([AKS81]), which makes use of the notion of stationary subadditive set
functionals. A stationary subadditive set functional is a measurable function F: £ x
PB(R™) — R such that the following properties are satisfied:

e For every x € R”, A CR" and every w € Q we have F*(z + A) = F*“(A).
o sup { E[F(A); A CR", |A] >0} < co.
e For every disjoint sets A, B C R™ and every w € {2 we have

FY(AUB) < FY(A) + F¥(B).

The Subadditive Ergodic Theorem then can be formulated as follows (cf. [AK81, The-
orem 2.4, Lemma 3.4 and the remark after the proof of Theorem 2.4]):

Lemma 2.2.3 (Subadditive Ergodic Theorem). Let (2, A, P, 7) be stationary and er-
godic, and let F be a stationary subadditive set functional. Then there is a subset
Q' C Q of full measure such that for every cube Q C R™ whose vertices are in Q" we

have . .
o FCQ) L EFCY)
im —5= = lim —55—,
e\0 ’EQ e\0 ’gY‘
where Y :=[0,1)%.

Remark 2.2.4. If the stationary subadditive set functional in Lemma 2.2.8 has almost
surely bounded growth, in the sense that for P-a.e w € Q) there is a constant C > 0 with

F(A) < Cl4]

for every compact A C R"™, then the statement of Lemma 2.2.8 holds for all cubes in
R™ (see for instance the arguments in the proof of Corollary 3.3 in [MM94]).
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Part II.

Uniformly bi-Lipschitz
Diffeomorphic Manifolds
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3. Uniformly Elliptic Operators on a
Riemannian Manifold

The intention of this thesis is to study the asymptotic behavior of sequences of bi-
Lipschitz diffeomorphic manifolds in terms of the Laplace-Beltrami operator, cf. Chap-
ter 1. In particular, we pull the Laplace-Beltrami operator —A,_,. on (M, ge, pte)
back to the reference manifold My by appealing to the diffeomorphisin h. from Defini-
tion 1.3.1. In this way we obtain a family of elliptic operators of the form — div(L.V)
on My with coefficients L., see Section 4.1 for further details.

Our first approach is to adapt the method of oscillating test functions on R™ by Murat
and Tartar ([MT97]) to Riemannian manifolds, in order to receive a H-compactness
result (Theorem 3.2.2) in the case that the coefficient fields L. are uniformly elliptic
(that is, the constant in (2.1) does not depend on ¢). This setting corresponds to
uniformal constants in Definition 1.3.1.

This chapter relies basically on [HMN19] by Jun Masamune, Stefan Neukamm and the
author, but contains also a way to extend the results to manifolds that couldn’t be
considered in [HMN19] due to the considered boundary conditions, for example the
torus, cf. Proposition 3.2.7 and Lemma, 3.6.4.

3.1. Setting

On a weighted Riemannian manifold (M, g, u) we study families of differential operators
of the form

—div(LV): H (M) — H (M),

where IL denotes a uniformly elliptic coefficient field on M. We make the setting precise
with the following definition.

Definition 3.1.1 (Uniformly Elliptic Coefficient Fields). Let (M, g, u) be a weighted
Riemannian manifold. For 0 < A < A we denote by M(M, X, ) the set of all measur-
able coefficient fields L.: M — Lin(T'M) that are uniformly elliptic and bounded in the
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3. Uniformly Elliptic Operators on a Riemannian Manifold

sense that for p-a.e. x € M and every £ € T, M

9(&, L(z)&) > N2, (3.1)
9(& L)1) > 1€z (3.2)

Remark 3.1.2. The boundedness of a coefficient field . € M(M, X, ) is a consequence
of condition (3.2), since this condition is equivalent to

g(n,L(x)&) < Ainl|¢] for p-a.e. © € M and every n,§ € T,M (3.3)

for some constant A’ > 0. The reason for the formulation (3.2) is that the constant
A is stable under H-convergence (in the sense that M(M,\,A) is closed under H-
convergence, as we will see), while the constant A’ is not.

In order to assure well-posedness of the considered differential equations, throughout
this part we will denote for any open set U C M

Jo 9(Vu, Vu) dp
JululPdp

This definition of my(U) is chosen such that m > mg(U) if and only if

mo(U) := —inf{ ue Hy(U), llull 20y > o} < 0. (3.4)

inf {/ (m|ul® + g(Vu, Vu)) dp; u € Hy(U), [ull g3 o) = 1} > 0,
U
which immediately implies that for m > Amg(U) the bounded, bilinear form
a: H3(U) x H}(U) — R, a(u,v) = m/ uvd,u—l—/ g(LVu, Vv)du
U U

is coercive. Therefore, the Lax-Milgram Lemma assures that for every L € M(U, \, A),
m > Amg(U) and f € H*(U) the equation

mu. — div(LVu) = f  in H(U), (3.5)
admits a unique weak solution u € H}(U) satisfying

ull oy < Cllflla-1 @) (3.6)

for some constant C' > 0 only depending on U, A and m.

Remark 3.1.3 (Comments on the Constant mo(U)).
o The definition of mo(U) gives a glimpse of the strong connection between (3.5)

and the spectrum of the Laplace-Beltrami operator on U. In particular, since

fU g(Vu,Vu)dp
fU [ul? dp

mfimum of the spectrum of the Laplace-Beltrami operator on U. If the spectrum

is a pure point spectrum, —mgo(U) is actually the lowest eigenvalue.

is the Rayleigh Quotient, mo(U) appears to be the negative of the
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3.2. Main Results

o If U € M is relatively-compact and connected, Poincaré’s inequality holds for
functions with zero mean, i.e. for allu € H'(U)

2
/‘u—fUud,u‘ d,uﬁC’/ (V> du
U U

for some constant C' > 0 only depending on U. In this case we have mo(U) <0,
and in (3.5) any m > 0 is admissible. Moreover, if Poincaré’s inequality holds
for all functions with vanishing boundary conditions, i.e. for all uw € H(U)

/ uf2 dp < c/ IVl du (3.7)
U U

for some constant C > 0 only depending on U, then we even have mo(U) < 0
and in (3.5) m =0 is a valid choice.

3.2. Main Results

In the following we state our main results about H-convergence on a manifold. For the
sake of readability, we postpone all proofs of this chapter to Section 3.6.

Before formulating our results, we need to translate the definition of H-convergence to
the situation of Riemannian manifolds.

Definition 3.2.1 (H-Convergence on a Manifold). Let (M, g, 1) be a weighted Rieman-
nian manifold and let 0 < A < A. We say a sequence (L.) in M(M, A, A) H-converges
in (M, g,n) toLg € M(M, X\, A), if for any relatively-compact open subset U € M with
mo(U) <0, and any f € H-Y(U), the unique solutions u.,uo € H}(U) to

—div(L.Vue) = —div(LoVug) = f  in H 1 (U)

satisfy
Ue — U weakly in H(U),
L.Vue — LoVug weakly in L*(TU).

In that case we write L. 2 Lo in (M, g, 1).
Our main result extends the classical H-compactness result for uniformly elliptic coefli-
cient fields on R™ in [MT97] to the setting on Riemannian manifolds in the sense of the

definition above. In fact, we show a slightly more general version, which immediately
implies H-compactness on the manifold.
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3. Uniformly Elliptic Operators on a Riemannian Manifold

Theorem 3.2.2. Let (M, g, u) be a weighted Riemannian manifold and let 0 < A < A.
Then for every sequence (Lg) in M(M, X, A) there ezist a subsequence (not relabeled)
and Lo € M(M, X, A) such that the following holds: For every open subset U C M,
m > Amg(U), and sequences (f.) in L*>(U) and (F.) in L*(TU) with

fe = fo  weakly in L*(U),
F. — Fy strongly in L*(TU),

the solutions uc,up € H}(U) to

mue — div(LeVue) = fe + div . in H_l(U)7
mug — div(LoVug) = fo +divFy in H1(U),

satisfy
Ue — UQ weakly in HE(U),
L.Vu: — LoVug weakly in L*(TU).

Additionally we have u. — ug strongly in L>(U), if either H}(U) is compactly embedded
in L2(U), or m # 0 and f- — fo strongly in L*(U).

If in Theorem 3.2.2 we choose U € M relatively-compact and open with mo(U) < 0,
we can take m = 0 and get H-convergence of L. to Ly in the sense of Definition 3.2.1
as a direct consequence (without any further proof):

Corollary 3.2.3. Let (M, g, 1) be a weighted Riemannian manifold and let 0 < X\ < A.
Then every sequence in M(M,\,A) admits an in M H-convergent subsequence with
limit in M(M,\, A).

The statements of Theorem 3.2.2 and Corollary 3.2.3—mnot the proofs—are actually
equivalent in the following sense: On the one hand, we have just seen that H-convergence
is a consequence of Theorem 3.2.2. On the other hand, every H-convergent sequence
in M(M,\,A) admits by Theorem 3.2.2 a subsequence satisfying the assertions of
Theorem 3.2.2 with Ly being the H-limit (by uniqueness of the H-limit, see Proposi-
tion 3.3.3 below), thus the assertions are independent of the choice of the subsequence
and hold for the entire sequence, cf. also Lemma 3.3.4 below.

Keeping in mind the application to the asymptotics of bi-Lipschitz diffeomorphic man-
ifolds in Chapter 4, we additionally present some relations between H-convergence of
coefficient fields and Mosco-convergence of the associated Dirichlet integrals, or con-
vergence of the spectra of the associated operators, resp. We therefor restrict to the
case of symmetric coefficient fields L., i.e.

g(Le&,m) = g(§,Len)  for all {,n € TM.
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3.2. Main Results

Proposition 3.2.4 (H-Convergence Implies Mosco-Convergence). Let (M, g, ) be a
weighted Riemannian manifold and let 0 < X\ < A. For every sequence (IL.) of symmet-
ric coefficient fields in M(M, X\, A) the following holds: Suppose L. A Lo in M, then
the functional E.: L*>(M) — R U {+o0},

£.(u) = {IMQGLM Vu)d, i u e HY()

400, otherwise

Mosco-converges (w.r.t. L?) to & : L*(M) — R U {40},

Eolu) = Jor 9oV, Vu) dp, if u € Hy(M),
0 400, otherwise.

Remark 3.2.5. Mosco-convergence is the natural notion of convergence when handling
equations like (3.8) with variational methods. For in the case of symmetric coefficients
the unique solution of (3.8) is characterized as the unique minimizer to the strictly
convez and coercive functional F.: L*(U) — R U {+oc}, € > 0, given by

i (u) _ {5(56('“) + me ’u‘Qdﬂ) - fU (f€u+g(FE7vu)) dp, ifue HQI(U)y

400, otherwise,

with & as in Proposition 3.2.4. However, Mosco-convergence of the Dirichlet inte-
grals is a bit weaker than H-convergence of the corresponding coefficient fields, since
Mosco-convergence, in combination with Lemma 1.4.1, ensures strong convergence of
the solutions ue in L?(M) (or equivalently weak convergence in H*(M), see e.g. [DMI3,
Theorem 13.12, cf. Ezample 13.13]), but gives no information about the fluzes L.Vu,.
(Though one could use the Div-Curl Lemma, see Lemma 3.3.2 below, to show con-
vergence of the L?-projection of L:Vu. onto the orthogonal complement of {V; ¢ €
HE(M)} C LA(TU), this would still be weaker than H -convergence.)

Finally, to formulate the consequences for the spectra of operators with H-convergent
(symmetric) coefficients, we recall that (A, u) is called an eigenpair of the operator

—div(LV): H}(U) = H Y(U),

with eigenvalue A € R and eigenfunction u € H}(U), if

/ g(LVu, Vip) dp = /\/ wpdp  for all ¥ € HE(U).
U U

Proposition 3.2.6 (H-Convergence Implies Spectral Convergence). Let (M, g, p) be
a weighted Riemannian manifold and (L;) be a sequence of symmetric coefficient fields
in M(M,\,\) for some 0 < A\ < A, H-converging to some coefficient field Ly in M.
Then for every relatively-compact open subset U € M with mo(U) < 0 the following
holds:
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3. Uniformly Elliptic Operators on a Riemannian Manifold

(a) For e > 0 the spectrum of the operator
—div(L.V): Hy(U) — HY(U)
only consists of real, strictly positive eigenvalues, denoted in increasing order by
0<Ae1 <A< A3 <1,

where eigenvalues are repeated according to their multiplicity, and there is a se-
quence of associaled eigenfunclions Ue1,Us2,Uc3,... forming an orthonormal
basis of L*(U).

(b) For all k € N,
/\571c — >\O,k as € \ 0,

and if s € N denotes the multiplicity of Ao, i.e.

A0k—1 < Aok =" = A0 hts—1 < A0kts (with the convention oo =0),
then there exists a sequence .y of linear combinations of uc i, ..., Ue p45—1 SuUch
that

e, — UQ k strongly in L*(U) as € \, 0.

The above spectral convergence statement strongly relies on the assumption mg(M) <
0, as this is a necessary condition for zero to be included in the resolvent set of the
considered operator. However, in many cases this condition is not satisfied for the
entire manifold. To demonstrate how our results might be extended to some of such
situations, we consider the n-dimensional torus T := R"™/Z"™. Since the spectrum of
the operator

—div(LV): HJ(T) — H'(T),
contains zero as an eigenvalue, it is more natural to consider the spectrum of the
operator

—div(LV): Hyo(T) — H™(T)
with

ngr(']l‘) = {u € HI(T);/Tud,u = 0}.

Then an eigenpair (A,u) of this operator consists of an eigenvalue A € R and an
eigenfunction u € H;er(T) such that

/(LVu) Vi du = A/ wpdp  for all p € HY(T).
T T

Proposition 3.2.7 (H-Convergence Implies Spectral Convergence on the Torus). Let
(T, g, 1) be the n-dimensional torus equipped with a Riemannian metric and a weighted
measure, and let (L.) be a sequence of symmetric coefficient fields in M(T, A\, A) for
some 0 < A < A, H-converging to some coefficient field Loy in T. Then the following
holds:
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(a) For e >0 the spectrum of the operator
—div(LeV): Hyo(T) = HH(T)
only consists of real, strictly positive eigenvalues, denoted in increasing order by
0<A1 <A< A3 <-oe

where eigenvalues are repeated according to their multiplicity, and there is a se-
quence of associated eigenfunclions Ue1,Ue2,Uc3,... forming an orthonormal
basis of L*(T).

(b) For allk € N,
Aek = Aok as € \ 0,

and if s € N denotes the multiplicity of Ao i, i.e.

A0k—1 < Aok =" = A0 kts—1 < A0kts (with the convention Aoo = 0),
then there exists a sequence U i, of linear combinations of U i, . . ., Ug f4-5—1 Such
that

Ue k — Uok strongly in L*(T) as € \, 0.

3.3. Strategy of the Proof and Auxiliary Results

The proof of Theorem 3.2.2 adopts the method of oscillating test-functions by Murat
and Tartar, cf. [MT97]. The main difference to the flat case M = R" is that the tangent
space T, M changes when x varies in M. This issue can be handled by a localization
argument, because in a small neighborhood the tangent space can be spanned by the
gradients of finitely many smooth functions. More precisely, if B € M is an open ball
with radius smaller than the injectivity radius of M at its center point, then there exist
v1,..., 0, € C(B) such that for all z € 3B

T,(3B) = span{Vui(z),..., Vo, (2)}, (3.9)

where %B denotes the open ball with the same center, but half the radius of B. This
allows us to show H-compactness restricted to small balls:

Lemma 3.3.1 (H-Compactness on Small Balls). Let (M, g, 1) be a weighted Rieman-
nian manifold, B € M be an open ball with radius smaller than the injectivity radius
of M at its center, and let 0 < X < A. For every sequence (L;) in M(M,\, A)
there exists a (not relabeled) subsequence of (L) that H-converges in 3B to some

Lo € M(3B, )\ A).
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3. Uniformly Elliptic Operators on a Riemannian Manifold

Lemma 3.3.1 is the key moment of the proof of Theorem 3.2.2. It is shown in three
steps: We first construct the tensor field Ly on the small ball %B, secondly identify it
as an H-limit of the sequence (L:) on %B, and at last deduce its uniform ellipticity.
For the definition of Ly we introduce the operators

Li:Hy(B)—» H Y(B), Liu:=—div(LV), (3.10)

£

where L} denotes the adjoint of the coefficient field L. defined by

g(LZ&,n) = g(&, Len)

for all tangent vectors £, n. From the uniform ellipticity of the coefficient fields we can
deduce by a classic functional analytic result (see Lemma 3.6.1 below) the existence of
a linear operator £}, such that its inverse is the limit of (£)~! in the weak operator
topology. Following Murat and Tartar it can be shown that the operator L is of
the form —div(L§V) for some tensor field Lo, utilizing the oscillating test-functions
(LX)~ 1LEvy associated with vy, from (3.9). These test-functions will allow to pass to
the limit in products of two weakly convergent sequences occurring in the last two
steps of the proof of Lemma 3.3.1 by appealing to the following variant of the Div-Curl
Lemma for manifolds (cf. Lemma 2.1.3):

Lemma 3.3.2 (Div-Curl Lemma). Let (M, g, ) be a weighted Riemannian manifold,
and consider sequences (v:) in HY (M), (&) in L2(TM), such that

& — & weakly in L*(TM),

ve — vy weakly in H' (M) and _ _ _
divé, — divgy in H-H(M).

Then for all ¢ € C°(M) we have
[ gtevoidn s [ g0, Venywan
M M
Moreover, if ve,vg € HY (M), then

/ 9(567VU€) du _>/ g(£o,Vvo) dpu.
M M

Now in the last two steps, we show that Lo, which is the adjoint of LL{, is an H-limit
of the sequence (L.), and that Ly € M (3B, A, A). This will be done by introducing on
a relatively-compact open subset U & %B the localized operators

Lo: HH(U) = HYU),  L.:=—div(L.V), (3.11)

and showing that L1 — £ 1in the weak operator topology on U, which will finish
the proof of Lemma 3.3.1.
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In order to lift the H-compactness result Lemma 3.3.1 to the entire manifold we cover
M by countably many small balls, obtain H-convergence simultaneously on each of
these balls by a diagonal argument, and appeal to the following lemma to assure that
the H-limits are unique and coincide in the intersections of the balls:

Proposition 3.3.3 (Uniqueness, Locality, Invariance w.r.t. Transposition). Let (M, g, 1)
be a weighted Riemannian manifold, and let 0 < A < A.

(a) Consider two sequences (Lz) and (L.) in M(M, X, A) such that L. = L. for all
e > 0 in some relatively-compact open subset U € M. Then from L. A Lo and
]I:6 H f[:o wn U follows g = ]Eo p-a.e. in U.

(b) For every sequence (L:) in M(M, g, 1) holds

L. 2L, o 181y inM

The proof of Theorem 3.2.2 will be concluded by the following lemma, allowing us to
treat the varying right-hand sides in Theorem 3.2.2, which also automatically occur
by stepping from the H-convergence on single balls to H-convergence on the whole
manifold.

Lemma 3.3.4. Let (M, g, 1) be a weighted Riemannian manifold, U € M be a relatively-
compact open subset with mo(U) < 0. Let further (L) be a sequence in M(M,\, A)
for some 0 < A < A, H-converging in M to some LLg. Then for every f-, fo € L*(U)
and Ge, F.,Go, Fy € L*(TU) with

f- = fo  weakly in L>(U),
G. — Go strongly in L*(TU),
F. — Fy  strongly in L*(TU),

the unique solutions u.,ug € HE(U) to

— div(LeVu,) = fo — div(L.G.) — div F. in H-1(U),
— div(LoVug) = fo — div(LLoGo) — div F- in H-Y(U)
satisfy
Us — U weakly in HE(U),
L.Vu. — LoVug weakly in L?(TU).
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3.4. ldentification of the Limit via Local Coordinate Charts

Theorem 3.2.2 states H-compactness for general uniformly elliptic coefficient fields,
i.e. every family (L.) of uniformly elliptic coefficient fields contains a H-converging
subsequence. As a pure existence statement it contains no information about the
H-limit, separate from being uniformly elliptic. Even worse, the limiting coefficient
field generally depends on the choice of the subsequence. Hence, if we are looking for
H-convergence of the entire sequence (L) and maybe even an explicit representation
of the limiting coefficient field, we need stronger assumptions on (LL.) than uniform
ellipticity.

The theory of homogenization provides several classic results in the flat case M = R"
assuming the coefficients L. to have a special oscillating structure, cf. Chapter 2. For
example if the coefficient fields are of the form L.(x) = L(%) with a periodic coefficient
field L, i.e. L(- + k) = L(-) a.e. in R” for all k € Z", periodic homogenization provides
a homogenization formula for the limiting coefficient field (see Lemma 2.1.2), which
therefore is independent of the choice of the subsequence and implies H-convergence
of the entire sequence. (Besides periodic coefficient fields one could also consider the
framework of stochastic homogenization. But since this will be intensively discussed
in Part ITI, we will only focus on the periodic case.)

These homogenization results cannot be directly transferred to manifolds, as it is not
clear how to define periodicity of coefficient fields on a general manifold. In order to
still benefit from the classic results on R™, we will express the coefficient fields in local
coordinates. We therefor fix a local coordinate chart (U, ¥; 2!, 22,...,2") of M and
a relatively-compact open set A € U(U) C R™, and set U’ := ¥~1(4) C U. We will
suppress the chart ¥ when the meaning is clear from the context. In particular, for the
representation of a function v on U in local coordinates we shall simply write u instead
of wo W~ Then to a coefficient field L € M(U’, A\, A) we can associate a coefficient
field a: A — R™"™ with the components

a;j = pg(]LVgaci, Vg:cj) fori,j=1,...,n, with p=o0+/detyg, (3.12)

where o denotes the density of u against the Riemannian volume measure. In this
framework we find that the notions of uniform ellipticity and H-convergence simply
translate from the manifold setting to the flat setting and vice versa, see Lemma 3.4.1
and Proposition 3.4.2 below.

Lemma 3.4.1. Let (M, g, 1) be a weighted Riemannian manifold, and let 0 < XA < A.
For L € M(U',\,A) consider a: A — R™ " as defined in (3.12). Then there are
0 <X <A (only depending on W, A, X and A) such that we have

af-E>NEP and a6 €> LEP ae in A,

for all £ € R™, where “” denotes the standard scalar product in R™.
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3.4. Identification of the Limit via Local Coordinate Charts

Proposition 3.4.2. Let (M, g, ) be a weighted Riemannian manifold, and let 0 < A <
A. For L¢, Ly € M(U', X\, A) consider az,ao as defined in (3.12). Then the following
assertions are equivalent:

(i) (L;) H-converges to Ly in (U', g, ).

(i1) (ac) H-converges to ag in A equipped with the standard Euclidean metric and
measure.

For a. we can naturally consider periodic homogenization. We therefor denote by
Y := [0,1)" the periodicity cell and by H]..(Y) the space of Y-periodic functions
¢ € H'(Y) with zero mean, i.e. [y @ = 0. Moreover, we denote by Mpe(A, A) the
class of Y-periodic coefficient fields a: R™ x R™ — R™*"™ with ellipticity constants
0<A<A, ie.

a(-,y) is continuous for a.e. y € R", (3.13)
a(zx,-) is measurable and Y-periodic for each z € R", (3.14)
a(z,y)E- € > Né? and a(z,y) - € > %]§|2 for each z € R", a.e. y € R"

and all £ € R". (315)
From a version of Lemma 2.1.2 (see e.g. [All92, Theorem 2.2|) we know that for
a € Mper(M A) the sequence (ac), given by ac(x) := a(z, %), H-converges to the
homogenized coefficient field ayoy which is characterized by an analog to (2.3). In the
examples below (Section 3.5) we will see, that for instance in the natural situation of
concentric coefficient fields the following variant of this result will be required, which
includes an additional shift in the definition of a.. We refer to [HMN19] for a proof.

Lemma 3.4.3. Let 0 < A < A, r € R". For a € Mper(X, A), the sequence (a.) with

ac(z) := a(x, £) H-converges on R™ to apom defined by

ahom(2)cj = /Y a(z, ) (Vy by (2. y) + ¢5) dy, (3.16)

where (e;) is the standard basis in R", and ¢;(z,-) € H}

per(Y) denotes the unique weak

solution to

/Ya(x,y)(vy%(%y) +e;) Vyly)dy =0 for all € Hy (V). (3.17)

Now we finally can make the following observation, which is a direct consequence of
Proposition 3.4.2 and Lemma 3.4.3, and requires no further proof.
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Proposition 3.4.4 (Homogenization Formula). Let (M, g, u) be a weighted Rieman-
nian manifold, 0 < X\ < A, and let U, U, U’ and A be as in the beginning of this section.
Let further Lo, Lo € M(M, X\, A) with L. k2 Lo on M, and suppose local periodicity in
the sense that there exists a Y -periodic coefficient field L: R™ — R™ ™ such that for
some r € R

g(Le(2)Vya', Vyal) = Lij(“E2) for a.e. x € U.

£

Then Lo on U’ in local coordinates takes the form
(@hom)ij = pg(LOVg;pi, Vng) a.e. in A,

where apom: A — R™" is defined by (3.16) with a(z,y) := p(z)L(y).

3.5. Examples

As described in the previous section, we want to discuss two structural examples on
how (local) periodicity of coefficient fields on manifolds can look like. In particular,
we consider laminate-like coefficient fields and identify the H-limit by appealing to
homogenization in the flat case via local charts. Note that the coefficient fields in the
following examples are intrinsic objects and that the respective H-limit, even though
it is studied and expressed in local coordinates, is not bound to charts.

3.5.1. Concentric Laminate-Like Coefficient Fields on Voronoi
Tessellated Manifolds

In our first example we assume a Voronoi tessellation on a manifold and consider
coefficient fields being rotationally symmetric on each cell w.r.t. the respective center,
and depending periodically on the geodesic distance from the center; see Figure 3.1
for some exemplary illustrations of such structures. To make this precise, let (M, g, u)
be an n-dimensional manifold, and let Z C M be a countable closed subset. For each
z € Z we denote the associated Voronoi cell by M., i.e.

M, :={x € M;d(z,z) < d(zx,Z\ {z})},

where d(-,) denotes the geodesic distance on M. Moreover, we assume the Voronoi
tessellation to be fine enough such that for p-a.e. g € M there exist z € Z and o > 0
such that

for all x € By(zg) € M, there is exactly one shortest path -, from z to z, (3.18)

where By(zo) denotes the open geodesic ball with center zp and radius o.
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=

Figure 3.1.: Mllustration of coefficient fields with laminate-like structure on Voronoi
tesselated manifolds.

Let 0 < A < A, and consider a sequence (L) in M(M, A, A) of locally rapidly oscillating
coefficient fields, in the sense that L.(z) = L(@) for some 1-periodic field L.

By Theorem 3.2.2 (LL.) H-converges (up to a subsequence) to some Ly € M(M,\, A).
In the following we claim that Ly coincides p-a.e. on M with some constant coefficient
field, uniquely determined by L, so that the entire sequence (IL.) H-converges to Ly. We
will show this by appealing to periodic the homogenization formula in local coordinates.
To that end, we construct curvilinear coordinates such that in these coordinates the
coefficients are locally close to a laminate. Precisely, we fix z € Z, 9 € M, and
construct a coordinate chart (B,(wo), ¥;z?, ..., 2™) such that

\IJ(IL‘()) = 0,
2t =d(-, 2) — d(z0, 2),
9(Vyz', Vi) =0 forj=2,...,n,
i i J S
Am p(2)g(Vgz', Vea?)(2) = bij,
where § denotes the Kronecker symbol. By construction, such chart maps geodesics
through z to straight lines parallel to the 2'-axis. In order to construct the chart, we

find for the fixed z € Z, x¢p € M, a radius ¢ > 0 such that (3.18) is satisfied. By (3.20)
the first coordinate function 2! is already determined, namely

2t (z) == d(zx, 2) — d(z0, 2)
for z € By(z0). Now (3.18) assures that z! is differentiable and the level set
Ay, = {z € B,(20);2' (z) = 0}

is an n — 1-dimensional submanifold of M, including x¢. Moreover, for any point = €
A, the tangent space T, Ay, is orthogonal to the direction of the geodesic dv,(0), which
yields (3.21). We can assume ¢ > 0 to be small enough, such that there are local normal
coordinates x2, ..., 2" of the submanifold A,, with 27(z¢) =0 (j = 2,...,n). Then,
by the differentiability of geodesics, these coordinates can be extended to curvilinear
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3. Uniformly Elliptic Operators on a Riemannian Manifold

coordinates z!,...,z" on By(x0) (with a probably even smaller p) such that 2. x"

are constant on every geodesic v, for z € B,(xp), and we find

lim g(Vga', Vya!)(z) = bij,

T—T0

which implies lim,_,,, p(z) = 1 and therewith yields (3.22).

Figure 3.2.: Construction of the local coordinates

Now, using these coordinates the coefficient field on A := W(B,(x¢)) associated with
Le (via (3.12)) takes the form

d(z0,2)+
az(y) = aly, A0 (3.23)
for some a: A x R — R™" which is continuous in the first, and measurable and
1-periodic in the second argument. For, by the concentric structure of L. and the
definition of ! we have

9(Le(2) Vo', Vo) = g(L(AZD) V2, ¥ j2d) = g(L(A0LLe0)yg 4i v o),

3 3

and since x!(x) = y;, we find the desired form (3.23) of a. with

aij(y,r) = p(y) g(L(r)Vya', Vo2’ )(y), (3.24)

where we conveniently write p and g in representation of the pushed forward quantities
poW¥~!and go W' respectively.

The homogenized matrix apon associated with (ag) is given by the homogenization
formula (3.16) with a as in (3.24). Therefore it can be seen that apem, depends con-
tinuously on y € A, and the matrix apom(0) is independent of the initial choice of zg.
Moreover, anom(0) is explicitly given by weak-x limits in L>°(A), (cf. [MT97)):

1 1

o —

a11(0,2)  (@nom)11(0)’
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o W1l0:2) | (anom)an(0) ooy
CL11<0, E) (ahom)ll(o) B
. alj(O, g) N (ahom)lj(o) forj > 27

a11(0, g) (ahom)ll(o)

ai1(0, £)a1;(0, 2)
a11(0, )

(ahom)il (O) (ahom)lj (0)
(anom)11(0)

e a;(0,2)—- — (ahom)ij(0)— fori,j > 2.

By Proposition 3.4.4 we have
(@hom)ij = pg(LOVg:Bi, ngﬁj) a.e. in A,
and we can conclude that Lg is continuous (p-a.e.) on By(zp), and thus (3.22) implies

g(]Lo(xo)Vgazi,Vng)(aco) = (@hom)i;j(0) for p-a.e. xg € M.

In the special case of L being diagonal, i.e.
L(r)V,2' = a;(r)V o

for i =1,...,n, the resulting limit Lg(x) is diagonal, too, and simplifies to

oLo(a ¥y Vo)) = ([ )7 o
3.25

1
g(Lo(w0)Vy2', Vya') (zo) = / o fori=2,...,n.
0

3.5.2. Laminate-Like Coefficient Fields on Spherically Symmetric
Manifolds

Another way to define periodic coefficient fields on a manifolds is to assume the
manifold to be rotationally symmetric and may therefore be parametrized by the 1-
dimensional sphere S!, and consider coefficient fields being periodic in this parameter,
see Figure 3.3. In particular, we fix 0 < R < oo and a function s € C*°([0, R)) with
s(0) =0, '(0) =1, and s(r) > 0 for » > 0, and consider the 2-dimensional spherically
symmetric manifold

M :={(r,0) € [0,R) x S'}

equipped with the Riemannian metric

g = dr® + s*(r)db?
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Figure 3.3.: Tllustration of the laminate-like structure of the coefficient field on R?, S?
and H2.

in the polar coordinates (r, 0), as described e.g. in [Gri09]. This model covers examples
like the plane R? (with R = oo and s(r) = r), the 2-dimensional sphere S? without
pole (with R = 7 and s(r) = sin7), or the hyperbolic plane H? (with R = oo and
s(r) = sinhr). For the sake of simplicity we normalize S! to have circumference 1.

The coefficient fields L. € M(M, A\, A) we want to consider shall be of the form
Le(r,0) =Ly (r,0, g) a.e. in M

for some coefficient field L4 being continuous in the first two arguments, and measur-
able and 1-periodic in the third. This means, if {¢(¢); ¢ € R} denotes the one-parameter
group

P(t): & — exp,(tV40)

for x € M\ ({0} x S'), then the coefficient field L. is rapidly oscillating along ¢, while
it still might macroscopically (continuously) depends on the radius r. Therefore L,
can be called a laminate-like coefficient field on M.

By Theorem 3.2.2 the coefficient fields (IL.) H-converge in M to some coefficient field
Lo along a subsequence. As in the previous example, ILg is uniquely determined by a
homogenization formula, which implies H-convergence to Lo for the entire sequence.
To see this it is sufficient to identify Ly locally. We therefor fix a bounded open
set U € M, and, due to the symmetry of M, it is no restriction to assume that its
closure U does not intersect the curve {(r,0);0 = 0}. If we denote by ¥ the chart
of polar coordinates and set A := ¥U(U) C R2, (3.12) provides a coefficient field a.
on A associated to L., which has the form a.(r,0) = ax(r,0, g), for some function
ac: [0,R) x S! x R — R?*2 given by

ay(r,0,y) = <S(OT) s_?(r)> Ly(r,0,y),

where we conveniently write Ly (r,60,y) for the corresponding coefficient matrix in
polar coordinates, i.e. (Ly)i; := g(LgV, 2%, Vya?) where (z!,2%) = (r,6). Form the

H-convergence of (IL;) to Lo in U we follow with Proposition 3.4.2 that a. H-converges

40



3.6. Proofs

in A to ag, which is the coefficient field associated with Ly via (3.12). But due to the
special form of a., and since ay is continuous in the first two arguments and 1-periodic
in the third, we can apply the periodic homogenization formula (3.16) and conclude
that ag only depends on L4 and the metric g, but not on the choice of the subsequence,
and hence the same holds for L.

As in the previous example we finally consider the special case of diagonal coefficient

fields, i.e.
_ (oxly) O
L#(T’,@,y) = ( #0 ﬂ#(l/))

for some ag,By: R — (X A) being measurable and 1-periodic, which as above is
meant to be understood as the representation of L4 in polar coordinates. In this case

we obtain
_ (str)ax (%) 0
au(r,0,y) = < ()# sH(r)By (g)> 7

and application of (3.16) yields
1
s(r) fo o 0 .
_ 1 -
0 s7(r) <f0 é)

Thus L is diagonal, too, and explicitly given by

fol Q4 0
Loy = -1]. 3.26
0 O (fol ﬁ) 1 ( )

Note that the arithmetic and harmonic mean of ay and B4 express the diffusivity
orthogonal and aligned to the flow ¢, respectively.

agp(r,0) =

One should mention that, besides the torus T = R?/Z? = S! x S! does not fit in this
model, the same calculations can be done—in both of the spherical parameters.

3.6. Proofs

In the proofs we will pass to various subsequences and it will be necessary to keep
track of them. In order to gain a readable notation we will denote by E C (0, 00) the
index set the original sequence (LL.) = (L.).cg, and represent subsequences by subsets
FEq, Es,... C E with a cluster point at zero. We will simply write

c. — ¢o (e € Ey),

and mean that for any sequence (g;)jen C E1 with 5 N\ 0 we have c¢.; — cp as
j — oo.
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3.6.1. H-Compactness on Small Balls (Lemma 3.3.1) and the Div-Curl
Lemma (Lemma 3.3.2)

At first we prove the manifold version of the Div-Curl Lemma (Lemma 3.3.2), which
plays a central role in almost all the proofs of this chapter.

Proof of Lemma 3.3.2. For ¢ € C°(M) we can write

/ g6e, Yooy du = / 9(6e, V (0:)) dpt - / 9(Ee, v V) dp. (3.27)
M M M

Regarding the first integral of the right-hand side we use the strong convergence of the
divergence of (§.) and the weak convergence of (v:) to see

/ 960, V(0eth)) dpt — / 960,V (v0)) djt = / 960, v0V) djt + / (€0, ¥V 00) dp.
M M M M

For the second integral of the right-hand side of (3.27) we note that by Rellich’s
Theorem on the compact set U := supp ¥ we have strong convergence of v. to vg in
L?(U), which implies v-V1) — v9V strongly in L?(TM) and thus

/ g(&aﬂjavd}) du _>/ (507’UQV’[/1) du.
M M

In the case ve,vg € H}(M) the statement follows directly with an integration by parts
argument. OJ

Before proving Lemma 3.3.1 we recall the following standard functional analytic result,
see e.g. [IMT97, Proposition 4]:

Lemma 3.6.1. Let V be a reflexive separable Banach space and (1) be a sequence of
linear operators T.: V. — V' that is uniformly bounded and coercive, i.e. there exists
C > 0 (independent of €) such that the operator norm of T; is bounded by C and

(Tov,v)yry > v} for allveV. (3.28)

Then there exists a linear bounded operator Ty: V. — V' satisfying (3.28) and for a
subsequence (not relabeled) we have T — Tgl in the weak operator topology, that is
for all f € V' we have

Ts_lf - T(flf weakly in V.

Proof of Lemma 3.5.1.
Step 1: Choice of the subsequence and definition of Lg.
As described in Section 3.3, we consider the operators £ defined in (3.10) and fix
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functions vy,...,v, € C&(B) as in (3.9). We claim the existence of a coefficient
field Lo on 3B and sequences (v1.),..., () of functions in H}(B), such that for a
subsequence 1 C E we have

Uke — Uk weakly in H}(B) and strongly in L*(B) (¢ € F),

(Livge) strongly converges in H (B) (e € Ey), (3.29)

LiVuy — LiVuy  weakly in L*(T(3B)) (e € B)

for all £ = 1,...,n. Therefor we note that the uniform ellipticity of L} provides a
constant C' > 0, only depending on B and A, such that

(Lru, u) = /BQ(L;W,VU) A = CllullZps ),

and thus Lemma 3.6.1 implies the existence of an operator £§: H}(B) — H(B) such
that for a subsequence Fy C E

(L)' = (L) weakly in HY(B) (¢ € By)
for all f € H-Y(B). For k = 1,...,n define the oscillating test-functions
Ve 1= (L) Lhu, € HY(B),

which are bounded uniformly in € due to the uniform ellipticity of L.} and Poincaré’s
inequality in H¢(B) (which holds since mo(B) < 0). Hence we can extract another
subsequence FE1 C Ejy such that

Vke — U weakly in H3(B) and strongly in L*(B) (¢ € Ey),
LiVug. — & weakly in L*(TB) (e € Ey)

for some vector fields &1,...,&, € L>(TB) and every k = 1,...,n. We now define the
coefficient field L§ via
LiVop =&  prae. in 3B

for E =1,...,n. The coefficient field L{ is indeed uniquely defined by the identities
above, since Vuy, ..., Vv, span T(%B), and we only need to show (3.29). Note that the
oscillating test-functions v, j, are weakly and strongly convergent along the subsequence
E; as claimed by (3.29), and constructed such that Livy. = L{vg, which trivially
implies strong convergence of (Livy ). Finally, the last identity in (3.29) is true by
definition of L.

Step 2: H-convergence of Le to Ly in %B.

We fix a relatively-compact open subset U & %B and consider the operator L. as
defined in (3.11). As in step 1, there is an operator Lo: H}(U) — H~1(U) such that
for a subsequence Fo C Eq we have

Lot -t in the weak operator topology (e € E»). (3.30)
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We claim
,CouO = — diV(LQVUO), (331)

for all ug € H}(U), which by definition of £. immediately gives H-convergence. In
order to show this claim we set u. := L1 Loug € H}(U), which by (3.30) implies

Us — Ug weakly in Hj(U) and strongly in L*(U) (¢ € E). (3.32)
Then the uniform ellipticity of L. assures that the sequence of fluxes (L:Vue) is

bounded in L?(TU) and hence we can extract another subsequence E3 C FEy such
that

L.Vu. —Jy  weakly in L*(TU) (e € E3) (3.33)

for some Jy € L?(TU). Since u, is constructed such that — divL.Vu. = Loug, we find
— div JU == ﬁoUo, (334)

and thus for any test function ¢ € C°(U) (3.29) yields on the one hand

/Ug(Lavusa @bvvk,s) dp = /

U g(stusa V(¢Uk7€)) d/‘ - /U g(stusa Uk;,avw)

= (Lo, o) ~ [ (LeTue, 00, 90) d
g

— (Louo, Yog) — /Ug(Joaka?/)) dp

—/Ug(Jo,ibVUk)dM,

and on the other hand with the Div-Curl Lemma (Lemma 3.3.2)

[ ot ivu) du= [ gVu Lo, d
%/Ug(Wuo,lLSVvk)du
:/Ug(LOVuo,z/)Vvk)d,u.
Hence, we conclude that
| oau0 Vi) an = [ o(hvvu)an

and since this holds for any ¢ € C°(U) and Vv, ..., Vv, span TU, we get Jo = LoVug
p-a.e. in U, which by (3.34) gives (3.31). Moreover, since Jy and Ly are uniquely defined
via Lo, the convergences in (3.30), (3.32) and (3.33) are valid for the entire sequence
FE, which in particular does not depend on the choice of U.
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Step 3: Uniform ellipticity of Lg.
From (3.32), (3.33) and (3.34) in combination with the Div-Curl Lemma (Lemma 3.3.2)
we find for any non-negative 1) € C°(U)

/g(]L@VuE,VuE)Q/)d,u%/g(LgVumVuo)@Ddu,
U U

which together with (3.1) immediately implies

/g(ILUVuO,VuoﬁbdM > A/ Vo> dp. (3.35)
U U

On the other hand from (3.2) follows

/Ug(LEVuE,vusde:/

g(LeVue, LT ML Vg )ep dp > A/ L. Vuo|?y du,
U U

which can be transformed to
/ g(L7 Ve, Vue )y dp > A/ |Vug|* dp (3.36)
U U

by substituting Vug = Ly Viig. Since (3.35) and (3.36) hold for all ug € H(U) and
P € CX(U), we conclude that Lo € M(U, A\, A), and since this is true for all U & %B
we end up with Ly € M(3B, A, A). O

3.6.2. Locality, H-Convergence of the Adjoint (Proposition 3.3.3) and
Varying Right-Hand Sides (Lemma 3.3.4)

Proof of Proposition 3.3.5.

Step 1: Proof of part (a).

We fix a point 2 € U, an open ball B € U with center at x and radius smaller than the
injectivity radius of M at x (which implies mo(B) < 0), and choose vy, ..., v, € CX(B)
asin (3.9). For k € {1,...,n} we denote by u., @ € H}(B) the unique weak solutions

to
—div(L.Vu.) = f in HY(B) with f:=—div(LoVu,) € HY(B),

—div(L.Va.) = f in HY(B) with f:=—div(LoVu) € H '(B).
Then the H-convergence of (L.) and (L.) yield
Ue — Vg and Uz — v weakly in HI(B),
{L€Vu€ — LoVv, and EEVﬂe — }EOVvk weakly in LQ(TB),
and together with L, = L.onU and L € M(M, A\, A), these convergences imply

L.Vu. — L.-Vi. — (Lo — Lo)Vu,  weakly in L?(B)
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as well as
L.Vue — L.V = L.V(ue — @) =0 weakly in L(B),

which combined give (IEO — Lo)Vur, = 0 p-a.e. in B. Since this holds true for all
ke{l,...,n}, (3.9) yields Ly = Ly p-a.e. in %B, and since x is arbitrary, the assertion
follows.

Step 2: Proof of (b).
We fix a relatively-compact open subset U € M with mo(U) < 0. For f € H=1(U) we
denote by ue,uyg € H}(U) the unique weak solutions to

—div(L}Vu.) = f in H1(U),
—div(L{Vug) = f in H1(U).

By a standard energy estimate and the uniform ellipticity of (L}) the solutions (u.)
and the fluxes (L:Vu.) are bounded sequences in H}(U) and L*(TU), respectively,
and we can extract a (not relabeled) subsequence such that

Ue — Ug weakly in H'(U),
LiVu. — Jo  weakly in L2(TU)

for some %y € HY(U) and Jy € L?(TU). It remains to show that @iy = up and
Jo = LjVug, because then, since ug is independent on the choice of the subsequence,
the assertion follows for the entire sequence.

In order to show iy = ug we fix vg € H}(U) and denote by v. € H(U) the unique
weak solution to

—div(L.Vo.) = f in HYU)  with f:=—div(LoVuw) € H1(U).
Then the H-convergence of (L.) yields

Ve — Vg weakly in H}(U),
L.Vv. — LoVuy weakly in L?(TU),

and we find with the definition of u. on the one hand

[ oiVue Vo dn= [ foodus | foodn
U U U

and with the Div-Curl Lemma (Lemma 3.3.2) on the other hand

/g(}L:VuE,Vve)du:/g(VuE,L€Vv€)d,u
U U
—>/9(Vﬂ0>L0VUO)dM
U

= / g(Lo Vg, Vug) dp.
U
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Thus @ solves the equation — div(L§Vig) = f in H~*(U), and the uniqueness of the
weak solution implies 4y = ug.

We finally show Jy = LjVug. Therefor we fix an open ball B @ U with radius less than
the injectivity radius of M at its center, and choose vy,...,v, € C(B) C C*(U)
as in (3.9). As above we denote for k € {1,...,n} by v. € H}(B) the unique weak
solution to

—div(L.Vo.) = f in HY(U)  with f:=—div(LoVw) € HY(U),
and follow from the H-convergence of (L)

Ve = Vj weakly in H}(B),
L.Vv, — LoVv; weakly in L*(TB).

Then for ¢ € C°(B) the Div-Curl Lemma (Lemma 3.3.2) yields on the one hand
[ o Voywau [ g 5vu)an
and on the other hand
/Bg(LEVus,Vve)wdu = /Bg(Vus,lLere)w du
— /Bg(VUQ,LOVUj)1/} dp
= /B g(LgVug, ¥vVoj) dp.

Since these hold true for all ¢ € C°(B), k € {1,...,n}, we can follow because of (3.9)
that Jop = L§Vup in %B , and since U is open and the center of B was arbitrary, we
can conclude equality in U. OJ

Proof of Lemma 3.3.4. By a standard energy estimate, we can find a (not relabeled)
subsequence such that

Ue — U weakly in H'(U),
L.Vu. — Jo weakly in L?(TU)

for some g € H}(U) and Jo € L*(TU). We will show that g = ug and Jy = LoVuy,
because then, since wug is uniquely determined and independent of the choice of the
subsequence, we can conclude the assertion for the entire sequence.

To show iy = up we fix vg € H}(U) and denote by v. € H(U) the unique weak
solution to

—div(L!Vv,) = f in HYU)  with f:=—div(LiVu) € H1(U).
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Since L RS L& by Proposition 3.3.3, we find (with the compact embedding of H{(U)
in L2(U))

Ve — U weakly in H}(U) and strongly in L*(U),
LiVv. — LV weakly in L2(TU).

Now the Div-Curl Lemma (Lemma 3.3.2) yields on the one hand

/ 9(LeVue, Vo) dp = / (vaE + g(Ge, LEVv.) + g(Fy, V’UE)) du
U U
— / (f()vo + 9(Go, LSVU()) + g(Fo, Vvo)) du
U
= / (fovo + g(LoGo + Fo, Vug)) dp,
U

and, with u. — @9 weakly in H'(U), on the other hand

/g(LEVUE,VUE)d,u:/g(VuE,L:VUE)du
U U

—)/g(Vﬂo,stvo)du

U

:/Q(LOVﬁo,VUO)dM-
U

That means, @y solves the limiting equation, and the uniqueness of the weak solution
implies @y = ug.

Moreover, with the same arguments as in the last paragraph of the proof of Proposi-
tion 3.3.3 (b), we also deduce that Jy = LoVug, which completes the argument. O

3.6.3. Proof of Theorem 3.2.2

As described in Section 3.3, to prove Theorem 3.2.2 we lift the H-convergence result
on small balls (Lemma 3.3.1) to H-convergence on the whole manifold. We first cover
M with countably many small balls, stick the H-limits on the individual balls together
to one coefficient field Ly on M by appealing to the uniqueness of the H-limit (Propo-
sition 3.3.3 (a)), and choose a subsequence H-converging to Ly on every ball. Then
the convergence of the solutions and the fluxes will follow from Lemma 3.3.4 using a
partition of unity motivated by the covering of M.

Step 1: Choice of the subsequence and definition of Lg.
Let (Bj)jen denote a countable covering of M by open balls such that
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e 4B; € M, where 4B; denotes the open ball with the same center as B; and four
times the radius of B,

e the radius of B; is smaller than a quarter of the injectivity radius of M at the
center of B;.

The existence of such covering is assured by Vitali’s Covering Lemma, see e.g. [Ste93].
For every j € N Lemma 3.3.1, applied to 4Bj, provides a subsequence of (L.) H-
converging to some L; o € M(2B;, A, A) in 2B;. Thus we can fix a diagonal subsequence
E; C E (cf. the notation of subsequences in the beginning of Section 3.6) such that
(L¢) H-converges to L;o in 2B; for every j € N. By the uniqueness of the H-limit
(Proposition 3.3.3 (a)) we have L;jo = Ly p-a.e. in Bj N By, so we can choose a
coefficient field Lo € M(M, A, A) with Lo(z) = Ljo(z) for p-a.e. x € B, j € N.

Step 2: Conwvergence of the solutions and the fluzes.
We fix U € M open with m > Amg(U), and sequences (f.) in L?(U) and (F.) in
L*(TU) with

f- = fo weakly in L?(U),
F. — Fy strongly in L?(TU).

Let u. € H}(U) be the unique weak solution to
mue — div(L.Vu.) = f. —divF.  in H Y(U). (3.37)

The boundedness of (f.) and (F.) in L?(U) resp. L?(TU) ensures by (3.6) boundedness
of (ue) in H'(U) and thus, with the uniform ellipticity (3.2), boundedness of (L.Vu,)
in L2(TU). We therefore can extract a subsequence E” C E’ such that

{ug S ug weakly in H}(U), (3.38)

L:Vu, — Jy weakly in L2(TU)

for some ug € H'(U) and Jy € L?>(TU). Tt remains to claim that ug is the unique weak
solution in HE(U) to

mug — div(LoVug) = fo —divFy  in HY(U) (3.39)

and that Jy = LoVuo, with L defined in step 1. Let ¢; € Cg°(M) denote a partition
of unity subordinate to (B;), i.e. suppy; € B; and Z;’;l ¢; = 1. Then for every
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Y € HY(U) and j € N we calculate using (3.37)

/an@vu%ua,vw>m¢
- /U 9LV, Vo) du+ | gl LeVue, Vo) dy
- /U (uLeVe;, Vo) du+ | g(LeVue, Vipj)) du — /U oL Ve, $V;) dp

((fs = mue)pvp + g(Fe, V(ps))) dp

e L

- /U (uLeVep;, Vob) dyt +
- / oLV, ¥V, du
U

_ /Ug(LE(quj)va) d’”/

g ((fe —mue)pj + g((F: — LeVue), Vsog-))wdu

+ /Ug(sﬂst, V) du

Z/Q(LeGj,a,Vw) du+/ fj,allfdwr/ 9(Fje, Vb)) dp,
g y y (3.40)

where

Fj,z—: = SOsz-:y Gj,s = UEVSOja fj,s = (fz—: - mus)‘ﬁj + g((Fs - stus)a V‘Pj)-

Moreover, we set v; . := @;u.. Then vj. € HE(B;) is by (3.40) the unique solution in
Hy(B;) to

—div(L:Vvj.) = fje — div(L.Gj¢) — div Fj . in H1(B;).

From (3.38), the compact embedding H}(B;) < L?*(Bj), and the convergence of (f:)
and (F;), we deduce that

Vje — Vj,0 i= @;UQ weakly in H'(B;),

Fie = fio = (fo—muo)p; + g((Fo — Jo), Ve;) weakly in L*(B;), (3.41)
Gje — Gjo:=uVyp; strongly in L?(T B;), '
Fj. — Fjo:=p;Fy strongly in LQ(TBJ-).

Since by step 1 we have L, A Lo on 2Bj, Lemma 3.3.4 implies that v € H}(B;) is
the unique weak solution to

— diV(Lovvﬂ)) = fj70 — diV(L[)GjV()) —div Fj70 n Hil(Bj),

and
LeVuje — LoVujo  weakly in L*(TB;). (3.42)
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Since 372, ¢; = 1, and therewith > 72, V; = 0, we find that

oo oo o oo
Svio=u Y Fo=Fon 3 Guo=0 Y fio=(fo—mu).
J=1 j=1 j=1

j=1
Now summation of (3.42) yields L.Vu. — LoVug = Jy weakly in L?(TU). Moreover,
for any test-function ¢ € C°(U) we have on the one hand

/g(LEVua,W) dp = Z/ 9(LeVuje, Vib) dp
U . U
7=1

—>Z/ 9(LoVv; 0, Vib) dp
j=1"U

- /U o(LoVuo, Vo) dy

and on the other hand, by summation of (3.40), and by (3.41),

/Ug(LeVug,Vw) dp = Z/B_g(Lngj,g,w)du
Z/ LGJE’vw)+g(E]€7V¢)+fjew)

Z/ 9(LoGjo + Fjo, Vi) + fo;00) du

— /U (9(Fo, Vi) + (fo — muo)d) d,

which together yield (3.39). From the uniqueness of the solution we deduce that the
convergence holds for the entire subsequence Fj.

Finally we note that if either H}(U) is compactly embedded in L?(U) or m # 0 and
f- — fo strongly in L?(U), then we even have u. — wug strongly in L?(U). The
first implication is a direct consequence of u. — ug weakly in H'(u). For the second
implication we note that by the Div-Curl-Lemma (Lemma 3.3.2) from L. Vu. — LoVug
follows

/ (LeVue, Vue) — / (LoVug, Vuy),
U
and thus with (3.37) and (3.39)

m/ ’ué" dp = m/ ’ué" dﬂ+/ (stuavvufs)dﬂ_/ 9(LeVue, Vue ) dp
U
:/ fsusdﬂ+/Q(Fsavus)dﬂ_/Q(stuavus)dﬂ
U U U
—>/ f0u0d,u—l—/g(Fg,Vuo)du—/g(LOVUO,VUO)du:m/ \u0|2.
U U U U

ol



3. Uniformly Elliptic Operators on a Riemannian Manifold

Since m # 0, this implies |lue|lp2(ry = [[uollr2(ry, which together with the weak con-
vergence in L?(U) yields strong convergence in L2(U). O

3.6.4. Mosco- and Spectral Convergence (Propositions 3.2.4, 3.2.6 and
3.2.7)

We first recall that Mosco-convergence is equivalent to resolvent convergence of the
associated operator, which we want to formulate as follows (cf. e.g. [DM93, Chapter
13]). Therefor for an operator £: H}(M) — H~1(M) we denote for A > 0 the associ-
ated resolvent by R* := (A + £)~': L2(M) — L?>(M). Then the following holds (see
[Mos94, Theorem 2.4.1]):

Lemma 3.6.2. For operators L., Lo: HY (M) — H=Y(M) following two conditions are
equivalent:

(i) The functionals E.: L*(M) — R U {+o0}, given by

£.(u) = {(ﬁsu, wy, if u€ HH{M),

400, otherwise,

Mosco-converge (w.r.t. L?) to the functional E: L?*(M) — R U {+occ}, given by

£.(u) = {(&m,u), if ue HY (M),

400, otherwise.

17 or any > ) € associatea resotvents converge 1o m € strong operaitor
i) F A >0, th ated resolvents R to Ry in the st t
topology of L*(M).

Proof of Proposition 3.2.4. We apply Lemma 3.6.2 to the operators L.u := — div(L.Vu).
In order to prove convergence of the resolvents in the strong operator topology on
L*(M), for A > 0 and f. — fo strongly in L2(M) we set u. := R2f. € H}(M). That
means, u. is the unique weak solution to

Mg — div(L.Vu:) = . in H (M),

and from the H-convergence of (L) (and Theorem 3.2.2) we deduce u. — ug strongly
in L2(M), where ug € H}(M) is the unique weak solution to

Mg — div(LoVug) = fo  in H H(M).

In other words, R2f: = u. — ug = Rg‘fg strongly in L?(M). O
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For the proofs of the spectral convergence statements Propositions 3.2.6 and 3.2.7 we
access to the resolvents of the operators, too, on which we will apply the following
statement (see [JKO12, Lemma 11.3 and Theorem 11.5]):

Lemma 3.6.3. Let (M, g, ) be a weighted Riemannian manifold and consider posi-
tive, compact, self-adjoint operators R., Ro: L>(M) — L*(M) such that their operator
norm || Re|| z(z2(ary) is uniformly bounded for all e > 0. Denote (for e > 0) by (Ae )ken
the decreasingly ordered sequence of eigenvalues of R, where eigenvalues are repeated
according to their multiplicity, and let (uck)ren be a sequence of associated eigenfunc-
tions, forming an orthonormal basis of L*(M). If

foe — fo weakly in L*(M) = R.f- = Rofo strongly in L*(M),

then for oll k € N
/\EJC — )\O,k as € \, 0,

and if s € N denotes the multiplicity of Ao, i.e.
A0k—1 > Aok =" = A0 kts—1 > A0 k+s (with the convention Ao = 00),
there exists a sequence .y of linear combinations of uc, ..., Ue p+s—1 Such that

TUe ), — Uk strongly in LQ(M) as € \, 0.

Proof of Proposition 3.2.6.

Step 1: Proof of part (a).

We fix a relatively-compact open subset U € M with mo(U) < 0. The latter en-
sures that for the operator £, := —div(L.V): H}(U) — H~1(U) we can consider the
associated resolvent R. := £-1: L?(U) — L?(U). This resolvent is a compact, self-
adjoint operator on L?(U) and, due to the uniform ellipticity of the coefficient fields,
it is positive and its operator norm is bounded by a constant independent on . Thus
the Spectral Theorem implies that the spectrum of R, consist only of a real, strictly
positive point spectrum, which is bounded from above by a constant independent on ¢,
and there is an orthonormal basis of L?(U) consisting of eigenfunctions of R.. Now it
is sufficient to note that (\, u) is an eigenpair of R. if and only if (§,u) is an eigenpair
of L.

Step 2: Proof of part (b).
To apply Lemma 3.6.3 to the resolvents R. defined in step 1, it only remains to show
that f. — fo weakly in L2(U) implies R.f. — Rofo strongly in L?(U). Indeed, if we
set us := R.f: € H(%(U) and ug := Rofo € H&(U), we find that u. and wug are the
unique weak solutions to

—div(L.Vu.) = f. in HYU),
—div(LoVug) = fo in H1(U),
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and the H-convergence of the coefficient fields (together with Lemma 3.3.4) implies
Refe = u:. — ug = Rofo weakly in H'(U). Now the strong convergence in L?(U) is a
consequence of the compact embedding H}(U) < L*(U). O

Since the proof of Proposition 3.2.6 relies strongly on the fact that mo(M) < 0, to
prove Proposition 3.2.7 we need the following variant of the H-compactness statement
Theorem 3.2.2:

Lemma 3.6.4. Let (M, g, u1) be a weighted Riemannian manifold, and let (IL;) be a
family of coefficient fields on M, H-converging in M to some coefficient field Lg. Let
further H. and Hy be closed subspaces of H'(M, g, 1) such that for every sequence (u.)
with ue. € H. from u. — ug strongly in L?>(M, g, ) follows ug € Hy. Suppose that for
every fe, fo € H-Y(M) the equations

—div(Vue) = f. in H-Y(M),
—div(Vug) = fo in H (M),

admit unique weak solutions u. in H. and ug in Hy. Then f. — fo weakly in
L*(M, g, ) implies us — ug strongly in L>(M, g, i1).

Proof of Lemma 3.6.4. We first note that due to the weak convergence of (f.) in L(M)
the solutions u. are uniformly bounded in H'(M), so we can find a (not relabeled)
subsequence, such that u. — ug weakly in H'(M) and L.Vu, — Jy weakly in L?(TM)
for some ug € H*(M) and some Jy € L?(TM). We now fix a countable covering (U;) of
M consisting of relatively-compact open subsets U; € M with mg(U;) < 0, and consider
a partition of unity (¢;) in C°(M) subordinate to this covering, i.e. supp ¢; € U; and
S22, ¢i = 1. Then for every ¢ € H'(M) we find

:/ g(usst@iav@b) d:qu/ g(@ilsvusav¢) d,u

M M

=/ g(uehavwi,vw)du+/ g(LeVua,V(soiw))du—/ 9(LeVue, Vi) dp
M M M

m%Mwawnm+/ﬁkwwm—/ﬂmuv%WVwmu
M M

S

o(LeGie, Vi) dut + /M fiet du,

with
Gi,s =uVy; and fi,s = fepi — Q(Levusa v¢i)7
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that means p;u. € H&(Ui) is the unique weak solution to
— div(L.V(psue)) = fie —div(LGic)  in HYU;).

Since from the compact embedding HE (U;) < L?(U;) we have

©itle — Pilg weakly in H'(U;),
fie = fio = fowi — 9(Jo, Vi) weakly in L*(Uj),
Gie — Gip:=uVy; strongly in L?(TUj;),

the H-convergence of (L.) and Lemma 3.3.4 yield that p;up € H}(U;) is the unique
weak solution to

—div(LoV(piup)) = fio — div(LoGio)  in H H(U;),

and we have L.V (pu:) — LoV (psug) weakly in L?(TU;). Moreover, the compact
embedding Hg(U;) — L?(U;) guarantees even strong convergence @;ue — (iug in
L%(U;). Now, since Y22, ¢; = 1 and > 52, Vio; = 0, a summation argument yields
ue — ug strongly in L?(M) (for the entire sequence), and L.Vu. — LoVug weakly in
L?(TM). It remains to show that ug = Rgfo, i.e. that ug € Hy is the unique weak
solution to

—div(LoVuo) = fo  in H '(M).

But this can be seen by

/ Q(stusa V1/J) dp — / Q(L0VU07 V@/J) du
M M

and
/M 9(LeVue, V) dp = ; /U 9(LeV(piue), Vi) du
-3 / (ficth + 9L, V) d
- Z / fioto + 9(LoGig, V¥)) du
/ fowrdu
for all ¢ € H'(M). O

Proof of Proposition 3.2.7.

Step 1: Proof of part (a).

This step follows the same argumentation as step 1 in the proof of Proposition 3.2.6
above. Since for every f € H~!(T) the equation

—div(L.Vu) = £ in HY(T)
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3. Uniformly Elliptic Operators on a Riemannian Manifold

admits a unique weak solution u € H}(T), the operator £, := —div(L:V): H] . (T) —
H~Y(T) is invertible and we can consider the associated resolvent R, := £-1: L?(T) —
L?(T), which is a positive, compact, self-adjoint operator on L?*(T) and its operator
norm is bounded by a constant independent of €. The Spectral Theorem implies that
the spectrum of the resolvent consists only of real, strictly positive eigenvalues, that
are bounded from above by a constant independent of €, and there is an orthonormal
basis of L?(T) consisting of eigenfunctions of R.. The assertion follows since (\,u) is

an eigenpair of R. if and only if (%, u) is an eigenpair of L..

Step 2: Proof of part (b).

As in step 2 in the proof of Proposition 3.2.6 we want to apply Lemma 3.6.3 to the
resolvent operators R. defined in step 1. We therefor note that u. := R.f. € ngr(T)
and ug := Rofo € H},(T) are the unique weak solutions to

—div(L.Vu.) = f. in HY(T),
—div(LoVug) = fo in HY(T),
and thus the H-convergence of (L) in connection with Lemma 3.6.4 yields that f. — fo

weakly in L2(T) implies R. f. = u. — ug = Rofo strongly in L?(T). Now Lemma 3.6.3,
applied to the space H. = Hy = H},.(M), concludes the proof. O

per

3.6.5. Local Coordinates and Homogenization Formula (Lemma 3.4.1
and Proposition 3.4.2

Proof of Lemma 8.4.1. We fix x € U’ and denote by £ = (El, e ,En),ﬁ =@,...,7") €
R™ the vectors associated to &, € T, M via

£ = gl¢, Vga:i) and 7' = g(n, Vgxi)
for i =1,...,n. There is a constant C' > 0 such that
P <D g9 @) =g, O)@) <CIEP and L <p(z) <C,
ij=1

where (g*) denotes the inverse of the matrix representation (g;;) of ¢ in local coor-
dinates, i.e. g;j = g(V4a',V427). Note that the constant C' does not depend on =,
since the metric g(-,-)(z) is continuous in z, ¥ is a diffeomorphism, and A € ¥(U) is
relatively-compact. Then the uniform ellipticity of L directly implies

af - € = pg(LE, €) > Apg(€,€) > A€

and B B
a& -7 = pg(IL&,n) < Aplélylnly < C'IE|[]

for some C’ > 0, which gives the assertion. O
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Proof of Proposition 3.4.2. We will only show the implication (ii) = (i), since the
opposite direction can be proved in the same way.

Suppose that mo(U’) < 0 For f € L*(U’) we denote by u. € H(U’) the unique weak
solution to
—divy,(L:Vgu:) = f  in HHU).

Then for every ¢ € C2°(A) we have

[ a@¥ue) Vi@ de = [ LTy Vowydu= [ fodn= [ st dn

that means, u. € H}(A) is the unique weak solution to 24
—div(aVue) = pf in H~1(A).
From a. ko ap on A we conclude
{us — g weakly in H'(A), (3.44)
a:Vu: — agVug weakly in L2(A),

where ug € H}(A) is the unique weak solution to
—div(agVug) = pf in H71(A),

which by arguments similar to (3.43) implies that ug € H(U’) is the unique weak
solution to

—divy . (LoVguo) = f  in HY(U).
We first note that (3.44) immediately gives

u. —up  weakly in H'(U"),

so it only remains to show the convergence of the fluxes. Therefor we fix n € L?(TU’)
and set 7 = (',..., ") € L?(A) with i := g(n, V4a') for i = 1,...,n. Then we find

/ g(LgvguE,n)du:/Aag(x)VuE-ndm%/Aag(x)Vuo-nd:c
:/ g(Lovgann) dl“’?
U/

which means
LeVgue = LoVgug  weakly in L*(TU). O
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4. Application to Uniformly bi-Lipschitz
Diffeomorphic Manifolds

In this chapter we apply the H-compactness result Theorem 3.2.2 to the coefficient
fields of the pulled back Laplace-Beltrami operators. Precisely we consider the case of
uniformly bi-Lipschitz diffeomorphic manifolds (i.e. with e-uniformal constant in Def-
inition 1.3.1, see Definition 4.1.2 below), which results in uniformly elliptic coefficient
fields (in the sense of (3.1) and (3.2)) on the reference manifold. The H-compactness
result (Theorem 3.2.2) in combination with Propositions 3.2.4 and 3.2.6 will yield
Mosco- and spectral compactness in the sense of Definitions 1.3.4 and 1.4.2.

For the sake of readability we postpone every proof to Section 4.3.

This chapter is based on the article [HMN19| of Jun Masamune, Stefan Neukamm and
the author, also contains a way to extend the results to a wider class of manifolds,
demonstrated on the torus.

4.1. Setting and Results

To study the applications of our H-compactness result Theorem 3.2.2 to Mosco- and
spectral convergence of families of bi-Lipschitz diffeomorphic manifolds we first make
the relation between the Laplace-Beltrami operator on a manifold and the correspond-
ing coefficient field on the reference manifold concrete by formulating a transformation
lemma. In order to do so we introduce the following notation, which we will keep
for the rest of this chapter: For two weighted Riemannian manifolds (M, g, ) and
(Mo, go, j1o) with a diffeomorphism h: My — M, we denote by f := f o h the pullback
of a function f on M along h. Moreover, we denote by (dh=1)*: TMy — TM the
adjoint of the differential dh=': TM — TMy of h™! given by

g((dh™1)"€,m)(h(x)) = go(&, dh™'n)(w)  for all € € Ty Mo, n € Ty M.

Lemma 4.1.1 (Transformation Lemma). Let (M,g,pn) and (Mo, go, o) be weighted
Riemannian manifolds, and denote by o and og the densities of u and pg w.r.t. the Rie-
mannian volume measures assoctated with g and go, respectively. Let further h: My —
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

M be a diffeomorphism. We define a density function p and a coefficient field I on
Mo by

pi=ZAGs and  go(LE,n) = pg((dh™")*E, (dh~ ) ),
as well as a metric §o and a measure fig on My by
ditg == pdpo ~ and  go(LE,n) :== pgo(§,n),
Then the following are equivalent:
(a) u € HY(M) is a solution to

(m_Agyll«)u:f in H_I(Mvgnu‘)‘

(b) uw € HY (My) is a solution to

(mp — divg, u, (LVg,))u = pf i H_I(M()a 90, 110)-

(c) u € HY (My) is a solution to

(m_Aﬁovﬂo)ﬂzf n H_l(MO,ro,ﬂo)-

As one can see, the coefficient field L in Lemma 4.1.1 is strongly related to the differen-
tial dh ™! of the inverse of the diffeomorphism between the manifolds. Obviously, for an
arbitrary bi-Lipschitz diffeomorphic family of Riemannian manifolds the correspond-
ing coefficient fields on the reference manifold are not necessarily uniformly elliptic.
So, in order to apply Theorem 3.2.2 to the family of coefficient fields, it is natural to
introduce uniform restrictions to the diffeomorphism in the following sense:

Definition 4.1.2 (Uniformly bi-Lipschitz Diffeomorphic Families of Manifolds). A
family of weighted Riemannian manifolds (M, ge, ic) is called uniformly bi-Lipschitz
diffeomorphic, if there are a weighted Riemannian manifold (Mo, go, po) and a constant
C > 0 such that for every € there are diffeomorphisms he: My — M, with

%\ﬂgo < |dhe(z)€lg. < Clélgo for all x € My and £ € T, Mj. (4.1)

We call (Mo, go, po) reference manifold.

From the construction in Lemma 4.1.1 it is easy to see that in this setting the Laplace-
Beltrami operators on the manifolds M, correspond to elliptic operators on the refer-
ence manifold My of the form — div(L:V) with uniformly elliptic coefficient fields L,
precisely

906, Leé) > w1812, go(& LT > CM P22 for every € € TMy,
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4.1. Setting and Results

with the constant C' from Definition 4.1.2. We are now in position to formulate the
corresponding H-compactness result to Theorem 3.2.2 for uniformly bi-Lipschitz dif-
feomorphic manifolds.

Lemma 4.1.3 (H-Compactness of Uniformly bi-Lipschitz Diffeomorphic Manifolds).
Let (Mo, go, po) be a weighted Riemannian manifold such that HE (Mo, go, po) is com-
pactly embedded in L?(My, go, jo). Assume the family (M, g., i) of weighted Rie-
mannian manifolds to be uniformly bi-Lipschitz diffeomorphic to the reference mani-
fold (My, go, po) via the diffeomorphisms he: My — M., and denote by o. and oq the
densities of pe and po w.r.t. the Riemannian volume measures associated with g. and
go, respectively. Define the density p. and the coefficient field L. on My by

pe =T\ nd and  go(Le€. ) = pe g.((dhZ ) €, (dhZ 1) n). (4.2)

Then there exists a (not relabeled) subsequence such that the following holds:

(a) There is a density po and a uniformly elliptic coefficient field Lo on My such that
* . H .
pe = po weakly-x in L>(Mo, go, f10), and Le — Lo in (Mo, go, p0)-

(b) Define a measure fig and a metric go on My via the identities

dfio == podpo and  go(ILo&,m) = pogo(§,m).

Let m > mo(My, go, po) (with mo as in (3.4)) and let u. € HE (M., ge, pe) and
ug € H (Mo, go, fo) denote the unique solutions to

(m - Agg,ya)us = fs n H_I(Msagav :ua)» (43)
(m — Ago.o)uo = fo in H™ (Mo, do, fio)-
Then
fe = fo weakly in L*((Mz, pe) — (Mo, fio))
implies

U — UQ strongly in LQ((Ma, te) — (Mo, f10)).

As pointed out in Section 3.2 (cf. Propositions 3.2.4, 3.2.6 and 3.2.7), H-compactness
provides a tool to gain Mosco- and spectral convergence in the sense of Definitions 1.3.4
and 1.4.2. Indeed, since Mosco-convergence of the manifolds M. is equivalent to Mosco-
convergence of the pulled back Dirichlet energies on the reference manifold, the follow-
ing result is a direct consequence of Lemma 4.1.3 in combination with Proposition 3.2.4,
and there is no further proof required:

Proposition 4.1.4 (Mosco-Convergence). In the setting of Lemma 4.1.3 the family
(M., ge, j1e) Mosco-converges to (Mo, go, fio) w.r.t. L?.
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

The spectral convergence result Proposition 3.2.6 cannot be directly translated like the
Mosco-convergence result, because the underlying eigenvalue equation

- divge”ue (vgeu) = Au in Hil(ME)
reads on the reference manifold by Lemma 4.1.1
— divgy uy (Le Vo) = ApeTi in H~'(Mp),

which is obviously not the eigenvalue equation associated with the considered operator
—divg, 4 (Le V) treated in Proposition 3.2.6. However, the proof of Proposition 3.2.6
can be extended to the case of varying manifolds.

Proposition 4.1.5 (Spectral Convergence). If in the setting of Lemma 4.1.8 My is
compact with mo(Moy, go, po) < 0, then the family (M., g, pe) spectral converges to
(Mo, go, o) w.r.t. L?.

Asin Section 3.2 we consider the n-dimensional torus to show how to extend our results
to manifolds that do not satisfy the condition mg(Moy, go, to) < 0 by turning away from
the Dirichlet-Laplace-Beltrami operator; cf. the discussion before Proposition 3.2.7 for
more details.

Proposition 4.1.6 (Spectral Convergence for the Torus). Assume in the setting of
Lemma 4.1.3 the reference manifold to be the n-dimensional torus My = T, consider
the operators

—A957M£: le)er(MsagEa/‘LE) — H_l(Msvgsmue) fOT € > 07
_Agoﬁo: le)er(TagOM:’/O) — H_I(Tvgm/lO) fOT €= 07

and let
0<)\€,1 S)\e,2§)\e,3§"' 5

denote the list of increasingly ordered eigenvalues with eigenvalues being repeated ac-
cording to their multiplicity. Let uc 1,uz2,uc3,... denote the associated eigenfunctions.

Then for all k € N,
Aek = Aok

and if s € N is the multiplicity of Ao, i.e.
A0k—1 < A0k = = A0 kps—1 < A0 kts (with the convention oo = 0),
there exists a sequence (Ue)e of linear combinations of ucj, ..., Ue fys—1 Such that

e — ok strongly in L*((Me, fic) = (T, fig)).
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We finally summarize some useful results and explicit formulas concerning the special
case of submanifolds of R™. We do not give a proof of the following corollary, as it is
just a re-formulation of Lemmas 4.1.1 and 4.1.3 and Propositions 4.1.4 to 4.1.6 in this
situation.

Corollary 4.1.7. Consider the setting of Lemma 4.1.8, and assume that

o M. are n-dimensional submanifolds of the Fuclidean space R™ with g. and p.
mnduced by the standard metric and measure of R™;

o the reference manifold My is a subset of the Fuclidean space R™, i.e., My C R"”,
90(§,m) ==& n, and dpo = da.

Then:
(a) The formulas (4.2) become
pe = \/det(dhldh.)  and L. = p.(dhldh.)™?,
where dh. denotes the Jacobian of h..

(b) There are a density py on My and a coefficient field Ly € M(Mp, CLO’ Co) (with
Co > 0 only depending on the dimension n and the constant C in (4.1)) such

that
pe = 1/ det(dhldh.) = po weakly-x in L (M),

Le = pe(dhldhe) ™ B Lo on My,

for a (not relabeled) subsequence.

(c) For the subsequence in (b), the manifolds (M.) Mosco-converge w.r.t. L? and the
limiting Riemannian manifold (Mo, go, fio) 1s given by

dfip = podx and  Go(&,n) = pollg & - .

(d) If additionally Mo C R™ is a bounded open set with a non-empty Lipschitz bound-
ary, then the manifolds (M.) spectral converge w.r.t. L* to the limiting manifold
in (c) (along the subsequence from (b)).

(e) The conclusion of (d) about spectral convergence also holds in the case My =T.
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

Remark 4.1.8 (Realizability of (Mo, go, fio)). In general, the measure fig has a non-
trivial density against the Riemannian volume measure associated to §g. But if we
have

det ]Lo = p872,

which 1mplies

Vdet go = \/ det(poLy ') = \/ pRpg " = po,

then fig is the Riemannian volume measure associated with go, and therefore, if the
limiting metric go is smooth, Nash’s Embedding Theorem guarantees that (Mo, go, fio) is
realizable in R™ with m large enough, i.e., there is an isometry ho: (Mo, o, fio) — R™
such that Ngy := ho(My) is an n-dimensional submanifold of R™ (with induced metric
and measure from R™). Such an embedding is characterized by the identity

dhldho = polLiy . (4.5)

Note that if one introduces a different reference_manifold ]\Afo with a diffeomorphism
Vv: My — My, one can consider iLE := he op: My — M. instead of he, but these (bi-
Lipschitz) diffeomorphisms do not necessarily satisfy the uniform ellipticity conditions
(4.1). However, going through the formulas in Corollary 4.1.7 one ends up with the
tsometric embedding ho = ho o Y ]\70 — R™, which represents the same limiting
manifold. Thus, in practice, the calculations to identify the limiting manifold can be
done with diffeomorphisms which are not uniformly elliptic in the sense of (4.1), as
long as there exist uniformly elliptic diffeomorphisms (see for instance the examples of
perturbed spheres in Section 4.2 below).

4.2. Examples

We want to adopt the abstract results for layered structures discussed in Section 3.5
to produce some concrete examples of spectral (and Mosco-) convergent 2-dimensional
submanifolds of R3.

4.2.1. Concentric Laminate-Like Perturbations of Voronoi Tesselated
Manifolds

A graphical surface with concentric corrugations

Following Definition 4.1.2 we start with the reference manifold My, which we want to
be the flat rectangle
My = {(Ta 9);T S (57 R)ae € [07 1)}
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4.2. Examples

for some R > 6 > 0. Now we define a family M. = h.(Mp) of 2-dimensional submani-
folds of R? (with standard metric and measure induced from R3) via h.: My — R3,

7 sin 2760
he(r,0) = | rcos2m6 |, (4.6)
f(2)
for € € {%,k € N}, with a smooth, 1-periodic function f: R — R. Note that the
excluded circle around the origin with radius § ensures that the defined manifolds
are indeed uniformly bi-Lipschitz diffeomorphic. In Figure 4.1 we present M, for some

values of € with the periodic function f(y) := ¥ (y— |y]), where |y| denotes the integer
part of y, i.e. |y| € Z with |y] <y < |y]+1, and ¢: R — R>( denotes the mollifier

exp 1—%, lf0<t<1,
b(t) == (1-7 (2t 1)2) . (4.7)
0, otherwise.

Figure 4.1.: A family of graphical surfaces with concentric periodic corrugations. The
three pictures on the left show M, defined via (4.6) with f(y) = ¢¥(y— |y])
for ¢ as in (4.7) and decreasing values of €. The picture on the right shows
the limiting surface Ny defined via (4.8). As e N\, 0 the spectrum of
the Laplace-Beltrami operator on M. converges to the spectrum of the
Laplace-Beltrami operator on Nj.

We follow Corollary 4.1.7 and calculate

1(1r\2
dhIdh. = (f(s) Y )

0 4722

which gives the density

pe = y/det(dhldh.) = 2rr \/m

and the coefficient field

-1
L. = p(dhldh.) " = ((271r P+ 1) 0 > .
0 )2 +1
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

One can see that p. — po weakly-* in L (M) with

1
po(r) = 27”“/ VI'(y)? +1dy,
0
and using (3.26) we find that L. X 1Ly with

-1 2p2
Lo = (% Jo VI W)+ 1dy> 0 _ <4ﬁo(r) 0 ) '
0 e Jo VI )2+ 1dy prery

Thus the limiting metric on My is given by

R 1 PO(T)2 0
gO(&a 77) = pOH-‘() §- n= 47FST2 Am2r2 §- n.

As described in Remark 4.1.8 we finally can find an isometric embedding hq: My — R?
via dhdho = polLg ', namely

rsin 270

ho(r,0) = r cos 270 ) (4.8)
[ po()?
foT er%? —1ldt

That means, the submanifold Ng := ho(Mp) of R?® (with the standard measure and
metric induced from R?), which is illustrated in Figure 4.1, is the spectral (and Mosco-)
limit of the family (M.). Note that the form of hg does not depend on the initial choice
of §, so we can pass to the reference manifold My = (0, R) x [0,1), and the excluded
origin of the manifolds M. coincides with the apex of the cone-shaped manifold Ny.

A sphere with radial perturbations oscillating with the latitude

Instead of a graph as in the example above we now consider a 2-dimensional (pointed)
sphere with radial perturbations in the same manner. If we took the (unperturbed)
sphere as the reference manifold, one could immediately see that for continuously dif-
ferentiable perturbations with uniformly bounded derivatives, the generated manifolds
are uniformly bi-Lipschitz diffeomorphic. Thus, in order to simplify the calculations,
Remark 4.1.8 allows us to choose another reference manifold instead of the sphere. We
set
My = {(@70); Y e (67 1—- 6)79 € [07 1)}

and define the family of submanifolds M, := h.(Mg) C R? (with the induced metric
and measure) via h.: My — R3, with

sin my sin 270
he(p,0) = (1 +ef(2)) | sinmpcos 276 (4.9)

COS TP
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for € € {%,k € N}, with a smooth, 1-periodic function f: R — [0,00). As in the
example above we excluded a neighborhood around the poles to create a uniformly
bi-Lipschitz setting (which can be verified easily by considering the sphere as reference
manifold, see the discussion in the beginning of this example). In Figure 4.2 we again
choose f(y) = ¥(y — |y]) with ¢ as in (4.7) to illustrate M. for some values of €.

1 —_
€=13 g =

“

1 _ 1
8 €= 16

Figure 4.2.: A family of spheres with periodic radial perturbations oscillating with the
latitude. The three pictures on the left show M. defined by (4.9) with
fly) = ¥(y — |y]) with ¢ as in (4.7) and decreasing values of €. The
picture on the right shows the limiting surface Ny defined via (4.10).

As in the previous example we can calculate the limiting measure with density

1
po(p) = 2msinmep /0 VI (y)?+ 2 dy

P(2) 0
on = -1 _ 2 sin?
9o = pO]LO = (47T SO Ty 47r2 Sin2 Wso) .

and the metric

We can find an isometric embedding hg: My — R? via dh(T)dho = polLy 1, namely

sin ¢ sin 276
ho(p, 0) = sin g cos 276 ) (4.10)
I \/ 747;;05(12; — —4n?cos? mt dt

Thus the submanifold Ny := ho(Mp) of R3, pictured in Figure 4.2, is the spectral
(and Mosco-) limit of the sequence (M.). As in the example above, we can extend the
embedding hy to the reference manifold My = (0,1) x [0, 1) to get sphere-like manifolds,
whose (excluded) poles coincide with the (excluded) poles of the manifold Nj.

A locally corrugated graphical surface

We want to demonstrate the local character of the limiting process by an example with
oscillations in several Voronoi cells. We fix an open, bounded set Y C R?, and consider
a finite set Z € Y of isolated points. For every point z € Z we utilize a smooth function
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

¥, : [0,00) — [0,1] to define a rotationally symmetric cut-off function v,(| - —z|) such

that
supp ¥, (| - —z|) Nsupp v (| - —=2'|) = 0 for all 2’ € Z\ {z}.
Now we take My := Y \ Z as the reference manifold and define the submanifold

M. := h.(Mp) of R? via

he(z) ==Y ef (E2)y (|2 — 2)), (4.11)

z2eZ

with some smooth, 1-periodic function f: R — R. In Figure 4.3 we choose f(y) =
Y(y — |y|) with ¢ as in (4.7) to illustrate M, for some values of .

ool—

E =

[ =

— 1 —
€=3 g =

Figure 4.3.: A family of locally corrugated graphical surfaces. The three pictures on
the left show M. defined via (4.11) with f(y) = ¥(y — |y]) with 9 as
in (4.7) and decreasing values of €. The picture on the right shows the
limiting surface Ny defined via (4.12).

In each Voronoi cell we can do the same calculations as in the previous examples, and
get a function hg: My — R,

2]
ho(z) ::xHZ/ Vs 1y, (4.12)
0

z€Z

where pg .(r) = rfol VI (y)2,(r)2 + 1dy. The graph ho(Mp), which is shown in
Figure 4.3, is the spectral (and Mosco-) limit of the family (M.).

4.2.2. Laminate-Like Perturbations of Spherically Symmetric Manifolds
A graphical surface with star-shaped corrugations

Analogously to the first of the previous two examples, we consider the reference man-
ifold
My = {<T> 9);7“ € (67 R)79 € [Oa 1)}
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for some R > § > 0, and define the family of submanifolds M. = h.(Mp) of R? via
he: My — R3,
rsin 276
he(r,0) = | rcos2nf |, (4.13)
ef(2)

for e € {%Jﬂ € N}, with some smooth, 1-periodic function f: R — R. Due to the
exclusion of the neighborhood of the origin these manifolds are uniformly bi-Lipschitz
diffeomorphic. In Figure 4.4 we choose f(y) = ¥ (y—|y|) with ¢ as in (4.7) to illustrate
M, for some values of €.

)
>
Y

y
;

=
™
I

E =

Figure 4.4.: A family of graphical surfaces with star-shaped periodic corrugations. The
three pictures on the left show M, defined by (4.13) with f(y) = ¥ (y—|y])
as in (4.7) and decreasing values of €. The picture on the right shows the
limiting surface Ny defined via (4.14).

Following the path described in Corollary 4.1.7 we calculate

pe = \/det(dhgdhe) = \/f’(g)2 + 4m2r2

and the coefficient field

1760\2 2.2
_ )2 4 4 0
Le = pe(dhldhs) ™" = 1/p. <f(€) A mr 1).

We find p. = po weakly-* in L*>°(Mp) with
1
pir) = [ VPP dy,
0

and using (3.25) we see L. & Lo with

Jo VT () + A2 dy 0 B <p0(7“) o>
0 (Jo VFP+ 422 dy) W)

and get the limiting metric

Lo =

. N 1 0
go(i,n)zpololf‘n=<0 p(%)ﬁ-n-
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

We finally find, according to Remark 4.1.8, an isometric embedding ho: My — R? of
the limiting manifold such that dh{dho = pol; ', namely

po(r)
o

ho(r,6) = | 2 cos2m9 . (4.14)
fO V 47r2 dt

The submanifold Ny := ho(My) of R3, which is shown in Figure 4.4, is the spectral
(and Mosco-) limit of (M.). As in the previous two examples, we can pass to the
reference manifold My = (0, R) x [0,1) and find that the still excluded origin of the
manifolds M. coincides with a circle of radius lim,~ o po(7) in the boundary of Np.

sin 276

A sphere with radial perturbations oscillating with the longitude

Similar to what we did above, we want to consider the case of a radially perturbed
sphere. We start with the reference manifold

My = {(9070); wE (57 1- 5)79 € [07 1)}

for some § > 0, and define the family of submanifolds M. := h.(My) of R?® via
he: My — R3,
sin mp sin 276
he(p,0) = (1+ af(g)) sin 7w cos 276 (4.15)
Cos T

for e € {%, k € N}, with some smooth, 1-periodic function f: R — [0,00). Again, the
exclusion of the neighborhoods of the two poles assure a uniformly bi-Lipschitz setting.
In Figure 4.5 we take f(y) = ¢(y — |y|) with ¢ as in (4.7) to illustrate M. for some
values of €.

y ,7§ X /%
. 0
W W =
_ 1 _ 1 1
€=1 €=3 €= 16

Figure 4.5.: A family of spheres with periodic radial perturbations oscillating with the
longitude. The three pictures on the left show M, defined by (4.15) with
f(y) = (y—|y|) with ¢ as in (4.7) and decreasing values of €. The picture
on the right shows the limiting surface Ny defined via (4.16).
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The same computations as in the previous example provide the limiting density

1
po(p) = 7r/ \/f’(y)2 +4n2sin® mp dy
0

R 1 7 0
go = pollg "~ = 0 2]

w2

and the metric

and again we can find an isometric embedding hg: My — R? via dhgdho = poLal,
namely

% sin 270

ho(p,0) = ’JST(E) cos 276 . (4.16)
fow \V T — péifff de

The submanifold Ny := ho(My) of R3, pictured in Figure 4.2, is the spectral (and
Mosco-) limit of the sequence (M:). As in the examples above we can pass to the
reference manifold My = (0,1) x[0,1) and find that the excluded poles of the manifolds
M. coincide with two circles forming the boundary of Ny.

4.2.3. Laminate-Like Normal Perturbations of the Torus
Perturbations oscillating with the latitude

We finally consider the embedded 2-dimensional torus and add some periodic perturba-
tion in outer normal direction. To be explicit, we start with the periodicity cell of the
torus (we ignore the periodic boundary conditions for now) as the reference manifold

My = {(90’ 9)?‘»0 € [07 1)»9 € [0’ 1)}’
3

and define for submanifolds M, := h.(Mp) of R® (with the induced metric and measure)

via
(R+ (r+ef(£)) cos2mp) cos 216

he(p,0) = | (R+ (r+ef(%))cos2myp) sin 27 (4.17)
(r+ef(%))sin2mp

for some R > r > 0, ¢ € {%,k € N}, and with some smooth, 1-periodic function
f: R — [0, R—r). Obviously the manifolds M, are uniformly bi-Lipschitz diffeomorphic
to the torus T. In Figure 4.6 we choose f(y) = (R—r)Y(y — |y]) with ¢ asin (4.7) to
illustrate the manifolds M, for some values of e.

The same calculations as in the previous examples yield the limiting density

1
po(p) = 2m(R + 7 cos 2myp) / ()2 + 4n2r2 dy
0
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FRENCENCARY o -

o=
™
5l

E =

=

E =

Figure 4.6.: A family of tori with periodic normal perturbations oscillating with the
latitude. The three pictures on the left show a section through M. defined
by (4.17) with f(y) = (R — r)¢¥(y — |y]) with ¢ as in (4.7) for decreasing
values of €. The picture on the right shows a section through the limiting
surface Ny defined via (4.18), while the green circle indicates the shape of
the original torus.

and the metric

g p L=t 47r2(R+pC(22)827r<p)2 0
0 = Po = .
0 0 47%(R + cos 2mp)?

We find an isometric embedding hg: My — R3 via dhgdho = polLy 1, namely

(R + 7 cos 2mp) cos 26
ho(p,0) = (R + 7 cos 2mp) sin 276

- po(t)? 2,2 gin2
15 \/47r2 RiCOS%t)Q 472r2 sin® 2t dt

but this embedding ignores the periodic boundary conditions. By manipulating the
sign of the square root in the integral of the third component of hg, we can achieve a
torus shaped embedding, but we loose the differentiability (on a zero set), as can be
seen in Figure 4.6. To be precise, there is a unique ¢ € (0, ) such that

po(t)? 2 9.2
/ \/471'2 R+cos 27t)? —4m Sln 2mt dt_/ \/471'2(R+cos271't — 4m®sin” 27t dy7

and if we define s(t) := 1 — 215 1_4)(y), a periodic embedding is given by

(R + rcos2mp) cos 270
ho(p,0) = (R + r cos2mp) sin 276 ‘ (4.18)

2 .
Iy s(t) \/—Mg(}gi((gs el 472 sin? 2t dt

We have to emphasize that the spectral (and Mosco-) limiting Riemannian manifold
is actually the torus T equipped with the metric gg and the measure jip. The behalf
of an embedding as the one above is only to illustrate the geometric structure of the
limit.
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Perturbations oscillating with the longitude

Instead of perturbations oscillating with ¢ as in the previous example, we can also
consider perturbations oscillating with 6, but macroscopically still depending on ¢.
Again we start with the periodicity cell of the torus as the reference manifold

MO = {(5079)7%0 € [07 1)79 € [Oa 1)}7
and define the submanifolds M, := h.(Mj) of R? via

(R+ (r+ef(p,2)) cos2myp) cos 2

he(p,0) = | (R+ (r+ef(e, g)) cos 2mp) sin 276 (4.19)
(r+ef(yp, g)) sin 27

for R>nr >0,¢ € {%,k € N} and some smooth function f: R x R — [0, R — r),

being 1-periodic in both arguments. In Figure 4.7 we used as function f the periodic

continuation of

R+ rcos2mp
= . 4.2
R—r ) (4.20)

for ¢ € 10,1], y € [0,1) and 9 as in (4.7). This function is chosen such that the width
of the perturbation is the same around the torus, see Figure 4.7.

D=

(.9) = (R=r)w (20— 3)

y

e \/‘w‘\'\‘w? 0, fﬁ(\

=1 -1 —
€=7 E=3 €=

&l

Figure 4.7.: A family of tori with periodic normal perturbations oscillating with the
longitude. The three pictures on the left show M, defined by (4.19) with
f being the periodic continuation of (4.20) for decreasing values of €. The
picture on the right shows a section through the limiting surface Ny defined
via (4.21), while the green circle indicates the shape of the original torus.

Doing the same calculations as above we end up with the density

1
pol(p) = 277 / V02 f (10, y)2 + 472 (R + 1 cos 2mp)? dy
0

and the limiting metric

Am2r2

R o (40
go = poly = = 0 P2

73



4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

An isometric embedding ho: My — R3 of the limiting manifold can be found via
dhldho = po. !, namely
po(¥)

Anr cos 270

ho(e0, ) = 202) sin 20 , (4.21)

® 2,2 Py ()2
fo 4rre — 7169#11"2 dt

but taking the periodic boundary conditions into account, we have to do the same ma-
nipulations to the integral as in the example above, resulting in the manifold pictured
in Figure 4.7.

4.3. Proofs

The foundation of the proofs in this chapter is the transformation result Lemma 4.1.1,
which we need to prove first. It is an application of the integral representation formula
and the definition of (dh~1)*, cf. the beginning of Section 4.1 for the notation.

Proof of Lemma 4.1.1.

Step 1: Proof of (a)&(b).

Since h: Mg — M is a diffeomorphism, the integral transformation formula yields for
any function f € L'(M, g, i)

dp = oh)pdug.
Mf u /Mo(f )p dpio

To show the equivalence of the statement (a) and (b) it only remains to show

?(vﬁu’ Vgl/}) P = 9o (]ngoﬂv vgoa)

for any test function ¢ € C°(M). To that end we first claim Vgu = (dh™')*V,u
(and that the same holds for ¢). Indeed, using the definition of the gradient and the
adjoint, we have

9(Vgu, ) = du(€) = d(uo h)(dh™"€) = go(Vg,u, dh™'€) = g((dh™")* V1, £).

Together with the definition of I we conclude

9(Vgu, Vgv) p = g((dh™" )"V, (dh ™) Vo) p = go(LV g, T, Vg 1).
Step 2: Proof of (b)<(c).
By the definition of fig it suffices to show

g0 (LVQOE Vgoa) = f]o(VgOﬂ, V@o@) p-
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4.3. Proofs

We first observe LV g u = pVg,u, which can be seen by the following direct computa-
tion, using the definition of gy and of the gradient:

90(LV 4,1, §) = p go(Vgo @, §) = pdu(§) = pGo(V,u, §).-

Again with the definition of the gradient we finally get

90 (ngoa’ vgoa) = pgo(Vgoﬂ, vgo@) =p d@(véoﬂ) = pf]o(VgOﬂ, vf?o@)- 0

Now with the transformation lemma (Lemma 4.1.1) the proof of the H-compactness
result Lemma, 4.1.3 becomes an application Theorem 3.2.2 on the reference manifold,
where we only have to care about the well-posedness and the convergence of the right-
hand sides of the corresponding problem, which is done using the compact embedding

of H} (Mo, go, po) in L*(Mo, go, 1o)-

Proof of Lemma 4.1.3.

Step 1: Proof of (a).

By the definition (4.2), there is a constant Cy > 0 (only depending on the constant
C' in Definition 4.1.2 and the dimension n) such that Cio < pe < Cp ae. in My and
L. € M(My, Cio, Cp). Therefore we can extract a subsequence, such that p. = po for
some density po € L*(My) with C%) < po < Cy, and, by our H-compactness result

Theorem 3.2.2, L. A Lo in (Mo, go, to) for some coefficient field Lo € M(Mp, C%ﬂ Co).

Step 2: Proof of (b).
We use Lemma 4.1.1 (a)<(b) to re-formulate (4.3) as

(M — divgy o (LeVgy))Ue = pefe — (pem — MUz in H~Y(Mo, go, o) (4.22)

for any constant m, which we can choose large enough to guarantee well-posedness.
We find by a standard energy estimate that (u.) is bounded in H'(Moy, go, o), and we
can extract a subsequence such that u. — % weakly in H' (Mo, go, i10) for some g €
H}(My, go, p10). Due to the compact embedding of HE (Mo, go, po) in L*(Mo, go, to)
this implies also . — %o strongly in L?(Mo, go, tto). Moreover, since f- — fu weakly

in LQ((Ma??/JE) — (MOa [LO)L we have pt‘fe - pOfO Weakly in LQ(M(]ngmuO) (Cf Defini-
tion 1.3.2), and thus we get for the right-hand side in (4.22)

pefe — (pem — MU — pofo — (pom — M) weakly in LQ(MO, 905 140)-

Now, for m large enough, we can deduce from L. g Lo with Theorem 3.2.2 that wug is
the unique weak solution to

(m — divgo,uo (Lovgo))ﬂo = pofo— (pom — m)ﬂo in H_I(Mo, 90, 'LL[)), (423)

so we conclude W, — g strongly in L?(Mo, go, pto) for the entire sequence. Moreover,
Lemma 4.1.1 (b)<(c) tells that (4.23) is equivalent to (4.4), and thus uy = up. It
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4. Application to Uniformly bi-Lipschitz Diffeomorphic Manifolds

finally remains to show that u. — wug in L?((M:, ue) — (Mo, fig))- This follows from
Uepe — ugpo weakly in L?(Moy, go, p1o), because

/ us(Y o hZ ') dpe = / Uetppe dpg — / uopo dpo = / uotp dfig
MO MO MO

£

for all ¢ € C°(My), and

/ ue|® dpe = / Ug Uepe dppo — ug ugpo dpro = / luo|? djio- O
M. My Mo Mo

The proofs of the spectral convergence results Propositions 4.1.5 and 4.1.6 are similar
to the ones of Propositions 3.2.6 and 3.2.7. But since we have to deal with operators
defined on different manifolds, we require a slightly more general version of Lemma 3.6.3
(which is also a consequence of [JKO12, Lemma 11.3 and Theorem 11.5|):

Lemma 4.3.1. Let (M., ge, p1c) be a family of weighted Riemannian manifolds, being bi-
Lipschitz diffeomorphic to the reference manifold (Mo, go, fip) via the diffeomorphisms
he: M. — My, and let Re,Ro: L2(M.) — L*(M.) be positive, compact, self-adjoint
operators such that their operator norms ||R:||z(r2(ar.)) are uniformly bounded for all
e > 0. Denote by (Ac)ken the decreasingly ordered sequence of eigenvalues of R,
where eigenvalues are repeated according to their multiplicity, and let (uck)ken be a
sequence of associaled eigenfunctions, forming an orthonormal basis of L*(M.). If

He i\ ﬂO; a’nd Zf
f-—fo  weakly in L*((Mz, pe) — (Mo, fio))

implies
Refe = Rofo  strongly in L*((Me, pe) — (Mo, fio)),

then for all k € N
)\a,k — )\O,k as € \ 0,

and if s € N denotes the multiplicity of Aok, i.e.
A0k—1 > A0k = = A0 kts—1 > A0 k+ts (with the convention Ao = 00),
there exists a sequence Uy, of linear combinations of ucj, ..., U p+s—1 such that

e — uog  strongly in L*((Mz, pe) — (Mo, fio)) as € 0.

Proof of Proposition 4.1.5. Since the manifolds (M, gc, 11e) are uniformly bi-Lipschitz
diffeomorphic to (M, go, f10), we can deduce that with My also M, is compact and
satisfies mo (M, g, pe) < 0, so for every f. € H-Y(M,, g, ue) there is a unique weak
solution u, € H&(Ms,gg,ug) to

—dngE”uE(VgE’LLE) = fe in H_I(Msagenue)
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and we can consider the resolvent operator R.: L*(M;, g, puz) — L*(Me, g, pte) with
Refe := u.. With the same argument we can consider the resolvent operator Ry
associated with the Laplace-Beltrami operator on (M, go, fio)-

The resolvent operators defined above are positive, compact, self-adjoint, and a stan-
dard energy estimate shows that the operator norms [Re| z(r2(ar.y) are uniformly
bounded. Moreover, Lemma 4.1.3 tells that pu. — fio, and that f. — fy weakly in
L2((Mc, pe) — (Mo, fip)) implies Re fe = u. — ug = Rofo strongly in L?((Me, juc) —
(Mo, f10)). Thus the assertion follows from Lemma 4.3.1 together with the observation
that (A, u) is an eigenpair of R. (resp. Ro) if and only if (5,u) is an eigenpair of the
Laplace-Beltrami operator on (M, ge, pie) (resp. on (Mo, go, fio))- O

The proof of Proposition 4.1.6 is more crucial, as we cannot directly apply Lemma 4.1.3,
cf. also the proof of Proposition 3.2.7. Instead we need to modify the above proof of
Lemma 4.1.3 by replacing the application of Theorem 3.2.2 with Lemma 3.6.4.

Proof of Proposition 4.1.6. For every f. € H (M., g, p), fo € H (T, go, jig) the
equations

- dngg,,uE (Vgaue) =fe in H_I(Msa Ge, ,uz-:)a

- div@oﬁo (vﬁouo) = fo in Hil(TvgmﬂO)
admit unique weak solutions u. € ngr(Mg,gE, e) and ug € ngr(ﬂr,go, fig). Thus we
can consider the associated resolvent operators R.: L2(M., gc, pue) — L*(M;, ge, pie),
R.f- := ue and Ro: L*(T,go, o) — L*(T,go, fio), Rofo := uog, which are posi-
tive, compact, self-adjoint operators with uniformly bounded operator norms. Since
te — fip, by Lemma 4.3.1 it would be sufficient to show that f. — fo weakly in
L2((M., pe) — (T, f1p)) implies Ref- — Rofo strongly in L2((Me, uie) — (T, iig)), be-
cause then Lemma 4.3.1 applies and the assertion follows, since (A, u) is an eigenpair
of Re (resp. Ro) if and only if (%, u) is an eigenpair of the Laplace-Beltrami operator

on (ME’gE7/J’E) (resp. on (Tnga/lO))~

The rest of the proof is a variant of the proof of Lemma 4.1.3 (b). Assume f. — fy
weakly in L?((M;, i) — (T, fig)). By Lemma 4.1.1 (a)«<(b), the equations

- divg(]uuo (LEVQOEE) = pE?s in H_l (Ta 90, #0)7

: . 1 (4.24)
- lego#o (LongUQ) =pofo in H (T,goauo)

admit the unique weak solutions u. € H. and ug € Hy, where
H. := {u € HY(T, go, 1o); ][ upe dpo = 0},
T

Hy := {u € Hl(T,go,uo);][uPO dpro = O}'
T
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Since p. — po weakly-* in L°(T, go, jto), the spaces H. and Hy satisfy the assumptions
of Lemma 3.6.4. Moreover, we find for the right-hand sides in (4.24) pf. — pofo
weakly in L2(T, go, tto), so we can conclude u. — ug strongly in L?(T, go, o). But
by definition this coincides with R.f. = u. — ug = Rofo strongly in L?((M., p:) —
(T, f19)), and the proof is complete. O
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5. Integral Functionals with
Non-Uniformal Growth

While the arguments for the H-compactness method in Part II relied on the uniform
ellipticity of the coefficient fields associated with the Laplace-Beltrami operator, we
choose another approach in this part. Instead of uniformity of the ellipticity con-
stants, we consider a stochastic framework and assume the constants to have bounded
moments. This allows the application to manifolds that possibly, but rather unlikely
degenerate, see Chapter 6 for details.

In [NSS17] Neukamm, Schéffner and Schlomerkemper present a I'-convergence state-
ment for energies with degenerate potentials on discrete lattices, where they use tech-
niques from [Miil87] and [FM92]. This chapter is devoted to adapt their approach to
R™ and make a few generalizations, which are possible due to the continuity of the
underlying space, and necessary with respect to the application to Dirichlet energies
on manifolds.

The results of this chapter are all new and unpublished.

5.1. Setting

Let (22, A, P, 7) be a stationary, ergodic probability space. For every € > 0, w € Q and
bounded Lipschitz domain A C R™ we consider the energy functional £¥(-, A): LP(A) —
R U {+oc} defined by

fA We(z, %;Du(a?))d:c u € V[/LP(A)7

] (5.1)
400 otherwise,

EZ(u, A) = {
with the measurable stationary potential W: Q x R™ x R™ x R™*™ — R, i.e.
W™ = W9 (., 4+,
for every w € Q, y € R". (See Remark 5.1.6 below for a short comment on the

measurability of W.) We will conveniently drop the index w when it is clear from the
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5. Integral Functionals with Non-Uniformal Growth

context, especially to make the proof more readable. On the potential W we make the
following assumptions:

Assumption 5.1.1. There are 1 < p < oo, a constant C' > 0, exponents o > 1 and

8> Iﬁ, and measurable stationary functions Amin, Amax: 2 X R?” X R™" — Ry, i.e.

A =X +y) and AR = Noax (- + ),
for e.a. w € Q0 and every y € R™, such that the following conditions are satisfied:
e (Non-Uniformly Elliptic p-Growth)
Nain (2,9) (B FIP = C) < W(z,y, F) < Xox(@,y) C(IFP + 1) (5.2)
for a.e. w € Q, and every x,y € R™ and F € R™*",
o (Mild \pax-Convezity)
W< (z,y,tF + (1 —t)G) < C’(W‘”(:L“,y, F)+ W% (z,y,G) + )\‘;T’lax(:p,y)) (5.3)
for a.e. w € Q, and every x,y e R", F,G € R™*" and all 0 <t <1,
o (Weak Amax-Aa-Property)
W« (z,y,2F) < C’(W“’(az, y, F) + A\« (z, y)) (5.4)
for a.e. w € Q, and every x,y € R and F € R™*™,

e (Moment Bounds on Amax and )‘;nln)

es3 Sup EAmax (2, ¥)® + Amin(z,7) 7] < 0. (5.5)
z,yeR™

For technical reasons we need to distinguish between the cases of the dimension m =1
or m > 1, that is whether the function u in (5.1) is scalar or vector valued. In the
latter one we need to further restrict the exponents o and (3, or better to say the proof
can be improved for scalar functions so we can drop the additional assumption on «
and B in that case.

Assumption 5.1.2. The exponents o and 3 in (5.5) satisfy

b
1 1>{m if m>1, 56)

a BT)0, ifm=1.
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Remark 5.1.3 (Comments on Assumption 5.1.1).

e The Non-Uniformly Elliptic p-Growth Condition (5.2) is much weaker than the
degenerate elliptic p-growth condition assumed in [NSS17], where Amin = Amax.
It is a necessary generalization with respect to the desired application, because for
instance in Chapter 6 we will see that for any 2-dimensional Euclidean submani-
fold the Dirichlet potential is a strictly convexr quadratic form, which corresponds
to a 2 X 2-matriz with determinant equal to 1. Thus the two eigenvalues are
inwverse to each other, so either the eigenvalues are uniformly bounded and the
potential is uniformly elliptic, or one eigenvalue tends to zero while the other one
tends to infinity and the potential is non-uniformly elliptic. The degenerate case
With Amin = Amax cannot occur.

o Conditions of the Aa-type were introduced by Orlicz in [Orl32] and are frequently
used in the context of Orlicz-spaces. However, in our setting the Weak Amax-
Ao-Property (5.4), as well es the Mild Amax-Convezity (5.8), are included for
technical reasons and only arise at one point, namely in the proof of a technical
lemma, the Gluing Construction (Lemma 5.8.5 or 5.8.6, resp.). It is required to
fiz a gap in the strategy of [NSS17] coming from relazing the degenerate ellipticity
to the non-uniform ellipticity. But it is no restriction against [NSS17], since in
the degenerate elliptic case with Amin = Amax =: A the Mild Apax-Convezity and
the Weak Amax-Aa-Property are already included by the p-Growth Condition (5.2).
For the latter one implies for 0 <t < 1

Wz, y, tF + (1 -1)G) S Mo, y) (| F]P + (1 = 1)|G]” +1)
SWiz,y, F) + Wz, y,G) + Mz, y),

where < means < up to a constant depending only on C and p, as well as

Wiz, y,2F) S Mz, y) (2P| F)P + 1) S W(z,y, F) + Az, y).

e FEven though the potentials we are going to consider in the application are strictly
conver, Assumption 5.1.1 covers also cases of non-conver potentials. One ex-
ample is the model double-well potential W (x,y, F) = H(x,y)|F|* — |F|* for
H(xz,y) > Hy > 1. One can easily check that for C > %, Amin = Amax = %
the Growth Condition (5.2) is satisfied (which by the arguments in the previ-
ous point implies the Mild Apax-Convexity (5.3) and the Weak Apax-Ao-Property
(5.4)). Thus, it only depends on the moments of H whether Assumption 5.1.1 is

Fulfilled.

e The Moment Bounds on Apmax and )\r;iln are the only condition where the proba-

bility measure on Q enters. From the p-Growth Condition (5.2) with |F|P — oo
follows Amin < C*Amax. Thus the Moment Bounds on Amax and A\ - (5.5) imply

— min
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moment bounds for Amin and A\, too. For convenience we assume w.l.o0.g.

ess sup E[A\min(z, y)?] ess sup E[A\max(z, y)“]

myeR” <C and <C. (5.7)

ess sup E[Apin (2, y)fﬁ] ess sup E[Apax (2, y) 7’3]
$,y€Rn I7y€Rn

with the same constant as in Assumption 5.1.1.

Finally, to handle the spatial inhomogeneity, we demand the following form of conti-
nuity.

Assumption 5.1.4 (Spatial Continuity). There is a function p: [0,00) — (0, 1) with
limg_0 p(8) = 0, such that for a.e. w € Q, and every x1,x2,y € R"™ and F € R™™ ™ we
have

‘Ww(a:l?:% F) _Ww('IQay?FN < p(‘ﬂi‘l _x2|) (1+Ww($1?y7 F)+Ww($27y7 F)) (58)

Remark 5.1.5. While Condition (5.8) is a natural formulation, it is often more con-
venient to use the following version of the Spatial Continuity Condition (5.8): There
is a function p': [0,00) — (0,00) with lims_,o p'(d) = 0, such that for a.e. w € Q, and
every r1,x2,y € R" and F € R™™ we have

’Ww(xlvyaF)_Ww(x2’ya F)| < pl(|x1_x2|) (1+2min{W“’(x1,y,F),Ww(xQ,y, F)})

(5.9)
To see the equivalence we assume w.l.o.g. W¥(x1,y, F) > W% (z2,y, F) and conve-
niently write 6 := |x; — x2|. Then we can solve Condition (5.8) for W« (x1,y, F) and
get

w g g w
W ($1>y7F) < 1f(p()5) + (12_/)[(,((%) + 1)W ($27y7F)a

which is exactly Condition (5.9) with p' = (1fp).

Remark 5.1.6 (Measurability of the Potential W). Since W is stationary, it is of
the form W*(z,y, F) = a(tyw,z, F) for some function a: Q@ x R" x R™*" — R. We
assume measurability of W in the sense of A® B(R™) @ B(R"™*™)-measurability of a,
where B(R™) and B(R™*"™) denote the Borel-o-algebra on R™ and R™ ", resp. This
assures the existence of all integrals occurring in this chapter as functionals with values
in RU{—o0,+o0}. A sufficient condition, which is always satisfied in the applications
to the convergence of manifolds, is that a is a Carathéodory function, by which we
mean:

e For every x € R", F € R™*" is the function w — a(w,z, F) A-measurable.
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o For every w € Q, F € R™*" is the function x — a(w,z, F) continuous, (which
is already covered by the Spatial Continuity Assumption 5.1.4).

o For every w € Q, x € R" is the function F — a(w,x, F') continuous.

See e.g. [RocT1, §2] for more details about measurability of Carathéodory integrands.

5.2. Main Results

The first result is the following compactness statement.

Proposition 5.2.1 (Compactness). Let A C R"™ be a bounded Lipschitz domain. In
the situation of Assumptions 5.1.1, 5.1.2 and 5.1.4 from

u® —u in L'(A) and limsup £ (u®, A) < oo for a.e. we )
e\0

follows
u € WHP(A) and  uf —u in L]

loc

(4)
for every q > 1 with

q p n
In particular, every sequence in Wol’p(A) with uniformly bounded energy contains a
strongly L1(A)-convergent subsequence with limit in Wol’p(A), which implies that (E:(+, A))
is equi-coercive on Wol’p(A) w.r.t. the L1(A)-topology.

Our main result is the statement of I'-convergence to a deterministic integral functional
in the above setting.

Theorem 5.2.2 (I'-Convergence). In the given situation of Assumptions 5.1.1, 5.1.2
and 5.1.4 the energy functionals & a.s. I'-converge to some deterministic energy func-
tional Enom of the form

J4 Whom(x, Du(z))dz, ue Whp(A),

400, otherwise

ghom(u7A> = {
with the homogenized potential

Whom (2, F) = lim E[ inf W (z,y, F + Dé(y)) dy|, (5.10)
k—oo  Loew P (ky) J kY

where Y = [0,1)". Specifically there is a set Qo C Q of full measure such that for
every bounded Lipschitz domain A CR"™ and every w € Q¢ we have
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5. Integral Functionals with Non-Uniformal Growth

(i) for every u € WHP(A) there is a sequence (uf) in WHP(A) with u® —u € Wol’p(A)
such that

u® = uin L%p(A) and EY(u", A) = Enom(u, A),

(ii) for every (u®) in WIP(A) with u® — u in L'(A) we have

liIan\%lf EL(u, A) > Ehom(u, A).

Remark 5.2.3. The statement of Theorem 5.2.2 is actually a mizture between strong
_B_
LBP(A)-T'-convergence and weak L'(A)-T'-convergence, and can therefore be inter-

_B_
preted as LP+1P(A)-Mosco-convergence. However, if A is compact, Theorem 5.2.2 in

connection with the compact embedding Proposition 5.2.1 implies even L1(A)-Mosco-

convergence for % > (1+ %) P

p n’

We also state the major properties like continuity and ellipticity of the homogenized
potential Whom.

Proposition 5.2.4 (Properties of the Homogenized Potential). The homogenized po-
tential Wyom tn Theorem 5.2.2 has the following properties:

(a) Whom satisfies a uniform p-growth condition, i.e. there is a constant C' > 0 such
that for every x € R™ and F € R™"™ we have

LIFP = €' < Wim(a, F) < C'(1FPP 4 1).

a4l
In particular the constant can be given explicitly as C' := C with v o=

min{a, 8}.

(b) Whom satisfies the same spatial continuity as W, i.e. for every x1,x9 € R and
F € R™™ we have

| Whom (21, F) = Whom(z2, F)| < p(|lz1 — 22|) (1 + Whom (21, F) + Whom (22, F)).

c) W 18 continuous with respect to F, i.e. for every x € R™ and F' € R™™ e
() hom P ) Y
have

Fk — F = Whom($aFk) — Whom(ZL‘,F).

86



5.3. Strategy of the Proof and Auxiliary Results

Recovery sequence for W
and affine functions
(Lemma 5.3.3)

! \ J \ J

Recovery sequence for W
and Sobolev functions <=
(Lemma 5.3.1)

Gluing construction — Compactness result
(Lemmas 5.3.5 and 5.3.6) (Proposition 5.2.1)

Properties of W Lower bound for W
(Proposition 5.2.4) (Lemma 5.3.2)

Theorem 5.2.2

Figure 5.1.: Interplay of the lemmas in the proof of Theorem 5.2.2.

5.3. Strategy of the Proof and Auxiliary Results

An overview of the general strategy of the proof of Theorem 5.2.2 and how the numerous
lemmas will interplay is illustrated in Figure 5.1.

We will first show the Compactness Result Proposition 5.2.1, since it allows us in the
proof of the Lower Bound in Theorem 5.2.2 to lift the weak L'-convergence to strong
L'-convergence.

To prove the I'-convergence result Theorem 5.2.2 we would like to use the approach
of [Miil87] combined with a blow-up technique for the lower bound ([FM92], see also
[DG16; BMSO08]) as done in [NSS17|. The crucial point is that these techniques only
apply for spatially homogeneous potentials, so we need to reduce the problem to that
case.

The strategy is to discretize the potential W in the spatial argument in the follow-
ing sense: We part the considered set A into finitely many small cubes with small
diameter § > 0. Then for each such cube @ we can take any point xg € @ and work
with the spatially homogeneous potential W (x, -, ) instead of W(,-,-), making a dis-
cretization error which by the Spatial Continuity of W and Wy, (Condition (5.8) and
Proposition 5.2.4 (b)) runs out to vanish as 6 \ 0.

87



5. Integral Functionals with Non-Uniformal Growth

To be explicit we first prove I'-convergence for spatially homogeneous energy function-
als

55(U,A):[4W(§,Du(x))dx

with potentials W: Q x R? x R"™*™ — R satisfying the same conditions (5.2) and (5.7)
we assumed for W, except for the Spatial Continuity Condition (5.8). The over-lined
notation is used to make clear whether we deal with the reduced spatially homoge-
neous potential or with the original spatially inhomogeneous setting. Note that for
the spatially homogeneous potential W the corresponding functions Ay and Apax do
not depend on x as well, which we emphasize by writing Apin and Apax resp. In this
situation we can prove I'-convergence to the homogenized energy functional

Ehom(ua A) = / Whom(Du(w)) dx
A
with the homogenized potential

Whom(F):limE[ inf ][ Wy, F + Dé(y)) dy
k peW P (KY) J kY

as stated in Lemmas 5.3.1 and 5.3.2.

Lemma 5.3.1 (Recovery Sequence for W). There is a set Qo C Q of full measure such
that the following holds: Let A C R"™ be a bounded Lipschitz domain. Then for every
u € WYP(A) there is a sequence (uf) in WIP(A) with u® —u € Wol’p(A) such that

w

u® = uin L%p(A) and  E.(uf, A) = Enom(u, A)  for all w € Q.

Lemma 5.3.2 (Lower Bound for W). There is a set Qg C Q of full measure such
that the following holds: Let A C R"™ be a bounded Lipschitz domain. Then for every
sequence (u) in WHP(A) with u — u in L'(A) we have

lim\i(l)lffg(us, A) > Epom(u, A) for all w € Q.
€

The proof of Lemma 5.3.2 is done by blow-up as in [NSS17] and makes use of a
technical statement (Gluing Construction Lemma 5.3.5 for vector valued functions
or Lemma 5.3.6 for scalar valued functions resp.) stated below.

The proof of the recovery sequence statement Lemma 5.3.1 needs to be done in two
steps (also similar to [NSS17]): We first show the existence of a recovery sequence only
for affine functions (Lemma 5.3.3), which in general follows the approach of [Miil87],
and then extend this result to Sobolev functions.
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Lemma 5.3.3 (Recovery Sequence for W and Affine Functions). For every F € R"*™
there is a set Qp C Q of full measure such that the following holds: Let A C R™ be a
bounded Lipschitz domain. Then there is a sequence (uf) in WYP(A) with u¢ — Fx €
Wol’p(A) such that

8 —w _ _
u® — Fa in LP+TP(A) and E.(u, A) = [A|Whom(F)  for all w € Qp.

We lift this result to Sobolev functions by approximation with piecewise affine func-
tions. Therefor we need the Continuity of Wyen (Proposition 5.2.4 (c)), so we will
prove the properties of the homogenized potential (Proposition 5.2.4) first, which we
will do in the original setting of a spatially inhomogeneous potential.

The proof of the Continuity of the homogenized potential requires the following two
technical lemmas: the Equi-Integrability of A (Lemma 5.3.4) and the Gluing Construc-
tion (Lemma 5.3.5 for vector valued functions or Lemma 5.3.6 for scalar valued func-
tions resp.), which will also be used in the proof of the Lower Bound (Lemma 5.3.2).

Lemma 5.3.4 (Equi-Integrability of \). There is a set Qo C Q of full measure such
that the following holds: Let A C R™ be a bounded Lipschitz domain and let X\ be either
Amin 07 Amax- Then we have

Jim lim mA(de_ﬁgﬁqA%deﬂzo for all w € T,

where A == {z € A;N(£) > N} and Yy := {y € Y;A(y) > N}.

The proofs of the following Gluing Constructions for vector valued or scalar valued
functions resp. are quite technical and they are the reason for Assumption 5.1.2. Besides
they are also the only point where the Mild Apyax-Convexity (5.3) and the Weak Apax-
As-Property (5.4) show up.

Lemma 5.3.5 (Gluing Construction, Vector Valued Case). There are a set y C
of full measure and a sequence (On) in (0,00) with Oy — 0 as N — oo such that
the following holds: Let @QQ be a cube of side length | and let (u®) be a sequence in
WLP(Q; R™) with u¢ — u weakly in L'(Q) and let ©w € WH°(Q;R™). Then for every
e >0 and N € N there is a function ¢ € Wol’p(Q;]Rm) such that for all w € Qq

“§$m<m|(“+¢mQ) we: (", Q)

< Llimsup
e\

2 _
LEYWE, Q) + 2l — 2 ) + (14 10T ) O,

Q-

where < means < up to a constant only depending on the constant C' from Assump-
tion 5.1.1.

89



5. Integral Functionals with Non-Uniformal Growth

Lemma 5.3.6 (Gluing Construction, Scalar Valued Case). There are a set o C €
of full measure and a sequence (On) in (0,00) with On — 0 as N — oo such that
the following holds: Let Q be a cube of side length | and let (u®) be a sequence in
WLP(Q; R) with u¢ — u in LY(Q) and let w € WH°(Q;R). Then for every ¢ > 0 and
N € N there is a function ¢5 € WOIP(Q R) such that for all w € Qg

lim sup <| € (’LL + ¢N7 Q) (usv Q))
e\0
ué p a7
S Flimsup &0 Q)+ (14 IVl o)) (gl = Tl ey + O,

where < means < up to a constant only depending on the constant C from Assump-
tion 5.1.1.

Finally, to avoid having to construct the respective zero sets in the proofs, we want to
discuss the choice of the occurring sets g, g and €2 here once at this central point.

Remark 5.3.7 (Construction of the Sets Qg, Qo and Q). The Moment bounds on Amin
and Amax (Condition (5.7)) in connection with Birkhoff’s Pointwise Ergodic Theorem
(Lemma 2.2.2) ensures for every x € R™ and every bounded Lipschitz domain A C R™

lim + Amin (2, £)* dy = E[\

<C .S.
tim £ i @] SC e

and

li Amin A dy =EN7 <C 5
lim (z,2)77 dy = E[A i, (2)] < a.s.,

and the same holds for Apax. Here the zero sets only depend on x, so we can choose
for every x € R™ a set Q(x) C Q of full measure such that for all w € Q(x)

lim X‘rflm( Hrdy<C, lim )\"ljlax( Hrdy < C,

e\0 e\0 (5.11)
li A NPy < 1i A NPy < C.

51{1[1) mln( ) y — 07 8{1[1) max( ) y — C

The proof of Lemma 5.3.4 will give rise to shrink the set Q(x) even further using the
same argument to ensure additionally equi-integrability of X and N4, for w € Q(x).
While in the application of Birkhoff’s Pointwise Ergodic Theorem above the zero sets
only depend on x, the application of the Subadditive Ergodic Theorem (Lemma 2.2.3)
will yield zero sets depending on W, x and F' as well: For the subadditive set function

F defined by

FU) = inf / W* (i, y, F + Do(y)) dy
Wy P (U) JU
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5.4. Proofs
the Subadditive Ergodic Theorem gives for every cube Q C R™

Wion(e,F) =l inf Wy, + Do) dy (5.12)
N0 pemy (1) 1Q

on a subset of Q with full measure only depending on W, x and F'. We denote by Qp(x)
the intersection of this set with the set Q(z) above, so we have (5.12) as well as (5.11)

and the equi-integrability of Amin ond Amax- In the case of a spatially homogeneous
potential W we accordingly write Qp.

Finally we set Qo := yeqn Npegnxm Qr (@) (and Qo := Npegnxm OF Tesp.), s0 we
have (5.11), the equi-integrability of Amin and Amax and (5.12) for every x € Q",
F € Q™™ which will be enough due to the continuity of Wyom (Proposition 5.2.4 (b)

and (c)).

5.4. Proofs

As being said in the beginning, we will from now on conveniently drop the index w in
the proofs where it is clear from the situation.

5.4.1. The Compactness Result (Proposition 5.2.1)

We split the proof of Proposition 5.2.1 into the following three lemmas, which will yield
the result immediately:

Lemma 5.4.1. Let A CR"™ be a bounded Lipschitz domain. Then from

uf —u  weakly in L*(A) and limsup £ (u®, A) < oo for a.e. w € Q
e\0

follows w € WHP(A).

Lemma 5.4.2. Let A CR"™ be a bounded Lipschitz domain. Then from

uf —u  weakly in L'(A) and limsup £ (u®, A) < oo for a.e. w € Q
e\0

loc

Jollows u® — w in L{. _(A) for every ¢ > 1 with % > (1 + %)
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5. Integral Functionals with Non-Uniformal Growth

Lemma 5.4.3. Let A C R™ be a bounded Lipschitz domain, (u°) a sequence in
WYP(A). Then from

limsup £ (u®, A) < o0 for a.e. weQ
e\0

follows limsup,~ o [|[u®|| 14y < 0.

The proofs follow closely proofs of [NSS17, Lemmas 3.14 (last step), 3.3 and 3.21] with
an added continuity argument to treat the spatial inhomogeneity.

Proof of Lemma 5.4.1. We will show v € W1P(A) with a duality argument. To be

explicit we will find a constant C' > 0 with J4v0ju < C~'H?/)HL%(A) for j =1,...,n,

Y € C°(A) by smuggling in A\pi, with Holder’s inequality and then taking advantage
of the assumed boundedness of the energy, for [, Amin|Duf|P can be estimated by the
energy with the Growth Condition (5.2).

Step 1: Duality argument.

Let ¢ € CX(A)and j € {1,...,n}. Asmentioned in Remark 5.3.7 the Moment Bounds
Condition (5.7) provides control over moments of A(zg, 2) for every point zo € R™ and
w € Q(zg). Thus we fix xg € A, w € Q(x0) and use the lower semi-continuity of the
L'-norm and Hélder’s inequality to smuggle in A (o, ), ie.

[05ul[ L1 a)
< liminf 0,0 |11
s T € P % Z\— =1 £ %
< hran\"%lf (/A)\min(azo,a)]Du ()] dx) (/A/\min(xo,e) P |op ()| P T dx) .
(5.13)
We will show in Step 2 below, that from the boundedness of the energy follows
1
E = <limsup/ Amin (20, £)|Du®(z)[P dx) P < oo. (5.14)
e\0 A

To treat the second integral in (5.13) we use a two-scale-argument. Therefor we set for
0>0

Zs :={z € 2", Qs(z) N A # 0}, with Qs(z) :== z + 0Y,
and therewith write

[ Ao, 2P @ T dr < 3 sup W@ [ (0,7 de
A Qs(2)

2€Zs er&(Z)
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Now by Hélder’s inequality and the arguments from Remark 5.3.7 we get

e\0 eNO0
1
< CBAr-1§",

lim sup/ Amin (Zo0, %)_Til dr < 5”(limsup][ Amin (0, 5) B d:z:) B(p 1
Q(S(z) Qg(Z)

and since v is continuous, we conclude with § N\ 0

p—1
limsup</ /\mm(gz;o,f)fp%l]z/;(gzr)]p]%1 da;) b
e\o A
p—1
L p—1
< CPr ( lim sup |Y(x )|P Iy (5.15)
(5\0Z§ z€Q;(2) )
1
CHN, 21

Hence from (5.13) to (5.15) we get

1
| pwosute) e < tim s feyula gy < ECH e,
that is 0ju € LP(A) by duality, and by Poincaré’s inequality also u € LP(A).
Step 2: Proof of (5.14).

As mentioned in the beginning of the proof, we want to estimate E by E.(u®, A). To
that end we start with applying the Growth Condition (5.2), which gives

//\min(xg,g)|Du€(x)|pdx < C/ W (o, £, Du(x)) dx—|—02/ Amin(Z0, £) dz.
A A A

(5.16)
Hoélder’s inequality and the arguments in Remark 5.3.7 yield

limsup/ Amin(%0, £) dz < |A|<hmsup][ Amin (7o, £)“ d:v) < Cé|A\ < oo. (5.17)
eNo A eNo A

Now to estimate [, W (zo, 2, Du®) by the & (u®, A) we have to replace zo by z, and to
do so we use the Spatial Continuity of W (Condition (5.9)), which gives

/ W{(zo, £, Du(z)) dx
A

/ W(x ))dx+/ '(lwo — z|) (1 + 2W (2, £, Du®(x))) dz (5.18)
(1 + 20/ (diam A)) & (uf, A) + p(diam A)|A].
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Taking (5.16) to (5.18) together and recalling that A is bounded we conclude

timsup [ Anin(a0, £)| D (@) da
A

e\0
< (1 4 2¢/(diam A)) limsup & (uf, A) + (C**a + p/(diam A))|A|
e\0
< o0. O

Proof of Lemma 5.4.2.

Since u € W1P(A) by Lemma 5.4.1, the Gagliardo-Nirenberg-Sobolev inequality yields
u € L9(A). Thus for every § > 0 there is a function v € C*(A) with [|u —v| 1e(4) < g.
We claim that every compact subset A’ € A

limsup [|u® = vf|fagary < [[u—vl|Laca).- (5.19)
e\0

Note that this implies the assertion, since
lim sup [0 =l pagr) <lmsup flu® = ollpacay +§ < = vllzaga) +5 <4
15

£

To prove (5.19) we conveniently write @° := u® — v and @ := u — v. We will use the
Poincaré-Sobolev inequality combined with a two-scale-argument, so for n > 0 we set

Zy ={z €nl";Qy(z) N A" # 0}, with Qy(2) := z+nY.
Then for 1 small enough we have A" C U.ez, @n(2) € A and thus
1 1
—c —& —e|q —eld, n
e lzacay < ( 2 / (@) = fo,) | dx)q * ( > [fo, ™ >q' (5:20)
22,7 An(2) 2€Zy

From u® — u weakly in L'(A) we also immediately have 4 — @ weakly in L'(A) and
an (2) u® — an () U Thus Holder’s inequality yields

) 1
o @z: fa,m )" = (2 oyl

2€Zy

Z / |qu> i (5.21)

2€Zy

< [|allzaca)

We now claim

1
lim lim sup Z / |u® (= fQ (T ‘qu)q =0, (5.22)

N0
N eN0 z2€Zny
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which together with (5.20) and (5.21) yields

lim sup ||@® n = lim lim sup ||u® n < |la ,
nsy |45 || agary Yoy lim st 9N acary < ll@llpaca)

that is (5.19). We start with applying the Sobolev-Poincaré inequality and than, similar
to the proof of Lemma 5.4.1, use Hélder’s inequality to smuggle in Ayin (o, 2) for some
fixed g € A, w € Q(xp), 1

1
()

B+11
o(f |Du€<z>|%”dx) T
n(z)
1

z)

A

IN

where < means < up to a constant only depending on n and p. With the arguments
in Remark 5.3.7 we note

lim Amin (70, 2) P da < O,
EN0JQn(2)
thus
1
lim sup / |uf (z) — {, U |t d
5\0 (Z; (Z) QW( )
a1
S s (3 ([ wnteo, DD @) ar) )’
eNO 2€Zy

where < means < up to a constant depending only on n, p, 8 and C. Now we distinguish
the two cases ¢ > p and ¢ < p. On the one hand if ¢ > p we use Holder’s inequality
and the fact that #7Z,1n" < |A| to get

( Z (/ )\min(ib‘o,g)‘Dua(x>’pdx)g);

Amin (20, )| Duc ()| d:c)

B =

2€Zy n(2)

_p(i_1 T I3
<n (q P”A(/ )\min(x()ag)’Du (x)|pd$>
A

S =

and thus

1
lim sup Z/ |a®(x an(z)ﬁE’qu>q

eN0 z2€Zy

1
5n\A|1imsup(/ Amin (20, )| Du (x )ypdx)”.
eN0 A
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On the other hand if ¢ < p we use the continuous embedding l (Z,) C *(Z,) and get

(X (/ Aninl0, )| D ()P da) ) Z/ Anin(a0, £)| D ()P ).

Qn(2)

ZeZn n GZ"I
and thus
1
hmsup Z / |u® (z )ﬁa‘q d:l:) a
z2€Zn
n(1 +1) z € p I%
< n " hmsup Amin(x(]vg)u)u (.’E)‘ dx
e\o A
. 11,1 1
Since § — o+ 5 = 55 >0 and

lim sup/ Amin(To, £)|Duf (z)|P dz < oo,
eN0 A

as can be seen in the proof of Lemma 5.4.1 Step 2, in both cases we have (5.22). O

Proof of Lemma 5.4.3. The assertion is a consequence of the Gagliardo-Nirenberg-
Sobolev inequality, Holder’s inequality, the Moment Bound Condition (5.7) and (5.14),
which is applicable in this case. Precisely we have, since 5§1p >land 1> 621; %

we have

3 < D 3
[ullzray S 1D IIL%,J(A),

where < means < up to a constant only depending on A, p and n. We can further
estimate using Holder’s inequality and the Growth Condition (5.2) by

B+1
B

3=

€ _ . T iP >
HDU ”LWP(A) N (/A)\mln(x()? s) B+1)\m1n(‘r07 )5+1’DU’ ( )’BJA d.’lf

< (/A)\mm(xo, )~ ﬁdx)“(/AAmm(xo, )| D (a )|de)’1’

for every zyp € A. Now the assertion follows from (5.14) and the Moment Bound
Condition (5.7). O

5.4.2. Recovery Sequence for Spatially Homogeneous Potentials and
Affine Functions (Lemma 5.3.3)

We adapt the technique from the proof of [Miil87, Lemma 2.1 (a)] to the stochastic
case using the Subadditive Ergodic Theorem as in Remark 5.3.7 to replace periodicity
in the argumentation.
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Proof of Lemma 5.5.3.

Step 1: Construction of (u®) with boundary values.

To define the recovery sequence (u®) we part A into small cubes and then on each cube
take a minimizing sequence for inf¢ewg,p fW(y,F + d¢(y)) dy, which occurs in the

definition of Wiy, In order to do so we set for § > 0

Zs:={2€ 3" Qs(2) C A}, with Qs(2) ==z +

= J @sxcA4

2€Z5

Y.

3k

Then

consists of cubes with diameter § and we have |A\ As| — 0 as § — 0. For each z € Z;
and € > 0 we find 6§ € Wy(1Q5(2)) such that

lim W(y, F + D¢j .(y)) dy = lim inf / W (y, F + Do(y)) dy
N0J105(2) N0 peW, P (LQs(2)) J LQs(2)
(5.23)

Now we can define u§ € W!P(A) by

uj(z) = Fa+ ) edf (%),

FASVA )

where we use the convention that ¢5 . = 0 outside of Qs(z). Obviously u(z) = Fz for
x € A\ As and thus u§ — Fx € Wol’p(A). In Steps 2 and 3 below we will show that

}g{%i{rf e(uf, A) = Epom(F, A)  and }I{I(l)hr;l\sgp Jus — F| e 0,
hence we can find a diagonal sequence §(g) such that u® := ug(s) gives the desired

recovery sequence.

Step 2: Convergence of the energy.
For every z € Zs the arguments in Remark 5.3.7 together with (5.23) yields

Whom(F> = lim W(y7F + D¢§z(y>) dy
N0 lQa(z) 7
(5.24)
=t f WD)
and thus
lim li d =1 li JF+ Do (%) d
51{‘%51\% W( e 61{}(1) e{% Qs(2) W(EF + Deja(2) do
= hm Z ‘Qﬁ ‘Whom )
ZGZ(S
= |A|Whom(F)
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5. Integral Functionals with Non-Uniformal Growth

Now it only remains to note that by the Growth Condition (5.2) and the arguments
in Remark 5.3.7 we have

lim lim W(%, Du dz < Clim lim Amax(E)(|FIP + 1) dx
tilim [ Wz DU de < Clim iy [ R (DY 1)

= C%(|F|P '
CE(FP+1) lim |4\ 4l

=0.

_B_
Step 3: LB+1P-convergence of (u).

_B_
To control the LB+1”-norm of ui — F'r we use Poincaré’s inequality on the level of the
cubes Qs(z), so we can benefit from the small scale of the diameter 4, i.e.

/ |ug () Fx|ﬁ+1pdm = Z/ ]ed)é ﬂilpdx
A

2E€Zs Q(SZ
B

< ZW”’/ IDG5.(2)[777 da

Z€Z§ (Z

Forp £ € (x| TP
<oF" 3 (1Qs(IFIFP + [ |F+ Dg5(2)|777 dr)

2€Z4 Qs(2)
i
57+ OAHPWM1P+»§:!/) D ()| 717 da).

2€Z5

We use Hélder’s inequality to smuggle in Amin 50 we can apply the Growth Condi-
tion (5.2), which gives

[ D)

Qs(2)
<(f Ttz 5dx)f’(/m)mm< )| Dus (@) de
<N f Awnl2 )

Qs(z

(o W@m@mm+ﬁf
Qs(2) Qs(2)

With the arguments in Remark 5.3.7 and Hoder’s inequality we see

B+1
B

N 8
Amin (%) dx) o

lim sup][ Xmm( )~ Pdz < C
eNO  JQs(2)

and

1
lim sup][ Xmm(%) dr < limsup <][ Xmin(g)oc dx) “ < 057
eNO  JQ5(2) e\o Qs(2)
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and from (5.24)

21\1% sz )W( ( )) dx :Whom(F)'

Together this means

B
lim sup / s (x) — Fa|717 da
e\0 A

< o7 (|A|[F[F 1+ O3 Qs(2)] (Waam (F) + C*F)757)

2E€Z5

< 6757 (|A|[F[757 + C1A| (Wiom(F) + C°2") 557

and we finally conclude as desired

lim limsup ||uj — Fz| s =0. O
INO 2\ LFP (4)

5.4.3. Technical Lemmas: Equi-Integrability of A (Lemma 5.3.4) and
Gluing Constructions (Lemmas 5.3.5 and 5.3.6)

This is the most technical part of the proof of Theorem 5.2.2. We basically follow the
proofs of [NSS17, Lemmas 3.22 and 3.23]. The main differences are due to the non-
uniformity of the growth condition, as one cannot (informally speaking) estimate

E(F+G) < / FP +1GIP) < E(F) + £(C)

as in the degenerate case where Apax = Amin. A work around is given by the interplay
of the Growth Condition (5.2) with the Mild A\p,ax-Convexity (5.3) and the Weak Apax-
Ag-Property (5.4).

Proof of Lemma 5.3.5. Despite Lemma 5.3.5 states only the existence of a sequence
(On), the following proof will show that one such sequence can be given explicitly by

Oy :=1— (),

Step 1: Construction of ¢5%;.

We want to define ¢%; € Wol’p(Q) such that @+ ¢5 = u® on most part of (), as there
the left hand side of the assertion would vanish. Such a construction can be done by
cutting off u* — @ near the boundary of Q). But since we a priori do not know where
to cut u® — W exactly, we minimize the energy over several cut-off functions. To do so,
we set for j=1,...,N

Qo :=Q and Qj = {x € Q;dist(z,0Q) > ]#}
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5. Integral Functionals with Non-Uniformal Growth

Then Qn € Q; € Qj—1 € Qo =Q and
@\ Qnl = (1-(FFH)™)Ql < Ox[Q.
Now we choose cut-off functions ¢; € C°(Q;—1) with
Yij=1lonQ;, Yj=00n0Q\Q; 1, Vbl oo (@) < %

and set ,
wti=ut —u and ¢ = hjut € WOLP(Q)‘

Since for any given N € N and € > 0 we have only finitely many functions ¢/, we can
find j(N,e) € {1,..., N} such that the energy difference &, (4 ¢=7\2), Q) —E. (v, Q)
is minimal, and we set ¢%; = =9 Ne) - Then of course the energy difference can be
estimated against the arithmetic mean of all energy differences, i.e.

E.(w+ 0%, Q) - D A £.(w",Q)).
j=1

With the idea to split the energies like
ge('v Q) = 2«5('7 Qj) +ga('a Qj—l \ Q]) + 38('7 Q \ Qj—l)v

we claim that

—hmsupZ( T+ ¢, Q;) —?E(UﬁQj)) —0, (5.25)

e\0 =1

L hmsupZ( (@ + ¢, Qj-1\Qj) —E:(u Eij—l\Qj))

e\0
7=1
. T 2 _ _
S % hm\s(l)lpé’e(u ,Q\QnN) + NTHU - qup(Q) + (HDquoo(Q) + 1)ON‘Q’
3

(5.26)
and

—hmsupz( (@+ 6™, Q\ Qj-1) — E-(u5,Q\ Q5-1)) S (1Dl ) + 1) ONIQ;

e\0 =1

(5.27)
because then we will immediately get
lim sup (‘ U+ oy, Q) — (UE,Q)>
e\0
% hm supz ol ( -+ o™, Q) — (v Q))
< v limsup @5 (v, Q\Qn) + l\Q| Hu all7, (HDﬂHp“(Q) +1)On,

e\
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which in fact is the assertion, taking into account that

gs('7Q \ QN) = Ee(vQ) _EE(WQN)

and that by the Growth Condition (5.2) and the arguments in Remark 5.3.7

liminf X &, (uf > i ’fl/ Amax(Z) (&|Duf (z)P — C) d
i il g (', Qu) 2 liminf gy | Amax(2) (DU @) =€) do

Z - lirnsup][ Amax(2) da
e\ Q

> 1.

Step 2.1: Proof of (5.25).
Here the construction of ¢*7 pays off, since we immediately see @ + ¢°7 = u® on Qj
and thus

Ec(@+ ¢77,Q;) — E-(u5,Q4) = 0.

Step 2.2: Proof of (5.27).
Again we benefit from the construction of ¢*7 and find u+ ¢/ =u on Q \ Q;j-1. So
we can use the Growth Condition (5.2), to get on the one hand

E(T+ 67,0\ Q1) S /Q o (DT 1)

and on the other hand, with Apin < Amax,

Rain () (3D (@) — C) da 5/ R (2) .

8., Q\Qj1) < - / »

Q\Qj-1

Now the arguments in Remark 5.3.7 and the definition of Oy yield
N — . p—
o tisup 3 (8@ + 677, @\ Q1) — (0, Q\ @)
€ j=1

< Amax (Z) (| Du(z) [P 4 1) da
N/Q\QN (@) (|Du()P +1)

< (1078 ) + 1)ONIQL.

Step 2.3: Proof of (5.26).
Similar to the previous step we find

m

CE(,Q\ Q) < /Q o, dma(2) (5.28)
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5. Integral Functionals with Non-Uniformal Growth
which will be covered so we only need to concentrate on E.(u + ¢*7,Q;-1 \ Q;). By
the definition of ¢=7 on Q;_1 \ Q; we find

D(t+ ¢*7) = (1 — ;) Dt + ;D + w V],

Thus the Mild Apax-Convexity (5.3) (with F' = 2(1 — ;) Du+ 2¢;Du®, G = 2w6V1/J]T,
t = 1) and the Weak Apax-Ao-Property (5.4) yield

Ee(@+67,Qj-1\ Qy)
S / (W(% (1 - ¢])Dﬁ+ ijus) +W(%a wev%T) +Xmax(§)) dz
QJ I\Qj

<g€(u£’Qj_l\Qj)+/Q- - (W(Z, Du) + W(Z, 0 VYT) + Aax(2)) da,

(5.29)
where in the last step again the Mild Ayax-Convexity was used (this time with F' = D,
G = Du®, t =1—1);). We estimate the integral with the Growth Condition (5.2), and
together with (5.28) we find

gs(ﬂ + ¢€7ja ijl \ Q]) - gE(uga le \ Ql)
<E(F,Q,1\ Q) + / N (2) (| D) P + 1) da
Q\QnN
4 / R (E) 1 () PV () P .
Q .

i—1\Qj

The first term fits perfectly as
N — —
SOE Qi1 \ Q) = E(u,Q\ Qn)
j=1

as required. The second term can be treated as in the step before using the arguments
in Remark 5.3.7, which yields

[ R0} + 1) do S (150 g + 1ONQ
Q\@n
For the third term we can make use of the definition of v; to get

[ Rm@lr @@ < 3 [ R @i @P s
@-1\Qj Qj-1\Qj

The remainder of the proof is dedicated to show

N
fimsup § 3O [ R ) s
QJ*l\Q‘j

eNo =1
S wlimsupE:(u7, Q\ Qm) + + 35 fu =l ) + (14 1 DT e ) OnIQ.
g

(5.30)
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5.4. Proofs

because then (5.27) follows. To do so we would like to replace Amax by Amin and |w®|
by |Dw®|, since then with the definition of w®, the p-Growth Condition (5.2) and the
fact that Apin < Amax we would get

/ Ronin(2)| Do ()P dr < o, Q1 \ Q) + / Fomax(2) (| D)+ 1) do.
Qj-1\Q; Q

\Qn
(5.31)
To reduce (5.30) to the situation of (5.31) with the Poincaré-Sobolev inequality we use
basically the same arguments as for (5.19) in the proof of Lemma 5.4.2. We introduce
a partition Q of Q1 \ Q; consisting of disjoint cubes with side length not greater than

1
(3122 )P and write

Amax (£)|w® (z) [P dx = / maxg w® welP dz
[ @l @rar= 3 [ Sl - fy]

QeQ

+z\wi>p/ e

QReQ

(5.32)

Since uf — u weakly in L' (Q) and thus fow® = fg(u—1u) we note with the arguments
in Remark 5.3.7

N
i 4 3 3 foel” [ Suus(2)de S 30 5 Lo~ @1 = -l
j=1

J=1QeQ QeQ
(5.33)
For the first term in (5.32) we use Hélder’s inequality to remove A from the integrand,
then recall that by assumption O‘al L BH; 1 so we can use the Poincaré-Sobolev
inequality to estimate w® by Dw® and take advantage of the side length of the cubes,
and finally use Holder’s inequality again to smuggle Ay, back into the integrand, i.e.

Q
< %(]émxwwdx)i(]apw ( )Wpdx)%“
= 3]{&(7{2/\111&)((”;)0‘ dx)i(]é)\mm( )" ﬁdﬂC) ’ (]i)Amin(g;)‘Dwg(x)\pdx),
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5. Integral Functionals with Non-Uniformal Growth

which gives with the arguments in Remark 5.3.7 and (5.31)

hmsupN Z Z/ max(Z) {w fawg‘pda:

Jj= 1Q€Q

N
5 3&2%2 Z hms(;lp/ )\mln |Dw ( )|pdx
i=1geq ™
= hmsup/ Xmin(£)|Dw5($)|pd$
o ~o Jowen :
S i (limsupE-(u%, @\ Q) + (1 + 1077 ) O .

The crucial point where the assertion —u > %l — % occurred above in the proof of

Lemma 5.3.5 was when we used the Pomcaré—SoboIev inequality to control u® —u (Step
2.3). If u® and @ are scalar valued functions, we can use a truncated version of u® —
instead, so the absolute is a priori bounded. But then we loose the fact that the left
hand side of the assertion vanishes on the most part of the cube (Step 2.1), and we have
to replace it by another argument. In the discrete setting of [NSS17] a mild convexity
at infinity was demanded to handle this problem. Contrastingly in our continuous
setting such additional assumption is not needed, we can use the fact that indicator
functions has almost everywhere vanishing derivatives, and the respective argument
(Step 2.1 in the proof of Lemma 5.3.6) can be done using the equi-integrability of Apax
(Lemma 5.3.4).

3

Proof of Lemma 5.5.4.
Step 1: The first equality.
We set

(y) = 1, Ay) > N,
Y00, M) < N

Then xn(y)A(y) can be regarded as XR}’XW and by Birkhoff’s Pointwise Ergodic The-
orem (Lemma 2.2.2) for every N € N there is a set of full measure on which

tim [ () do =ty /A WW(EX(E) da
= \A\E[ ]6 xXn(W)A(y) dy}

= AIE[/Y Ay) dy}

so on the intersection of these sets the desired equality holds.
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5.4. Proofs

Step 2: The second equality.
We first note that with Hélder’s inequality

E[| Y]] gE[\YNP—a(/Y %dy)a} < N—"‘E[/YA(y)a dy} <ON™®,  (5.34)

since E[ [, A(y)*dy] = fYIE[Xa] dy < C by stationarity and the Moment Bound Con-
dition (5.7). From this point the proof is standard. We define a sequence (gy) of
functions

gn(y) = min{A(y),n},
which monotonously converges pointwise toﬁX. Then the Monotone Convergence The-
orem (applied twice) first gives fY Gn — fy A and then, since this convergence is again
monotone, E[ [, gn] — E[f, A]. That means we can find ng € N such that

B[ [ X0) ~ anolo) ] < 5
Now for N € N large enough such that ngCN~¢ < g we find with (5.34)

0< E[/Y Ay) dy} < E[/Yk(y)—gno(y) dy]HE[/Y Ino (Y) dy} < $+noE[|YN(] <6,

which gives the desired convergence. O

Proof of Lemma 5.3.6. As in the proof of Lemma 5.3.5 we will show the assertion of
one concrete sequence (Oy) given by

Oy :=1- (5" +E[/ 5 Amax (1) dy]
{y€Y§)\max(y)>N}

Obviously with Lemma 5.3.4 we immediately see limy_,oo On = 0.

Step 1: Construction of ¢5%;.
We define ¢%; the same way we did in the proof of Lemma 5.3.5, but instead of u® —u
we use the truncated function

l l

ut(z) —u(r) <

—3N7 — 387
w(z) == qus(z) —u(x), |u(z) —a(z)| < 540,
Bﬁ’ uf(z) —u(z) > 3%

Then, following the arguments in the proof Lemma 5.3.5, it remains to show

N
lim sup + E(U+¢%,Q;) — E-(uf, Q)
o ;( ’ ) (5.35)

S U+ VR ) (Bl — Tl g) + ONIQI),
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5. Integral Functionals with Non-Uniformal Growth

N
111;1\8(1)111)]{72( @+ ¢, Qj-1\ Qj) — Ec(u stj—l\Qj))

<limsup&:(v®,Q\ Qn) + (Hvﬂnpoo(Q) +1)On|Q)|

e\0

(5.36)

and

N
lim sup & Z( T+ 9™, Q\ Qj-1) — E(UE,Q\Qj—1)> (IVall} <o) +1)On|Q].

e\0 =1
(5.37)

Step 2.1: Proof of (5.35).
The key is for the indicator function

V(@ + uf)(x) = Vor (a),
V(@ +uf)(x) = Vi),

< <
=
E &
Il
— o
(I

and thus, as by deﬁnitionﬁgb&j = w* on @, with the Growth Condition (5.2) on each
energy, and the fact that Amin < Amax

Ee(T+ 67, Q) — Ec(uf, Qj)
=/ xa(x)W(’;”,VU(w))dw—/ X () W (%, Vui(z)) do

j Qj

<C [ @ R+ [THP) dr = [ 1) R ETVH @ = O o
Qj Q;

S (419 ) [ X an(2)

Since x*(x) = 1 means by construction |u®(z) — U(x)| > 337, we have

o
/Q (@) de < /Q @)~ @] 4 < ¥ w1100

3N?Z
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and hence with the equi-integrability of Ayay (Lemma 5.3.4)

limsup/ Xa(x)xmax(f)dm
e\0 Q

Xa(x))\maX(g)dx

= lim sup

E\O /{‘$EQ§AmaX(§)<N}

+ lim sup/ X
N0 S {2€QAmax(2)>N}

§limsupNNTQ\|u€ _HHLl(Q) +E|:/ _ Xmaux(y) dy |Q|
6\(0 {yEY§)\lllax(y)>N}

3 _
< M luw =l g) + OnIQI,

so (5.35) follows.

Step 2.2: Proof of (5.37).
This step can be adopted from the proof of Lemma 5.3.5 without any changes. We use

the Growth Condition (5.2) and the arguments in Remark 5.3.7 and see
Ec(@+¢7,Q\ Qj-1) — E(v",Q\ Qj-1)

<C Xmax(%)ﬂVH(:Uﬂp + 1) dx — / Xmin(%)(é|Vu€(x)\p — C) dx
Q\Qj—1 Q\Qj-1

< Amax(E) (VT ()P + 1) dz
N/Q\QN (@) (|Va()P +1)

and

limsup/ R (2) ([VA@) P +1) do S (IVal ) + DONQL (538)
eNo Q\QNn

Step 2.3: Proof of (5.36).

Once more we start with similar arguments as in the proof of Lemma 5.3.5 Step 2.3.

From the definition of ¢/ on Qj—1\ Qj and x° we see a.e. on Qj_1 we see
V(@+¢°7) = (1 —¢j(1 — x°))Va + wVip; + 1;(1 — x°)Vus

and thus with the Mild A\pax-Convexity (5.3), the Weak A\pax-Ag-Property (5.4) and
the p-Growth Condition (5.2) we have

E(U+¢™,Q5-1\ Qy) — E(u”, Q-1 \ Q)
S/ Amax(2) (IValP + [w®(x)[P|Ve;(x)|P + 1) dz + E-(uf, Qj-1 \ Qj).
QA\QnN

The most part of the integral is again covered by (5.38). For the remaining part we

l

3nz> S0 we find with

note that by construction ||[V);|pe gy < % and [|w®|| feo(q) <

107



5. Integral Functionals with Non-Uniformal Growth

the arguments in Remark 5.3.7

fimsup [ (V)P (@) do 5 ONIQ)
N0 JO\QN

and thus (5.36) follows. O

5.4.4. Properties of the Homogenized Potential (Proposition 5.2.4)

Proof of Proposition 5.2.4 (a). The upper bound follows directly from the definition
of Whom, the Growth Condition (5.2) and the Moment Bound Condition (5.7). To be
precise, for every k € N we have

il Wy PrDow) < £ Wiy Py < COFP+) { Al dy
PEW P (kY) JkY kY kY

and thus with Holder’s inequality

1
[

lﬁm@JﬁéﬂWp+Dg&ﬂf)

Amax (513’ ?/)a dy}
kY

< (FP +1),

since E[f, 1 Amax (2, y)* dy] < C by the Moment Bound Condition (5.7).

Now for the lower bound we write

Fom it f Wy F+ Do) dy
$eW, (1Y) JLy

and fix w € Qp(x), such that by the arguments in Remark 5.3.7 we have
F) =1 . .
Whom(z, F) 61{% Fe (5.39)

If we additionally fix € > 0 and ¢, € Wol’p(%Y) we have, because [1,- Dp. = 0,

rr=|f raf < (f, 1P+ Dowla)

and we can use Holder’s inequality to smuggle in Apin, so we can apply the Growth
Condition (5.2) and get

PP < (£ dwinen) 77 a0)" (£ duin(o )| + Do) )
S( . )‘min(fﬁay)_ﬁdy)pil
EY

: (c][ly W (z,y, F + D¢.(y)) dy + C* ][ Amin (2, ) dy)

ly

€
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Since ¢, € WO1 P (%Y) was taken arbitrarily we can pass to the infimum and see

PP < <][1Y Amin (2, ) 7T dy)p_1<0}"5 + 02][

Awin(,y)dy). (5.40)
ly

With the arguments in Remark 5.3.7 and Holder’s inequality we get

1 p—1 1 1
li Amin “r1d < i Min (2, 2) P dy)” < CB
ngl\s(;lp (]{Y (x,y)" 7 y) < lim (]i (z,%) y) <C

and

e\0 eN\0

so taking the limit € N\, 0 in (5.40), and remembering (5.39), we finally end up with
the desired inequality

1
lim Sup][1 Amin (2, y) dy < lim (f Amin (2, £)® dy) « < Cé’
1y Y

a+1

B
FP < CF (Waom(w, F) + C*7). 0

Proof of Proposition 5.2.4 (b). We fix k € N. If we take a minimizing sequence (¢g) in
W, (kY such that

lim  W(x2,y, F + D¢s(y))dy =  inf W (xa,y, F + Dé(y)) dy,
NO Sy PEW,P(KY) J kY

then we find by the Spatial Continuity of W (Condition (5.9))

inf W (21, y, F + Do(y)) dy
WP (kY) J kY

<+ W(z1,y,F+ Dos(y))dy

kY
ékyW@m%F+D%@D®
+ p/ (|21 — za) ][ (14 2W (22,5, F + Dés(y))) dy
kY

and thus, taking the limit 6 N\, 0, the expectation value and then the limit £ — oo
Whom (71, F) — Whem (72, F) < p'(|z1 — xgl)(l + 2Whom (22, F))

Moreover, by interchanging the roles of 1 and z9, we also get
Whom (72, F) — Whem (21, F) < p'(|z1 — 1'2])(1 + 2Whom(:r1,F)).

Thus we have

|Whom (21, F) = Whom (22, F)| < p' (|21 — 22]) (1 + 2 min{ Whom (21, F), Whom (22, F)}),

which gives the desired form of continuity (compare the discussion about the equiva-
lence of Conditions (5.8) and (5.9)). O
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5. Integral Functionals with Non-Uniformal Growth

Proof of Proposition 5.2.4 (c). First for w € Qp(z) Lemma 5.3.3 ensures that we can
find a recovery sequence (uf) in W1P(Y) such that

5
u® — Fyin LF1P(Y) and h\I{I(l) Wz, 2, Du®(y)) dy = Whom(z, F).
€ Y
Then, since F; — F, by the Gluing Construction (Lemma 5.3.6) for every € > 0 and
all j, N € N there is a function ¢5/ € Wy (Y) such that

lim sup lim sup lim Sup][ Wiz, 4, F + Dqﬁf\’,](y)) dy < h\I(I(l) W(z, %, Du®(y)) dy
Y € Y

- ) g9 ) g
N—oo  j—oo e\0

= Whom(z, F).

On the other hand for w € (¢ €2F; (z) the arguments in Remark 5.3.7 give

Whom($7Fj) = lim inf W($7y7F]+D¢(y))dy
e\0 d)eWOl’p(%Y) ly

€

< lim sup][ Wiz, %, F; + D¢§\’rj(y>) dy
eN0 Y

for every j € N. Together for w € Qp(z) N(;cy 2r; (x) we end up with

lim sup Whom (2, Fj) = limsup lim sup Whom (2, F}) < Whom(z, F),
j—o0 N—oo  j—oo
which does not depend on w anymore. Now interchanging the roles of F' and F}; as well
as taking the limes inferior as j — oo instead of the lines superior yield also

Whom (z, F') < liminf Wyom (x, Fj),

J]—00

so the assertion immediately follows. O

5.4.5. Recovery Sequence for Spatially Homogeneous Potentials and
Sobolev Functions (Lemma 5.3.1)

Proof of Lemma 5.5.1.

Step 1: From affine functions to piecewise affine functions with rational derivatives.
Let u be a piecewise affine function on A, i.e. there is a finite partition {A;} of A
consisting of bounded Lipschitz domains such that Du = F; € Q™™ on A;. Hence
on every A; we are in the situation where we can apply Lemma 5.3.3, which gives a
recovery sequence (uf) in W1P(A;) with uf —u € Wol’p(Ai) such that

)

W = uin LFAP(4;)  and lm E (15, 45) = Eno(Fir 41).
€
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Using the convention u§ = u outside of A;, we can put these recovery sequences together
to

u® i=u+ Z(uf —u) € WHP(A),

)

8
which obviously satisfies u® — u € WyP(A) and u¢ — u in LF-17(A), and

;ii%?g(ua, A) = Zii\r(r{l)fs(uf, Ay) = Zéhom(m, A) = Epom (u, A).

Step 2: From piecewise affine functions to sobolev functions.
Let u € W'P(A). Since the piecewise affine functions on A are dense in W1P(A) we
can find for any ¢ > 0 subsets A; C A% C A and a function us € WP(A) such that

e Ajis open, A% is compact, and |A\ As| — 0,

e us is piecewise affine with rational derivative on As and us = u on A\ A%,

o Us — U in Wl’p(A).

us piecewise affine with

rational derivatives

Figure 5.2.: Sketch of the sets As C A° C A and the function u’ in the proof of Lemma
5.3.1 Step 2.

On the set A5 we are in the situation of Step 1 so we can find a recovery sequence (vj)
in W1P(As) with U5 —us € Wol’p(Ag) such that

B — —_
Ug — Ug in me(A(s) and ll\I‘I(l] 5€(U§,A5) = ghom(U5, A(g)
We set

Ug(l‘) — v§($)7 WS A57
us(x), x€ A\ Ag,
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5. Integral Functionals with Non-Uniformal Growth

which gives functions u§ € WHP(A) with u§ —u € Wol’p(A) and

lim lim [Ju§ —u| s = 0.
N0 eN\0 LBFIP(4)
If we additionally could show
lim lim € (u§, A) = Epom(u, A), (5.41)

N0 e\ 0

then we could find a diagonal sequence §(g) such that u® := ug(e) fulfills all the desired
assertions. We split the proof of (5.41) into the two sub-goals

lim sup lim sup |z (u§, A) — Enom(us, A)| =0 (5.42)
6N\0 eNo
and
lim sup | Epom (s, A) — Epom (u, A)| = 0. (5.43)
N0

We first note that £.(u§, As) — Enom(us, As) by the definition of u§, so for (5.42) it
only remains to look at A\ As. But since |A\ As| — 0 we see that E.(u§, A\ As)
and Epom(us, A\ As) both vanish as ¢ N\, 0 and § \, 0, because by the Growth
Condition (5.2) and the arguments in Remark 5.3.7 we have

lim sup lim sup | €. (us, 4 \ Ag)‘

N0 e\0
< C'limsup limsup/ Amax (£)(|Dus(z)|P + 1) da
5\0 8\0 A\A5

and by the Uniform Ellipticity of Wpem (Proposition 5.2.4 (a)) and the fact that us — u
in WHP(A) we have

lim sup ‘ghom(utsv AN\ A5)|
N0

< limsup/ (|[Dus(z)P +1)dx
A\Ag

N\ 0

< C'lim sup (/ (|Du(x)|P + 1) dx —|—/ |Dugs(x) — Du(x)|P daz)
5\0 A\As A

=0.

To claim (5.43) we note Wiom(Dugs(z)) — Whom(Du(z)) for a.e. x € A as a conse-
quence of us — u in WP(A) and the Continuity of W (Proposition 5.2.4 (c)). Now
(5.43) follows from two applications of Fatou’s Lemma, i.e.

gom yA) = li WomD dz <li 'fzom , A),
o (1:4) = [ 10 Wi (Dus(2) d < it B (15, 4)
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5.4. Proofs

and, since C’(|Dugs(z)|P+1) = Whom(Dus(z)) is non-negative by the Uniform Ellipticity
of Whem (Proposition 5.2.4 (a)),

Erom (11, A) = / lim (C'(|Dus(@)P + 1) ~ Waom(Dus(e))) da

/c’ \Du(@) +1) do

> —limiaf / (C'(|Dus(@)|P + 1) — Wiom(Dus(x))) da

/c’ \Du(z)P + 1) dz

= lim sup Epom (us, A). O]
SN0

5.4.6. Lower Bound for Spatially Homogeneous Potentials (Lemma
5.3.2)

Proof.

Step 1: Definition of ue and p.

W.lo.g. we can assume (E.(uf, A)) to be convergent, because if lim inf\ o Ec(uf, 4) =
oo the assertion is trivial, and otherwise we can pass to a subsequence converging
to liminf.\ g E-(u®, A). Then by the Growth Condition (5.2) and the arguments in
Remark 5.3.7 we can define uniformly bounded, non-negative Radon measures u. by

pe(da) := (W(£, Du®(z)) + CAmin(2)) da,

and the weak-x-compactness of Radon measures allows us to pass to a (not relabeled)
subsequence and find another non-negative Radon measure p such that p. — p, which
implies

hm\glf we(U) > p(U) for all open sets U C A, (5.44)
3
h{% we(K) = p(K) for all compact sets K C A. (5.45)

Thus our definition of u. and the arguments in Remark 5.3.7 (after applying Holder’s
inequality) immediately yield

a+1

< . . < . el 6 P
u(A) < 11g{}51fue(A) < gl\%fa(u ,A) + |Al,
so it will suffice to show
1(A) > Epom(u, A) + Ca A (5.46)
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5. Integral Functionals with Non-Uniformal Growth

Step 2: Localization.

The Lebesgue Decomposition Theorem (see e.g. [EG92, 1.6 Theorem 3]) allows us to
regard the non-negative Radon measure p as the sum of a non-negative Radon measure
te < dz, the absolutely continuous part, and a non-negative Radon measure pgldz,
the singular part, with Du, = Dy a.e. on A, where Dy, and Du denote the Lebesgue
derivative

Dpg(x) = limM and Dp(z) = lim M, with Q;(z) := x—&—(—é, %)n

INO [ INO [
Note that (5.45) implies limg\ g pe(B) = p(B) for all bounded Borel sets B C A with
p(0B) = 0. So if we fix a Lebesgue point z € A and let (/;) be a decreasing sequence
converging to zero such that p(9Qy;(x)) = 0, which is possible as (A4) < oo, we find

and hence our claim (5.46) reduces to

Pl ) g, (Due)) + €7 (5.47)

lim lim
j—o0 e\ 0 l]

because ((A) = [, Dpa(z) dz + ps(A) > [, Dp(x)dz.

Step 3: Approzimate LP-differentiability.
First we note that by the definition of pu. and the arguments in Remark 5.3.7 (in
connection with Holder’s inequality) we have

a+1

o ke(@Qy(r) at1
AR T T B Rt Gyl O

so claim (5.47) actually takes the form

lim lim 7€ (u®, Q, (z)) > Whom(Du(z)). (5.48)
j—ooe\0 "7 J
Since we assumed lim.\ o & (u®, A) < oo, we are in the situation of the Compactness
Result (Proposition 5.2.1), so we can follow u € W'P(A) and hence u is a.e. LP-
differentiable with LP-derivative Du, i.e. for a.e. x € A

lim ll(][
J—0o0 7 Q

Thus for almost every € A we can find a sequence (%;), ey of affine functions of the
form w;(y) := u(z) + Fj(y — ) with F; € Q"*™, that satisfies Du; — Du(z) as well
as

1

) =) = Due)y ~ )" ay)” <o

L

. ) _ . i3 —
Wm prlle =Tl oy =0 and  lim gl =45l 0@y @) = 0-
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5.4. Proofs

Thus, and because the Compactness Result (Proposition 5.2.1) also gives u® — wu in
L(A), we are able to use the Gluing Construction (Lemma 5.3.5 or Lemma 5.3.6 resp.)
to find functions ¢ € Wol’p(Qlj (x)) such that

hfi sup lim 1sup pr€e(Wy + 05, Qi (2)) < Jim lim pr€e(u, Qi (@)). (5.49)

But now the Continuity of Wyeom (Proposition 5.2.4 (¢)) and the arguments in Re-
mark 5.3.7 give

Whom(Du(x)) = lim Whom(Dﬂj)

Jj—o0
= lim lim  inf ][ W (y, Duj + ¢(y)) dy
7700 eN0 geW (LQy, (2)) Qi; (z)

= lim lim inf LE (a+¢,Q (x
J=00 N0 GEW(Q1, () (i + 6, Qi ()

< lim sup lim sup l_%ag (T; + ¢§, Ql]- (7)),
j—o0 o

which combined with (5.49) gives (5.48). O

5.4.7. Proof of Theorem 5.2.2

To lift the results in Lemmas 5.3.1 and 5.3.2 from spatially homogeneous potentials
W to the general potential W we will part the set A into small cubes, i.e. for § > 0,

d € /nQ set
Zs:={z € %Z"; Qs(z) N A # 0}, with Qs(z) ==z + %Y.

Now on each cube Qs(z) we will replace W by the spatially homogeneous potential

W, :=W(z,-,-) with the associated energies

£ (u, 1) ::/Uwz(g,Du(x))dx:/UW(z,ﬂ;,Du(x))dx

and

&2 hom(u,U) 3:/UWz,hom(DU(iU))d$:/UWhom(Z,DU@)) dz.

The thereby occurring error can be controlled with the Spatial Continuity of W and
Whom (Condition (5.8) and Proposition 5.2.4 (b)) and vanishes with the diameter § of
the cubes.

Step 1: Recovery sequence.
By Lemma 5.3.1 we find for every z € Zs a recovery sequence (uj ) in WP(Qs(z)NA)

with u§, —u € Wol’p(Q(;(z) N A) such that

B _
ug,z —uin LWP(Q(S(Z) N A) and h\r‘% gz,e(ug,zv Q5(Z) N A) = gz,hom(ua Q(;(Z) N A)
€
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5. Integral Functionals with Non-Uniformal Growth

for all w € Qg since z € Q" by construction. Using the condition that u§, = u outside
of Qs(z) N A we can put these sequences together and define uj by

us =u+ Y (uj ) e WhHP(A),

2€Z§

i
which obviously satisfies u§j — u € Wol’p(A) and u§ — w in LFF1P(A4). If we could
show

lim lim & (u%, A) = Enom (u, A), 5.50
lim lm £.(u5. 4) = (. 4) (5:50)
we could find a diagonal sequence d(¢) such that u® := ug( o) is the desired recovery

sequence. To show (5.50) it is sufficient to note, that for the energies we have by the
Spatial Continuity of W and Wy, (Condition (5.9) and Proposition 5.2.4 (b))

(ug, A Z Ee(uj ,, Qs(2) N A)

TEZs

< Z(“uh,@s( >nA>+/

A (le = =) (1 + W= (2, Duj .(2)) de)
€75 Qs(2)NA

<(1+0) > E.c(uf,, Qs(2) N A) + 5|4
2E€EZ§
(5.51)
as well as

Shom(u, A)
=) Enom(u, Qs(2) N A)

TE€EZs

<y (  hom (U, Qs (2 )mA)+/

£E€Z5 Qé(Z)ﬂA
<(1+40) > & nom(u, Qs(2) NA) +5|A].

2€45

P (1 = 2)) (1 4+ W 2 hom (£, Du(x))) dx)

(5.52)
Thus, since Ew(ugz, Qs(2) NA) = &, hom(u, Qs(2) N A), we end up with

lim sup lim sup | & (u§, A) — Epom(u, A)| =0,
oN\0 e\0

which is (5.50).

Step 2: Lower bound.
Using (5.52) and Lemma 5.3.2 we see

Ehom (u, A) < limsup Z & hom(u, Qs(2) N A)
N0 TEZs

< hmsuphmmf E.:(uf,Qs(z)N A
SN0 N0 x;é «l (=) )
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5.4. Proofs

for all w € Q. Similar to (5.51) we find

Y Eaelwt,Qo(2) NA) < (14 0)E(u", A) + A,

TEZs

which immediately yields

Enom (u, A) < li{_n\%lf E(uf, A),

and the theorem is proven. O
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6. Application to Rapidly Oscillating
Riemannian Manifolds

As in Part 1T we want to apply our recent results to the case of bi-Lipschitz diffeomor-
phic manifolds. But now we drop the uniformity of the Lipschitz bounds and consider
manifolds with rapidly oscillating random micro structure. We will discuss examples
with degenerated geometries, like unbounded volume or collapse to singularities. Our
results from the previous chapter will still yield Mosco-convergence, and in some cases
even spectral convergence, to a deterministic manifold.

All proofs of this chapter are collected in Section 6.3.

The results of this chapter are new and unpublished.

6.1. Setting and Results

In Section 4.2 we considered examples of manifolds, which were all Euclidean subman-
ifolds constructed from some reference manifold My via adding normal perturbations
with strength given by a periodic function f (see Section 4.2 for details). To give a fla-
vor of how Theorem 5.2.2 reaches beyond the limitations of the uniformly bi-Lipschitz
diffeomorphic manifolds and what situations may occur, we imagine that we manipu-
late the amplitude of the function f in a random way, independently for each period
(see Section 6.2 for a concrete formulation). Then f and f’ might no longer be uni-
formly bounded in L>°(M)), and since the diffeomorphisms h. directly depend on f,
the so generated manifolds are not uniformly bi-Lipschitz diffeomorphic. However, if
the coefficient fields L. can be controlled statistically in the sense of moment bounds
on their eigenvalues, we are able to gain at least Mosco-convergence of the manifolds
from the results in Chapter 5.

In the described situations the unboundedness of f and f’ coincides with arbitrarily
large volume of the perturbed manifold. In contrast one can also construct examples
with uniformly bounded volume forms where the unboundedness of the diffeomor-
phisms is caused by singular points. One could for instance think of geometries similar
to the bubble-like micro structures studied by Khrabustovskyi [Khr09]: In a flat surface
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6. Application to Rapidly Oscillating Riemannian Manifolds

small holes are cut, arranged on a grid of scale ¢, and at these hole spheres with radius
of order € are attached. Note that if the radius of a hole tends to zero, the part where
the sphere is attached collapses to a singular point. In [Khr09] spectral convergence
is shown for the case that the radii of the holes were assumed to be deterministically
bounded from below (with dependence of ). We will gain spectral convergence in
Section 6.2.3 for a quite similar setting, where the radii are chosen randomly so they
can be arbitrarily close to zero.

In the spirit of Chapter 4 we want to adapt our I'-convergence result Theorem 5.2.2 to
the situation of sequences (M., g, ptc) of weighted Riemannian manifolds that are (not
necessarily uniformly) bi-Lipschitz diffeomorphic to a weighted Riemannian reference
manifold (Mo, go, o). But since Theorem 5.2.2 is devoted to the flat Euclidean case, it
would not be enough to pull the Dirichlet energy of M. back to an energy functional on
My, but also to pull this energy functional back once more to R™ along local coordinate
charts of My. However, for a bi-Lipschitz diffeomorphic chart (U, ¥) of My and a bi-
Lipschitz diffeomorphism h.: My — M., the composition h. o U=1: U(U) — M. is a
bi-Lipschitz diffeomorphic chart of M., and we end up with the same energy functional
on U(U) C R™ if we pull the Dirichlet energy on M, back step by step along h. and
U~ or directly along h. o ~!. Against this background it is much more natural to
skip the intercalated reference manifold and regard the manifolds M, as locally (not
necessarily uniformly) bi-Lipschitz diffeomorphic to subsets of R™. The only role of
the reference manifold then is to ensure, that all these subsets in the end can be put
together to one limiting manifold.

Definition 6.1.1 (Common Reference bi-Lipschitz Atlas). Let (M, ge, j1c) be a family
of weighted Riemannian manifolds that are bi-Lipschitz diffeomorphic to a reference
manifold (Mo, go, po) via the diffeomorphisms he: My — M.. Let further A be a pair-
wise disjoint partition of My and 2y be a differentiable atlas for My such that

(i) for every A € A there is a unique chart in (U, V) € Ay with A C U, which is
called the associated chart to A,

(ii) for A1, Ay € A with associated charts (U1, V1), (Us, ¥a) € Ay we have

Ay 7& Ao = \Ill(Ul) N \IJQ(UQ) = 0.

Then A = {(he(U), ¥ o h71); (U, V) € Ao} is a differentiable atlas for M. and the
family (21;) is called a common reference atlas for (M) with the corresponding set of
reference cells {U(A) CR™ A € A, (U, V) associated chart to A}.

If A consists only of bounded Lipschitz domains and every chart included in . is bi-

Lipschitz, the common reference atlas is called bi-Lipschitz. It is called countable, if
A is countable.
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OO0000oogo
OO00oo0googo
Oooo@©ooo
OO000o0ogo
OO0000oogo
OO00o0oogo

U(U) C R™

Figure 6.1.: Illustration of a common reference atlas, cf. Definition 6.1.1.

If a bi-Lipschitz diffeomorphic family (M) provides a common bi-Lipschitz atlas (2;)
with corresponding set A of the reference cells, for every A € A is a bounded Lipschitz
domain in R™ and there is a unique chart (U, ¥) € 2y with A C U(U). Moreover for
every € > 0 there is a unique chart (U, ¥.) € 2 with ¥, = Woh_! and for every such
chart we find (¥, o he o W™1)(A) = A. Thus A can be interpreted as a (flat) reference
manifold and for the (not necessarily uniformly) bi-Lipschitz diffeomorphic manifolds
h-(¥~1(A)) € M. and the corresponding diffeomorphisms are given by W-1,

In the examples in Section 6.2 the only reference cell will be the reference manifold M)
itself and the associated chart is given by (M¥, (h*)™1).

While the existence of a common atlas yields a family of pulled back Dirichlet energies
on bounded Lipschitz domains of R", and these energies already have strictly convex
quadratic potentials, we are still far from the setting of Theorem 5.2.2, as the potentials
can depend on € in every possible way. Thus we need to restrict to the special case of
what we call locally rapidly oscillating manifolds. Therefor we recall the definition of
the adjoint operator d¥Z: R™ — T'M, of the differential d¥.: TM, — R™:

g (dTEE, ) (U (z) = € dV.y for all £ €e R™ n € Ty () Me.

Definition 6.1.2 (Locally Rapidly Oscillating Random Manifolds). Let (M, g, fic)
be a family of weighted Riemannian manifolds with a countable bi-Lipschitz common
reference atlas () and corresponding set A of reference cells, and denote by o the
density of pe against the Riemannian volume measure associated to g.. The family
(M.) is called locally rapidly oscillating, if for every reference cell A € A there is a
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coefficient field L: A x R™ — R™™ such that for every ¢ > 0 and (Us,V.) € A with
A C VU (U.) we have for all x € A, §,n € R"

p=(2) 9. (dVZE, dVin)(z) = L(z, £)§ -n+o(e),  p: =0Tcy/dety,,

where §. = g. o U1 and 7. = 0. 0o U1, and the error term o(e) is to be understood
uniformly in x as € 0.

For a family (M2, g%, 1¥) which is also indexed by w € Q for same probability space
Q, the atlases AL, that means the charts WY but not the reference cells A, also depend
on w. If the associated coefficient field 1L* is stationary in the second argument (that
is in 2 ), we call (M) locally rapidly oscillating random manifolds. (Note that the
error term o(e) in the random case reads as “an error which for a.e. w tends to zero
uniformly i x as e \,0”.)

The definition of rapidly oscillating manifolds becomes much more transparent in the
case where M. are submanifolds of the Euclidean space equipped with the induced
metric and measure, because the condition then reads

pe(z) (A (2)d¥(2)T) = L(x, f) + o(e), Pe = \/det(d\lfgd\I’g)*l.

Now we are in position to formulate the assumptions on L in order to apply Theo-
rem 5.2.2.

Proposition 6.1.3 (Mosco-Convergence of Rapidly Oscillating Random Manifolds).
Let (MZ, g%, 1) be a family of n-dimensional rapidly oscillating random manifolds
with reference manifold (Mo, go, o). Assume that for every reference cell A and the
corresponding coefficient field L as in Definition 6.1.2 we have

w

(i) the smallest reps. largest eigenvalue X\, (z,y) resp. M. (z,y) of L¥(z,y) satisfy

|3

sup E[Amax(z,y)] < o0 and sup E[Amin(z,y)” 2] < o0,
TEA, TEA,
yeR™ yeR™

(ii) there is a function p: [0,00) — (0,1) with lims\ o p(6) = O such that for almost
every w € ) and every r1,x2 € A, y,& € R™ we have

IL(z1,y) — L(z2,9)| < p(|z1 — x2]) (1 + [L(z1,y) + L(z2,9)]).

Then for every density po on My there are a deterministic metric go and a measure
dfio = podpo on My, such that MY Mosco-converge (w.r.t. L?) for a.e. w to (Mo, go, fio)

as € \( 0.
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Remark 6.1.4.

e By going through the proof of Proposition 6.1.83 one can find an explicit formula
for the metric go, which we do not state here as in this abstract framework it
1§ not very practical. But in the discussion of the case of Euclidean submani-
folds below, we will address the explicit expression of §o. However, if the man-
ifolds (MY, g¢, p2) are uniformly bi-Lipschitz diffeomorphic to a compact refer-
ence manifold, the volume forms p. weakly-x converge in L (My) to some py and
the corresponding metric go tn Proposition 6.1.3 coincides with the one given in
Lemma 4.1.3.

e While the formulation of assumption (i) in Proposition 6.1.8 is fitted to L>-
Mosco-convergence, the proof allows the following weaker variant of the state-
ment: If one replaces the boundedness of the 5 th moments of the eigenvalue Amin
by

sup E[Amin(‘ra y)iﬁ] <0
TEA,
yeR™

for some B > 1, one still can conclude Mosco-convergence of the manifolds, but

with respect to LP for % = 62—;1 —% (cf. the compact embedding Proposition 5.2.1).

However, we do not engage in this any further, since we will need L?-convergence
of the minimizers in order to deduce spectral convergence (cf. Proposition 6.1.5
below) and therefore L?-Mosco-convergence is the natural notion of convergence
for our studies.

One main difference to the case of uniformly bi-Lipschitz diffeomorphic manifolds is
that the volume forms p. in general do not need to be uniformly bounded, so we
cannot expect the measures p. to converge, which is a necessary condition for spectral
convergence. For instance in the situation discussed in the beginning of this chapter
(cf. also Section 6.2) the family of volume forms might become unbounded in L% (M)
for a.e. w € (), since the amplitude f can be arbitrarily large.

For that reason we are free to choose any density pg for the measure on the Mosco-
limiting manifold. But if on a compact reference manifold the volume forms p. are
bounded and do converge weakly-* in L, then their limit is the natural choice for py,
since in this case, utilizing the compactness result Proposition 5.2.1, we gain spectral
convergence, too.

Proposition 6.1.5 (Spectral Convergence of Rapidly Oscillating Manifolds). Sup-
pose that My is compact. If in the setting of Proposition 6.1.8 p. N po weakly-+
in L (Mo, go, p1o) for a.e. w € Q, the family (M) spectral converges (w.r.t. L?) to
(Mo, go, f10) for a.e. w € Q.

123



6. Application to Rapidly Oscillating Riemannian Manifolds

As mentioned above, if the manifolds M2 are submanifolds of the Euclidean space the
situation simplifies. We want to formulate our result for the even simpler case where
the reference manifold Mj is a subset of R"™ equipped with the standard metric and
the Lebesgue measure, and the oscillating structure of (M,) is natured such that M
itself is the only reference cell. In this situation we can turn back to the formulation
used in Chapter 4 thinking of M, as the reference manifold and MY being bi-Lipschitz
diffeomorphic to My via the diffeomorphism h¥: My — M.

Corollary 6.1.6. Let (My,-,dz) be an n-dimensional Riemannian manifold, which is
a subset of R™ equipped with the induced metric and measure, and let (MY, -, dx) be a
family, indezed by w € Q and 0 < ¢, of n-dimensional submanifolds of the Euclidean
space (with the induced metric and measure), being bi-Lipschitz diffeomorphic to the
reference manifold My via the diffeomorphisms hY: Mo — M.. Further assume that
there is a stationary coefficient field . Q x My x R™ — R™™ gsuch that

o () (dh (2)Tdhe (2) " = L(2, 2), g = \/det dheTdh2,
If the following conditions are fulfilled

w w

1) the smallest resp. largest eigenvalue X\. (x,y) resp. A x,y) of L¥(x,y) satisfy
min max

n
sup E[Amax(z,y)] < oo and sup E[Amin(z,y)” 2] < o0,
x€Mo, x€Mo,
yeR” yeR”

(ii) there is a function p: [0,00) — (0,1) with lims\ o p(6) = O such that for almost
every w € ) and every r1,x2 € A, y,& € R™ we have

IL(z1,y) — L(z2,y)| < p(Jz1 — 22|) (1 + |L(z1,y) + L(22,9)|),

then for every density pg on My there are a deterministic metric go and measure dfig =
podx on My such that for a.e. w the manifolds MY Mosco-converge to (Mo, go, fio)
w.r.t. L? as € \, 0. In particular, o is explicitly given by go(&,n) = po]L0_1§ - with

Lo@é-n=tm E[ it Liwy)(€+ Vo) -+ Vo)) ©6)
oo Loewy P (0k)m) J0k)"

Moreover, if the reference manifold My is open and bounded with a (possibly empty)
Lipschitz boundary and p. — poy weakly in L>®(My) for a.e. w € Q, then for a.e. w the
manifolds M¥ spectral converge to (Mo, Go, fio) w.r.t. L? as e \ 0.

Remark 6.1.7. In the above case of the reference manifold My being a flat subset of R™,
with the standard metric and measure, a sufficient condition for spectral convergence
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can be formulated as follows: Let (MY, g%, u¥) be an n-dimensional submanifold of
R™ being bi-Lipschitz diffeomorphic to My via the diffeomorphisms h¥: Mo — M.
Assume that there is a function a: Q x My — R™ "™ such that

dh? (x)TdhZ (z) = a(Tew, x).
If we denote by Co(w) > 0 the Lipschitz constant of h¥, i.e.

@€l < 1dh2e] < Ce(w)lé]
for all £ € R™, and if these Lipschitz constants have bounded moments in the sense of

supIE[C’é”Q)} < 00, (6.2)
e>0

then one can easily check that
Ce(w) ™™ <p <Ce(w)”  and  Ce(w) " 2¢] < JL¥E| < Celw)™ 2],

and therewith for every eigenvalue \ of LY one has

n 71,2
A< Co(w)"? < Cg(w)(nZ) and AT < C(w) Tt < Cg(w)(”2)7

so one finds the assumptions of Corollary 6.1.6 satisfied and is granted with Mosco-
convergence. (Note that the exponent n? in (6.2) is far from being optimal.) If in
addition the volume forms (p%) are uniformly bounded in L>°(My) for a.e. w € Q, we
even deduce weak-x convergence due to the stationarity, and therefore conclude even
spectral convergence. Despite this condition looks natural with regard to the similarities
to the uniformly bi-Lipschitz diffeomorphic case (cf. Definition 4.1.2), in practice it is
often more convenient to examine the eigenvalues of LY then the Lipschitz constant of

h?, since L“ needs to be calculated anyway to find the limiting manifold.

Remark 6.1.8 (Realizability of (Mo, go, f10)). If in the setting of Corollary 6.1.6 the
density po is chosen such that pg_2 = det Ly and the corresponding metric gg ts smooth,
then fig is the Riemannian volume measure associated with the metric go and the lim-
iting manifold (Mo, go, fio) can be isometrically embedded into R™ for some m large
enough due to Nash’s Embedding Theorem. Such an embedding ho: Mg — R™ is char-
acterized by the identity dhidho = poly *

hom "

6.2. Examples

As indicated in the beginning of Section 6.1, we want to modify the examples from
Section 4.2 to demonstrate several aspects of the method provided by Corollary 6.1.6.
The first two examples (Section 6.2.1) are laminate-like corrugated graphical surfaces
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6. Application to Rapidly Oscillating Riemannian Manifolds

over R? and demonstrate the intersection of the method established above with the
results for uniformly bi-Lipschitz diffeomorphic manifolds in Chapter 4. With the fol-
lowing two laminate-like corrugated spherical examples (Section 6.2.2) we leave the
region of uniformly bi-Lipschitz diffeomorphic manifolds, since we allow the perturba-
tion of the reference manifold to be arbitrarily large. Therewith we give up control
over the volume and do not have weak-x convergence of the volume form, hence our
results provide only Mosco-convergence, but not spectral convergence. The last ex-
ample (Section 6.2.3) steps out of the line, as it is a non-laminate-like example. We
consider mushroom-shaped surfaces of revolution, repeatedly arranged as on a checker
board, but whose stem width is chosen randomly (and independently) on each tile.
Since the curvature (locally) becomes singular as the stem width tends to zero, the
family of manifolds constructed this way is not uniform bi-Lipschitz diffeomorphic, but
provides bounded volume forms and is therefore an example for spectral convergence
of non-uniformly bi-Lipschitz diffeomorphic manifolds. In this sense, even though the
limit is isotropic, this example is the most important.

6.2.1. Uniformly bi-Lipschitz Diffeomorphic Manifolds

The families of submanifolds considered in the following two examples are actually
uniformly bi-Lipschitz diffeomorphic an could therefore be treated with the methods
from Chapter 4. However, this would provide at first only spectral convergence along
a subsequence, and in a second step one would observe that the limit is independent
of the choice of the subsequence, which yields spectral convergence of the entire se-
quence. In contrast, Corollary 6.1.6 allows us to gain spectral convergence of the entire
family immediately. Of course, both methods yield the same limiting manifold (up to
isometry).

A graphical surface with concentric random corrugations

As already mentioned we want to manipulate the amplitude of the periodic corrugation
independently in each period. To make this precise we consider a smooth, 1-periodic
function f: [0,00) — R of the form f(y) := ¥(y — |y]) for some ¢ € C°(0, 1), where
|y| denotes the integer part of y, i.e. |y| € Z with |y| <y < |y]+1. Now we introduce
the set of admissible corrugations

Q= {w: R = Ryw(y) = a(lyo + y]) f(yo + y) for some yo € [0,1),a € [0,2]"},

which is isomorphic to {(yo0,a);y0 € [0,1),a € RZ}. On this set we can define a
probability measure by letting the offset yo € [0,1) be uniformly distributed and the
amplitudes a(k) € [0,2] for k € Z be independently uniformly distributed, and the
push-forward of this measure defines a probability measure on ). Endowed with this
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measure and the Borel-o-algebra, 2 forms a probability space, which is stationary and
ergodic w.r.t. the group action Tyw :=w(y +-) forw € Q, y € R.

We now start with the reference manifold
MO = {(7", 9);7" € (67 R)79 € [Oa 1)}

for some R > 6 > 0, and define the submanifolds M* = h¥(My) of R3 (with the
induced metric and measure) via h¥: My — R3,

rsin 270
he(r,0) := | rcos2mb (6.3)
ew(g)

forw e Q, e € {%,k € N}, which are displayed in Figure 6.2 with 1 as in (4.7) for
some values of €.

& ©» & =

_ 1
€= 16

ool—

_1 —_
€=7 g =

Figure 6.2.: A family of graphical surfaces with concentric random corrugations. The
three pictures on the left show a realization of M defined by (6.3) with ¢
as in (4.7) and decreasing values of €. The picture on the right shows the
deterministic limiting surface Ny defined via (6.4). As e N\, 0 the spectrum
of the Laplace-Beltrami operator on M. converges to the spectrum of the
Laplace-Beltrami operator on Ng.

Guided from Corollary 6.1.6 we calculate the density

= VdheTdhe = 271y [w!( 9

and the coeflicient field

2rr

w w w w\— \/wl I)2+1
L = pg (dha Tdhs) b= ((;) w'(£)24+1
27r

Obviously, this coefficient field is of the desired form L¥(r,6) = L*(r, L) with

2mr
w | VW (y)2+1
L(r,y) = . N

2mr
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6. Application to Rapidly Oscillating Riemannian Manifolds

and, since w’ is uniformly bounded in L (M) for all w € , the eigenvalues of L are
uniformly bounded and, in particular, have bounded moments as claimed in Corol-
lary 6.1.6. Hence, there are a deterministic metric gy and a measure fig on My such
that the family (M) Mosco-converges to (Mo, go, fio) for a.e. w € Q.

To identify the limiting metric and measure we first note that by Birkhoff’s Ergodic
Theorem (Lemma 2.2.2) we find for the average over any cube Q C M

2 pl

tim £ () dy =274 [ [ VPGP Ldyda = ()
E\O Q 0 0

for a.e. w € Q. Therefore, and since the densities p& are uniformly bounded in L*° (M),

we conclude that p® = pg weakly in L% (M) for a.e. w € Q, which makes pg the natural

choice for the density of the limiting measure fig, as it yields also spectral convergence
of the manifolds.

Now in order to find the corresponding metric gg, we need to calculate the coefficient
field Lo via (6.1), i.e.

k
Log-n=lm B[ int f [ L)€+ Vo) - (n+ Vo) dy].
oo LeeWP([0k) T Y0

This can be solved via the Euler-Lagrange-equation or by appealing to standard (stochas-
tic) homogenization formulas for diagonal matrices associated to laminate-like struc-

tures, and we find
4m2y2 0
IL’O = PO 20 .
0 zop

Therewith the limiting metric turns out to be

go(&,m) = pollg '€ - = % 0 eoq
) 0 0 47-‘-2,r2 .

According to Remark 6.1.8, an isometric embedding hg: My — R3? of the limiting
manifold (Mo, go, fio) can be found via dhldhy = poLgl, namely

rsin 276
ho(r,0) = r cos 2mt : (6.4)
fOr po(t)? 1dt

422

That means, the submanifold Ny := ho(Mp) of R? (with the induced metric and
measure), pictured in Figure 6.2, is the spectral (and Mosco-) limit of the family (M)
for a.e. w € Q as ¢ \, 0. Note that hg does not depend on the initial choice of the
radius ¢ of the excluded circle around the origin in the manifolds MY, and therefore
we can pass to the reference manifold My = (0,1) x [0, 1), and the excluded origin of
the manifolds MY then coincides with the apex of the cone-shaped limiting manifold
Np.
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A graphical surface with star-shaped random corrugations

In the same manner as above we can of course adapt the first example of Section 4.2.1.
We start with the same probability space €2 and the same reference manifold My as in
the example above and define the submanifolds MY = h® (M) of R? via h¥: My —
R3,
rsin 2760
he(r,0) := [ rcos2mb (6.5)
cw(9)

forweQ, e e {%, k € N}, which are pictured in Figure 6.3 with 1 as in (4.7) for some
values of ¢.

K K B _

1 _1 _ 1
€=1 €=3 €= 16

Figure 6.3.: A family of graphical surfaces with star-shaped random corrugations. The
three pictures on the left show a realization of MY defined by (6.5) with
¢ as in (4.7) and decreasing values of . The picture on the right shows
the deterministic limiting surface Ny defined via (6.6).

Doing the same calculations as above, we find the density

2 1
:é/o /0 Va2 f'(y)? 4 4n2r2 dy da,

which is the a.s. weak limit of p* in L?(Mj), and the metric
1 0
N ~1
0 — OI[J — .
T (0 p%)

An isometric embedding ho: My — R3 of the limiting manifold can be found via
dh{dho = poly ', namely

po(r)
21

ho(r,0) = | %t cos2md | (6.6)

fO /1 po(t dt

The submanifold Ny := ho(Mp) of R?, shown in Figure 6.3, is the spectral (and Mosco-)
limit of the family (M) for a.e. w € Q as € N\, 0. As in the example above we can pass
to the reference manifold My = (0,1) x [0, 1), and the excluded origin of the manifolds
MY then coincides with a circle in the boundary of Ny.

sin 276
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6. Application to Rapidly Oscillating Riemannian Manifolds

6.2.2. Manifolds with Unbounded Volume

The previous two examples were uniformly bi-Lipschitz diffeomorphic families of man-
ifolds and therefore also handable with the methods provided by Chapter 4. In the
following we present two examples of manifolds with unbounded volume, so they cannot
be uniformly bi-Lipschitz diffeomorphic.

A sphere with random radial perturbations oscillating with the latitude

Continuing the spirit of the examples above we start again with a smooth, 1-periodic
function f: [0,00) — R of the form f(y) := ¢¥(y — |y]) for some ¢ € CZ°(0, 1), but this
time we get the set of admissible perturbations

Q:={w: R—=R;w(y) =allyo +y])f(yo +y) for some yo € [0,1),a € [0, 00)%}.

Note that in contrast to the examples above we allow arbitrary large amplitudes.
We define a probability measure on € by letting the offset yo € [0,1) be uniformly
distributed and the amplitudes a(k) € [0, 0c0) for k € Z be i.i.d. with finite expectation,
ie. Ela(k)] < oo. Together with the Borel-o-algebra, and the group action Tyw :=
w(y + ) for w € Q, y € R, the probability space {2 becomes stationary and ergodic.

Having the spherical examples in Section 4.2 in mind, we choose the reference manifold
to be
MO = {((pve)v wE (57 1- 6)70 € [07 1)}
for some § > 0, and define the family of submanifolds M := h¥(My) of R® via
h?: MO — Rg,
sin mp sin 276
he (@, 0) = (14 ew(£)) | sinmp cos 276 (6.7)
COS TP

for w € Q, e € {#;k € N}. In Figure 6.4 we illustrate M2 with 1 as in (4.7) and a
x2-distribution with 3 degrees of freedom for some values of .

The same computations as in the previous example yield the density

,0(5(90) =2m(1 + 8(&)(%)) sin e \/w/(g)Q + 71'2(1 + 6&)(%))2

and the coefficient field

2w sin wp 0
L(p,y) = | VT
7 0 VIR |

27 sin
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_1 _1 _1
€=1 €=3 €= 16

Figure 6.4.: A family of spheres with random radial perturbations oscillating with the
latitude. The three pictures on the left show M, defined by (6.7) with ¢
as in (4.7) and decreasing values of e. The picture on the right shows the
limiting surface Ny defined via (6.8).

whose eigenvalues themselves are unbounded, but have bounded moments as claimed
in Corollary 6.1.6, since on the one hand

[ee)
2
/ / 7rsm7r90 dyP(da) < 2sinmp < 2,

Va?f(y)? + 2
where P denotes the probability measure on [0, c0) associated to the distribution of the
amplitudes, and on the other hand, using the fact that /22 + y2 < |z| + |y|,

/ / \/md P(da) < 2ws11n7r5(/ooap(da)/ol If’(y)ldy+7r) < 0.

2w sinmp

Thus (6.1) yields the homogenized coefficient field
27 sin Ty 0 oo pl
Lo(p) = P o with p = / / Va2 f'(y)? + n2 dy P(da).
0 27 sin Ty 0 0

Since the volume forms p¢ are unbounded in L% (M), they cannot weakly-* con-
verge, so there is no natural choice for pg. However, with respect to the periodic case
(cf. Section 4.2) we decide for

o] 1
po(p) == 27fsin7w/0 /0 Va2 f'(y)? + m2 dy P(da),

which is the weak limit in L'(My), because then the limiting metric reads

P% 0
~ —1 P
Jo = ,OOL — | 4n?sin® wp ,
0 ( 0 472 sin? 7790)
which has the same form as in the periodic case. By Remark 6.1.8 we can find an
isometric embedding hg: My — R3 via dh(T]dho = polLy 1, namely
sin mp sin 276
ho(p,0) = sin 7rg0 cos 276 ) (6.8)
I \/MQ Ly — dm? cos? it dt
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6. Application to Rapidly Oscillating Riemannian Manifolds

The submanifold Ny := ho(Mp) of R3, shown in Figure 6.4, is the Mosco-limit of the
sequence (M) for a.e. w € Q. As in the examples above we can pass to the reference
manifold My = (0,1) x [0,1) and find that the excluded poles of the manifolds M,
coincide with the (excluded) poles of the manifold Nj.

A sphere with random radial perturbations oscillating with the longitude

With the same probability space © and reference manifold My as in the previous
example, we define the family M¥ := h¥(My) of submanifolds of R? via h¥: My —
R?;
sin mp sin 276
he(p,0) = (1+ Ew(g)) sin 7 cos 276 (6.9)
COS TP

for w € Q, e € {4;k € N}. These manifolds are illustrated in Figure 6.5 with ¢ as in
(4.7) and a x2-distribution with 3 degrees of freedom for some values of ¢.

21
</

0ol
(L)
Il
=
[«

1 —
€=13 g =

Figure 6.5.: A family of spheres with random radial perturbations oscillating with the
longitude. The three pictures on the left show M. defined by (6.9) with ¢
as in (4.7) and decreasing values of €. The picture on the right shows the
limiting surface Ny defined via (6.10).

We find the density

P2 (@) = W\/w’(g)Z + 4n2sin? 7

and the coefficient field

LW (y)? + 4n2sin® mp 0
—1
0 (% VW' (y)? + 472 sin? ﬂgp)

L¥(p,y) =

which yields the homogenized coefficient field

L oo prl
Lo(p) = (6 7r> with p = /0 /0 \/azf/(y)2 + 472 sin? o dy P(da),
p
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where P denotes the probability measure on [0, c0) associated to the distribution of the
amplitudes. Again, the volume forms p¥ are unbounded in L*°(Mj) and thus cannot
weakly-* converge, so there is no natural choice for pg and we choose

o) 1
pol(p) == 7T/0 /0 \/a2f’(y)2 + 472 sin? mp dy P(da),

such that the limiting metric can be written in the same form as in the periodic case

(cf. Section 4.2):
R 1 ™ 0
go = polly ™ = 0o £

w2
An isometric embedding hg: My — R? can be found via dhgdho = polLy 1, namely

sin g sin 276
ho(p,0) = sin 7wy cos 20 _ (6.10)

f0<p V T — png dt

The submanifold Ny := ho(Mp) of R3, pictured in Figure 6.5, is the Mosco-limit of
the family (M) for a.e. w € Q. As in the examples above we can again pass to the
reference manifold My = (0,1) x [0, 1) and find that the excluded poles of the manifolds
M, coincide with the two circles forming the boundary of the manifold Ny.

6.2.3. Manifolds Locally Collapsing to Singular Points

In the examples above the degeneration of the geometry was achieved by blowing up
the volume of the manifolds and therewith |dh¥¢| — oco. We finally want to present
an example of manifolds with uniformly bounded volume, where the degeneration of I
comes from collapsing to a singularity and therewith |[dh¥¢| — 0, still featuring spectral
convergence.

To begin with we fix an even (in the sense of the symmetry f(—t) = f(¢)) smooth
function f: R — [0, 00), monotone decreasing on [0,00), and with support supp f C
[—3,3]. A standard example of f is the mollifier

f(t) = {eXp(l “ ) 1€(50) (6.11)

0, otherwise.

Now for ¢ € (0,1] we distort the graph of f in the way illustrated in Figure 6.6. This
is achieved by re-parametrizing the domain of f with

otherwise

$(8) = {t — (1= Vo)texp(2 — —Z=m). [t € (0.3),
t,
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6. Application to Rapidly Oscillating Riemannian Manifolds

for 6 € (0,1], which yields the smooth curve

RS>t @5(%)) € R2 (6.12)

Due to the symmetry of f this curve can be utilized as the generatrix of a surface of
revolution M? := h®(R?), given by

1 2 2 T
1/] ( Iy + $2) a:%—l—a:%
h (l‘l, xg) = ’gbé( x% —+ x%) 3272 s | > (6.13)
1123

as displayed in Figure 6.6. For convenience we denote by h5#: R? — R3 the periodic
continuation of h? given by

4]
h‘;(m,mz) = 1’ (21 — [1], 22 — [22]) + [37;] )

where [z] denotes the closest integer to x, i.e. x —

FLR U

Figure 6.6.: Illustration of the process yielding the deformed surface of revolution. The
picture to the left shows the function f defined in (6.11) and the intended
deformation, the picture in the middle the deformed graph given by (6.12)
for 6 = (%47 the picture to the right the corresponding surface of revolution
M? defined via (6.13).

The manifolds we want to consider are obtained by repeating the surface M? as on a
checkerboard, but with the parameter § being randomly chosen on each tile. To that
end we define the probability space

Q= {w: R* 5 R w(y) = h20+9]) (10 44)) € R? for some z € 1,12 a€ (0, 1)ZXZ},

on which we define a probability measure by letting the offset zg € [—%, %)2 be uni-
formly distributed and the deformations a(k) € (0,1) for k € Z? be independently
uniformly distributed, too. Together with the Borel-o-algebra and the group action
Tyw = w(-+y) for y € R?, w € Q, we can regard Q as a stationary, ergodic probability

space. We now simply set M := h¥(My) for € > 0, w = (x0,9) € Q, with
he(z) = ew(%). (6.14)
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Figure 6.7.: A periodically repeated surface with random deformation parameter. The
pictures show M, defined by (6.14) for decreasing values of . The spec-
trum of the Laplace-Beltrami operator on M, converges to the spectrum
of the Laplace-Beltrami operator on a flat square.

See Figure 6.7 for an illustration of the defined manifolds.

Obviously the coefficient field

det dh2Tdhz (dheTdhe) ™ = \fdet do(2)Tdw(2) (dw(2)Tdw(2)) ™ = L¥(2)

is of the desired form, and is spatially homogeneous so the continuity condition (ii) is
trivially satisfied. To study the eigenvalues of I we note that dhy(z) = dw(%) = dhd(y)
for some y € [—5, %] and 0 < § < 1, thus it is sufficient to understand the eigenvalues
of

L9 :=p? (dh®Tdn?)~Y,  with  p® := \/det dhdTdh.

Due to the rotational symmetric structure of h° we can even further restrict to exam-
ining the eigenvalues of L? on [0, 3] x {0}. Thus we calculate

(1) 0
dh(w1,0) = | /(1) 220
flx) 0
and
P (a1,0) = S 2 4 [ n)?,
where we conveniently dropped the index 0 of . Note that for 21 = % we find

@ = /6 and thus there is £ € R? with |dhd(z1,0)] — 0 as 6 — 0, and we
conclude that the manifolds MY are not uniformly bi-Lipschitz diffeomorphic. (One
can easily show with the Intermediate Value Theorem, that every parametrization

yields degeneration of the diffeomorphisms.)

The eigenvalues of the coefficient field

Wl,m:a( e N )
W) 20 (@) 4 f()?
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can be calculated explicitly and are given by A% and (/\‘5)_1 with

1%2 + 21/)/2 + f/2 + \/41/}/2 ?ij + (1/1; — 22 — f/2))2
1 7 z7 x]
A (1‘1,0) = 5 .

2p

Taking into account that by definition f as well as ¢/’ are uniformly bounded and %

takes its only minimum at z; = %, which is 41[}(%) = /0, one can show that

1 1
E[Amax(xl,())]:E[Amin(xl,orl]g/ )\5(}1,0)ch§/ V3 do,
0 0

where < means < up to a constant independent on x;. Thus we are indeed in the
situation where Corollary 6.1.6 applies and yields a coefficient field Ly, which is spatially
homogeneous, too. Moreover, we have det Ly = 1 and for symmetry reasons we can

conclude
10
Lo = (0 1).

Since p? is uniformly bounded in L?(Mp) and by ergodicity for every cube Q C R? we

have .
][ p(z)de — / / p°(z) dz dd =: py < oo a.s.,
Q 0 J My

we get p¥ — po weakly in L (Mp) a.s. Thus we can conclude that (M) for a.e. w € Q
spectral converges to (Mo, o, fio) with go = poL.™! = pol and djig = podz. This
manifold can be isometrically embedded as a flat square with side length pg.

6.3. Proofs

Proof of Proposition 6.1.3. For the sake of readability we will drop the index w € Q2 in
the following where it is clear from the context.

Since the manifolds (M;) are rapidly oscillating, they admit a common reference atlas,
so there is a countable tessellation A of the reference manifold My consisting of reference

cells, such that for every A € A the following holds:

e There is a unique chart (U, ¥) of My such that A C U, and A := U~1(A) is a
bounded Lipschitz domain in R™.

e For every ¢ > 0 there is a unique chart (U, ¥.) of M, with A, := WZ1(A4) C U..

e For every € > 0 we have A. = h.(A).
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In the following we will use the notation % for the function u being pulled back to A,
by which we mean % := uo W~! for functions u: A — R, and u := uo W_ ! for functions
u: A — R. This abuse of notation is justifiable as it will always be clear from the
context which chart is used.

Step 1: Mosco-convergence on reference cells.
For A € A we define the energy functional & (-, A.): L?(A:) — RU {+oco} by

fAs Vgoul? dpe, if ue H'(A),

400, otherwise.

Ec(u, Ae) = {

Similar to the beginning of the proof of Lemma 4.1.1, we find for v € H'(A.) due to
the rapidly oscillating structure of M,

/ |Vgsu|35 dpe = /gs(d\P:Vu, d¥:IVu) p.de = /L(SE, L)Vu(zx) - Vu(z)dz + o(e),
A. A a

which implies &-(u, A.) = E.(u, A) + o(¢) with the pulled back energy functional
E(-,A): L*(A) —» RU {400}

S Lz, 2)Va(z) - Va(z)de, if7e HY(A
£.(wA) = {fA (z, £)Vau(z) - Vu(zr)de, ifue . (A),
400, otherwise.

Note that the error term o(e) does not interfere with Mosco-convergence. Since L is
a symmetric, positive definite coefficient field, the assumptions (i) and (ii) put us into
the situation of Theorem 5.2.2 with p = 2, o = 1 and § = 5. Hence, regarding Re-
mark 5.2.3, the functionals £.(-, A) Mosco-converge a.s. to some deterministic integral

functional Ey(-, A): L?(A) — RU {+co} by

<

Eol

£o(a A) o= | J3 Whom (@, V(@) da, it 7€ H'(A),
’ B +090, otherwise,

for Whom given by (5.10). As it is the potential of the Gamma-limit of quadratic integral
functions, Wyom(z, -) is a symmetric, positive definite quadratic form (see e.g. [DM93,
Theorem 22.1]), and thus for every z € A we can find a bilinear form a, such that

Whom (2, Vu(z)) = po(z)az(dV*Vu(x), dV*Vu(z)).
If we set go(p) := ay(p) for p € A, the same calculations as above yield
/Whom(wvvu(m))dw - / ‘VQOU@O dﬂ(),
A A
and thus & is the pull-back of the Dirichlet energy & (-, A): L2(4, o, fio) — RU{+oc},

fA ’véou‘go dﬂ07 ifue Hl(A,go,ﬂo),
00, otherwise.

50(u, A) = {
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In fact, the application of Theorem 5.2.2 above even guarantees for every function
u € H' (A, go, fio) the existence of a recovery sequence (u.), u. € H'(A.), with u. —u €
H(A) such that (e, Ac) — Eo(u, A) a.s.

Step 2: Construction of the limiting metric and Mosco-convergence of the manifolds.
Since the reference cells are a disjoint covering of the reference manifold My, we can
define a metric go on the entire reference manifold My by letting go|a be the metric
for the reference cell A € A constructed above. Moreover, from the countability of
the covering we can conclude that there is a set ¢ C € of full measure, such that
(E2(-,A.)) Mosco-converges to Eq(-, A) for every A € A and w € Q.

It remains to show Mosco-convergence of the entire manifolds. To that end we note
that, since A is a countable disjoint covering of My, for every € > 0 the collection
{A: = h:(A);A € A} is a (countable) disjoint covering of M. and we find for the
Dirichlet energies on M. and (Mo, go, fio)

Eclu, Me) =Y Ec(ula,,A)  and  E(u,Mo) = Y Eolula, A).
AcA AcA

We immediately see from the Mosco-convergence on the reference cells, that for every
Us — U Weakly n LQ(M07 90, :U’O)

1irrl\iélf?;(ﬂe, M) > Eo(u, My)

£

for all w € Q. For the recovery sequence we fix u € H'(Moy, go, fio). Then for every
A € A and every w € Qq there is a recovery sequence (ua.), uae € H'(AY), with
Tae—To|g € HY(A) such that &7 (Wae, AL ) — Eo(T@, A). Thus we can define functions

Ue 1= Z UA,es]lA‘gH

AeA

which are in H'(M¥) due to the boundary conditions of us.. Now by summation
follows
EZ (e, Mo) — Eo(u, My)

for all w € Q¢ and the proof is complete. O

Proof of Proposition 6.1.5. The following arguments hold for every w € € for which
the manifolds M. Mosco-converge to (Mo, go, fio), S0 we can tacitly drop the index w.

If we denote by & the Dirichlet energy on Mg, i.e.

E(u) = fME 9e(Veu, Veou),dpe, u € H&(ME),
) +00, otherwise,
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and by €. the pulled back energy on My, i.e. E.(u) = E-(u) with & = w o he, we find
that

e = inf {Es(u);u € H(M.), ullz2(ary = 1}

= inf {Ea(ﬂ);ﬂ € Hé(Mo),/ W|205 dpo = 1}7
Mo

and a similar representation holds for A\g 1. In other words, if we define
i, = {ue B0 [ ufpdu =1} and
Mo

Hy = {u c H&(MO);/

[ul?po dpio = 1}7
My

we find that for every normalized eigenfunction u.; € H} (M) of —A,_,,. to the first
eigenvalue A ; the function %, ; = u. 1 0h, is a minimizer of the functional E.in H.. Tt
is therefore natural to consider Mosco-convergence of £, on H, in some sense, which we
will make precise in step 1 below. Since the notion of Mosco-convergence on varying
spaces is non-standard, we provide in step 2 the arguments for the convergence of
minimizers in this context, which we will use in step 3, together with the compactness
result Proposition 5.2.1, to deduce the convergence of the eigenpairs as claimed in the
definition of spectral convergence.

Step 1: Mosco-convergence of (£.) on the weighted spaces.
From Proposition 6.1.3 we know that (£.) Mosco-converges on (Mo, go, tio) to &o
w.r.t. L2(My, go, pto). This implies immediately the following lower bound condition:
For u. € H., ug € Hy with u. — ug weakly in L?(Moy, go, j10), we have

liminf £ > & :

1?1\1(1)1 E(UE) - O(UO)
For the recovery sequence we fix ug € Hy and a sequence (vg) in H&(MO, 9o, fto) with
ve — ug strongly in L2(My, go, po) and Ec(ve) — Eo(ug). If we set

Ve

= ————€H,,
fMO |[ve|2pe dpo :

Ue :

we find

ue — ug  strongly in Lz(Mo, 9o, 140) and E(us) — Eo(up),
i N d theref 2o dpg — 2p0dpg =1
since p. — po and therefore [ o 10217 pe dpo S o [10l”po dpto .

Step 2: Conwvergence of minimizers.

Let (u:) be a sequence of minimizers of £. in H. with u. — ug weakly in L?( Mo, go, 110)-
We show that £.(u.) — Ep(ug) and that Eg(ug) < Eo(v) for every v € Hy. (Note that
we do not claim ug € Hy, since we do not assume strong convergence in L?(Mj).)
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Indeed, the arguments are similar to the standard case. We first find with the Mosco-
convergence in step 1, that

1il£ﬂ\i(1)1f Ec(ue) > Eo(uo).

On the other hand, there is a recovery sequence (v¢) of ug with v, € H. and E.(ve) —
Eo(up), and since u. is a minimizer, we can estimate
limsup £ (u.) < lim E.(v:) = Eo(uo).
e\0 eN\o

Together we can conclude & (u:) — Eo(up). It remains to show, that () is smaller
than £y on Hy. Therefore we assume the existence of vg € Hy with Eg(vg) < Eo(ug).
For vy we choose a recovery sequence (v.) with v. € H, as in step 1, and note that
since u. is a minimizer

gO(UO) = il\I‘%EE(UE) < ;i\rlr[l)gs(vs) = 50(1}0),
which contradicts the definition of vg.

Step 3: Convergence of eigenpairs.

We first claim that the family of first eigenpairs (Ac 1, uc 1) as in Definition 1.3.4 sat-
isfies A\c;1 — Ao,1 and that there is a subsequence such that w.; — vy strongly in
L2((Mz, pe) — (Mo, fig)) for some vy € Hg(My,go, jlo) being an eigenfunction of
—Agy 4o to the eigenvalue Mg 1. We therefore note that since fMo |E€,1|2p5 dpo =1 and
pe uniformly bounded in L% (M), the sequence (7. 1) is bounded in L?(Moy, go, pto) and
thus provides a (not relabeled) subsequence with @, ; — vy weakly in L?(My, go, o).
Since, as mentioned in the beginning of the proof, %, ; is a minimizer of £, in H., this
implies with step 2

)\5,1 = 55(@5) — 85(“0) < )\0,1~

Therewith, (. 1) is a sequence with bounded energy, and the compactness result Propo-
sition 5.2.1 provides .1 — vg strongly in L2(M0,go,u0). Due to the weak-* conver-
gence of p., this implies u.; — v; strongly in L2((Mz, ie) — (Mo, fig)). Moreover, we
have v1 € Hp, and can conclude

)\6,1 = ga(ﬂa) — ?5(?)1) = )\0,1;
which means that v; is an eigenfunction of —Ay 5, to the eigenvalue Ao 1. Note that

the convergence A;1 — Ao,1 is independent of the subsequence and therefore holds for
the entire sequence.

We now note that this result can be inductively extended to eigenpairs (A, ue k) with
k > 1 with the Rayleigh-Ritz method: Assume that for j = 1,...,k we have already
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shown that there is a (not relabeled) subsequence with A.; — Ag; and u.; — v;
strongly in L?((M;, pe) — (Mo, fig)). Then we define the spaces

H. oy := {u € HE;/ Wl jpe dpg = 0 for j =1,... ,k} and
My

H07k+1 = {’U, S H();/ U Po dpug=0for j=1,.. .,k‘},

Mo

and with the same arguments as above we can find a (not relabeled) subsequence with
Ac k41 = Aog+1 and Ue g1 — vk strongly in L2((Me, pe) — (Mo, fio)). Here we used
that for functions u.,v. € H. with u. — ug and v. — wvg strongly in L?(Moy, go, ito)
from the orthogonality u. L v. in H. follows the orthogonality ug L vg in Hp, due to
the weak-* convergence of p..

To conclude the proof we let s > 1 be the multiplicity of Ag1. Then we can find a
subsequence such that for k = 1,...,s we have u., — vy strongly in L2((Mg, pie) —
(Mo, fip)) for some normalized eigenfunction vy, of —Ay 4, to the eigenvalue Ao ;. Note
that by the argument above we can assume that vy L v; in L?(Mo, o, fio) for all

1 < j < k < s. That means that v1,...,vs span the eigenspace associated with Ag 1.
So for every normalized eigenfunction . j in this eigenspace (i.e. k =1,...,s), we find
coefficients a1, ..., a, such that u. = ijl ajvg. But this implies that wu. j is the

strong L2-limit of the linear combination ijl ajue j, and since this construction can
be done with every subsequence (with different coefficients), the statement holds for
the entire sequence. As above we can inductively step up to higher orders using the
Rayleigh-Ritz method. O
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Summary and Discussion

The intention of this thesis is to deepen the understanding of the asymptotic behavior
of certain classes of Riemannian manifolds by appealing to techniques from the theory
of homogenization. Especially we concentrate on Mosco- and spectral convergence
w.r.t. L?. Even though there are lots of other notions of convergence for manifolds,
Mosco- and spectral convergence focus on the intrinsic geometry of the manifolds and
might therefore be of particular interest in applications for instance in material science,
as it models properties like heat flow on surfaces.

The main strategy of our studies is to reduce the problem of varying manifolds to
a problem of varying geometries on one reference manifold. This is achieved via bi-
Lipschitz diffeomorphisms between the manifolds. In practice these diffeomorphisms
can be interpreted as deformations of a reference manifold such as perturbations of
a surface from the equilibrium. Such situations occur for example in cellular and
molecular biology, where diffusion processes on surfaces are studied, see e.g. [AG82;
JII87; Sba+06; NRJOT7].

We consider two different approaches. On the one hand we assume the Lipschitz con-
stants of the diffeomorphisms to be uniformly bounded and established Mosco- and
spectral convergence of the manifolds along a subsequence. These result is based on a
H-compactness theorem for uniformly elliptic coefficient fields on a Riemannian man-
ifold. Besides we established this compactness statement for the utilization in the
studies of sequences of manifolds, it is of deep interest on its own. One consequence
of our H-compactness theorem is Mosco- and spectral convergence (w.r.t. L?) of the
elliptic operators associated with the coefficient fields, which might have fruitful appli-
cations to the studies of partial differential equations and their evolution on manifolds.
In the present form, our result implies only spectral convergence on manifolds with a
strictly positive Dirichlet spectrum, but we demonstrate on the torus how it might be
extended, and there might be room for more generalization.

Since the H-compactness results do not give any information about the limit (besides
ellipticity), we demonstrate how special micro structures of the manifolds resp. the
coefficient fields yield explicit homogenization formulas on the example of periodically
perturbed surfaces. This is a good way to deepen the understanding of the limiting
process and there is much more to learn from it, for instance in combination with nu-
merical methods. However, the strength of the theorem is to be free of any assumption
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on the structure.

Our second approach is inherently different, because it is directly based on the special
structure of the manifolds. We consider sequences of randomly oscillating bi-Lipschitz
diffeomorphic manifolds, whose Lipschitz constants are not uniformly, but statistically
bounded, and establish Mosco- and, under the condition that the volume forms are
weakly-* convergent in L™, spectral convergence w.r.t. L?. The assumption of weak-x
convergence is used in the proof to ensure the space H. to be compactly embedded
into L?(My), so that the eigenfunctions u. strongly converge in L?(My) and there-
fore [ |uc|?p-dpo — [ |uo*poduo. It might be possible to weaken the assumption of
weak-*x convergence by directly thinking about the embedding of the space H. into
L?((Mo, pedpo) — (Mo, podpo))-

We also mention a variant of our result with weaker assumptions only providing Mosco-
convergence w.r.t. LP for some 1 < p < 2, and with our method we are not able to
conclude spectral convergence. The discussions in [Flel8; FHS19| for the discrete case
give rise to the conjecture, that there are examples where the eigenfunctions concentrate
in singular points and therefore spectral convergence is indeed not possible. However,
it might be worth to study the structural differences behind these effects in terms of
volume, curvature or distortion.

The background of this approach is given by a I'-convergence statement for integral
functionals on R™, whose integrals satisfy non-standard growth conditions. While we
use this result on the pulled back Dirichlet energies of the manifolds, whose poten-
tials are strictly convex quadratic forms, our I'-convergence theorem covers much more
general potentials, even of vector valued functions, which opens a wide range of appli-
cations. To continue the research in this field, a natural question for future work would
be the generalization to variable growth conditions (see e.g. [Jik97; CM10)), i.e.

Auin (@) (& FPE = C) < W (@, F) < Amax () C(IFPY 4 1).

This would have applications in the study of electrorheological or thermorheological
fluids (see e.g. [Ruz00; RRO1]).

The I'-convergence theorem comes together with a corresponding compact embedding
of LP into the space of functions with bounded energy, where the exponent p depends
on the conditions on W and the dimension. An interesting question would be if the
conditions on the exponent p could be improved by a trick found in [BCD16; Bri+17],
where the dimension is reduced via considering a radially symmetric parametrization
of the considered functions. If this idea could be adopted to our setting, such that
the application of the Gagliardo-Nirenberg-Sobolev inequality in the proof of the com-
pactness statement would happen actually on an n — 1-dimensional surface, it would

reduce the considered exponent in the moment bounds in Proposition 6.1.3 to ”T_l

The process of convergence in the stochastic framework is that for almost every re-
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alization the sequence of manifolds converges to the same deterministic limit. An
interesting topic would be to reformulate the results for a spatially inhomogeneous
probability measure, i.e. on every point of the reference manifold we consider a proba-
bility measure, and the sampling happens simultaneously with the convergence process.
This would include for instance an-isotropic Poisson point processes, like point pro-
cesses with constant parameter on the embedded torus (where, roughly speaking, in
coordinates the inner points have a lower density than the outer ones).

The possibility to treat vector valued functions with the I'-convergence result gives rise
to study tangential valued functions on manifolds, like gradient fields. In contrast, since
the consideration of tangential valued functions yields non-linear differential operators,
the methods of our H-compactness approach cannot be directly adopted and need to
be adjusted. A good starting point for such studies would be to consider the Bochner-
Laplace operator instead of the Laplace-Beltrami operator.

In summary, both approaches are different, but have beneficial applications. The H-
compactness theorem does not need any assumptions on the structure of the manifolds
resp. the coefficient fields, but does not provide any specific information about the limit.
It is therefore more of theoretical interest. The I'-convergence theorem is restricted to
oscillating manifold resp. potentials, but includes an explicit formula to find the limit.
This should be interesting for the studies of geometric effects or the use in applied
science.
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