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Abstract

In this thesis we study the asymptotic behavior of bi-Lipschitz di�eomorphic weighted
Riemannian manifolds with techniques from the theory of homogenization. To do so
we re-interpret the problem as di�erent induced metrics on one reference manifold.

Our analysis is twofold. On the one hand we consider second-order uniformly elliptic
operators on weighted Riemannian manifolds. They naturally emerge when studying
spectral properties of the Laplace-Beltrami operator on families of manifolds with
rapidly oscillating metrics. We appeal to the notion of H-convergence introduced
by Murat and Tartar. In our �rst main result we establish an H-compactness result
that applies to elliptic operators with measurable, uniformly elliptic coe�cients on
weighted Riemannian manifolds. We further discuss the special case of locally periodic
coe�cients and study the asymptotic spectral behavior of submanifolds of Rn with
rapidly oscillating geometry.

On the other hand we study integral functionals featuring non-convex integrands with
non-standard growth on Rn in a stochastic framework. Our second main result is a Γ-
convergence statement under certain assumptions on the statistics of their integrands.
Such functionals provide a tool to study the Dirichlet energy on non-uniformly bi-
Lipschitz di�eomorphic manifolds. We show Mosco-convergence of the Dirichlet energy
and deduce conditions for the spectral behavior of weighted Riemannian manifolds with
locally oscillating random structure, especially in the case of submanifolds of Rn.
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Introduction

In this thesis we study the asymptotic behavior of Riemannian manifolds under di�er-
ent conditions, especially of fast oscillating surfaces, in terms of the Dirichlet energy
and the spectrum of the Laplace-Beltrami operator.

The convergence of metric measure spaces in general, and Riemannian manifolds in
particular, has attracted an enormous amount of attention and many di�erent notions
of convergence has been considered, focusing on di�erent aspects of the geometry and
topology of the spaces. Especially convergence of spectral structures has been intensely
studied over the last years, and geometric conditions were established, see e.g. [Fuk87;
KK94; KK96; KU97; KS03; LMV08; KS08; MV09; Mas11; CCK15; GMS15; Kas17].

Our point of view is di�erent from these geometric examinations. We consider weighted
Riemannian manifolds and associate the respective Laplace-Beltrami operators with el-
liptic di�erential operators on some reference manifold. This interpretation simpli�es
the problem of varying manifolds to the setting of elliptic operators with varying co-
e�cients on one manifold, so we can avail ourselves of the techniques of the theory
of homogenization. We choose two di�erent approaches: H-convergence of uniformly
elliptic coe�cient �elds, and Mosco-convergence of energy functionals.

On the one hand, we establish a compactness result that shows that any family of
uniformly elliptic coe�cient �elds on a Riemannian manifold admits an H-convergent
subsequence. The notion of H-convergence has been introduced in the context of
homogenization of elliptic PDEs on Rn by Murat and Tartar in [MT97]. In our setting
it reads, roughly speaking, that the solutions uε (and the �uxes Lε∇uε) of the elliptic
second-order PDEs

−div(Lε∇uε) = f

on a Riemannian manifold converge to the solution of a limiting PDE of the same form.
We will see that, applied to the coe�cient �elds associated with the Laplace-Beltrami
operators on uniformly bi-Lipschitz di�eomorphic families of weighted Riemannian
manifolds, H-convergence implies convergence of the spectra of the Laplace-Beltrami
operators to the spectrum of the Laplace-Beltrami operator on a limiting manifold (as
well as Mosco-convergence of the Dirichlet energies).

In this context one should mention that Kuwae and Shioya in [KS03] established spec-
tral convergence for families of manifolds, which are locally bi-Lipschitz di�eomorphic
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Introduction

to a reference manifold with Lipschitz constants converging to 1. But for manifolds
with rapidly oscillating structures, the di�eomorphisms between the manifolds may be
indeed uniformly bi-Lipschitz, but usually not (locally) close to an isometry, so the
approach of [KS03] does not apply in this setting. In contrast, our H-compactness
result provides spectral convergence at least along subsequences.

In general, the limiting manifold depends on the extracted subsequence. However,
under speci�c conditions on the geometric structure of the manifolds, the limit can
be uniquely determined by appealing to suitable homogenization formulas. A natural
geometric condition in the �at case is periodicity of the coe�cient �elds. We show how
the notion of periodicity can be translated to coe�cient �elds on manifolds, and even
to families of manifolds itself featuring special structures, by using local coordinate
charts.

On the other hand, we present a Γ-convergence result for integral functionals with
non-uniformly elliptic random potentials, providing an explicit formula for the limiting
potential. While homogenization of uniformly elliptic integral functionals has been
studied for long and is well understood (e.g. [Mar78; Gia83; MDM86; Mül87; BD07]),
the case of integrands satisfying non-standard growth conditions is still purpose of re-
cent research, see e.g. [MM94; Mar96; AM01; BD07; BF07; JP14], or [KG42; AB00;
ACG11; Bis11; GLTV14; NSS17] for the discrete or discrete-to-continuum case. There-
fore it is mentionable that our result, even though it is not required for the studies of
Riemannian geometries via the Dirichlet energy, covers integral functionals of vector
valued functions with non-convex integrands satisfying the growth condition

λmin(x)( 1
C |F |

p − C) ≤W (x, F ) ≤ λmax(x)C(|F |p + 1).

With Γ-convergence for non-uniformly elliptic integral functionals we gain a method
to handle oscillating geometries of manifolds that are not uniformly bi-Lipschitz di�eo-
morphic, and therefore out of reach for our H-compactness result. Typical situations,
where our method applies, are oscillating surfaces with random amplitude (which might
yield unbounded volume), or periodic surfaces with random deformation parameters
(which might yield unbounded curvature). We discuss examples of Euclidean subman-
ifolds of both types.

Both approaches in particular allow us to treat Riemannian manifolds which oscillate
rapidly on a small length scale (periodically or randomly). In several examples we
demonstrate how our results can be used to prove Mosco- and spectral convergence
and even present algorithms to �nd the limiting manifold. While our results are of
mathematical interest in its own right, they might be also of interest for applications,
especially to di�usion models in bio-mechanics. In this context, di�usion and reaction-
di�usion processes in biological membranes and through interfaces are studied, see
e.g. [AG82; JII87; Sba+06; NRJ07]. One observation made is that �di�usion in bio-
logical membranes can appear anisotropic even though it is molecularly isotropic in
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Outline

all observed instances� ([Sba+06]). In accordance with that our examples show that
isotropic di�usion on surfaces with rapidly oscillating geometry can yield an-isotropic
e�ective di�usion on large scales.

Outline

Part I. We give a short overview over the most important concepts, which we are
going to consider, and their background. In Chapter 1 we collect some notions of con-
vergence for Riemannian manifolds. In particular, we introduce Hausdor�-, Gromov-
Hausdor�, Mosco-, and spectral convergence and discuss how bene�cial they are with
respect to the asymptotical study of geometries. Chapter 2 gives a short insight in the
theory of both periodic and stochastic homogenization. This puts the later application
of homogenization formulas in Section 3.4 into context, as well as provides a reference
for the ergodic theorems frequently used in Chapter 5.

Part II. This part is twofold. In Chapter 3 we deal with uniformly elliptic op-
erators on a Riemannian manifold and present with the H-compactness statement
Theorem 3.2.2 our �rst main result. In the symmetric case (e.g. for the Laplace-
Beltrami operator) we therewith deduce Mosco-convergence of the associated energy
forms, cf. Proposition 3.2.4, as well as convergence of the spectra of the associated
second-order elliptic operators, cf. Propositions 3.2.6 and 3.2.7. In Section 3.4 we ad-
dress the problem of identifying the limiting coe�cient �eld. In particular, we provide a
homogenization formula for manifolds that feature periodicity in local coordinates. We
discuss two exemplary structures of periodic coe�cient �elds in Section 3.5. All proofs
of the results in this chapter are presented in Section 3.6. In Chapter 4 we discuss
the application to families of parametrized manifolds that are uniformly bi-Lipschitz
di�eomorphic. In particular, for such families, we establish Mosco- and spectral conver-
gence (along subsequences) in Propositions 4.1.4 to 4.1.6 and discuss the special case
of families of submanifolds of Rn. In section 4.2 we discuss concrete examples. The
proofs are contained in Section 4.3. Part II relies on basically [HMN19] written by Jun
Masamune, Stefan Neukamm and the author, but also contains new and unpublished
re�nements and extensions of the results.

Part III. This part is again twofold. In Chapter 5 we introduce the setting of
rapidly oscillating random integral functionals, whose integrands satisfy a non-uniform
elliptic growth condition. Our second main result of the thesis�the Γ-convergence
result Theorem 5.2.2�is presented in Section 5.2, and comes together with a compact
embedding statement Proposition 5.2.1. The main properties of the limiting potential
are processed in Proposition 5.2.4. In Section 5.3 we state some technical lemmas,
which are required to show the results. The proofs are collected in Section 5.4. Chap-
ter 6 is devoted to the application of the Γ-convergence result to families of Riemannian
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Introduction

manifolds. Therefor we introduce the notion of manifolds with rapidly oscillating struc-
tures and discuss the di�erences to the uniformly bi-Lipschitz di�eomorphic case. We
deduce Mosco-convergence of the associated Dirichlet energies, cf. Proposition 6.1.3,
and under some conditions even convergence of the spectra of the Laplace-Beltrami
operators, cf. Proposition 6.1.5. We reformulate our results for the special case of sub-
manifolds of Rn, see Corollary 6.1.6, and give some illustrative concrete examples in
Section 6.2. The proofs can be found in Section 6.3. The results of Part III are new
and yet unpublished.

Notation

� Sequences (xε) indexed with ε are usually considered to converge as ε↘ 0, which
should be understood as convergence of every subsequence (xεj )j∈N with εj ↘ 0
as j →∞.

� We write U ′ b U if U ′ is an open set, whose closure U ′ is compact and U ′ ⊂ U .

� We frequently use the notation
�
U f to denote the average 1

|U |
�
U f , where |U |

denotes the Lebesgue measure of U , if not speci�ed otherwise. In this context
we often make use of the reference cell Y := [0, 1)n ⊆ Rn.

� We consider weighted Riemannian manifolds (M, g, µ) with metric g and measure
µ. We assume thatM is n-dimensional (with n ≥ 2), smooth, connected, without
boundary, and that µ has a smooth positive density against the Riemannian
volume associated with g. For the background of the analysis on manifolds, we
refer to [Gri09; Jos11].

� For a di�eomorphism h : M → N between manifolds M and N we denote its
di�erential by dh : TM → TN . In the special case of a function f : Rn → Rm we
denote its derivative by Df .

� |ξ|g(x) =
√
g(ξ, ξ)(x) induced norm in TxM at x ∈ M . If the meaning is clear

from the context, we simply write |ξ|.

� For a (su�ciently regular) function u and vector �eld ξ on U , the gradient of
u is denoted by ∇gu and the divergence of ξ is denoted by divg,µ ξ, i.e. we
have g(∇gu, ξ) = ξu = du(ξ) and

�
U g(divg,µ ξ, u) dµ = −

�
U g(ξ,∇gu) dµ pro-

vided either u or ξ are compactly supported. In particular, we write −4g,µ :=
−divg,µ∇g to denote the (weighted) Laplace-Beltrami operator. If the meaning
is clear from the context, we shall simply write ∇, div and ∆.
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Notation

� For U ⊂M open we denote by L2(U, g, µ) the Hilbert space of square integrable
functions and denote by

‖u‖2L2(U,g,µ) :=

�
U
|u|2 dµ

the associated norm. We denote by L2(TU) the space of measurable sections ξ
of TU such that |ξ| ∈ L2(U, g, µ).

� We denote by C∞c (U) the space of smooth compactly supported functions, and
by W 1,p(U, g, µ) the usual Sobolev space on (U, g, µ), i.e. the space of functions
u ∈ L2(U, g, µ) with distributional �rst derivatives in L2(U, g, µ), equipped with
the norm

‖u‖2W 1,p(U,g,µ) :=

�
M
|u|p + |∇u|p dµ.

For p = 2, this is a Hilbert space, which we denote byH1(U, g, µ) = W 1,2(U, g, µ).

� We denote byW 1,p
0 (U, g, µ) (orH1

0 (U, g, µ)) the closure of C∞c (U) inW 1,p(U, g, µ)
(or H1(U, g, µ), resp.). We denote by H−1(U, g, µ) the dual space to H1

0 (U, g, µ)
and use the notation 〈F, u〉(U,g,µ) to denote the dual pairing of F ∈ H−1(U, g, µ)
and u ∈ H1

0 (M, g, µ).

We tacitly simply write U (instead of (U, g, µ)), L2(U), H1(U), ‖ · ‖L2(U), ‖ · ‖H1(U),
〈·, ·〉, if the meaning is clear from the context.
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Part I.

Preliminaries
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1. Convergence of Riemannian

Manifolds

When talking about convergence of Riemannian manifolds, various notions of conver-
gence have been introduced and developed, taking di�erent aspects into account. In
the following we give a brief survey of a few concepts. For a more detailed introduction
see e.g. [KK94; KK96]

1.1. Hausdor�-Convergence

For two (embedded) n-dimensional submanifoldsM andN of Rm we recall theHausdor�-
distance

dH(M,N) := max
{

sup
x∈M

inf
y∈N
|x− y|, sup

y∈N
inf
x∈M
|x− y|

}
.

A family (Mε) of n-dimensional submanifolds of Rm is called to be Hausdor�-convergent
to a manifold M0, if dH(Mε,M0)→ 0 as ε↘ 0.

Hausdor�-convergence describes the asymptotic behavior of the extrinsic appearance
of the manifolds, in the sense that from an external point of view the deviations from
the limiting manifold vanish. But it gives no information about the intrinsic geometry
of the manifolds, like for instance the length of geodesics or the volume form.

We illustrate this contrast with an elementary, one-dimensional example. For ε = 1
k

with k ∈ N we consider the 1-dimensional submanifold Mε ⊆ R2,

Mε :=
{( x

fε(x)

)
;x ∈ [0, L]

}
, (1.1)

where L ∈ N, fε(x) := εf(xε ) for some smooth, 1-periodic function f , which satis�es
f(0) = f(1) = 0, but is not identically 0. Then the sequence (Mε) Hausdor�-converges
to the submanifold

M0 :=
{(s

0

)
; s ∈ [0, L]

}
.

9



1. Convergence of Riemannian Manifolds

ε↘0−−−−−−→
Hausdor�

ε = 1 ε = 1
4 ε = 1

8

Figure 1.1.: A one-dimensional example. The three pictures on the left show Mε de-
�ned by (1.1) with f(y) = 1

2π sin(2πy) and L = 2 for decreasing values of
ε. As ε → 0 these manifolds Hausdor�-converge to the limiting manifold
M0 = [0, 2] × {0}, shown on the right. But the spectrum of the Laplace-
Beltrami operator on Mε converges to the spectrum of the Laplace-
Beltrami operator on a submanifold N0 ⊆ R2, see (1.4). Note that N0

is (as M0) a straight line, but its length is 2ρ0 = 1
π

� 2π
0

√
1 + cos2(y) dy�

the length of the oscillating curves Mε which is strictly larger than 2�the
length of M0.

The sequence (Mε) (for f(y) = 1
2π sin(2πy) and L = 2) and the Hausdor�-limitM0 are

illustrated in Figure 1.1. On the other hand we note that the density of the volume
form on M0 is 1, while the density of the Riemannian volume form ρε associated with
Mε by periodicity weakly-∗ converges in L∞((0, L)):

ρε =
√

1 + |f ′ε|2 =
√

1 + |f ′( ·ε)|2
∗
⇀

� 1

0

√
1 + |f ′(y)|2 dy =: ρ0,

and ρ0 > 1, since f 6≡ 0. Moreover, by periodicity (and the conditions on ε and L),
the volume of Mε (which here is just the one-dimensional Hausdor�-measure of Mε)
is independent of ε; more precisely, vol1(Mε) =

� L
0 ρε dy =

� L
0 ρ0 dy = Lρ0. But the

Hausdor�-limit M0 has the volume vol1(M0) = L. The latter is strictly smaller than
the volume of Mε and the loss of volume is due to the emergence of rapid oscillations
in the limit ε↘ 0.

As the example demonstrates, Hausdor�-convergence of an embedding is not the right
choice to study the asymptotic behavior of the intrinsic geometry of manifolds. It is
always connected to the embedding and the geometry of the ambient space.

1.2. Gromov-Hausdor�-Convergence

A resort of the problems of Hausdor�-convergence is o�ered by the Gromov-Hausdor�-
distance dGH of two Riemannian manifolds, which is the minimal Hausdor�-distance
that can be achieved by any isometric embeddings into any metric space, i.e.

dGH(M,N) := inf
{
dH(φ(M), ψ(N));X metric space, φ : M

iso→ X, ψ : N
iso→ X

}
.

Here �isometric embedding� (denoted by
iso→) is to be understood in the global sense. To

be precise, if dM denotes the geodesic distance on M , an embedding φ : M → X into a

10



1.3. Spectral Convergence

metric space (X, d) is called isometric, if d(φ(x), φ(y)) = dM (x, y) for every x, y ∈M .
Therefore, if we understand the manifolds Mε in the example in Section 1.1 equipped
with the geodesic distance induced from R2, they are not isometrically embedded.

The Gromov-Hausdor� distance provides a good measurement on how far two mani-
fold are from being isometric, as it turns out to be a metric on the isometry classes
of manifolds. But for a Gromov-Hausdor�-converging sequence of manifold, there is
no guarantee that the limit is a manifold, too, and even if it is, it does not need
to be of the same dimension. For example a sequence of 2-dimensional rectangles of
the same width, but decreasing height can Gromov-Hausdor�-converge to a straight
1-dimensional line. On the other hand, Perelman's Stability Theorem tells that un-
der certain assumptions on the curvature and the volume, almost all manifolds in a
Gromov-Hausdor�-convergent sequence are homeomorphic to the limit.

We will not further concern the Gromov-Hausdor�-distance in the following, because
there are other concepts being much more convenient to consider for homogenization,
as we will see below.

1.3. Spectral Convergence

On a Riemannian manifold (M, g) the intrinsic geometry is strongly related to the heat
equation −∆u = ∂tu, where −∆ denotes the Laplace-Beltrami operator on M . The
most obvious link is of course Varadhan's formula

d(x, y)2 = lim
t→∞
−4t log h(t, x, y),

which gives a connection between the heat kernel h on a manifold and the geodesic
distance d(x, y) between x and y.

The study of the heat kernel leads to the spectrum of the Laplace-Beltrami operator and
the associated eigenfunctions. We call (λ, u) an eigenpair of the Laplace-Beltrami ∆
operator on (M, g, µ), consisting of an eigenfunction u ∈ H1

0 (M) and the corresponding
eigenvalue λ ∈ R, if −∆u = λu in H−1(M), i.e.

�
M
g(∇u,∇ψ) dµ = λ

�
M
uψ dµ for all ψ ∈ H1

0 (M).

It is well known, that for compact manifolds without boundary the spectrum of the
Laplace-Beltrami operator consists only of a real, non-negative point spectrum. We
denote by (λk) the sequence of increasingly ordered eigenvalues, where eigenvalues are
repeated according to their multiplicity, and let (uk) denote the sequence of associated

11



1. Convergence of Riemannian Manifolds

eigenfunctions, forming a basis of L2(M). Then the heat kernel onM takes the form

h(t, x, y) =
∞∑
k=1

e−λktuk(x)uk(y).

The spectrum of the Laplace-Beltrami operator (and the corresponding eigenfunctions)
is therefore closely connected to the geodesic distance via the heat kernel.

For di�erent manifolds, the eigenfunctions of the Laplace-Beltrami operator are de�ned
on di�erent spaces. To make them comparable, we introduce in the following the setting
of bi-Lipschitz di�eomorphic manifolds and the notion of Lp-convergence for functions
de�ned on the variable spaces.

De�nition 1.3.1 (Bi-Lipschitz Di�eomorphic Families of Manifolds). A family of
weighted Riemannian manifolds (Mε, gε, µε) is called bi-Lipschitz di�eomorphic, if
there exits a weighted Riemannian manifold (M0, g0, µ0) such that for all ε > 0 there
are a di�eomorphism hε : M0 →Mε and a constant Cε > 0 with

1
Cε
|ξ|g0 ≤ |dhε(x)ξ|gε ≤ Cε|ξ|g0 for all x ∈M0 and ξ ∈ TxM0.

We call (M0, g0, µ0) reference manifold.

De�nition 1.3.2 (Weak and Strong Convergence in Lp on Varying Spaces). Let
1 ≤ p < ∞, and let (Mε, gε, µε) be a family of weighted Riemannian manifolds be-
ing bi-Lipschitz di�eomorphic to a reference manifolds (M0, g0, µ0). For functions
fε ∈ Lp(Mε, gε, µε) and f0 ∈ Lp(M0, g0, µ0) we say (fε) weakly converges to f0 in
Lp, and use the notation

fε ⇀ f0 weakly in Lp((Mε, µε)→ (M0, µ0)),

if �
Mε

fε(ψ ◦ h−1
ε ) dµε →

�
M0

f0ψ dµ0 for all ψ ∈ Lq(M0, µ0), (1.2)

where q = p
p−1 denotes the dual exponent to p (with q = ∞ for p = 1). We say (fε)

strongly converges to f0 in Lp, and shortly write

fε → f0 strongly in Lp((Mε, µε)→ (M0, µ0)),

if

�
Mε

fε(ψ ◦ h−1
ε ) dµε →

�
M0

f0ψ dµ0 for all ψ ∈ Lq(M0, µ0), and

�
Mε

|fε|p dµε →
�
M0

|f0|p dµ0.

(1.3)

12



1.3. Spectral Convergence

Note that in the de�nition of strong Lp-convergence above, it is su�cient to assume
the �rst condition to be satis�ed for all ψ ∈ C∞c (M0, g0, µ0).

Remark 1.3.3. If the manifolds Mε and M0 are n-dimensional submanifolds of Rm,
an alternative way to think about convergence of functions uε : Mε → R would be to
extend the functions uε to functions on Rm by uε = 0 outside of Mε, and consider weak
convergence of the signed measures uεdHn on Rm, where Hn denotes the n-dimensional
Hausdor�-measure on Rm. However, this only yields a natural notion of convergence
for functions de�ned on (embedded) submanifolds and is, in contrast to De�nition 1.3.2,
not considerable in the case of abstract manifolds.

We are now able to formulate the following notion of spectral convergence:

De�nition 1.3.4 (Spectral Convergence of Manifolds). Let (Mε, gε, µε) for ε ≥ 0
be a family of compact, bi-Lipschitz di�eomorphic weighted Riemannian manifolds.
Consider the Laplace-Beltrami operators

−∆gε,µε : H1
0 (Mε, gε, µε)→ H−1(Mε, gε, µε),

and let
0 ≤ λε,1 ≤ λε,2 ≤ λε,3 ≤ · · ·

denote the list of increasingly ordered eigenvalues with eigenvalues being repeated ac-
cording to their multiplicity. Let uε,1, uε,2, uε,3, . . . denote the associated eigenfunctions,
forming an orthonormal basis of L2(Mε, gε, µε). We say that the family (Mε) spectral
converges to M0 w.r.t. L2, if for all k ∈ N,

λε,k → λ0,k,

and if s ∈ N is the multiplicity of λ0,k, i.e.

λ0,k−1 < λ0,k = · · · = λ0,k+s−1 < λ0,k+s (with the convention λ0,0 = −∞),

there exists a sequence (ũε,k)ε of linear combinations of uε,k, . . . , uε,k+s−1 such that

ũε,k → u0,k strongly in L2((Mε, µε)→ (M0, µ0)).

Regarding the example in Section 1.1, our results (see Corollary 4.1.7 and Remark 4.1.8)
will show that the Mε spectral converges (w.r.t. L2) to a weighted Riemannian mani-
fold, whose Riemannian volume form indeed has ρ0 as the density against the Lebesgue
measure. This weighted Riemannian manifold is isometrically isomorphic to a subman-
ifold of R2, for example to

N0 :=
{( x√

ρ2
0 − 1x

)
;x ∈ [0, L]

}
, (1.4)

which is a straight line with the same volume as Mε, i.e., vol1(N0) = ρ0L. Note that
N0 is just one (of many) illustrative isometric embeddings of the limit manifold in
R2.

13



1. Convergence of Riemannian Manifolds

1.4. Mosco-Convergence

A much weaker approach than spectral convergence is to consider the Dirichlet energy
E : L2(M)→ R ∪ {+∞} on a weighted Riemannian manifold (M, g, µ), given by

E(u) =

{�
M |∇u|

2 dµ, if u ∈ H1
0 (M),

+∞, otherwise.

The Dirichlet energy is related to the intrinsic geometry of the manifold M in the
sense that the minimizers of E are the solutions in H1

0 (M) of the steady-state heat
equation

−∆u = 0 in H−1(M).

The asymptotic behavior of minimizers of a series of Dirichlet energies is captured by
the notion of Mosco-convergence, which is a common tool to study the convergence
properties of the evolution associated to energy forms, see e.g. [KS03; KU97; Kol08;
Mas11; Löb15], and has also been generalized to the case of non-symmetric forms (see
[Hin98]). We recall that a sequence of functionals Fε : X → R∪{+∞} on a topological
space X is called Γ-convergent to a functional F : X → R∪{+∞}, if the following two
conditions are satis�ed:

(i) (Lower Bound) for every sequence (xε) in X with xε → x ∈ X we have

lim inf
ε↘0

Fε(xε) ≥ F(x),

(ii) (Recovery Sequence) for every x ∈ X there is a sequence (xε) in X with

xε → x and Fε(xε)→ F(x) as ε↘ 0.

The sequence (Fε) is called Mosco-convergent to F , if it is Γ-convergent w.r.t. the
strong and the weak topology on X, i.e.

(i) (Lower Bound) for every sequence (xε) in X with xε ⇀ x ∈ X weakly in X
we have

lim inf
ε↘0

Fε(xε) ≥ F(x),

(ii) (Recovery Sequence) for every x ∈ X there is a sequence (xε) in X with

xε → x strongly in X and Fε(xε)→ F(x) as ε↘ 0.
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A key feature of Γ- and Mosco-convergence, that can easily be seen from the de�nition,
is that cluster points of minimizers are minimizers itself. Remember that x ∈ X is a
minimizer of the functional F , if F(x) ≤ F(y) for every y ∈ X. An even stronger
result holds in the case of equi-coercive functionals Fε, i.e. for every t > 0 the set⋃
ε>0{x ∈ X;Fε(x) ≤ t} is countably compact in X.

Lemma 1.4.1 (Convergence of Minimizers). Let (Fε) be a sequence of functionals on
a topological space X Γ-converging to F .

(a) Let xε ∈ X be a minimizer of Fε. If xε ⇀ x0 weakly in X, then x0 is a minimizer
of F , and we have

Fε(xε)→ F0(x0).

(b) If (Fε) is equi-coercive, then F is coercive and

lim
ε↘0

inf
x∈X
Fε(x) = min

x∈X
F(x).

If additionally F has a unique minimizer x0 ∈ X, then for every minimizer
xε ∈ X of Fε we have xε → x0.

For a more comprehensive survey over Γ-convergence see e.g. [DM93].

De�nition 1.4.2 (Mosco-Convergence of bi-Lipschitz Di�eomorphic Manifolds). Let
(Mε, gε, µε) be a family of weighted Riemannian manifolds being bi-Lipschitz di�eo-
morphic to the reference manifold (M0, g0, µ0) via the di�eomorphisms hε : M0 →Mε,
and let (M, g, µ) be another weighted Riemannian manifold providing a di�eomorphism
h0 : M0 → M . Denote by Eε : L2(Mε, gε, µε) → R ∪ {+∞} and E0 : L2(M, g, µ) →
R ∪ {+∞} the Dirichlet energy on Mε and M , resp., given by

Eε(u) =

{�
Mε
|∇gεu|2gε dµε, if u ∈ H1

0 (Mε, gε, µε),

+∞, otherwise,

and

E0(u) =

{�
M |∇gu|

2
g dµ, if u ∈ H1

0 (M, g, µ),

+∞, otherwise.

We say that the family of manifolds (Mε) Mosco-converges to M w.r.t. L2, if the pulled
back Dirichlet energies (Eε) on M0, de�ned by Eε(u) := Eε(u ◦ hε), Mosco-converge to
the pulled back Dirichlet energy E0, given by E0(u) := E0(u ◦h0) w.r.t. weak and strong
L2(M0, g0, µ0)-convergence.
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1. Convergence of Riemannian Manifolds

In practice, the limiting manifold (M, g, µ) in the De�nition above will be the refer-
ence manifold M0 equipped with a di�erent metric and measure. In this setting, the
di�eomorphism h0 becomes the identity on M0, but of course the integral functionals
E0 and E0 di�er, due to the change of geometry.

An alternative way to de�ne Mosco-convergence of manifolds would be to request the
Dirichlet energies to Mosco-converge with respect to the weak and strong L2((Mε, µε)→
(M, g))-convergence from De�nition 1.3.2. This is in general not equivalent, if we do
not want to make any assumptions about convergence of the measures (µε) to µ.

Mosco-convergence of the manifolds (Mε) to M implies that if uε ∈ H1
0 (Mε) is a

harmonic function on Mε and uε ◦ hε ⇀ u0 ◦ h0 weakly in L2(M0, g0, µ0), then u0 ∈
H1

0 (M, g, µ) is a harmonic function onM . (This implication extends also to the Poisson
equation with right-hand sides fε such that fε ◦ hε is strongly L2-convergent, since
Mosco-convergence is stable under continuously convergent perturbations.)
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2. Homogenization

As we have seen in the previous chapter, both spectral convergence as well as Mosco-
convergence of Riemannian manifolds rely on the study of the Laplace-Beltrami op-
erators. For n-dimensional manifolds (Mε, gε, µε) being bi-Lipschitz di�eomorphic to
a reference manifold (M0, g0, µ0) in the sense of De�nition 1.3.1 the Laplace-Beltrami
operator on Mε gives rise to a second-order elliptic operator −div(Lε∇) on M0 with
an elliptic coe�cient �eld Lε, i.e.

g0(ξ,Lεξ) ≥ 1
Cn+2
ε
|ξ|2g0 , g0(ξ,L−1

ε ξ) ≥ Cn+2
ε |ξ|2g0 for every ξ ∈ TM0, (2.1)

see Section 4.1 for further details. It is therefore natural to consider homogenization of
elliptic operators on the reference manifold with oscillating coe�cients and measure.

In the following we collect some basic concepts of the theory of periodic and stochastic
homogenization of elliptic PDEs in the �at Euclidean case, i.e. on Rn. See the seminal
works [PV79] or [Neu18] for a more detailed presentation of periodic and stochastic
homogenization.

2.1. Periodic Homogenization

Consider a measurable coe�cient �eld a : Rn → Rn×n being uniformly elliptic, i.e. there
is a constant C > 0 such that for a.e. x ∈ Rn

a(x)ξ · ξ ≥ 1
C |ξ|

2 and |a(x)ξ| ≤ C|ξ| for every ξ ∈ Rn.

For every bounded open set U ⊆ Rn and every f ∈ H−1(U) the equation

− div(a∇u) = f in H−1(U) (2.2)

provides a unique solution u ∈ H1
0 (U). If the coe�cient �eld a is Y periodic (with the

periodicity cell Y = [0, 1)n), i.e. a = a(· + z) for every z ∈ Zn, it is a standard result
(see e.g. [All92, Theorem 2.2]) that there is a constant matrix ahom ∈ Rn×n such that
the solutions uε, u0 ∈ H1

0 (U) of

−div(a( ·ε)∇uε) = −div(ahom∇u0) = f in H−1(U)
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2. Homogenization

satisfy {
uε ⇀ u0 weakly in H1(U),

aε∇uε ⇀ ahom∇u0 weakly in L2(U).

Moreover, the homogenized matrix ahom is characterized by the homogenization for-
mula

ahomej =

�
Y
a(x)(∇φj(x) + ej) dx, (2.3)

where (ej) is the standard basis in Rn, and the periodic corrector φj ∈ H1
per(Y ) denotes

the unique solution to
�
Y
a(x)(∇φj(x) + ej) · ∇ψ(x) dx = 0 for all ψ ∈ H1

per(Y ), (2.4)

where H1
per(Y ) denotes the Hilbert space of Y -periodic functions ψ ∈ H1(Y ) with zero

average, i.e.
�
Y ψ = 0.

This behavior is re�ected by the de�nition of H-convergence, which goes back to the
seminal work by Murat and Tartar ([MT97]), where the notion is introduced in the
�at case M = Rn. It is a generalization of the notion of G-convergence by Spagnolo
and De Giorgi.

De�nition 2.1.1 (H-Convergence). We say a sequence (aε) of uniformly elliptic coef-
�cient �elds H-converges to a coe�cient �eld ahom, if for any bounded open set U ⊆ Rn
and any f ∈ H−1(U) the unique solutions uε, u0 ∈ H1

0 (U) to

−div(aε∇uε) = −div(ahom∇u0) = f in H−1(U)

satisfy {
uε ⇀ u0 weakly in H1(U),

aε∇uε ⇀ ahom∇u0 weakly in L2(U).

In this manner the result above can be summarized as follows:

Lemma 2.1.2 (Periodic Homogenization). For every uniformly elliptic, Y -periodic
coe�cient �eld a the sequence (a( ·ε)) H-converges to the matrix ahom de�ned by (2.3).

In [MT97] Murat and Tartar deduce an even stronger H-compactness result, stating
that every sequence of (not necessarily periodic) uniformly elliptic coe�cient �elds
provides an H-convergent subsequence. It has been extended to a large class of elliptic
equations on Rn including e.g. linear elasticity [FM86] and monotone operators for
vector valued �elds ([FMT09]). See also [Wau18] for a variant that applies to non-local
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operators. Our main goal of part II will be to adapt this result to the case of uniformly
elliptic operators on manifolds (Theorem 3.2.2).

The crucial point in the proof of H-compactness (as well as for the periodic result)
is to pass to the limit in

�
U ∇uε · a( ·ε)

ᵀ∇ψ occurring in the weak formulation of the
equation, as it contains the product of two weakly converging sequences. To �x this
problem, there are basically two solutions in the literature: On the one hand the notion
of two-scale convergence or periodic unfolding, which we will not concern any further,
and on the other hand the method of oscillating test functions in combination with the
so-called Div-Curl-Lemma ([MT97]):

Lemma 2.1.3 (Div-Curl Lemma). Let U ⊆ Rn be open and let (ξε) and (vε) be
sequences in L2(U ;Rn) and H1(U), resp., such that

vε ⇀ v weakly in H1(U) and

{
ξε ⇀ ξ weakly in L2(U),

div ξε → div ξ strongly in H−1(U).

Then �
U

(ξε · ∇vε)ψ →
�
U

(ξ · ∇v)ψ for all ψ ∈ C∞c (U).

2.2. Stochastic Homogenization

The theory of stochastic homogenization deals with random coe�cient �elds in (2.2)
instead of periodic ones. That means, while in periodic homogenization all the informa-
tion about the coe�cients lie in the periodicity cell, the behavior of random coe�cients
in the limit is only predictable up to a certain probability. In order to make these un-
certainty handable, Papanicolaou and Varadhan introduced in [PV79] the following
convenient abstract framework:

Let (Ω,A,P) be a probability space and denote by E the expectation with respect to P.
Assume τ : Rn×Ω→ Ω to be a group action on Ω, i.e. τx+yω = τxτyω for all x, y ∈ Rn,
and ω ∈ Ω, such that the following properties are satis�ed:

� (Stationarity) For every random variable f ∈ L1(Ω) and every x ∈ Rn we have

E[f ◦ τx] = E[f ].

� (Ergodicity) If for A ∈ A holds τxA = A for every x ∈ Rn, then P(A) ∈ {0, 1}.
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2. Homogenization

We call a measurable random coe�cient �eld a : Ω× Rn → Rn×n stationary, if

a(ω, x+ y) = a(τyω, x)

for every x, y ∈ Rn and every ω ∈ Ω.

Note that the case of periodic coe�cients can be included in this setting by adding a
random o�set. Precisely, let a# : Rn → Rn×n be a measurable, Y -periodic coe�cient
�eld and set Ω := {ω : Rn → Rn×n;ω(y) = a#(x + y), x ∈ Y }. If we equip Ω with
the Borel-σ-algebra, the probability measure generated by uniform distribution of the
o�sets x ∈ Y , and the group action τxω := ω(x + ·) for x ∈ Rn, ω ∈ Ω, we gain a
stationary ergodic probability space. Then the coe�cient �eld de�ned by aω(x) := τxω
for x ∈ Rn, ω ∈ Ω, is stationary. In particular, for every ω ∈ Ω by construction there
is x ∈ Y such that aω = a#(x+ ·).

For stationary random �elds an analog result to the periodic result Lemma 2.1.2 is
true (see e.g. [Neu18]).

Lemma 2.2.1 (Stochastic Homogenization). Let (Ω,A,P, τ) be a stationary, ergodic
probability space, and let a be a stationary random coe�cient �eld. Then there is
a deterministic matrix ahom ∈ Rn×n such that for a.e. ω ∈ Ω the sequence (aω( ·ε))
H-converges to ahom. In particular, ahom is characterized by

ahomej = E
[ �

Y
a(x)(∇φj(x) + ej) dx

]
,

where the stochastic corrector φωj ∈ H1
loc(Rn) is the unique solution of

�
Rn

(aω∇φωj + ej) · ∇ψ = 0 for all ψ ∈ C∞c (Rn)

with sublinear growth, i.e. lim supR→∞
1
R2

�
RY |φ

ω|2 = 0, and anchored in the sense
that

�
Y φ

ω = 0.

A key element in the proof is the application of the famous Birkho�'s Ergodic Theo-
rem ([DVJ08, Theorem 12.2.II]), which we recall in the following form for continuous
processes:

Lemma 2.2.2 (Birkho�'s Individual Ergodicity Theorem). Let (Ω,A,P, τ) be station-
ary and ergodic. There is a subset Ω′ ⊆ Ω of full measure such that for every random
variable f ∈ L1(Ω) and every open bounded set A ⊆ Rn we have

lim
ε↘0

 
A
f(τx

ε
ω) dx = E[f ] for every ω ∈ Ω′.
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2.2. Stochastic Homogenization

In some sense more general is the Subadditive Ergodic Theorem introduced by Akcoglu
and Krengel ([AK81]), which makes use of the notion of stationary subadditive set
functionals. A stationary subadditive set functional is a measurable function F : Ω ×
P(Rn)→ R such that the following properties are satis�ed:

� For every x ∈ Rn, A ⊆ Rn and every ω ∈ Ω we have Fω(x+A) = Fτxω(A).

� sup
{

1
|A|E[F(A)];A ⊆ Rn, |A| > 0

}
<∞.

� For every disjoint sets A,B ⊆ Rn and every ω ∈ Ω we have

Fω(A ∪B) ≤ Fω(A) + Fω(B).

The Subadditive Ergodic Theorem then can be formulated as follows (cf. [AK81, The-
orem 2.4, Lemma 3.4 and the remark after the proof of Theorem 2.4]):

Lemma 2.2.3 (Subadditive Ergodic Theorem). Let (Ω,A,P, τ) be stationary and er-
godic, and let F be a stationary subadditive set functional. Then there is a subset
Ω′ ⊆ Ω of full measure such that for every cube Q ⊆ Rn whose vertices are in Qn we
have

lim
ε↘0

Fω(1
εQ)

|1εQ|
= lim

ε↘0

E[F(1
εY )]

|1εY |
,

where Y := [0, 1)d.

Remark 2.2.4. If the stationary subadditive set functional in Lemma 2.2.3 has almost
surely bounded growth, in the sense that for P-a.e ω ∈ Ω there is a constant C > 0 with

Fω(A) ≤ C|A|

for every compact A ⊆ Rn, then the statement of Lemma 2.2.3 holds for all cubes in
Rn (see for instance the arguments in the proof of Corollary 3.3 in [MM94]).
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Part II.

Uniformly bi-Lipschitz

Di�eomorphic Manifolds
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3. Uniformly Elliptic Operators on a

Riemannian Manifold

The intention of this thesis is to study the asymptotic behavior of sequences of bi-
Lipschitz di�eomorphic manifolds in terms of the Laplace-Beltrami operator, cf. Chap-
ter 1. In particular, we pull the Laplace-Beltrami operator −∆gε,µε on (Mε, gε, µε)
back to the reference manifold M0 by appealing to the di�eomorphism hε from De�ni-
tion 1.3.1. In this way we obtain a family of elliptic operators of the form −div(Lε∇)
on M0 with coe�cients Lε, see Section 4.1 for further details.

Our �rst approach is to adapt the method of oscillating test functions on Rn by Murat
and Tartar ([MT97]) to Riemannian manifolds, in order to receive a H-compactness
result (Theorem 3.2.2) in the case that the coe�cient �elds Lε are uniformly elliptic
(that is, the constant in (2.1) does not depend on ε). This setting corresponds to
uniformal constants in De�nition 1.3.1.

This chapter relies basically on [HMN19] by Jun Masamune, Stefan Neukamm and the
author, but contains also a way to extend the results to manifolds that couldn't be
considered in [HMN19] due to the considered boundary conditions, for example the
torus, cf. Proposition 3.2.7 and Lemma 3.6.4.

3.1. Setting

On a weighted Riemannian manifold (M, g, µ) we study families of di�erential operators
of the form

−div(L∇) : H1
0 (M)→ H−1(M),

where L denotes a uniformly elliptic coe�cient �eld onM . We make the setting precise
with the following de�nition.

De�nition 3.1.1 (Uniformly Elliptic Coe�cient Fields). Let (M, g, µ) be a weighted
Riemannian manifold. For 0 < λ ≤ Λ we denote byM(M,λ,Λ) the set of all measur-
able coe�cient �elds L : M → Lin(TM) that are uniformly elliptic and bounded in the
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sense that for µ-a.e. x ∈M and every ξ ∈ TxM

g(ξ,L(x)ξ) ≥ λ|ξ|2g, (3.1)

g(ξ,L(x)−1ξ) ≥ 1
Λ |ξ|

2
g. (3.2)

Remark 3.1.2. The boundedness of a coe�cient �eld L ∈M(M,λ,Λ) is a consequence
of condition (3.2), since this condition is equivalent to

g(η,L(x)ξ) ≤ Λ′|η||ξ| for µ-a.e. x ∈M and every η, ξ ∈ TxM (3.3)

for some constant Λ′ > 0. The reason for the formulation (3.2) is that the constant
Λ is stable under H-convergence (in the sense that M(M,λ,Λ) is closed under H-
convergence, as we will see), while the constant Λ′ is not.

In order to assure well-posedness of the considered di�erential equations, throughout
this part we will denote for any open set U ⊆M

m0(U) := − inf

{�
U g(∇u,∇u) dµ�

U |u|2 dµ
;u ∈ H1

0 (U), ‖u‖L2(U) > 0

}
≤ 0. (3.4)

This de�nition of m0(U) is chosen such that m > m0(U) if and only if

inf

{�
U

(
m|u|2 + g(∇u,∇u)

)
dµ;u ∈ H1

0 (U), ‖u‖H1
0 (U) = 1

}
> 0,

which immediately implies that for m > λm0(U) the bounded, bilinear form

a : H1
0 (U)×H1

0 (U)→ R, a(u, v) := m

�
U
uv dµ+

�
U
g(L∇u,∇v) dµ

is coercive. Therefore, the Lax-Milgram Lemma assures that for every L ∈M(U, λ,Λ),
m > λm0(U) and f ∈ H−1(U) the equation

muε − div(L∇u) = f in H−1(U), (3.5)

admits a unique weak solution u ∈ H1
0 (U) satisfying

‖u‖H1(U) ≤ C‖f‖H−1(U) (3.6)

for some constant C > 0 only depending on U , λ and m.

Remark 3.1.3 (Comments on the Constant m0(U)).
� The de�nition of m0(U) gives a glimpse of the strong connection between (3.5)
and the spectrum of the Laplace-Beltrami operator on U . In particular, since�
U g(∇u,∇u) dµ�

U |u|2 dµ
is the Rayleigh Quotient, m0(U) appears to be the negative of the

in�mum of the spectrum of the Laplace-Beltrami operator on U . If the spectrum
is a pure point spectrum, −m0(U) is actually the lowest eigenvalue.
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3.2. Main Results

� If U b M is relatively-compact and connected, Poincaré's inequality holds for
functions with zero mean, i.e. for all u ∈ H1(U)

�
U

∣∣∣u− �
U udµ

∣∣∣2 dµ ≤ C
�
U
|∇u|2 dµ

for some constant C > 0 only depending on U . In this case we have m0(U) ≤ 0,
and in (3.5) any m > 0 is admissible. Moreover, if Poincaré's inequality holds
for all functions with vanishing boundary conditions, i.e. for all u ∈ H1

0 (U)

�
U
|u|2 dµ ≤ C

�
U
|∇u|2 dµ (3.7)

for some constant C > 0 only depending on U , then we even have m0(U) < 0
and in (3.5) m = 0 is a valid choice.

3.2. Main Results

In the following we state our main results about H-convergence on a manifold. For the
sake of readability, we postpone all proofs of this chapter to Section 3.6.

Before formulating our results, we need to translate the de�nition of H-convergence to
the situation of Riemannian manifolds.

De�nition 3.2.1 (H-Convergence on a Manifold). Let (M, g, µ) be a weighted Rieman-
nian manifold and let 0 < λ ≤ Λ. We say a sequence (Lε) inM(M,λ,Λ) H-converges
in (M, g, µ) to L0 ∈M(M,λ,Λ), if for any relatively-compact open subset U bM with
m0(U) < 0, and any f ∈ H−1(U), the unique solutions uε, u0 ∈ H1

0 (U) to

−div(Lε∇uε) = −div(L0∇u0) = f in H−1(U)

satisfy {
uε ⇀ u0 weakly in H1(U),

Lε∇uε ⇀ L0∇u0 weakly in L2(TU).

In that case we write Lε
H→ L0 in (M, g, µ).

Our main result extends the classical H-compactness result for uniformly elliptic coe�-
cient �elds on Rn in [MT97] to the setting on Riemannian manifolds in the sense of the
de�nition above. In fact, we show a slightly more general version, which immediately
implies H-compactness on the manifold.
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3. Uniformly Elliptic Operators on a Riemannian Manifold

Theorem 3.2.2. Let (M, g, µ) be a weighted Riemannian manifold and let 0 < λ ≤ Λ.
Then for every sequence (Lε) in M(M,λ,Λ) there exist a subsequence (not relabeled)
and L0 ∈ M(M,λ,Λ) such that the following holds: For every open subset U ⊆ M ,
m > λm0(U), and sequences (fε) in L2(U) and (Fε) in L2(TU) with{

fε ⇀ f0 weakly in L2(U),

Fε → F0 strongly in L2(TU),

the solutions uε, u0 ∈ H1
0 (U) to

muε − div(Lε∇uε) = fε + divFε in H−1(U),

mu0 − div(L0∇u0) = f0 + divF0 in H−1(U),
(3.8)

satisfy {
uε ⇀ u0 weakly in H1

0 (U),

Lε∇uε ⇀ L0∇u0 weakly in L2(TU).

Additionally we have uε → u0 strongly in L
2(U), if either H1

0 (U) is compactly embedded
in L2(U), or m 6= 0 and fε → f0 strongly in L2(U).

If in Theorem 3.2.2 we choose U b M relatively-compact and open with m0(U) < 0,
we can take m = 0 and get H-convergence of Lε to L0 in the sense of De�nition 3.2.1
as a direct consequence (without any further proof):

Corollary 3.2.3. Let (M, g, µ) be a weighted Riemannian manifold and let 0 < λ ≤ Λ.
Then every sequence in M(M,λ,Λ) admits an in M H-convergent subsequence with
limit inM(M,λ,Λ).

The statements of Theorem 3.2.2 and Corollary 3.2.3�not the proofs�are actually
equivalent in the following sense: On the one hand, we have just seen thatH-convergence
is a consequence of Theorem 3.2.2. On the other hand, every H-convergent sequence
in M(M,λ,Λ) admits by Theorem 3.2.2 a subsequence satisfying the assertions of
Theorem 3.2.2 with L0 being the H-limit (by uniqueness of the H-limit, see Proposi-
tion 3.3.3 below), thus the assertions are independent of the choice of the subsequence
and hold for the entire sequence, cf. also Lemma 3.3.4 below.

Keeping in mind the application to the asymptotics of bi-Lipschitz di�eomorphic man-
ifolds in Chapter 4, we additionally present some relations between H-convergence of
coe�cient �elds and Mosco-convergence of the associated Dirichlet integrals, or con-
vergence of the spectra of the associated operators, resp. We therefor restrict to the
case of symmetric coe�cient �elds Lε, i.e.

g(Lεξ, η) = g(ξ,Lεη) for all ξ, η ∈ TM.
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3.2. Main Results

Proposition 3.2.4 (H-Convergence Implies Mosco-Convergence). Let (M, g, µ) be a
weighted Riemannian manifold and let 0 < λ ≤ Λ. For every sequence (Lε) of symmet-

ric coe�cient �elds in M(M,λ,Λ) the following holds: Suppose Lε
H→ L0 in M , then

the functional Eε : L2(M)→ R ∪ {+∞},

Eε(u) =

{�
M g(Lε∇u,∇u) dµ, if u ∈ H1

0 (M),

+∞, otherwise

Mosco-converges (w.r.t. L2) to E0 : L2(M)→ R ∪ {+∞},

E0(u) =

{�
M g(L0∇u,∇u) dµ, if u ∈ H1

0 (M),

+∞, otherwise.

Remark 3.2.5. Mosco-convergence is the natural notion of convergence when handling
equations like (3.8) with variational methods. For in the case of symmetric coe�cients
the unique solution of (3.8) is characterized as the unique minimizer to the strictly
convex and coercive functional Fε : L2(U)→ R ∪ {+∞}, ε ≥ 0, given by

Fε(u) =

{
1
2

(
Eε(u) +m

�
U |u|

2 dµ
)
−
�
U

(
fεu+ g(Fε,∇u)

)
dµ, if u ∈ H1

0 (U),

+∞, otherwise,

with Eε as in Proposition 3.2.4. However, Mosco-convergence of the Dirichlet inte-
grals is a bit weaker than H-convergence of the corresponding coe�cient �elds, since
Mosco-convergence, in combination with Lemma 1.4.1, ensures strong convergence of
the solutions uε in L

2(M) (or equivalently weak convergence in H1(M), see e.g. [DM93,
Theorem 13.12, cf. Example 13.13]), but gives no information about the �uxes Lε∇uε.
(Though one could use the Div-Curl Lemma, see Lemma 3.3.2 below, to show con-
vergence of the L2-projection of Lε∇uε onto the orthogonal complement of {∇φ;φ ∈
H1

0 (M)} ⊆ L2(TU), this would still be weaker than H-convergence.)

Finally, to formulate the consequences for the spectra of operators with H-convergent
(symmetric) coe�cients, we recall that (λ, u) is called an eigenpair of the operator

−div(L∇) : H1
0 (U)→ H−1(U),

with eigenvalue λ ∈ R and eigenfunction u ∈ H1
0 (U), if�

U
g(L∇u,∇ψ) dµ = λ

�
U
uψ dµ for all ψ ∈ H1

0 (U).

Proposition 3.2.6 (H-Convergence Implies Spectral Convergence). Let (M, g, µ) be
a weighted Riemannian manifold and (Lε) be a sequence of symmetric coe�cient �elds
in M(M,λ,Λ) for some 0 < λ ≤ Λ, H-converging to some coe�cient �eld L0 in M .
Then for every relatively-compact open subset U b M with m0(U) < 0 the following
holds:
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3. Uniformly Elliptic Operators on a Riemannian Manifold

(a) For ε ≥ 0 the spectrum of the operator

−div(Lε∇) : H1
0 (U)→ H−1(U)

only consists of real, strictly positive eigenvalues, denoted in increasing order by

0 < λε,1 ≤ λε,2 ≤ λε,3 ≤ · · · ,

where eigenvalues are repeated according to their multiplicity, and there is a se-
quence of associated eigenfunctions uε,1, uε,2, uε,3, . . . forming an orthonormal
basis of L2(U).

(b) For all k ∈ N,
λε,k → λ0,k as ε↘ 0,

and if s ∈ N denotes the multiplicity of λ0,k, i.e.

λ0,k−1 < λ0,k = · · · = λ0,k+s−1 < λ0,k+s (with the convention λ0,0 = 0),

then there exists a sequence ũε,k of linear combinations of uε,k, . . . , uε,k+s−1 such
that

ũε,k → u0,k strongly in L2(U) as ε↘ 0.

The above spectral convergence statement strongly relies on the assumption m0(M) <
0, as this is a necessary condition for zero to be included in the resolvent set of the
considered operator. However, in many cases this condition is not satis�ed for the
entire manifold. To demonstrate how our results might be extended to some of such
situations, we consider the n-dimensional torus T := Rn/Zn. Since the spectrum of
the operator

−div(L∇) : H1
0 (T)→ H−1(T),

contains zero as an eigenvalue, it is more natural to consider the spectrum of the
operator

−div(L∇) : H1
per(T)→ H−1(T)

with

H1
per(T) :=

{
u ∈ H1(T);

�
T
udµ = 0

}
.

Then an eigenpair (λ, u) of this operator consists of an eigenvalue λ ∈ R and an
eigenfunction u ∈ H1

per(T) such that�
T
(L∇u) · ∇ψ dµ = λ

�
T
uψ dµ for all ψ ∈ H1(T).

Proposition 3.2.7 (H-Convergence Implies Spectral Convergence on the Torus). Let
(T, g, µ) be the n-dimensional torus equipped with a Riemannian metric and a weighted
measure, and let (Lε) be a sequence of symmetric coe�cient �elds in M(T, λ,Λ) for
some 0 < λ ≤ Λ, H-converging to some coe�cient �eld L0 in T. Then the following
holds:
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3.3. Strategy of the Proof and Auxiliary Results

(a) For ε ≥ 0 the spectrum of the operator

−div(Lε∇) : H1
per(T)→ H−1(T)

only consists of real, strictly positive eigenvalues, denoted in increasing order by

0 < λε,1 ≤ λε,2 ≤ λε,3 ≤ · · · ,

where eigenvalues are repeated according to their multiplicity, and there is a se-
quence of associated eigenfunctions uε,1, uε,2, uε,3, . . . forming an orthonormal
basis of L2(T).

(b) For all k ∈ N,
λε,k → λ0,k as ε↘ 0,

and if s ∈ N denotes the multiplicity of λ0,k, i.e.

λ0,k−1 < λ0,k = · · · = λ0,k+s−1 < λ0,k+s (with the convention λ0,0 = 0),

then there exists a sequence ũε,k of linear combinations of uε,k, . . . , uε,k+s−1 such
that

ũε,k → u0,k strongly in L2(T) as ε↘ 0.

3.3. Strategy of the Proof and Auxiliary Results

The proof of Theorem 3.2.2 adopts the method of oscillating test-functions by Murat
and Tartar, cf. [MT97]. The main di�erence to the �at caseM = Rn is that the tangent
space TxM changes when x varies in M . This issue can be handled by a localization
argument, because in a small neighborhood the tangent space can be spanned by the
gradients of �nitely many smooth functions. More precisely, if B bM is an open ball
with radius smaller than the injectivity radius ofM at its center point, then there exist
v1, . . . , vn ∈ C∞c (B) such that for all x ∈ 1

2B

Tx(1
2B) = span{∇v1(x), . . . ,∇vn(x)}, (3.9)

where 1
2B denotes the open ball with the same center, but half the radius of B. This

allows us to show H-compactness restricted to small balls:

Lemma 3.3.1 (H-Compactness on Small Balls). Let (M, g, µ) be a weighted Rieman-
nian manifold, B b M be an open ball with radius smaller than the injectivity radius
of M at its center, and let 0 < λ ≤ Λ. For every sequence (Lε) in M(M,λ,Λ)
there exists a (not relabeled) subsequence of (Lε) that H-converges in 1

2B to some
L0 ∈M(1

2B, λ,Λ).
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3. Uniformly Elliptic Operators on a Riemannian Manifold

Lemma 3.3.1 is the key moment of the proof of Theorem 3.2.2. It is shown in three
steps: We �rst construct the tensor �eld L0 on the small ball 1

2B, secondly identify it
as an H-limit of the sequence (Lε) on 1

2B, and at last deduce its uniform ellipticity.
For the de�nition of L0 we introduce the operators

L∗ε : H1
0 (B)→ H−1(B), L∗εu := −div(L∗ε∇), (3.10)

where L∗ε denotes the adjoint of the coe�cient �eld Lε de�ned by

g(L∗εξ, η) = g(ξ,Lεη)

for all tangent vectors ξ, η. From the uniform ellipticity of the coe�cient �elds we can
deduce by a classic functional analytic result (see Lemma 3.6.1 below) the existence of
a linear operator L∗0, such that its inverse is the limit of (L∗ε)−1 in the weak operator
topology. Following Murat and Tartar it can be shown that the operator L∗0 is of
the form −div(L∗0∇) for some tensor �eld L0, utilizing the oscillating test-functions
(L∗ε)−1L∗0vk associated with vk from (3.9). These test-functions will allow to pass to
the limit in products of two weakly convergent sequences occurring in the last two
steps of the proof of Lemma 3.3.1 by appealing to the following variant of the Div-Curl
Lemma for manifolds (cf. Lemma 2.1.3):

Lemma 3.3.2 (Div-Curl Lemma). Let (M, g, µ) be a weighted Riemannian manifold,
and consider sequences (vε) in H1(M), (ξε) in L2(TM), such that

vε ⇀ v0 weakly in H1(M) and

{
ξε ⇀ ξ weakly in L2(TM),

div ξε → div ξ0 in H−1(M).

Then for all ψ ∈ C∞c (M) we have

�
M
g(ξε,∇vε)ψ dµ→

�
M
g(ξ0,∇v0)ψ dµ.

Moreover, if vε, v0 ∈ H1
0 (M), then

�
M
g(ξε,∇vε) dµ→

�
M
g(ξ0,∇v0) dµ.

Now in the last two steps, we show that L0, which is the adjoint of L∗0, is an H-limit
of the sequence (Lε), and that L0 ∈M(1

2B, λ,Λ). This will be done by introducing on
a relatively-compact open subset U b 1

2B the localized operators

Lε : H1
0 (U)→ H−1(U), Lε := −div(Lε∇), (3.11)

and showing that L−1
ε → L−1

0 in the weak operator topology on U , which will �nish
the proof of Lemma 3.3.1.
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3.3. Strategy of the Proof and Auxiliary Results

In order to lift the H-compactness result Lemma 3.3.1 to the entire manifold we cover
M by countably many small balls, obtain H-convergence simultaneously on each of
these balls by a diagonal argument, and appeal to the following lemma to assure that
the H-limits are unique and coincide in the intersections of the balls:

Proposition 3.3.3 (Uniqueness, Locality, Invariance w.r.t. Transposition). Let (M, g, µ)
be a weighted Riemannian manifold, and let 0 < λ ≤ Λ.

(a) Consider two sequences (Lε) and (L̃ε) in M(M,λ,Λ) such that Lε = L̃ε for all

ε > 0 in some relatively-compact open subset U b M . Then from Lε
H→ L0 and

L̃ε
H→ L̃0 in U follows L0 = L̃0 µ-a.e. in U .

(b) For every sequence (Lε) inM(M, g, µ) holds

Lε
H→ L0 ⇔ L∗ε

H→ L∗0 in M.

The proof of Theorem 3.2.2 will be concluded by the following lemma, allowing us to
treat the varying right-hand sides in Theorem 3.2.2, which also automatically occur
by stepping from the H-convergence on single balls to H-convergence on the whole
manifold.

Lemma 3.3.4. Let (M, g, µ) be a weighted Riemannian manifold, U bM be a relatively-
compact open subset with m0(U) < 0. Let further (Lε) be a sequence in M(M,λ,Λ)
for some 0 < λ ≤ Λ, H-converging in M to some L0. Then for every fε, f0 ∈ L2(U)
and Gε, Fε, G0, F0 ∈ L2(TU) with

fε ⇀ f0 weakly in L2(U),

Gε → G0 strongly in L2(TU),

Fε → F0 strongly in L2(TU),

the unique solutions uε, u0 ∈ H1
0 (U) to

− div(Lε∇uε) = fε − div(LεGε)− divFε in H−1(U),

− div(L0∇u0) = f0 − div(L0G0)− divFε in H−1(U)

satisfy {
uε ⇀ u0 weakly in H1

0 (U),

Lε∇uε ⇀ L0∇u0 weakly in L2(TU).
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3. Uniformly Elliptic Operators on a Riemannian Manifold

3.4. Identi�cation of the Limit via Local Coordinate Charts

Theorem 3.2.2 states H-compactness for general uniformly elliptic coe�cient �elds,
i.e. every family (Lε) of uniformly elliptic coe�cient �elds contains a H-converging
subsequence. As a pure existence statement it contains no information about the
H-limit, separate from being uniformly elliptic. Even worse, the limiting coe�cient
�eld generally depends on the choice of the subsequence. Hence, if we are looking for
H-convergence of the entire sequence (Lε) and maybe even an explicit representation
of the limiting coe�cient �eld, we need stronger assumptions on (Lε) than uniform
ellipticity.

The theory of homogenization provides several classic results in the �at case M = Rn
assuming the coe�cients Lε to have a special oscillating structure, cf. Chapter 2. For
example if the coe�cient �elds are of the form Lε(x) = L(xε ) with a periodic coe�cient
�eld L, i.e. L(·+ k) = L(·) a.e. in Rn for all k ∈ Zn, periodic homogenization provides
a homogenization formula for the limiting coe�cient �eld (see Lemma 2.1.2), which
therefore is independent of the choice of the subsequence and implies H-convergence
of the entire sequence. (Besides periodic coe�cient �elds one could also consider the
framework of stochastic homogenization. But since this will be intensively discussed
in Part III, we will only focus on the periodic case.)

These homogenization results cannot be directly transferred to manifolds, as it is not
clear how to de�ne periodicity of coe�cient �elds on a general manifold. In order to
still bene�t from the classic results on Rn, we will express the coe�cient �elds in local
coordinates. We therefor �x a local coordinate chart (U,Ψ;x1, x2, . . . , xn) of M and
a relatively-compact open set A b Ψ(U) ⊆ Rn, and set U ′ := Ψ−1(A) ⊆ U . We will
suppress the chart Ψ when the meaning is clear from the context. In particular, for the
representation of a function u on U in local coordinates we shall simply write u instead
of u ◦ Ψ−1. Then to a coe�cient �eld L ∈ M(U ′, λ,Λ) we can associate a coe�cient
�eld a : A→ Rn×n with the components

aij := ρ g(L∇gxi,∇gxj) for i, j = 1, . . . , n, with ρ = σ
√

det g, (3.12)

where σ denotes the density of µ against the Riemannian volume measure. In this
framework we �nd that the notions of uniform ellipticity and H-convergence simply
translate from the manifold setting to the �at setting and vice versa, see Lemma 3.4.1
and Proposition 3.4.2 below.

Lemma 3.4.1. Let (M, g, µ) be a weighted Riemannian manifold, and let 0 < λ ≤ Λ.
For L ∈ M(U ′, λ,Λ) consider a : A → Rn×n as de�ned in (3.12). Then there are
0 < λ′ ≤ Λ′ (only depending on Ψ, A, λ and Λ) such that we have

aξ · ξ ≥ λ′|ξ|2 and a−1ξ · ξ ≥ 1
Λ′ |ξ|

2 a.e. in A,

for all ξ ∈ Rn, where �·� denotes the standard scalar product in Rn.
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3.4. Identi�cation of the Limit via Local Coordinate Charts

Proposition 3.4.2. Let (M, g, µ) be a weighted Riemannian manifold, and let 0 < λ ≤
Λ. For Lε,L0 ∈ M(U ′, λ,Λ) consider aε, a0 as de�ned in (3.12). Then the following
assertions are equivalent:

(i) (Lε) H-converges to L0 in (U ′, g, µ).

(ii) (aε) H-converges to a0 in A equipped with the standard Euclidean metric and
measure.

For aε we can naturally consider periodic homogenization. We therefor denote by
Y := [0, 1)n the periodicity cell and by H1

per(Y ) the space of Y -periodic functions
φ ∈ H1(Y ) with zero mean, i.e.

�
Y φ = 0. Moreover, we denote by Mper(λ,Λ) the

class of Y -periodic coe�cient �elds a : Rn × Rn → Rn×n with ellipticity constants
0 < λ ≤ Λ, i.e.

a(·, y) is continuous for a.e. y ∈ Rn, (3.13)

a(x, ·) is measurable and Y -periodic for each x ∈ Rn, (3.14)

a(x, y)ξ · ξ ≥ λ|ξ|2 and a(x, y)−1ξ · ξ ≥ 1
Λ |ξ|

2 for each x ∈ Rn, a.e. y ∈ Rn

and all ξ ∈ Rn.
(3.15)

From a version of Lemma 2.1.2 (see e.g. [All92, Theorem 2.2]) we know that for
a ∈ Mper(λ,Λ) the sequence (aε), given by aε(x) := a(x, xε ), H-converges to the
homogenized coe�cient �eld ahom which is characterized by an analog to (2.3). In the
examples below (Section 3.5) we will see, that for instance in the natural situation of
concentric coe�cient �elds the following variant of this result will be required, which
includes an additional shift in the de�nition of aε. We refer to [HMN19] for a proof.

Lemma 3.4.3. Let 0 < λ ≤ Λ, r ∈ Rn. For a ∈ Mper(λ,Λ), the sequence (aε) with
aε(x) := a(x, x+r

ε ) H-converges on Rn to ahom de�ned by

ahom(x)ej =

�
Y
a(x, y)(∇yφj(x, y) + ej) dy, (3.16)

where (ej) is the standard basis in Rn, and φj(x, ·) ∈ H1
per(Y ) denotes the unique weak

solution to

�
Y
a(x, y)(∇yφj(x, y) + ej) · ∇yψ(y) dy = 0 for all ψ ∈ H1

per(Y ). (3.17)

Now we �nally can make the following observation, which is a direct consequence of
Proposition 3.4.2 and Lemma 3.4.3, and requires no further proof.

35



3. Uniformly Elliptic Operators on a Riemannian Manifold

Proposition 3.4.4 (Homogenization Formula). Let (M, g, µ) be a weighted Rieman-
nian manifold, 0 < λ ≤ Λ, and let Ψ, U , U ′ and A be as in the beginning of this section.

Let further Lε,L0 ∈M(M,λ,Λ) with Lε
H→ L0 on M , and suppose local periodicity in

the sense that there exists a Y -periodic coe�cient �eld L : Rn → Rn×n such that for
some r ∈ Rn

g(Lε(x)∇gxi,∇gxj) = Lij(
r+x
ε ) for a.e. x ∈ U.

Then L0 on U ′ in local coordinates takes the form

(ahom)ij = ρg(L0∇gxi,∇gxj) a.e. in A,

where ahom : A→ Rn×n is de�ned by (3.16) with a(x, y) := ρ(x)L(y).

3.5. Examples

As described in the previous section, we want to discuss two structural examples on
how (local) periodicity of coe�cient �elds on manifolds can look like. In particular,
we consider laminate-like coe�cient �elds and identify the H-limit by appealing to
homogenization in the �at case via local charts. Note that the coe�cient �elds in the
following examples are intrinsic objects and that the respective H-limit, even though
it is studied and expressed in local coordinates, is not bound to charts.

3.5.1. Concentric Laminate-Like Coe�cient Fields on Voronoi
Tessellated Manifolds

In our �rst example we assume a Voronoi tessellation on a manifold and consider
coe�cient �elds being rotationally symmetric on each cell w.r.t. the respective center,
and depending periodically on the geodesic distance from the center; see Figure 3.1
for some exemplary illustrations of such structures. To make this precise, let (M, g, µ)
be an n-dimensional manifold, and let Z ⊆M be a countable closed subset. For each
z ∈ Z we denote the associated Voronoi cell by Mz, i.e.

Mz := {x ∈M ; d(x, z) < d(x, Z \ {z})},

where d(·, ·) denotes the geodesic distance on M . Moreover, we assume the Voronoi
tessellation to be �ne enough such that for µ-a.e. x0 ∈M there exist z ∈ Z and % > 0
such that

for all x ∈ B%(x0) ⊆Mz there is exactly one shortest path γx from x to z, (3.18)

where B%(x0) denotes the open geodesic ball with center x0 and radius %.
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3.5. Examples

Figure 3.1.: Illustration of coe�cient �elds with laminate-like structure on Voronoi
tesselated manifolds.

Let 0 < λ ≤ Λ, and consider a sequence (Lε) inM(M,λ,Λ) of locally rapidly oscillating
coe�cient �elds, in the sense that Lε(x) = L(d(x,Z)

ε ) for some 1-periodic �eld L.

By Theorem 3.2.2 (Lε) H-converges (up to a subsequence) to some L0 ∈M(M,λ,Λ).
In the following we claim that L0 coincides µ-a.e. on M with some constant coe�cient
�eld, uniquely determined by L, so that the entire sequence (Lε)H-converges to L0. We
will show this by appealing to periodic the homogenization formula in local coordinates.
To that end, we construct curvilinear coordinates such that in these coordinates the
coe�cients are locally close to a laminate. Precisely, we �x z ∈ Z, x0 ∈ Mz and
construct a coordinate chart (B%(x0),Ψ;x1, . . . , xn) such that

Ψ(x0) = 0,

x1 = d(·, z)− d(x0, z),

g(∇gx1,∇gxj) = 0 for j = 2, . . . , n,

lim
x→x0

ρ(x)g(∇gxi,∇gxj)(x) = δij ,

(3.19)

(3.20)

(3.21)

(3.22)

where δ denotes the Kronecker symbol. By construction, such chart maps geodesics
through z to straight lines parallel to the x1-axis. In order to construct the chart, we
�nd for the �xed z ∈ Z, x0 ∈Mz a radius % > 0 such that (3.18) is satis�ed. By (3.20)
the �rst coordinate function x1 is already determined, namely

x1(x) := d(x, z)− d(x0, z)

for x ∈ B%(x0). Now (3.18) assures that x1 is di�erentiable and the level set

Ax0 := {x ∈ Bρ(x0);x1(x) = 0}

is an n− 1-dimensional submanifold of Mz including x0. Moreover, for any point x ∈
Ax0 the tangent space TxAx0 is orthogonal to the direction of the geodesic dγx(0), which
yields (3.21). We can assume % > 0 to be small enough, such that there are local normal
coordinates x2, . . . , xn of the submanifold Ax0 with xj(x0) = 0 (j = 2, . . . , n). Then,
by the di�erentiability of geodesics, these coordinates can be extended to curvilinear
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3. Uniformly Elliptic Operators on a Riemannian Manifold

coordinates x1, . . . , xn on B%(x0) (with a probably even smaller %) such that x2, . . . , xn

are constant on every geodesic γx for x ∈ B%(x0), and we �nd

lim
x→x0

g(∇gxi,∇gxj)(x) = δij ,

which implies limx→x0 ρ(x) = 1 and therewith yields (3.22).

z
x0

B%(x0)

γx0

x
γx

Ux0

x1

xi

Figure 3.2.: Construction of the local coordinates

Now, using these coordinates the coe�cient �eld on A := Ψ(B%(x0)) associated with
Lε (via (3.12)) takes the form

aε(y) = a(y, d(x0,z)+y1
ε ) (3.23)

for some a : A × R → Rn×n, which is continuous in the �rst, and measurable and
1-periodic in the second argument. For, by the concentric structure of Lε and the
de�nition of x1 we have

g(Lε(x)∇gxi,∇gxj) = g(L(d(x,Z)
ε )∇gxi,∇gxj) = g(L(d(x0,Z)+x1(x)

ε )∇gxi,∇gxj),

and since x1(x) = y1, we �nd the desired form (3.23) of aε with

aij(y, r) := ρ(y) g(L(r)∇gxi,∇gxj)(y), (3.24)

where we conveniently write ρ and g in representation of the pushed forward quantities
ρ ◦Ψ−1 and g ◦Ψ−1, respectively.

The homogenized matrix ahom associated with (aε) is given by the homogenization
formula (3.16) with a as in (3.24). Therefore it can be seen that ahom depends con-
tinuously on y ∈ A, and the matrix ahom(0) is independent of the initial choice of x0.
Moreover, ahom(0) is explicitly given by weak-∗ limits in L∞(A), (cf. [MT97]):

�
1

a11(0, ·ε)
⇀

1

(ahom)11(0)
,

38



3.5. Examples

�
ai1(0, ·ε)

a11(0, ·ε)
⇀

(ahom)i1(0)

(ahom)11(0)
for i ≥ 2,

�
a1j(0,

·
ε)

a11(0, ·ε)
⇀

(ahom)1j(0)

(ahom)11(0)
for j ≥ 2,

� aij(0,
·
ε)−

ai1(0, ·ε)a1j(0,
·
ε)

a11(0, ·ε)
⇀ (ahom)ij(0)− (ahom)i1(0)(ahom)1j(0)

(ahom)11(0)
for i, j ≥ 2.

By Proposition 3.4.4 we have

(ahom)ij = ρ g(L0∇gxi,∇gxj) a.e. in A,

and we can conclude that L0 is continuous (µ-a.e.) on B%(x0), and thus (3.22) implies

g(L0(x0)∇gxi,∇gxj)(x0) = (ahom)ij(0) for µ-a.e. x0 ∈M.

In the special case of L being diagonal, i.e.

L(r)∇gxi = αi(r)∇gxi

for i = 1, . . . , n, the resulting limit L0(x0) is diagonal, too, and simpli�es to

g(L0(x0)∇gx1,∇gx1)(x0) =
( � 1

0

1
α1

)−1
,

g(L0(x0)∇gxi,∇gxi)(x0) =

� 1

0
αi for i = 2, . . . , n.

(3.25)

3.5.2. Laminate-Like Coe�cient Fields on Spherically Symmetric
Manifolds

Another way to de�ne periodic coe�cient �elds on a manifolds is to assume the
manifold to be rotationally symmetric and may therefore be parametrized by the 1-
dimensional sphere S1, and consider coe�cient �elds being periodic in this parameter,
see Figure 3.3. In particular, we �x 0 < R ≤ ∞ and a function s ∈ C∞([0, R)) with
s(0) = 0, s′(0) = 1, and s(r) > 0 for r > 0, and consider the 2-dimensional spherically
symmetric manifold

M := {(r, θ) ∈ [0, R)× S1}

equipped with the Riemannian metric

g = dr2 + s2(r)dθ2
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3. Uniformly Elliptic Operators on a Riemannian Manifold

Figure 3.3.: Illustration of the laminate-like structure of the coe�cient �eld on R2, S2

and H2.

in the polar coordinates (r, θ), as described e.g. in [Gri09]. This model covers examples
like the plane R2 (with R = ∞ and s(r) = r), the 2-dimensional sphere S2 without
pole (with R = π and s(r) = sin r), or the hyperbolic plane H2 (with R = ∞ and
s(r) = sinh r). For the sake of simplicity we normalize S1 to have circumference 1.

The coe�cient �elds Lε ∈M(M,λ,Λ) we want to consider shall be of the form

Lε(r, θ) = L#

(
r, θ, θε

)
a.e. in M

for some coe�cient �eld L# being continuous in the �rst two arguments, and measur-
able and 1-periodic in the third. This means, if {φ(t); t ∈ R} denotes the one-parameter
group

φ(t) : x 7→ expx(t∇gθ)

for x ∈M \ ({0}×S1), then the coe�cient �eld Lε is rapidly oscillating along φ, while
it still might macroscopically (continuously) depends on the radius r. Therefore Lε
can be called a laminate-like coe�cient �eld on M .

By Theorem 3.2.2 the coe�cient �elds (Lε) H-converge in M to some coe�cient �eld
L0 along a subsequence. As in the previous example, L0 is uniquely determined by a
homogenization formula, which implies H-convergence to L0 for the entire sequence.
To see this it is su�cient to identify L0 locally. We therefor �x a bounded open
set U b M , and, due to the symmetry of M , it is no restriction to assume that its
closure U does not intersect the curve {(r, θ); θ = 0}. If we denote by Ψ the chart
of polar coordinates and set A := Ψ(U) ⊆ R2, (3.12) provides a coe�cient �eld aε
on A associated to Lε, which has the form aε(r, θ) = a#(r, θ, θε ), for some function
aε : [0, R)× S1 × R→ R2×2, given by

a#(r, θ, y) =

(
s(r) 0

0 s−1(r)

)
L#(r, θ, y),

where we conveniently write L#(r, θ, y) for the corresponding coe�cient matrix in
polar coordinates, i.e. (L#)ij := g(L#∇gxi,∇gxj) where (x1, x2) = (r, θ). Form the
H-convergence of (Lε) to L0 in U we follow with Proposition 3.4.2 that aε H-converges
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in A to a0, which is the coe�cient �eld associated with L0 via (3.12). But due to the
special form of aε, and since a# is continuous in the �rst two arguments and 1-periodic
in the third, we can apply the periodic homogenization formula (3.16) and conclude
that a0 only depends on L# and the metric g, but not on the choice of the subsequence,
and hence the same holds for L0.

As in the previous example we �nally consider the special case of diagonal coe�cient
�elds, i.e.

L#(r, θ, y) =

(
α#(y) 0

0 β#(y)

)
for some α#, β# : R → (λ,Λ) being measurable and 1-periodic, which as above is
meant to be understood as the representation of L# in polar coordinates. In this case
we obtain

a#(r, θ, y) =

(
s(r)α#

(
θ
ε

)
0

0 s−1(r)β#

(
θ
ε

)) ,
and application of (3.16) yields

a0(r, θ) =

s(r) � 1
0 α# 0

0 s−1(r)
(� 1

0
1
β#

)−1

 .

Thus L0 is diagonal, too, and explicitly given by

L0 =

� 1
0 α# 0

0
(� 1

0
1
β#

)−1

 . (3.26)

Note that the arithmetic and harmonic mean of α# and β# express the di�usivity
orthogonal and aligned to the �ow φ, respectively.

One should mention that, besides the torus T = R2/Z2 ∼= S1 × S1 does not �t in this
model, the same calculations can be done�in both of the spherical parameters.

3.6. Proofs

In the proofs we will pass to various subsequences and it will be necessary to keep
track of them. In order to gain a readable notation we will denote by E ⊆ (0,∞) the
index set the original sequence (Lε) = (Lε)ε∈E , and represent subsequences by subsets
E1, E2, . . . ⊆ E with a cluster point at zero. We will simply write

cε → c0 (ε ∈ E1),

and mean that for any sequence (εj)j∈N ⊆ E1 with εj ↘ 0 we have cεj → c0 as
j →∞.
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3.6.1. H-Compactness on Small Balls (Lemma 3.3.1) and the Div-Curl
Lemma (Lemma 3.3.2)

At �rst we prove the manifold version of the Div-Curl Lemma (Lemma 3.3.2), which
plays a central role in almost all the proofs of this chapter.

Proof of Lemma 3.3.2. For ψ ∈ C∞c (M) we can write
�
M
g(ξε,∇vε)ψ dµ =

�
M
g(ξε,∇(vεψ)) dµ−

�
M
g(ξε, vε∇ψ) dµ. (3.27)

Regarding the �rst integral of the right-hand side we use the strong convergence of the
divergence of (ξε) and the weak convergence of (vε) to see
�
M
g(ξε,∇(vεψ)) dµ→

�
M
g(ξ0,∇(v0ψ)) dµ =

�
M
g(ξ0, v0∇ψ) dµ+

�
M

(ξ0, ψ∇v0) dµ.

For the second integral of the right-hand side of (3.27) we note that by Rellich's
Theorem on the compact set U := suppψ we have strong convergence of vε to v0 in
L2(U), which implies vε∇ψ → v0∇ψ strongly in L2(TM) and thus

�
M
g(ξε, vε∇ψ) dµ→

�
M

(ξ0, v0∇ψ) dµ.

In the case vε, v0 ∈ H1
0 (M) the statement follows directly with an integration by parts

argument.

Before proving Lemma 3.3.1 we recall the following standard functional analytic result,
see e.g. [MT97, Proposition 4]:

Lemma 3.6.1. Let V be a re�exive separable Banach space and (Tε) be a sequence of
linear operators Tε : V → V ′ that is uniformly bounded and coercive, i.e. there exists
C > 0 (independent of ε) such that the operator norm of Tε is bounded by C and

〈Tεv, v〉V ′,V ≥ 1
C ‖v‖

2
V for all v ∈ V. (3.28)

Then there exists a linear bounded operator T0 : V → V ′ satisfying (3.28) and for a
subsequence (not relabeled) we have T−1

ε ⇀ T−1
0 in the weak operator topology, that is

for all f ∈ V ′ we have
T−1
ε f ⇀ T−1

0 f weakly in V.

Proof of Lemma 3.3.1.
Step 1: Choice of the subsequence and de�nition of L0.
As described in Section 3.3, we consider the operators L∗ε de�ned in (3.10) and �x

42



3.6. Proofs

functions v1, . . . , vn ∈ C∞c (B) as in (3.9). We claim the existence of a coe�cient
�eld L0 on 1

2B and sequences (v1,ε), . . . , (vk,ε) of functions in H1
0 (B), such that for a

subsequence E1 ⊆ E we have
vk,ε ⇀ vk weakly in H1

0 (B) and strongly in L2(B) (ε ∈ E1),

(L∗εvk,ε) strongly converges in H−1(B) (ε ∈ E1),

L∗ε∇vk,ε ⇀ L∗0∇vk weakly in L2(T (1
2B)) (ε ∈ E1)

(3.29)

for all k = 1, . . . , n. Therefor we note that the uniform ellipticity of L∗ε provides a
constant C > 0, only depending on B and λ, such that

〈L∗εu, u〉 =

�
B
g(L∗ε∇u,∇u) dµ ≥ C‖u‖2H1(B),

and thus Lemma 3.6.1 implies the existence of an operator L∗0 : H1
0 (B)→ H−1(B) such

that for a subsequence E0 ⊆ E

(L∗ε)−1f ⇀ (L∗0)−1f weakly in H1
0 (B) (ε ∈ E0)

for all f ∈ H−1(B). For k = 1, . . . , n de�ne the oscillating test-functions

vk,ε := (L∗ε)−1L∗0vk ∈ H1
0 (B),

which are bounded uniformly in ε due to the uniform ellipticity of L∗ε and Poincaré's
inequality in H1

0 (B) (which holds since m0(B) < 0). Hence we can extract another
subsequence E1 ⊆ E0 such that{

vk,ε ⇀ vk weakly in H1
0 (B) and strongly in L2(B) (ε ∈ E1),

L∗ε∇vk,ε ⇀ ξk weakly in L2(TB) (ε ∈ E1)

for some vector �elds ξ1, . . . , ξn ∈ L2(TB) and every k = 1, . . . , n. We now de�ne the
coe�cient �eld L∗0 via

L∗0∇vk = ξk µ-a.e. in 1
2B

for k = 1, . . . , n. The coe�cient �eld L∗0 is indeed uniquely de�ned by the identities
above, since ∇v1, . . . ,∇vn span T (1

2B), and we only need to show (3.29). Note that the
oscillating test-functions vε,k are weakly and strongly convergent along the subsequence
E1 as claimed by (3.29), and constructed such that L∗εvk,ε = L∗0vk, which trivially
implies strong convergence of (L∗εvk,ε). Finally, the last identity in (3.29) is true by
de�nition of L∗0.

Step 2: H-convergence of Lε to L0 in 1
2B.

We �x a relatively-compact open subset U b 1
2B and consider the operator Lε as

de�ned in (3.11). As in step 1, there is an operator L0 : H1
0 (U) → H−1(U) such that

for a subsequence E2 ⊆ E1 we have

L−1
ε ⇀ L−1

0 in the weak operator topology (ε ∈ E2). (3.30)
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We claim
L0u0 = −div(L0∇u0), (3.31)

for all u0 ∈ H1
0 (U), which by de�nition of Lε immediately gives H-convergence. In

order to show this claim we set uε := L−1
ε L0u0 ∈ H1

0 (U), which by (3.30) implies

uε ⇀ u0 weakly in H1
0 (U) and strongly in L2(U) (ε ∈ E2). (3.32)

Then the uniform ellipticity of Lε assures that the sequence of �uxes (Lε∇uε) is
bounded in L2(TU) and hence we can extract another subsequence E3 ⊆ E2 such
that

Lε∇uε ⇀ J0 weakly in L2(TU) (ε ∈ E3) (3.33)

for some J0 ∈ L2(TU). Since uε is constructed such that −divLε∇uε = L0u0, we �nd

− div J0 = L0u0, (3.34)

and thus for any test function ψ ∈ C∞c (U) (3.29) yields on the one hand

�
U
g(Lε∇uε, ψ∇vk,ε) dµ =

�
U
g(Lε∇uε,∇(ψvk,ε)) dµ−

�
U
g(Lε∇uε, vk,ε∇ψ)

= 〈L0u0, ψvk,ε〉 −
�
g
(Lε∇uε, vk,ε∇ψ) dµ

→ 〈L0u0, ψvk〉 −
�
U
g(J0, vk∇ψ) dµ

=

�
U
g(J0, ψ∇vk) dµ,

and on the other hand with the Div-Curl Lemma (Lemma 3.3.2)

�
U
g(Lεuε, ψ∇vk,ε) dµ =

�
U
g(ψ∇uε,L∗ε∇vk,ε) dµ

→
�
U
g(ψ∇u0,L∗0∇vk) dµ

=

�
U
g(L0∇u0, ψ∇vk) dµ.

Hence, we conclude that
�
U
g(L0∇u0, ψ∇vk) dµ =

�
U
g(J0, ψ∇vk) dµ,

and since this holds for any ψ ∈ C∞c (U) and∇v1, . . . ,∇vn span TU , we get J0 = L0∇u0

µ-a.e. in U , which by (3.34) gives (3.31). Moreover, since J0 and L0 are uniquely de�ned
via L0, the convergences in (3.30), (3.32) and (3.33) are valid for the entire sequence
E1, which in particular does not depend on the choice of U .
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Step 3: Uniform ellipticity of L0.
From (3.32), (3.33) and (3.34) in combination with the Div-Curl Lemma (Lemma 3.3.2)
we �nd for any non-negative ψ ∈ C∞c (U)

�
U
g(Lε∇uε,∇uε)ψ dµ→

�
U
g(L0∇u0,∇u0)ψ dµ,

which together with (3.1) immediately implies
�
U
g(L0∇u0,∇u0)ψ dµ ≥ λ

�
U
|∇u0|2ψ dµ. (3.35)

On the other hand from (3.2) follows
�
U
g(Lε∇uε,∇uε)ψ dµ =

�
U
g(Lε∇uε,L−1

ε Lε∇uε)ψ dµ ≥ Λ

�
U
|Lε∇u0|2ψ dµ,

which can be transformed to�
U
g(L−1

ε ∇uε,∇uε)ψ dµ ≥ Λ

�
U
|∇u0|2ψ dµ (3.36)

by substituting ∇u0 = L−1
0 ∇ũ0. Since (3.35) and (3.36) hold for all u0 ∈ H1

0 (U) and
ψ ∈ C∞c (U), we conclude that L0 ∈ M(U, λ,Λ), and since this is true for all U b 1

2B
we end up with L0 ∈M(1

2B, λ,Λ).

3.6.2. Locality, H-Convergence of the Adjoint (Proposition 3.3.3) and
Varying Right-Hand Sides (Lemma 3.3.4)

Proof of Proposition 3.3.3.
Step 1: Proof of part (a).
We �x a point x ∈ U , an open ball B b U with center at x and radius smaller than the
injectivity radius ofM at x (which impliesm0(B) < 0), and choose v1, . . . , vn ∈ C∞c (B)
as in (3.9). For k ∈ {1, . . . , n} we denote by uε, ũε ∈ H1

0 (B) the unique weak solutions
to

− div(Lε∇uε) = f in H−1(B) with f := −div(L0∇vk) ∈ H−1(B),

− div(L̃ε∇ũε) = f̃ in H−1(B) with f̃ := −div(L̃0∇vk) ∈ H−1(B).

Then the H-convergence of (Lε) and (L̃ε) yield{
uε ⇀ vk and ũε ⇀ vk weakly in H1(B),

Lε∇uε ⇀ L0∇vk and L̃ε∇ũε ⇀ L̃0∇vk weakly in L2(TB),

and together with Lε = L̃ε on U and L ∈M(M,λ,Λ), these convergences imply

Lε∇uε − L̃ε∇ũε ⇀ (L0 − L̃0)∇vk weakly in L2(B)
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as well as

Lε∇uε − L̃ε∇ũε = Lε∇(uε − ũε) ⇀ 0 weakly in L2(B),

which combined give (L̃0 − L0)∇vk = 0 µ-a.e. in B. Since this holds true for all
k ∈ {1, . . . , n}, (3.9) yields L0 = L̃0 µ-a.e. in 1

2B, and since x is arbitrary, the assertion
follows.

Step 2: Proof of (b).
We �x a relatively-compact open subset U bM with m0(U) < 0. For f ∈ H−1(U) we
denote by uε, u0 ∈ H1

0 (U) the unique weak solutions to

− div(L∗ε∇uε) = f in H−1(U),

− div(L∗0∇u0) = f in H−1(U).

By a standard energy estimate and the uniform ellipticity of (L∗ε) the solutions (uε)
and the �uxes (L∗ε∇uε) are bounded sequences in H1

0 (U) and L2(TU), respectively,
and we can extract a (not relabeled) subsequence such that{

uε ⇀ ũ0 weakly in H1(U),

L∗ε∇uε ⇀ J0 weakly in L2(TU)

for some ũ0 ∈ H1
0 (U) and J0 ∈ L2(TU). It remains to show that ũ0 = u0 and

J0 = L∗0∇u0, because then, since u0 is independent on the choice of the subsequence,
the assertion follows for the entire sequence.

In order to show ũ0 = u0 we �x v0 ∈ H1
0 (U) and denote by vε ∈ H1

0 (U) the unique
weak solution to

−div(Lε∇vε) = f̃ in H−1(U) with f̃ := −div(L0∇v0) ∈ H−1(U).

Then the H-convergence of (Lε) yields{
vε ⇀ v0 weakly in H1

0 (U),

Lε∇vε ⇀ L0∇v0 weakly in L2(TU),

and we �nd with the de�nition of uε on the one hand�
U
g(L∗ε∇uε,∇vε) dµ =

�
U
fvε dµ→

�
U
fv0 dµ,

and with the Div-Curl Lemma (Lemma 3.3.2) on the other hand�
U
g(L∗ε∇uε,∇vε) dµ =

�
U
g(∇uε,Lε∇vε) dµ

→
�
U
g(∇ũ0,L0∇v0) dµ

=

�
U
g(L∗0∇ũ0,∇v0) dµ.
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Thus ũ0 solves the equation −div(L∗0∇ũ0) = f in H−1(U), and the uniqueness of the
weak solution implies ũ0 = u0.

We �nally show J0 = L∗0∇u0. Therefor we �x an open ball B b U with radius less than
the injectivity radius of M at its center, and choose v1, . . . , vn ∈ C∞c (B) ⊆ C∞c (U)
as in (3.9). As above we denote for k ∈ {1, . . . , n} by vε ∈ H1

0 (B) the unique weak
solution to

−div(Lε∇vε) = f̃ in H−1(U) with f̃ := −div(L0∇vk) ∈ H−1(U),

and follow from the H-convergence of (Lε){
vε ⇀ vj weakly in H1

0 (B),

Lε∇vε ⇀ L0∇vj weakly in L2(TB).

Then for ψ ∈ C∞c (B) the Div-Curl Lemma (Lemma 3.3.2) yields on the one hand
�
B
g(L∗ε∇uε,∇vε)ψ dµ→

�
B
g(J0, ψ∇vj) dµ,

and on the other hand�
B
g(L∗ε∇uε,∇vε)ψ dµ =

�
B
g(∇uε,Lε∇vε)ψ dµ

→
�
B
g(∇u0,L0∇vj)ψ dµ

=

�
B
g(L∗0∇u0, ψ∇vj) dµ.

Since these hold true for all ψ ∈ C∞c (B), k ∈ {1, . . . , n}, we can follow because of (3.9)
that J0 = L∗0∇u0 in 1

2B, and since U is open and the center of B was arbitrary, we
can conclude equality in U .

Proof of Lemma 3.3.4. By a standard energy estimate, we can �nd a (not relabeled)
subsequence such that {

uε ⇀ ũ0 weakly in H1(U),

Lε∇uε ⇀ J0 weakly in L2(TU)

for some ũ0 ∈ H1
0 (U) and J0 ∈ L2(TU). We will show that ũ0 = u0 and J0 = L0∇u0,

because then, since u0 is uniquely determined and independent of the choice of the
subsequence, we can conclude the assertion for the entire sequence.

To show ũ0 = u0 we �x v0 ∈ H1
0 (U) and denote by vε ∈ H1

0 (U) the unique weak
solution to

−div(L∗ε∇vε) = f̃ in H−1(U) with f̃ := −div(L∗0∇v0) ∈ H−1(U).
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Since L∗ε
H→ L∗0 by Proposition 3.3.3, we �nd (with the compact embedding of H1

0 (U)
in L2(U)) {

vε ⇀ v0 weakly in H1
0 (U) and strongly in L2(U),

L∗ε∇vε ⇀ L∗0∇v0 weakly in L2(TU).

Now the Div-Curl Lemma (Lemma 3.3.2) yields on the one hand

�
U
g(Lε∇uε,∇vε) dµ =

�
U

(
fεvε + g(Gε,L∗ε∇vε) + g(Fε,∇vε)

)
dµ

→
�
U

(
f0v0 + g(G0,L∗0∇v0) + g(F0,∇v0)

)
dµ

=

�
U

(
f0v0 + g(L0G0 + F0,∇v0)

)
dµ,

and, with uε ⇀ ũ0 weakly in H1(U), on the other hand

�
U
g(Lε∇uε,∇vε) dµ =

�
U
g(∇uε,L∗ε∇vε) dµ

→
�
U
g(∇ũ0,L∗0∇v0) dµ

=

�
U
g(L0∇ũ0,∇v0) dµ.

That means, ũ0 solves the limiting equation, and the uniqueness of the weak solution
implies ũ0 = u0.

Moreover, with the same arguments as in the last paragraph of the proof of Proposi-
tion 3.3.3 (b), we also deduce that J0 = L0∇u0, which completes the argument.

3.6.3. Proof of Theorem 3.2.2

As described in Section 3.3, to prove Theorem 3.2.2 we lift the H-convergence result
on small balls (Lemma 3.3.1) to H-convergence on the whole manifold. We �rst cover
M with countably many small balls, stick the H-limits on the individual balls together
to one coe�cient �eld L0 on M by appealing to the uniqueness of the H-limit (Propo-
sition 3.3.3 (a)), and choose a subsequence H-converging to L0 on every ball. Then
the convergence of the solutions and the �uxes will follow from Lemma 3.3.4 using a
partition of unity motivated by the covering of M .

Step 1: Choice of the subsequence and de�nition of L0.
Let (Bj)j∈N denote a countable covering of M by open balls such that
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� 4Bj bM , where 4Bj denotes the open ball with the same center as Bj and four
times the radius of Bj ,

� the radius of Bj is smaller than a quarter of the injectivity radius of M at the
center of Bj .

The existence of such covering is assured by Vitali's Covering Lemma, see e.g. [Ste93].
For every j ∈ N Lemma 3.3.1, applied to 4Bj , provides a subsequence of (Lε) H-
converging to some Lj,0 ∈M(2Bj , λ,Λ) in 2Bj . Thus we can �x a diagonal subsequence
E1 ⊆ E (cf. the notation of subsequences in the beginning of Section 3.6) such that
(Lε) H-converges to Lj,0 in 2Bj for every j ∈ N. By the uniqueness of the H-limit
(Proposition 3.3.3 (a)) we have Lj,0 = Lk,0 µ-a.e. in Bj ∩ Bk, so we can choose a
coe�cient �eld L0 ∈M(M,λ,Λ) with L0(x) = Lj,0(x) for µ-a.e. x ∈ Bj , j ∈ N.

Step 2: Convergence of the solutions and the �uxes.
We �x U ⊆ M open with m > λm0(U), and sequences (fε) in L2(U) and (Fε) in
L2(TU) with {

fε ⇀ f0 weakly in L2(U),

Fε → F0 strongly in L2(TU).

Let uε ∈ H1
0 (U) be the unique weak solution to

muε − div(Lε∇uε) = fε − divFε in H−1(U). (3.37)

The boundedness of (fε) and (Fε) in L2(U) resp. L2(TU) ensures by (3.6) boundedness
of (uε) in H1(U) and thus, with the uniform ellipticity (3.2), boundedness of (Lε∇uε)
in L2(TU). We therefore can extract a subsequence E′′ ⊆ E′ such that

{
uε ⇀ u0 weakly in H1

0 (U),

Lε∇uε ⇀ J0 weakly in L2(TU)
(3.38)

for some u0 ∈ H1(U) and J0 ∈ L2(TU). It remains to claim that u0 is the unique weak
solution in H1

0 (U) to

mu0 − div(L0∇u0) = f0 − divF0 in H−1(U) (3.39)

and that J0 = L0∇u0, with L0 de�ned in step 1. Let ϕj ∈ C∞c (M) denote a partition
of unity subordinate to (Bj), i.e. suppϕj b Bj and

∑∞
j=1 ϕj = 1. Then for every
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ψ ∈ H1
0 (U) and j ∈ N we calculate using (3.37)

�
U
g(Lε∇(ϕjuε),∇ψ) dµ

=

�
U
g(uεLε∇ϕj ,∇ψ) dµ+

�
U
g(ϕjLε∇uε,∇ψ) dµ

=

�
U
g(uεLε∇ϕj ,∇ψ) dµ+

�
U
g(Lε∇uε,∇(ϕjψ)) dµ−

�
U
g(Lε∇uε, ψ∇ϕj) dµ

=

�
U
g(uεLε∇ϕj ,∇ψ) dµ+

�
U

(
(fε −muε)ϕjψ + g(Fε,∇(ϕjψ))

)
dµ

−
�
U
g(Lε∇uε, ψ∇ϕj) dµ

=

�
U
g(Lε(uε∇ϕj),∇ψ) dµ+

�
U

(
(fε −muε)ϕj + g((Fε − Lε∇uε),∇ϕj)

)
ψ dµ

+

�
U
g(ϕjFε,∇ψ) dµ

=

�
U
g(LεGj,ε,∇ψ) dµ+

�
U
fj,εψ dµ+

�
U
g(Fj,ε,∇ψ) dµ,

(3.40)
where

Fj,ε := ϕjFε, Gj,ε := uε∇ϕj , fj,ε := (fε −muε)ϕj + g((Fε − Lε∇uε),∇ϕj).

Moreover, we set vj,ε := ϕjuε. Then vj,ε ∈ H1
0 (Bj) is by (3.40) the unique solution in

H1
0 (Bj) to

−div(Lε∇vj,ε) = fj,ε − div(LεGj,ε)− divFj,ε in H−1(Bj).

From (3.38), the compact embedding H1
0 (Bj) ↪→ L2(Bj), and the convergence of (fε)

and (Fε), we deduce that
vj,ε ⇀ vj,0 := ϕju0 weakly in H1(Bj),

fj,ε ⇀ fj,0 := (f0 −mu0)ϕj + g((F0 − J0),∇ϕj) weakly in L2(Bj),

Gj,ε → Gj,0 := u0∇ϕj strongly in L2(TBj),

Fj,ε → Fj,0 := ϕjF0 strongly in L2(TBj).

(3.41)

Since by step 1 we have Lε
H→ L0 on 2Bj , Lemma 3.3.4 implies that vj,0 ∈ H1

0 (Bj) is
the unique weak solution to

−div(L0∇vj,0) = fj,0 − div(L0Gj,0)− divFj,0 in H−1(Bj),

and
Lε∇vj,ε ⇀ L0∇vj,0 weakly in L2(TBj). (3.42)
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Since
∑∞

j=1 ϕj = 1, and therewith
∑∞

j=1∇ϕj = 0, we �nd that

∞∑
j=1

vj,0 = u0,
∞∑
j=1

Fj,0 = F0,
∞∑
j=1

Gj,0 = 0,
∞∑
j=1

fj,0 = (f0 −mu0).

Now summation of (3.42) yields Lε∇uε ⇀ L0∇u0 = J0 weakly in L2(TU). Moreover,
for any test-function ψ ∈ C∞c (U) we have on the one hand�

U
g(Lε∇uε,∇ψ) dµ =

∞∑
j=1

�
U
g(Lε∇vj,ε,∇ψ) dµ

→
∞∑
j=1

�
U
g(L0∇vj,0,∇ψ) dµ

=

�
U
g(L0∇u0,∇ψ) dµ

and on the other hand, by summation of (3.40), and by (3.41),�
U
g(Lε∇uε,∇ψ) dµ =

∞∑
j=1

�
Bj

g(Lε∇vj,ε,∇ψ) dµ

=
∞∑
j=1

�
Bj

g
(
(LεGj,ε,∇ψ) + g(Fj,ε,∇ψ) + fj,εψ

)
dµ

→
∞∑
j=1

�
Bj

(
g(L0Gj,0 + Fj,0,∇ψ) + f0,jψ

)
dµ

=

�
U

(
g(F0,∇ψ) + (f0 −mu0)ψ

)
dµ,

which together yield (3.39). From the uniqueness of the solution we deduce that the
convergence holds for the entire subsequence E1.

Finally we note that if either H1
0 (U) is compactly embedded in L2(U) or m 6= 0 and

fε → f0 strongly in L2(U), then we even have uε → u0 strongly in L2(U). The
�rst implication is a direct consequence of uε ⇀ u0 weakly in H1(u). For the second
implication we note that by the Div-Curl-Lemma (Lemma 3.3.2) from Lε∇uε ⇀ L0∇u0

follows �
U

(Lε∇uε,∇uε)→
�
U

(L0∇u0,∇u0),

and thus with (3.37) and (3.39)

m

�
U
|uε|2 dµ = m

�
U
|uε|2 dµ+

�
U
g(Lε∇uε,∇uε) dµ−

�
U
g(Lε∇uε,∇uε) dµ

=

�
U
fεuε dµ+

�
U
g(Fε,∇uε) dµ−

�
U
g(Lε∇uε,∇uε) dµ

→
�
U
f0u0 dµ+

�
U
g(F0,∇u0) dµ−

�
U
g(L0∇u0,∇u0) dµ = m

�
U
|u0|2.
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Since m 6= 0, this implies ‖uε‖L2(U) → ‖u0‖L2(U), which together with the weak con-
vergence in L2(U) yields strong convergence in L2(U).

3.6.4. Mosco- and Spectral Convergence (Propositions 3.2.4, 3.2.6 and
3.2.7)

We �rst recall that Mosco-convergence is equivalent to resolvent convergence of the
associated operator, which we want to formulate as follows (cf. e.g. [DM93, Chapter
13]). Therefor for an operator L : H1

0 (M)→ H−1(M) we denote for λ > 0 the associ-
ated resolvent by Rλ := (λ + L)−1 : L2(M) → L2(M). Then the following holds (see
[Mos94, Theorem 2.4.1]):

Lemma 3.6.2. For operators Lε,L0 : H1
0 (M)→ H−1(M) following two conditions are

equivalent:

(i) The functionals Eε : L2(M)→ R ∪ {+∞}, given by

Eε(u) =

{
〈Lεu, u〉, if u ∈ H1

0 (M),

+∞, otherwise,

Mosco-converge (w.r.t. L2) to the functional E0 : L2(M)→ R ∪ {+∞}, given by

Eε(u) =

{
〈L0u, u〉, if u ∈ H1

0 (M),

+∞, otherwise.

(ii) For any λ > 0, the associated resolvents Rλε converge to Rλ0 in the strong operator
topology of L2(M).

Proof of Proposition 3.2.4. We apply Lemma 3.6.2 to the operators Lεu := −div(Lε∇u).
In order to prove convergence of the resolvents in the strong operator topology on
L2(M), for λ > 0 and fε → f0 strongly in L2(M) we set uε := Rλεfε ∈ H1

0 (M). That
means, uε is the unique weak solution to

λuε − div(Lε∇uε) = fε in H−1(M),

and from the H-convergence of (Lε) (and Theorem 3.2.2) we deduce uε → u0 strongly
in L2(M), where u0 ∈ H1

0 (M) is the unique weak solution to

λu0 − div(L0∇u0) = f0 in H−1(M).

In other words, Rλεfε = uε → u0 = Rλ0f0 strongly in L2(M).
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For the proofs of the spectral convergence statements Propositions 3.2.6 and 3.2.7 we
access to the resolvents of the operators, too, on which we will apply the following
statement (see [JKO12, Lemma 11.3 and Theorem 11.5]):

Lemma 3.6.3. Let (M, g, µ) be a weighted Riemannian manifold and consider posi-
tive, compact, self-adjoint operators Rε,R0 : L2(M)→ L2(M) such that their operator
norm ‖Rε‖L(L2(M)) is uniformly bounded for all ε > 0. Denote (for ε ≥ 0) by (λε,k)k∈N
the decreasingly ordered sequence of eigenvalues of Rε, where eigenvalues are repeated
according to their multiplicity, and let (uε,k)k∈N be a sequence of associated eigenfunc-
tions, forming an orthonormal basis of L2(M). If

fε ⇀ f0 weakly in L2(M) ⇒ Rεfε → R0f0 strongly in L2(M),

then for all k ∈ N
λε,k → λ0,k as ε↘ 0,

and if s ∈ N denotes the multiplicity of λ0,k, i.e.

λ0,k−1 > λ0,k = · · · = λ0,k+s−1 > λ0,k+s (with the convention λ0,0 =∞),

there exists a sequence ũε,k of linear combinations of uε,k, . . . , uε,k+s−1 such that

ũε,k → u0,k strongly in L2(M) as ε↘ 0.

Proof of Proposition 3.2.6.
Step 1: Proof of part (a).
We �x a relatively-compact open subset U b M with m0(U) < 0. The latter en-
sures that for the operator Lε := −div(Lε∇) : H1

0 (U)→ H−1(U) we can consider the
associated resolvent Rε := L−1

ε : L2(U) → L2(U). This resolvent is a compact, self-
adjoint operator on L2(U) and, due to the uniform ellipticity of the coe�cient �elds,
it is positive and its operator norm is bounded by a constant independent on ε. Thus
the Spectral Theorem implies that the spectrum of Rε consist only of a real, strictly
positive point spectrum, which is bounded from above by a constant independent on ε,
and there is an orthonormal basis of L2(U) consisting of eigenfunctions of Rε. Now it
is su�cient to note that (λ, u) is an eigenpair of Rε if and only if ( 1

λ , u) is an eigenpair
of Lε.

Step 2: Proof of part (b).
To apply Lemma 3.6.3 to the resolvents Rε de�ned in step 1, it only remains to show
that fε ⇀ f0 weakly in L2(U) implies Rεfε → R0f0 strongly in L2(U). Indeed, if we
set uε := Rεfε ∈ H1

0 (U) and u0 := R0f0 ∈ H1
0 (U), we �nd that uε and u0 are the

unique weak solutions to

− div(Lε∇uε) = fε in H−1(U),

− div(L0∇u0) = f0 in H−1(U),
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and the H-convergence of the coe�cient �elds (together with Lemma 3.3.4) implies
Rεfε = uε ⇀ u0 = R0f0 weakly in H1(U). Now the strong convergence in L2(U) is a
consequence of the compact embedding H1

0 (U) ↪→ L2(U).

Since the proof of Proposition 3.2.6 relies strongly on the fact that m0(M) < 0, to
prove Proposition 3.2.7 we need the following variant of the H-compactness statement
Theorem 3.2.2:

Lemma 3.6.4. Let (M, g, µ) be a weighted Riemannian manifold, and let (Lε) be a
family of coe�cient �elds on M , H-converging in M to some coe�cient �eld L0. Let
further Hε and H0 be closed subspaces of H1(M, g, µ) such that for every sequence (uε)
with uε ∈ Hε from uε → u0 strongly in L2(M, g, µ) follows u0 ∈ H0. Suppose that for
every fε, f0 ∈ H−1(M) the equations

− div(∇uε) = fε in H−1(M),

− div(∇u0) = f0 in H−1(M),

admit unique weak solutions uε in Hε and u0 in H0. Then fε ⇀ f0 weakly in
L2(M, g, µ) implies uε → u0 strongly in L2(M, g, µ).

Proof of Lemma 3.6.4. We �rst note that due to the weak convergence of (fε) in L2(M)
the solutions uε are uniformly bounded in H1(M), so we can �nd a (not relabeled)
subsequence, such that uε ⇀ u0 weakly in H1(M) and Lε∇uε ⇀ J0 weakly in L2(TM)
for some u0 ∈ H1(M) and some J0 ∈ L2(TM). We now �x a countable covering (Ui) of
M consisting of relatively-compact open subsets Ui bM withm0(Ui) < 0, and consider
a partition of unity (ϕi) in C∞c (M) subordinate to this covering, i.e. suppϕi b Ui and∑∞

i=1 ϕi = 1. Then for every ψ ∈ H1(M) we �nd

�
M
g(Lε∇(ϕiuε),∇ψ) dµ

=

�
M
g(uεLε∇ϕi,∇ψ) dµ+

�
M
g(ϕiLε∇uε,∇ψ) dµ

=

�
M
g(uεLε∇ϕi,∇ψ) dµ+

�
M
g(Lε∇uε,∇(ϕiψ)) dµ−

�
M
g(Lε∇uε, ψ∇ϕi) dµ

=

�
M
g(uεLε∇ϕi,∇ψ) dµ+

�
M
fεϕiψ dµ−

�
M
g(Lε∇uε, ψ∇ϕi) dµ

=

�
M
g(LεGi,ε,∇ψ) dµ+

�
M
fi,εψ dµ,

with
Gi,ε := uε∇ϕi and fi,ε := fεϕi − g(Lε∇uε,∇ϕi),
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that means ϕiuε ∈ H1
0 (Ui) is the unique weak solution to

−div(Lε∇(ϕiuε)) = fi,ε − div(LεGi,ε) in H−1(Ui).

Since from the compact embedding H1
0 (Ui) ↪→ L2(Ui) we have

ϕiuε ⇀ ϕiu0 weakly in H1(Ui),

fi,ε ⇀ fi,0 := f0ϕi − g(J0,∇ϕi) weakly in L2(Ui),

Gi,ε → Gi,0 := u0∇ϕi strongly in L2(TUi),

the H-convergence of (Lε) and Lemma 3.3.4 yield that ϕiu0 ∈ H1
0 (Ui) is the unique

weak solution to

−div(L0∇(ϕiu0)) = fi,0 − div(L0Gi,0) in H−1(Ui),

and we have Lε∇(ϕiuε) ⇀ L0∇(ϕiu0) weakly in L2(TUi). Moreover, the compact
embedding H1

0 (Ui) ↪→ L2(Ui) guarantees even strong convergence ϕiuε → ϕiu0 in
L2(Ui). Now, since

∑∞
i=1 ϕi = 1 and

∑∞
i=1∇ϕi = 0, a summation argument yields

uε → u0 strongly in L2(M) (for the entire sequence), and Lε∇uε ⇀ L0∇u0 weakly in
L2(TM). It remains to show that u0 = R0f0, i.e. that u0 ∈ H0 is the unique weak
solution to

−div(L0∇u0) = f0 in H−1(M).

But this can be seen by�
M
g(Lε∇uε,∇ψ) dµ→

�
M
g(L0∇u0,∇ψ) dµ

and �
M
g(Lε∇uε,∇ψ) dµ =

∞∑
i=1

�
Ui

g(Lε∇(ϕiuε),∇ψ) dµ

=
∞∑
i=1

�
Ui

(
fi,εψ + g(LεGi,ε,∇ψ)

)
dµ

→
∞∑
i=1

�
Ui

(
fi,0ψ + g(L0Gi,0,∇ψ)

)
dµ

=

�
M
f0ψ dµ

for all ψ ∈ H1(M).

Proof of Proposition 3.2.7.
Step 1: Proof of part (a).
This step follows the same argumentation as step 1 in the proof of Proposition 3.2.6
above. Since for every f ∈ H−1(T) the equation

−div(Lε∇u) = f in H−1(T)
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admits a unique weak solution u ∈ H1
per(T), the operator Lε := −div(Lε∇) : H1

per(T)→
H−1(T) is invertible and we can consider the associated resolvent Rε := L−1

ε : L2(T)→
L2(T), which is a positive, compact, self-adjoint operator on L2(T) and its operator
norm is bounded by a constant independent of ε. The Spectral Theorem implies that
the spectrum of the resolvent consists only of real, strictly positive eigenvalues, that
are bounded from above by a constant independent of ε, and there is an orthonormal
basis of L2(T) consisting of eigenfunctions of Rε. The assertion follows since (λ, u) is
an eigenpair of Rε if and only if ( 1

λ , u) is an eigenpair of Lε.

Step 2: Proof of part (b).
As in step 2 in the proof of Proposition 3.2.6 we want to apply Lemma 3.6.3 to the
resolvent operators Rε de�ned in step 1. We therefor note that uε := Rεfε ∈ H1

per(T)
and u0 := R0f0 ∈ H1

per(T) are the unique weak solutions to

− div(Lε∇uε) = fε in H−1(T),

− div(L0∇u0) = f0 in H−1(T),

and thus theH-convergence of (Lε) in connection with Lemma 3.6.4 yields that fε ⇀ f0

weakly in L2(T) impliesRεfε = uε → u0 = R0f0 strongly in L2(T). Now Lemma 3.6.3,
applied to the space Hε = H0 = H1

per(M), concludes the proof.

3.6.5. Local Coordinates and Homogenization Formula (Lemma 3.4.1
and Proposition 3.4.2

Proof of Lemma 3.4.1. We �x x ∈ U ′ and denote by ξ = (ξ
1
, . . . , ξ

n
), η = (η1, . . . , ηn) ∈

Rn the vectors associated to ξ, η ∈ TxM via

ξ
i

= g(ξ,∇gxi) and ηi = g(η,∇gxi)

for i = 1, . . . , n. There is a constant C > 0 such that

1
C |ξ|

2 ≤
n∑

i,j=1

gij(x)ξ
i
ξ
j

= g(ξ, ξ)(x) ≤ C|ξ|2 and 1
C ≤ ρ(x) ≤ C,

where (gij) denotes the inverse of the matrix representation (gij) of g in local coor-
dinates, i.e. gij = g(∇gxi,∇gxj). Note that the constant C does not depend on x,
since the metric g(·, ·)(x) is continuous in x, Ψ is a di�eomorphism, and A b Ψ(U) is
relatively-compact. Then the uniform ellipticity of L directly implies

aξ · ξ = ρg(Lξ, ξ) ≥ λρg(ξ, ξ) ≥ 1
C′ |ξ|

2

and
aξ · η = ρg(Lξ, η) ≤ Λρ|ξ|g|η|g ≤ C ′|ξ||η|

for some C ′ > 0, which gives the assertion.
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3.6. Proofs

Proof of Proposition 3.4.2. We will only show the implication (ii) ⇒ (i), since the
opposite direction can be proved in the same way.

Suppose that m0(U ′) < 0 For f ∈ L2(U ′) we denote by uε ∈ H1
0 (U ′) the unique weak

solution to
−divg,µ(Lε∇guε) = f in H−1(U ′).

Then for every ψ ∈ C∞c (A) we have
�
A
a(x)∇uε(x)·∇ψ(x) dx =

�
U ′
g(Lε∇guε,∇gψ) dµ =

�
U ′
fψ dµ =

�
A
f(x)ψ(x)ρ(x) dx,

(3.43)
that means, uε ∈ H1

0 (A) is the unique weak solution to

−div(a∇uε) = ρf in H−1(A).

From aε
H→ a0 on A we conclude{

uε ⇀ u0 weakly in H1(A),

aε∇uε ⇀ a0∇u0 weakly in L2(A),
(3.44)

where u0 ∈ H1
0 (A) is the unique weak solution to

−div(a0∇u0) = ρf in H−1(A),

which by arguments similar to (3.43) implies that u0 ∈ H1
0 (U ′) is the unique weak

solution to
−divg,µ(L0∇gu0) = f in H−1(U ′).

We �rst note that (3.44) immediately gives

uε ⇀ u0 weakly in H1(U ′),

so it only remains to show the convergence of the �uxes. Therefor we �x η ∈ L2(TU ′)
and set η = (η1, . . . , ηn) ∈ L2(A) with ηi := g(η,∇gxi) for i = 1, . . . , n. Then we �nd

�
U ′
g(Lε∇guε, η) dµ =

�
A
aε(x)∇uε · η dx→

�
A
a0(x)∇u0 · η dx

=

�
U ′
g(L0∇gu0, η) dµ,

which means
Lε∇guε ⇀ L0∇gu0 weakly in L2(TU ′).
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4. Application to Uniformly bi-Lipschitz

Di�eomorphic Manifolds

In this chapter we apply the H-compactness result Theorem 3.2.2 to the coe�cient
�elds of the pulled back Laplace-Beltrami operators. Precisely we consider the case of
uniformly bi-Lipschitz di�eomorphic manifolds (i.e. with ε-uniformal constant in Def-
inition 1.3.1, see De�nition 4.1.2 below), which results in uniformly elliptic coe�cient
�elds (in the sense of (3.1) and (3.2)) on the reference manifold. The H-compactness
result (Theorem 3.2.2) in combination with Propositions 3.2.4 and 3.2.6 will yield
Mosco- and spectral compactness in the sense of De�nitions 1.3.4 and 1.4.2.

For the sake of readability we postpone every proof to Section 4.3.

This chapter is based on the article [HMN19] of Jun Masamune, Stefan Neukamm and
the author, also contains a way to extend the results to a wider class of manifolds,
demonstrated on the torus.

4.1. Setting and Results

To study the applications of our H-compactness result Theorem 3.2.2 to Mosco- and
spectral convergence of families of bi-Lipschitz di�eomorphic manifolds we �rst make
the relation between the Laplace-Beltrami operator on a manifold and the correspond-
ing coe�cient �eld on the reference manifold concrete by formulating a transformation
lemma. In order to do so we introduce the following notation, which we will keep
for the rest of this chapter: For two weighted Riemannian manifolds (M, g, µ) and
(M0, g0, µ0) with a di�eomorphism h : M0 →M , we denote by f := f ◦ h the pullback
of a function f on M along h. Moreover, we denote by (dh−1)∗ : TM0 → TM the
adjoint of the di�erential dh−1 : TM → TM0 of h−1 given by

g((dh−1)∗ξ, η)(h(x)) = g0(ξ, dh−1η)(x) for all ξ ∈ TxM0, η ∈ Th(x)M.

Lemma 4.1.1 (Transformation Lemma). Let (M, g, µ) and (M0, g0, µ0) be weighted
Riemannian manifolds, and denote by σ and σ0 the densities of µ and µ0 w.r.t. the Rie-
mannian volume measures associated with g and g0, respectively. Let further h : M0 →
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

M be a di�eomorphism. We de�ne a density function ρ and a coe�cient �eld L on
M0 by

ρ := σ
σ0

√
det g
det g0

and g0(Lξ, η) = ρ g((dh−1)∗ξ, (dh−1)∗η),

as well as a metric ĝ0 and a measure µ̂0 on M0 by

dµ̂0 := ρdµ0 and ĝ0(Lξ, η) := ρ g0(ξ, η),

Then the following are equivalent:

(a) u ∈ H1(M) is a solution to

(m−∆g,µ)u = f in H−1(M, g, µ).

(b) u ∈ H1(M0) is a solution to

(mρ− divg0,µ0(L∇g0))u = ρf in H−1(M0, g0, µ0).

(c) u ∈ H1(M0) is a solution to

(m−∆ĝ0,µ̂0)u = f in H−1(M0, ĝ0, µ̂0).

As one can see, the coe�cient �eld L in Lemma 4.1.1 is strongly related to the di�eren-
tial dh−1 of the inverse of the di�eomorphism between the manifolds. Obviously, for an
arbitrary bi-Lipschitz di�eomorphic family of Riemannian manifolds the correspond-
ing coe�cient �elds on the reference manifold are not necessarily uniformly elliptic.
So, in order to apply Theorem 3.2.2 to the family of coe�cient �elds, it is natural to
introduce uniform restrictions to the di�eomorphism in the following sense:

De�nition 4.1.2 (Uniformly bi-Lipschitz Di�eomorphic Families of Manifolds). A
family of weighted Riemannian manifolds (Mε, gε, µε) is called uniformly bi-Lipschitz
di�eomorphic, if there are a weighted Riemannian manifold (M0, g0, µ0) and a constant
C > 0 such that for every ε there are di�eomorphisms hε : M0 →Mε with

1
C |ξ|g0 ≤ |dhε(x)ξ|gε ≤ C|ξ|g0 for all x ∈M0 and ξ ∈ TxM0. (4.1)

We call (M0, g0, µ0) reference manifold.

From the construction in Lemma 4.1.1 it is easy to see that in this setting the Laplace-
Beltrami operators on the manifolds Mε correspond to elliptic operators on the refer-
ence manifold M0 of the form −div(Lε∇) with uniformly elliptic coe�cient �elds Lε,
precisely

g0(ξ,Lεξ) ≥ 1
Cn+2 |ξ|2g0 , g0(ξ,L−1

ε ξ) ≥ Cn+2|ξ|2g0 for every ξ ∈ TM0,
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4.1. Setting and Results

with the constant C from De�nition 4.1.2. We are now in position to formulate the
corresponding H-compactness result to Theorem 3.2.2 for uniformly bi-Lipschitz dif-
feomorphic manifolds.

Lemma 4.1.3 (H-Compactness of Uniformly bi-Lipschitz Di�eomorphic Manifolds).
Let (M0, g0, µ0) be a weighted Riemannian manifold such that H1

0 (M0, g0, µ0) is com-
pactly embedded in L2(M0, g0, µ0). Assume the family (Mε, gε, µε) of weighted Rie-
mannian manifolds to be uniformly bi-Lipschitz di�eomorphic to the reference mani-
fold (M0, g0, µ0) via the di�eomorphisms hε : M0 → Mε, and denote by σε and σ0 the
densities of µε and µ0 w.r.t. the Riemannian volume measures associated with gε and
g0, respectively. De�ne the density ρε and the coe�cient �eld Lε on M0 by

ρε := σε
σ0

√
det gε
det g0

and g0(Lεξ, η) = ρε gε((dh
−1
ε )∗ξ, (dh−1

ε )∗η). (4.2)

Then there exists a (not relabeled) subsequence such that the following holds:

(a) There is a density ρ0 and a uniformly elliptic coe�cient �eld L0 on M0 such that

ρε
∗
⇀ ρ0 weakly-∗ in L∞(M0, g0, µ0), and Lε

H→ L0 in (M0, g0, µ0).

(b) De�ne a measure µ̂0 and a metric ĝ0 on M0 via the identities

dµ̂0 := ρ0dµ0 and ĝ0(L0ξ, η) = ρ0 g0(ξ, η).

Let m > m0(M0, g0, µ0) (with m0 as in (3.4)) and let uε ∈ H1
0 (Mε, gε, µε) and

u0 ∈ H1
0 (M0, ĝ0, µ̂0) denote the unique solutions to

(m−∆gε,µε)uε = fε in H−1(Mε, gε, µε), (4.3)

(m−∆ĝ0,µ̂0)u0 = f0 in H−1(M0, ĝ0, µ̂0). (4.4)

Then
fε ⇀ f0 weakly in L2((Mε, µε)→ (M0, µ̂0))

implies
uε → u0 strongly in L2((Mε, µε)→ (M0, µ̂0)).

As pointed out in Section 3.2 (cf. Propositions 3.2.4, 3.2.6 and 3.2.7), H-compactness
provides a tool to gain Mosco- and spectral convergence in the sense of De�nitions 1.3.4
and 1.4.2. Indeed, since Mosco-convergence of the manifoldsMε is equivalent to Mosco-
convergence of the pulled back Dirichlet energies on the reference manifold, the follow-
ing result is a direct consequence of Lemma 4.1.3 in combination with Proposition 3.2.4,
and there is no further proof required:

Proposition 4.1.4 (Mosco-Convergence). In the setting of Lemma 4.1.3 the family
(Mε, gε, µε) Mosco-converges to (M0, ĝ0, µ̂0) w.r.t. L2.
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

The spectral convergence result Proposition 3.2.6 cannot be directly translated like the
Mosco-convergence result, because the underlying eigenvalue equation

−divgε,µε(∇gεu) = λu in H−1(Mε)

reads on the reference manifold by Lemma 4.1.1

−divg0,µ0(Lε∇g0u) = λρεu in H−1(M0),

which is obviously not the eigenvalue equation associated with the considered operator
−divg0,µ0(Lε∇g0) treated in Proposition 3.2.6. However, the proof of Proposition 3.2.6
can be extended to the case of varying manifolds.

Proposition 4.1.5 (Spectral Convergence). If in the setting of Lemma 4.1.3 M0 is
compact with m0(M0, g0, µ0) < 0, then the family (Mε, gε, µε) spectral converges to
(M0, ĝ0, µ̂0) w.r.t. L2.

As in Section 3.2 we consider the n-dimensional torus to show how to extend our results
to manifolds that do not satisfy the conditionm0(M0, g0, µ0) < 0 by turning away from
the Dirichlet-Laplace-Beltrami operator; cf. the discussion before Proposition 3.2.7 for
more details.

Proposition 4.1.6 (Spectral Convergence for the Torus). Assume in the setting of
Lemma 4.1.3 the reference manifold to be the n-dimensional torus M0 = T, consider
the operators{

−∆gε,µε : H1
per(Mε, gε, µε)→ H−1(Mε, gε, µε) for ε > 0,

−∆ĝ0,µ̂0 : H1
per(T, ĝ0, µ̂0)→ H−1(T, ĝ0, µ̂0) for ε = 0,

and let

0 < λε,1 ≤ λε,2 ≤ λε,3 ≤ · · · ,

denote the list of increasingly ordered eigenvalues with eigenvalues being repeated ac-
cording to their multiplicity. Let uε,1, uε,2, uε,3, . . . denote the associated eigenfunctions.
Then for all k ∈ N,

λε,k → λ0,k,

and if s ∈ N is the multiplicity of λ0,k, i.e.

λ0,k−1 < λ0,k = · · · = λ0,k+s−1 < λ0,k+s (with the convention λ0,0 = 0),

there exists a sequence (ũε,k)ε of linear combinations of uε,k, . . . , uε,k+s−1 such that

ũε,k → u0,k strongly in L2((Mε, µ̂ε)→ (T, µ̂0)).
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4.1. Setting and Results

We �nally summarize some useful results and explicit formulas concerning the special
case of submanifolds of Rm. We do not give a proof of the following corollary, as it is
just a re-formulation of Lemmas 4.1.1 and 4.1.3 and Propositions 4.1.4 to 4.1.6 in this
situation.

Corollary 4.1.7. Consider the setting of Lemma 4.1.3, and assume that

� Mε are n-dimensional submanifolds of the Euclidean space Rm with gε and µε
induced by the standard metric and measure of Rm;

� the reference manifold M0 is a subset of the Euclidean space Rn, i.e., M0 ⊆ Rn,
g0(ξ, η) := ξ · η, and dµ0 = dx.

Then:

(a) The formulas (4.2) become

ρε =
√

det(dhᵀεdhε) and Lε = ρε(dh
ᵀ
εdhε)

−1,

where dhε denotes the Jacobian of hε.

(b) There are a density ρ0 on M0 and a coe�cient �eld L0 ∈ M(M0,
1
C0
, C0) (with

C0 > 0 only depending on the dimension n and the constant C in (4.1)) such
that

ρε =
√

det(dhᵀεdhε)
∗
⇀ ρ0 weakly-∗ in L∞(M0),

Lε = ρε(dh
ᵀ
εdhε)

−1 H→ L0 on M0,

for a (not relabeled) subsequence.

(c) For the subsequence in (b), the manifolds (Mε) Mosco-converge w.r.t. L2 and the
limiting Riemannian manifold (M0, ĝ0, µ̂0) is given by

dµ̂0 = ρ0dx and ĝ0(ξ, η) = ρ0L−1
0 ξ · η.

(d) If additionally M0 ⊆ Rn is a bounded open set with a non-empty Lipschitz bound-
ary, then the manifolds (Mε) spectral converge w.r.t. L2 to the limiting manifold
in (c) (along the subsequence from (b)).

(e) The conclusion of (d) about spectral convergence also holds in the case M0 = T.
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

Remark 4.1.8 (Realizability of (M0, ĝ0, µ̂0)). In general, the measure µ̂0 has a non-
trivial density against the Riemannian volume measure associated to ĝ0. But if we
have

detL0 = ρn−2
0 ,

which implies √
det ĝ0 =

√
det(ρ0L−1

0 ) =

√
ρn0ρ

2−n
0 = ρ0,

then µ̂0 is the Riemannian volume measure associated with ĝ0, and therefore, if the
limiting metric ĝ0 is smooth, Nash's Embedding Theorem guarantees that (M0, ĝ0, µ̂0) is
realizable in Rm with m large enough, i.e., there is an isometry h0 : (M0, ĝ0, µ̂0)→ Rm
such that N0 := h0(M0) is an n-dimensional submanifold of Rm (with induced metric
and measure from Rm). Such an embedding is characterized by the identity

dhᵀ0dh0 = ρ0L−1
0 . (4.5)

Note that if one introduces a di�erent reference manifold M̃0 with a di�eomorphism
ψ : M̃0 → M0, one can consider h̃ε := hε ◦ ψ : M̃0 → Mε instead of hε, but these (bi-
Lipschitz) di�eomorphisms do not necessarily satisfy the uniform ellipticity conditions
(4.1). However, going through the formulas in Corollary 4.1.7 one ends up with the

isometric embedding h̃0 = h0 ◦ ψ : M̃0 → Rm, which represents the same limiting
manifold. Thus, in practice, the calculations to identify the limiting manifold can be
done with di�eomorphisms which are not uniformly elliptic in the sense of (4.1), as
long as there exist uniformly elliptic di�eomorphisms (see for instance the examples of
perturbed spheres in Section 4.2 below).

4.2. Examples

We want to adopt the abstract results for layered structures discussed in Section 3.5
to produce some concrete examples of spectral (and Mosco-) convergent 2-dimensional
submanifolds of R3.

4.2.1. Concentric Laminate-Like Perturbations of Voronoi Tesselated
Manifolds

A graphical surface with concentric corrugations

Following De�nition 4.1.2 we start with the reference manifold M0, which we want to
be the �at rectangle

M0 = {(r, θ); r ∈ (δ,R), θ ∈ [0, 1)}
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for some R > δ > 0. Now we de�ne a family Mε = hε(M0) of 2-dimensional submani-
folds of R3 (with standard metric and measure induced from R3) via hε : M0 → R3,

hε(r, θ) =

r sin 2πθ
r cos 2πθ
εf( rε)

 , (4.6)

for ε ∈ { 1
k , k ∈ N}, with a smooth, 1-periodic function f : R → R. Note that the

excluded circle around the origin with radius δ ensures that the de�ned manifolds
are indeed uniformly bi-Lipschitz di�eomorphic. In Figure 4.1 we present Mε for some
values of ε with the periodic function f(y) := ψ(y−byc), where byc denotes the integer
part of y, i.e. byc ∈ Z with byc ≤ y < byc+ 1, and ψ : R→ R≥0 denotes the molli�er

ψ(t) :=

{
exp

(
1− 1

1−(2t−1)2

)
, if 0 < t < 1,

0, otherwise.
(4.7)

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.1.: A family of graphical surfaces with concentric periodic corrugations. The
three pictures on the left showMε de�ned via (4.6) with f(y) = ψ(y−byc)
for ψ as in (4.7) and decreasing values of ε. The picture on the right shows
the limiting surface N0 de�ned via (4.8). As ε ↘ 0 the spectrum of
the Laplace-Beltrami operator on Mε converges to the spectrum of the
Laplace-Beltrami operator on N0.

We follow Corollary 4.1.7 and calculate

dhᵀεdhε =

(
f ′( rε)2 + 1 0

0 4π2r2

)
,

which gives the density

ρε =
√

det(dhᵀεdhε) = 2πr
√
f ′( rε)2 + 1,

and the coe�cient �eld

Lε = ρε(dh
ᵀ
εdhε)

−1 =

((
1

2πr

√
f ′( rε)2 + 1

)−1
0

0 1
2πr

√
f ′( rε)2 + 1

)
.
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

One can see that ρε
∗
⇀ ρ0 weakly-∗ in L∞(M0) with

ρ0(r) = 2πr

� 1

0

√
f ′(y)2 + 1 dy,

and using (3.26) we �nd that Lε
H→ L0 with

L0 =

( 1
2πr

� 1
0

√
f ′(y)2 + 1 dy

)−1
0

0 1
2πr

� 1
0

√
f ′(y)2 + 1 dy

 =

(
4π2r2

ρ0(r) 0

0 ρ0(r)
4π2r2

)
.

Thus the limiting metric on M0 is given by

ĝ0(ξ, η) = ρ0L−1
0 ξ · η =

(
ρ0(r)2

4π2r2
0

0 4π2r2

)
ξ · η.

As described in Remark 4.1.8 we �nally can �nd an isometric embedding h0 : M0 → R3

via dhᵀ0dh0 = ρ0L−1
0 , namely

h0(r, θ) =

 r sin 2πθ
r cos 2πθ� r

0

√
ρ0(t)2

4π2t2
− 1 dt

 . (4.8)

That means, the submanifold N0 := h0(M0) of R3 (with the standard measure and
metric induced from R3), which is illustrated in Figure 4.1, is the spectral (and Mosco-)
limit of the family (Mε). Note that the form of h0 does not depend on the initial choice
of δ, so we can pass to the reference manifold M0 = (0, R) × [0, 1), and the excluded
origin of the manifolds Mε coincides with the apex of the cone-shaped manifold N0.

A sphere with radial perturbations oscillating with the latitude

Instead of a graph as in the example above we now consider a 2-dimensional (pointed)
sphere with radial perturbations in the same manner. If we took the (unperturbed)
sphere as the reference manifold, one could immediately see that for continuously dif-
ferentiable perturbations with uniformly bounded derivatives, the generated manifolds
are uniformly bi-Lipschitz di�eomorphic. Thus, in order to simplify the calculations,
Remark 4.1.8 allows us to choose another reference manifold instead of the sphere. We
set

M0 = {(ϕ, θ);ϕ ∈ (δ, 1− δ), θ ∈ [0, 1)}
and de�ne the family of submanifolds Mε := hε(M0) ⊆ R3 (with the induced metric
and measure) via hε : M0 → R3, with

hε(ϕ, θ) =
(
1 + εf(ϕε )

)sinπϕ sin 2πθ
sinπϕ cos 2πθ

cosπϕ

 (4.9)
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for ε ∈ { 1
k ; k ∈ N}, with a smooth, 1-periodic function f : R → [0,∞). As in the

example above we excluded a neighborhood around the poles to create a uniformly
bi-Lipschitz setting (which can be veri�ed easily by considering the sphere as reference
manifold, see the discussion in the beginning of this example). In Figure 4.2 we again
choose f(y) = ψ(y − byc) with ψ as in (4.7) to illustrate Mε for some values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.2.: A family of spheres with periodic radial perturbations oscillating with the
latitude. The three pictures on the left show Mε de�ned by (4.9) with
f(y) = ψ(y − byc) with ψ as in (4.7) and decreasing values of ε. The
picture on the right shows the limiting surface N0 de�ned via (4.10).

As in the previous example we can calculate the limiting measure with density

ρ0(ϕ) = 2π sinπϕ

� 1

0

√
f ′(y)2 + π2 dy

and the metric

ĝ0 = ρ0L−1
0 =

(
ρ20

4π2 sin2 πϕ
0

0 4π2 sin2 πϕ

)
.

We can �nd an isometric embedding h0 : M0 → R3 via dhᵀ0dh0 = ρ0L−1
0 , namely

h0(ϕ, θ) =

 sinπϕ sin 2πθ
sinπϕ cos 2πθ� ϕ

0

√
ρ0(t)2

4π2 sin2 πt
− 4π2 cos2 πtdt

 . (4.10)

Thus the submanifold N0 := h0(M0) of R3, pictured in Figure 4.2, is the spectral
(and Mosco-) limit of the sequence (Mε). As in the example above, we can extend the
embedding h0 to the reference manifoldM0 = (0, 1)×[0, 1) to get sphere-like manifolds,
whose (excluded) poles coincide with the (excluded) poles of the manifold N0.

A locally corrugated graphical surface

We want to demonstrate the local character of the limiting process by an example with
oscillations in several Voronoi cells. We �x an open, bounded set Y ⊆ R2, and consider
a �nite set Z ∈ Y of isolated points. For every point z ∈ Z we utilize a smooth function
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

ψz : [0,∞)→ [0, 1] to de�ne a rotationally symmetric cut-o� function ψz(| · −z|) such
that {

ψz(0) = 1,

suppψz(| · −z|) ∩ suppψz′(| · −z′|) = ∅ for all z′ ∈ Z \ {z}.

Now we take M0 := Y \ Z as the reference manifold and de�ne the submanifold
Mε := hε(M0) of R3 via

hε(x) :=
∑
z∈Z

εf
( |x−z|

ε

)
ψz(|x− z|), (4.11)

with some smooth, 1-periodic function f : R → R. In Figure 4.3 we choose f(y) =
ψ(y − byc) with ψ as in (4.7) to illustrate Mε for some values of ε.

ε↘0−−−→

ε = 1
2 ε = 1

4 ε = 1
8

Figure 4.3.: A family of locally corrugated graphical surfaces. The three pictures on
the left show Mε de�ned via (4.11) with f(y) = ψ(y − byc) with ψ as
in (4.7) and decreasing values of ε. The picture on the right shows the
limiting surface N0 de�ned via (4.12).

In each Voronoi cell we can do the same calculations as in the previous examples, and
get a function h0 : M0 → R,

h0(x) := x 7→
∑
z∈Z

� |x−z|
0

√
ρ0,z(t)2

t2
− 1 dt, (4.12)

where ρ0,z(r) = r
� 1

0

√
f ′(y)2ψz(r)2 + 1 dy. The graph h0(M0), which is shown in

Figure 4.3, is the spectral (and Mosco-) limit of the family (Mε).

4.2.2. Laminate-Like Perturbations of Spherically Symmetric Manifolds

A graphical surface with star-shaped corrugations

Analogously to the �rst of the previous two examples, we consider the reference man-
ifold

M0 := {(r, θ); r ∈ (δ,R), θ ∈ [0, 1)}
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for some R > δ > 0, and de�ne the family of submanifolds Mε = hε(M0) of R3 via
hε : M0 → R3,

hε(r, θ) =

r sin 2πθ
r cos 2πθ

εf( θε )

 , (4.13)

for ε ∈ { 1
k ; k ∈ N}, with some smooth, 1-periodic function f : R → R. Due to the

exclusion of the neighborhood of the origin these manifolds are uniformly bi-Lipschitz
di�eomorphic. In Figure 4.4 we choose f(y) = ψ(y−byc) with ψ as in (4.7) to illustrate
Mε for some values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.4.: A family of graphical surfaces with star-shaped periodic corrugations. The
three pictures on the left showMε de�ned by (4.13) with f(y) = ψ(y−byc)
as in (4.7) and decreasing values of ε. The picture on the right shows the
limiting surface N0 de�ned via (4.14).

Following the path described in Corollary 4.1.7 we calculate

ρε =
√

det(dhᵀεdhε) =
√
f ′( θε )2 + 4π2r2

and the coe�cient �eld

Lε = ρε(dh
ᵀ
εdhε)

−1 = 1/ρε

(
f ′( θε )2 + 4π2r2 0

0 1

)
.

We �nd ρε
∗
⇀ ρ0 weakly-∗ in L∞(M0) with

ρ0(r) =

� 1

0

√
f ′(y)2 + 4π2r2 dy,

and using (3.25) we see Lε
H→ L0 with

L0 =

� 1
0

√
f ′(y)2 + 4π2r2 dy 0

0
(� 1

0

√
f ′(y)2 + 4π2r2 dy

)−1

 =

(
ρ0(r) 0

0 1
ρ0(r)

)
,

and get the limiting metric

ĝ0(ξ, η) = ρ0L−1
0 ξ · η =

(
1 0
0 ρ2

0

)
ξ · η.
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We �nally �nd, according to Remark 4.1.8, an isometric embedding h0 : M0 → R3 of
the limiting manifold such that dhᵀ0dh0 = ρ0L−1

0 , namely

h0(r, θ) =


ρ0(r)

2π sin 2πθ
ρ0(r)

2π cos 2πθ� r
0

√
1− ρ′0(t)2

4π2 dt

 . (4.14)

The submanifold N0 := h0(M0) of R3, which is shown in Figure 4.4, is the spectral
(and Mosco-) limit of (Mε). As in the previous two examples, we can pass to the
reference manifold M0 = (0, R) × [0, 1) and �nd that the still excluded origin of the
manifolds Mε coincides with a circle of radius limr↘0 ρ0(r) in the boundary of N0.

A sphere with radial perturbations oscillating with the longitude

Similar to what we did above, we want to consider the case of a radially perturbed
sphere. We start with the reference manifold

M0 = {(ϕ, θ);ϕ ∈ (δ, 1− δ), θ ∈ [0, 1)}

for some δ > 0, and de�ne the family of submanifolds Mε := hε(M0) of R3 via
hε : M0 → R3,

hε(ϕ, θ) =
(
1 + εf( θε )

)sinπϕ sin 2πθ
sinπϕ cos 2πθ

cosπϕ

 (4.15)

for ε ∈ { 1
k ; k ∈ N}, with some smooth, 1-periodic function f : R → [0,∞). Again, the

exclusion of the neighborhoods of the two poles assure a uniformly bi-Lipschitz setting.
In Figure 4.5 we take f(y) = ψ(y − byc) with ψ as in (4.7) to illustrate Mε for some
values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.5.: A family of spheres with periodic radial perturbations oscillating with the
longitude. The three pictures on the left show Mε de�ned by (4.15) with
f(y) = (y−byc) with ψ as in (4.7) and decreasing values of ε. The picture
on the right shows the limiting surface N0 de�ned via (4.16).
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The same computations as in the previous example provide the limiting density

ρ0(ϕ) = π

� 1

0

√
f ′(y)2 + 4π2 sin2 πϕdy

and the metric

ĝ0 = ρ0L−1
0 =

(
π2 0

0
ρ20
π2

)
,

and again we can �nd an isometric embedding h0 : M0 → R3 via dhᵀ0dh0 = ρ0L−1
0 ,

namely

h0(ϕ, θ) =


ρ0(ϕ)
2π2 sin 2πθ
ρ0(ϕ)
2π2 cos 2πθ� ϕ

0

√
π2 − ρ′0(t)2

4π4 dt

 . (4.16)

The submanifold N0 := h0(M0) of R3, pictured in Figure 4.2, is the spectral (and
Mosco-) limit of the sequence (Mε). As in the examples above we can pass to the
reference manifoldM0 = (0, 1)×[0, 1) and �nd that the excluded poles of the manifolds
Mε coincide with two circles forming the boundary of N0.

4.2.3. Laminate-Like Normal Perturbations of the Torus

Perturbations oscillating with the latitude

We �nally consider the embedded 2-dimensional torus and add some periodic perturba-
tion in outer normal direction. To be explicit, we start with the periodicity cell of the
torus (we ignore the periodic boundary conditions for now) as the reference manifold

M0 := {(ϕ, θ);ϕ ∈ [0, 1), θ ∈ [0, 1)},

and de�ne for submanifoldsMε := hε(M0) of R3 (with the induced metric and measure)
via

hε(ϕ, θ) =

(R+ (r + εf(ϕε )) cos 2πϕ
)

cos 2πθ(
R+ (r + εf(ϕε )) cos 2πϕ

)
sin 2πθ

(r + εf(ϕε )) sin 2πϕ

 (4.17)

for some R > r > 0, ε ∈ { 1
k ; k ∈ N}, and with some smooth, 1-periodic function

f : R→ [0, R−r). Obviously the manifoldsMε are uniformly bi-Lipschitz di�eomorphic
to the torus T. In Figure 4.6 we choose f(y) = (R− r)ψ(y−byc) with ψ as in (4.7) to
illustrate the manifolds Mε for some values of ε.

The same calculations as in the previous examples yield the limiting density

ρ0(ϕ) = 2π(R+ r cos 2πϕ)

� 1

0

√
f ′(y)2 + 4π2r2 dy
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ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.6.: A family of tori with periodic normal perturbations oscillating with the
latitude. The three pictures on the left show a section through Mε de�ned
by (4.17) with f(y) = (R− r)ψ(y − byc) with ψ as in (4.7) for decreasing
values of ε. The picture on the right shows a section through the limiting
surface N0 de�ned via (4.18), while the green circle indicates the shape of
the original torus.

and the metric

ĝ0 = ρ0L−1
0 =

(
ρ20

4π2(R+cos 2πϕ)2
0

0 4π2(R+ cos 2πϕ)2

)
.

We �nd an isometric embedding h0 : M0 → R3 via dhᵀ0dh0 = ρ0L−1
0 , namely

h0(ϕ, θ) =

 (R+ r cos 2πϕ) cos 2πθ
(R+ r cos 2πϕ) sin 2πθ� ϕ

0

√
ρ0(t)2

4π2(R+cos 2πt)2
− 4π2r2 sin2 2πtdt

 ,

but this embedding ignores the periodic boundary conditions. By manipulating the
sign of the square root in the integral of the third component of h0, we can achieve a
torus shaped embedding, but we loose the di�erentiability (on a zero set), as can be
seen in Figure 4.6. To be precise, there is a unique ϕ̂ ∈ (0, 1

2) such that

� ϕ̂

0

√
ρ0(t)2

4π2(R+cos 2πt)2
− 4π2 sin2 2πtdt =

� 1
2

ϕ̂

√
ρ0(t)2

4π2(R+cos 2πt)2
− 4π2 sin2 2πtdy,

and if we de�ne s(t) := 1− 21[ϕ̂,1−ϕ̂)(y), a periodic embedding is given by

h0(ϕ, θ) =

 (R+ r cos 2πϕ) cos 2πθ
(R+ r cos 2πϕ) sin 2πθ� ϕ

0 s(t)
√

ρ0(t)2

4π2(R+cos 2πt)2
− 4π2 sin2 2πtdt

 . (4.18)

We have to emphasize that the spectral (and Mosco-) limiting Riemannian manifold
is actually the torus T equipped with the metric ĝ0 and the measure µ̂0. The behalf
of an embedding as the one above is only to illustrate the geometric structure of the
limit.
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Perturbations oscillating with the longitude

Instead of perturbations oscillating with ϕ as in the previous example, we can also
consider perturbations oscillating with θ, but macroscopically still depending on ϕ.
Again we start with the periodicity cell of the torus as the reference manifold

M0 := {(ϕ, θ);ϕ ∈ [0, 1), θ ∈ [0, 1)},

and de�ne the submanifolds Mε := hε(M0) of R3 via

hε(ϕ, θ) =

(R+ (r + εf(ϕ, θε )) cos 2πϕ
)

cos 2πθ(
R+ (r + εf(ϕ, θε )) cos 2πϕ

)
sin 2πθ

(r + εf(ϕ, θε )) sin 2πϕ

 (4.19)

for R > r > 0, ε ∈ { 1
k ; k ∈ N} and some smooth function f : R × R → [0, R − r),

being 1-periodic in both arguments. In Figure 4.7 we used as function f the periodic
continuation of

(ϕ, y) 7→ (R− r)ψ
(

2(y − 1
2)
R+ r cos 2πϕ

R− r
+ 1

2

)
. (4.20)

for ϕ ∈ [0, 1], y ∈ [0, 1) and ψ as in (4.7). This function is chosen such that the width
of the perturbation is the same around the torus, see Figure 4.7.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 4.7.: A family of tori with periodic normal perturbations oscillating with the
longitude. The three pictures on the left show Mε de�ned by (4.19) with
f being the periodic continuation of (4.20) for decreasing values of ε. The
picture on the right shows a section through the limiting surface N0 de�ned
via (4.21), while the green circle indicates the shape of the original torus.

Doing the same calculations as above we end up with the density

ρ0(ϕ) = 2πr

� 1

0

√
∂2f(ϕ, y)2 + 4π2(R+ r cos 2πϕ)2 dy

and the limiting metric

ĝ0 = ρ0L−1
0 =

(
4π2r2 0

0
ρ20

4π2r2

)
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4. Application to Uniformly bi-Lipschitz Di�eomorphic Manifolds

An isometric embedding h0 : M0 → R3 of the limiting manifold can be found via
dhᵀ0dh0 = ρ0L−1, namely

h0(ϕ,ϕ) =


ρ0(ϕ)
4π2r

cos 2πθ
ρ0(ϕ)
4π2r

sin 2πθ� ϕ
0

√
4π2r2 − ρ′0(t)2

16π4r2
dt

 , (4.21)

but taking the periodic boundary conditions into account, we have to do the same ma-
nipulations to the integral as in the example above, resulting in the manifold pictured
in Figure 4.7.

4.3. Proofs

The foundation of the proofs in this chapter is the transformation result Lemma 4.1.1,
which we need to prove �rst. It is an application of the integral representation formula
and the de�nition of (dh−1)∗, cf. the beginning of Section 4.1 for the notation.

Proof of Lemma 4.1.1.
Step 1: Proof of (a)⇔(b).
Since h : M0 → M is a di�eomorphism, the integral transformation formula yields for
any function f ∈ L1(M, g, µ)

�
M
f dµ =

�
M0

(f ◦ h)ρdµ0.

To show the equivalence of the statement (a) and (b) it only remains to show

g(∇gu,∇gψ) ρ = g0(L∇g0u,∇g0ψ)

for any test function ψ ∈ C∞c (M). To that end we �rst claim ∇gu = (dh−1)∗∇g0u
(and that the same holds for ψ). Indeed, using the de�nition of the gradient and the
adjoint, we have

g(∇gu, ξ) = du(ξ) = d(u ◦ h)(dh−1ξ) = g0(∇g0u, dh−1ξ) = g((dh−1)∗∇g0u, ξ).

Together with the de�nition of L we conclude

g(∇gu,∇gψ) ρ = g((dh−1)∗∇g0u, (dh−1)∗∇g0ψ) ρ = g0(L∇g0u,∇g0ψ).

Step 2: Proof of (b)⇔(c).
By the de�nition of µ̂0 it su�ces to show

g0(L∇g0u,∇g0ψ) = ĝ0(∇ĝ0u,∇ĝ0ψ) ρ.
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We �rst observe L∇g0u = ρ∇ĝ0u, which can be seen by the following direct computa-
tion, using the de�nition of ĝ0 and of the gradient:

ĝ0(L∇g0u, ξ) = ρ g0(∇g0u, ξ) = ρ du(ξ) = ρ ĝ0(∇ĝ0u, ξ).

Again with the de�nition of the gradient we �nally get

g0(L∇g0u,∇g0ψ) = ρ g0(∇ĝ0u,∇g0ψ) = ρ dψ(∇ĝ0u) = ρ ĝ0(∇ĝ0u,∇ĝ0ψ).

Now with the transformation lemma (Lemma 4.1.1) the proof of the H-compactness
result Lemma 4.1.3 becomes an application Theorem 3.2.2 on the reference manifold,
where we only have to care about the well-posedness and the convergence of the right-
hand sides of the corresponding problem, which is done using the compact embedding
of H1

0 (M0, g0, µ0) in L2(M0, g0, µ0).

Proof of Lemma 4.1.3.
Step 1: Proof of (a).
By the de�nition (4.2), there is a constant C0 > 0 (only depending on the constant
C in De�nition 4.1.2 and the dimension n) such that 1

C0
≤ ρε ≤ C0 a.e. in M0 and

Lε ∈ M(M0,
1
C0
, C0). Therefore we can extract a subsequence, such that ρε

∗
⇀ ρ0 for

some density ρ0 ∈ L∞(M0) with 1
C0
≤ ρ0 ≤ C0, and, by our H-compactness result

Theorem 3.2.2, Lε
H→ L0 in (M0, g0, µ0) for some coe�cient �eld L0 ∈M(M0,

1
C0
, C0).

Step 2: Proof of (b).
We use Lemma 4.1.1 (a)⇔(b) to re-formulate (4.3) as(

m− divg0,µ0(Lε∇g0)
)
uε = ρεf ε − (ρεm−m)uε in H−1(M0, g0, µ0) (4.22)

for any constant m, which we can choose large enough to guarantee well-posedness.
We �nd by a standard energy estimate that (uε) is bounded in H1(M0, g0, µ0), and we
can extract a subsequence such that uε ⇀ u0 weakly in H1(M0, g0, µ0) for some u0 ∈
H1

0 (M0, g0, µ0). Due to the compact embedding of H1
0 (M0, g0, µ0) in L2(M0, g0, µ0)

this implies also uε → u0 strongly in L2(M0, g0, µ0). Moreover, since fε ⇀ f0 weakly
in L2((Mε, µε)→ (M0, µ̂0)), we have ρεf ε ⇀ ρ0f0 weakly in L2(M0, g0, µ0) (cf. De�ni-
tion 1.3.2), and thus we get for the right-hand side in (4.22)

ρεf ε − (ρεm−m)uε ⇀ ρ0f0 − (ρ0m−m)u0 weakly in L2(M0, g0, µ0).

Now, for m large enough, we can deduce from Lε
H→ L0 with Theorem 3.2.2 that u0 is

the unique weak solution to(
m− divg0,µ0(L0∇g0)

)
u0 = ρ0f0 − (ρ0m−m)u0 in H−1(M0, g0, µ0), (4.23)

so we conclude uε → u0 strongly in L2(M0, g0, µ0) for the entire sequence. Moreover,
Lemma 4.1.1 (b)⇔(c) tells that (4.23) is equivalent to (4.4), and thus u0 = u0. It
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�nally remains to show that uε → u0 in L2((Mε, µε) → (M0, µ̂0)). This follows from
uερε ⇀ u0ρ0 weakly in L2(M0, g0, µ0), because

�
Mε

uε(ψ ◦ h−1
ε ) dµε =

�
M0

uεψρε dµ0 →
�
M0

u0ψρ0 dµ0 =

�
M0

u0ψ dµ̂0

for all ψ ∈ C∞c (M0), and
�
Mε

|uε|2 dµε =

�
M0

uε uερε dµ0 →
�
M0

u0 u0ρ0 dµ0 =

�
M0

|u0|2 dµ̂0.

The proofs of the spectral convergence results Propositions 4.1.5 and 4.1.6 are similar
to the ones of Propositions 3.2.6 and 3.2.7. But since we have to deal with operators
de�ned on di�erent manifolds, we require a slightly more general version of Lemma 3.6.3
(which is also a consequence of [JKO12, Lemma 11.3 and Theorem 11.5]):

Lemma 4.3.1. Let (Mε, gε, µε) be a family of weighted Riemannian manifolds, being bi-
Lipschitz di�eomorphic to the reference manifold (M0, ĝ0, µ̂0) via the di�eomorphisms
hε : Mε → M0, and let Rε,R0 : L2(Mε) → L2(Mε) be positive, compact, self-adjoint
operators such that their operator norms ‖Rε‖L(L2(Mε)) are uniformly bounded for all
ε > 0. Denote by (λε,k)k∈N the decreasingly ordered sequence of eigenvalues of Rε,
where eigenvalues are repeated according to their multiplicity, and let (uε,k)k∈N be a
sequence of associated eigenfunctions, forming an orthonormal basis of L2(Mε). If

µε
∗
⇀ µ̂0, and if

fε ⇀ f0 weakly in L2((Mε, µε)→ (M0, µ̂0))

implies
Rεfε → R0f0 strongly in L2((Mε, µε)→ (M0, µ̂0)),

then for all k ∈ N
λε,k → λ0,k as ε↘ 0,

and if s ∈ N denotes the multiplicity of λ0,k, i.e.

λ0,k−1 > λ0,k = · · · = λ0,k+s−1 > λ0,k+s (with the convention λ0,0 =∞),

there exists a sequence ũε,k of linear combinations of uε,k, . . . , uε,k+s−1 such that

ũε,k → u0,k strongly in L2((Mε, µε)→ (M0, µ̂0)) as ε↘ 0.

Proof of Proposition 4.1.5. Since the manifolds (Mε, gε, µε) are uniformly bi-Lipschitz
di�eomorphic to (M0, g0, µ0), we can deduce that with M0 also Mε is compact and
satis�es m0(Mε, gε, µε) < 0, so for every fε ∈ H−1(Mε, gε, µε) there is a unique weak
solution uε ∈ H1

0 (Mε, gε, µε) to

−divgε,µε(∇gεuε) = fε in H−1(Mε, gε, µε)
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and we can consider the resolvent operator Rε : L2(Mε, gε, µε) → L2(Mε, gε, µε) with
Rεfε := uε. With the same argument we can consider the resolvent operator R0

associated with the Laplace-Beltrami operator on (M0, ĝ0, µ̂0).

The resolvent operators de�ned above are positive, compact, self-adjoint, and a stan-
dard energy estimate shows that the operator norms ‖Rε‖L(L2(Mε)) are uniformly

bounded. Moreover, Lemma 4.1.3 tells that µε
∗
⇀ µ̂0, and that fε ⇀ f0 weakly in

L2((Mε, µε) → (M0, µ̂0)) implies Rεfε = uε → u0 = R0f0 strongly in L2((Mε, µε) →
(M0, µ̂0)). Thus the assertion follows from Lemma 4.3.1 together with the observation
that (λ, u) is an eigenpair of Rε (resp. R0) if and only if ( 1

λ , u) is an eigenpair of the
Laplace-Beltrami operator on (Mε, gε, µε) (resp. on (M0, ĝ0, µ̂0)).

The proof of Proposition 4.1.6 is more crucial, as we cannot directly apply Lemma 4.1.3,
cf. also the proof of Proposition 3.2.7. Instead we need to modify the above proof of
Lemma 4.1.3 by replacing the application of Theorem 3.2.2 with Lemma 3.6.4.

Proof of Proposition 4.1.6. For every fε ∈ H−1(Mε, gε, µε), f0 ∈ H−1(T, ĝ0, µ̂0) the
equations

− divgε,µε(∇gεuε) = fε in H−1(Mε, gε, µε),

− divĝ0,µ̂0(∇ĝ0u0) = f0 in H−1(T, ĝ0, µ̂0)

admit unique weak solutions uε ∈ H1
per(Mε, gε, µε) and u0 ∈ H1

per(T, ĝ0, µ̂0). Thus we
can consider the associated resolvent operators Rε : L2(Mε, gε, µε) → L2(Mε, gε, µε),
Rεfε := uε and R0 : L2(T, ĝ0, µ̂0) → L2(T, ĝ0, µ̂0), R0f0 := u0, which are posi-
tive, compact, self-adjoint operators with uniformly bounded operator norms. Since
µε

∗
⇀ µ̂0, by Lemma 4.3.1 it would be su�cient to show that fε ⇀ f0 weakly in

L2((Mε, µε) → (T, µ̂0)) implies Rεfε → R0f0 strongly in L2((Mε, µε) → (T, µ̂0)), be-
cause then Lemma 4.3.1 applies and the assertion follows, since (λ, u) is an eigenpair
of Rε (resp. R0) if and only if ( 1

λ , u) is an eigenpair of the Laplace-Beltrami operator
on (Mε, gε, µε) (resp. on (T, ĝ0, µ̂0)).

The rest of the proof is a variant of the proof of Lemma 4.1.3 (b). Assume fε ⇀ f0

weakly in L2((Mε, µε)→ (T, µ̂0)). By Lemma 4.1.1 (a)⇔(b), the equations

− divg0,µ0(Lε∇g0uε) = ρεf ε in H−1(T, g0, µ0),

− divg0,µ0(L0∇g0u0) = ρ0f0 in H−1(T, g0, µ0)
(4.24)

admit the unique weak solutions uε ∈ Hε and u0 ∈ H0, where

Hε :=
{
u ∈ H1(T, g0, µ0);

 
T
uρε dµ0 = 0

}
,

H0 :=
{
u ∈ H1(T, g0, µ0);

 
T
uρ0 dµ0 = 0

}
.
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Since ρε
∗
⇀ ρ0 weakly-∗ in L∞(T, g0, µ0), the spaces Hε and H0 satisfy the assumptions

of Lemma 3.6.4. Moreover, we �nd for the right-hand sides in (4.24) ρεf ε ⇀ ρ0f0

weakly in L2(T, g0, µ0), so we can conclude uε → u0 strongly in L2(T, g0, µ0). But
by de�nition this coincides with Rεfε = uε → u0 = R0f0 strongly in L2((Mε, µε) →
(T, µ̂0)), and the proof is complete.
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5. Integral Functionals with

Non-Uniformal Growth

While the arguments for the H-compactness method in Part II relied on the uniform
ellipticity of the coe�cient �elds associated with the Laplace-Beltrami operator, we
choose another approach in this part. Instead of uniformity of the ellipticity con-
stants, we consider a stochastic framework and assume the constants to have bounded
moments. This allows the application to manifolds that possibly, but rather unlikely
degenerate, see Chapter 6 for details.

In [NSS17] Neukamm, Schä�ner and Schlömerkemper present a Γ-convergence state-
ment for energies with degenerate potentials on discrete lattices, where they use tech-
niques from [Mül87] and [FM92]. This chapter is devoted to adapt their approach to
Rn and make a few generalizations, which are possible due to the continuity of the
underlying space, and necessary with respect to the application to Dirichlet energies
on manifolds.

The results of this chapter are all new and unpublished.

5.1. Setting

Let (Ω,A,P, τ) be a stationary, ergodic probability space. For every ε > 0, ω ∈ Ω and
bounded Lipschitz domainA ⊆ Rn we consider the energy functional Eω(·, A) : Lp(A)→
R ∪ {+∞} de�ned by

Eωε (u,A) :=

{�
AW

ω(x, xε , Du(x)) dx u ∈W 1,p(A),

+∞ otherwise,
(5.1)

with the measurable stationary potential W : Ω× Rn × Rn × Rm×n → R, i.e.

W τyω = Wω(·, ·+ y, ·)

for every ω ∈ Ω, y ∈ Rn. (See Remark 5.1.6 below for a short comment on the
measurability of W .) We will conveniently drop the index ω when it is clear from the
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context, especially to make the proof more readable. On the potential W we make the
following assumptions:

Assumption 5.1.1. There are 1 < p < ∞, a constant C > 0, exponents α ≥ 1 and
β ≥ 1

p−1 , and measurable stationary functions λmin, λmax : Ω× Rn × Rn → R>0, i.e.

λ
τyω
min = λωmin(·, ·+ y) and λ

τyω
max = λωmax(·, ·+ y),

for e.a. ω ∈ Ω and every y ∈ Rn, such that the following conditions are satis�ed:

� (Non-Uniformly Elliptic p-Growth)

λωmin(x, y) ( 1
C |F |

p − C) ≤Wω(x, y, F ) ≤ λωmax(x, y)C(|F |p + 1) (5.2)

for a.e. ω ∈ Ω, and every x, y ∈ Rn and F ∈ Rm×n,

� (Mild λmax-Convexity)

Wω(x, y, tF + (1− t)G) ≤ C
(
Wω(x, y, F ) +Wω(x, y,G) + λωmax(x, y)

)
(5.3)

for a.e. ω ∈ Ω, and every x, y ∈ Rn, F,G ∈ Rm×n and all 0 ≤ t ≤ 1,

� (Weak λmax-∆2-Property)

Wω(x, y, 2F ) ≤ C
(
Wω(x, y, F ) + λωmax(x, y)

)
(5.4)

for a.e. ω ∈ Ω, and every x, y ∈ Rn and F ∈ Rn×m,

� (Moment Bounds on λmax and λ−1
min)

ess sup
x,y∈Rn

E[λmax(x, y)α + λmin(x, y)−β] <∞. (5.5)

For technical reasons we need to distinguish between the cases of the dimension m = 1
or m > 1, that is whether the function u in (5.1) is scalar or vector valued. In the
latter one we need to further restrict the exponents α and β, or better to say the proof
can be improved for scalar functions so we can drop the additional assumption on α
and β in that case.

Assumption 5.1.2. The exponents α and β in (5.5) satisfy

1

α
+

1

β
≥

{
p
n , if m > 1,

0, if m = 1.
(5.6)
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Remark 5.1.3 (Comments on Assumption 5.1.1).

� The Non-Uniformly Elliptic p-Growth Condition (5.2) is much weaker than the
degenerate elliptic p-growth condition assumed in [NSS17], where λmin = λmax.
It is a necessary generalization with respect to the desired application, because for
instance in Chapter 6 we will see that for any 2-dimensional Euclidean submani-
fold the Dirichlet potential is a strictly convex quadratic form, which corresponds
to a 2 × 2-matrix with determinant equal to 1. Thus the two eigenvalues are
inverse to each other, so either the eigenvalues are uniformly bounded and the
potential is uniformly elliptic, or one eigenvalue tends to zero while the other one
tends to in�nity and the potential is non-uniformly elliptic. The degenerate case
with λmin = λmax cannot occur.

� Conditions of the ∆2-type were introduced by Orlicz in [Orl32] and are frequently
used in the context of Orlicz-spaces. However, in our setting the Weak λmax-
∆2-Property (5.4), as well es the Mild λmax-Convexity (5.3), are included for
technical reasons and only arise at one point, namely in the proof of a technical
lemma, the Gluing Construction (Lemma 5.3.5 or 5.3.6, resp.). It is required to
�x a gap in the strategy of [NSS17] coming from relaxing the degenerate ellipticity
to the non-uniform ellipticity. But it is no restriction against [NSS17], since in
the degenerate elliptic case with λmin = λmax =: λ the Mild λmax-Convexity and
the Weak λmax-∆2-Property are already included by the p-Growth Condition (5.2).
For the latter one implies for 0 < t < 1

W (x, y, tF + (1− t)G) . λ(x, y)(t|F |p + (1− t)|G|p + 1)

.W (x, y, F ) +W (x, y,G) + λ(x, y),

where . means ≤ up to a constant depending only on C and p, as well as

W (x, y, 2F ) . λ(x, y)(2p|F |p + 1) .W (x, y, F ) + λ(x, y).

� Even though the potentials we are going to consider in the application are strictly
convex, Assumption 5.1.1 covers also cases of non-convex potentials. One ex-
ample is the model double-well potential W (x, y, F ) = H(x, y)|F |4 − |F |2 for
H(x, y) ≥ H0 > 1. One can easily check that for C ≥ H0

H0−1 , λmin = λmax = H
C

the Growth Condition (5.2) is satis�ed (which by the arguments in the previ-
ous point implies the Mild λmax-Convexity (5.3) and the Weak λmax-∆2-Property
(5.4)). Thus, it only depends on the moments of H whether Assumption 5.1.1 is
ful�lled.

� The Moment Bounds on λmax and λ−1
min are the only condition where the proba-

bility measure on Ω enters. From the p-Growth Condition (5.2) with |F |p → ∞
follows λmin ≤ C2λmax. Thus the Moment Bounds on λmax and λ−1

min (5.5) imply
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5. Integral Functionals with Non-Uniformal Growth

moment bounds for λmin and λ−1
max, too. For convenience we assume w.l.o.g.

ess sup
x,y∈Rn

E[λmin(x, y)α]

ess sup
x,y∈Rn

E[λmin(x, y)−β]

 ≤ C and

ess sup
x,y∈Rn

E[λmax(x, y)α]

ess sup
x,y∈Rn

E[λmax(x, y)−β]

 ≤ C. (5.7)

with the same constant as in Assumption 5.1.1.

Finally, to handle the spatial inhomogeneity, we demand the following form of conti-
nuity.

Assumption 5.1.4 (Spatial Continuity). There is a function ρ : [0,∞) → (0, 1) with
limδ→0 ρ(δ) = 0, such that for a.e. ω ∈ Ω, and every x1, x2, y ∈ Rn and F ∈ Rn×m we
have

|Wω(x1, y, F )−Wω(x2, y, F )| ≤ ρ(|x1−x2|)
(
1 +Wω(x1, y, F ) +Wω(x2, y, F )

)
(5.8)

Remark 5.1.5. While Condition (5.8) is a natural formulation, it is often more con-
venient to use the following version of the Spatial Continuity Condition (5.8): There
is a function ρ′ : [0,∞)→ (0,∞) with limδ→0 ρ

′(δ) = 0, such that for a.e. ω ∈ Ω, and
every x1, x2, y ∈ Rn and F ∈ Rn×m we have

|Wω(x1, y, F )−Wω(x2, y, F )| ≤ ρ′(|x1−x2|)
(
1 + 2 min{Wω(x1, y, F ),Wω(x2, y, F )}

)
.

(5.9)
To see the equivalence we assume w.l.o.g. Wω(x1, y, F ) ≥ Wω(x2, y, F ) and conve-
niently write δ := |x1 − x2|. Then we can solve Condition (5.8) for Wω(x1, y, F ) and
get

Wω(x1, y, F ) ≤ ρ(δ)
1−ρ(δ) +

( 2ρ(δ)
1−ρ(δ) + 1

)
Wω(x2, y, F ),

which is exactly Condition (5.9) with ρ′ = ρ
(1−ρ) .

Remark 5.1.6 (Measurability of the Potential W ). Since W is stationary, it is of
the form Wω(x, y, F ) = a(τyω, x, F ) for some function a : Ω × Rn × Rm×n → R. We
assume measurability of W in the sense of A⊗ B(Rn) ⊗ B(Rm×n)-measurability of a,
where B(Rn) and B(Rm×n) denote the Borel-σ-algebra on Rn and Rm×n, resp. This
assures the existence of all integrals occurring in this chapter as functionals with values
in R∪ {−∞,+∞}. A su�cient condition, which is always satis�ed in the applications
to the convergence of manifolds, is that a is a Carathéodory function, by which we
mean:

� For every x ∈ Rn, F ∈ Rm×n is the function ω 7→ a(ω, x, F ) A-measurable.
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� For every ω ∈ Ω, F ∈ Rm×n is the function x 7→ a(ω, x, F ) continuous, (which
is already covered by the Spatial Continuity Assumption 5.1.4).

� For every ω ∈ Ω, x ∈ Rn is the function F 7→ a(ω, x, F ) continuous.

See e.g. [Roc71, �2] for more details about measurability of Carathéodory integrands.

5.2. Main Results

The �rst result is the following compactness statement.

Proposition 5.2.1 (Compactness). Let A ⊆ Rn be a bounded Lipschitz domain. In
the situation of Assumptions 5.1.1, 5.1.2 and 5.1.4 from

uε ⇀ u in L1(A) and lim sup
ε↘0

Eωε (uε, A) <∞ for a.e. ω ∈ Ω

follows
u ∈W 1,p(A) and uε → u in Lqloc(A)

for every q ≥ 1 with
1

q
≥
(

1 +
1

β

)1

p
− 1

n
.

In particular, every sequence in W 1,p
0 (A) with uniformly bounded energy contains a

strongly Lq(A)-convergent subsequence with limit inW 1,p
0 (A), which implies that (Eε(·, A))

is equi-coercive on W 1,p
0 (A) w.r.t. the Lq(A)-topology.

Our main result is the statement of Γ-convergence to a deterministic integral functional
in the above setting.

Theorem 5.2.2 (Γ-Convergence). In the given situation of Assumptions 5.1.1, 5.1.2
and 5.1.4 the energy functionals Eε a.s. Γ-converge to some deterministic energy func-
tional Ehom of the form

Ehom(u,A) =

{�
AWhom(x,Du(x)) dx, u ∈W 1,p(A),

+∞, otherwise

with the homogenized potential

Whom(x, F ) = lim
k→∞

E
[

inf
φ∈W 1,p

0 (kY )

 
kY
W (x, y, F +Dφ(y)) dy

]
, (5.10)

where Y := [0, 1)n. Speci�cally there is a set Ω0 ⊆ Ω of full measure such that for
every bounded Lipschitz domain A ⊆ Rn and every ω ∈ Ω0 we have
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5. Integral Functionals with Non-Uniformal Growth

(i) for every u ∈W 1,p(A) there is a sequence (uε) in W 1,p(A) with uε−u ∈W 1,p
0 (A)

such that

uε → u in L
β
β+1

p
(A) and Eωε (uε, A)→ Ehom(u,A),

(ii) for every (uε) in W 1,p(A) with uε ⇀ u in L1(A) we have

lim inf
ε↘0

Eωε (uε, A) ≥ Ehom(u,A).

Remark 5.2.3. The statement of Theorem 5.2.2 is actually a mixture between strong

L
β
β+1

p
(A)-Γ-convergence and weak L1(A)-Γ-convergence, and can therefore be inter-

preted as L
β
β+1

p
(A)-Mosco-convergence. However, if A is compact, Theorem 5.2.2 in

connection with the compact embedding Proposition 5.2.1 implies even Lq(A)-Mosco-
convergence for 1

q ≥ (1 + 1
β )1

p −
1
n .

We also state the major properties like continuity and ellipticity of the homogenized
potential Whom.

Proposition 5.2.4 (Properties of the Homogenized Potential). The homogenized po-
tential Whom in Theorem 5.2.2 has the following properties:

(a) Whom satis�es a uniform p-growth condition, i.e. there is a constant C ′ > 0 such
that for every x ∈ Rn and F ∈ Rn×m we have

1
C′ |F |

p − C ′ ≤Whom(x, F ) ≤ C ′(|F |p + 1).

In particular the constant can be given explicitly as C ′ := C
γ+1
γ with γ :=

min{α, β}.

(b) Whom satis�es the same spatial continuity as W , i.e. for every x1, x2 ∈ Rn and
F ∈ Rn×m we have∣∣Whom(x1, F )−Whom(x2, F )

∣∣ ≤ ρ(|x1 − x2|)
(
1 +Whom(x1, F ) +Whom(x2, F )

)
.

(c) Whom is continuous with respect to F , i.e. for every x ∈ Rn and F ∈ Rn×m we
have

Fk → F ⇒ Whom(x, Fk)→Whom(x, F ).
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5.3. Strategy of the Proof and Auxiliary Results

Recovery sequence for W
and a�ne functions
(Lemma 5.3.3)

Gluing construction
(Lemmas 5.3.5 and 5.3.6)

Compactness result
(Proposition 5.2.1)

Recovery sequence for W
and Sobolev functions

(Lemma 5.3.1)

Properties of W
(Proposition 5.2.4)

Lower bound for W
(Lemma 5.3.2)

Theorem 5.2.2

Figure 5.1.: Interplay of the lemmas in the proof of Theorem 5.2.2.

5.3. Strategy of the Proof and Auxiliary Results

An overview of the general strategy of the proof of Theorem 5.2.2 and how the numerous
lemmas will interplay is illustrated in Figure 5.1.

We will �rst show the Compactness Result Proposition 5.2.1, since it allows us in the
proof of the Lower Bound in Theorem 5.2.2 to lift the weak L1-convergence to strong
L1-convergence.

To prove the Γ-convergence result Theorem 5.2.2 we would like to use the approach
of [Mül87] combined with a blow-up technique for the lower bound ([FM92], see also
[DG16; BMS08]) as done in [NSS17]. The crucial point is that these techniques only
apply for spatially homogeneous potentials, so we need to reduce the problem to that
case.

The strategy is to discretize the potential W in the spatial argument in the follow-
ing sense: We part the considered set A into �nitely many small cubes with small
diameter δ > 0. Then for each such cube Q we can take any point x0 ∈ Q and work
with the spatially homogeneous potential W (x0, ·, ·) instead of W (·, ·, ·), making a dis-
cretization error which by the Spatial Continuity of W and Whom (Condition (5.8) and
Proposition 5.2.4 (b)) runs out to vanish as δ ↘ 0.
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5. Integral Functionals with Non-Uniformal Growth

To be explicit we �rst prove Γ-convergence for spatially homogeneous energy function-
als

Eε(u,A) =

�
A
W (xε , Du(x)) dx

with potentials W : Ω×Rn×Rn×m → R satisfying the same conditions (5.2) and (5.7)
we assumed for W , except for the Spatial Continuity Condition (5.8). The over-lined
notation is used to make clear whether we deal with the reduced spatially homoge-
neous potential or with the original spatially inhomogeneous setting. Note that for
the spatially homogeneous potential W the corresponding functions λmin and λmax do
not depend on x as well, which we emphasize by writing λmin and λmax resp. In this
situation we can prove Γ-convergence to the homogenized energy functional

Ehom(u,A) =

�
A
W hom(Du(x)) dx

with the homogenized potential

W hom(F ) = lim
k

E
[

inf
φ∈W 1,p

0 (kY )

 
kY
W (y, F +Dφ(y)) dy

]
as stated in Lemmas 5.3.1 and 5.3.2.

Lemma 5.3.1 (Recovery Sequence forW ). There is a set Ω0 ⊆ Ω of full measure such
that the following holds: Let A ⊆ Rn be a bounded Lipschitz domain. Then for every
u ∈W 1,p(A) there is a sequence (uε) in W 1,p(A) with uε − u ∈W 1,p

0 (A) such that

uε → u in L
β
β+1

p
(A) and Eωε (uε, A)→ Ehom(u,A) for all ω ∈ Ω0.

Lemma 5.3.2 (Lower Bound for W ). There is a set Ω0 ⊆ Ω of full measure such
that the following holds: Let A ⊆ Rn be a bounded Lipschitz domain. Then for every
sequence (uε) in W 1,p(A) with uε ⇀ u in L1(A) we have

lim inf
ε↘0

Eωε (uε, A) ≥ Ehom(u,A) for all ω ∈ Ω0.

The proof of Lemma 5.3.2 is done by blow-up as in [NSS17] and makes use of a
technical statement (Gluing Construction Lemma 5.3.5 for vector valued functions
or Lemma 5.3.6 for scalar valued functions resp.) stated below.

The proof of the recovery sequence statement Lemma 5.3.1 needs to be done in two
steps (also similar to [NSS17]): We �rst show the existence of a recovery sequence only
for a�ne functions (Lemma 5.3.3), which in general follows the approach of [Mül87],
and then extend this result to Sobolev functions.
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Lemma 5.3.3 (Recovery Sequence forW and A�ne Functions). For every F ∈ Rn×m
there is a set ΩF ⊆ Ω of full measure such that the following holds: Let A ⊆ Rn be a
bounded Lipschitz domain. Then there is a sequence (uε) in W 1,p(A) with uε − Fx ∈
W 1,p

0 (A) such that

uε → Fx in L
β
β+1

p
(A) and Eωε (uε, A)→ |A|W hom(F ) for all ω ∈ ΩF .

We lift this result to Sobolev functions by approximation with piecewise a�ne func-
tions. Therefor we need the Continuity of W hom (Proposition 5.2.4 (c)), so we will
prove the properties of the homogenized potential (Proposition 5.2.4) �rst, which we
will do in the original setting of a spatially inhomogeneous potential.

The proof of the Continuity of the homogenized potential requires the following two
technical lemmas: the Equi-Integrability of λ (Lemma 5.3.4) and the Gluing Construc-
tion (Lemma 5.3.5 for vector valued functions or Lemma 5.3.6 for scalar valued func-
tions resp.), which will also be used in the proof of the Lower Bound (Lemma 5.3.2).

Lemma 5.3.4 (Equi-Integrability of λ). There is a set Ω0 ⊆ Ω of full measure such
that the following holds: Let A ⊆ Rm be a bounded Lipschitz domain and let λ be either
λmin or λmax. Then we have

lim
N→∞

lim
ε↘0

1
|A|

�
AεN

λ
ω
(xε ) dx = lim

N→∞
E
[ �

YN

λ(y) dy
]

= 0 for all ω ∈ Ω0,

where AεN := {x ∈ A;λ(xε ) > N} and YN := {y ∈ Y ;λ(y) > N}.

The proofs of the following Gluing Constructions for vector valued or scalar valued
functions resp. are quite technical and they are the reason for Assumption 5.1.2. Besides
they are also the only point where the Mild λmax-Convexity (5.3) and the Weak λmax-
∆2-Property (5.4) show up.

Lemma 5.3.5 (Gluing Construction, Vector Valued Case). There are a set Ω0 ⊆ Ω
of full measure and a sequence (ON ) in (0,∞) with ON → 0 as N → ∞ such that
the following holds: Let Q be a cube of side length l and let (uε) be a sequence in
W 1,p(Q;Rm) with uε ⇀ u weakly in L1(Q) and let u ∈W 1,∞(Q;Rm). Then for every
ε > 0 and N ∈ N there is a function φεN ∈W

1,p
0 (Q;Rm) such that for all ω ∈ Ω0

lim sup
ε↘0

(
1
|Q|E

ω
ε (u+ φεN , Q)− 1

|Q|E
ω
ε (uε, Q)

)
. 1

N lim sup
ε↘0

1
|Q|E

ω
ε (uε, Q) + N2

l|Q|‖u− u‖
p
Lp(Q) +

(
1 + ‖Du‖pL∞(Q)

)
ON ,

where . means ≤ up to a constant only depending on the constant C from Assump-
tion 5.1.1.
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Lemma 5.3.6 (Gluing Construction, Scalar Valued Case). There are a set Ω0 ⊆ Ω
of full measure and a sequence (ON ) in (0,∞) with ON → 0 as N → ∞ such that
the following holds: Let Q be a cube of side length l and let (uε) be a sequence in
W 1,p(Q;R) with uε → u in L1(Q) and let u ∈W 1,∞(Q;R). Then for every ε > 0 and
N ∈ N there is a function φεN ∈W

1,p
0 (Q;R) such that for all ω ∈ Ω0

lim sup
ε↘0

(
1
|Q|E

ω
ε (u+ φεN , Q)− 1

|Q|E
ω
ε (uε, Q)

)
. 1

N lim sup
ε↘0

1
|Q|E

ω
ε (uε, Q) +

(
1 + ‖∇u‖pL∞(Q)

)(
N3

l|Q|‖u− u‖L1(Q) +ON
)
,

where . means ≤ up to a constant only depending on the constant C from Assump-
tion 5.1.1.

Finally, to avoid having to construct the respective zero sets in the proofs, we want to
discuss the choice of the occurring sets Ω0, Ω0 and Ω here once at this central point.

Remark 5.3.7 (Construction of the Sets Ω0, Ω0 and ΩF ). The Moment bounds on λmin

and λmax (Condition (5.7)) in connection with Birkho�'s Pointwise Ergodic Theorem
(Lemma 2.2.2) ensures for every x ∈ Rn and every bounded Lipschitz domain A ⊆ Rn

lim
ε↘0

 
A
λmin(x, yε )α dy = E[λαmin(x)] ≤ C a.s.

and

lim
ε↘0

 
A
λmin(x, yε )−β dy = E[λ−βmin(x)] ≤ C a.s.,

and the same holds for λmax. Here the zero sets only depend on x, so we can choose
for every x ∈ Rn a set Ω(x) ⊆ Ω of full measure such that for all ω ∈ Ω(x)

lim
ε↘0

 
A
λωmin(x, yε )α dy ≤ C, lim

ε↘0

 
A
λωmax(x, yε )α dy ≤ C,

lim
ε↘0

 
A
λωmin(x, yε )−β dy ≤ C, lim

ε↘0

 
A
λωmax(x, yε )−β dy ≤ C.

(5.11)

The proof of Lemma 5.3.4 will give rise to shrink the set Ω(x) even further using the
same argument to ensure additionally equi-integrability of λωmin and λωmax for ω ∈ Ω(x).

While in the application of Birkho�'s Pointwise Ergodic Theorem above the zero sets
only depend on x, the application of the Subadditive Ergodic Theorem (Lemma 2.2.3)
will yield zero sets depending on W , x and F as well: For the subadditive set function
F de�ned by

Fω(U) := inf
φ∈W 1,p

0 (U)

�
U
Wω(x, y, F +Dφ(y)) dy
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the Subadditive Ergodic Theorem gives for every cube Q ⊆ Rm

Whom(x, F ) = lim
ε↘0

inf
φ∈W 1,p

0 ( 1
ε
Q)

 
1
ε
Q
Wω(x, y, F +Dφ(y)) dy (5.12)

on a subset of Ω with full measure only depending on W , x and F . We denote by ΩF (x)
the intersection of this set with the set Ω(x) above, so we have (5.12) as well as (5.11)
and the equi-integrability of λmin and λmax. In the case of a spatially homogeneous
potential W we accordingly write ΩF .

Finally we set Ω0 :=
⋂
x∈Qn

⋂
F∈Qn×m ΩF (x) (and Ω0 :=

⋂
F∈Qn×m ΩF resp.), so we

have (5.11), the equi-integrability of λmin and λmax and (5.12) for every x ∈ Qn,
F ∈ Qn×m, which will be enough due to the continuity of Whom (Proposition 5.2.4 (b)
and (c)).

5.4. Proofs

As being said in the beginning, we will from now on conveniently drop the index ω in
the proofs where it is clear from the situation.

5.4.1. The Compactness Result (Proposition 5.2.1)

We split the proof of Proposition 5.2.1 into the following three lemmas, which will yield
the result immediately:

Lemma 5.4.1. Let A ⊆ Rm be a bounded Lipschitz domain. Then from

uε ⇀ u weakly in L1(A) and lim sup
ε↘0

Eωε (uε, A) <∞ for a.e. ω ∈ Ω

follows u ∈W 1,p(A).

Lemma 5.4.2. Let A ⊆ Rm be a bounded Lipschitz domain. Then from

uε ⇀ u weakly in L1(A) and lim sup
ε↘0

Eωε (uε, A) <∞ for a.e. ω ∈ Ω

follows uε → u in Lqloc(A) for every q ≥ 1 with 1
q ≥

(
1 + 1

β

)
1
p −

1
n .
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Lemma 5.4.3. Let A ⊆ Rm be a bounded Lipschitz domain, (uε) a sequence in
W 1,p(A). Then from

lim sup
ε↘0

Eωε (uε, A) <∞ for a.e. ω ∈ Ω

follows lim supε↘0 ‖uε‖L1(A) <∞.

The proofs follow closely proofs of [NSS17, Lemmas 3.14 (last step), 3.3 and 3.21] with
an added continuity argument to treat the spatial inhomogeneity.

Proof of Lemma 5.4.1. We will show u ∈ W 1,p(A) with a duality argument. To be
explicit we will �nd a constant C̃ > 0 with

�
A ψ∂ju ≤ C̃‖ψ‖

L
p
p−1 (A)

for j = 1, . . . , n,

ψ ∈ C∞c (A) by smuggling in λmin with Hölder's inequality and then taking advantage
of the assumed boundedness of the energy, for

�
A λmin|Duε|p can be estimated by the

energy with the Growth Condition (5.2).

Step 1: Duality argument.
Let ψ ∈ C∞c (A) and j ∈ {1, . . . , n}. As mentioned in Remark 5.3.7 the Moment Bounds
Condition (5.7) provides control over moments of λ(x0,

·
ε) for every point x0 ∈ Rn and

ω ∈ Ω(x0). Thus we �x x0 ∈ A, ω ∈ Ω(x0) and use the lower semi-continuity of the
L1-norm and Hölder's inequality to smuggle in λmin(x0,

·
ε), i.e.

‖ψ∂ju‖L1(A)

≤ lim inf
ε↘0

‖ψ∂juε‖L1(A)

≤ lim inf
ε↘0

(�
A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p
(�

A
λmin(x0,

x
ε )
− 1
p−1 |ψ(x)|

p
p−1 dx

) p−1
p
.

(5.13)
We will show in Step 2 below, that from the boundedness of the energy follows

E :=
(

lim sup
ε↘0

�
A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p
<∞. (5.14)

To treat the second integral in (5.13) we use a two-scale-argument. Therefor we set for
δ > 0

Zδ := {z ∈ δZn;Qδ(z) ∩A 6= ∅}, with Qδ(z) := z + δY,

and therewith write
�
A
λmin(x0,

x
ε )
− 1
p−1 |ψ(x)|

p
p−1 dx ≤

∑
z∈Zδ

sup
x∈Qδ(z)

|ψ(x)|
p
p−1

�
Qδ(z)

λmin(x0,
x
ε )
− 1
p−1 dx.
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Now by Hölder's inequality and the arguments from Remark 5.3.7 we get

lim sup
ε↘0

�
Qδ(z)

λmin(x0,
x
ε )
− 1
p−1 dx ≤ δn

(
lim sup
ε↘0

 
Qδ(z)

λmin(x0,
x
ε )−β dx

) 1
β(p−1)

≤ C
1

β(p−1) δn,

and since ψ is continuous, we conclude with δ ↘ 0

lim sup
ε↘0

( �
A
λmin(x0,

x
ε )
− 1
p−1 |ψ(x)|

p
p−1 dx

) p−1
p

≤ C
1
βp

(
lim
δ↘0

∑
z∈Zδ

sup
x∈Qδ(z)

|ψ(x)|
p
p−1 δn

) p−1
p

= C
1
βp ‖ψ‖

L
p
p−1 (A)

.

(5.15)

Hence from (5.13) to (5.15) we get

�
A
ψ(x)∂ju(x) dx ≤ lim sup

ε↘0
‖ψ∂juε‖L1(A) ≤ EC

1
βp ‖ψ‖

L
p
p−1 (A)

that is ∂ju ∈ Lp(A) by duality, and by Poincaré's inequality also u ∈ Lp(A).

Step 2: Proof of (5.14).
As mentioned in the beginning of the proof, we want to estimate E by Eε(uε, A). To
that end we start with applying the Growth Condition (5.2), which gives

�
A
λmin(x0,

x
ε )|Duε(x)|p dx ≤ C

�
A
W (x0,

x
ε , Du

ε(x)) dx+ C2

�
A
λmin(x0,

x
ε ) dx.

(5.16)
Hölder's inequality and the arguments in Remark 5.3.7 yield

lim sup
ε↘0

�
A
λmin(x0,

x
ε ) dx ≤ |A|

(
lim sup
ε↘0

 
A
λmin(x0,

x
ε )α dx

) 1
α ≤ C

1
α |A| <∞. (5.17)

Now to estimate
�
AW (x0,

·
ε , Du

ε) by the Eε(uε, A) we have to replace x0 by x, and to
do so we use the Spatial Continuity of W (Condition (5.9)), which gives

�
A
W (x0,

x
ε , Du

ε(x)) dx

≤
�
A
W (x, xε , Du

ε(x)) dx+

�
A
ρ′(|x0 − x|)

(
1 + 2W (x, xε , Du

ε(x))
)

dx

≤
(
1 + 2ρ′(diamA)

)
Eε(uε, A) + ρ′(diamA)|A|.

(5.18)
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Taking (5.16) to (5.18) together and recalling that A is bounded we conclude

lim sup
ε↘0

�
A
λmin(x0,

x
ε )|Duε(x)|p dx

≤
(
1 + 2ρ′(diamA)

)
lim sup
ε↘0

Eε(uε, A) +
(
C2+ 1

α + ρ′(diamA)
)
|A|

<∞.

Proof of Lemma 5.4.2.
Since u ∈W 1,p(A) by Lemma 5.4.1, the Gagliardo-Nirenberg-Sobolev inequality yields
u ∈ Lq(A). Thus for every δ > 0 there is a function v ∈ C1(A) with ‖u− v‖Lq(A) <

δ
2 .

We claim that every compact subset A′ b A

lim sup
ε↘0

‖uε − v‖Lq(A′) ≤ ‖u− v‖Lq(A). (5.19)

Note that this implies the assertion, since

lim sup
ε↘0

‖uε − u‖Lq(A′) < lim sup
ε↘0

‖uε − v‖Lq(A′) + δ
2 ≤ ‖u− v‖Lq(A) + δ

2 < δ.

To prove (5.19) we conveniently write ūε := uε − v and ū := u − v. We will use the
Poincaré-Sobolev inequality combined with a two-scale-argument, so for η > 0 we set

Zη := {z ∈ ηZn;Qη(z) ∩A′ 6= ∅}, with Qη(z) := z + ηY.

Then for η small enough we have A′ ⊆
⋃
z∈Zη Qη(z) ⊆ A and thus

‖ūε‖Lq(A′) ≤
( ∑
z∈Zη

�
Qη(z)

∣∣ūε(x)−
�
Qη(z)ū

ε
∣∣q dx

) 1
q

+
( ∑
z∈Zη

∣∣�
Qη(z)ū

ε
∣∣qηn) 1

q
. (5.20)

From uε ⇀ u weakly in L1(A) we also immediately have ūε ⇀ ū weakly in L1(A) and�
Qη(z) ū

ε →
�
Qη(z) ū. Thus Hölder's inequality yields

lim
ε↘0

( ∑
z∈Zη

∣∣�
Qη(z)ū

ε
∣∣qηn) 1

q
=
( ∑
z∈Zη

∣∣�
Qη(z)ū

∣∣qηn) 1
q

≤
( ∑
z∈Zη

�
Qη(z)

|ū(x)|q dx
) 1
q

≤ ‖ū‖Lq(A).

(5.21)

We now claim

lim
η↘0

lim sup
ε↘0

( ∑
z∈Zη

�
Qη(z)

∣∣ūε(x)−
�
Qη(z)ū

ε
∣∣q dx

) 1
q

= 0, (5.22)
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which together with (5.20) and (5.21) yields

lim sup
ε↘0

‖ūε‖Lq(A′) = lim
η↘0

lim sup
ε↘0

‖ūε‖Lq(A′) ≤ ‖ū‖Lq(A),

that is (5.19). We start with applying the Sobolev-Poincaré inequality and than, similar
to the proof of Lemma 5.4.1, use Hölder's inequality to smuggle in λmin(x0,

·
ε) for some

�xed x0 ∈ A, ω ∈ Ω(x0), i.e.( 
Qη(z)

∣∣ūε(x)−
�
Qη(z)ū

ε
∣∣q dx

) 1
q

. η
( 

Qη(z)
|Duε(x)|

β
β+1

p
dx
)β+1

β
1
p

≤ η
( 

Qη(z)
λmin(x0,

x
ε )−β dx

) 1
βp
( 

Qη(z)
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p
,

where . means ≤ up to a constant only depending on n and p. With the arguments
in Remark 5.3.7 we note

lim
ε↘0

 
Qη(z)

λmin(x0,
x
ε )−β dx ≤ C,

thus

lim sup
ε↘0

( ∑
z∈Zη

�
Qη(z)

|ūε(x)−
�
Qη(z)ū

ε|q dx
) 1
q

. η
n( 1
q
− 1
p
− 1
n

)
lim sup
ε↘0

( ∑
z∈Zη

(�
Qη(z)

λmin(x0,
x
ε )|Duε(x)|p dx

) q
p
) 1
q
,

where.means≤ up to a constant depending only on n, p, β and C. Now we distinguish
the two cases q ≥ p and q < p. On the one hand if q ≥ p we use Hölder's inequality
and the fact that #Zηη

n ≤ |A| to get( ∑
z∈Zη

(�
Qη(z)

λmin(x0,
x
ε )|Duε(x)|p dx

) q
p
) 1
q

≤ (#Zη)
1
q
− 1
p

( ∑
z∈Zη

�
Qη(z)

λmin(x0,
x
ε )|Duε(x)|p dx

) 1
p

≤ η−n( 1
q
− 1
p

)|A|
( �

A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p

and thus

lim sup
ε↘0

( ∑
z∈Zη

�
Qη(z)

|ūε(x)−
�
Qη(z)ū

ε|q dx
) 1
q

. η|A| lim sup
ε↘0

(�
A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p
.
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On the other hand if q < p we use the continuous embedding `
p
q (Zη) ⊆ `1(Zη) and get( ∑

z∈Zη

( �
Qη(z)

λmin(x0,
x
ε )|Duε(x)|p dx

) q
p
) 1
q ≤

( ∑
z∈Zη

�
Qη(z)

λmin(x0,
x
ε )|Duε(x)|p dx

) 1
p
.

and thus

lim sup
ε↘0

( ∑
z∈Zη

�
Qη(z)

|ūε(x)−
�
Qη(z)ū

ε|q dx
) 1
q

. η
n( 1
q
− 1
p

+ 1
n

)
lim sup
ε↘0

(�
A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p
.

Since 1
q −

1
p + 1

n ≥
1
βp > 0 and

lim sup
ε↘0

�
A
λmin(x0,

x
ε )|Duε(x)|p dx <∞,

as can be seen in the proof of Lemma 5.4.1 Step 2, in both cases we have (5.22).

Proof of Lemma 5.4.3. The assertion is a consequence of the Gagliardo-Nirenberg-
Sobolev inequality, Hölder's inequality, the Moment Bound Condition (5.7) and (5.14),
which is applicable in this case. Precisely we have, since β

β+1p ≥ 1 and 1 ≥ β+1
β

1
p −

1
n

we have
‖uε‖L1(A) . ‖Duε‖

L
β
β+1

p
(A)
,

where . means ≤ up to a constant only depending on A, p and n. We can further
estimate using Hölder's inequality and the Growth Condition (5.2) by

‖Duε‖
L

β
β+1

p
(A)

=
(�

A
λmin(x0,

x
ε )
− β
β+1λmin(x0,

x
ε )

β
β+1 |Duε(x)|

β
β+1

p
dx
)β+1

β
1
p

≤
(�

A
λmin(x0,

x
ε )−β dx

) 1
β

1
p
(�

A
λmin(x0,

x
ε )|Duε(x)|p dx

) 1
p

for every x0 ∈ A. Now the assertion follows from (5.14) and the Moment Bound
Condition (5.7).

5.4.2. Recovery Sequence for Spatially Homogeneous Potentials and
A�ne Functions (Lemma 5.3.3)

We adapt the technique from the proof of [Mül87, Lemma 2.1 (a)] to the stochastic
case using the Subadditive Ergodic Theorem as in Remark 5.3.7 to replace periodicity
in the argumentation.
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Proof of Lemma 5.3.3.
Step 1: Construction of (uε) with boundary values.
To de�ne the recovery sequence (uε) we part A into small cubes and then on each cube
take a minimizing sequence for inf

φ∈W 1,p
0

�
W (y, F + dφ(y)) dy, which occurs in the

de�nition of W hom. In order to do so we set for δ > 0

Zδ := {z ∈ δ√
n
Zn;Qδ(z) ⊆ A}, with Qδ(z) := z + δ√

n
Y.

Then
Aδ :=

⋃
z∈Zδ

Qδ(z) ⊆ A

consists of cubes with diameter δ and we have |A \Aδ| → 0 as δ → 0. For each z ∈ Zδ
and ε > 0 we �nd φεδ,z ∈W

1,p
0 (1

εQδ(z)) such that

lim
ε↘0

�
1
ε
Qδ(z)

W (y, F +Dφεδ,z(y)) dy = lim
ε↘0

inf
φ∈W 1,p

0 ( 1
ε
Qδ(z))

�
1
ε
Qδ(z)

W (y, F +Dφ(y)) dy.

(5.23)
Now we can de�ne uεδ ∈W 1,p(A) by

uεδ(x) := Fx+
∑
z∈Zδ

εφεδ,z(
x
ε ),

where we use the convention that φεδ,z = 0 outside of Qδ(z). Obviously uεδ(x) = Fx for

x ∈ A \Aδ and thus uεδ − Fx ∈W
1,p
0 (A). In Steps 2 and 3 below we will show that

lim
δ↘0

lim
ε↘0
Eε(uεδ, A) = Ehom(F,A) and lim

δ↘0
lim sup
ε↘0

‖uεδ − Fx‖
L

β
β+1

p
(A)

= 0,

hence we can �nd a diagonal sequence δ(ε) such that uε := uεδ(ε) gives the desired
recovery sequence.

Step 2: Convergence of the energy.
For every z ∈ Zδ the arguments in Remark 5.3.7 together with (5.23) yields

W hom(F ) = lim
ε↘0

 
1
εQδ(z)

W (y, F +Dφεδ,z(y)) dy

= lim
ε↘0

 
Qδ(z)

W (xε , F +Dφεδ,z(
x
ε )) dx

(5.24)

and thus

lim
δ↘0

lim
ε↘0

�
Aδ

W (xε , Du
ε
δ(x)) dx = lim

δ↘0

∑
z∈Zδ

lim
ε↘0

�
Qδ(z)

W (xε , F +Dφεδ,z(
x
ε )) dx

= lim
δ↘0

∑
z∈Zδ

|Qδ(z)|W hom(F )

= |A|W hom(F ).

97



5. Integral Functionals with Non-Uniformal Growth

Now it only remains to note that by the Growth Condition (5.2) and the arguments
in Remark 5.3.7 we have

lim
δ↘0

lim
ε↘0

�
A\Aδ

W (xε , Du
ε
δ(x)) dx ≤ C lim

δ↘0
lim
ε↘0

�
A\Aδ

λmax(xε )(|F |p + 1) dx

= C2(|F |p + 1) lim
δ↘0
|A \Aδ|

= 0.

Step 3: L
β
β+1

p
-convergence of (uεδ).

To control the L
β
β+1

p-norm of uεδ − Fx we use Poincaré's inequality on the level of the
cubes Qδ(z), so we can bene�t from the small scale of the diameter δ, i.e.
�
A
|uεδ(x)− Fx|

β
β+1

p
dx =

∑
z∈Zδ

�
Qδ(z)

|εφεδ,z(xε )|
β
β+1

p
dx

≤
∑
z∈Zδ

δ
β
β+1p

�
Qδ(z)

|Dφεδ,z(xε )|
β
β+1

p
dx

≤ δ
β
β+1p

∑
z∈Zδ

(
|Qδ(z)||F |

β
β+1

p
+

�
Qδ(z)

|F +Dφεδ,z(
x
ε )|

β
β+1

p
dx
)

≤ δ
β
β+1p

(
|A||F |

β
β+1

p
+
∑
z∈Zδ

�
Qδ(z)

|Duεδ(x)|
β
β+1

p
dx
)
.

We use Hölder's inequality to smuggle in λmin so we can apply the Growth Condi-
tion (5.2), which gives

�
Qδ(z)

|Duεδ(x)|
β
β+1

p
dx

≤
(�

Qδ(z)
λmin(xε )−β dx

) 1
β+1
(�

Qδ(z)
λmin(xε )|Duεδ(x)|p dx

)β+1
β

≤ |Qδ(z)|
( 

Qδ(z)
λmin(xε )−β dx

) 1
β+1

·
(
C

 
Qδ(z)

W (xε , Du
ε
δ(x)) dx+ C2

 
Qδ(z)

λmin(xε ) dx
) β
β+1

.

With the arguments in Remark 5.3.7 and Höder's inequality we see

lim sup
ε↘0

 
Qδ(z)

λmin(xε )−β dx ≤ C

and

lim sup
ε↘0

 
Qδ(z)

λmin(xε ) dx ≤ lim sup
ε↘0

( 
Qδ(z)

λmin(xε )α dx
) 1
α ≤ C

1
α ,
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and from (5.24)

lim
ε↘0

 
Qδ(z)

W (xε , Du
ε
δ(x)) dx = W hom(F ).

Together this means

lim sup
ε↘0

�
A
|uεδ(x)− Fx|

β
β+1

p
dx

≤ δ
β
β+1

p
(
|A||F |

β
β+1

p
+ C

∑
z∈Zδ

|Qδ(z)|
(
W hom(F ) + C

α+1
α
) β
β+1

)
≤ δ

β
β+1

p
(
|A||F |

β
β+1

p
+ C|A|

(
W hom(F ) + C

α+1
α
) β
β+1

)
and we �nally conclude as desired

lim
δ↘0

lim sup
ε↘0

‖uεδ − Fx‖
L

β
β+1

p
(A)

= 0.

5.4.3. Technical Lemmas: Equi-Integrability of λ (Lemma 5.3.4) and
Gluing Constructions (Lemmas 5.3.5 and 5.3.6)

This is the most technical part of the proof of Theorem 5.2.2. We basically follow the
proofs of [NSS17, Lemmas 3.22 and 3.23]. The main di�erences are due to the non-
uniformity of the growth condition, as one cannot (informally speaking) estimate

E(F +G) ≤
�
λ(|F |p + |G|p) ≤ E(F ) + E(G)

as in the degenerate case where λmax = λmin. A work around is given by the interplay
of the Growth Condition (5.2) with the Mild λmax-Convexity (5.3) and the Weak λmax-
∆2-Property (5.4).

Proof of Lemma 5.3.5. Despite Lemma 5.3.5 states only the existence of a sequence
(ON ), the following proof will show that one such sequence can be given explicitly by

ON := 1− (N−1
N )n.

Step 1: Construction of φεN .

We want to de�ne φεN ∈ W
1,p
0 (Q) such that u + φεN = uε on most part of Q, as there

the left hand side of the assertion would vanish. Such a construction can be done by
cutting o� uε − u near the boundary of Q. But since we a priori do not know where
to cut uε − u exactly, we minimize the energy over several cut-o� functions. To do so,
we set for j = 1, . . . , N

Q0 := Q and Qj := {x ∈ Q; dist(x, ∂Q) > j l
2N2 }.
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Then QN ⊆ Qj ⊆ Qj−1 ⊆ Q0 = Q and

|Q \QN | =
(
1− (N−1

N )m
)
|Q| ≤ ON |Q|.

Now we choose cut-o� functions ψj ∈ C∞c (Qj−1) with

ψj = 1 on Qj , ψj = 0 on Q \Qj−1, ‖∇ψj‖L∞(Q) ≤ 3N2

l

and set
wε := uε − u and φε,j := ψjw

ε ∈W 1,p
0 (Q).

Since for any given N ∈ N and ε > 0 we have only �nitely many functions φε,j , we can
�nd j(N, ε) ∈ {1, . . . , N} such that the energy di�erence Eε(u+φε,j(N,ε), Q)−Eε(uε, Q)
is minimal, and we set φεN := φε,j(N,ε). Then of course the energy di�erence can be
estimated against the arithmetic mean of all energy di�erences, i.e.

Eε(u+ φεN , Q)− Eε(uε, Q) ≤ 1
N

N∑
j=1

(
Eε(u+ φε,j , Q)− Eε(uε, Q)

)
.

With the idea to split the energies like

Eε(·, Q) = Eε(·, Qj) + Eε(·, Qj−1 \Qj) + Eε(·, Q \Qj−1),

we claim that

1
N lim sup

ε↘0

N∑
j=1

(
Eε(u+ φε,j , Qj)− Eε(uε, Qj)

)
= 0, (5.25)

1
N lim sup

ε↘0

N∑
j=1

(
Eε(u+ φε,j , Qj−1 \Qj)− Eε(uε, Qj−1 \Qj)

)
. 1

N lim sup
ε↘0

Eε(uε, Q \QN ) + N2

l ‖u− u‖
p
Lp(Q) +

(
‖Du‖pL∞(Q) + 1

)
ON |Q|

(5.26)
and

1
N lim sup

ε↘0

N∑
j=1

(
Eε(u+ φε,j , Q \Qj−1)− Eε(uε, Q \Qj−1)

)
.
(
‖Du‖pL∞(Q) + 1

)
ON |Q|,

(5.27)
because then we will immediately get

lim sup
ε↘0

(
1
|Q|Eε(u+ φεN , Q)− 1

|Q|Eε(u
ε, Q)

)
≤ 1

N lim sup
ε↘0

N∑
j=1

1
|Q|

(
Eε(u+ φε,j , Q)− Eε(uε, Q)

)
. 1

N lim sup
ε↘0

1
|Q|Eε(u

ε, Q \QN ) + N2

l|Q|‖u− u‖
p
Lp(Q) +

(
‖Du‖pL∞(Q) + 1

)
ON ,
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which in fact is the assertion, taking into account that

Eε(·, Q \QN ) = Eε(·, Q)− Eε(·, QN )

and that by the Growth Condition (5.2) and the arguments in Remark 5.3.7

lim inf
ε↘0

1
|Q|Eε(u

ε, QN ) ≥ lim inf
ε↘0

1
|Q|

�
QN

λmax(xε )
(

1
C |Du

ε(x)|p − C
)

dx

& − lim sup
ε↘0

 
Q
λmax(xε ) dx

& −1.

Step 2.1: Proof of (5.25).
Here the construction of φε,j pays o�, since we immediately see u + φε,j = uε on Qj
and thus

Eε(u+ φε,j , Qj)− Eε(uε, Qj) = 0.

Step 2.2: Proof of (5.27).
Again we bene�t from the construction of φε,j and �nd u+ φε,j = u on Q \Qj−1. So
we can use the Growth Condition (5.2), to get on the one hand

Eε(u+ φε,j , Q \Qj−1) .
�
Q\QN

λmax(xε )
(
|Du(x)|p + 1

)
dx,

and on the other hand, with λmin . λmax,

−Eε(uε, Q \Qj−1) ≤ −
�
Q\Qj−1

λmin(xε )
(

1
C |Du

ε(x)|p − C
)

dx .
�
Q\QN

λmax(xε ) dx.

Now the arguments in Remark 5.3.7 and the de�nition of ON yield

1
N lim sup

ε↘0

N∑
j=1

(
Eε(u+ φε,j , Q \Qj−1)− Eε(uε, Q \Qj−1)

)
.
�
Q\QN

λmax(xε )
(
|Du(x)|p + 1

)
dx

.
(
‖Du‖pL∞(Q) + 1

)
ON |Q|.

Step 2.3: Proof of (5.26).
Similar to the previous step we �nd

− Eε(uε, Qj1 \Q1) .
�
Q\QN

λmax(xε ), (5.28)
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which will be covered so we only need to concentrate on Eε(u + φε,j , Qj−1 \ Qj). By
the de�nition of φε,j on Qj−1 \Qj we �nd

D(u+ φε,j) = (1− ψj)Du+ ψjDu
ε + wε∇ψᵀ

j .

Thus the Mild λmax-Convexity (5.3) (with F = 2(1−ψj)Du+ 2ψjDu
ε, G = 2wε∇ψᵀ

j ,

t = 1
2) and the Weak λmax-∆2-Property (5.4) yield

Eε(u+ φε,j , Qj−1 \Qj)

.
�
Qj−1\Qj

(
W (xε , (1− ψj)Du+ ψjDu

ε) +W (xε , w
ε∇ψᵀ

j ) + λmax(xε )
)

dx

. Eε(uε, Qj−1 \Qj) +

�
Qj−1\Qj

(
W (xε , Du) +W (xε , w

ε∇ψᵀ
j ) + λmax(xε )

)
dx,

(5.29)
where in the last step again the Mild λmax-Convexity was used (this time with F = Du,
G = Duε, t = 1−ψj). We estimate the integral with the Growth Condition (5.2), and
together with (5.28) we �nd

Eε(u+ φε,j , Qj−1 \Qj)− Eε(uε, Qj1 \Q1)

. Eε(uε, Qj−1 \Qj) +

�
Q\QN

λmax(xε )
(
|Du(x)|p + 1

)
dx

+

�
Qj−1\Qj

λmax(xε )|wε(x)|p|∇ψj(x)|p dx.

The �rst term �ts perfectly as

N∑
j=1

Eε(uε, Qj−1 \Qj) = Eε(uε, Q \QN )

as required. The second term can be treated as in the step before using the arguments
in Remark 5.3.7, which yields�

Q\QN
λmax(xε )

(
|Du(x)|p + 1

)
dx .

(
‖Du‖pL∞(Q) + 1

)
ON |Q|.

For the third term we can make use of the de�nition of ψj to get�
Qj−1\Qj

λmax(xε )|wε(x)|p|∇ψj(x)|p dx ≤ 3N2

l

�
Qj−1\Qj

λmax(xε )|wε(x)|p dx.

The remainder of the proof is dedicated to show

lim sup
ε↘0

1
N

N∑
j=1

3N2

l

�
Qj−1\Qj

λmax(xε )|wε(x)|p dx

. 1
N lim sup

ε↘0
Eε(uε, Q \QN ) + 3N2

l ‖u− u‖
p
Lp(Q) +

(
1 + ‖Du‖pL∞(Q)

)
ON |Q|,

(5.30)
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because then (5.27) follows. To do so we would like to replace λmax by λmin and |wε|
by |Dwε|, since then with the de�nition of wε, the p-Growth Condition (5.2) and the
fact that λmin . λmax we would get

�
Qj−1\Qj

λmin(xε )|Dwε(x)|p dx . Eε(uε, Qj−1 \Qj)+

�
Q\QN

λmax(xε )
(
|Du(x)|p+1

)
dx.

(5.31)
To reduce (5.30) to the situation of (5.31) with the Poincaré-Sobolev inequality we use
basically the same arguments as for (5.19) in the proof of Lemma 5.4.2. We introduce
a partition Q of Qj−1 \Qj consisting of disjoint cubes with side length not greater than(

l
3N2 )

1
p and write

�
Qj−1\Qj

λmax(xε )|wε(x)|p dx =
∑
Q∈Q

�
Q
λmax(xε )

∣∣wε(x)−
�
Qw

ε
∣∣p dx

+
∑
Q∈Q

∣∣�
Qw

ε
∣∣p �

Q
λmax(xε ) dx.

(5.32)

Since uε ⇀ u weakly in L1(Q) and thus
�
Qw

ε →
�
Q(u−u) we note with the arguments

in Remark 5.3.7

lim sup
ε↘0

1
N

N∑
j=1

∑
Q∈Q

∣∣�
Qw

ε
∣∣p �

Q
λmax(xε ) dx . 1

N

N∑
j=1

∑
Q∈Q

∣∣�
Q(u− u)

∣∣p|Q| ≤ ‖u−u‖pLp(Q).

(5.33)
For the �rst term in (5.32) we use Hölder's inequality to remove λ from the integrand,
then recall that by assumption α−1

α
1
p ≥

β+1
β

1
p −

1
n so we can use the Poincaré-Sobolev

inequality to estimate wε by Dwε and take advantage of the side length of the cubes,
and �nally use Hölder's inequality again to smuggle λmin back into the integrand, i.e.

 
Q
λmax(xε )

∣∣wε(x)−
�
Qw

ε
∣∣p dx

≤
( 

Q
λmax(xε )α dx

) 1
α
( 

Q

∣∣wε(x)−
�
q w

ε
∣∣ α
α−1

p
dx
)α−1

α

. l
3N2

( 
Q
λmax(xε )α dx

) 1
α
( 

Q
|Dwε(x)|

β
β+1

p
dx
)β+1

β

≤ l
3N2

( 
Q
λmax(xε )α dx

) 1
α
( 

Q
λmin(xε )−β dx

) 1
β
( 

Q
λmin(xε )|Dwε(x)|p dx

)
,
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which gives with the arguments in Remark 5.3.7 and (5.31)

lim sup
ε↘0

1
N

N∑
j=1

∑
Q∈Q

�
Q
λmax(xε )

∣∣wε(x)−
�
Qw

ε
∣∣p dx

. l
3N2

1
N

N∑
j=1

∑
Q∈Q

lim sup
ε↘0

�
Q
λmin(xε )|Dwε(x)|p dx

= l
3N2 lim sup

ε↘0

�
Q\QN

λmin(xε )|Dwε(x)|p dx

. l
3N2

(
lim sup
ε↘0

Eε(uε, Q \QN ) +
(
1 + ‖Du‖pL∞(Q)

)
ON |Q|

)
.

The crucial point where the assertion α−1
α

1
p ≥

β−1
β

1
p −

1
n occurred above in the proof of

Lemma 5.3.5 was when we used the Poincaré-Sobolev inequality to control uε−u (Step
2.3). If uε and u are scalar valued functions, we can use a truncated version of uε − u
instead, so the absolute is a priori bounded. But then we loose the fact that the left
hand side of the assertion vanishes on the most part of the cube (Step 2.1), and we have
to replace it by another argument. In the discrete setting of [NSS17] a mild convexity
at in�nity was demanded to handle this problem. Contrastingly in our continuous
setting such additional assumption is not needed, we can use the fact that indicator
functions has almost everywhere vanishing derivatives, and the respective argument
(Step 2.1 in the proof of Lemma 5.3.6) can be done using the equi-integrability of λmax

(Lemma 5.3.4).

Proof of Lemma 5.3.4.
Step 1: The �rst equality.
We set

χN (y) :=

{
1, λ(y) > N,

0, λ(y) ≤ N.

Then χN (y)λ(y) can be regarded as χτyN λ
τy and by Birkho�'s Pointwise Ergodic The-

orem (Lemma 2.2.2) for every N ∈ N there is a set of full measure on which

lim
ε↘0

�
AεN

λ(xε ) dx = lim
ε↘0

�
A
χN (xε )λ(xε ) dx

= |A|E
[  

Y
χN (y)λ(y) dy

]
= |A|E

[ �
YN

λ(y) dy
]
,

so on the intersection of these sets the desired equality holds.
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Step 2: The second equality.
We �rst note that with Hölder's inequality

E[|YN |] ≤ E
[
|YN |1−α

( �
YN

λ(y)
N dy

)α]
≤ N−αE

[�
Y
λ(y)α dy

]
≤ CN−α, (5.34)

since E[
�
Y λ(y)α dy] =

�
Y E[λ

α
] dy ≤ C by stationarity and the Moment Bound Con-

dition (5.7). From this point the proof is standard. We de�ne a sequence (gn) of
functions

gn(y) := min{λ(y), n},

which monotonously converges pointwise to λ. Then the Monotone Convergence The-
orem (applied twice) �rst gives

�
Y gn →

�
Y λ and then, since this convergence is again

monotone, E[
�
Y gn]→ E[

�
Y λ]. That means we can �nd n0 ∈ N such that

E
[ �

Y
λ(y)− gn0(y) dy

]
< δ

2 .

Now for N ∈ N large enough such that n0CN
−α ≤ δ

2 we �nd with (5.34)

0 ≤ E
[ �

YN

λ(y) dy
]
≤ E

[�
Y
λ(y)−gn0(y) dy

]
+E
[�

YN

gn0(y) dy
]
< δ

2 +n0E[|YN |] ≤ δ,

which gives the desired convergence.

Proof of Lemma 5.3.6. As in the proof of Lemma 5.3.5 we will show the assertion of
one concrete sequence (ON ) given by

ON := 1− (N−1
N )m + E

[ �
{y∈Y ;λmax(y)>N}

λmax(y) dy
]
.

Obviously with Lemma 5.3.4 we immediately see limN→∞ON = 0.

Step 1: Construction of φεN .
We de�ne φεN the same way we did in the proof of Lemma 5.3.5, but instead of uε − u
we use the truncated function

wε(x) :=


− l

3N2 , uε(x)− u(x) < − l
3N2 ,

uε(x)− u(x), |uε(x)− u(x)| ≤ l
3N2 ,

l
3N2 , uε(x)− u(x) > l

3N2 .

Then, following the arguments in the proof Lemma 5.3.5, it remains to show

lim sup
ε↘0

1
N

N∑
j=1

(
Eε(u+ φε,j , Qj)− Eε(uε, Qj)

)
.
(
1 + ‖∇u‖pL∞(Q)

)(
N3

l ‖u− u‖L1(Q) +ON |Q|
)
,

(5.35)
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lim sup
ε↘0

1
N

N∑
j=1

(
Eε(u+ φε,j , Qj−1 \Qj)− Eε(uε, Qj−1 \Qj)

)
. lim sup

ε↘0
Eε(uε, Q \QN ) +

(
‖∇u‖pL∞(Q) + 1

)
ON |Q|

(5.36)

and

lim sup
ε↘0

1
N

N∑
j=1

(
Eε(u+ φε,j , Q \Qj−1)− Eε(uε, Q \Qj−1)

)
.
(
‖∇u‖pL∞(Q) + 1

)
ON |Q|.

(5.37)

Step 2.1: Proof of (5.35).
The key is for the indicator function

χε(x) :=

{
1, if wε(x) 6= uε(x)− u(x),

0, if wε(x) = uε(x)− u(x)

to observe for a.e. x ∈ Qj

χε(x) = 0 ⇔ ∇(u+ wε)(x) = ∇uε(x),

χε(x) = 1 ⇔ ∇(u+ wε)(x) = ∇u(x),

and thus, as by de�nition φε,j = wε on Qj , with the Growth Condition (5.2) on each
energy, and the fact that λmin . λmax

Eε(u+ φε,j , Qj)− Eε(uε, Qj)

=

�
Qj

χε(x)W (xε ,∇u(x)) dx−
�
Qj

χε(x)W (xε ,∇u
ε(x)) dx

≤ C
�
Qj

χε(x)λmax(xε )(1 + |∇u(x)|p) dx−
�
Qj

χε(x)λmin(xε )( 1
C |∇u

ε(x)|p − C) dx

.
(
1 + ‖∇u‖pL∞(Q)

) �
Q
χε(x)λmax(xε ) dx.

Since χε(x) = 1 means by construction |uε(x)− u(x)| ≥ l
3N2 , we have

�
Q
χε(x) dx ≤

�
Q

|uε(x)− u(x)|
l

3N2

dx . N2

l ‖u
ε − u‖L1(Q)
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and hence with the equi-integrability of λmax (Lemma 5.3.4)

lim sup
ε↘0

�
Q
χε(x)λmax(xε ) dx

= lim sup
ε↘0

�
{x∈Q;λmax(

x
ε )≤N}

χε(x)λmax(xε ) dx

+ lim sup
ε↘0

�
{x∈Q;λmax(

x
ε )>N}

χε(x)λmax(x, xε ) dx

. lim sup
ε↘0

N N2

l ‖u
ε − u‖L1(Q) + E

[ �
{y∈Y ;λmax(y)>N}

λmax(y) dy
]
|Q|

≤ N3

l ‖u− u‖L1(Q) +ON |Q|,

so (5.35) follows.

Step 2.2: Proof of (5.37).
This step can be adopted from the proof of Lemma 5.3.5 without any changes. We use
the Growth Condition (5.2) and the arguments in Remark 5.3.7 and see

Eε(u+ φε,j , Q \Qj−1)− Eε(uε, Q \Qj−1)

≤ C
�
Q\Qj−1

λmax(xε )
(
|∇u(x)|p + 1

)
dx−

�
Q\Qj−1

λmin(xε )
(

1
C |∇u

ε(x)|p − C
)

dx

.
�
Q\QN

λmax(xε )
(
|∇u(x)|p + 1

)
dx

and

lim sup
ε↘0

�
Q\QN

λmax(xε )
(
|∇u(x)|p + 1

)
dx .

(
‖∇u‖pL∞(Q) + 1

)
ON |Q|. (5.38)

Step 2.3: Proof of (5.36).
Once more we start with similar arguments as in the proof of Lemma 5.3.5 Step 2.3.
From the de�nition of φε,j on Qj−1 \Qj and χε we see a.e. on Qj−1 we see

∇(u+ φε,j) = (1− ψj(1− χε))∇u+ wε∇ψj + ψj(1− χε)∇uε

and thus with the Mild λmax-Convexity (5.3), the Weak λmax-∆2-Property (5.4) and
the p-Growth Condition (5.2) we have

Eε(u+ φε,j , Qj−1 \Qj)− Eε(uε, Qj−1 \Qj)

.
�
Q\QN

λmax(xε )
(
|∇u|p + |wε(x)|p|∇φj(x)|p + 1

)
dx+ Eε(uε, Qj−1 \Qj).

The most part of the integral is again covered by (5.38). For the remaining part we
note that by construction ‖∇ψj‖L∞(Q) ≤ 3N2

l and ‖wε‖L∞(Q) ≤ l
3N2 , so we �nd with
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the arguments in Remark 5.3.7

lim sup
ε↘0

�
Q\QN

λ(xε )|∇ψj(x)|p|wε(x)|p dx . ON |Q|,

and thus (5.36) follows.

5.4.4. Properties of the Homogenized Potential (Proposition 5.2.4)

Proof of Proposition 5.2.4 (a). The upper bound follows directly from the de�nition
of Whom, the Growth Condition (5.2) and the Moment Bound Condition (5.7). To be
precise, for every k ∈ N we have

inf
φ∈W 1p

0 (kY )

 
kY
W (x, y, F+Dφ(y)) dy ≤

 
kY
W (x, y, F ) dy ≤ C(|F |p+1)

 
kY
λmax(x, y) dy

and thus with Hölder's inequality

Whom(x, F ) ≤ C(|F |p + 1) lim
k→∞

E
[  

kY
λmax(x, y)α dy

] 1
α

≤ C
α+1
α (|F |p + 1),

since E[
�
kY λmax(x, y)α dy] ≤ C by the Moment Bound Condition (5.7).

Now for the lower bound we write

Fε := inf
φ∈W 1,p

0 ( 1
ε
Y )

 
1
ε
Y
W (x, y, F +Dφ(y)) dy

and �x ω ∈ ΩF (x), such that by the arguments in Remark 5.3.7 we have

Whom(x, F ) = lim
ε↘0
Fε. (5.39)

If we additionally �x ε > 0 and φε ∈W 1,p
0 (1

εY ) we have, because
�

1
ε
Y Dφε = 0,

|F |p =
∣∣∣ 

1
ε
Y
F dy

∣∣∣p ≤ ( 
1
ε
Y
|F +Dφε(y)|dy

)p
and we can use Hölder's inequality to smuggle in λmin, so we can apply the Growth
Condition (5.2) and get

|F |p ≤
( 

1
ε
Y
λmin(x, y)

− 1
p−1 dy

)p−1( 
1
ε
Y
λmin(x, y)|F +Dφε(y)|p dy

)
≤
( 

1
ε
Y
λmin(x, y)

− 1
p−1 dy

)p−1

·
(
C

 
1
ε
Y
W (x, y, F +Dφε(y)) dy + C2

 
1
ε
Y
λmin(x, y) dy

)
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Since φε ∈W 1,p
0 (1

εY ) was taken arbitrarily we can pass to the in�mum and see

|F |p ≤
( 

1
ε
Y
λmin(x, y)

− 1
p−1 dy

)p−1(
CFε + C2

 
1
ε
Y
λmin(x, y) dy

)
. (5.40)

With the arguments in Remark 5.3.7 and Hölder's inequality we get

lim sup
ε↘0

(  
1
ε
Y
λmin(x, y)

− 1
p−1 dy

)p−1
≤ lim

ε↘0

(  
Y
λmin(x, yε )−β dy

) 1
β ≤ C

1
β

and

lim sup
ε↘0

 
1
ε
Y
λmin(x, y) dy ≤ lim

ε↘0

( 
Y
λmin(x, yε )α dy

) 1
α ≤ C

1
α ,

so taking the limit ε ↘ 0 in (5.40), and remembering (5.39), we �nally end up with
the desired inequality

|F |p ≤ C
β+1
β

(
Whom(x, F ) + C

α+1
α

)
.

Proof of Proposition 5.2.4 (b). We �x k ∈ N. If we take a minimizing sequence (φδ) in
W 1,p

0 (kY ) such that

lim
δ↘0

 
kY
W (x2, y, F +Dφδ(y)) dy = inf

φ∈W 1,p
0 (kY )

 
kY
W (x2, y, F +Dφ(y)) dy,

then we �nd by the Spatial Continuity of W (Condition (5.9))

inf
φ∈W 1,p

0 (kY )

 
kY
W (x1, y, F +Dφ(y)) dy

≤
 
kY
W (x1, y, F +Dφδ(y)) dy

≤
 
kY
W (x2, y, F +Dφδ(y)) dy

+ ρ′(|x1 − x2|)
 
kY

(
1 + 2W (x2, y, F +Dφδ(y))

)
dy

and thus, taking the limit δ ↘ 0, the expectation value and then the limit k →∞

Whom(x1, F )−Whom(x2, F ) ≤ ρ′(|x1 − x2|)
(
1 + 2Whom(x2, F )

)
.

Moreover, by interchanging the roles of x1 and x2, we also get

Whom(x2, F )−Whom(x1, F ) ≤ ρ′(|x1 − x2|)
(
1 + 2Whom(x1, F )

)
.

Thus we have∣∣Whom(x1, F )−Whom(x2, F )
∣∣ ≤ ρ′(|x1 − x2|)

(
1 + 2 min{Whom(x1, F ),Whom(x2, F )}

)
,

which gives the desired form of continuity (compare the discussion about the equiva-
lence of Conditions (5.8) and (5.9)).
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Proof of Proposition 5.2.4 (c). First for ω ∈ ΩF (x) Lemma 5.3.3 ensures that we can
�nd a recovery sequence (uε) in W 1,p(Y ) such that

uε → Fy in L
β
β+1

p
(Y ) and lim

ε↘0

�
Y
W (x, yε , Du

ε(y)) dy = Whom(x, F ).

Then, since Fj → F , by the Gluing Construction (Lemma 5.3.6) for every ε > 0 and
all j,N ∈ N there is a function φε,jN ∈W

1,p
0 (Y ) such that

lim sup
N→∞

lim sup
j→∞

lim sup
ε↘0

 
Y
W (x, yε , F +Dφε,jN (y)) dy ≤ lim

ε↘0

 
Y
W (x, yε , Du

ε(y)) dy

= Whom(x, F ).

On the other hand for ω ∈
⋂
j∈N ΩFj (x) the arguments in Remark 5.3.7 give

Whom(x, Fj) = lim
ε↘0

inf
φ∈W 1,p

0 ( 1
ε
Y )

 
1
ε
Y
W (x, y, Fj +Dφ(y)) dy

≤ lim sup
ε↘0

 
Y
W (x, yε , Fj +Dφε,jN (y)) dy

for every j ∈ N. Together for ω ∈ ΩF (x) ∩
⋂
j∈N ΩFj (x) we end up with

lim sup
j→∞

Whom(x, Fj) = lim sup
N→∞

lim sup
j→∞

Whom(x, Fj) ≤Whom(x, F ),

which does not depend on ω anymore. Now interchanging the roles of F and Fj as well
as taking the limes inferior as j →∞ instead of the lines superior yield also

Whom(x, F ) ≤ lim inf
j→∞

Whom(x, Fj),

so the assertion immediately follows.

5.4.5. Recovery Sequence for Spatially Homogeneous Potentials and
Sobolev Functions (Lemma 5.3.1)

Proof of Lemma 5.3.1.
Step 1: From a�ne functions to piecewise a�ne functions with rational derivatives.
Let u be a piecewise a�ne function on A, i.e. there is a �nite partition {Ai} of A
consisting of bounded Lipschitz domains such that Du = Fi ∈ Qn×m on Ai. Hence
on every Ai we are in the situation where we can apply Lemma 5.3.3, which gives a
recovery sequence (uεi ) in W

1,p(Ai) with uεi − u ∈W
1,p
0 (Ai) such that

uεi → u in L
β
β+1

p
(Ai) and lim

ε↘0
Eε(uεi , Ai) = Ehom(Fi, Ai).
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Using the convention uεi = u outside of Ai, we can put these recovery sequences together
to

uε := u+
∑
i

(uεi − u) ∈W 1,p(A),

which obviously satis�es uε − u ∈W 1,p
0 (A) and uε → u in L

β
β−1

p
(A), and

lim
ε↘0
Eε(uε, A) =

∑
i

lim
ε↘0
Eε(uεi , Ai) =

∑
i

Ehom(Fi, Ai) = Ehom(u,A).

Step 2: From piecewise a�ne functions to sobolev functions.
Let u ∈ W 1,p(A). Since the piecewise a�ne functions on A are dense in W 1,p(A) we
can �nd for any δ > 0 subsets Aδ ⊆ Aδ ⊆ A and a function uδ ∈W 1,p(A) such that

� Aδ is open, Aδ is compact, and |A \Aδ| → 0,

� uδ is piecewise a�ne with rational derivative on Aδ and uδ = u on A \Aδ,

� uδ → u in W 1,p(A).

A

Aδ

Aδ

uδ = u

uδ piecewise a�ne with
rational derivatives

Figure 5.2.: Sketch of the sets Aδ ⊆ Aδ ⊆ A and the function uδ in the proof of Lemma
5.3.1 Step 2.

On the set Aδ we are in the situation of Step 1 so we can �nd a recovery sequence (vεδ)

in W 1,p(Aδ) with vεδ − uδ ∈W
1,p
0 (Aδ) such that

vεδ → uδ in L
β
β+1

p
(Aδ) and lim

ε↘0
Eε(vεδ , Aδ) = Ehom(uδ, Aδ).

We set

uεδ(x) :=

{
vεδ(x), x ∈ Aδ,
uδ(x), x ∈ A \Aδ,
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which gives functions uεδ ∈W 1,p(A) with uεδ − u ∈W
1,p
0 (A) and

lim
δ↘0

lim
ε↘0
‖uεδ − u‖

L
β
β+1

p
(A)

= 0.

If we additionally could show

lim
δ↘0

lim
ε↘0
Eε(uεδ, A) = Ehom(u,A), (5.41)

then we could �nd a diagonal sequence δ(ε) such that uε := uεδ(ε) ful�lls all the desired
assertions. We split the proof of (5.41) into the two sub-goals

lim sup
δ↘0

lim sup
ε↘0

∣∣Eε(uεδ, A)− Ehom(uδ, A)
∣∣ = 0 (5.42)

and
lim sup
δ↘0

∣∣Ehom(uδ, A)− Ehom(u,A)
∣∣ = 0. (5.43)

We �rst note that Eε(uεδ, Aδ) → Ehom(uδ, Aδ) by the de�nition of uεδ, so for (5.42) it
only remains to look at A \ Aδ. But since |A \ Aδ| → 0 we see that Eε(uεδ, A \ Aδ)
and Ehom(uδ, A \ Aδ) both vanish as ε ↘ 0 and δ ↘ 0, because by the Growth
Condition (5.2) and the arguments in Remark 5.3.7 we have

lim sup
δ↘0

lim sup
ε↘0

∣∣Eε(uδ, A \Aδ)∣∣
≤ C lim sup

δ↘0
lim sup
ε↘0

�
A\Aδ

λmax(xε )(|Duδ(x)|p + 1) dx

= 0,

and by the Uniform Ellipticity ofW hom (Proposition 5.2.4 (a)) and the fact that uδ → u
in W 1,p(A) we have

lim sup
δ↘0

∣∣Ehom(uδ, A \Aδ)
∣∣

≤ C ′ lim sup
δ↘0

�
A\Aδ

(|Duδ(x)|p + 1) dx

≤ C ′ lim sup
δ↘0

(�
A\Aδ

(|Du(x)|p + 1) dx+

�
A
|Duδ(x)−Du(x)|p dx

)
= 0.

To claim (5.43) we note W hom(Duδ(x)) → W hom(Du(x)) for a.e. x ∈ A as a conse-
quence of uδ → u inW 1,p(A) and the Continuity ofW hom (Proposition 5.2.4 (c)). Now
(5.43) follows from two applications of Fatou's Lemma, i.e.

Ehom(u,A) =

�
A

lim
δ↘0

W hom(Duδ(x)) dx ≤ lim inf
δ↘0

Ehom(uδ, A),
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and, since C ′(|Duδ(x)|p+1)−W hom(Duδ(x)) is non-negative by the Uniform Ellipticity
of W hom (Proposition 5.2.4 (a)),

Ehom(u,A) = −
�
A

lim
δ↘0

(
C ′(|Duδ(x)|p + 1)−W hom(Duδ(x))

)
dx

+

�
A
C ′(|Du(x)|p + 1) dx

≥ − lim inf
δ↘0

�
A

(
C ′(|Duδ(x)|p + 1)−W hom(Duδ(x))

)
dx

+

�
A
C ′(|Du(x)|p + 1) dx

= lim sup
δ↘0

Ehom(uδ, A).

5.4.6. Lower Bound for Spatially Homogeneous Potentials (Lemma
5.3.2)

Proof.
Step 1: De�nition of µε and µ.
W.l.o.g. we can assume (Eε(uε, A)) to be convergent, because if lim infε↘0 Eε(uε, A) =
∞ the assertion is trivial, and otherwise we can pass to a subsequence converging
to lim infε↘0 Eε(uε, A). Then by the Growth Condition (5.2) and the arguments in
Remark 5.3.7 we can de�ne uniformly bounded, non-negative Radon measures µε by

µε(dx) :=
(
W (xε , Du

ε(x)) + Cλmin(xε )
)

dx,

and the weak-∗-compactness of Radon measures allows us to pass to a (not relabeled)
subsequence and �nd another non-negative Radon measure µ such that µε

∗
⇀ µ, which

implies

lim inf
ε↘0

µε(U) ≥ µ(U) for all open sets U ⊆ A, (5.44)

lim
ε↘0

µε(K) = µ(K) for all compact sets K ⊆ A. (5.45)

Thus our de�nition of µε and the arguments in Remark 5.3.7 (after applying Hölder's
inequality) immediately yield

µ(A) ≤ lim inf
ε↘0

µε(A) ≤ lim
ε↘0
Eε(uε, A) + C

α+1
α |A|,

so it will su�ce to show

µ(A) ≥ Ehom(u,A) + C
α+1
α |A|. (5.46)
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Step 2: Localization.
The Lebesgue Decomposition Theorem (see e.g. [EG92, 1.6 Theorem 3]) allows us to
regard the non-negative Radon measure µ as the sum of a non-negative Radon measure
µa � dx, the absolutely continuous part, and a non-negative Radon measure µs⊥dx,
the singular part, with Dµa = Dµ a.e. on A, where Dµa and Dµ denote the Lebesgue
derivative

Dµa(x) = lim
l↘0

µa(Ql(x))

ln
and Dµ(x) = lim

l↘0

µ(Ql(x))

ln
, with Ql(x) := x+(− l

2 ,
l
2)n.

Note that (5.45) implies limε↘0 µε(B) = µ(B) for all bounded Borel sets B ⊆ A with
µ(∂B) = 0. So if we �x a Lebesgue point x ∈ A and let (lj) be a decreasing sequence
converging to zero such that µ(∂Qlj (x)) = 0, which is possible as µ(A) <∞, we �nd

Dµ(x) = lim
j→∞

µ(Qlj (x))

lj
n = lim

j→∞
lim
ε↘0

µε(Qlj (x))

lj
n ,

and hence our claim (5.46) reduces to

lim
j→∞

lim
ε↘0

µε(Qlj (x))

lj
n ≥W hom(Du(x)) + C

α+1
α , (5.47)

because µ(A) =
�
ADµa(x) dx+ µs(A) ≥

�
ADµ(x)dx.

Step 3: Approximate Lp-di�erentiability.
First we note that by the de�nition of µε and the arguments in Remark 5.3.7 (in
connection with Hölder's inequality) we have

lim
j→∞

lim
ε↘0

µε(Qlj (x))

lj
n = lim

j→∞
lim
ε↘0

1
lj
nEε(uε, Qlj (x)) + C

α+1
α ,

so claim (5.47) actually takes the form

lim
j→∞

lim
ε↘0

1
lj
nEε(uε, Qlj (x)) ≥W hom(Du(x)). (5.48)

Since we assumed limε↘0 Eε(uε, A) < ∞, we are in the situation of the Compactness
Result (Proposition 5.2.1), so we can follow u ∈ W 1,p(A) and hence u is a.e. Lp-
di�erentiable with Lp-derivative Du, i.e. for a.e. x ∈ A

lim
j→∞

1
lj

( 
Qlj (x)

∣∣u(y)− u(x)−Du(x)(y − x)
∣∣p dy

)1
p

= 0.

Thus for almost every x ∈ A we can �nd a sequence (uj)j∈N of a�ne functions of the
form uj(y) := u(x) + Fj(y − x) with Fj ∈ Qn×m, that satis�es Duj → Du(x) as well
as

lim
j→∞

j2

lj
n+1 ‖u− uj‖pLp(Qlj (x)) = 0 and lim

j→∞
j3

lj
n+1 ‖u− uj‖L1(Qlj (x)) = 0.
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Thus, and because the Compactness Result (Proposition 5.2.1) also gives uε → u in
L1(A), we are able to use the Gluing Construction (Lemma 5.3.5 or Lemma 5.3.6 resp.)
to �nd functions φεj ∈W

1,p
0 (Qlj (x)) such that

lim sup
j→∞

lim sup
ε↘0

1
lj
nEε(uj + φεj , Qlj (x)) ≤ lim

j→∞
lim
ε↘0

1
lj
nEε(uε, Qlj (x)). (5.49)

But now the Continuity of W hom (Proposition 5.2.4 (c)) and the arguments in Re-
mark 5.3.7 give

W hom(Du(x)) = lim
j→∞

W hom(Duj)

= lim
j→∞

lim
ε↘0

inf
φ∈W ( 1

ε
Qlj (x))

 
Qlj (x)

W (y,Duj + φ(y)) dy

= lim
j→∞

lim
ε↘0

inf
φ∈W (Qlj (x))

1
lj
nEε(u+ φ,Qlj (x))

≤ lim sup
j→∞

lim sup
ε↘0

1
lj
nEε(uj + φεj , Qlj (x)),

which combined with (5.49) gives (5.48).

5.4.7. Proof of Theorem 5.2.2

To lift the results in Lemmas 5.3.1 and 5.3.2 from spatially homogeneous potentials
W to the general potential W we will part the set A into small cubes, i.e. for δ > 0,
δ ∈
√
nQ set

Zδ := {z ∈ δ√
n
Zn;Qδ(z) ∩A 6= ∅}, with Qδ(z) := z + δ√

n
Y.

Now on each cube Qδ(z) we will replace W by the spatially homogeneous potential
W z := W (z, ·, ·) with the associated energies

Ez,ε(u, U) :=

�
U
W z(

x
ε , Du(x)) dx =

�
U
W (z, xε , Du(x)) dx

and

Ez,hom(u, U) :=

�
U
W z,hom(Du(x)) dx =

�
U
Whom(z,Du(x)) dx.

The thereby occurring error can be controlled with the Spatial Continuity of W and
Whom (Condition (5.8) and Proposition 5.2.4 (b)) and vanishes with the diameter δ of
the cubes.

Step 1: Recovery sequence.
By Lemma 5.3.1 we �nd for every z ∈ Zδ a recovery sequence (uεδ,z) inW

1,p(Qδ(z)∩A)

with uεδ,z − u ∈W
1,p
0 (Qδ(z) ∩A) such that

uεδ,z → u in L
β
β+1

p
(Qδ(z) ∩A) and lim

ε↘0
Ez,ε(uεδ,z, Qδ(z) ∩A) = Ez,hom(u,Qδ(z) ∩A)

115



5. Integral Functionals with Non-Uniformal Growth

for all ω ∈ Ω0 since z ∈ Qn by construction. Using the condition that uεδ,z = u outside
of Qδ(z) ∩A we can put these sequences together and de�ne uεδ by

uεδ := u+
∑
z∈Zδ

(uεδ,z − u) ∈W 1,p(A),

which obviously satis�es uεδ − u ∈ W 1,p
0 (A) and uεδ → u in L

β
β+1

p
(A). If we could

show
lim
δ↘0

lim
ε↘0
Eε(uεδ, A) = Ehom(u,A), (5.50)

we could �nd a diagonal sequence δ(ε) such that uε := uεδ(ε) is the desired recovery
sequence. To show (5.50) it is su�cient to note, that for the energies we have by the
Spatial Continuity of W and Whom (Condition (5.9) and Proposition 5.2.4 (b))

Eε(uεδ, A) =
∑
x∈Zδ

Eε(uεδ,z, Qδ(z) ∩A)

≤
∑
x∈Zδ

(
Ez,ε(uεδ,z, Qδ(z) ∩A) +

�
Qδ(z)∩A

ρ′(|x− z|)
(
1 +W z(

x
ε , Du

ε
δ,z(x))

)
dx
)

≤ (1 + δ)
∑
z∈Zδ

Ez,ε(uεδ,z, Qδ(z) ∩A) + δ|A|

(5.51)
as well as

Ehom(u,A)

=
∑
x∈Zδ

Ehom(u,Qδ(z) ∩A)

≤
∑
x∈Zδ

(
Ez,hom(u,Qδ(z) ∩A) +

�
Qδ(z)∩A

ρ′(|x− z|)
(
1 +W z,hom(xε , Du(x))

)
dx
)

≤ (1 + δ)
∑
z∈Zδ

Ez,hom(u,Qδ(z) ∩A) + δ|A|.

(5.52)
Thus, since Ez,ε(uεδ,z, Qδ(z) ∩A)→ Ez,hom(u,Qδ(z) ∩A), we end up with

lim sup
δ↘0

lim sup
ε↘0

∣∣Eε(uεδ, A)− Ehom(u,A)
∣∣ = 0,

which is (5.50).

Step 2: Lower bound.
Using (5.52) and Lemma 5.3.2 we see

Ehom(u,A) ≤ lim sup
δ↘0

∑
x∈Zδ

Ez,hom(u,Qδ(z) ∩A)

≤ lim sup
δ↘0

lim inf
ε↘0

∑
x∈Zδ

Ez,ε(uε, Qδ(z) ∩A)
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for all ω ∈ Ω0. Similar to (5.51) we �nd∑
x∈Zδ

Ez,ε(uε, Qδ(z) ∩A) ≤ (1 + δ)Eε(uε, A) + δ|A|,

which immediately yields

Ehom(u,A) ≤ lim inf
ε↘0

Eε(uε, A),

and the theorem is proven.
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6. Application to Rapidly Oscillating

Riemannian Manifolds

As in Part II we want to apply our recent results to the case of bi-Lipschitz di�eomor-
phic manifolds. But now we drop the uniformity of the Lipschitz bounds and consider
manifolds with rapidly oscillating random micro structure. We will discuss examples
with degenerated geometries, like unbounded volume or collapse to singularities. Our
results from the previous chapter will still yield Mosco-convergence, and in some cases
even spectral convergence, to a deterministic manifold.

All proofs of this chapter are collected in Section 6.3.

The results of this chapter are new and unpublished.

6.1. Setting and Results

In Section 4.2 we considered examples of manifolds, which were all Euclidean subman-
ifolds constructed from some reference manifold M0 via adding normal perturbations
with strength given by a periodic function f (see Section 4.2 for details). To give a �a-
vor of how Theorem 5.2.2 reaches beyond the limitations of the uniformly bi-Lipschitz
di�eomorphic manifolds and what situations may occur, we imagine that we manipu-
late the amplitude of the function f in a random way, independently for each period
(see Section 6.2 for a concrete formulation). Then f and f ′ might no longer be uni-
formly bounded in L∞(M0), and since the di�eomorphisms hε directly depend on f ,
the so generated manifolds are not uniformly bi-Lipschitz di�eomorphic. However, if
the coe�cient �elds Lε can be controlled statistically in the sense of moment bounds
on their eigenvalues, we are able to gain at least Mosco-convergence of the manifolds
from the results in Chapter 5.

In the described situations the unboundedness of f and f ′ coincides with arbitrarily
large volume of the perturbed manifold. In contrast one can also construct examples
with uniformly bounded volume forms where the unboundedness of the di�eomor-
phisms is caused by singular points. One could for instance think of geometries similar
to the bubble-like micro structures studied by Khrabustovskyi [Khr09]: In a �at surface
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small holes are cut, arranged on a grid of scale ε, and at these hole spheres with radius
of order ε are attached. Note that if the radius of a hole tends to zero, the part where
the sphere is attached collapses to a singular point. In [Khr09] spectral convergence
is shown for the case that the radii of the holes were assumed to be deterministically
bounded from below (with dependence of ε). We will gain spectral convergence in
Section 6.2.3 for a quite similar setting, where the radii are chosen randomly so they
can be arbitrarily close to zero.

In the spirit of Chapter 4 we want to adapt our Γ-convergence result Theorem 5.2.2 to
the situation of sequences (Mε, gε, µε) of weighted Riemannian manifolds that are (not
necessarily uniformly) bi-Lipschitz di�eomorphic to a weighted Riemannian reference
manifold (M0, g0, µ0). But since Theorem 5.2.2 is devoted to the �at Euclidean case, it
would not be enough to pull the Dirichlet energy ofMε back to an energy functional on
M0, but also to pull this energy functional back once more to Rn along local coordinate
charts of M0. However, for a bi-Lipschitz di�eomorphic chart (U,Ψ) of M0 and a bi-
Lipschitz di�eomorphism hε : M0 → Mε, the composition hε ◦ Ψ−1 : Ψ(U) → Mε is a
bi-Lipschitz di�eomorphic chart ofMε, and we end up with the same energy functional
on Ψ(U) ⊆ Rn if we pull the Dirichlet energy on Mε back step by step along hε and
Ψ−1 or directly along hε ◦ Ψ−1. Against this background it is much more natural to
skip the intercalated reference manifold and regard the manifolds Mε as locally (not
necessarily uniformly) bi-Lipschitz di�eomorphic to subsets of Rn. The only role of
the reference manifold then is to ensure, that all these subsets in the end can be put
together to one limiting manifold.

De�nition 6.1.1 (Common Reference bi-Lipschitz Atlas). Let (Mε, gε, µε) be a family
of weighted Riemannian manifolds that are bi-Lipschitz di�eomorphic to a reference
manifold (M0, g0, µ0) via the di�eomorphisms hε : M0 →Mε. Let further A be a pair-
wise disjoint partition of M0 and A0 be a di�erentiable atlas for M0 such that

(i) for every A ∈ A there is a unique chart in (U,Ψ) ∈ A0 with A ⊆ U , which is
called the associated chart to A,

(ii) for A1, A2 ∈ A with associated charts (U1,Ψ1), (U2,Ψ2) ∈ A0 we have

A1 6= A2 ⇒ Ψ1(U1) ∩Ψ2(U2) = ∅.

Then Aε := {(hε(U),Ψ ◦ h−1
ε ); (U,Ψ) ∈ A0} is a di�erentiable atlas for Mε and the

family (Aε) is called a common reference atlas for (Mε) with the corresponding set of
reference cells {Ψ(A) ⊆ Rn;A ∈ A, (U,Ψ) associated chart to A}.

If A consists only of bounded Lipschitz domains and every chart included in Aε is bi-
Lipschitz, the common reference atlas is called bi-Lipschitz. It is called countable, if
A is countable.
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Ψ

hε2

hε1

hε1(U) ⊆Mε1

hε2(U) ⊆Mε2

U ⊆M0
Ψ(U) ⊆ Rn

Figure 6.1.: Illustration of a common reference atlas, cf. De�nition 6.1.1.

If a bi-Lipschitz di�eomorphic family (Mε) provides a common bi-Lipschitz atlas (Aε)
with corresponding set A of the reference cells, for every A ∈ A is a bounded Lipschitz
domain in Rn and there is a unique chart (U,Ψ) ∈ A0 with A ⊆ Ψ(U). Moreover for
every ε > 0 there is a unique chart (Uε,Ψε) ∈ Aε with Ψε = Ψ◦h−1

ε , and for every such
chart we �nd (Ψε ◦ hε ◦Ψ−1)(A) = A. Thus A can be interpreted as a (�at) reference
manifold and for the (not necessarily uniformly) bi-Lipschitz di�eomorphic manifolds
hε(Ψ

−1(A)) ⊆Mε and the corresponding di�eomorphisms are given by Ψ−1
ε .

In the examples in Section 6.2 the only reference cell will be the reference manifoldM0

itself and the associated chart is given by (Mω
ε , (h

ω
ε )−1).

While the existence of a common atlas yields a family of pulled back Dirichlet energies
on bounded Lipschitz domains of Rn, and these energies already have strictly convex
quadratic potentials, we are still far from the setting of Theorem 5.2.2, as the potentials
can depend on ε in every possible way. Thus we need to restrict to the special case of
what we call locally rapidly oscillating manifolds. Therefor we recall the de�nition of
the adjoint operator dΨ∗ε : Rn → TMε of the di�erential dΨε : TMε → Rn:

gε(dΨ∗εξ, η)(Ψ−1
ε (x)) = ξ · dΨεη for all ξ ∈ Rm, η ∈ TΨ−1

ε (x)Mε.

De�nition 6.1.2 (Locally Rapidly Oscillating Random Manifolds). Let (Mε, gε, µε)
be a family of weighted Riemannian manifolds with a countable bi-Lipschitz common
reference atlas (Aε) and corresponding set A of reference cells, and denote by σε the
density of µε against the Riemannian volume measure associated to gε. The family
(Mε) is called locally rapidly oscillating, if for every reference cell A ∈ A there is a
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coe�cient �eld L : A × Rn → Rn×n such that for every ε > 0 and (Uε,Ψε) ∈ Aε with
A ⊆ Ψε(Uε) we have for all x ∈ A, ξ, η ∈ Rn

ρε(x) gε(dΨ∗εξ, dΨ∗εη)(x) = L(x, xε )ξ · η + o(ε), ρε = σε
√

det gε,

where gε = gε ◦ Ψ−1
ε and σε = σε ◦ Ψ−1

ε , and the error term o(ε) is to be understood
uniformly in x as ε↘ 0.

For a family (Mω
ε , g

ω
ε , µ

ω
ε ) which is also indexed by ω ∈ Ω for same probability space

Ω, the atlases Aωε , that means the charts Ψω
ε but not the reference cells A, also depend

on ω. If the associated coe�cient �eld Lω is stationary in the second argument (that
is in x

ε ), we call (Mω
ε ) locally rapidly oscillating random manifolds. (Note that the

error term o(ε) in the random case reads as �an error which for a.e. ω tends to zero
uniformly in x as ε↘ 0�.)

The de�nition of rapidly oscillating manifolds becomes much more transparent in the
case where Mε are submanifolds of the Euclidean space equipped with the induced
metric and measure, because the condition then reads

ρε(x) (dΨε(x)dΨε(x)ᵀ) = L(x, xε ) + o(ε), ρε =
√

det(dΨεdΨᵀ
ε)−1.

Now we are in position to formulate the assumptions on L in order to apply Theo-
rem 5.2.2.

Proposition 6.1.3 (Mosco-Convergence of Rapidly Oscillating Random Manifolds).
Let (Mω

ε , g
ω
ε , µ

ω
ε ) be a family of n-dimensional rapidly oscillating random manifolds

with reference manifold (M0, g0, µ0). Assume that for every reference cell A and the
corresponding coe�cient �eld Lω as in De�nition 6.1.2 we have

(i) the smallest reps. largest eigenvalue λωmin(x, y) resp. λωmax(x, y) of Lω(x, y) satisfy

sup
x∈A,
y∈Rn

E[λmax(x, y)] <∞ and sup
x∈A,
y∈Rn

E[λmin(x, y)−
n
2 ] <∞,

(ii) there is a function ρ : [0,∞) → (0, 1) with limδ↘0 ρ(δ) = 0 such that for almost
every ω ∈ Ω and every x1, x2 ∈ A, y, ξ ∈ Rn we have∣∣L(x1, y)− L(x2, y)

∣∣ ≤ ρ(|x1 − x2|)
(
1 + |L(x1, y) + L(x2, y)|

)
.

Then for every density ρ0 on M0 there are a deterministic metric ĝ0 and a measure
dµ̂0 = ρ0dµ0 onM0, such thatM

ω
ε Mosco-converge (w.r.t. L2) for a.e. ω to (M0, ĝ0, µ̂0)

as ε↘ 0.
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Remark 6.1.4.

� By going through the proof of Proposition 6.1.3 one can �nd an explicit formula
for the metric ĝ0, which we do not state here as in this abstract framework it
is not very practical. But in the discussion of the case of Euclidean submani-
folds below, we will address the explicit expression of ĝ0. However, if the man-
ifolds (Mω

ε , g
ω
ε , µ

ω
ε ) are uniformly bi-Lipschitz di�eomorphic to a compact refer-

ence manifold, the volume forms ρε weakly-∗ converge in L∞(M0) to some ρ0 and
the corresponding metric ĝ0 in Proposition 6.1.3 coincides with the one given in
Lemma 4.1.3.

� While the formulation of assumption (i) in Proposition 6.1.3 is �tted to L2-
Mosco-convergence, the proof allows the following weaker variant of the state-
ment: If one replaces the boundedness of the n

2 th moments of the eigenvalue λmin

by

sup
x∈A,
y∈Rn

E[λmin(x, y)−β] <∞

for some β ≥ 1, one still can conclude Mosco-convergence of the manifolds, but
with respect to Lp for 1

p = β+1
2β −

1
n (cf. the compact embedding Proposition 5.2.1).

However, we do not engage in this any further, since we will need L2-convergence
of the minimizers in order to deduce spectral convergence (cf. Proposition 6.1.5
below) and therefore L2-Mosco-convergence is the natural notion of convergence
for our studies.

One main di�erence to the case of uniformly bi-Lipschitz di�eomorphic manifolds is
that the volume forms ρε in general do not need to be uniformly bounded, so we
cannot expect the measures µε to converge, which is a necessary condition for spectral
convergence. For instance in the situation discussed in the beginning of this chapter
(cf. also Section 6.2) the family of volume forms might become unbounded in L∞(M0)
for a.e. ω ∈ Ω, since the amplitude f can be arbitrarily large.

For that reason we are free to choose any density ρ0 for the measure on the Mosco-
limiting manifold. But if on a compact reference manifold the volume forms ρε are
bounded and do converge weakly-∗ in L∞, then their limit is the natural choice for ρ0,
since in this case, utilizing the compactness result Proposition 5.2.1, we gain spectral
convergence, too.

Proposition 6.1.5 (Spectral Convergence of Rapidly Oscillating Manifolds). Sup-

pose that M0 is compact. If in the setting of Proposition 6.1.3 ρε
∗
⇀ ρ0 weakly-∗

in L∞(M0, g0, µ0) for a.e. ω ∈ Ω, the family (Mω
ε ) spectral converges (w.r.t. L2) to

(M0, ĝ0, µ̂0) for a.e. ω ∈ Ω.

123



6. Application to Rapidly Oscillating Riemannian Manifolds

As mentioned above, if the manifolds Mω
ε are submanifolds of the Euclidean space the

situation simpli�es. We want to formulate our result for the even simpler case where
the reference manifold M0 is a subset of Rn equipped with the standard metric and
the Lebesgue measure, and the oscillating structure of (Mε) is natured such that M0

itself is the only reference cell. In this situation we can turn back to the formulation
used in Chapter 4 thinking of M0 as the reference manifold and Mω

ε being bi-Lipschitz
di�eomorphic to M0 via the di�eomorphism hωε : M0 →Mω

ε .

Corollary 6.1.6. Let (M0, ·, dx) be an n-dimensional Riemannian manifold, which is
a subset of Rn equipped with the induced metric and measure, and let (Mω

ε , ·,dx) be a
family, indexed by ω ∈ Ω and 0 < ε, of n-dimensional submanifolds of the Euclidean
space (with the induced metric and measure), being bi-Lipschitz di�eomorphic to the
reference manifold M0 via the di�eomorphisms hωε : M0 → Mε. Further assume that
there is a stationary coe�cient �eld L : Ω×M0 × Rn → Rn×n such that

ρωε (x) (dhωε (x)ᵀdhωε (x))−1 = Lω(x, xε ), ρωε =
√

det dhωε
ᵀdhωε .

If the following conditions are ful�lled

(i) the smallest resp. largest eigenvalue λωmin(x, y) resp. λωmax(x, y) of Lω(x, y) satisfy

sup
x∈M0,
y∈Rn

E[λmax(x, y)] <∞ and sup
x∈M0,
y∈Rn

E[λmin(x, y)−
n
2 ] <∞,

(ii) there is a function ρ : [0,∞) → (0, 1) with limδ↘0 ρ(δ) = 0 such that for almost
every ω ∈ Ω and every x1, x2 ∈ A, y, ξ ∈ Rn we have∣∣L(x1, y)− L(x2, y)

∣∣ ≤ ρ(|x1 − x2|)
(
1 + |L(x1, y) + L(x2, y)|

)
,

then for every density ρ0 on M0 there are a deterministic metric ĝ0 and measure dµ̂0 =
ρ0dx on M0 such that for a.e. ω the manifolds Mω

ε Mosco-converge to (M0, ĝ0, µ̂0)
w.r.t. L2 as ε↘ 0. In particular, ĝ0 is explicitly given by ĝ0(ξ, η) = ρ0L−1

0 ξ · η with

L0(x)ξ · η = lim
k→∞

E
[

inf
φ∈W 1,p

0 ([0,k)n)

 
[0,k)n

L(x, y)(ξ +∇φ(y)) · (η +∇φ(y)) dy
]
. (6.1)

Moreover, if the reference manifold M0 is open and bounded with a (possibly empty)

Lipschitz boundary and ρε
∗
⇀ ρ0 weakly in L∞(M0) for a.e. ω ∈ Ω, then for a.e. ω the

manifolds Mω
ε spectral converge to (M0, ĝ0, µ̂0) w.r.t. L2 as ε↘ 0.

Remark 6.1.7. In the above case of the reference manifoldM0 being a �at subset of Rn,
with the standard metric and measure, a su�cient condition for spectral convergence
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can be formulated as follows: Let (Mω
ε , g

ω
ε , µ

ω
ε ) be an n-dimensional submanifold of

Rm being bi-Lipschitz di�eomorphic to M0 via the di�eomorphisms hωε : M0 → Mω
ε .

Assume that there is a function a : Ω×M0 → Rn×n such that

dhωε (x)ᵀdhωε (x) = a(τx
ε
ω, x).

If we denote by Cε(ω) > 0 the Lipschitz constant of hωε , i.e.

1
Cε(ω) |ξ| ≤ |dh

ω
ε ξ| ≤ Cε(ω)|ξ|

for all ξ ∈ Rn, and if these Lipschitz constants have bounded moments in the sense of

sup
ε>0

E[C(n2)
ε ] <∞, (6.2)

then one can easily check that

Cε(ω)−n ≤ ρωε ≤ Cε(ω)n and Cε(ω)−n−2|ξ| ≤ |Lωξ| ≤ Cε(ω)n+2|ξ|,

and therewith for every eigenvalue λ of Lω one has

λ ≤ Cε(ω)n+2 ≤ Cε(ω)(n2) and λ−
n
2 ≤ Cε(ω)

n2

2
+n ≤ Cε(ω)(n2),

so one �nds the assumptions of Corollary 6.1.6 satis�ed and is granted with Mosco-
convergence. (Note that the exponent n2 in (6.2) is far from being optimal.) If in
addition the volume forms (ρωε ) are uniformly bounded in L∞(M0) for a.e. ω ∈ Ω, we
even deduce weak-∗ convergence due to the stationarity, and therefore conclude even
spectral convergence. Despite this condition looks natural with regard to the similarities
to the uniformly bi-Lipschitz di�eomorphic case (cf. De�nition 4.1.2), in practice it is
often more convenient to examine the eigenvalues of Lω then the Lipschitz constant of
hωε , since Lω needs to be calculated anyway to �nd the limiting manifold.

Remark 6.1.8 (Realizability of (M0, ĝ0, µ̂0)). If in the setting of Corollary 6.1.6 the
density ρ0 is chosen such that ρn−2

0 = detL0 and the corresponding metric ĝ0 is smooth,
then µ̂0 is the Riemannian volume measure associated with the metric ĝ0 and the lim-
iting manifold (M0, ĝ0, µ̂0) can be isometrically embedded into Rm for some m large
enough due to Nash's Embedding Theorem. Such an embedding h0 : M0 → Rm is char-
acterized by the identity dhᵀ0dh0 = ρ0L−1

hom.

6.2. Examples

As indicated in the beginning of Section 6.1, we want to modify the examples from
Section 4.2 to demonstrate several aspects of the method provided by Corollary 6.1.6.
The �rst two examples (Section 6.2.1) are laminate-like corrugated graphical surfaces
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6. Application to Rapidly Oscillating Riemannian Manifolds

over R2 and demonstrate the intersection of the method established above with the
results for uniformly bi-Lipschitz di�eomorphic manifolds in Chapter 4. With the fol-
lowing two laminate-like corrugated spherical examples (Section 6.2.2) we leave the
region of uniformly bi-Lipschitz di�eomorphic manifolds, since we allow the perturba-
tion of the reference manifold to be arbitrarily large. Therewith we give up control
over the volume and do not have weak-∗ convergence of the volume form, hence our
results provide only Mosco-convergence, but not spectral convergence. The last ex-
ample (Section 6.2.3) steps out of the line, as it is a non-laminate-like example. We
consider mushroom-shaped surfaces of revolution, repeatedly arranged as on a checker
board, but whose stem width is chosen randomly (and independently) on each tile.
Since the curvature (locally) becomes singular as the stem width tends to zero, the
family of manifolds constructed this way is not uniform bi-Lipschitz di�eomorphic, but
provides bounded volume forms and is therefore an example for spectral convergence
of non-uniformly bi-Lipschitz di�eomorphic manifolds. In this sense, even though the
limit is isotropic, this example is the most important.

6.2.1. Uniformly bi-Lipschitz Di�eomorphic Manifolds

The families of submanifolds considered in the following two examples are actually
uniformly bi-Lipschitz di�eomorphic an could therefore be treated with the methods
from Chapter 4. However, this would provide at �rst only spectral convergence along
a subsequence, and in a second step one would observe that the limit is independent
of the choice of the subsequence, which yields spectral convergence of the entire se-
quence. In contrast, Corollary 6.1.6 allows us to gain spectral convergence of the entire
family immediately. Of course, both methods yield the same limiting manifold (up to
isometry).

A graphical surface with concentric random corrugations

As already mentioned we want to manipulate the amplitude of the periodic corrugation
independently in each period. To make this precise we consider a smooth, 1-periodic
function f : [0,∞) → R of the form f(y) := ψ(y − byc) for some ψ ∈ C∞c (0, 1), where
byc denotes the integer part of y, i.e. byc ∈ Z with byc ≤ y < byc+1. Now we introduce
the set of admissible corrugations

Ω := {ω : R→ R;ω(y) = a(by0 + yc)f(y0 + y) for some y0 ∈ [0, 1), a ∈ [0, 2]Z},

which is isomorphic to {(y0, a); y0 ∈ [0, 1), a ∈ RZ}. On this set we can de�ne a
probability measure by letting the o�set y0 ∈ [0, 1) be uniformly distributed and the
amplitudes a(k) ∈ [0, 2] for k ∈ Z be independently uniformly distributed, and the
push-forward of this measure de�nes a probability measure on Ω. Endowed with this
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measure and the Borel-σ-algebra, Ω forms a probability space, which is stationary and
ergodic w.r.t. the group action τyω := ω(y + ·) for ω ∈ Ω, y ∈ R.

We now start with the reference manifold

M0 := {(r, θ); r ∈ (δ,R), θ ∈ [0, 1)}

for some R > δ > 0, and de�ne the submanifolds Mω
ε = hωε (M0) of R3 (with the

induced metric and measure) via hωε : M0 → R3,

hωε (r, θ) :=

r sin 2πθ
r cos 2πθ
εω( rε)

 (6.3)

for ω ∈ Ω, ε ∈ { 1
k ; k ∈ N}, which are displayed in Figure 6.2 with ψ as in (4.7) for

some values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 6.2.: A family of graphical surfaces with concentric random corrugations. The
three pictures on the left show a realization of Mω

ε de�ned by (6.3) with ψ
as in (4.7) and decreasing values of ε. The picture on the right shows the
deterministic limiting surface N0 de�ned via (6.4). As ε↘ 0 the spectrum
of the Laplace-Beltrami operator on Mε converges to the spectrum of the
Laplace-Beltrami operator on N0.

Guided from Corollary 6.1.6 we calculate the density

ρωε =
√
dhωε

ᵀdhωε = 2πr
√
ω′( rε)2 + 1

and the coe�cient �eld

Lωε = ρωε (dhωε
ᵀdhωε )−1 =

 2πr√
ω′( r

ε
)2+1

0

0

√
ω′( r

ε
)2+1

2πr

 .

Obviously, this coe�cient �eld is of the desired form Lωε (r, θ) = Lω(r, rε) with

Lω(r, y) =

 2πr√
ω′(y)2+1

0

0

√
ω′(y)2+1

2πr
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and, since ω′ is uniformly bounded in L∞(M0) for all ω ∈ Ω, the eigenvalues of L are
uniformly bounded and, in particular, have bounded moments as claimed in Corol-
lary 6.1.6. Hence, there are a deterministic metric ĝ0 and a measure µ̂0 on M0 such
that the family (Mω

ε ) Mosco-converges to (M0, ĝ0, µ̂0) for a.e. ω ∈ Ω.

To identify the limiting metric and measure we �rst note that by Birkho�'s Ergodic
Theorem (Lemma 2.2.2) we �nd for the average over any cube Q ⊆M0

lim
ε↘0

 
Q
ρωε (y) dy = 2πr 1

2

� 2

0

� 1

0

√
a2f ′(y)2 + 1 dy da =: ρ0(r)

for a.e. ω ∈ Ω. Therefore, and since the densities ρωε are uniformly bounded in L∞(M0),
we conclude that ρωε

∗
⇀ ρ0 weakly in L∞(M0) for a.e. ω ∈ Ω, which makes ρ0 the natural

choice for the density of the limiting measure µ̂0, as it yields also spectral convergence
of the manifolds.

Now in order to �nd the corresponding metric ĝ0, we need to calculate the coe�cient
�eld L0 via (6.1), i.e.

L0ξ · η = lim
k→∞

E
[

inf
φ∈W 1,p

0 ([0,k))

1
k

� k

0
L(r, y)(ξ +∇φ(y)) · (η +∇φ(y)) dy

]
.

This can be solved via the Euler-Lagrange-equation or by appealing to standard (stochas-
tic) homogenization formulas for diagonal matrices associated to laminate-like struc-
tures, and we �nd

L0 =

(
4π2r2

ρ0
0

0 ρ0
4π2r2

)
.

Therewith the limiting metric turns out to be

ĝ0(ξ, η) = ρ0L−1
0 ξ · η =

(
ρ20

4π2r2
0

0 4π2r2

)
ξ · η.

According to Remark 6.1.8, an isometric embedding h0 : M0 → R3 of the limiting
manifold (M0, ĝ0, µ̂0) can be found via dhᵀ0dh0 = ρ0L−1

0 , namely

h0(r, θ) =

 r sin 2πθ
r cos 2πθ� r

0

√
ρ0(t)2

4π2t2
− 1 dt

 . (6.4)

That means, the submanifold N0 := h0(M0) of R3 (with the induced metric and
measure), pictured in Figure 6.2, is the spectral (and Mosco-) limit of the family (Mω

ε )
for a.e. ω ∈ Ω as ε ↘ 0. Note that h0 does not depend on the initial choice of the
radius δ of the excluded circle around the origin in the manifolds Mω

ε , and therefore
we can pass to the reference manifold M0 = (0, 1) × [0, 1), and the excluded origin of
the manifolds Mω

ε then coincides with the apex of the cone-shaped limiting manifold
N0.
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A graphical surface with star-shaped random corrugations

In the same manner as above we can of course adapt the �rst example of Section 4.2.1.
We start with the same probability space Ω and the same reference manifold M0 as in
the example above and de�ne the submanifolds Mω

ε = hωε (M0) of R3 via hωε : M0 →
R3,

hωε (r, θ) :=

r sin 2πθ
r cos 2πθ

εω( θε )

 (6.5)

for ω ∈ Ω, ε ∈ { 1
k ; k ∈ N}, which are pictured in Figure 6.3 with ψ as in (4.7) for some

values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 6.3.: A family of graphical surfaces with star-shaped random corrugations. The
three pictures on the left show a realization of Mω

ε de�ned by (6.5) with
ψ as in (4.7) and decreasing values of ε. The picture on the right shows
the deterministic limiting surface N0 de�ned via (6.6).

Doing the same calculations as above, we �nd the density

ρ0(r) = 1
2

� 2

0

� 1

0

√
a2f ′(y)2 + 4π2r2 dy da,

which is the a.s. weak limit of ρωε in L2(M0), and the metric

ĝ0 = ρ0L−1
0 =

(
1 0
0 ρ2

0

)
.

An isometric embedding h0 : M0 → R3 of the limiting manifold can be found via
dhᵀ0dh0 = ρ0L−1

0 , namely

h0(r, θ) =


ρ0(r)

2π sin 2πθ
ρ0(r)

2π cos 2πθ� r
0

√
1− ρ′0(t)2

4π2 dt

 . (6.6)

The submanifold N0 := h0(M0) of R3, shown in Figure 6.3, is the spectral (and Mosco-)
limit of the family (Mω

ε ) for a.e. ω ∈ Ω as ε↘ 0. As in the example above we can pass
to the reference manifold M0 = (0, 1)× [0, 1), and the excluded origin of the manifolds
Mω
ε then coincides with a circle in the boundary of N0.

129



6. Application to Rapidly Oscillating Riemannian Manifolds

6.2.2. Manifolds with Unbounded Volume

The previous two examples were uniformly bi-Lipschitz di�eomorphic families of man-
ifolds and therefore also handable with the methods provided by Chapter 4. In the
following we present two examples of manifolds with unbounded volume, so they cannot
be uniformly bi-Lipschitz di�eomorphic.

A sphere with random radial perturbations oscillating with the latitude

Continuing the spirit of the examples above we start again with a smooth, 1-periodic
function f : [0,∞)→ R of the form f(y) := ψ(y−byc) for some ψ ∈ C∞c (0, 1), but this
time we get the set of admissible perturbations

Ω := {ω : R→ R;ω(y) = a(by0 + yc)f(y0 + y) for some y0 ∈ [0, 1), a ∈ [0,∞)Z}.

Note that in contrast to the examples above we allow arbitrary large amplitudes.
We de�ne a probability measure on Ω by letting the o�set y0 ∈ [0, 1) be uniformly
distributed and the amplitudes a(k) ∈ [0,∞) for k ∈ Z be i.i.d. with �nite expectation,
i.e. E[a(k)] < ∞. Together with the Borel-σ-algebra, and the group action τyω :=
ω(y + ·) for ω ∈ Ω, y ∈ R, the probability space Ω becomes stationary and ergodic.

Having the spherical examples in Section 4.2 in mind, we choose the reference manifold
to be

M0 = {(ϕ, θ);ϕ ∈ (δ, 1− δ), θ ∈ [0, 1)}

for some δ > 0, and de�ne the family of submanifolds Mω
ε := hωε (M0) of R3 via

hωε : M0 → R3,

hωε (ϕ, θ) =
(
1 + εω(ϕε )

)sinπϕ sin 2πθ
sinπϕ cos 2πθ

cosπϕ

 (6.7)

for ω ∈ Ω, ε ∈ { 1
k ; k ∈ N}. In Figure 6.4 we illustrate Mω

ε with ψ as in (4.7) and a
χ2-distribution with 3 degrees of freedom for some values of ε.

The same computations as in the previous example yield the density

ρωε (ϕ) = 2π(1 + εω(ϕε )) sinπϕ
√
ω′(ϕε )2 + π2(1 + εω(ϕε ))2

and the coe�cient �eld

Lω(ϕ, y) =

 2π sinπϕ√
ω′(y)2+π2

0

0

√
ω′(y)2+π2

2π sinπϕ

 ,
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ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 6.4.: A family of spheres with random radial perturbations oscillating with the
latitude. The three pictures on the left show Mε de�ned by (6.7) with ψ
as in (4.7) and decreasing values of ε. The picture on the right shows the
limiting surface N0 de�ned via (6.8).

whose eigenvalues themselves are unbounded, but have bounded moments as claimed
in Corollary 6.1.6, since on the one hand

� ∞
0

� 1

0

2π sinπϕ√
a2f ′(y)2 + π2

dy P(da) ≤ 2 sinπϕ ≤ 2,

where P denotes the probability measure on [0,∞) associated to the distribution of the
amplitudes, and on the other hand, using the fact that

√
x2 + y2 ≤ |x|+ |y|,

� ∞
0

� 1

0

√
a2f ′(y)2 + π2

2π sinπϕ
dy P(da) ≤ 1

2π sinπδ

(� ∞
0

aP(da)

� 1

0
|f ′(y)| dy + π

)
<∞.

Thus (6.1) yields the homogenized coe�cient �eld

L0(ϕ) =

(
2π sinπϕ

ρ 0

0 ρ
2π sinπϕ

)
with ρ =

� ∞
0

� 1

0

√
a2f ′(y)2 + π2 dy P(da).

Since the volume forms ρωε are unbounded in L∞(M0), they cannot weakly-∗ con-
verge, so there is no natural choice for ρ0. However, with respect to the periodic case
(cf. Section 4.2) we decide for

ρ0(ϕ) := 2π sinπϕ

� ∞
0

� 1

0

√
a2f ′(y)2 + π2 dy P(da),

which is the weak limit in L1(M0), because then the limiting metric reads

ĝ0 = ρ0L−1
0 =

(
ρ20

4π2 sin2 πϕ
0

0 4π2 sin2 πϕ

)
,

which has the same form as in the periodic case. By Remark 6.1.8 we can �nd an
isometric embedding h0 : M0 → R3 via dhᵀ0dh0 = ρ0L−1

0 , namely

h0(ϕ, θ) =

 sinπϕ sin 2πθ
sinπϕ cos 2πθ� ϕ

0

√
ρ0(t)2

4π2 sin2 πt
− 4π2 cos2 πtdt

 . (6.8)
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The submanifold N0 := h0(M0) of R3, shown in Figure 6.4, is the Mosco-limit of the
sequence (Mω

ε ) for a.e. ω ∈ Ω. As in the examples above we can pass to the reference
manifold M0 = (0, 1) × [0, 1) and �nd that the excluded poles of the manifolds Mε

coincide with the (excluded) poles of the manifold N0.

A sphere with random radial perturbations oscillating with the longitude

With the same probability space Ω and reference manifold M0 as in the previous
example, we de�ne the family Mω

ε := hωε (M0) of submanifolds of R3 via hωε : M0 →
R3,

hωε (ϕ, θ) =
(
1 + εω( θε )

)sinπϕ sin 2πθ
sinπϕ cos 2πθ

cosπϕ

 (6.9)

for ω ∈ Ω, ε ∈ { 1
k ; k ∈ N}. These manifolds are illustrated in Figure 6.5 with ψ as in

(4.7) and a χ2-distribution with 3 degrees of freedom for some values of ε.

ε↘0−−−→

ε = 1
4 ε = 1

8 ε = 1
16

Figure 6.5.: A family of spheres with random radial perturbations oscillating with the
longitude. The three pictures on the left show Mε de�ned by (6.9) with ψ
as in (4.7) and decreasing values of ε. The picture on the right shows the
limiting surface N0 de�ned via (6.10).

We �nd the density

ρωε (ϕ) = π
√
ω′( θε )2 + 4π2 sin2 πϕ

and the coe�cient �eld

Lω(ϕ, y) =

 1
π

√
ω′(y)2 + 4π2 sin2 πϕ 0

0
(

1
π

√
ω′(y)2 + 4π2 sin2 πϕ

)−1

 ,

which yields the homogenized coe�cient �eld

L0(ϕ) =

( ρ
π 0
0 π

ρ

)
with ρ =

� ∞
0

� 1

0

√
a2f ′(y)2 + 4π2 sin2 πϕdy P(da),
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where P denotes the probability measure on [0,∞) associated to the distribution of the
amplitudes. Again, the volume forms ρωε are unbounded in L∞(M0) and thus cannot
weakly-∗ converge, so there is no natural choice for ρ0 and we choose

ρ0(ϕ) := π

� ∞
0

� 1

0

√
a2f ′(y)2 + 4π2 sin2 πϕdy P(da),

such that the limiting metric can be written in the same form as in the periodic case
(cf. Section 4.2):

ĝ0 = ρ0L−1
0 =

(
π2 0

0
ρ20
π2

)
.

An isometric embedding h0 : M0 → R3 can be found via dhᵀ0dh0 = ρ0L−1
0 , namely

h0(ϕ, θ) =

 sinπϕ sin 2πθ
sinπϕ cos 2πθ� ϕ

0

√
π2 − ρ′0(t)2

4π2 dt

 . (6.10)

The submanifold N0 := h0(M0) of R3, pictured in Figure 6.5, is the Mosco-limit of
the family (Mω

ε ) for a.e. ω ∈ Ω. As in the examples above we can again pass to the
reference manifoldM0 = (0, 1)×[0, 1) and �nd that the excluded poles of the manifolds
Mε coincide with the two circles forming the boundary of the manifold N0.

6.2.3. Manifolds Locally Collapsing to Singular Points

In the examples above the degeneration of the geometry was achieved by blowing up
the volume of the manifolds and therewith |dhωε ξ| → ∞. We �nally want to present
an example of manifolds with uniformly bounded volume, where the degeneration of L
comes from collapsing to a singularity and therewith |dhωε ξ| → 0, still featuring spectral
convergence.

To begin with we �x an even (in the sense of the symmetry f(−t) = f(t)) smooth
function f : R → [0,∞), monotone decreasing on [0,∞), and with support supp f ⊆
[−1

2 ,
1
2 ]. A standard example of f is the molli�er

f(t) =

{
exp(1− 1

1−4t2
), t ∈ (−1

2 ,
1
2),

0, otherwise.
(6.11)

Now for δ ∈ (0, 1] we distort the graph of f in the way illustrated in Figure 6.6. This
is achieved by re-parametrizing the domain of f with

ψδ(t) =

{
t− (1−

√
δ)t exp(2− 2

1−(4|t|−1)2
), |t| ∈ (0, 1

2),

t, otherwise
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for δ ∈ (0, 1], which yields the smooth curve

R 3 t 7→
(
ψδ(t)
f(t)

)
∈ R2. (6.12)

Due to the symmetry of f this curve can be utilized as the generatrix of a surface of
revolution M δ := hδ(R2), given by

hδ(x1, x2) =


ψδ(
√
x2

1 + x2
2) x1√

x21+x22

ψδ(
√
x2

1 + x2
2) x2√

x21+x22

f(
√
x2

1 + x2
2)

 , (6.13)

as displayed in Figure 6.6. For convenience we denote by hδ# : R2 → R3 the periodic

continuation of hδ given by

hδ#(x1, x2) = hδ(x1 − [x1], x2 − [x2]) +

[x1]
[x2]
0

 ,

where [x] denotes the closest integer to x, i.e. x− 1
2 ≤ [x] < x+ 1

2 .

⇒ ⇒

Figure 6.6.: Illustration of the process yielding the deformed surface of revolution. The
picture to the left shows the function f de�ned in (6.11) and the intended
deformation, the picture in the middle the deformed graph given by (6.12)
for δ = 1

64 , the picture to the right the corresponding surface of revolution
M δ de�ned via (6.13).

The manifolds we want to consider are obtained by repeating the surface M δ as on a
checkerboard, but with the parameter δ being randomly chosen on each tile. To that
end we de�ne the probability space

Ω :=
{
ω : R2 → R3;ω(y) = ha([x0+y])(x0+y) ∈ R3 for some x0 ∈ [−1

2 ,
1
2)2, a ∈ (0, 1)Z×Z

}
,

on which we de�ne a probability measure by letting the o�set x0 ∈ [−1
2 ,

1
2)2 be uni-

formly distributed and the deformations a(k) ∈ (0, 1) for k ∈ Z2 be independently
uniformly distributed, too. Together with the Borel-σ-algebra and the group action
τyω := ω(·+ y) for y ∈ R2, ω ∈ Ω, we can regard Ω as a stationary, ergodic probability
space. We now simply set Mω

ε := hωε (M0) for ε > 0, ω = (x0, δ) ∈ Ω, with

hωε (x) := εω(xε ). (6.14)
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ε = 1
4 ε = 1

8 ε = 1
16 ε = 1

32 ε = 1
64

Figure 6.7.: A periodically repeated surface with random deformation parameter. The
pictures show Mε de�ned by (6.14) for decreasing values of ε. The spec-
trum of the Laplace-Beltrami operator on Mε converges to the spectrum
of the Laplace-Beltrami operator on a �at square.

See Figure 6.7 for an illustration of the de�ned manifolds.

Obviously the coe�cient �eld√
det dhωε

ᵀdhωε (dhωε
ᵀdhωε )−1 =

√
det dω(xε )ᵀdω(xε ) (dω(xε )ᵀdω(xε ))−1 = Lω(xε )

is of the desired form, and is spatially homogeneous so the continuity condition (ii) is
trivially satis�ed. To study the eigenvalues of L we note that dhωε (x) = dω(xε ) = dhδ(y)
for some y ∈ [−1

2 ,
1
2 ]2 and 0 < δ < 1, thus it is su�cient to understand the eigenvalues

of
Lδ := ρδ (dhδ

ᵀ
dhδ)−1, with ρδ :=

√
det dhδ

ᵀ
dhδ.

Due to the rotational symmetric structure of hδ we can even further restrict to exam-
ining the eigenvalues of Lδ on [0, 1

2 ]× {0}. Thus we calculate

dhδ(x1, 0) =

ψ′(x1) 0

ψ′(x1) ψ(x1)
x1

f ′(x1) 0


and

ρδ(x1, 0) = ψ(x1)
x1

√
ψ′(x1)2 + f ′(x1)2,

where we conveniently dropped the index δ of ψ. Note that for x1 = 1
4 we �nd

ψ(x1)
x1

=
√
δ and thus there is ξ ∈ R2 with |dhδ(x1, 0)ξ| → 0 as δ → 0, and we

conclude that the manifolds Mω
ε are not uniformly bi-Lipschitz di�eomorphic. (One

can easily show with the Intermediate Value Theorem, that every parametrization
yields degeneration of the di�eomorphisms.)

The eigenvalues of the coe�cient �eld

Lδ(x1, 0) = 1
ρδ

(
ψ(x1)2

x21
−ψ′(x1)ψ(x1)

x1

−ψ′(x1)ψ(x1)
x1

2ψ′(x1)2 + f ′(x1)2

)

135



6. Application to Rapidly Oscillating Riemannian Manifolds

can be calculated explicitly and are given by λδ and (λδ)
−1

with

λδ(x1, 0) =

ψ2

x21
+ 2ψ′2 + f ′2 +

√
4ψ′2 ψ

2

x21
+
(ψ2

x21
− 2ψ′2 − f ′2)

)2
2ρδ

.

Taking into account that by de�nition f ′ as well as ψ′ are uniformly bounded and ψ
x1

takes its only minimum at x1 = 1
4 , which is 4ψ(1

4) =
√
δ, one can show that

E[λmax(x1, 0)] = E[λmin(x1, 0)−1] .
� 1

0
λδ(1

4 , 0) dδ .
� 1

0

√
δ dδ,

where . means ≤ up to a constant independent on x1. Thus we are indeed in the
situation where Corollary 6.1.6 applies and yields a coe�cient �eld L0, which is spatially
homogeneous, too. Moreover, we have detL0 = 1 and for symmetry reasons we can
conclude

L0 =

(
1 0
0 1

)
.

Since ρδε is uniformly bounded in L2(M0) and by ergodicity for every cube Q ⊆ R2 we
have  

Q
ρωε (x) dx→

� 1

0

�
M0

ρδ(x) dx dδ =: ρ0 <∞ a.s.,

we get ρωε
∗
⇀ ρ0 weakly in L∞(M0) a.s. Thus we can conclude that (Mω

ε ) for a.e. ω ∈ Ω
spectral converges to (M0, ĝ0, µ̂0) with ĝ0 = ρ0L−1 = ρ01 and dµ̂0 = ρ0dx. This
manifold can be isometrically embedded as a �at square with side length ρ0.

6.3. Proofs

Proof of Proposition 6.1.3. For the sake of readability we will drop the index ω ∈ Ω in
the following where it is clear from the context.

Since the manifolds (Mε) are rapidly oscillating, they admit a common reference atlas,
so there is a countable tessellationA of the reference manifoldM0 consisting of reference
cells, such that for every A ∈ A the following holds:

� There is a unique chart (U,Ψ) of M0 such that A ⊆ U , and A := Ψ−1(A) is a
bounded Lipschitz domain in Rn.

� For every ε > 0 there is a unique chart (Uε,Ψε) of Mε with Aε := Ψ−1
ε (A) ⊆ Uε.

� For every ε > 0 we have Aε = hε(A).
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In the following we will use the notation u for the function u being pulled back to A,
by which we mean u := u◦Ψ−1 for functions u : A→ R, and u := u◦Ψ−1

ε for functions
u : Aε → R. This abuse of notation is justi�able as it will always be clear from the
context which chart is used.

Step 1: Mosco-convergence on reference cells.
For A ∈ A we de�ne the energy functional Eε(·, Aε) : L2(Aε)→ R ∪ {+∞} by

Eε(u,Aε) :=

{�
Aε
|∇gεu|2gε dµε, if u ∈ H1(Aε),

+∞, otherwise.

Similar to the beginning of the proof of Lemma 4.1.1, we �nd for u ∈ H1(Aε) due to
the rapidly oscillating structure of Mε�
Aε

|∇gεu|2gε dµε =

�
A
gε(dΨ∗ε∇u, dΨ∗ε∇u) ρε dx =

�
A
L(x, xε )∇u(x) · ∇u(x) dx+ o(ε),

which implies Eε(u,Aε) = Eε(u,A) + o(ε) with the pulled back energy functional
Eε(·, A) : L2(A)→ R ∪ {+∞}

Eε(u,A) :=

{�
A L(x, xε )∇u(x) · ∇u(x) dx, if u ∈ H1(A),

+∞, otherwise.

Note that the error term o(ε) does not interfere with Mosco-convergence. Since L is
a symmetric, positive de�nite coe�cient �eld, the assumptions (i) and (ii) put us into
the situation of Theorem 5.2.2 with p = 2, α = 1 and β = n

2 . Hence, regarding Re-
mark 5.2.3, the functionals Eε(·, A) Mosco-converge a.s. to some deterministic integral
functional E0(·, A) : L2(A)→ R ∪ {+∞} by

E0(u,A) :=

{�
AWhom(x,∇u(x)) dx, if u ∈ H1(A),

+∞, otherwise,

forWhom given by (5.10). As it is the potential of the Gamma-limit of quadratic integral
functions, Whom(x, ·) is a symmetric, positive de�nite quadratic form (see e.g. [DM93,
Theorem 22.1]), and thus for every x ∈ A we can �nd a bilinear form ax such that

Whom(x,∇u(x)) = ρ0(x)ax(dΨ∗∇u(x), dΨ∗∇u(x)).

If we set ĝ0(p) := aΨ(p) for p ∈ A, the same calculations as above yield
�
A
Whom(x,∇u(x)) dx =

�
A
|∇ĝ0u|2ĝ0 dµ̂0,

and thus E0 is the pull-back of the Dirichlet energy E0(·, A) : L2(A, ĝ0, µ̂0)→ R∪{+∞},

E0(u,A) :=

{�
A |∇ĝ0u|

2
ĝ0

dµ̂0, if u ∈ H1(A, ĝ0, µ̂0),

+∞, otherwise.
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6. Application to Rapidly Oscillating Riemannian Manifolds

In fact, the application of Theorem 5.2.2 above even guarantees for every function
u ∈ H1(A, ĝ0, µ̂0) the existence of a recovery sequence (uε), uε ∈ H1(Aε), with uε−u ∈
H1

0 (A) such that Eε(uε, Aε)→ E0(u,A) a.s.

Step 2: Construction of the limiting metric and Mosco-convergence of the manifolds.
Since the reference cells are a disjoint covering of the reference manifold M0, we can
de�ne a metric ĝ0 on the entire reference manifold M0 by letting ĝ0|A be the metric
for the reference cell A ∈ A constructed above. Moreover, from the countability of
the covering we can conclude that there is a set Ω0 ⊆ Ω of full measure, such that
(Eωε (·, Aε)) Mosco-converges to E0(·, A) for every A ∈ A and ω ∈ Ω0.

It remains to show Mosco-convergence of the entire manifolds. To that end we note
that, since A is a countable disjoint covering of M0, for every ε > 0 the collection
{Aε = hε(A);A ∈ A} is a (countable) disjoint covering of Mε and we �nd for the
Dirichlet energies on Mε and (M0, ĝ0, µ̂0)

Eε(u,Mε) =
∑
A∈A
Eε(u|Aε , Aε) and E0(u,M0) =

∑
A∈A
E0(u|A, A).

We immediately see from the Mosco-convergence on the reference cells, that for every
uε ⇀ u weakly in L2(M0, g0, µ0)

lim inf
ε↘0

Eωε (uε,M0) ≥ E0(u,M0)

for all ω ∈ Ω0. For the recovery sequence we �x u ∈ H1(M0, ĝ0, µ̂0). Then for every
A ∈ A and every ω ∈ Ω0 there is a recovery sequence (uA,ε), uA,ε ∈ H1(Aωε ), with
uA,ε−u0|A ∈ H1

0 (A) such that Eωε (uA,ε, A
ω
ε )→ E0(u,A). Thus we can de�ne functions

uε :=
∑
A∈A

uA,ε1Aωε ,

which are in H1(Mω
ε ) due to the boundary conditions of uA,ε. Now by summation

follows
Eωε (uε,M0)→ E0(u,M0)

for all ω ∈ Ω0 and the proof is complete.

Proof of Proposition 6.1.5. The following arguments hold for every ω ∈ Ω for which
the manifolds Mε Mosco-converge to (M0, ĝ0, µ̂0), so we can tacitly drop the index ω.

If we denote by Eε the Dirichlet energy on Mε, i.e.

Eε(u) =

{�
Mε

gε(∇εu,∇εu),dµε, u ∈ H1
0 (Mε),

+∞, otherwise,
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6.3. Proofs

and by Eε the pulled back energy on M0, i.e. Eε(u) = Eε(u) with u = u ◦ hε, we �nd
that

λε,1 = inf
{
Eε(u);u ∈ H1

0 (Mε), ‖u‖L2(Mε) = 1
}

= inf
{
Eε(u);u ∈ H1

0 (M0),

�
M0

|u|2ρε dµ0 = 1
}
,

and a similar representation holds for λ0,1. In other words, if we de�ne

Hε :=
{
u ∈ H1

0 (M0);

�
M0

|u|2ρε dµ0 = 1
}

and

H0 :=
{
u ∈ H1

0 (M0);

�
M0

|u|2ρ0 dµ0 = 1
}
,

we �nd that for every normalized eigenfunction uε,1 ∈ H1
0 (Mε) of −∆gε,µε to the �rst

eigenvalue λε,1 the function uε,1 = uε,1 ◦hε is a minimizer of the functional Eε in Hε. It
is therefore natural to consider Mosco-convergence of Eε on Hε in some sense, which we
will make precise in step 1 below. Since the notion of Mosco-convergence on varying
spaces is non-standard, we provide in step 2 the arguments for the convergence of
minimizers in this context, which we will use in step 3, together with the compactness
result Proposition 5.2.1, to deduce the convergence of the eigenpairs as claimed in the
de�nition of spectral convergence.

Step 1: Mosco-convergence of (Eε) on the weighted spaces.
From Proposition 6.1.3 we know that (Eε) Mosco-converges on (M0, g0, µ0) to E0

w.r.t. L2(M0, g0, µ0). This implies immediately the following lower bound condition:
For uε ∈ Hε, u0 ∈ H0 with uε ⇀ u0 weakly in L2(M0, g0, µ0), we have

lim inf
ε↘0

Eε(uε) ≥ E0(u0).

For the recovery sequence we �x u0 ∈ H0 and a sequence (vε) in H1
0 (M0, g0, µ0) with

vε → u0 strongly in L2(M0, g0, µ0) and Eε(vε)→ E0(u0). If we set

uε :=
vε�

M0
|vε|2ρε dµ0

∈ Hε,

we �nd

uε → u0 strongly in L2(M0, g0, µ0) and Eε(uε)→ E0(u0),

since ρε
∗
⇀ ρ0 and therefore

�
M0
|vε|2ρε dµ0 →

�
M0
|u0|2ρ0 dµ0 = 1.

Step 2: Convergence of minimizers.
Let (uε) be a sequence of minimizers of Eε inHε with uε ⇀ u0 weakly in L2(M0, g0, µ0).
We show that Eε(uε)→ E0(u0) and that E0(u0) ≤ E0(v) for every v ∈ H0. (Note that
we do not claim u0 ∈ H0, since we do not assume strong convergence in L2(M0).)
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6. Application to Rapidly Oscillating Riemannian Manifolds

Indeed, the arguments are similar to the standard case. We �rst �nd with the Mosco-
convergence in step 1, that

lim inf
ε↘0

Eε(uε) ≥ E0(u0).

On the other hand, there is a recovery sequence (vε) of u0 with vε ∈ Hε and Eε(vε)→
E0(u0), and since uε is a minimizer, we can estimate

lim sup
ε↘0

Eε(uε) ≤ lim
ε↘0
Eε(vε) = E0(u0).

Together we can conclude Eε(uε)→ E0(u0). It remains to show, that E0(u0) is smaller
than E0 on H0. Therefore we assume the existence of v0 ∈ H0 with E0(v0) < E0(u0).
For v0 we choose a recovery sequence (vε) with vε ∈ Hε as in step 1, and note that
since uε is a minimizer

E0(u0) = lim
ε↘0
Eε(uε) ≤ lim

ε↘0
Eε(vε) = E0(v0),

which contradicts the de�nition of v0.

Step 3: Convergence of eigenpairs.
We �rst claim that the family of �rst eigenpairs (λε,1, uε,1) as in De�nition 1.3.4 sat-
is�es λε,1 → λ0,1 and that there is a subsequence such that uε,1 → v1 strongly in
L2((Mε, µε) → (M0, µ̂0)) for some v1 ∈ H1

0 (M0, ĝ0, µ̂0) being an eigenfunction of
−∆ĝ0,µ̂0 to the eigenvalue λ0,1. We therefore note that since

�
M0
|uε,1|2ρε dµ0 = 1 and

ρε uniformly bounded in L∞(M0), the sequence (uε,1) is bounded in L2(M0, g0, µ0) and
thus provides a (not relabeled) subsequence with uε,1 ⇀ v0 weakly in L2(M0, g0, µ0).
Since, as mentioned in the beginning of the proof, uε,1 is a minimizer of Eε in Hε, this
implies with step 2

λε,1 = Eε(uε)→ Eε(v0) ≤ λ0,1.

Therewith, (uε,1) is a sequence with bounded energy, and the compactness result Propo-
sition 5.2.1 provides uε,1 → v0 strongly in L2(M0, g0, µ0). Due to the weak-∗ conver-
gence of ρε, this implies uε,1 → v1 strongly in L2((Mε, µε)→ (M0, µ̂0)). Moreover, we
have v1 ∈ H0, and can conclude

λε,1 = Eε(uε)→ Eε(v1) = λ0,1,

which means that v1 is an eigenfunction of −∆ĝ0,µ̂0 to the eigenvalue λ0,1. Note that
the convergence λε,1 → λ0,1 is independent of the subsequence and therefore holds for
the entire sequence.

We now note that this result can be inductively extended to eigenpairs (λε,k, uε,k) with
k ≥ 1 with the Rayleigh-Ritz method: Assume that for j = 1, . . . , k we have already
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shown that there is a (not relabeled) subsequence with λε,j → λ0,j and uε,j → vj
strongly in L2((Mε, µε)→ (M0, µ̂0)). Then we de�ne the spaces

Hε,k+1 :=
{
u ∈ Hε;

�
M0

uuε,jρε dµ0 = 0 for j = 1, . . . , k
}

and

H0,k+1 :=
{
u ∈ H0;

�
M0

uvjρ0 dµ0 = 0 for j = 1, . . . , k
}
,

and with the same arguments as above we can �nd a (not relabeled) subsequence with
λε,k+1 → λ0,k+1 and uε,k+1 → vk+1 strongly in L2((Mε, µε)→ (M0, µ̂0)). Here we used
that for functions uε, vε ∈ Hε with uε → u0 and vε → v0 strongly in L2(M0, g0, µ0)
from the orthogonality uε ⊥ vε in Hε follows the orthogonality u0 ⊥ v0 in H0, due to
the weak-∗ convergence of ρε.

To conclude the proof we let s ≥ 1 be the multiplicity of λ0,1. Then we can �nd a
subsequence such that for k = 1, . . . , s we have uε,k → vk strongly in L2((Mε, µε) →
(M0, µ̂0)) for some normalized eigenfunction vk of −∆ĝ0,µ̂0 to the eigenvalue λ0,1. Note
that by the argument above we can assume that vk ⊥ vj in L2(M0, ĝ0, µ̂0) for all
1 ≤ j < k ≤ s. That means that v1, . . . , vs span the eigenspace associated with λ0,1.
So for every normalized eigenfunction uε,k in this eigenspace (i.e. k = 1, . . . , s), we �nd
coe�cients α1, . . . , αs such that uε,k =

∑s
j=1 αjvk. But this implies that uε,k is the

strong L2-limit of the linear combination
∑s

j=1 αjuε,j , and since this construction can
be done with every subsequence (with di�erent coe�cients), the statement holds for
the entire sequence. As above we can inductively step up to higher orders using the
Rayleigh-Ritz method.
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Summary and Discussion

The intention of this thesis is to deepen the understanding of the asymptotic behavior
of certain classes of Riemannian manifolds by appealing to techniques from the theory
of homogenization. Especially we concentrate on Mosco- and spectral convergence
w.r.t. L2. Even though there are lots of other notions of convergence for manifolds,
Mosco- and spectral convergence focus on the intrinsic geometry of the manifolds and
might therefore be of particular interest in applications for instance in material science,
as it models properties like heat �ow on surfaces.

The main strategy of our studies is to reduce the problem of varying manifolds to
a problem of varying geometries on one reference manifold. This is achieved via bi-
Lipschitz di�eomorphisms between the manifolds. In practice these di�eomorphisms
can be interpreted as deformations of a reference manifold such as perturbations of
a surface from the equilibrium. Such situations occur for example in cellular and
molecular biology, where di�usion processes on surfaces are studied, see e.g. [AG82;
JII87; Sba+06; NRJ07].

We consider two di�erent approaches. On the one hand we assume the Lipschitz con-
stants of the di�eomorphisms to be uniformly bounded and established Mosco- and
spectral convergence of the manifolds along a subsequence. These result is based on a
H-compactness theorem for uniformly elliptic coe�cient �elds on a Riemannian man-
ifold. Besides we established this compactness statement for the utilization in the
studies of sequences of manifolds, it is of deep interest on its own. One consequence
of our H-compactness theorem is Mosco- and spectral convergence (w.r.t. L2) of the
elliptic operators associated with the coe�cient �elds, which might have fruitful appli-
cations to the studies of partial di�erential equations and their evolution on manifolds.
In the present form, our result implies only spectral convergence on manifolds with a
strictly positive Dirichlet spectrum, but we demonstrate on the torus how it might be
extended, and there might be room for more generalization.

Since the H-compactness results do not give any information about the limit (besides
ellipticity), we demonstrate how special micro structures of the manifolds resp. the
coe�cient �elds yield explicit homogenization formulas on the example of periodically
perturbed surfaces. This is a good way to deepen the understanding of the limiting
process and there is much more to learn from it, for instance in combination with nu-
merical methods. However, the strength of the theorem is to be free of any assumption
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on the structure.

Our second approach is inherently di�erent, because it is directly based on the special
structure of the manifolds. We consider sequences of randomly oscillating bi-Lipschitz
di�eomorphic manifolds, whose Lipschitz constants are not uniformly, but statistically
bounded, and establish Mosco- and, under the condition that the volume forms are
weakly-∗ convergent in L∞, spectral convergence w.r.t. L2. The assumption of weak-∗
convergence is used in the proof to ensure the space Hε to be compactly embedded
into L2(M0), so that the eigenfunctions uε strongly converge in L2(M0) and there-
fore

�
|uε|2ρε dµ0 →

�
|u0|2ρ0 dµ0. It might be possible to weaken the assumption of

weak-∗ convergence by directly thinking about the embedding of the space Hε into
L2((M0, ρεdµ0)→ (M0, ρ0dµ0)).

We also mention a variant of our result with weaker assumptions only providing Mosco-
convergence w.r.t. Lp for some 1 < p < 2, and with our method we are not able to
conclude spectral convergence. The discussions in [Fle18; FHS19] for the discrete case
give rise to the conjecture, that there are examples where the eigenfunctions concentrate
in singular points and therefore spectral convergence is indeed not possible. However,
it might be worth to study the structural di�erences behind these e�ects in terms of
volume, curvature or distortion.

The background of this approach is given by a Γ-convergence statement for integral
functionals on Rn, whose integrals satisfy non-standard growth conditions. While we
use this result on the pulled back Dirichlet energies of the manifolds, whose poten-
tials are strictly convex quadratic forms, our Γ-convergence theorem covers much more
general potentials, even of vector valued functions, which opens a wide range of appli-
cations. To continue the research in this �eld, a natural question for future work would
be the generalization to variable growth conditions (see e.g. [Jik97; CM10]), i.e.

λmin(x)( 1
C |F |

p(x) − C) ≤W (x, F ) ≤ λmax(x)C(|F |p(x) + 1).

This would have applications in the study of electrorheological or thermorheological
�uids (see e.g. [R·º00; RR01]).

The Γ-convergence theorem comes together with a corresponding compact embedding
of Lp into the space of functions with bounded energy, where the exponent p depends
on the conditions on W and the dimension. An interesting question would be if the
conditions on the exponent p could be improved by a trick found in [BCD16; Bri+17],
where the dimension is reduced via considering a radially symmetric parametrization
of the considered functions. If this idea could be adopted to our setting, such that
the application of the Gagliardo-Nirenberg-Sobolev inequality in the proof of the com-
pactness statement would happen actually on an n − 1-dimensional surface, it would
reduce the considered exponent in the moment bounds in Proposition 6.1.3 to n−1

2 .

The process of convergence in the stochastic framework is that for almost every re-
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alization the sequence of manifolds converges to the same deterministic limit. An
interesting topic would be to reformulate the results for a spatially inhomogeneous
probability measure, i.e. on every point of the reference manifold we consider a proba-
bility measure, and the sampling happens simultaneously with the convergence process.
This would include for instance an-isotropic Poisson point processes, like point pro-
cesses with constant parameter on the embedded torus (where, roughly speaking, in
coordinates the inner points have a lower density than the outer ones).

The possibility to treat vector valued functions with the Γ-convergence result gives rise
to study tangential valued functions on manifolds, like gradient �elds. In contrast, since
the consideration of tangential valued functions yields non-linear di�erential operators,
the methods of our H-compactness approach cannot be directly adopted and need to
be adjusted. A good starting point for such studies would be to consider the Bochner-
Laplace operator instead of the Laplace-Beltrami operator.

In summary, both approaches are di�erent, but have bene�cial applications. The H-
compactness theorem does not need any assumptions on the structure of the manifolds
resp. the coe�cient �elds, but does not provide any speci�c information about the limit.
It is therefore more of theoretical interest. The Γ-convergence theorem is restricted to
oscillating manifold resp. potentials, but includes an explicit formula to �nd the limit.
This should be interesting for the studies of geometric e�ects or the use in applied
science.
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