
Fakultät Mathematik und Naturwissenschaften, Institut für Wissenschaftliches Rechnen

SOFTWARE CONCEPTS AND
ALGORITHMS FOR AN EFFICIENT
AND SCALABLE PARALLEL FINITE

ELEMENT METHOD
Der Fakultät Mathematik und Naturwissenschaften

der Technischen Universität Dresden

zur

Erlangung des akademischen Grades

Dr. rer. nat.

eingereichte

Dissertation

von

Thomas Witkowski

geboren am

24. Mai 1982 in Loslau/Polen.

Die Dissertation wurde in der Zeit von 07/2007 bis 12/2012

am Institut für Wissenschaftliches Rechnen angefertigt.

Tag der Einreichung: ...

Tag der Verteidigung: ...

Gutachter: Prof. Dr. rer. nat. habil. A. Voigt

Technische Universität Dresden

...

...

Contents

1 Introduction 5
1.1 Overview . 6
1.2 Technical notes . 6

2 Adaptive meshes for finite element method 9
2.1 Data structures of adaptive meshes . 9
2.2 Error estimation and adaptive strategies . 10
2.3 Mesh structure codes . 11

3 Scalable parallelization 15
3.1 Formal definitions . 18
3.2 Distributed meshes . 20

3.2.1 Mesh structure codes for parallel mesh adaptivity 23
3.2.2 Mesh partitioning and mesh distribution 25
3.2.3 Parallel DOF mapping . 26
3.2.4 E�ciency and parallel scaling . 29
3.2.5 Limitations of coarse element based partitioning 32

3.3 Linear solver methods . 33
3.4 FETI-DP . 35

3.4.1 Implementation issues . 39
3.4.2 Numerical results . 42

3.5 Extensions of the standard FETI-DP . 48
3.5.1 Inexact FETI-DP . 48
3.5.2 Multilevel FETI-DP . 50

3.6 A Navier-Stokes solver . 57
3.6.1 Implementation issues . 59
3.6.2 Numerical results . 60
3.6.3 Di�use domain approach . 61

3.7 Software concepts . 62

4 Multi-mesh method for Lagrange finite elements 69
4.1 Virtual mesh assembling . 70

4.1.1 Coupling terms in systems of PDEs 70
4.1.2 Creating a virtual mesh . 72
4.1.3 Assembling element matrices . 73
4.1.4 Calculation of transformation matrices 74
4.1.5 Implementation issues . 75

3

Contents

4.2 Numerical results . 76
4.2.1 Dendritic growth . 76
4.2.2 Coarsening . 79
4.2.3 Fluid dynamics . 82

5 Conclusion and outlook 85

Bibliography 87

4

1 Introduction

The finite element method (FEM) is one of the most used methods for the numerical
solution of partial di�erential equations (PDE). Over the last decades many codes and
software packages have been developed to solve specific PDEs, e.g. for the Navier Stokes,
the Helmholtz or the Maxwell equation. These codes are highly specialized and allow to
e�ciently solve the corresponding PDE. But usually they cannot easily be used to solve
another PDE. These highly specialized and very e�cient codes are contrasted with general
purpose finite element toolboxes which can be used to solve some class of PDEs. General
purpose finite element toolboxes become more and more important for a large part of
the science community, as the models to be solved include more and more physics from
di�erent areas of research. The need for these general PDE solver methods is emphasized
by the success of widely used general software packages for the finite element method like
deal.II [17, 16], FEniCS/DOLFIN [83, 84], DUNE [18, 33], Hermes [119], libMesh [69] or
AMDiS [124].

In most cases, solving a PDE with a general finite element toolbox requires more
computing time compared to a highly specialized software package. Modern programming
paradigms, for example meta programming [11, 51, 57], and new compiler techniques
allow to shrink this gap. Furthermore, as computing time becomes cheaper and available
computing systems become faster, the development time for a PDE solver becomes more
costly and more important than the pure runtime of a code. These are the main reasons
why we see a trend over the years towards using general finite element packages in the
scientific community. In this work we consider software concepts and numerical algorithms
for their e�cient implementation. Many di�erent approaches are possible, but all of them
can be assigned to one of the following three categories:

• increasing sequential performance of the code by using programming techniques,
modern compilers and code optimization to make best use of the available hardware
resource, i.e. CPU and memory

• parallelization approaches to make use of a multitude of computing nodes

• providing broad support for di�erent discretization schemes such that the user can
choose the optimal one; this may include, for example, the support of di�erent mesh
structures or di�erent finite elements

In this thesis, we do not consider the first category but instead focus on the latter two.
Parallelization of finite element software, is a very broad research field. Firstly, there are
many di�erent parallel systems: multi-core CPUs, large HPC systems with several hundreds
of thousands of cores or GPUs. One may consider parallelization techniques that are special
to one of these architectures, or consider some general approaches. Furthermore, the finite

5

1 Introduction

element method is not only a single algorithm, but it is formed from a set of numerical
algorithms which must be considered independently of each other for parallelization. In
this work, we present software concepts and algorithms for parallel distributed meshes that
allow to exchange information with a solver for the resulting systems of linear equations.
This allows to implement solvers, either specific to some PDE or in a black box approach,
that are e�cient and scalable for a large number of cores. To exemplify the presented
concepts, we derive and implement a new multilevel FETI-DP method. For a broad range
of PDEs, this solver method is not only optimal from a mathematical, but also from a
computational point of view. This means, that this method reliably scales to a large
number of processors.

Independently of parallelization, and in consideration of the last category in the list
above, we present the application of a multi-mesh finite element method for discretization
of systems of PDEs with Lagrange finite elements of arbitrary degree. When a system of
PDEs consists of multiple variables with di�erent solution singularities, using independently
refined meshes for the di�erent components can be superior to using a single mesh for all
of them.

Both, the presented parallelization concepts and the multi-mesh method are implemented
in the finite element toolbox AMDiS (adaptive multidimensional simulations) [124, 123].
AMDiS is an open source C++ library which supports the solution of a large class of
stationary and instationary systems of PDEs.

1.1 Overview
Chapter 2 gives a very quick and broad introduction to adaptive meshes. It introduces all
the terminology that is used later for defining parallel distributed meshes. Furthermore,
the concept of mesh structure and substructure codes is introduced, which is of high
importance for the e�cient implementation of the software concepts and algorithms for
distributed meshes, that are described in Chapter 3. There we show that the link between
distributed meshes and the solver method for the resulting systems of linear equations is
necessary to eventually develop an e�cient and scalable solver method. We present an
e�cient method to establish this link. The concepts are exemplified by numerical results of
two totally di�erent solver methods: an e�cient implementation of the FETI-DP method
is presented which can serve as a block box solver in finite element codes, and we present
the implementation of a parallel solver for the 3D instationary Navier-Stokes equation. In
Chapter 4, a multi-mesh method is presented which allows to use di�erent mesh refinements
for di�erent components of a PDE. Two examples are presented where the multi-mesh
method leads to a much faster solution procedure than a standard single-mesh method.
Finally, Chapter 5 summarizes the results and gives an outlook for further research of the
topics presented in this thesis.

1.2 Technical notes
The benchmarks that are used to show e�ciency of the software concepts, algorithms and
their implementation are always more or less synthetic. We tried to make them not too

6

1.2 Technical notes

simple to make sure that they are representative for real applications. But eventually, they
have to be chosen such that they directly show e�ciency and scaling of the implementation
of some basic algorithms. As all these algorithms are implemented in the finite element
toolbox AMDiS, they are also used to solve real problems from di�erent research areas.
The author of this thesis made use of the presented methods in the following works: [9],
[6], [129].

This work addresses both, readers who are interested in e�cient and scalable finite
element methods, and users of the finite element toolbox AMDiS. The latter are usually
more interested in technical details, which are also important for an e�cient implementation
but are not necessary for the reader interested in a general concept description. To cope
with both, technical details are pushed to the end of each section and are illustrated using
algorithm descriptions in pseudo code. In general, their understanding is not necessary
to understand the general concepts. Though AMDiS is implemented in C++, non of the
presented data structures or algorithms are limited to a specific imperative programming
language. To simplify the notation, all indices in figures, definitions and algorithms start
with 1. This di�ers from the 0-starting indexing of arrays in C++.

The landscape of today’s HPC (high performance computing) systems is very hetero-
geneous. Most systems contain computing nodes consisting of multiple CPUs which by
themselves include multiple cores. There are computing nodes which additionally con-
tain GPUs that consist of several hundreds or even thousands of relatively simple cores.
Our presentation of software concepts and algorithms is not specific to some hardware
configuration. Therefore, we settle with using either processor or core to speak about the
smallest computing unit that processes on one subdomain. The term rank denotes a unique
identifier, i.e. an integer value, of each processor participating in a computation. The
presented software concepts and their implementation are based on distributed memory
parallelization and we use MPI (message passing interface) [106] to implement the required
communication between processors. Even though the MPI standard is defined such that it
allows a specific MPI library to implement nearly all communication patterns in a scalable
way, most MPI implementations lack scalability for some MPI commands for large numbers
of processors. In [12], these e�ects are analyzed and it is discussed which scalability we can
theoretically expect from a best possible MPI implementation. To understand scalability
behavior on very large HPC systems, one has to also consider system noise, which can
influence parallel scalability in a negative way. See [53], and reference therein, for a detailed
analysis.

All computations presented here are performed on the HPC system JUROPA at the
Jülich Supercomputing Centre (Germany). This system consists of 3,288 computing nodes,
each equipped with two Intel Xeon X5570 quad-core processors and 24 GB memory. Overall,
there are 26,304 cores available. The nodes are connected with an Infiniband QDR HCA
network.

7

2 Adaptive meshes for finite element
method

Using adaptively refined meshes is one of the key concepts for an e�cient finite element
method, and is used by most finite element codes today. The general idea is that the
geometry, on which a PDE should be calculated, can be su�ciently represented by a coarse
mesh, but must be refined in some way to solve the PDE with a discretization error below
a given error bound. Especially when solving PDEs, that describe physical phenomena on
multiple space scales, using uniformly refined meshes is not possible anymore. To control
mesh adaptivity, some method is required to choose elements which should be refined.
Therefore, the roots of developing adaptive mesh refinement methods are closely related to
the development of a-posteriori error estimators, which make it possible to estimate the
discretization error element wise and thus can be used to control mesh adaptivity. The
history goes back to the late seventies and early eighties of the last century, see for example
the pioneering work [4, 67, 32]. Today, mesh adaptivity in context of the finite element
method is covered by many text books.

Section 2.1 gives a brief overview about data structures and algorithms which are used to
store and work on adaptively refined meshes. This description is mainly based on [102, 123].
Section 2.3 first gives an introduction into mesh structure codes, which allow for a very
e�cient representation of the mesh structure. We then extend mesh structure codes to
mesh substructure codes and to mesh value codes. Both are concepts which are elementary
for our e�cient and scalable implementation of distributed meshes, see Section 3.2.

2.1 Data structures of adaptive meshes
The meshes we consider in this work consist of triangles in 2D and tetrahedrons in 3D. Even
though we restrict all of the algorithms in this work to these mesh elements, by appropriate
changes of the underlying data structures all of them can be used also for rectangles and
cuboids, which are also very popular for mesh discretization. For refining triangles and
tetrahedrons, two di�erent methods are widely used: bisectioning and red-green refinement.
In this work, we restrict to the first one, as its implementation and analysis is simpler
without having considerable disadvantages. More information about biscectioning in 2D
and 3D can be found in [115]. Red-green refinement is considered, e.g., in [122].

When using bisectioning on an element T , we call the newly created elements T1 and
T2 the left and right children of T . Correspondingly, T is called the parent of T1 and
T2. To make the definition explicit, we have to define left and right children of triangles
and tetrahedrons. For this, we first need to define a local numbering of vertices. For
triangles, see also Figure 2.1, we start with the longest edge of a triangle and number the
vertices counter clockwise. When a triangle is bisectioned, the new vertex is created as the

9

2 Adaptive meshes for finite element method

1

2

3

4

(a) (b) (c)

0 1

2

left right

(d)

Figure 2.1: Basic concepts of adaptively refined meshes: (a) Coarse mesh consisting of four
triangles. (b) Refined mesh. (c) Binary tree representing refinement structure
of coarse mesh element 1. (d) Local numbering of vertex nodes of a triangle
and the definition of left and right child.

mid-point of the line connecting local vertices 0 and 1 of the parent element. The newly
created triangle, which contains the local vertex 0 of its parent, is called the left child,
and the other one the right child, correspondingly. For the 3D case, the definition of left
and right children is similar but requires for some more technical definition. We refer the
interested reader to [102, Section 1.1.1].

The refinement structure of one coarse mesh element is stored within one binary tree.
The refinement structure of a whole mesh is thus represented by a set of binary trees.
See Figure 2.1 for an illustration of a refined 2D mesh and a binary tree representing the
refinement structure of one coarse element. The level of a mesh element is equivalent to
the depth of the corresponding node in the binary tree. Thus, coarse mesh elements have
level 0. Furthermore, the union of all mesh elements, which are represented by leaf nodes
of the binary trees, is named leaf meshes and its elements are named leaf elements.

Most of the element data are stored only on the level of coarse mesh elements, for
example element coordinates. To get the information for an arbitrary element of the mesh,
the concept of mesh traverse is introduced. The mesh traverse object allows to traverse a
mesh in a predefined way and to calculate the required data on all traversed mesh elements.
The mesh can be traversed either in pre-order (parent - left child - right child), post-order
(left child - right child - parent) or in-order (left child - parent - right child) up to a given
mesh level.

2.2 Error estimation and adaptive strategies
We consider an a posterior residual based error estimator as, for example, described by
Verfürth [121] for general non-linear elliptic PDEs. If T is a partition of the domain into
simplices, the error estimator defines for each element T œ T an indicator, depending on
the finite element solution u

h

, by

÷
T

(u
h

) = C
o

R
T

(u
h

) + C1
ÿ

EµT

J
E

(u
h

) (2.1)

10

2.3 Mesh structure codes

where R
T

is the element residual on element T , and J
E

is the jump residual, defined on an
edge E. C0 and C1 are constants used to adjust the indicator. The global error estimation
of a finite element solution is then the sum of the local error indicators

÷(u
h

) =
A

ÿ

T œT
÷

T

(u
h

)p

B1/p

with p Ø 1 (2.2)

If an error tolerance, tol, for the solution u
h

is given, and ÷(u
h

) > tol, the mesh must be
refined in some way in order to reduce the error. We make use of the equidistribution
strategy, as described by Eriksson and Johnson [40]. The basis for this strategy is the idea
that the error is assumed to be equidistributed over all elements. If the partition consists
of n elements, the element error estimates should fulfill

÷
T

(u
h

) ¥ tol

n1/p

© ÷
eq

(u
h

) (2.3)

Mesh adaption using the equidistribution strategy is controlled with the two parameters
◊

R

œ (0, 1) and ◊
C

œ (0, 1). An element is refined if ÷
T

(u
h

) > ◊
R

÷
eq

(u
h

), and the element
is coarsened if ÷

T

(u
h

) Æ ◊
C

÷
eq

(u
h

). The parameter ◊
R

is usually chosen to be close to 1,
and ◊

C

to be close to 0, respectively.
Thus for scalar PDEs, one needs to define constants for error estimation and mesh

adaption, and to adjust both for a specific equation. If a single mesh is used to resolve all
variables of a system of PDEs, multiple error estimators and di�erent adaption strategies
must be introduced. In this case, an element is refined if at least one strategy has marked
the element to be refined. An element is coarsened if all strategies have marked it to be
coarsened. Thus, the number of constants to be defined increases with the number of
variables of the system to be solved. The situation is quite similar in the case of a multi-mesh
method, which we introduce in Chapter 4. When using multiple, independently refined
meshes an error estimator must be defined for each mesh to be adapted. Furthermore, it is
possible to have di�erent adaption strategies for the di�erent meshes. As for the scalar
case, the constants C0 and C1 must be defined for each component independently. In
multiphysics problems the error tolerance and the error estimating constants may represent
some meaningful parameters, making it somehow intuitive to find appropriate values.
However, when the systems of PDEs arise from operator splitting of some higher order
PDE, the specific variables may not have a physical significance. The constants for error
estimation are especially arbitrary, making it hard to derive useful values. Determining
values for the error estimation constants in the context of dendritic growth is discussed in
[35, 95].

2.3 Mesh structure codes
The usage of mesh structure codes for e�cient mesh representation goes back to [97]. The
main idea is to traverse the binary trees, which represent the refinement structure of a
mesh, in a unique way, e.g. with the pre-order traverse, and to denote each leaf element
by 0 and a non-leaf element, which is further refined, by 1. Thus, a sequence of 0 and 1
uniquely represents the refinement structure of a coarse mesh element. Figure 2.2 shows

11

2 Adaptive meshes for finite element method

6 7

4
5

2 3

1
1

2 3

4 5

6 7

refined element

leaf element

pre-order traverse:
1-2-4-5-6-7-3

mesh structure code:
1-1-0-1-0-0-0

Figure 2.2: Mesh structure code of an adaptively refined triangle

the construction of a binary code for a refined triangle. Here, the code 1101000 (decimal
value 104) can be used to reconstruct the refinement structure of this element. If the code
becomes larger than the word size of the system, which is typically 64 or 128 bit, vectors
of decimal values are used to represent a mesh structure code.

We extend the concept of mesh structure codes to substructure codes. A substructure
code does not store the refinement structure of a coarse mesh element but only of one of its
substructures, i.e. an edge of a triangle, or an edge or a face of a tetrahedron. Substructure
codes are used to check if two elements have the same refinement structure along their
substructures, i.e., if they fit together on interior boundaries between two subdomains. Mesh
structure codes are not appropriate for this purpose as they contain much more information
leading to larger codes that must be communicated between processors. Furthermore, they
do not allow for a simple and fast check, if two elements have the same refinement structure
along an element substructure.

The creation of substructure codes is based on a modified pre-order traverse algo-
rithm, which is reduced to work only on one substructure of an element. The function
preOrderTraverse, see Algorithm 1, starts on a coarse mesh element and traverses re-
cursively only the children that intersect with a given substructure of the coarse mesh
element. In the algorithm, the += operator applied on substructure codes is not defined
in the standard numerical way, but instead it appends a 0 or 1 to the substructure code.
Furthermore, this function can create the substructure code in reverse mode. In that
case, the left and right children of elements are swapped. This is required, as the left
and right children on two neighbouring coarse mesh elements may not correspond to each
other. In this case, to allow for a very fast check whether the refinement structure on
two neighbouring elements fit together, the substructure code of one of these coarse mesh
elements must be created in reverse mode. This scenario is shown in Figure 2.3, where

12

2.3 Mesh structure codes

Algorithm 1: preOrderTraverse(el, t, r): Pre-order traverse on substructures
input : element el, substructure t, reverse mode r
output : substructure code c
if isLeaf(el) then

c += 0
else

c += 1
elLeft = getLeftChild(el)
elRight = getRightChild(el)
if r then

swap(elLeft, elRight)
if contains(elLeft, t) then

c += preOrderTraverse(elLeft, t, r)
if contains(elRight, t) then

c += preOrderTraverse(elRight, t, r)

end

substructure codes and the reverse codes are created along the refinement edge of two
triangles.

Lastly, we introduce the concept of mesh value codes. Mesh structure codes and
substructure codes allow to reproduce the refinement structure of either a whole mesh,
a coarse mesh element or the refinement structure along an element’s substructure. For
mesh distribution, see Chapter 3.2.2, we need some functionality to create data structures
which allow to reconstruct not only the refinement structure of a coarse mesh element, but
also all value vectors which are defined on them. This is provided by mesh value codes.
Each mesh value code corresponds to one mesh structure code and contains as many value
entries as the mesh structure code contains 1-bits plus a constant o�set. As each 1 of the
mesh structure code corresponds to a bisectioning of an element, it also corresponds to
exactly one mesh vertex. Therefore, if an element refinement structure is reconstructed
using a mesh structure code, also the values defined on this element can be reconstructed
using a mesh value code. The constant o�set for the size of mesh value codes is 3 in 2D
and 4 in 3D and corresponds to the vertices of the coarse mesh elements, whose value must
also be set but which are not created by bisectioning of some coarser element.

13

2 Adaptive meshes for finite element method

0 100 1100 111000 1111000
0 100 1010 101100 1011010

0 100 1100 111000 1111000
0 100 1010 101100 1011010

code:
r-code:

code:
r-code:

T1:

T2:

Figure 2.3: Creating a substructure code and the corresponding reverse code for the longest
edge of one triangle. The underlined part of a code represents its new part
caused by one refinement, and replaces one 0 in the code before.

14

3 Scalable parallelization

The finite element method (FEM) is a widely used scheme for the numerical solution of
partial di�erential equations (PDEs). It is not only one algorithm, but instead it is an
accumulation of several sub-methods which all require, directly or indirectly, the following
input data: a PDE with some boundary conditions, appropriate basis functions, and a
geometry. In this work we assume that the geometry can be su�ciently well represented
by a coarse mesh, but must be refined in some way to solve the PDE with a discretization
error below a given error bound. In this work, we use meshes consisting of triangles and
tetrahedron. These are refined by bisectioning, i.e. an element is successively split into
two smaller elements. Figure 3.1 illustrates the finite element method with local mesh
adaptivity (h-FEM). In the first step, which is called the assembler, a local integration
process creates a matrix-vector representation of the discretized PDE on the given mesh
and using the predefined basis functions. An appropriate solver method is used to solve
the large and sparse system of linear equations. For many PDEs a local mesh refinement,
which leads to a satisfactory discretization error, is not known a priori. In this case, an
error estimator is used to estimate the error of the discrete solution. For the case that the
overall error estimate is too large, a marker strategy is used to identify some parts of the
mesh to be adapted in order to decrease the estimated error. This loop is continued until
the error estimate drops below a given threshold. Note that besides h-FEM, there also
exist other finite element methods, like e.g., hp-FEM [5] or extended finite element method
(XFEM) [19], which also fit with small modifications into this abstract illustration.

To make best use of the available computing platforms, parallelization of the finite
element method become quite popular in the eighties [93, 78]. Many of the very first
approaches are based on shared memory systems, where all processors have direct access to
the same memory. Using a shared memory parallelization approach, all algorithms of the
finite element method can work in parallel on the same input data to speed up the overall
computation time. Today’s high performance systems consist of several hundred thousands
of processors and are mostly based on the concept of distributed memory: all processors
can communicate among each other via some message protocol, but each processor cannot
directly access the memory of all other processors. These systems allow to solve large
problems that do not fit into the memory of one processor, but accordingly they lead to
the new challenge to partition and distribute the input data and to redefine the algorithms
of the finite element method to work on distributed data. Distributing data in the finite
element method leads to two independent subproblems: providing a distributed mesh,
and providing distributed matrices and vectors. In this work, we present concepts and
algorithms for the former one. Parallelization of data structures and algorithms from linear
algebra is considered, e.g., in [46]. For the algorithmic parallelization of the finite element
method we must further distinguish between the di�erent sub-methods: assembler, error
estimator and marker strategy are quite simple to parallelize, as all of them are mostly

15

3 Scalable parallelization

„0

„2

„1

≠�u = f

? =assembler

solver

error estimator

marker
mesh adaptivity

Figure 3.1: Sketch of the finite element method with local mesh adaptivity (h-FEM). The
dashed line, representing the information flow from the mesh to the linear
solver, is optional.

local mesh procedures and require only little communication between processors. For more
information on this topic, we refer the reader to [15, 69]. The situation is totally di�erent
for solving linear system of equations, as the local solution of one processor is potentially
governed by the data of all other processors. During the last decades, many sequential
linear solver methods have been redefined for parallel computing, such as iterative Krylov
subspace methods [58, 104, 98, 49], e.g. CG or GMRES, with di�erent kinds of algebraic
and geometric preconditioners, or multigrid methods [116]. Another approach for solving
linear systems in parallel are domain decomposition methods, which are treated in Section
3.4. It is also quite common to combine di�erent of these approaches to design an e�cient
solution procedure. E�ciency of parallel solver methods is defined by three points:

• strong parallel scaling: the problem size is fixed and the number of processors varies.
A perfect scaling solver should halve the solving time when the number of processors
is doubled.

• weak parallel scaling: the problem size per processor is fixed, thus when the number
of processors is increased, also the overall problem size grows accordingly. In this
case, a perfect scaling solver should keep the solving time constant.

• numerical scaling: the influence of discretization parameters, e.g. mesh size or some
physical constants within the PDE, on the solver time should be as small as possible.

Many solver methods, which are able to show scalability to large number of processors,
have one thing in common: they do not work on an algebraic level only but make use of some
geometrical information of the mesh. For example, geometric multigrid methods require
information about the hierarchical decomposition of the mesh, iterative substructuring
methods require geometrical information of the degree of freedoms (DOFs) that composite
the interior boundaries between subdomains. Therefore, we do not only present e�cient

16

parallel algorithms and data structures for distributed meshes, but we also consider the link
to solve large systems of linear equations. Thereby, we do not restrict ourselves to a specific
linear solver, but instead we present a framework that allows for the implementation of a
large class of highly scalable solver methods.

During the last ten years, several finite element packages have been created by di�erent
research groups which also allow to solve a large class of PDEs on distributed HPC systems.
We shortly compare these packages and their software concepts with our implementation in
the finite element toolbox AMDiS. The finite element package deal.II [17, 16] allows to solve
a very large class of PDEs. It’s mesh is based on the mesh library p4est [28] and supports
distributed adaptive mesh consisting of rectangles and cubes. Parallelization of deal.II has
been considered in [15]. Strong scaling at solving the Laplace equation in 2D has been
shown up to 16,384 processors. For weak scaling, a thermal convection equation in a 2D
domain was solved with up to 512 processors. In both numerical examples, mesh adaptivity
is used. Linear solvers are not considered in a special way in this work. DUNE (Distributed
and Unified Numerics Environment) [18] has the goal to abstract all parts of the numerical
solving of PDEs. Thus, it is not restricted to a discretization scheme, and besides finite
element methods also finite volume and finite di�erence methods can be used. Furthermore,
it has an abstract mesh interface which allows to use any mesh library as long as it provides
an implementation to this interface. In [33] parallelization issues are considered and some
benchmarks with scaling up to 512 processors are presented. The FEniCS project [83] is a
collection of several software components with the common goal to automate the solution
of di�erential equations. More information about various aspects of this very interesting
and promising project can by found e.g. in [84, 85]. An example for a parallelized finite
element code based on FEniCS is Unicorn [55, 54], an adaptive finite element solver for
fluid and structure mechanics. Parallelization issues of Unicorn are considered in [54, 59].
Some nontrivial scaling studies for 3D flow up to 8,192 processors are presented in [54].
Software concepts and algorithms for parallelization of Unicorn are described in more detail
in [59]. As in our work, Unicorn’s meshes consist of triangles and tetrahedrons. It allows
for distributed meshes, but the parallel mesh adaptivity algorithm has some influence on
the mesh quality. This is not the case for our concepts and implementation of distributed
meshes, where the mesh structure is independent of the number of subdomains. The
scaling shown in [59] up to 1,024 processors is su�cient but it is questionable whether this
approach will scale for large number of processors. In particular, no special parallel linear
solver is considered, but instead standard approaches of using for example Krylov subspace
methods with block Jacobi and local ILU(0) preconditioners are used, which are known
not to scale for large number of processors.

Section 3.1 introduces some terminology and gives some general formal definition of the
concepts, which are required in the remaining part of this chapter. Section 3.2 describes
software concepts and algorithms for e�cient and scalable implementation of distributed
meshes. Hereby, we already focus on providing mesh dependent data, which may be
requested by a parallel solver method. In Section 3.3, we give a brief overview about
parallel linear solver methods. To exemplify the software concepts, we show that they
allow to implement a large class of di�erent solver methods. Thereby, we present the
implementation of a black box solver in Section 3.4 and of a highly specialized solver for
the instationary Navier-Stokes equation in Section 3.6. In Section 3.4, we give first a brief

17

3 Scalable parallelization

e1

e2�1 �2

�3

v1
v2

v3

I
ij

i = 1 i = 2 i = 3
j = 1 - e2,v2,v3 e1,v1,v2
j = 2 e2,v2,v3 - v2
j = 3 e1,v1,v2 v2 -

W (·) degree(·) owner(·)
e1 1,3 2 3
e2 1,2 2 2
v1 1,3 2 3
v2 1,2,3 3 3
v3 1,2 2 2

a) b)

c)

Figure 3.2: a) Non-overlapping domain decomposition in 2D with three subdomains b)
interior subdomain decomposition c) definition of the degree and ownership on
the interior boundary segments

overview on domain decomposition methods and present an e�cient implementation of the
FETI-DP method. To our best knowledge, this is the first presentation of the FETI-DP
method not restricted to the solution of one specific PDE, but which considers this method
for the solution of a broad range of PDEs. Even though the FETI-DP method has nearly
optimal properties from a mathematical point of view, we show absence of computational
scaling for large number of processors. In Section 3.5, we present two methods to overcome
two computational drawbacks of the FETI-DP method. First, inexact FETI-DP methods
are introduces, which allow to replace the exact subdomain solver by inexact ones. This
introduction is mostly based on the work [71]. To deal with the distributed coarse space
matrix, which sparsity pattern is mostly responsible for the breakdown of scalability for
large number of cores, we introduce a new approach of a multilevel FETI-DP method. To
certify that our approach can also be used for problem specific solver methods, Section 3.6
presents an implementation of a state-of-the-art iterative solver method for the instationary
Navier-Stokes equation. Finally, Section 3.7 shows implementation specific problems of the
concepts presented in this chapter. Hereby, we focus on software design concepts, which
are necessary to implement a modular finite element toolbox.

3.1 Formal definitions
For the presentation of our parallel algorithms, data structures and software concepts,
we need some formal definition: In what follows, � µ Rd with d = 2 or d = 3, is an
arbitrary open domain and ˆ� denotes its boundary. The boundary is divided into a
Dirichlet boundary part �

D

and a Neumann boundary part �
N

, with �
D

fi �
N

= ˆ� and
�

D

fl �
N

= ÿ. We do not consider Robin and periodic boundary conditions, as they can be

18

3.1 Formal definitions

handled in the same way. In this work, we restrict to non-overlapping decompositions.
Definition 1 A set �1, . . . , �

p

of open subregions of � is a non-overlapping decomposition
of the domain �, if � = fip

i=1�
i

and �
i

fl �
j

= ÿ for all 1 Æ i < j Æ p.
Each subdomain is handled by exactly one processor, and each processor handles exactly
one subdomain. Non-overlapping domain decomposition naturally leads to the splitting of
each subdomain into it’s interior part and interior boundaries, i.e., element segments which
intersect with other subdomain boundaries. As all data is communicated along interior
boundaries, they play a central role in all parallelization concepts. We define interior
boundaries as follows
Definition 2 The boundary of a subdomain �

i

is denoted by ˆ�
i

= �
Di fi �

Ni fi I
i

with
�

Di µ �
D

, �
Ni µ �

N

and I
i

is called the interior boundary of subdomain i. Furthermore,
I

ij

= I
i

flI
j

denotes the interior boundary between the subdomains i and j and I =
t

p

i=1 I
i

is the set of all interior boundaries in �. In many situations we are interested in the
decomposition of the sets of interior boundaries into sets of vertices, edges, and faces

I
i

= IV

i

fi IE

i

fi IF

i

and I
ij

= IV

ij

fi IE

ij

fi IF

ij

where IF

i

and IF

ij

are empty in 2D.
Figure 3.2 illustrates this concept on a simple 2D example with three subdomains. Note
that also subdomain 1 and 2 share an interior boundary that consists of one vertex. Based
on the concept of interior boundaries, we define a neighborhood relation in the natural
way as
Definition 3 Subdomain j is called to be a neighbour of subdomain i if I

ij

”= ÿ. The set
of neighbors for a subdomain i is defined by

neigh
i

= {j | 1 Æ j Æ p, j ”= i, I
ij

”= ÿ}

For both, formal definitions and the implementation, it is required to identify for every
substructure of all coarse mesh elements the subdomains which contain this substructure.
Therefore, we establish the following auxiliary definitions, which are exemplified in Figure
3.2.
Definition 4 Let b be an arbitrary vertex, edge or face of a coarse mesh element in �.
We define W(b) to be an index set defined as

W(b) = {i | b œ (�
i

fi I
i

)}

and the degree of b is defined by

degree(b) = |W(b)|

As two or more subdomains may intersect at some interior boundary segments, we have to
define ownership for these segments.
Definition 5 We call a subdomain i to be the owner of a boundary segment b œ I

i

, if there
is no other subdomain with a higher index number that contains this boundary segment:

owner(b) = {i œ W(b) | ’j œ W(b) : j ”= i ∆ j < i}

Figure 3.2 exemplifies this concept.

19

3 Scalable parallelization

Partitioner Distributor DOF communicator

Mesh El object DB IB handler Parallel DOF map Solver

Boundary DOF info

rebuild after mesh repartition rebuild after mesh adaptivity

Figure 3.3: Information flow between the mesh data structure and the parallel solver for
systems of linear equations.

3.2 Distributed meshes
In the introduction of this chapter, we have identified the need for an appropriate general
information flow between the mesh structure and the solver method. The following mesh
information is required by most parallel solver methods:

• hierarchical decomposition of the mesh: mostly used by multigrid methods to project
the solution (or the residual) between the fine and some coarse mesh

• communication pattern: most parallel solvers iterate between some local and some
global solution procedures, thus it must be known which subdomain DOFs are shared
with some other subdomains and must be therefore communicated/synchronized

• restricted sets of DOFs: especially in iterative substructuring methods [91] it is
common to split the set of DOFs in multiple subsets and to define continuous global
indices for these subsets. For example, this can be the set of all DOFs which relate
to cross points of interior boundaries (see Section 3.2.3).

• geometrical information of interior boundary DOFs: defining subsets of DOFs is
usually done based on geometrical information. For example, the FETI-DP method,
which we describe in Section 3.4 to exemplify the general concepts presented in this
section, must distinguish between DOFs that belong to vertices, edges and faces of
the coarse mesh elements.

Only the first point of this list is also used by sequential solvers, and is thus not specific
to the parallel case. Mesh information described by the other three points should be
created only on demand when requested by a specific linear solver method. Figure 3.3
shows a general overview of all concepts that make it possible to create exactly the data
required by some specific linear solver method. The notation directly corresponds to the
class structure described in Section 3.7. First, the initial coarse mesh must be passed
to the mesh partitioner, which is responsible for assigning each coarse mesh element to

20

3.2 Distributed meshes

one processor. This information is used by the mesh distributor to move the coarse mesh
elements, together with their adaptive refinement structure and all values which are defined
on it, to the corresponding processors.

As indicated by Definition 5, not only an assignment of mesh elements to processors is
required, but also the ownership definition for vertices, edges and faces of all coarse mesh
elements. These are computed by the element object database (EL object DB), which can
be used to query for the following questions: given a geometrical entity, i.e., either a vertex,
edge or face, of a specific element,

• what are all elements which contain this entity,

• which and how many processors contain this entity (Definition 4)

• which processor is the owner of this entity (Definition 5).

Thus, the element object database takes the information of the mesh partitioner and breaks
it down to the level of vertices, edges and faces. This database works only on the level of
the coarse mesh and no information is stored about more refined elements. Furthermore,
the database is stored on all processors for the whole initial mesh. We refer to Section
3.2.5 for a discussion of this approach and how to circumvent its limitations.

The element object database is mainly used to initialize the interior boundary handler
(IB handler), which stores on each processor all the geometric entities that form its
interior boundaries with other subdomains, see Figure 3.2. These boundary elements
are subdivided into two sets: the boundary elements that are owned by the processor
and boundary elements that are part of the processor’s subdomain but owned by another
processor. All this information is again stored on the level of the coarse mesh and thus do not
change due to local mesh adaptivity. They must be rebuild only after mesh redistribution.
To establish the interior boundary handler, all processors traverse all elements of the coarse
mesh and pick up all their entities which are part of an interior boundary, i.e. degree(·) > 1,
and which are owned by the processor, see Algorithm 2. Each processor then sends its list
of own boundary segments to all neighbouring processors, which share the same interior
boundary. This ensures, that the list of boundary segments is the same, and especially in
the same order, on all processors that share this interior boundary.

Up to this point, the initial coarse mesh is partitioned, the corresponding subdomains
are created and all processors know which geometric entities form their interior boundaries.
While computing the solution of some PDE, the mesh will be adapted. This introduces new
DOFs, some of which may be located on the interior boundaries. These DOFs are shared
by at least two subdomains, and we define ownership of these DOFs in the same way as
we have done it for the interior boundaries. All communication between subdomains is
done on the basis of these common DOFs. To store all common DOFs, we introduce the
concept of DOF communicators, that describe the DOF communication pattern between
all subdomains. Once they have been established, they can be used for very e�cient
point-to-point communication. Assuming that an interior boundary handler is already
initialized, DOF communicators can be easily created without further communication, see
Algorithm 3. Each subdomain just traverses all geometric entities of all interior boundaries
and collects the corresponding DOFs. As the interior boundary handler ensures that the

21

3 Scalable parallelization

Algorithm 2: Creating information about interior boundaries.
input : db: element object database, mesh: initial coarse mesh, mpiRank: unique

identification number of the current processor
output : intBoundOwn: set of element entities, which form the interior boundary that

is owned by the processor, intBoundOther: set of element entities, which form
the interior boundary that is not owned by the processor

foreach coarseElement œ mesh do

if db.elInSubdomain(coarseElement) then

foreach entity œ coarseElement do

if db.degree(entity) > 1 and db.owner(entity) == mpiRank then

foreach rank œ db.W(entity) do

if rank ”= mpiRank then

intBoundOwn.add(entity, rank)

end

end

end

foreach index œ neigh do

if index < mpiRank then

intBoundOwn.send(index)
else

intBoundOther.recv(index)

end

boundary elements are in the same order on all neighbouring processors, the collected
DOFs directly fit together on the interior boundaries and can be used for communication.
Because DOF communicators must be reinitialized after each adaption of the mesh, it is
quite important that this procedure can be done fast and without further communication.

The DOF communicator has just the knowledge how to exchange data with neighbouring
subdomains, but it has no global DOF view. This is the main task of the parallel DOF
mapper. It creates a mapping from local DOF indices to global indices. This mapping
must be consistent, i.e., if two local DOFs in two di�erent subdomains represent the same
global DOF they must also map to the same global index. The parallel mapping of DOFs
must also work for subsets of DOFs. For example, iterative substructuring methods need a
global index of all interior boundary DOFs. The parallel DOF mapping is described in
Section 3.2.3.

The last concept is the boundary DOF info object. It can be used by a specific solver
method to get geometrical information about interior boundary DOFs. This can be
necessary, if, e.g., a domain decomposition method must decompose the set of interior
boundary DOFs into DOFs which are part of a boundary vertex, edge or face.

22

3.2 Distributed meshes

Algorithm 3: Creating DOF communicators.
input : intBoundOwn and intBoundOther: interior boundary handler for the processor

owned boundary segments and for all other interior boundary segments
output : sendDofs: set of DOFs on processor owned boundaries, recvDofs: set of DOFs

on other boundaries
foreach bound œ intBoundOwn do

Element el = bound.el
vector <DegreeOfFreedom> dofs = el.getAllDofs (bound)
sendDofs.insert (dofs)

end

foreach bound œ intBoundOther do

Element el = bound.el
vector <DegreeOfFreedom> dofs = el.getAllDofs (bound)
recvDofs.insert (dofs)

end

3.2.1 Mesh structure codes for parallel mesh adaptivity
For non-overlapping domain decomposition methods the data structures and algorithms
are di�erent dependent on whether hanging mesh nodes can be handled by the finite
element code. If hanging nodes are possible, or some Mortar method [91] is used, the mesh
refinement structure along interior boundaries does not need to fit together. Otherwise,
an algorithm must be used that ensures coincident interior boundaries after local mesh
refinement or coarsening in at least one subdomain has been performed. In this work,
we consider a finite element that require matching interior boundaries. Several work has
been done in the past to describe and implement parallel adaptive mesh refinement (AMR)
on large number of processors. The distributed mesh library p4est [28, 27] has shown
excellent weak and strong scaling to over 224,000 processors. Due to its internal mesh
representation based on octrees, it is not directly usable for triangle and tetrahedron
meshes. As a pure mesh library, it provides little support for implementing parallel solvers.
Currently, in [59] an AMR method for tetrahedral meshes is presented. Parallel scaling up
to 1,024 processors with an e�ciency of around 80% is shown. One disadvantage of the
this AMR method is that the mesh quality is influenced by the partitioning.

We present a method for parallel mesh adaptivity where the parallel scaling e�ciency
is mostly limited by the e�ciency of the used MPI library. One of our key concepts for
e�cient distributed adaptive meshes are the so called mesh structure codes and mesh
substructure codes, which are introduced in Section 2.3. The main advantage of these data
structures is that they can easily be created and their communication between processors is
very cheap. In this way, mesh structure codes are used by the mesh distributor to transfer
the refinement structure of elements from one processor to another one. See Section 3.2.2
for more details.

Mesh substructure codes are used to create a parallel distributed mesh with coincident
boundary segments on all subdomains. Based on the interior boundary handler it is
straightforward to define an algorithm that iteratively adapts the local subdomains until

23

3 Scalable parallelization

�1 �2

�3

Figure 3.4: Iterative parallel mesh adaptivity on three subdomains. The left picture shows
the initial situation with one hanging node. The central and the right picture
are the results after the first and second refinement loop, respectively.

all of them coincide along their interior domains. This procedure is defined in Algorithm 4.
Every processor creates substructure codes for all of its own interior boundary segments.
These codes are send to the neighbouring processors where they can be directly used to
check if the mesh refinement structure is the same at the corresponding edges or faces.
If this is not the case, a received substructure code can directly be used to refine the
corresponding element. This process must be repeated as the refinement in one subdomain
may cause hanging nodes on the interior boundary with other subdomains, see Figure
3.4 for an example where this situation may happen. In the initial situation, there is one
hanging node between subdomain �1 and �2, and there are no hanging nodes between
�1 and �3. Thus, in a first step, �1 adapts its subdomain to remove the only hanging
node. But this introduce a new hanging node with �3. This is removed within a second
loop of the adaption algorithm. Therefore, this loop must be repeated until all processors
accept the received substructure code without making local mesh changes. In all of our
simulations, even for PDEs that require the mesh to be changed in every timestep, the
mesh adaption algorithm terminates in a few iterations.

The parallel mesh adaption algorithm scales well for large number of processors, as
it mostly contains point-to-point communication. Each processor communicates only
with the directly neighbouring processors. The only global communication is the MPI
reduction on the variable changeOnRank, to synchronize the loop. The most critical
point is the question whether the number of iterations is independent of the number of
subdomains. Theoretically, this scales at least in the order of O (log(p)), with p the number
of subdomains. A situation where a logarithmic growth of the iteration number for parallel
mesh adaptivity can be observed is when a very localized mesh refinement is done within
only one subdomain. We will show in Section 3.2.4 that the iteration count only slightly
increases with increasing number of subdomains, but is small (< 5) in all of our simulations.

24

3.2 Distributed meshes

Algorithm 4: Parallel mesh adaption
input : intBoundOwn and intBoundOther: interior boundary handler for the processor

owned boundary segments and for all other interior boundary segments
bound = intBoundOwn fi intBoundOther
repeat

changeOnRank = false
foreach (obj, rank) œ bound do

if isEdge(obj) or isFace(obj) then

c0 = preOrderTraverse(obj)
send c0 to rank
recv c1 from rank
if c0 ”= c1 then

adapt (obj, c1)
changeOnRank = true

end

end

end

mpi reduce on changeOnRank
until changeOnRank == false

3.2.2 Mesh partitioning and mesh distribution

A mesh partitioning is an assignment of process numbers to mesh elements, and thus it
specifies all processor’s subdomains to be used for the next calculations. In this work, we
do not consider mesh partitioning techniques but assume that some e�cient algorithm for
parallel mesh partitioning are available. In our implementation, we use either ParMETIS
[100, 99] or Zoltan [23, 29, 34]. Essential to our approach is that only coarse mesh elements
are partitioned and therefore only information about the coarse mesh is forwarded to the
mesh partitioner. In order to ensure good load balancing, each coarse mesh element is
assign with a weight which is defined by the number of leaf elements within the coarse
mesh element.

When a mesh partitioning is computed, a mesh distributor is used to move coarse mesh
elements, and all data specified on them, from one processor’s subdomain to another one.
Once a coarse mesh element has been moved from processor A to processor B, processor B
must also reconstruct the refinement structure that the coarse mesh element had before on
processor A. For this, we make use of mesh structure codes, see Section 2.3. Processor A
creates mesh structure codes for all coarse mesh elements that must be reconstructed on
processor B. When processor B receives these mesh structure codes, it must first create the
corresponding coarse mesh elements on its local subdomain and use the mesh structure
codes to reconstruct their refinement structure.

Besides reconstruction of the coarse mesh element refinement structure, reconstruction
of the DOF vectors on these elements is the second main task of the mesh distributor. Not
only the element structure must be communicated between ranks, but also the values that

25

3 Scalable parallelization

are defined on them. For this, we make use of value mesh structure codes as described
in Section 2.3. They are used for both, the reconstruction of elements and DOF vectors
defined on them. This functionality of reconstructing an element refinement structure and
a DOF vector is shown in Algorithm 5.
Algorithm 5: reconstruct(el, code, valueCode, dofV ec): Reconstruction of elements
and DOF vectors using value mesh structure codes
input : element el, mesh structure code code, value structure code valueCode, DOF

vector dofVec
if isMacroElement(el) then

foreach dof œ el do

dofVec[dof] = valueCode.next()
end

end

if code.next() == 1 then

bisect(el, newDof)
dofVec[newDof] = valueCode.next()
reconstruct(getChild(el, 0), code, valueCode, dofVec)
reconstruct(getChild(el, 1), code, valueCode, dofVec)

end

After mesh redistribution, the following data structures must be rebuild: interior bound-
ary data, DOF communicators and all requested parallel DOF mappings. All algorithms
for mesh redistribution require only point-to-point communication. The same holds for
rebuilding the interior boundary data and DOF communicators. The only global communi-
cation required in mesh redistribution is hidden in the creation of parallel DOF mappings,
see Section 3.2.3.

3.2.3 Parallel DOF mapping

When the domain is partitioned and distributed to all participating processors, the finite
element method requires first to assemble local matrices and vectors. When there are
d

i

DOFs in domain �
i

, the DOFs must be enumerated with a continuous local index
set 1, . . . , d

i

. For the solver method, which cannot be applied in a pure local way, the
subdomain matrices and vectors must be related such that local DOF indices of two
di�erent subdomains which correspond to the same global DOF, also have the same global
DOF index in both subdomains. This is the main work of the parallel DOF mapping, that
maps from local DOF indices to global ones. For general solver methods it is important
that these mappings can also be established on subsets of local and global DOFs. In Figure
3.5, four subdomains are shown. Each subdomain has five DOFs and there are 13 global
DOFs. A parallel DOF mapping for all DOFs would map on each processor from the set of
local DOF indices 1, . . . , 5 to the global set 1, . . . , 13. The figure shows the situation when
a solver requires a local to global DOF mapping only for the interior boundary DOFs. In
this case, a parallel DOF mapping is a partial mapping from local DOF indices 1, . . . , 5 to
the global set of all interior boundary DOF indices 1, . . . , 5. Figure 3.5 shows this mapping
for subdomain �3.

26

3.2 Distributed meshes

�1 �2

�3 �4

1

2
3

4

5

1 2

3

4 5

local: 1 2 3 4 5
global: 2 3 - - 5

a) b)

c)

Figure 3.5: a) Creation of global index for a subset (dark colored) of local DOFs on four
subdomains; dotted line indicate DOFs which are owned by the corresponding
processor b) local DOF numbering in each subdomain c) mapping g3 from local
DOF indices of subdomain �3 to the global index of the selected DOFs

Before going into details, let us recall the di�erence between the terms vertex, node
and Degree Of Freedom (DOF). A vertex is a geometric entity of the mesh. A node is
a container for DOFs. For Lagrange basis functions, each vertex correlates with a node.
When using higher order basis functions, nodes will occur also on element edges, faces or
at element centers. When solving a PDE with one variable, each node contains exactly one
DOF. In this case the terms are equivalent. If the PDE has more than one variable, nodes
may contain more than one DOF. The number of DOFs per node can vary, if di�erent
finite element spaces are used for the variables.

For each subdomain we define D
i

= {1, . . . , d
i

} to be the set of all DOF indices in
subdomain �

i

. The subset D
i

contains all DOF indices that are owned by processor i. We
denote with n

i

= |D
i

| the number of DOF indices owned by processor i. To simplify the
following definitions and the implementation of the corresponding algorithms we assume
that D

i

is sorted containing first all DOFs owned by processor of subdomain �
i

and followed
by the other DOF indices. Consequently, D

i

is also a continuous set of indices starting
with 1. To relate DOFs on interior boundaries, we define the mapping R as follows

Definition 6 Let d œ Di and e œ Dj, with 1 Æ i, j Æ p and i ”= j, be DOF indices in
subdomains �

i

and �
j

respectively. If d and e correspond to the same global DOF index,
we relate them with Ri

j

(d) = e.

The main task of the parallel DOF handler is to provide a global index for a set of local
DOF indices. For this, the local DOF indices must be sticked together to create a global
index of all DOFs. This index must be continuous and consistent on all subdomains. Thus,

27

3 Scalable parallelization

a DOF on an interior boundary must have the same global index on all subdomains that
include this DOF. We define the global index to be a mapping from local DOF indices to
the set D of global indices

g
i

: D
i

‘æ D

g
i

(d) =
Iq

i≠1
j=1 n

j

+ d if d œ D
i

g
j

(dÕ) if d /œ D
i

, Ri

j

(d) = dÕ and j = owner(dÕ)
(3.1)

In the implementation of the local to global DOF mapping, two communications are
necessary. In the first one, all ranks must compute the global index o�set, i.e., the
first global DOF index owned by the rank. This o�set is denoted by the sum of global
indices in all ranks having a smaller rank number. Computation of this value can be
implemented e�ciently with using the parallel prefix reduction operation MPI::Scan.
When all ranks have computed the global index for all rank-owned DOFs, neighbouring
ranks must communicate the global DOF indices along interior boundaries. As the number
of neighbouring subdomains is bounded independently of the overall number of subdomains,
also this communication is scalable. Note that the communication pattern to interchange
global DOF indices does not need to be computed, as it is already defined by the interior
boundary database.

Most parallel solver and domain decomposition methods require the set of global DOFs
to be splitted in multiple subsets that must not necessarily be disjoint. Usually the
global DOFs are splitted into the set of all DOFs on interior boundaries and the DOFs of
the subdomain’s interior. Many domain decomposition methods split the set of interior
boundary DOFs, e.g., to create a global coarse space that is defined on some interior
boundary DOFs with special properties. All these subsets require a local and global
continuous index.

Index mappings from local to global DOF indices, which are defined only on subsets
of DOFs, are mostly used to create distributed matrices and vectors. The definition of
a global mapping allows directly for subassemling local matrices to global ones. This
becomes more complicated when mixed finite elements are used. Then, there exist multiple
finite element spaces which define di�erent sets of DOFs on the mesh. Thus, also local
and global mappings have to be defined for each finite element space. There are two
di�erent assembling strategies when using multiple solution components, that may possibly
be defined on di�erent finite element spaces: the node-wise and the block-wise ordering.
The node-wise ordering assigns to all DOFs at one node a continuous index, while the
block-wise ordering considers all DOFs of the first component, then of the second, and so
on. Both are just permutations of each other, so the solution of the system remains the
same. In this work, we make use of the block-wise ordering, as it is simple to implement
in a parallel environment. Figure 3.6 shows the di�erent views on the local and global
numbering of DOFs with multiple finite element spaces. In this example we assume that a
PDE with three components is solved. The first two components are defined on the same
finite element spaces. The third component is defined on a di�erent one. For simplicity
we assume the mesh to be equidistributed. Three computing nodes are used to solve this
PDE. The left part of the Figure contains the rank view of the locally owned DOFs. The
i-th rank contains in the finite element space of the j-th component nRankj

i

DOFs. The

28

3.2 Distributed meshes

rank 3

nRank1
3 nRank2

3 nRank3
3

rank 2

nRank1
2 nRank2

2 nRank3
2

rank 1

nRank1
1 nRank2

1 nRank3
1

component 1

rStart1
1

rStart1
2

rStart1
3

component 2

rStart2
1

rStart2
2

rStart2
3

component 3

rStart3
1

rStart3
2

rStart3
3

Figure 3.6: Example for global mapping with three components defined on two di�erent
finite element spaces

right part of the Figure shows the view of enumerating DOFs from the component view.
The global DOF indices for each component are sorted with respect to the rank number
that own the DOF, which follows directly from the definition of the mapping g

i

. The first
global index of the j-th component finite element space on rank i is denoted with rStartj

i

.
With this definition we can specify a function that maps on rank number i each local DOF
index d in component number j to a unique matrix row index

matIndex
i

(d, j) =

Y
__]

__[

q
j≠1
k=1 rStartk

i

+
q

j≠1
k=1 nRankk

i

+ gj

i

(d) if d œ D
i

matIndex
k

(dÕ, j) d /œ D
i

, Ri

k

(d) = dÕ and
k = owner(dÕ)

(3.2)
If there is only one component, or if the component number does not play any role, we will
omit the second argument and just write matIndex

i

(d) for the matrix index of DOF d in
rank number i.

3.2.4 E�ciency and parallel scaling
To justify that our implementation of distributed meshes is e�cient and scalable, we
have chosen to simulate dendritic growth using a phase-field model in 3D, which today
is the method of choice to simulate microstructure evolution during solidification. For
a review we refer to [22]. From a technical point of view, using phase-field models in
parallel computations is very challenging. The phase field is constant in most parts of the
domain, where it can be discretized with a very coarse mesh. But to resolve the very thin
transition between both phases, a highly refined mesh is required. As the phase moves
during simulation time, the mesh is adapted at each timestep. In parallel computations,
this leads to the following problems:

29

3 Scalable parallelization

• As the mesh changes at each timestep on most domains, the parallel mesh adaptivity
procedure to create a correct distributed mesh without hanging nodes must also be
executed at each timestep.

• All parallel DOF mappings must be newly created at each timestep.

• Even if at one timestep the problem size is well balanced on all processors, it becomes
unbalanced very fast due to the moving and growing phase field. Thus, mesh
repartitioning and distribution must be executed every few timesteps to ensure good
load balancing.

Altogether, these functions must show not only parallel scaling but their e�ciency must be
also comparable with the sequential running code for each subdomain.

A widely used model for quantitative simulations of dendritic structures was introduced
in [62, 63], and reads in non-dimensional form

A2(n)ˆ
t

„ = („ ≠ ⁄u(1 ≠ „2))(1 ≠ „2) + Ò · (A2(n)Ò„) +
dÿ

i=1
ˆ

xi

3
|Ò„|2A(n)ˆA(n)

ˆ
xi„

4

ˆ
t

u = DÒ2u + 1
2ˆ

t

„

(3.3)

where d = 2, 3 is the dimension, D is the thermal di�usivity constant, ⁄ = D

a2
, in which

a2 = 0.6267 is a coupling term between the phase-field variable „ and the thermal field u,
and A is an anisotropy function. For both, simulation in 2D and 3D, we use the following
anisotropy function

A(n) = (1 ≠ 3‘)
A

1 + 4‘

1 ≠ 3‘

q
d

i=1 „4
xi

|Ò„|4

B

(3.4)

where ‘ controls the strength of the anisotropy and n = Ò„

|Ò„| denotes the normal to the
solid-liquid interface. In this setting the phase-field variable is ≠1 in the liquid and 1 in the
solid domain, and the melting temperature is set to be zero. We set u = ≠› as a boundary
condition to specify an undercooling. For the phase-field variable we use zero-flux boundary
conditions. The time integration is done using a semi-implicit Euler method, which yields
a sequence of nonlinear stationary PDEs

A2(n
n

)
·

„
n+1 + f + g ≠ Ò(A2(n

n

)Ò„
n+1) ≠ L[A(n

n

)] = A2(n
n

)
·

„
n

u
n+1
·

≠ DÒ2u
n+1 ≠ 1

2
„

n+1
·

= u
n

·
≠ 1

2
„

n

·

(3.5)

with f = „3
n+1 ≠ „

n+1, g = ⁄(1 ≠ „2
n+1)2u

n+1 and

L[A(n
n

)] =
dÿ

i=1
ˆ

xi

3
|Ò„

n+1|2A(n
n

)ˆA(n
n

)
ˆ

xi„n

4

30

3.2 Distributed meshes

Figure 3.7: Dendritic structure at time t = 3000 for parameters › = 0.55, D = 1.4, and
‘ = 0.05

We linearize the involved terms f and g with

f ¥ (3„2
n

≠ 1)„
n+1 ≠ 2„3

n

g ¥ ⁄(1 ≠ „2
n

)2u
n+1

L[A(n
n

)] ¥
dÿ

i=1
ˆ

xi

3
|Ò„

n

|2A(n
n

)ˆA(n
n

)
ˆ

xi„n

4 (3.6)

to obtain a linear system for „
n+1 and u

n+1 to be solved at each time step.
For the parallel 3D simulations, we choose the following parameters: › = 0.55, D = 1.4,

‘ = 0.05. A constant timestep · = 1.0 is used, and the simulation is run for 7, 500 timesteps.
For mesh adaptivity no error estimator is used, but instead we refine the mesh at each
timestep along the interface such that there are at least 10 mesh vertices inside the phase
transition. Outside of the phase transition, the mesh is coarsened as much as possible. As
the dendritic growth is symmetric in all spatial dimensions, it is possible to make use of
the solution’s symmetry and restrict the computational domain to only one octant. As
we want to create a 3D mesh that is as large as possible for benchmarking purposes, we
abstain from this optimization. This simulation was performed with an increasing number
of processors starting with 64 processors and increasing it up to 512 processors. The result
at t = 7, 500 was then restarted for further 50 timestep with 128 up to 4,096 processors.
Figure 3.8 shows the average runtimes of these 50 timestep for the di�erent number of
processors. Time for local mesh adaption and the overall time for solving one timestep are
also given to compare it with the time required for parallel mesh adaption. The rebuilding
of parallel DOF mappings shows very good scalability, as it contains only a constant
number of communication independently of the subdomain sizes. In contrast, the time for
one parallel mesh adaption loop decreases only slightly between 512 and 4,096 processors.
This is related to the increasing communication size as the number of interior boundaries

31

3 Scalable parallelization

128 256 512 1024 2048 4096

100

101

102

number of processors

tim
e

one mesh adaption loop
rebuild parallel DOF mapping
local mesh adaption
overall time per timestep

Figure 3.8: Strong scaling of parallel mesh adaptivity. The time is the average of 50
timesteps computing dendritic growth. Time for local mesh adaptivity and for
the overall solution of one timestep are shown to compare with time needed for
parallel mesh adaptivity.

increases when using more and more processors for a fixed problem size. Table 3.1 gives,
among other information for this benchmark, the ratio of time required for parallel mesh
adaptivity w.r.t. overall computational time for one timestep. Even though the time for
parallel mesh adaptivity decreases slower than the overall computational time, it takes less
than 10% of the overall time. Load unbalancing is measured w.r.t. the number of mesh
vertices (which is proportional to the number of unknown in the resulting system of linear
equations). If p processors are used, and the mesh of i-ith processor’s subdomain contains
V

i

vertices, then load unbalancing of the overall problem is defined by the proportion of
the maximal to the average load

maxp

i=1 V
i

p≠1 q
p

i=1 V
i

(3.7)

3.2.5 Limitations of coarse element based partitioning
All the concepts for distributed meshes that are presented in this work are based on
partitioning and distribution of coarse mesh elements. This technique has many advantages:
partitioning can be done much faster than on the leaf level of the mesh, it allows to use
mesh structure codes for element redistribution and mesh substructure codes for local mesh
adaption, pre- and post-processing steps for calculations are quite simple, as we have a
direct correspondence between all mesh elements and processor numbers. In comparison
with implementations that partition and distribute the mesh on leaf level, there are several
disadvantages which are discussed in the following.

In our implementation, the coarse mesh is stored on all processors. Even for the case that
the memory usage for storing the coarse mesh is considerably smaller than the available

32

3.3 Linear solver methods

cores load unbalancing parallel adaption iter ratio e�ciency

128 4.44% 3.31 3.9% 100.0%
256 4.56% 3.54 4.1% 102.2%
512 6.03% 3.94 5.2% 99.5%
1,024 10.05% 3.98 6.5% 93.4%
2,048 18.14% 4.92 7.6% 77.8%
4,096 28.32% 4.82 7.5% 55.0%

Table 3.1: Strong scaling of parallel mesh adaptivity. All data is the average of 50 timesteps
computing dendritic growth. The fourth column shows the ratio of time required
in each timestep for parallel mesh adaptivity with the overall computing time
for one timestep. The e�ciency shown in the last column gives the e�ciency of
the overall computational time w.r.t using 128 cores.

memory of one processor, this limits the scaling for large number of processors, though we
have not seen any problems in our benchmarks. The reader should note that this problem
is not a conceptual one but depends on the specific implementation. Thus, it is possible
to modify our implementation so that each processor must store only the coarse mesh
element for its subdomain together with all neighbouring coarse mesh elements. During
mesh redistribution, this information must also be communicated along with the refinement
information of coarse mesh elements.

From a users point of view it is required to prepare a coarse mesh which is appropriate
for the used number of processors and for the final refinement structure of the leaf level
mesh. A general rule is to use around 10 to 25 coarse mesh elements for each processor to
get a good load balancing. When the leaf level has a very localized refinement structure,
e.g. because of a phase field as described in Section 3.2.4, more coarse mesh elements
are required. As much information is stored on the level of coarse mesh elements, e.g.
coordinates or interior boundaries, the memory footprint of a coarse mesh element is higher
than for a refined mesh element. Therefore, it is always required to find a good balance
between a coarse mesh that allows for good load balancing and one that does not require
too much memory. In some very few configurations, when the leaf mesh has a singular
refinement structure at one point in space, the situation can occur that it is not possible
anymore to find an appropriate coarse mesh allowing to use a suitable number of processors.

3.3 Linear solver methods
In this and the following two sections, we consider parallel methods for the solution of large
systems of linear equations resulting from the finite element method. Most of such methods
can be classified to be either a global matrix solver or a domain decomposition method.
A global matrix solver works on a distributed, globally assembled matrix and includes
iterative Krylov subspace methods, parallel direct solvers and a large class of multigrid
methods. Scalability of global matrix solvers is justified, for example, by the success of
UNIC and PFLOTRAN. The UNIC neutron transport code [105, 64] scaled, with a problem
size of more than 500 billion unknowns, to all 294,912 cores of JUGENE, a Blue Gene/P

33

3 Scalable parallelization

system located at the Jülich Supercomputing Center (Germany). The PFLOTRAN code
[92] scaled to 2 billion unknowns on 224,000 cores of a Cray XT5. Recently, [10] showed
weak and strong scalability of algebraic multigrid methods on di�erent systems up to
196,608 cores of the Cray XT5 “Jaguar” at the National Center for Computational Sciences
at Oak Ridge National Laboratories (USA). Scaling of a geometric multigrid method on
JUROPA Bkue Gene/P is considered in [48]. A comparison of scalability of geometric and
algebraic multigrid up to 262,144 cores of the Cray XK6 “Jaguar” can be found in [113].
All of these works, which present scaling of parallel solver up to hundreds of thousands of
cores, are highly tuned codes for one class of problems. Furthermore, the centerpiece of
most of these codes is a solver for a discrete Laplace matrix. To the best of our knowledge,
there exists no method or software package for the solution of large and sparse systems of
linear equations, which has a broader application area and has shown scalability for more
than 105 cores.

To decrease the iteration number, iterative methods require for an appropriate precon-
ditioner. Usually, e�ciency and scaling of the preconditioner are the limiting factors of
many iterative methods. The creation of a purely algebraic based, parallel, robust and
optimal (w.r.t. scaling) preconditioner for iterative Krylov subspace methods is still an
open research question. In many applications, algebraic and geometric multigrid methods
can be used as preconditioner of the original problem. Even though, these methods are not
applicable in a black-box fashion, as they include several parameters and sub methods that
must be adjusted to a specific equation. Besides pure algebraic motivated preconditioners,
there is a lot of ongoing research to develop specialized preconditioners which work only for
matrices resulting from discretization of a specific PDE. Most of them are based on block
decomposition of the matrix, see e.g. [103] for the instationary Navier-Stokes equation, [24]
for the Cahn-Hilliard equation, and [20] and references therein for a general overview on
this topic.

In contrast to global matrix solvers, domain decomposition methods decouple the global
problem in local subproblems, which can be solved independently of each other. The price
for decoupling computations and thus introducing parallelism is the necessity to solve
some additional global problem. Thus, an e�cient domain decomposition method must
balance between the parallelism it introduces and the size and complexity of the global
problem. Most known domain decomposition methods are, among others, Schwarz iterative
algorithms [36], Schur complement approaches and iterative substructuring algorithms
[87, 86], and the family of FETI-DP (finite element tearing and interconnecting - dual
primal) [44, 43, 72, 75] and BDDC (balancing domain decomposition by constraints) [88, 90]
methods.

FETI-DP and BDDC methods are well suited as block-box solvers for a the solution of
equations leading from finite element discretization of a broad range of PDEs. The methods
are nearly free of parameters, only the null space of the linear system must be considered
in some way. Both methods include some global coarse mesh problem leading to optimal
parallel scaling. The methods have been successfully applied to the solution of problems
in elasticity [72, 75], fluid dynamics [68, 126] and in electromagnetics [130]. Parallel and
numerical scalability of the FETI-DP method for up to 65,536 processors was show in [74].
Note that FETI-DP and BDDC methods are closely related to each other [80, 89], as they
lead to linear systems that have the same eigenvalue spectrum, but for eigenvalues 0 and 1.

34

3.4 FETI-DP

�0 �1

�2 �3

u
I

u�

u�

u
B

u�

Figure 3.9: Partitioning of the unknowns for the FETI-DP method. Arrows between dual
nodes u� denote Lagrange multipliers which are used to enforce continuity of
the solution at convergence.

3.4 FETI-DP

First, we give a comprehensive introduction to the FETI-DP method before we describe
its e�cient implementation in Section 3.4.1, based on the concepts presented in Section
3.2 before. Hereby we essentially follow the notation of the work [44, 72]. FETI-DP was
originally established and proven to be optimal for symmetric positive definite matrices.
Some work has been done to extend FETI-DP to more general matrices: In [45], a FETI-DP
method for a class of complex-valued and indefinite systems is presented. Furthermore,
FETI-DP was used in [79] to solve the stationary Navier-Stokes equation, that leads
to non-symmetric and indefinite matrices. Optimality w.r.t. parallel scaling is shown
experimentally in this work.

In what follows, we introduce the FETI-DP method for arbitrary real valued matrices,
which may be non-symmetric and indefinite. Note that optimal parallel scaling cannot be
proven in all cases, but we will experimentally show that for many PDEs, FETI-DP is a
scalable and robust solution method.

Let a domain � be decomposed into non-overlapping subdomains �
i

, with i = 1, . . . , p,
see Definition 1. Each processor assembles local matrices Ai and local right-hand side
vectors f i. On each subdomain, the vector of unknowns is denoted by ui. For the first, let
us assume that all Ai are non-singular. Then, all systems Aiui = f i can be uniquely solved
independently of each other. To recover the solution of the original problem, we need to
enforce continuity of the unknowns ui across interior boundaries. The basic idea of the
FETI-DP method is to split the unknowns on interior boundaries into the sets of dual and

35

3 Scalable parallelization

primal unknowns and to ensure their continuity in di�erent ways. Thus, the unknowns ui

are first partitioned into the set ui

I

of interior unknowns and into the set ui

� of unknowns
on the interior boundaries. The interior boundary unknowns are further partitioned into
the set of dual ui

� and primal interior boundary unknowns ui

�

ui =
C

ui

I

ui

�

D

=

S

WU
ui

I

ui

�
ui

�

T

XV =
C
ui

B

ui

�

D

(3.8)

Continuity of the solution on primal nodes is enforced by global subassembly of the
subdomain matrices Ai. To ensure continuity along dual nodes, we introduce Lagrange
multipliers, cf. Figure 3.9. The FETI-DP system is then defined to iterate on these Lagrange
multipliers. Consequently, continuity of the solution on primal nodes is satisfied in each
iteration, continuity of the dual nodes only at convergence. The way how to choose the
interior boundary nodes to be either dual or primal is crucial and will be described later.

As interior and dual variables are purely local on each subdomain, we collect them to
the vector of local variables ui

B

. To be consistent with Definition 2, we denote the set of all
primal and dual interior boundary nodes with I� and I�, respectively. Correspondingly,
I

i,� and I
i,� denote the primal and dual nodes in subdomain �

i

.
To enforce continuity on the dual variables, we introduce a discrete jump operator J , such

that the solution on the dual variables u� is continuous across interior boundaries when
Ju� = 0. Each row of the matrix J , i.e., each constraint, must satisfy that the di�erence
of two dual variables, that correspond to the same global node, is zero: x

n

≠ x
m

= 0, with
x

n

œ I
i,�, x

m

œ I
j,�, i ”= j and Ri

j

(x
n

) = x
m

.
If a dual node b corresponds to more than two subdomains, thus degree(b) Ø 3, there is

some choice in the number of constraints for vertex b. We can either take the whole set of
redundant constraints. In this case, we will have 1

2degree(b)(degree(b) ≠ 1) constraints for
each vertex b and the matrix J will not be of full rank if degree(b) Ø 3 for at least one
vertex b. Otherwise, we can choose a minimal, linear independent subset of constraints
and obtain a matrix J of full rank. The first case is simpler to implement, and will be
described later, but makes formal analysis of the FETI-DP method more complicated. A
detailed discussion on this topic can be found in [91, Chapter 4.1].

The overall number of (possibly redundant) constraints is given by

C
n

=
ÿ

bœI�

1
2degree(b)(degree(b) ≠ 1)

and the total number of dual variables is given by

�
n

=
pÿ

i=1
I

i,�

We denote by C(b, i, j) ‘æ [1, . . . , C
n

], with i, j œ W(b) and i < j, the global index of
the constraint associated to the dual node b on subdomains �

i

and �
j

. Then, the jump

36

3.4 FETI-DP

operator matrix J is of size C
n

◊ �
n

and defined by

J
k,l

=

Y
__]

__[

1 , if C(b, i, j) = k and Âb
i

= l

≠1 , if C(b, i, j) = k and Âb
j

= l

0 , otherwise
(3.9)

where Âb
i

= l denotes that there exists some component number c sucht that the lo-
cal DOF index d of the dual node b in subdomain i maps to the global DOF index l,
i.e. matIndex

i

(d, c) = l, cf. 3.2. According to the splitting of unknown variables into
primal, dual and local variables, we partition the local matrices Ai as follows

Ai =
C
Ai

BB

Ai

B�
Ai

�B

Ai

��

D

, Ai

BB

=
C

Ai

II

Ai

I�
Ai

�I

Ai

��

D

, Ai

B� =
C

Ai

I�
Ai

��

D

, Ai

�B

=
Ë
Ai

�I

Ai

��
È

(3.10)

The right-hand side vectors are partitioned in the same way. To create the global coarse
mesh problem of the primal variables, the primal variables are subassembled using the
restriction matrices Ri

�, which restrict the global vector of primal nodes to to primal nodes
contained in partition i

ÂA�� =
pÿ

i=1
Ri

�
T

Ai

��Ri

� (3.11)

and
ÂAi

B� = Ai

B�Ri

�, ÂAi

�B

= Ri

�
T

Ai

�B

(3.12)

A
BB

= diagp

i=1(Ai

BB

), ÂA
B� =

S

WWU

ÂA1
B�
...

ÂAp

B�

T

XXV , ÂA�B

=
Ë

ÂA1
�B

. . . ÂAp

�B

È
(3.13)

We now define the partially assembled matrix ÂA and the corresponding right-hand side
Âf as

ÂA =
C
A

BB

ÂA
B�

ÂA�B

ÂA��

D

and Âf =
C
f

B

Âf�

D

(3.14)

and finally add the discrete jump operator J to ensure solution continuity across interior
boundaries S

WU
A

BB

ÂA
B� JT

ÂA�B

ÂA�� 0
J 0 0

T

XV

S

WU
u

B

Âu�
⁄

T

XV =

S

WU
f

B

Âf�
0

T

XV (3.15)

By block Gaussian elimination on the variables u
B

and Âu�, we obtain the reduced linear
system

Ë
J 0

È C
A

BB

ÂA
B�

ÂA�B

ÂA��

D≠1 C
JT

0

D

⁄ =
Ë
J 0

È C
A

BB

ÂA
B�

ÂA�B

ÂA��

D≠1 C
f

B

Âf�

D

(3.16)

37

3 Scalable parallelization

C
A

BB

ÂA
B�

ÂA�B

ÂA��

D≠1
=

C
I ≠A≠1

BB

ÂA
B�

0 I

D C
A≠1

BB

0
0 ÂS≠1

��

D C
I 0

≠ ÂA�B

A≠1
BB

I

D

=
C
A≠1

BB

+ A≠1
BB

ÂA
B� ÂS≠1

��
ÂA�B

A≠1
BB

≠A≠1
BB

ÂA
B� ÂS≠1

��
≠ ÂS≠1

��
ÂA�B

A≠1
BB

ÂS≠1
��

D (3.17)

with the primal Schur complement

ÂS�� = ÂA�� ≠ ÂA�B

A≠1
BB

ÂA
B� (3.18)

In short notation, the system can be written as

F⁄ = d (3.19)

with the FETI-DP operator F and the reduced right-hand side vector d defined by

F = JA≠1
BB

(I + ÂA
B� ÂS≠1

��
ÂA�B

A≠1
BB

)JT

d = JA≠1
BB

(f
B

≠ ÂA
B� ÂS≠1

��(Âf� ≠ ÂA�B

A≠1
BB

f
B

))
(3.20)

Note that the matrix F is never build explicitly but is evaluated in every iteration of
some Krylov subspace solver. The e�cient parallel evaluation of the FETI-DP operator is
discussed in the next section.

To precondition the FETI-DP system, two di�erent preconditioners are commonly
used: the Dirichlet preconditioner P ≠1

D

and the lumped preconditioner P ≠1
L

[44, 75]. We
additionally define the following block matrices

A
II

= diagp

i=1(Ai

II

)
A

I� = diagp

i=1(Ai

I�)
A�I

= diagp

i=1(Ai

�I

)
A�� = diagp

i=1(Ai

��)

(3.21)

The Dirichlet preconditioner is then defined by

P ≠1
D

= J
S

RB

�
T (A�� ≠ A�I

A≠1
II

A
I�)RB

�JT

S

(3.22)

The lumped preconditioner is obtained by simplifying the Dirichlet preconditioner to its
leading term A��

P ≠1
L

= J
S

RB

�
T

A��RB

�JT

S

(3.23)
Here, RB

� are restriction matrices which restrict the non primal indices on each subdomain
to the dual variables. J

S

is a scaled variant of the jump operator J , where the contribution
from and to each dual node is scaled by the inverse of the multiplicity of the node. The
lumped preconditioner reduces computational complexity, but optimality w.r.t. parallel
scaling of the FETI-DP method can be proven only when using the Dirichlet preconditioner.
In this case, the condition number of the preconditioned system grows asymptotically as
[75]

O
3

1 + log2
3

H

h

44
(3.24)

38

3.4 FETI-DP

where H is the subdomain size and h the mesh element size. Consequently, when the
number of processors, and thus the number of subdomains, is fix and the local meshes are
refined, the condition number of the FETI-DP system grows asymptotically as log2(h≠1).
If instead the problem size is fixed and the number of processors is increased, the condition
number of the FETI-DP system decreases. For weak scaling, the problem size per processor
is kept fixed and the number of processor is increased. Here, H/h is constant and thus
also the condition number of the FETI-DP system remains constant.

3.4.1 Implementation issues
We now discuss the e�cient implementation of the FETI-DP method based on algorithms
and data structures described in Section 3.2. This includes:

1. creating all nodes on interior boundaries and deciding them to be either primal or
dual nodes,

2. creating matrices A
BB

, ÂA
B�, ÂA�B

, ÂA�� and J ,

3. creating vectors f
B

and Âf�,

4. defining some procedure for the solution of the Schur complement system ÂS��, and

5. solving the FETI-DP system (3.19).

Creating parallel DOF mappings

The partitioning of the unknowns, and thus also the corresponding vectors and matrices,
into sets of interior, dual and primal is a key concept of the FETI-DP method. Our
implementation of the algorithms and data structures described in Section 3.2 allows for
an e�cient implementation with a small amount of source code. For the first, we consider
creating the set of primal nodes in 2D. Thus we have to define all cross points of interior
domains to be primal. For simplicity, we assume that the PDE to be solved consists of only
one component. In our FETI-DP implementation, the source code for creating a parallel
DOF mapping of primals reads

1 ParallelDofMapping primals(COMPONENT_WISE);
2 primals.init(...);
3 DofContainerSet& vertices =
4 meshDistributor->getBoundaryDofInfo().geoDofs[VERTEX];
5
6 for (DofContainerSet::iterator it = vertices.begin();
7 it != vertices.end(); ++it) {
8 if (meshDistributor->isRankDof(*it))
9 primals.insertRankDof(*it);

10 else
11 primals.insertNonRankDof(*it);
12 }
13 primals.update();

The first line creates a new parallel DOF mapping object, which may define di�erent
mappings for di�erent component. Another choice is to fix the mapping for all components
sharing the same finite element space. The second line of the code is used to initialize the

39

3 Scalable parallelization

parallel DOF mapping. During initialization, the FETI-DP solver object registers on the
global mesh distributor that the solver requires geometrical information of the interior
boundary nodes and that it must access these nodes by their geometrical entity. This
information is created on initialization of the mesh distributed, stored in the boundary
DOF info object (cf. Section 3.2), and will be updated after each mesh repartitioning. The
third line of the code queries for this information. Then the code loops over all vertex
cross points of all interior boundaries and inserts them to the parallel DOF mapping of
primal DOFs. It uses the mesh distributer to decide whether the particular primal DOFs
are owned by the rank or not. The final call to the update() function eventually creates
the global DOF mapping of primal DOFs. In the general case, when a PDE contains more
than one variable, the code above is extended by an outer loop iterating over the di�erent
components. In this way, it is straightforward to specify di�erent selection algorithms for
primal DOFs of di�erent components.

Creating a parallel DOF mapping for the dual DOFs is as simple as it is for primal ones.
Within our FETI-DP implementation, the source code reads

1 ParallelDofMapping duals(COMPONENT_WISE);
2 duals.init(...);
3 DofContainer allBoundaryDofs;
4 meshDistributor->getAllBoundaryDofs(allBoundaryDofs);
5
6 for (DofContainer::iterator it = allBoundaryDofs.begin();
7 it != allBoundaryDofs.end(); ++it)
8 if (primals.isSet(**it) == false)
9 duals.insertRankDof(**it);

10 duals.update();

The first two lines create and initialize a new parallel DOF mapping object. Then, the
mesh distributer is asked to create a set of all boundary DOFs. For this, the function
getAllBoundaryDofs() collects all DOFs from all DOF communicator objects on each
subdomain. From this set of DOFs, all non primal DOFs are added to the parallel DOF
mapping of dual DOFs. Note that we do not need to distinguish here between rank owned
or not rank owned DOFs, as dual nodes are always local in each subdomain.

Creating matrices and vectors

Finally, the FETI-DP method must create matrices and vectors based on the parallel DOF
mappings defined before. For these data structure, we make use of PETSc [14, 13], which
also provides a rich set of operations on these distributed data structures, e.g. matrix-vector
multiplications and a large set of iterative Krylov subspace solver methods.

One of the key points in our flexible FETI-DP implementation is to allow the subdomain
and the subdomain solver to be an arbitrary PETSc based solver class, see also Section 3.7
for more details on the solver class structure. After computing the parallel DOF mappings
for local and primal DOFs, the subdomain data structures can be initialized with only four
lines of code

1 subDomain->setDofMapping(&locals);
2 subDomain->setCoarseSpaceDofMapping(&primals);
3 subDomain->fillPetscMatrix(mat);
4 subDomain->fillPetscRhs(vec);

40

3.4 FETI-DP

The first two lines inform the subdomain solver to use the local DOF mapping to define
the local subdomain, and to use the primal DOF mapping to specify a coarse space matrix.
Thereafter, the locally created matrices and vectors are forwarded to the subdomain
which creates the corresponding PETSc data structures, which may be either distributed
or also of pure local type. To work on them, the variable subDomain provides access
to the assemble matrices via getMatInterior() to get A

BB

, getMatCoarse() for the
coarse space matrix ÂA��, getMatInteriorCoarse() and getMatCoarseInterior() for
the coupling matrices ÂA

B� and ÂA�B

. Similar functions to access the corresponding vectors
are also available.

Within the FETI-DP algorithm, it is often the case to create temporary vectors for
intermediate results. This functionality is directly provided within the implementation of
parallel DOF mappings and can be done with only two lines of code

1 Vec petscVecPrimals;
2 primals.createVec(petscVecPrimals);

We further have to create the matrix J . Each row of this matrix specifies the jump
between two nodes on interior boundaries. Therefore, each row has exactly two entries,
1 and ≠1, connecting two dual nodes in two di�erent subdomains, see Algorithm 6. It
requires one DOF communicator for the interior boundaries, which is used to get all
subdomain indices of each dual node, thus to compute W, cf. Definition 4. Furthermore,
the algorithm makes use of two parallel DOF mappings: one for the local nodes, i.e., the
interior and dual nodes, and one for the Lagrange constraints. The algorithm traverses for
all dual nodes in its subdomain all constraint pairs. If the rank is part of this constraint, a
corresponding entry to the matrix is set.

Solving for the Schur complement system ÂS��

There are two di�erent ways to implement the solution of system with the operator ÂS��,
see 3.18. Either its action on a vector is implemented and an iterative matrix-free solution
method is used, or the matrix is assembled explicitly and a direct solver is used. The
first one requires at each iteration three matrix-vector multiplications, one solution with
A

BB

and one vector-vector addition. As A
BB

is a block matrix, and for standard exact
FETI-DP one block corresponds to one local subdomain, solving with A

BB

can be done
independently of each other and without communication. When a direct solver is used
for the local solution with Ai

BB

, the LU or Cholesky factorization of the local matrices
must be computed only once. Then, in each FETI-DP iteration solving with A

BB

and
some right-hand side vector reduces two only one backward and one forward solver with
triangular matrices, for which the computational costs are mostly negligible compared to
matrix factorization.

Schur complement operators are usually not explicitly assembled, as they are dense in
most applications. We experimentally show, that this is not the case for ÂS��, which has
a sparsity structure that is similar to those of the original system. It highly depends on
the number of FETI-DP iterations required to solve a linear system and to the number of
processors used in the computation, whether a directly assembled and factorized Schur
complement matrix, or an iterative procedure to solve the Schur complement results in a
faster overall solution procedure. Algorithm 7 provides the information how to explicitly

41

3 Scalable parallelization

Algorithm 6: Computation of the matrix J

input : Set of local dual node indices I
i,�, DOF communicator object dofComm,

parallel DOF mapping constraints for global indices of Lagrangian constraints,
parallel DOF mapping locals for the local DOFs

output : Globally distributed matrix J representing the discrete jump operator
J = 0
use dofComm to create W for all nodes in I

i,�
foreach x œ I

i,� do

matRowIndex = constraints.matIndex(x)
for i = 0 to degree ≠ 1 do

for j = i + 1 to degree ≠ 1 do

if W(i) == mpiRank or W(j) == mpiRank then

matColIndex = locals.matIndex(x)
if W(i) == mpiRank then

value = 1
else

value = ≠1
J [matRowIndex][matColIndex] = value

end

matRowIndex + +
end

end

end

compute the primal Schur complement matrix. We have implemented both methods and
will compare their e�ciency in Section 3.4.2.

Solving the FETI-DP system

The algorithm to apply the FETI-DP operator, cf. (3.20), on a vector is described in
Algorithm 8. For the outer loop we use either the CG method for symmetric positive
definite systems, MINRES for symmetric but indefinite systems or GMRES if the system is
non-symmetric. If not other stated, the solver is stopped if the absolute residual is reduced
to less than 10≠8. The same solver and stopping criteria are used for the iterative Schur
primal solver. In the case of the direct Schur primal solver, we use the parallel sparse
direct solver MUMPS [2, 3]. For factorization of the local matrices, we use the multifrontal
sparse LU factorization package UMFPACK [30, 31].

3.4.2 Numerical results

Weak scaling for phase field crystal

First of all, solving the Phase Field Crystal (PFC) equation in 2D is used to examine
weak scaling of the FETI-DP method. The equation was introduced in [37] as a model

42

3.4 FETI-DP

Algorithm 7: Explicit computation of matrix ÂS��

input : Matrices ÂA��, ÂA�B

, ÂA
B� and A

BB

output : Matrix ÂS��
create matrix ÊK

B� of same size as ÂA
B�

foreach l œ I
i,� do

v = l-th column of matrix ÂAi

B�
Ai

BB

w = v

set w to be the l-th column of matrix ÊKi

B�
end

ÂS�� = ÂA�� ≠ ÂA�B

ÊK
B�

Algorithm 8: Application of the FETI-DP operator
input : Matrices defined within the FETI-DP operator, Schur complement operator

ÂS��, some vector ⁄Õ

output : v = F⁄Õ

t0 = BT ⁄Õ

solve for A
BB

t1 = t0
v = ÂA�B

t1
solve for ÂS��t1 = v

t0 = t0 + ÂA
B�t1

solve for A
BB

t1 = t0
v = Bt1

for elasticity on atomic scales. It can be derived as an approximation to classical density
functional theory [38, 118]. The simplest dimensionless form of the free energy is

F =
⁄ 1

2Â
1
≠‘ + (� + 1)2

2
Â + 1

4Â4 dx (3.25)

which leads to the following conserved evolution law

ˆ
t

Â = �
Ó

(≠‘ + (1 + �)2)Â + Â3
Ô

(3.26)

where Â is a rescaled density field of the underlying particles. The density field minimizing
the energy (3.25) is peaked at the atomic positions in the crystalline state and homogeneous
in the liquid state. In order to solve the 6th order PDE, we rewrite (3.26) as a system of
three second order equations

v = �Â,

ˆ
t

Â = �u,

u = (1 ≠ ‘)Â + 2�Â + �v + Â3
(3.27)

The derivative of the potential is linearized with (Ân+1)3 ¥ 3(Ân)2Ân+1 ≠ 2(Ân)3. A brief
review of the finite element discretization of the PFC equation, that uses a semi-implicit
time discretization, is stated in [7].

43

3 Scalable parallelization

Figure 3.10: Snapshot of the solution of the PFC equation using 4,096 cores. Each maximum
of the density functional is shown here with a circle and colored with its local
orientation. Zoom shows two grains having di�erent orientations and which
are separated from each other by a grain boundary. Postprocessing and
visualization of the data is done with OVITO [111, 112].

For the benchmarks calculations, the coarse mesh is always setup up such that each
processor contains a rectangular subdomain of dimension 100◊100, consisting of two coarse
elements. After refinement each subdomain contains 66,049 DOFs for each of the three
components. We run this configuration for 10 timesteps with 16 up to 16,384 processors
with increasing domain size. On the largest domain, a system with more than 8 · 108

unknowns must be solved in each timestep. These large scale simulations are used by the
author of this thesis to analyze grain coarsening [8]. See Figure 3.10 for an illustration.

For the coarse mesh, all four corner nodes of each subdomain are taken to be primal.
The resulting system is indefinite and non-symmetric. It can also be formulated in a
symmetric, but still indefinite way, but loses diagonal dominance. This leads to higher
computational costs for solving, even if an appropriate and e�cient solver, e.g. MINRES,
is used. Note that solving the resulting systems with FETI-DP is beyond its theory, which
mostly assumes the matrices to be symmetric and positive definite. Nevertheless, FETI-DP
is a robust and e�cient solver for this case. Figure 3.11 shows runtime and weak scaling
for 16 up to 16,384 processors using either the direct or the iterative Schur primal solver.
The runtime is the average of ten timesteps. It includes the time for local subdomain
assembling, creating the appropriate FETI-DP data structures and solving the resulting
system. There is no error estimator used here and we have disabled all disk I/O.

The direct Schur primal solver performs better for small size computations, but shows
bad scaling for larger number of processors. When using 4,096 processors, the direct solver
was not able to compute the very first timestep within 30 minutes. The main reason for
this behavior is the structure of the coarse grid. All processors contribute to the coarse

44

3.4 FETI-DP

101 102 103 104

15

20

25

number of processors

co
m

pu
tin

g
tim

e

101 102 103 104

0.6

0.8

1

number of processors

e�
ci

en
cy

Direct Schur primal solver Iterative Schur primal solver

Figure 3.11: Computing time for one time timestep of a 2D PFC computation using
FETI-DP with two di�erent solvers for the Schur primal system.

101 102 103 104
10≠2

10≠1

100

number of processors

tim
e

create Schur matrix
LU fact. Schur matrix
solve with direct Schur solver
solve with iterative Schur solver
create FETI-DP data structures
create all matrices
LU fact. interior matrices
LU fact. preconditioner matrices

Figure 3.12: Weak scaling of the FETI-DP method

mesh, but with a very low number of DOFs. For this benchmark, each processor contains
only 4 coarse nodes. The sparsity structure of explicitly created ÂS�� decays from around
32% by using 16 processors to less than 0.05% in the case of 16,384 processor. The iterative
Schur primal solver is around 10% slower than the direct one for less than 1,024 processors
but shows stable and good scaling also for the larger configurations. For the benchmark
simulations, only 5 outer iterations are required to solve the FETI-DP system. If this
number increases, the direct Schur primal solver becomes even more e�cient for small
domain sizes. The performance of the FETI-DP implementation is analyzed in more detail
in Figure 3.12. Herein we see that computing the explicit Schur primal matrix scales well,
but the time for computing their LU factorization and using this factorization for solving
a system highly increases from 16 processors to 1,024 processors. The iterative solution
of this system scales very well up to 1,024 processors but shows a small breakdown for
4,096 processors and goes down to an e�ciency of only 65% for 16,384 processors. This is
mainly due to the very sparse coarse mesh and is mostly responsible for observed decreasing

45

3 Scalable parallelization

a)

b)

c)

a)

b)

c)

Figure 3.13: Computing linear elasticity in a cactus. a) One µCT image of the cactus b)
Corresponding slice of the mesh colored with the phase field. The white colored
0.5 contour of the phase field represents the geometry. c) Visualization of the
results on the implicit defined cactus geometry colored with the magnitude of
the displacement field. Preprocessing of the geometry and calculations are
done by Michael Wenzla�.

computational e�ciency of the FETI-DP implementation for large processor numbers.
FETI-DP’s setup phase, i.e. creating primal, dual and interior node information and the
corresponding parallel DOF mappings, needs a constant time on a very low level. Creating
all required matrices shows a small increase in time for larger number of processors. This
is also due to the globally distributed and very sparse coarse space matrices ÂA��, ÂA�B

and ÂA
B�. Still, if the number of outer FETI-DP iterations is large enough, this does not

play an important role the for overall e�ciency.

Strong scaling for linear elasticity

We consider a di�use domain approximation [82] of a linear elasticity problem in biomechan-
ics. The lamellar structure of a columnar cactus is analyzed using the FETI-DP method,
see [128] for more information about these calculations. The geometry results from prepro-
cessing a stack of µCT images of the cactus. Meshconv [110] is used to create an implicitly
defined geometry of the cactus and an appropriately refined mesh. Figure 3.13 shows an
example of a µCT image of the cactus, a slice through the mesh at the corresponding
position and the result of the computation colored with the magnitude of the displacement
field. The mesh has more than 55 million elements and around 11 million vertices.

46

3.4 FETI-DP

256 512 1024 2048
100

101

102

number of processors

tim
e

local assembling
create FETI-DP data struc-
tures
create and factorize primal
Schur matrix
solve system

Figure 3.14: Strong scaling of the FETI-DP method for computing linear elasticity in a
3D di�use domain

cores avrg. unknowns unbalancing runtime [s] e�ciency

256 40,934 6.7% 380.46 100%
512 20,934 10.96% 170.17 111.7%
1,024 10,740 18.46% 85.7 110.9%
2,048 5,532 25.63% 64.75 73.4%

Table 3.2: Data for benchmarking the FETI-DP solver of linear elasticity in a 3D di�use
domain configuration. The load unbalancing is defined w.r.t. the unknowns
of the linear system. E�ciency is computed w.r.t the calculation with 256
processors.

To examine strong scaling of the FETI-DP method, we performed this computation with
a varying number of processors ranging from 256 to 2,048. Scaling results are shown in
Figure 3.14. Therein, the time for creating and factorizing the local matrices is included in
creating FETI-DP data structures. Computing the LU factorization is responsible for more
than 95% of this time. Overall runtime, load unbalancing information and overall e�ciency
of the solver method are presented in Table 3.2. The super scalar speedup for computations
with 512 and 1,024 processors is related to scaling of the multifrontal direct solver. The
computational complexity of factorizing an n ◊ n matrix, resulting from discretization of
a PDE with the finite element method in 3D, is in O

!
n2"

. Thus, when the size of the
subdomain is halved, time for local factorization is quartered. In opposite to this, the size
of the coarse space problem, i.e. the Schur primal matrix, is increased.

47

3 Scalable parallelization

3.5 Extensions of the standard FETI-DP
Though the standard FETI-DP method is quasi optimal from a mathematical point of
view, there are two drawbacks: the use of direct solvers for the factorization of local
matrices and the Schur primal matrix, and a very sparse and globally distributed coarse
grid. Using direct solvers for 2D problems is very e�cient, but the computational scaling
is totally di�erent for 3D problems. With an optimal ordering strategy, a direct solver
requires O

1
n3/2

2
floating point operations to factorize an n ◊ n matrix resulting from the

discretization of a PDE in 2D. The complexity increases to O
!
n2"

floating point operations,
if the PDE is discretized in a 3D domain. Furthermore, memory requirements scales
O (n log n) in 2D, but O

1
n4/3

2
in 3D. This prevents the use of FETI-DP for very large 3D

simulations. To circumvent the problem, the exact local solver must be replaced by some
approximate solutions. This idea leads to inexact FETI-DP methods, which are considered
in Section 3.5.1.

The primal Schur matrix is a distributed matrix with a very low ratio of rows per
processor. In the 2D benchmarks presented in Section 3.4.2, each processor contains at
most nine rows of the primal Schur matrix. For using 4,096 processors, the matrix is of size
12663 ◊ 12663 and is very sparse. Factorizing this matrix locally on one processor can be
done with a nearly negligible amount of computing time and memory. But as the matrix
is stored in a distributed way, the amount of communication is extremely high in contrast
to the computation that can be done locally. In our benchmarks, the multifrontal direct
solver MUMPS failed to compute the factorization of this matrix. The same di�cultly is
observed and discussed in [73, 74]. One possibility to circumvent this problem is to define
a multilevel method, which introduces some hierarchical decomposition of the coarse space.
For FETI and FETI-DP methods, this is considered in [73, 74, 76]. Similar approaches are
considered for the BDDC method in [90, 125]. In Section 3.5.2, we present a novel multilevel
FETI-DP approach. Our multilevel FETI-DP method di�ers in several points from the
existing approaches. In contrast to the work [73, 74], our method is based on the FETI-DP
method only, and does not require the computation of pseudoinverse matrices, which are
needed in the FETI method. Though only presented for a two level decomposition of the
coarse grid, our multilevel FETI-DP approach directly generalizes to the general case of
arbitrary number of levels. The main advantage of our approach is the independency of
the number of iterations with respect to the decomposition of the coarse grid. Though this
is not proven in this work, it is highly indicated by the presented benchmarks.

3.5.1 Inexact FETI-DP
In inexact FETI-DP methods, the factorization of local subdomain matrices and factoriza-
tion of the primal Schur matrix can be replaced by some inexact solution method. Inexact
FETI-DP methods are first considered in [71, 70]. For a brief introduction into these
methods, we consider only symmetric matrices, thus we can write the FETI-DP saddle
point problem as S

WU
A

BB

ÂAT

�B

JT

ÂA�B

A�� 0
J 0 0

T

XV

S

WU
u

B

Âu�
⁄

T

XV =

S

WU
f

B

f�
0

T

XV (3.28)

48

3.5 Extensions of the standard FETI-DP

or in short form as C
ÂA BT

B 0

D C
Âu
⁄

D

=
C

Âf
0

D

(3.29)

or simply as
Ax = F (3.30)

In [71, 70], two di�erent inexact FETI-DP methods are proposed. The iFETI-DP method
for the full saddle point system, and the so called irFETI-DP method defined for a reduced
system. The first one is defined by specifying the following block triangular preconditioner
for the system (3.29)

‚B≠1
L

=
C

‚A≠1 0
M≠1B ‚A≠1 ≠M≠1

D

(3.31)

where the block ‚A≠1 is a spectrally equivalent preconditioner for ÂA, with bounds independent
of the discretization parameters h and H, and M≠1 is a good preconditioner for the FETI-
DP system (3.20), i.e. it can be chosen to be the Dirichlet preconditioner (3.22) or the
lumped preconditioner (3.23), respectively. The first inexact method is then given by using
an appropriate Krylov subspace method, e.g. GMRES, for the non-symmetric preconditioner
system

‚B≠1
L

Ax = ‚B≠1
L

F (3.32)
The standard FETI-DP method is derived from (3.28) by eliminating u

B

and Âu�. Instead,
to define the second inexact FETI-DP method (irFETI-DP), we eliminate only u

B

by one
step of block Gaussian elimination and obtain the reduced system

C
ÂS�� ≠ ÂA�B

A≠1
BB

JT

≠JA≠1
BB

ÂAT

�B

≠JA≠1
BB

JT

D C
Âu�
⁄

D

=
C

Âf� ≠ ÂA�BA≠1
BB

f
B

≠JA≠1
BB

f
B

D

(3.33)

where ÂS�� = ÂA�� ≠ ÂA�B

A≠1
BB

ÂAT

�B

. For this system, we also use the short notation

A
r

x
r

= F
r

(3.34)

For this saddle point problem, the following block preconditioner is proposed in [71]

B≠1
r,L

=
C

‚S≠1
�� 0

≠M≠1JA≠1
BB

ÂAT

�B

‚S≠1
�� ≠M≠1

D

(3.35)

Here, ‚S≠1
�� is assumed to be a spectrally equivalent preconditioner for ÂS��, independent of

the discretization parameters h and H, and M≠1 is a good preconditioner for the FETI-DP
system.

Both inexact FETI-DP methods allow to replace the exact solver for the interior matrices
and for the Schur primal matrix by some approximation methods. In [71], it was proven
that the condition number of both methods is asymptotically of the same quality as for
the standard, exact FETI-DP methods. In [71, 70, 74], detailed benchmarks are presented
for both inexact FETI-DP methods. They show that inexact FETI-DP method can
dramatically reduce computational time for solving large systems, for some simulations
even more than one order of magnitude. The convergence rates of the inexact methods are
comparable to those of the standard FETI-DP method if good approximative solvers are
used as preconditioning blocks.

49

3 Scalable parallelization

primal node of local
coarse grid

primal node of global
coarse grid

Figure 3.15: Example of multilevel FETI-DP composition of 16 subdomains. Four subdo-
mains colored with the same color share a local coarse space. A global coarse
space couples all subdomains. Lagrange constraints to ensure continuity of
the solution along dual and primal nodes of the local coarse spaces are not
shown in this figure .

3.5.2 Multilevel FETI-DP

The coarse space problem of the standard FETI-DP method leads to a globally distributed
matrix, of which every processor contains only a few rows. In our numerical experiments for
showing scalability of the FETI-DP method on solving the PFC equation, cf. Section 3.4.2,
each processor contains at most nine rows of the coarse space matrix. This distribution
leads to a breakdown in the computational scalability of the FETI-DP method for large
number of processors, as the ratio of local computations to communication is far away from
being optimal. For relatively small number of processors, one can try to circumvent the
problem by computing the coarse space matrix and its factorization on only one processor,
and distributing the factorized matrix to all other processors. This is done, e.g. in [75].
For large number of processors, this is also not a scaling procedure.

We introduce a novel method to deal with this problem, which we call multilevel FETI-
DP. Our approach creates multiple coarse space matrices, all of which are only weakly
coupled. The coarse space matrices are restricted to small number of processors, which
leads to a more localized communication and ensures also computational scalability of the

50

3.5 Extensions of the standard FETI-DP

FETI-DP method.
Though we call our method a multilevel FETI-DP, its presentation in this work is limited

to the case of two coarse grid levels. From the presentation it should be clear that the
method directly generalized to an arbitrary number of levels. The formal generalization
and its implementation is ongoing research of the author.

In the standard FETI-DP approach, all subdomains are coupled by one global coarse
grid. For the multilevel approach, an arbitrary but fixed number of subdomains is used to
create a cluster of subdomains. Each cluster contains a local coarse grid, which ensures
continuity of the solution on the primal nodes within one cluster. A global coarse grid is
then used to connect the clusters among each other. This is illustrated in Figure 3.15 for
four clusters each consisting of four subdomains. In what follows, a cluster is defined as a
set of subdomain indices C

i

and the number of clusters is defined by n
c

. Each subdomain
is enclosed in exactly one cluster. In contrast to the standard FETI-DP method, we have
now to distinguish between primal nodes local to a cluster and global primal nodes. We
denote unknowns related to primal nodes local to the cluster by u�c , and unknowns related
to global primal nodes by u�g . According to the splitting of unknowns, the local matrix of
subdomain i œ C

j

is partitioned as follows

Ai =

S

WU
Ai

BB

Ai

B�c
Ai

B�g

Ai

�cB

Ai

�c�c
Ai

�c�g

Ai

�gB

Ai

�g�c
Ai

�g�g

T

XV (3.36)

We make the assumption that cluster-local primal nodes and global primal nodes are chosen
such that the supports of basis functions related to cluster primal nodes and global primal
nodes do not overlap. In this case, the corresponding coupling matrices are zero and Ai

can be simplified to

Ai =

S

WU
Ai

BB

Ai

B�c
Ai

B�g

Ai

�cB

Ai

�c�c
0

Ai

�gB

0 Ai

�g�g

T

XV (3.37)

with Ai

BB

defined as by (3.10) and

Ai

B�c
=

C
Ai

I�c

Ai

��c

D

, Ai

B�g
=

C
Ai

I�g

Ai

��g

D

, Ai

�cB

=
Ë
Ai

�cI

Ai

�c�
È

, Ai

�gB

=
Ë
Ai

�gI

Ai

�g�
È

(3.38)
For each cluster i, we define the subassembled matrices for the cluster-local coarse grid by

ÂAi

�c�c
=

ÿ

jœCi

Rj

�c

T

Aj

�c�c
Rj

�c (3.39)

Then, ÂA�c�c is the block matrix of all cluster-local coarse grid matrices
ÂA�c�c = diagnc

i=1
ÂAi

�c�c
(3.40)

The global coarse grid matrix is subassembled from the local matrices in the same way
with

ÂA�g�g =
pÿ

i=1
Ri

�g

T

Ai

�g�g
Ri

�g
(3.41)

51

3 Scalable parallelization

The subassembled coupling matrices ÂA
B�c and ÂA�cB

, and the globally subassembled
coupling matrices ÂA

B�g and ÂA�gB

are defined correspondingly. The complete FETI-DP
systems reads S

WU
A

BB

ÂA
B�c

ÂA
B�g

ÂA�cB

ÂA�c�c 0
ÂA�gB

0 ÂA�g�g

T

XV

S

WU
u

B

Âu�c

Âu�g

T

XV =

S

WU
f

B

Âf�c

Âf�g

T

XV (3.42)

To ensure continuity of the solution across interior boundaries, we have to define Lagrange
constraints not only on the dual nodes, but also on cluster primal nodes which correspond
to global nodes shared by more than one cluster, cf. also Figure 3.15. We denote by ⁄� the
Lagrange multipliers defined for dual nodes, and by ⁄�c the Lagrange multipliers defined
for a subset of the cluster primal nodes. The corresponding discrete jump operators are
denoted by J� and J�c . By introducing them to ensure continuity of the solution of (3.42),
the following system is obtained

S

WWWWWU

A
BB

ÂA
B�c

ÂA
B�g JT

� 0
ÂA�cB

ÂA�c�c 0 0 JT

�c
ÂA�gB

0 ÂA�g�g 0 0
J� 0 0 0 0
0 J�c 0 0 0

T

XXXXXV

S

WWWWWU

u
B

Âu�c

Âu�g

⁄�
⁄�c

T

XXXXXV
=

S

WWWWWU

f
B

Âf�c

Âf�g

0
0

T

XXXXXV
(3.43)

By block Gaussian elimination of the unknowns u
B

, Âu�c and Âu�g , we obtain a reduced
linear system defined only for the Lagrange multipliers

C
J� 0 0
0 J�c 0

D

S≠1
ml

S

WU
JT

� 0
0 JT

�c

0 0

T

XV

C
⁄�
⁄�c

D

=
C
J� 0 0
0 J�c 0

D

S≠1
ml

S

WU
f

B

Âf�c

Âf�g

T

XV (3.44)

with

S
ml

=

S

WU
A

BB

ÂA
B�c

ÂA
B�g

ÂA�cB

ÂA�c�c 0
ÂA�gB

0 ÂA�g�g

T

XV =
C

ÂA
c

ÂA
cg

ÂA
gc

ÂA�g�g

D

(3.45)

and
ÂA

c

=
C

A
BB

ÂA
B�c

ÂA�cB

ÂA�c�c

D

, ÂA
cg

=
C

ÂA
B�g

0

D

, ÂA
gc

=
Ë

ÂA�gB

0
È

(3.46)

Based on block factorization, the inverse of S
ml

can be explicitly written as

S≠1
ml

=
C
I ≠ ÂA≠1

c

ÂA
cg

0 I

D C
≠ ÂA≠1

c

0
0 S

g

D C
I 0

≠ ÂA
gc

ÂA≠1
c

I

D

=
C

ÂA≠1
c

+ ÂA≠1
c

ÂA
cg

S≠1
g

ÂA
gc

ÂA≠1
c

≠ ÂA≠1
c

ÂA
cg

S≠1
g

≠S≠1
g

ÂA
gc

ÂA≠1
c

S≠1
g

D (3.47)

with the Schur complement on the global primal nodes

S
g

= ÂA�g�g ≠ ÂA
gc

ÂA≠1
c

ÂA
cg

(3.48)

52

3.5 Extensions of the standard FETI-DP

The inverse of matrix ÂA
c

can be explicitly written in the same way

ÂA≠1
c

=
C

A
BB

ÂA
B�c

ÂA�cB

ÂA�c�c

D≠1
=

C
I ≠A≠1

BB

ÂA
B�c

0 I

D C
≠A≠1

BB

0
0 S

c

D C
I 0

≠ ÂA�cB

A≠1
BB

I

D

=
C

F
c

≠A≠1
BB

ÂA
B�cS≠1

c

≠S≠1
c

ÂA�cB

A≠1
BB

S≠1
c

D (3.49)

with F
c

the cluster-local FETI-DP operator defined by

F
c

= A≠1
BB

+ A≠1
BB

ÂA
B�cS≠1

c

ÂA�cB

A≠1
BB

(3.50)

and the Schur complement on the cluster primal nodes, i.e. the cluster-local coarse grid
matrix, defined by

S
c

= ÂA�c�c ≠ ÂA�cB

A≠1
BB

ÂA
B�c (3.51)

Then (3.48) can be simplified to

S
g

= ÂA�g�g ≠ ÂA�gB

F ≠1
c

ÂA
B�g (3.52)

This shows a direct correlation between the cluster Schur complement S
c

and the global
Schur complement S

g

. The first one includes the inverse of local matrices while in the
latter the corresponding inverse is replaced by the solution of the FETI-DP operator local
to each cluster.

We now combine (3.44) and (3.47) to get the global FETI-DP system:

F
g

C
⁄�
⁄�c

D

= d
g

(3.53)

with the global FETI-DP operator

F
g

=
C
J� 0
0 J�c

D 1
ÂA≠1

c

+ ÂA≠1
c

ÂA
cg

S≠1
g

ÂA
gc

ÂA≠1
c

2 C
JT

� 0
0 JT

�c

D

(3.54)

and the reduced right-hand-side vector of the global FETI-DP system

d
ml

=
C
J� 0
0 J�c

D A1
ÂA≠1

c

+ ÂA≠1
c

ÂA
cg

S≠1
g

ÂA
gc

ÂA≠1
c

2 C
f

B

Âf�c

D

≠ ÂA≠1
c

ÂA
cg

S≠1
g

Âf�g

B

(3.55)

Once the solution for the Lagrange multipliers ⁄� and ⁄�c is computed, the solution of
the other variables of system (3.43) can be obtained with

S

WU
u

B

Âu�c

Âu�g

T

XV = S≠1
ml

Q

ca

S

WU
f

B

Âf�c

Âf�g

T

XV ≠

S

WU
JT

� 0
0 JT

�c

0 0

T

XV

C
⁄�
⁄�c

DR

db (3.56)

53

3 Scalable parallelization

Implementation issues

We now discuss the e�cient implementation of the multilevel FETI-DP method. Creating
the required parallel DOF mappings, vectors and matrices is identical as it is done in the
standard FETI-DP method and is thus covered by the discussion in Section 3.4.1. Here,
we discuss the implementation of the FETI-DP operators F

c

and F
g

, and the explicit
computation of the Schur primal matrices S

c

and S
g

.
The Schur primal matrix S

c

is local to a cluster and can be computed exactly in the
same way as it is done for the global Schur primal matrix ÂS�� in the standard FETI-DP
method. This is described by Algorithm 7. The solution of the cluster FETI-DP operator
F

c

is required only inside of the computation of ÂA≠1
c

, cf. (3.49), which is required in
two places: for explicit computation the global Schur matrix S

g

and when the global
multilevel FETI-DP operator F

g

is applied to some vector. Computing the action of ÂA≠1
c

is implemented by Algorithm 9. One application of this operator requires three solves with
local interior matrices A

BB

and two solves with the cluster Schur primal matrices S
c

.

Algorithm 9: Application of ÂA≠1
c

, cf. (3.49)
input : Matrices defined within ÂA

c

, vectors b0 and b1

output :
C
x0
x1

D

= ÂA≠1
c

C
b0
b1

D

solve for A
BB

t0 = b0
compute t1 = ÂA�cB

t0
solve for S

c

t2 = t1
compute t1 = ÂA

B�ct2
solve for A

BB

x0 = t1
compute x0 = t0 + x0 // x0 = F

c

b0
solve for S

c

t0 = b1
compute x1 = t0 ≠ t2 // x1 = ≠S≠1

c

ÂA�cB

A≠1
BB

b0 + S≠1
c

b1
compute t1 = ÂA

B�ct0
solve A

BB

t2 = t1
compute x0 = x0 ≠ t2 // x0 = F

c

b0 ≠ A≠1
BB

ÂA
B�cS≠1

c

b1

Computing the global Schur primal matrix S
g

, cf. (3.52), can be done equivalently to the
explicit computation of the global Schur primal matrix in the standard FETI-DP method.
The only major change is to replace the solve with the local interior matrices A

BB

with the
solve of the cluster-local FETI-DP operator F

c

. Finally, we have to specify an algorithm for
the application of the global multilevel FETI-DP operator F

g

, cf. (3.54). For an e�cient
algorithm, we first reformulated the inner part of the operator as following

ÂA≠1
c

+ ÂA≠1
c

ÂA
cg

S≠1
g

ÂA
gc

ÂA≠1
c

©
A

I + ÂA≠1
c

C
ÂA

B�g S≠1
g

ÂA�gB

0
0 0

DB
ÂA≠1

c

(3.57)

This directly leads to Algorithm 10, which specifies an e�cient procedure to implement
the action of the global FETI-DP operator.

54

3.5 Extensions of the standard FETI-DP

Algorithm 10: Application of the multilevel FETI-DP operator
input : Matrices defined within the multilevel FETI-DP operator, global Schur

complement operator S
g

, some vectors ⁄� and ⁄�c

output :
C
v0
v1

D

= F
g

C
⁄�
⁄�c

D

compute t0 = JT

�⁄� and t1 = JT

�c
⁄�c

solve for ÂA
c

C
t2
t3

D

=
C
t0
t1

D

compute t4 = ÂA
B�g S≠1

g

ÂA�gB

t2

solve for ÂA
c

C
t5
t6

D

=
C
t4
0

D

compute t2 = t2 + t5 and t3 = t3 + t6
compute v0 = J�t2 and v1 = J�ct3

For estimating the computational costs of applying the FETI-DP operator in the standard
and in the multilevel FETI-DP methods, we focus on the major blocks: solving with the
local interior matrices and solving with the distributed primal Schur matrices. Time and
memory for the other operations, e.g. matrix vector multiplications or computing vector
products, can be neglected. For one application of the standard FETI-DP operator (3.20),
it is required to solve twice a system with the local interior matrices and to solve once with
the global Schur primal matrix. For the application of the multilevel FETI-DP operator,
we need to compute twice the solution with ÂA

c

and one solution with the global Schur
primal matrix. Each solution with ÂA

c

requires three solves with the interior matrices
and two solves with the local Schur primal matrices. Note that in one of the both solves
with ÂA

c

, the second vector of the right hand side is always zero. Careful analysis of
Algorithm 9 directly shows that in this case the last solve with the interior matrices and
local Schur primal matrices can be omitted, as the solution is always the corresponding
zero vector. Altogether, one application of the multilevel Schur primal matrix requires five
solves with the interior matrices, three solves with the local Schur primal matrices and
one solve with the global Schur primal matrix. As the interior matrices are the same in
both FETI-DP methods, also the computing time for solving with these matrices is the
same. Comparing the time complexity of solving the di�erent Schur primal matrices in
both FETI-DP methods is not straightforward. Nevertheless, our numerical experiments,
which are presented in the next section, show that splitting the globally distributed Schur
primal matrix arising in the standard FETI-DP method into a level structured set of more
locally defined Schur primal matrices results in a faster and more scalable solution method.

Numerical results

To compare the proposed multilevel FETI-DP method with the standard FETI-DP method,
we employ the same 2D PFC simulation as described in Section 3.4.2. As we have not defined
a preconditioner for the multilevel FETI-DP method, we do not use any preconditioner also
for the standard FETI-DP method in this section. Therefore, the following results cannot

55

3 Scalable parallelization

cores/s.p.c. 1 (FETI-DP) 4 16 64 256 1024

16 0.0072 0.014 - - - -
64 0.015 0.020 0.015 - - -
256 0.060 0.043 0.029 0.03227 - -
1024 1.8 0.26 0.068 1.0 22.4
4096 - 8.8 3.9 1.1 24.1 401.8

Table 3.3: Comparing time required for factorization of the Schur primal matrix for standard
FETI-DP solver with time required for factorization of cluster and global Schur
primal matrices in multilevel FETI-DP solver with varying number of subdomains
per cluster (s.p.c.). Red colored time numbers denote the fastest multilevel
FETI-DP configuration for a fixed number of cores.

cores/s.p.c. 1 (FETI-DP) 4 16 64 256 1024

16 23.5 23.9 - - - -
64 25.5 24.2 24.6 - - -
256 34.5 25.5 25.4 28.1 - -
1024 127.7 27.9 26.0 29.7 52.2 -
4096 - 84.1 35.0 35.7 67.0 311.6

Table 3.4: Comparing average solution time for one timestep of a 2D PFC simulation with
using either standard FETI-DP or the multilevel FETI-DP solver with varing
number of subdomains per cluster (s.p.c.). The time does not contain the setup
time of the solver. Red colored time numbers denote the fastest multilevel
FETI-DP configuration for a fixed number of cores.

be directly compared with those in Section 3.4.2. Nevertheless, as the proposed FETI-DP
preconditioners are not crucial for the parallel computational scaling, the following results
will immediately carry over to the general case with using either the Dirichlet or the lumped
preconditioner.

We consider weak scaling from 16 to 4,096 cores. Furthermore, we restrict this comparison
to the direct solution of the Schur primal matrices, as in general this leads to a more e�cient
and robust solution method. We make use of MUMPS to compute the LU factorizations
of distributed Schur primal matrices in both FETI-DP methods.

Table 3.3 compares time required for factorizing the Schur primal matrix in the standard
FETI-DP method with the time required to compute the factorization of the cluster and the
global Schur primal matrices in the multilevel FETI-DP method with varying cluster size.
When using more than 64 cores, factorization of the Schur primal matrices in the multilevel
FETI-DP can be computed faster than in the standard FETI-DP method. MUMPS fails
to compute the LU factorization in the standard FETI-DP method when using 4,096 cores,
whereas it requires only 1.1 seconds in the multilevel FETI-DP method, when each cluster
contains 64 subdomains.

The number of iterations of the FETI-DP solver is always the same, independently
whether the standard or the multilevel version is used. Furthermore, the iteration count of

56

3.6 A Navier-Stokes solver

101 102 103

0.2

0.4

0.6

0.8

1

number of processors

e�
ci

en
cy

standard FETI-DP method
multilevel FETI-DP method

Figure 3.16: Comparing e�ciency of standard FETI-DP and multilevel FETI-DP for a 2D
PFC computation.

the presented multilevel FETI-DP method is independent of the cluster size. Therefore,
no comparison of iterations numbers is done in the following. Table 3.4 compares the
solution time of the standard and the multilevel FETI-DP method with varying cluster
size. It shows that the multilevel FETI-DP method is superior to the standard FETI-DP
method. It has a nearly constant solution time up to 1,024 cores. When using 4,096 cores
the solution time slightly increases, where the standard FETI-DP cannot be applied as
MUMPS fails to compute the LU factorization of the Schur primal matrix.

3.6 A Navier-Stokes solver
The opposite of general black box solvers are highly specialized solution methods that
work only for one specific PDE. Sometimes they are designed even only for a limited
parameter range of a specific PDE. Because of their limited use, they can be designed
in a very e�cient way taking into account not only knowledge of algebraic or geometric
discretization structures, but also of the physics behind the PDE. For many widely used
PDEs highly specialized methods to solve the resulting systems of linear equations are
known, such as for the Maxwell’s equation or the Stokes and Navier-Stokes equations.
In this section, we present the implementation of a linear solver for systems of equation
arising from discretization of the instationary, linearized Navier-Stokes equation in 2D and
3D. This solver was proposed in [103], without considering its parallelization. Its parallel
implementation exemplifies that our concepts for implementing parallel solver enables a
fast and simple implementation of problem specific solver methods.

First, we give a short introduction to the Navier-Stokes solver proposed in [103], where
parallelization issues are not considered. The Navier-Stokes equation for modeling incom-
pressible flow reads as follows

ˆu

ˆt
+ u · Òu ≠ ‹Ò2u + Òp = f

Ò · u = 0
(3.58)

57

3 Scalable parallelization

together with appropriate boundary and initial conditions. Here, u is the fluid velocity, p
is the pressure, ‹ is the viscosity parameter and f is some force applied to the system. For
time discretization, we restrict ourselves here to the backward Euler scheme

un+1 ≠ un

·
+ uú · Òun+1 ≠ ‹Ò2un+1 + Òpn+1 = f

Ò · un+1 = 0
(3.59)

and for linearization we choose uú = un. Thus, at each timestep a generalized Oseen
problem arises: given a divergence-free vector field w, we search for u and p that are
solutions of

1
·

u + w · Òu ≠ ‹Ò2u + Òp = g

Ò · u = 0
(3.60)

Discretization of this PDE with the finite element method leads to a system of linear
equations of the form C

F BT

B 0

D C
u
p

D

=
C
g
0

D

(3.61)

where F is the discrete convection di�usion operator and B is the discrete pressure
divergence matrix. This system has the saddle point property, and many methods are
known for building e�cient preconditioners and solvers for this type of systems [20]. The
basic approach for defining a preconditioner of a block matrix, is the block factorization of
the according system C

F BT

B 0

D

=
C

I 0
BF ≠1 I

D C
F BT

0 S

D

(3.62)

where S = ≠BF ≠1BT is the Schur complement of F . This directly motivates the use of
block triangular preconditioners of the from

P =
C
F BT

0 S

D

(3.63)

Such preconditioners were first considered in [25], see also [20] and references therein for
more information on this topic. The inverse of the block triangular preconditioner P reads
in factorized form as follows

P≠1 =
C
F ≠1 0

0 I

D C
I BT

0 ≠I

D C
I 0
0 ≠S≠1

D

(3.64)

It can be shown, that if F ≠1 and S≠1 are solved exactly, then GMRES will solve system
(3.61) precondition by (3.64) in at most two iterations [20]. For an e�cient solver method,
we have to replace both F ≠1 and S≠1 by some approximations F̂ ≠1 and Ŝ≠1. In [103], the
following approximations are proposed for the case the system of equations results from
discretization of the Oseen problem (3.60): F̂ ≠1 is defined by one multigrid V-cycle and
Ŝ≠1 is defined by the following expression, which is sometimes called the F

p

approximation

Ŝ≠1 = Q̂≠1F
p

Ĥ≠1 (3.65)

58

3.6 A Navier-Stokes solver

where Ĥ≠1 is the approximate inverse of the pressure Laplace matrix, Q̂≠1 is the approxi-
mate inverse of the pressure mass matrix, and F

p

is the convection-di�usion operator of
the Oseen problem discretized in pressure space. We choose Q̂≠1 to approximate with two
CG iterations preconditioned with diagonal scaling, and Ĥ≠1 is approximated with one
multigrid V-cycle. In [103], it was shown that this choice leads to a solver whose iteration
count is nearly independent of mesh size and timestep. Furthermore, the solver shows only
a mild influence on the viscosity parameter.

3.6.1 Implementation issues
Our implementation of the Navier-Stokes solver is based on the global matrix solver
implemented by the class PetscSolverGlobalMatrix, cf. Section 3.7, and PETSc’s concept
of the PCFIELDSPLIT preconditioner [26], which implements a general interface for writing
problem specific preconditioners based on blocks matrices. Creating the solver splits into
the following parts:

1. Create matrix blocks for the velocity and pressure unknowns: To extract blocks from
the globally distributed matrix, PETSc provides the concept of IS (index set), which
is similar in its functionality to our parallel DOF mappings. Thus, the Navier-Stokes
solver must create two parallel DOF mappings for the velocity and the pressure
unknowns, convert them to PETSc’s IS data structure and use them to initialize
the PCFIELDSPLIT preconditioner. This procedure is already implemented in the
function createFieldSplit in class PetscSolverGlobalMatrix, which must be
called twice from the Navier-Stokes solver.

2. Create the auxiliary matrices Q, H and F
p

: To show how simple it is to create such
kind of matrices for problem specific preconditioners, we present the source code
from our Navier Stokes solver implementation to create the mass matrix Q:

1 DOFMatrix massMatrix(pressureFeSpace, pressureFeSpace);
2 Operator massOp(pressureFeSpace, pressureFeSpace);
3 Simple_ZOT massTerm;
4 massOp.addTerm(&massTerm);
5 massMatrix.assembleOperator(massOp);
6 massMatrixSolver = createSubSolver(pressureComponent, "mass_");
7 massMatrixSolver->fillPetscMatrix(&massMatrix);

In the first five lines, on each processor a local matrix is created and assembled with
the finite element identify operator. The sixth line creates a new sub solver from the
PetscSolverGlobalMatrix solver restricted to the pressure space. The last line
copies the local matrix to a globally distributed PETSc matrix. Altogether only
seven lines of code are required to create a distributed matrix, fill it with a discrete
FEM operator and initialize a parallel solver method for this matrix.

3. Initialize the inner and outer solvers: Once all the inner solvers and matrices are
created, one has to inform PETSc about the specific solver type and solver parameter,
e.g. stopping criteria.

In summary, our concept for parallel solver and its e�cient implementation allow to
implement the described Navier-Stokes solver in around 120 lines of code.

59

3 Scalable parallelization

h = 1/16 h = 1/32 h = 1/64 h = 1/128
‹ = 1/100
· = 0.1 12 12 11 10
· = 1 16 15 14 13
· = 10 19 16 15 15

‹ = 1/200
· = 0.1 13 13 12 11
· = 1 19 17 15 14
· = 10 23 21 18 17

‹ = 1/500
· = 0.1 15 15 14 12
· = 1 72 62 17 15
· = 10 - 322 27 23

Table 3.5: Number of iterations for the Navier-Stokes solver to solve a driven cavity flow in
2D with varying discretization parameters. The solver did not converge within
1,000 iterations for Re = 500, · = 10 and h = 1/16.

3.6.2 Numerical results
First, we show that the proposed Navier-Stokes solver is optimal in the sense that it is
mostly independent on the discretization parameters, i.e. the mesh size, the timestep and
viscosity. For this, we consider a standard driven cavity flow problem in 2D [127, 47]. The
boundary condition is given by

u(x, y) =
I

(1, 0) y = 1
(0, 0) otherwise

on ˆ� (3.66)

Table 3.5 shows the iteration count of the Navier-Stokes solver for varying mesh sizes,
timesteps and viscosity parameters. All of these computations are performed using eight
processors. The iteration count is nearly constant with increasing mesh refinement and
even tends to decrease as the mesh is much finer than the solution singularities that
must be resolved on it. For a fixed mesh size, the iteration count tends to an asymptotic
maximum value. This is also observed in [103] for the Navier-Stokes driven cavity flow.
The increasing iteration count for decreasing viscosity is in agreement with observations
for the steady-state Navier-Stokes equation in [39, 65].

To verify parallel scalability of the Navier-Stokes solver, the same Navier-Stokes driven
cavity problem in 2D with ‹ = 1/1000 and · = 0.1 is computed for 10 timesteps. The
number of processors is varied between 8 and 2,048. Figures 3.17 and 3.18 show scaling
for initializing all parallel data structures and the Navier-Stokes solver, and solving the
systems of linear equations, respectively. In Figure 3.18, timing results are scaled by the
number of iterations, as the iteration count decreases for very fine meshes. Weak and strong
scaling of initializing the solver are nearly perfect up to 2,048 processors, as long as the

60

3.6 A Navier-Stokes solver

101 102 103
10≠1

100

101

number of processors

tim
e

217 elements
219 elements
221 elements
223 elements
225 elements
212 elements per subdomain
214 elements per subdomain
216 elements per subdomain
218 elements per subdomain

Figure 3.17: Weak and strong scaling of create distributed matrices and initializing the
parallel Navier-Stokes preconditioner using 8 to 2,048 processors.

local problem size becomes not too small. The breakdown of scaling for solving the systems
of linear equations is mostly related to parallel scaling of the used algebraic multigrid
method. In our benchmarks, we use BoomerAMG included in hypre (High Performance
Preconditioners) [41, 42]. Hereby we see that its setup phase does not scale very well for
the used problem size and number or processors. If the number of iterations becomes too
small, the non-scaling setup phase dominates and explains the deterioration of parallel
scaling e�ciency in our benchmarks.

3.6.3 Di�use domain approach
The proposed Navier-Stokes solver was extended in [66] for two-phase flow problems.
Here, we use the same solver in a parallel environment for a di�use domain model of the
Navier-Stokes equation [1]. The optimality results for this solver, which are provided in
[103], are not directly applicable anymore in this situation. Nevertheless, the solver still
provides an e�cient method for the incompressible Navier-Stokes equation in complicated
geometries.

We consider a flow channel with 10 spherical particles. They are implicitly described by
a phase-field variable, which in the current situation is fixed in time. The initial coarse
mesh is of size 8 ◊ 2 ◊ 2 and consists of 12,288 tetrahedrons. All tetrahedrons are further
bisectioned 3 times to create a su�ciently fine computational mesh, and an adaptive
refinement procedure is used to resolve the phase transition. The final mesh consist of
2, 746, 954 elements. We use Taylor-Hood elements for an inf-sup stable discretization.
No-slip boundary conditions at the particles are specified and incorporated into the di�use
domain approximation. A gravity force is used to drive the flow. We run the computation
with a timestep · = 10≠1 and viscosity ‹ = 1/100. Figure 3.19 shows the result at
t = 1.0. The system to be solved in each timestep consists of 1.15 · 107 unknowns. We solve
this configuration with 32 to 512 processors. The initial mesh is created in a sequential

61

3 Scalable parallelization

101 102 103

10≠1

100

number of processors

tim
e

217 elements
219 elements
221 elements
223 elements
225 elements
212 elements per subdomain
214 elements per subdomain
216 elements per subdomain
218 elements per subdomain

Figure 3.18: Weak and strong scaling of solving driven cavity flow in 2D using 8 to 2,048
processors.

cores avrg. elements avrg. unknowns load unbalancing e�ciency

32 85,842 359,144 5.3% 100%
64 42,921 179,572 13.3% 98.4%
128 21,460 89,786 14.2% 103.3%
256 10,730 44,893 14.1% 105.0%
512 5,365 22,446 40.9% 82.6%

Table 3.6: Data for benchmarking the Navier-Stokes solver for a di�use domain configura-
tion in 3D. The load unbalancing is defined w.r.t. the unknowns of the linear
system. E�ciency is computed w.r.t the calculation with 32 processors.

preprocessing step, as it is the same in all runs. Also the initial partitioning is sequentially
computed in a preprocessing step using METIS [99]. In our experiments, this leads to a
partitioning with a much better load balancing when compared with ParMETIS results in
a distributed environment. The runtimes of the individual sub-algorithms are shown in
Figure 3.20. The overall e�ciency w.r.t. using 32 processors is around 100% for all runs up
to 256 processors and goes down to 82% when using 512 processors, where the sub-problems
become quite small (around 5,000 elements per subdomain) and load balancing becomes
worse (around 40% load unbalancing) in comparison to the other runs, see data in Table
3.6.

3.7 Software concepts

In this section, we provide implementation details for the concepts presented in this chapter.
The class structure of the implementation in the finite element toolbox AMDiS is explained.
The reader, who is not familiar with AMDiS can find more information about its data

62

3.7 Software concepts

Figure 3.19: Test configuration at t = 1.0. The spheres are holes within the domain, stream
lines and mesh is colored with the magnitude of the velocity field.

structures and algorithm in [123, 124]. Figure 3.21 (only the most important classes,
functions and data members are shown here) shows the class structure diagram of all
classes which are related to the MeshDistributor class, which is the central point of our
implementation of parallel distributed meshes. The most important class functions, which
can be used by parallel solver methods, are the following ones:

• registerDofMap: A parallel solver can create an arbitrary parallel DOF mapping,
see Section 3.2.3. This must be registered to the mesh distributor object such that it
can be updated after mesh change.

• synchVector: DOFs on interior boundaries are duplicated to all participating
subdomains. But only one subdomain is the owner of a particular DOF can is thus
responsible for its value. This function synchronize distributed DOF vectors such
that the value of DOFs on interior boundaries is the same on all subdomains. For
this, a DofComm object is used to send the values from owner of these DOFs to all
other subdomains.

• setBoundDofRequirement: A parallel solver must call this function if geometrical
information of DOFs along interior boundaries are required.

• getBoundDofInfo: When a solver has requested geometrical information of DOFs
along interior boundaries, this information can be queried with this function.

• checkMeshChange: Before a solver starts its assembling procedure, it must always
call this functions which checks whether the mesh has been changed due to some local
refinement procedure. If this is the case, first the mesh is adapted such that no hanging
nodes on interior boundaries occur, see Section 3.2.1. If repartitioning is allowed,

63

3 Scalable parallelization

32 64 128 256 512

10≠1

100

101

102

number of processors

tim
e

build parallel DOF mappings
local assembling
creating solver
solver time

Figure 3.20: Scaling of the Navier-Stokes solver for a di�use domain configuration in 3D
using 32 to 512 processors.

the mesh distributor executes the function repartitionMesh. It checks, whether
mesh repartitioning is required due to load unbalancing and possibly computes a new
mesh partitioning. Finally, updateDofMapping is responsible to update all registered
parallel DOF mappings to the new mesh.

The element object database, see class ElObjDB, is created by the mesh distributor during
its initialization and it updated after each mesh repartitioning. It makes use of information
about ownership of coarse mesh elements, which is computed by a mesh partitioner object.
The element object database is mainly used to create the interior boundary handler, see
class InteriorBoundary. Once this is established, it can be asked to return either all
interior boundaries of the processor’s subdomain, only boundaries which are owned by the
processor, only boundaries which are owned by another processor, or to return the periodic
boundaries of the subdomain. The usage of DOF communicators, see class DofComm, is
very similar. First, they must be initialized with an interior boundary handler object. Then
they can be asked for all DOFs on processor owned boundaries, other interior boundaries
or periodic boundaries.

Parallel DOF mappings, cf. Section 3.2.3, are implemented by class ParallelDof-
Mapping (also abbreviated with PDM in Figures 3.21 and 3.22). When a parallel DOF
mapping object is created by some solver class, it must already be fixed to one of the two
available modes:

• finite element space mode: The mapping of local to global DOFs is the same for all
components, i.e. unknowns of the PDE, of a particular finite element space.

• component mode: The mapping may vary for all components, even if the they are
defined on the same finite element space.

64

3.7 Software concepts

For “simple” solvers, such as the global matrix solver, the first mode is required as all
components of one finite element space should be handled in the same way. For more
complicated solver methods it might be required to di�er the DOF mapping for di�erent
components. One example is the FETI-DP solver, where the coarse space is defined only for
a subset of all components. In general, the component mode can always be used but it leads
to higher memory usage as the index mapping is stored for each component independently.
In both cases, the parallel DOF mapping must be initialized with a set of the finite element
spaces of all components. Afterwards, the solver can specify individual DOFs to be part
of the mapping. Calling the function update finalizes the DOF insertion procedure and
creates the appropriate DOF mapping.

Figure 3.22 (also here, only the most important classes, functions and data members
are shown here) shows the class structure diagram related to parallel solvers. This di-
agram is linked to what is described before for the class diagram in Figure 3.21 via
ParallelDofMapping, which is contained in both diagrams. All these classes are linked
to the sequential part of our finite element code AMDiS via class ProblemStat, see
also [123, 124], which specifies a stationary PDE. In parallel computations, the class
PetscProblemStat is derived from ProblemStat and overrides the functions for initializa-
tion and solving the linear system of equations. This concept allows to create PDE solvers
independently of whether AMDiS is compiled to run sequentially or in parallel. In both
cases, the user’s code is the same and most parallelization details are hidden from the user.

The basis class of all parallel solvers is ParallelCoarseSpaceSolver. It contains the
functionality to assemble distributed PETSc matrices and to compute the required non zero
structures, which are necessary of e�cient memory allocation of sparse matrices. Handling
multiple coarse spaces, e.g. di�erent coarse spaces for di�erent components, is directly
supported by all functions and data structures of this class. The class PetscSolver
derives from ParallelCoarseSpaceSolver and is an abstract class that contains some
virtual functions to establish a general interface for PETSc bases solver methods. These
must be specified by a derived class. In our implementation, there exists, e.g., the global
matrix solver, a FETI-DP solver (see Section 3.4) and a solver based on “simple” iterative
substructuring for 2D domains (SchurSolver, see also [91, Chapter 3.5]). The Navier-
Stokes solver (see Section 3.6) shows that specialized solver methods can also be derived
from already existing solver classes.

One of the key concepts for a flexible FETI-DP implementation is the definition of the
variable subDomain, which specifies the solver type for the subdomains of the FETI-DP
approach. It is also responsible for assembling both, the local and the coarse space matrices.
As this variable may be an arbitrary solver of type PetscSolver, we allow for most possible
flexibility in defining subdomains within a FETI-DP solver. The default setting is to use a
GlobalMatrixSolver and to restrict each FETI-DP subdomain to one rank’s subdomain.
But in general, a FETI-DP subdomain can be spanned by arbitrary many local subdomains.
Then, the “local” FETI-DP matrices are again distributed PETSc matrices, each limited to
a subset of all ranks. As the FETI-DP solver just calls the function fillPetscMatrix(),
fillPetscRhs() and solve() of the subDomain variable, it has no knowledge about the
underlying matrix and vectors structures, and the solver method which is used for solving
the local systems. This definition of FETI-DP subdomains and the corresponding solver
method also allows to directly replace the standard exact local solvers by inexact ones.

65

3 Scalable parallelization

1
1

11

1

1

1

1

M
eshP

artitioner

+
partition()

:
bool

M
eshD

istributor

+
registerD

ofM
ap(PD

M
dofM

ap)
:

void
+

synchVector(D
O

FVector
vec)

:
void

+
setB

oundD
ofR

equirem
ent(Flag

flag)
:

void
+

getB
oundD

ofInfo()
:

B
oundD

ofInfo
+

checkM
eshC

hange(boolrepart)
:

void
-updateD

ofM
apping()

:
void

-repartitionM
esh()

:
void

InteriorB
oundary

+
create(ElO

bjD
b

db)
:

void
+

getO
w

n()
:

R
ankToB

oundM
ap

+
getO

ther()
:

R
ankToB

oundM
ap

+
getPeriodic()

:
R

ankToB
oundM

ap

D
ofC

om
m

+
create(InteriorB

oundary
ib)

:
void

+
getSendD

ofs()
:

D
ofSet

+
getR

ecvD
ofs()

:
D

ofSet
+

getPeriodicD
ofs()

:
D

ofSet

E
lO

bjD
b

+
create()

:
void

P
arallelD

ofM
apping

+
ParallelD

ofM
apping(M

ode
m

ode)
+

init(vector<
FeSpace>

com
pSpaces)

:
void

+
insertR

ankD
of(D

ofdof)
:

void
+

insertN
onR

ankD
of(D

ofdof)
:

void
+

update()
:

void

Figure
3.21:C

lass
structure

for
our

concept
to

provide
m

esh
dependent

data
ofdistributed

m
eshes

to
parallelsolvers.

T
his

class
diagram

is
connected

via
ParallelDofMapping

(PDM)
w

ith
the

class
diagram

in
Figure

3.22.

66

3.7 Software concepts

1
1

1
1.

.*

1.
.*

1.
.*

1
1.

.*

P
ro

bl
em

St
at

+
in

iti
al

iz
e(

)
:

vo
id

+
so

lv
e(

)
:

vo
id

P
et

sc
P

ro
bl

em
St

at

+
in

iti
al

iz
e(

)
:

vo
id

+
so

lv
e(

)
:

vo
id

P
ar

al
le

lC
oa

rs
eS

pa
ce

So
lv

er

#
pe

ts
cM

at
:

m
at

rix
<

M
at

>
#

pe
ts

cV
ec

:
ve

ct
or

<
Ve

c>

#
m

at
A

ss
em

bl
e(

)
:

vo
id

#
ve

cA
ss

em
bl

e(
)

:
vo

id

M
at

ri
xN

nz
St

ru
ct

ur
e

+
dn

nz
:

in
t*

+
on

nz
:

in
t*

+
cr

ea
te

(D
O

FM
at

rix
m

at
,

PD
M

ro
w

M
ap

,
PD

M
co

lM
ap

)
:

vo
id

P
et

sc
So

lv
er

+
fil

lP
et

sc
M

at
ri

x(
D

O
FM

at
ri

x
*m

at
)

:
vo

id
+

fil
lP

et
sc

R
hs

(D
O

FV
ec

to
r

ve
c)

:
vo

id
+

so
lv

e(
D

O
FV

ec
to

r
ve

c)
:

vo
di

d

G
lo

ba
lM

at
ri

xS
ol

ve
r

Sc
hu

rS
ol

ve
r

Fe
ti

D
pS

ol
ve

r

#
su

bD
om

ai
n

:
Pe

ts
cS

ol
ve

r

N
av

ie
rS

to
ke

sS
ol

ve
r

P
ar

al
le

lD
of

M
ap

pi
ng

Fi
gu

re
3.

22
:C

la
ss

st
ru

ct
ur

e
fo

r
pa

ra
lle

ls
ol

ve
r

m
et

ho
ds

.
O

nl
y

so
m

e
im

po
rt

an
t

cl
as

s
m

em
be

rs
an

d
fu

nc
tio

ns
ar

e
m

en
tio

ne
d.

T
hi

s
cl

as
s

di
ag

ra
m

is
co

nn
ec

te
d

vi
a
Pa
ra

ll
el

Do
fM

ap
pi

ng
(P
DM

)
w

ith
th

e
cl

as
s

di
ag

ra
m

in
Fi

gu
re

3.
21

.

67

4 Multi-mesh method for Lagrange finite
elements

Modeling multiphysics problems very often results in systems of PDEs. When these are
solved with the finite element method, the mesh has to be adapted to the solution’s
behavior of all components. If these behaviors are di�erent, the use of a single mesh, even
if it is adaptively refined, may lead to a not optimal numerical method. In this chapter,
we propose a multi-mesh finite element method that makes it possible to resolve the
local nature of di�erent components independently of each other. This method works for
Lagrange elements of arbitrary degree in any dimension. Furthermore, the method works
“on top” of standard adaptive finite element methods. This makes it possible to easily
implement the proposed multi-mesh here in existing finite element codes. The multi-mesh
method can then directly make use of optimized single-mesh methods for calculating local
element matrices, as for example precalculated integral tables or fast quadrature rules.
We have implemented the multi-mesh method in the finite element software AMDiS for
Lagrange finite elements up to fourth degree for 1D, 2D and 3D.

The use of multiple, independently refined meshes for the discretization of systems
of PDEs is not new. To our best knowledge, [101] was the first work which considers
a multi-mesh method in the context of adaptive finite elements. In [81, 35, 56], a very
similar technique was used to simulate dendritic growth. An hp-FEM multi-mesh method
is considered in [108, 109]. It is implemented in the finite element toolbox Hermes [107].
Although introducing a multi-mesh technique, in none of these publications the method
is formally derived. Furthermore, implementation issues are not discussed and detailed
runtime results, which compare the overall runtime between the single-mesh and the multi-
mesh method are missing. In contrast, in this work we formally show how multiple meshes
are used for assembling matrices and vectors in the finite element method. Furthermore,
we compare the runtimes of using the single-mesh and the multi-mesh method for di�erent
simulations, and show that the multi-mesh method is superior to the single-mesh method,
when one component of a system of PDEs can locally be resolved on a coarser mesh.

An alternative method commonly used to deal with di�erent meshes for di�erent com-
ponents of coupled systems, especially in the case of multi-physics applications where
independent simulation codes must be coupled, is MpCCI (mesh-based parallel code cou-
pling interface) [60]. In this approach an interpolation between the di�erent solutions from
one mesh to the other is performed which for di�erent resolutions of the involved meshes
will lead to a loss in information and is thus not the method of choice for the problems to
be discussed in this work.

Section 4.1 introduces the so called virtual mesh assembling, which is the basis of our
multi-mesh method. It is shown, how to build coupling meshes in a virtual way and how
the corresponding coupling operators are assembled on them. In Section 4.2, we present

69

4 Multi-mesh method for Lagrange finite elements

several numerical experiments in 2D and 3D that show the advantages of the multi-mesh
method.

4.1 Virtual mesh assembling
The basis of our multi-mesh method is the so called virtual mesh assembling approach. It
allows to create union of two meshes in a virtual and thus memory e�cient way. A virtual
union of two meshes can be used for the discretization of terms which couples two PDEs
within a system. First, this section provides a short introduction to systems of PDEs and
presents the di�culties in using multiple meshes for their discretization. Section 4.1.2
introduces the dual mesh traverse. This algorithm simultaneously traverses two meshes and
provides in this way a virtual union of theses meshes. Section 4.1.3 derives an assembling
procedure to discretize coupling terms on virtual meshes. The last section presents details
for an e�cient implementation of the multi-mesh method in existing finite element codes.

4.1.1 Coupling terms in systems of PDEs
For an illustration, we consider the homogeneous biharmonic equation as a simple example
for a system of PDEs. This equation reads

�2u = 0 in � and u = ˆu

ˆn
= 0 on ˆ� (4.1)

with u œ C4(�) fl C1(�̄). Using operator splitting, the biharmonic equation can be
rewritten as a system of two second order PDEs

≠�u + v = 0
�v = 0

(4.2)

The standard mixed variational formulation of this system is [61]: find (u, v) œ H1
0 (�) ◊

H1(�) such that
⁄

�
ÒuÒ„dx +

⁄

�
v„dx = 0 ’„ œ H1(�)

⁄

�
ÒvÒÂdx = 0 ’Â œ H1

0 (�)
(4.3)

To discretize these equations, we assume that T 0
h

and T 1
h

are two di�erent partitions
of the domain � into simplices. Then, V 0

h

= {v
h

œ H1
0 : v

h

|
T

œ P n ’T œ T 1
h

} and
V 1

h

= {v
h

œ H1 : v
h

|
T

œ P n ’T œ T 0
h

} are finite element spaces of globally continuous,
piecewise polynomial functions of an arbitrary but fixed degree n. We thus obtain: find
(u

h

, v
h

) œ V 0
h

◊ V 1
h

such that
⁄

�
Òu

h

Ò„dx +
⁄

�
v

h

„dx = 0 ’„ œ V 0
h

(�)
⁄

�
Òv

h

ÒÂdx = 0 ’Â œ V 1
h

(�)
(4.4)

70

4.1 Virtual mesh assembling

T1

T0

„0Â0

Â1

Figure 4.1: Linear combination of basis function „0 of the element T0, restricted to the
element T1 as the linear combination Â0 + 1

2Â1 of local basis functions on
element T1.

Defining {„
i

| 1 Æ i Æ n} and {Â
i

| 1 Æ i Æ m} to be the nodal basis of V 0
h

and
V 1

h

, respectively, u
h

and v
h

can be written as the linear combinations u
h

=
q

n

i=1 u
i

„
i

and v
h

=
q

m

i=1 v
i

Â
i

, with u
i

and v
i

unknown real coe�cients. Using these relations and
replacing integrals over � by integrals over its partitions, (4.4) is rewritten to

nÿ

j=1
u

j

Q

ca
ÿ

T œT 0
h

⁄

T

Ò„
j

· Ò„
i

R

db +
mÿ

j=1
v

j

Q

ca
ÿ

T œT 0
h fiT 1

h

⁄

T

Â
j

„
i

R

db = 0 i = 1 . . . n

mÿ

j=1
v

j

Q

ca
ÿ

T œT 1
h

⁄

T

ÒÂ
j

· ÒÂ
i

R

db = 0 i = 1 . . . m

(4.5)

To compute the coupling term
s

T

Â
j

„
i

, we have to define the union of two di�erent
partitions, T 0

h

fi T 1
h

. For this, we make a restriction on the partitions: any element T 0 œ T 0
h

is either a subelement of an element T 1 œ T 1
h

, or vice versa. This restriction is not very
strict. It is always fulfilled for the standard refinement algorithms, e.g., bisectioning or
red-green refinement (cf. Section 2.1), if the initial coarse mesh is the same for both
partitions. Under these conditions, T 0

h

fi T 1
h

is the union of the locally finest simplices.
The most common way to compute the integrals in (4.5) is to define local basis functions.

We define „
i,j

to be the j-th local basis function on an element T
i

œ T 0
h

. Â
i,j

is defined in
the same way for elements in partition T 1

h

.
Because the global basis functions „

i

and Â
j

are defined on di�erent partitions of the
same domain, it is not straightforward to calculate the coupling term

s
� Â

j

„
i

in an e�cient
manner. For evaluating this integral, two di�erent cases may occur: either the integral has
to be evaluated on an element from the partition T 0

h

or on an element from T 1
h

. For the
first case, we must evaluate the integral

⁄

TiœT 0
h

Â
k,l

„
i,j

(4.6)

for some j and l, and there exists an element T
k

œ T 1
h

, with T
i

µ T
k

. As we consider a
multi-mesh method that should work on top of existing single-mesh methods, the integral is

71

4 Multi-mesh method for Lagrange finite elements

2

3

4

5 6 1

3

4
5

6

mesh 1 mesh 2 dual traverse

step 1: 5, 1
step 2: 6, 1
step 3: 2, 5
step 4: 2, 6
step 5: 3, 3
step 6: 4, 4

Figure 4.2: Dual mesh traverse on two independently refined meshes, which are defined on
the same coarse mesh.

not in an appropriate form as Â
k,l

is not a local basis function of element T
i

. To overcome
this problem we define the basis functions Â

k,l

by a linear combination of local basis
functions of T

i ⁄

TiœT 0
h

Â
k,l

„
i,j

=
⁄

TiœT 0
h

ÿ

m

(c
k,m

„
i,m

)„
i,j

(4.7)

with some real coe�cients c
k,m

. Figure 4.1 illustrates this situation in 1D. For the other
case, i.e., the integral in the coupling term is evaluated on an element T

i

œ T 1
h

, we have
⁄

TiœT 1
h

Â
k,l

„
i,j

=
⁄

TiœT 1
h

Â
k,l

ÿ

m

(c
i,m

Â
k,m

) (4.8)

In summary, to evaluate the coupling terms, two di�erent techniques have to be defined
and implemented: first, the method requires that a union of two meshes is build. The
resulting algorithm, which we name dual mesh traverse, is discussed in the next section.
Once the union is obtained, we need to calculate the coe�cients c

i,j

, and to incorporate
them into the finite element assemblage procedure such that the overall change of the
standard method is as small as possible.

4.1.2 Creating a virtual mesh
The simplest way to obtain the union of two meshes is to employ the data structure they
are stored in. In our case, we could explicitly build the union by joining the binary trees
of both meshes into a set of new binary trees. However, such a procedure is not only too
time-consuming, especially when we consider meshes that change in time, but also requires
additional memory to store the joined mesh. We therefore do not work directly on the
mesh data but instead use the mesh traverse algorithm, that creates the requested element
data on demand. Using this method, we define the dual mesh traverse that traverses two
meshes in parallel and creates the union of both meshes in a virtual way.

For the dual mesh traverse the only requirement is that both meshes must share the
same coarse mesh structure, but they can be refined independently of each other. When
using bisectioning, it then can be ensured: if the intersection of two elements of two
di�erent meshes is non empty, then either both elements are equal or one element is a
real subelement of the other. To retrieve the leaf level of the virtual mesh, the dual mesh

72

4.1 Virtual mesh assembling

traverse simultaneously traverses two binary trees, each corresponding to the same coarse
element in both coarse meshes. The algorithm then calls a user defined function, e.g.,
the element assembling function or an element error estimator, that works on pairs of
elements, with both, the larger and the smaller element, of the current traverse. The larger
of both elements is fixed as long as all smaller subelements in the other mesh are traversed.
Figure 4.2 shows a simple example for a coarse mesh consisting of four coarse elements and
the order of traversed elements for the dual traverse algorithm. In the first mesh, coarse
element 1, and in the second mesh coarse element 2, are refined once.

4.1.3 Assembling element matrices

Even though the integrals (4.7) and (4.8) are defined for basis functions on the local
element, the form is not optimal for an e�cient implementation in standard finite element
single-mesh codes. Therefore, we redefine this transformation and distinguish for this two
cases: the smaller of both elements defines either the space of test functions, or it defines
the space of trial functions. For the first case, we consider the coupling term

s
� Â

i

„
j

in
(4.5), with some local basis functions Â

i

and „
j

, that must be assembled on a virtual mesh.
Then, for some elements T and T Õ, with T Õ µ T , the element matrix M

T

Õ is given by

M
T

Õ =

S

WU

s
T

Õ Â0„0 . . .
s

T

Õ Â0„
n

...
...s

T

Õ Â
n

„0 . . .
s

T

Õ Â
n

„
n

T

XV

=

S

WU

s
T

Õ
q

i

(c0i

„
i

)„0 . . .
s

T

Õ
q

i

(c0i

„
i

)„
n

...
...s

T

Õ
q

i

(c
ni

„
i

)„0 . . .
s

T

Õ
q

i

(c
ni

„
i

)„
n

T

XV

=

S

WU

q
i

c0i

s
T

Õ „
i

„0 . . .
q

i

c0i

s
T

Õ „
i

„
n

...
...q

i

c
ni

s
T

Õ „
i

„0 . . .
q

i

c
ni

s
T

Õ „
i

„
n

T

XV

= C ·

S

WU

s
T

Õ „0„0 . . .
s

T

Õ „0„
n

...
...s

T

Õ „
n

„0 . . .
s

T

Õ „
n

„
n

T

XV

(4.9)

where „
i

are the local basis functions defined on T Õ, Â
i

are the local basis functions defined
on T , and C is the transformation matrix for the local basis function from T to T Õ. This
shows, that to assemble the element matrix on a virtual element, there is no need for large
changes within the assembly procedure. The finite element code needs only to assemble the
element matrix of the smaller element T Õ and multiply the result with the transformation
matrix. Hence, if the transformation matrices can be computed easily, the overhead for
virtual element assembling can be eliminated.

We now consider the second case, where the smaller element defines the space of trial

73

4 Multi-mesh method for Lagrange finite elements

functions. Similar calculations as above show that the following holds

M
T

Õ =

S

WU

s
T

Õ „0„0 . . .
s

T Õ „0„
n

...
...s

T

Õ „
n

„0 . . .
s

T

Õ „
n

„
n

T

XV · CT (4.10)

The above calculations can be immediately generalized for general zero order terms of
the form

s
� Â

i

c„
j

with c œ LŒ(�), as the transformation matrices C are independent of
c. In a similar way we can also reformulate the element matrices for general first and
second order terms. For a general second order term of the form

s
� ÒÂ

i

· AÒ„
j

, with
A : � ‘æ Rd◊d, the element matrix M

T

Õ can be rewritten in the same way as we have done
in (4.9) for zero order terms

MT Õ =

S

WU

s
T Õ ÒÂ0 · AÒ„0 . . .

s
T Õ ÒÂ0 · AÒ„

n

...
...s

T Õ ÒÂ
n

· AÒ„0 . . .
s

T Õ ÒÂ
n

· AÒ„
n

T

XV

= CÒ ·

S

WU

s
T Õ Ò„0 · AÒ„0 . . .

s
T Õ Ò„0 · AÒ„

n

...
...s

T Õ Ò„
n

· AÒ„0 . . .
s

T Õ Ò„
n

· AÒ„
n

T

XV

(4.11)

where the coe�cients of the matrix CÒ are defined such that

ÒÂ
i

=
nÿ

j=0
c

ij

Ò„
i

(4.12)

If basis functions on the smaller element define the space of trial functions, we can establish
the same relation as in (4.10). For general first order terms of the form

s
� Â

i

b · Ò„
j

, with
b œ [LŒ(�)]d, it is straightforward to verify that in the case the smaller element defines the
test space, the element matrix M

T

Õ can be calculated on the smaller element and multiplied
with C from the left. If the smaller element defines the space of trial functions, the element
matrix calculated on the smaller element must be multiplied with CT

Ò from the right.

4.1.4 Calculation of transformation matrices
Once the transformation matrix is calculated for a given tuple of a small and a large
element, the additional costs for virtual mesh assembling are small. We now consider
computing these transformation matrices e�ciently. For this, we assume that C and CÒ are
calculated once for both children of the reference element. The transformation matrix of a
specific pair of elements is then recursively defined using these reference transformation
matrices. We formally define a virtual element pair of a small and a large element, which
correspond to an element in the virtual mesh, as the tuple

(T, {–0, . . . , –
n

}) = (T, –) with –
i

œ {L, R} (4.13)

where T is the larger element of the pair and – is an ordered set that is interpreted as the
refinement sequence for the smaller element starting in element T . This directly correspond

74

4.1 Virtual mesh assembling

to a mesh structure code, cf. Section 2.3. Here, L denotes the “left” children, and R denotes
the “right” children of an element. Furthermore, we define a function TRA that uniquely
maps a virtual element pair to the smaller element. It is defined recursively by

TRA(T, ÿ) = T

TRA(T, {–0, –1, . . . , –
n

}) =
I

TRA(TL, {–1, . . . , –
n

}) if –0 = L
TRA(TR, {–1, . . . , –

n

}) if –0 = R

where TL is the left child of element T , and TR the right child of element T , respectively.
In the same way we define transformation matrices as functions on refinement sequence

C(ÿ) = I (4.14)

C({–0, –1, . . . , –
n

}) =
I

CL · C({–1, . . . , –
n

}) if –0 = L
CR · C({–1, . . . , –

n

}) if –0 = R
(4.15)

where C
L

and C
R

are the transformation matrices for the left child and the right child,
respectively, of the reference element.

4.1.5 Implementation issues
Although computing one transformation matrix can be done very fast, it may considerably
increase the time for assembling the linear system if there are many transformation matrices
to be computed. This is especially the case, if one mesh is much coarser in some regions
than the other mesh. To circumvent this problem, we have implemented a cache, that
stores previously computed transformation matrices in a hash table [50]. In the mesh
traverse routine, a 64 bit integer data type stores the refinement sequence between the
large and the small element bit-wise, as it is defined by (4.13). If the bit on the i-th
position is set, the finer element is a right-refinement of its parent element, otherwise it is
a left-refinement of it. Using a fixed size of 64 bits to store the refinement sequence limits
the level gap between the coarser and the finer element level to be less or equal to 64. But
we have not found any practical simulations where this value is higher than 30. In favor
of, this value can directly be used as a key in a hash table, and thus allows to e�ciently
check whether an element matrix was computed before for the same virtual mesh element.
If this is not the case, the transformation matrix must be computed as stated in (4.14)
and will be stored in the hash table. In general the hash table should be restricted to a
maximum number of matrices to prevent uncontrolled memory usage if the number of
entries increases. But in all of our simulations, the number of transformation matrices that
should be stored in the cache never exceeded 100,000. Even for 3D simulations with linear
elements, the overall memory usage is around 2 MByte, and can thus be neglected. Thus
it has not yet been necessary to implement an upper limit for the cache. More information
about the number and memory usage of the transformation matrices is given in the next
section when presenting the numerical results.

All of the algorithms described here can easily be adjusted if data structure other than
binary trees are used to represent the mesh. This may be the case if, e.g., a red-green
refinement strategy is used, or if the mesh consists of quadrilaterals or cubes. In both

75

4 Multi-mesh method for Lagrange finite elements

cases, quadtrees or octrees are employed to represent the adaptive mesh structure. For
these data structures, the transformation matrices can be calculated in the same way as
we have done it in this section for binary trees. Of course, the refinement sequences, as
defined in Section 4.1.4, cannot be stored in this way. Here, either at least two bits for
quadtrees or at least three bits for octrees are required to store the information about the
children on the next refinement level.

4.2 Numerical results
We present several examples, where the multi-mesh approach is superior in contrast to the
standard single-mesh finite element method. The examples considered here are phase-field
equations applied to the study of solid-liquid and solid-solid phase transitions. For a
recent review we refer to [94]. These equations involve at least one variable, the phase-field
variable, which is almost constant in most parts of the domain and therefore can be
discretized within these parts using a coarse mesh. At the interface region a high resolution
is required to resolve the smooth transition between the di�erent phases. A second variable
in such systems is typically a di�usion field which in most cases varies smoothly across the
whole domain, requiring a finer mesh outside of the interface and a coarser mesh within
the interface. Such problems are therefore well suited for a multi-mesh approach, as has
already be demonstrated in [101, 81, 35]. No detailed runtime comparisons are provided in
these works to show the advantages of the multi-mesh method. To do this for dendritic
growth, we will consider solidification and coarsening phenomena in binary alloys.

Other examples for which large computational savings due to the use of the multi-mesh
approach are expected are di�use interface and di�use domain approximations for PDEs
to be solved on surfaces that are within complicated domains. The approaches introduced
in [96, 82], use a phase-field function to implicitly describe the domain the PDE has to
be solved on. For the same reason as in phase-transition problems the distinct solution
behavior of the di�erent variables will lead to large savings if the multi-mesh approach is
applied. The approach has already been used for applications such as chaotic mixing in
microfluidics [1], tip splitting of droplets with soluble surfactants [114], and chemotaxis of
stem cells in 3D sca�olds [77].

As a further example we demonstrate that the multi-mesh approach can also be used to
easily fulfill the inf-sup condition for Stokes like problems if both components are discretized
with linear Lagrange elements. We demonstrate this numerically for the incompressible
Navier-Stokes equation with piecewise linear elements for velocity and pressure, but a finer
mesh used for the velocity. Such an approach might be superior to mixed finite elements of
higher order or stabilized schemes in terms of computational e�ciency and implementation
e�orts. For a review on e�cient finite element methods for the incompressible Navier-Stokes
equation we refer to [117]. We demonstrate the applicability of the multi-mesh approach
on the classical driven cavity problem.

4.2.1 Dendritic growth
We first consider dendritic growth using a phase-field model, as already introduced in
Section 3.2.4. To compare the multi-mesh method with a standard adaptive finite element

76

4.2 Numerical results

0 1000 2000 3000 4000

0

100000

200000

300000

400000

time

nu
m

be
r

of
m

es
h

ve
rt

ic
es

single mesh
multi mesh, phase field
multi mesh, temperature
field

Figure 4.3: Evolution of degrees of freedom in time for the phase field and the temperature
field using single-mesh and multi-mesh method.

approach, we have computed a dendrite using linear finite elements with the following
parameters: › = 0.65, D = 1.0, ‘ = 0.05. We use a constant timestep · = 1.0 up to time
4000. To speedup the computation we have employed the symmetry of the solution and
limited the computation to the upper right quadrant with a domain size of 800 in each
direction. The adaptive mesh refinement relies on the residuum based a posteriori error
estimate, cf. (2.1) and (2.2. By setting C0 to 0 and C1 to 1, we restrict the estimator to
the jump residuum only. We have set the tolerance to be tol

„

= 0.5, and tol
u

= 0.25. For
adaptivity, the equidistribution strategy with parameters ◊

R

= 0.8, and ◊
C

= 0.2 was used.
Thus, the interface thickness is resolved by approximately 20 grid points.

The result of both computations coincides at the final timestep. As a quantitative
comparison we use the tip velocity of the dendrite. As reported in [63], for this parameter
set analytical calculations lead to a steady-state tip velocity V

tip

= 0.0469. In both of our
calculations, the tip velocity varies by around 1% of this value. Using the single-mesh
method, by the final timestep the mesh consist of 429,148 DOFs for each component. When
our multi-mesh method is used, the same solution can be obtained with a mesh for the
phase-field with 401,544 vertices, and 46,791 vertices for the temperature field. The gap
between the number of vertices required to resolve the phase field and the temperature
field increases in time, see Figure 4.3 that shows the development of the mesh size for both
methods. Figure 4.4 qualitatively compares the meshes of the phase-field variable and the
temperature field, which shows the expected finer resolution of the phase-field mesh within
the interface, and its coarser resolution within the solid and liquid region.

The computational time for both methods is compared in Table 4.1. The assemblage
procedure in the multi-mesh method is around 6% faster, although computing the element
matrices is slower due to the extra matrix-matrix multiplication. This is easily explained
by the fact that we have much less element matrices to compute and the overall matrix
data structure is around 50% smaller with respect to the number of non-zero entries, see

77

4 Multi-mesh method for Lagrange finite elements

Figure 4.4: a) 2D dendrite computed at t = 4000 using the multi-mesh method with the
parameters › = 0.65, D = 1.0, ‘ = 0.05, and a timestep · = 1.0. Left shows
the mesh of the temperature field and right shows the mesh of the phase field.
b) Zoom into the upper tip showing the di�erent resolution of both meshes.

also the more detailed data in Table 4.2. This is also reflected in the solution time for
the linear system. We have run all computation twice, with using either UMFPACK, a
multifrontal sparse direct solver [30], or the BiCGStab(¸) with the parameter ¸ = 2 and
diagonal preconditioning, that is part of the Matrix Template Library (MTL4) [52]. When
using the first one within the multi-mesh method, the solution time can be reduced by
40% and also the memory usage, which is often the most critical limitation in the use
of direct solvers, is reduced in this magnitude. An even more drastic reduction of the
computation time can be achieved when using an iterative solver. Here, the number of
iterations is around 30% less with the multi-mesh method and each iteration is faster
due to the smaller matrix. This is explained in more detail in Table 4.2, that shows all
relevant matrix data for the very last timestep of the simulation. Not only the overall
matrix size is smaller, also the condition number of the matrices decreases when using the
multi-mesh method. Hence, the iterative solver needs less iteration to solve the system of
linear equations. The memory overhead for the multi-mesh method is quite small. At the
very last timestep, only 3,215 transformation matrices are stored, requiring 0.35 MByte of
memory. Figure 4.5 shows the evolution of the number of stored transformation matrices,
and the average and maximum length of the refinement sequences which are used as keys
to find the precomputed transformation matrices in the hash table.

The time for error estimation is halved, as expected, since it scales linearly with the
number of elements in the mesh. Altogether, the time reduction is significant in all parts
of the finite element method. In addition the approach also leads to a drastic reduction in
memory usage.

The results are even more significant in 3D. Fig. 4.6 shows the result of computing a
dendrite with the multi-mesh method and the parameters › = 0.55, D = 1, and ‘ = 0.05.
We have run the simulation with a constant timestep · = 1.0 up to time 2500. The
evolution of degrees of freedom over time is quite similar to the 2D example. When using
the multi-mesh method, the time for solving the linear system, again using the BiCGStab(¸)
solver with diagonal preconditioning, can be reduced by around 60%. The time for error
estimation is around half the time needed by the single-mesh method. Because the time

78

4.2 Numerical results

0 1000 2000 3000 4000
0

1000

2000

3000

time

tr
an

sfo
rm

at
io

n
m

at
ric

es

0 1000 2000 3000 4000

2

4

6

8

10

12

time

re
fin

em
en

t
se

qu
en

ce
le

ng
th

average
maximum

Figure 4.5: Evolution of the number of transformation matrices (left) and the average
and maximum refinement sequence length (right) for a 2D dendritic growth
computation.

single-mesh multi-mesh speedup

assembler 5.98s 5.62s 6.0%
solver: UMFPACK 6.69s 4.12s 38.4%
solver: BiCGStab(¸) 14.26s 4.28s 69.9%
estimator 3.40s 1.71s 49.7%
overall with UMFPACK 16.07s 11.45s 28.7%
overall with BiCGStab(¸) 23.64s 11.61s 50.9%

Table 4.1: Comparison of runtime when using single-mesh and multi-mesh method for a
2D dendritic growth simulation. The values are the average of 4000 timesteps.

for assembling the linear system is more significant in 3D, the overall time reduction with
the multi-mesh method is around 64.4%.

4.2.2 Coarsening

As a second example we consider coarsening of a binary structure using a Cahn-Hilliard
equation. We here concentrate only on the phenomenological behavior of the solution and
thus consider the simplest isotropic model, which reads

ˆ
t

„ = �µ

µ = ≠‘�„ + 1
‘

GÕ(„)
(4.16)

for a phase-field function „, and a chemical potential µ. The parameter ‘ defines a length
scale over which the interface is smeared out, and G(„) = 18„2(1≠„)2 defines a double-well

79

4 Multi-mesh method for Lagrange finite elements

single-mesh multi-mesh

number of unknowns 858,140 448,335 (401,544 + 46,791)
matrix non zero values 11,811,959 6,057,416
matrix size 138.4 MByte 71.0 MByte
transformation matrices size 0 MByte 0.35 MByte
BiCGStab(¸) iterations 72 51
condition number estimate 4.56 · 107 8.87 · 106

Table 4.2: Matrix related data for the system of linear equations at the final timepoint (t
= 4,000) in a 2D dendritic growth simulation.

Figure 4.6: a) 3D dendrites at t = 2500 using the multi-mesh method with the parameters
› = 0.55, D = 1, ‘ = 0.05 and a timestep · = 1.0. b) A slice through the
dendrites showing the mesh of the phase field on the left and the mesh of the
temperature field on the right hand side.

potential. To discretize in time we use a semi-implicit Euler scheme
1
·

„
n+1 ≠ �µ

n+1 = 1
·

„
n

µ
n+1 + ‘�„

n+1 ≠ 1
‘

GÕ(„
n+1) = 0

(4.17)

in which we linearize GÕ(„
n+1) ¥ GÕÕ(„

n

)„
n+1 + GÕ(„

n

) ≠ GÕÕ(„
n

)„
n

.
To compare our multi-mesh method with a standard adaptive finite element approach,

we have computed the spinodal decomposition and coarsening process in 3D using Lagrange
finite elements of fourth order. We use ‘ = 5 · 10≠4. The adaptive mesh refinement relies
on the residuum based a posteriori error estimate. As we have done it in the dendritic
growth simulation, also here only the jump residuum is considered, i.e., the constants
C0 and C1 are set to 0 and 1, respectively. For both methods, the error tolerance are
set to tol

„

= 2.5 · 10≠4 and tol
µ

= 5 · 10≠2. For adaptivity, the equidistribution strategy
with parameters ◊

R

= 0.8 and ◊
C

= 0.2 was used. Using these parameters, the interface
thickness is resolved by around 10 grid points.

80

4.2 Numerical results

Figure 4.7: Solution of the Cahn-Hilliard equation for t = 0.02, t = 1.0, t = 5.0 and
t = 12.50

The simulation was started from noise. The first mesh was globally refined with 196,608
elements. The constant timestep was chosen to be · = 10≠3. We have disabled the
adaptivity for the first 10 timesteps, until a coarsening in the domain was achieved. Then
the simulation was executed up to t = 13.0, where both phases are nearly separated. Figure
4.7 shows the phase field, i.e., the 0.5 contour of the first solution variable, for four di�erent
timesteps. The number of elements and degrees of freedom is linear to the area of the
interface that must be resolved on the domain. Indeed, the chemical potential can be
resolved on a much coarser grid, since it is independent of the resolution of the phase
field. In the final state, the chemical potential is constant on the whole domain, and the
coarse mesh (which consists of 6 tetrahedrons in this simulation) is enough to resolve it.
The evolution of the number of elements for both variables over time is plotted in Figure
4.8. As expected, the number of elements for the phase field monotonically decreases as
its area shrinks due to the coarsening process. The number of elements for the chemical
potential rapidly decreases at the very first beginning, as the initial mesh is over refined to
resolve this variable. For most of the simulation, the number of elements of the chemical
potential is three orders of magnitude smaller than the number of elements for the phase
field variable. This gap is also reflected in the computation time for the single-mesh and
the multi-mesh method, which are compared in Table 4.3. The assembling procedure of
the multi-mesh method is now 4.7% slower in comparison to the single-mesh method. The
main reason therefore is that the transformation matrices are here large due to the 4th

order finite element in 3D. They are of size 35 ◊ 35, and thus slow down the assembling
procedure more than in the 2D example before, where the transformation matrices are of
size 3 ◊ 3 for linear finite elements. This small surcharged is payed o� when comparing
solver and error estimator run times. For solving the linear system of equations we again
make use of BiCGStab(¸) solver with parameter ¸ = 2 and diagonal preconditioning. To
solve the systems arising in the multi-mesh methods takes less than 25% of time required
for solving the systems when using the single-mesh approach. Here we see again both e�ects
as already described in the numerical example before: each iteration of the solver is faster
due to smaller matrices and vectors, and the system of equations are better conditioned
in the case of the multi-mesh method leading to a smaller number of overall iterations.
The overall solution time reduces from around 1,064 minutes when using the single-mesh
method to 565 minutes when using the multi-mesh approach.

81

4 Multi-mesh method for Lagrange finite elements

0 5000 10000

101

102

103

104

105

time

nu
m

be
r

of
el

em
en

ts

phase field
chemical potential

Figure 4.8: Evolution of number of elements for both variables of the Cahn-Hilliard
equation.

single-mesh multi-mesh speedup

assembler 19,718s 20,649s -4.7%
solver: BiCGStab(¸) 26,178s 6,312s 75.8%
estimator 18,016s 6,967s 61.3%
overall 63,912s 33,928s 46.9%

Table 4.3: Comparison of runtime when using single-mesh and multi-mesh method for a
3D coarsening simulation using 4th order Lagrange finite elements.

4.2.3 Fluid dynamics

For the last example, we use the multi-mesh method to solve problems in fluid dynamics
using standard linear finite elements. The inf-sub stability is established by using two
di�erent meshes. In 2D, the mesh for the velocity components is refined twice more than
the mesh for pressure. In the 3D case, the velocity mesh has to be refined three times to get
the corresponding refinement structure. This discretization was introduced in [21], and was
analyzed and proven to be stable in [120]. Although this is not the most e�cient technique
to ensure the inf-sub stability condition, it is a very simple way if multiple, independently
refined meshes are supported in the finite element software used. We consider the standard
instationary Navier-Stokes equation, cf. (3.58)-(3.60) in Section 3.6. The model problem
is the “driven cavity” flow, as described and analyzed in [127, 47]. In a unit square, the
boundary conditions for the velocity are set to be zero on the left, right and lower part of
the domain. On the top, the velocity in the x direction is set to be one and in the y direction
to be zero. In the upper corners, both velocities are set to be zero, which models the so
called non-leaky boundary conditions. The computation was done for several Reynold

82

4.2 Numerical results

numbers varying between 50 and 1000. First, we have used the single-mesh method with a
standard Taylor-Hood element, i.e., second order Lagrange finite elements for the velocity
components and linear Lagrange finite elements for the pressure. We have compared these
results with the multi-mesh method, where for both components linear finite elements were
used and the mesh for velocity was refine twice more than the pressure. All computations
were done with a fixed timestep · = 0.01, and aborted, when the relative change in velocity
and pressure was less than 10≠6. Figure 4.2.3 shows the results for Re = 1000. In Table
4.4, we give the position of all eddies and compare our results with reference values from
[47, 127].

single mesh

multi mesh

Figure 4.9: Results for Re = 1000. The left column shows 30 pressure isolines in the range
≠0.12, 0.12. The right column shows the streamlines contours of the velocity.

Eddy 1 Eddy 2 Eddy 3 Eddy 4
single-mesh 0.5310, 0.8633, 0.0838, 0.9937,

0.5658 0.1116 0.0775 0.0062
multi-mesh 0.5305, 0.8669, 0.0813, 0.9953,

0.5671 0.1125 0.0750 0.0062
Wall 0.5308, 0.8643, 0.0832, 0.9941,

0.5660 0.1115 0.0775 0.0066
Ghia et al. 0.5313, 0.8594, 0.0859, 0.9922,

0.5625 0.1094 0.0781 0.0078

Table 4.4: Comparison of eddy position for Re = 1000 in the driven cavity model.

83

4 Multi-mesh method for Lagrange finite elements

In both, the single-mesh method and the multi-mesh method, all finite element spaces
have the same number of unknowns. For this reason, the multi-mesh method does not
provide an improvement over the single-mesh method in terms of computing time. The time
for assembling the linear system increases from 4.13 seconds to 5.79 seconds, which is mainly
caused by the multiplication of the element matrices with the transformation matrices.
Conversely, the average solution time with a BiCGStab(¸) solver and ILU preconditioning
decreases from 10.18 seconds to 8.88 seconds. Although the linear systems have the same
number of unknowns, the linear systems resulting from the single-mesh method are denser
due to the usage of second order finite elements. The number of non-zero entries decreases
by around 20% when linear elements are used on both meshes.

84

5 Conclusion and outlook

In the first part of this thesis we have presented software concepts, data structures and
algorithms which allow to implement an e�cient and scalable parallel finite element
method. The central points of our parallelization approach are an implementation of an
adaptively refined and distributed mesh data structure based on mesh structure codes
and the including mesh-related information in the linear solver. These techniques make it
possible to implement a large class of both, problem specific and general purpose linear
solvers. In several benchmarks for weak and strong scaling we have shown very good
parallel scalability for up to 16,384 cores. Nevertheless, the benchmarks show that some
further work has to be done in order to go up to several hundred thousands of cores. The
main question here is, if it is possible to get rid of the requirement that each coarse mesh
element is contained in exactly one subdomain, but still make use of the very e�cient mesh
structure codes.

Many solver methods are known for systems of linear equations resulting from the
finite element method. Some of them can be proven to have perfect, or nearly perfect,
parallel scaling properties, e.g. the FETI-DP method. We have shown an implementation
of this up-to-date solver method based on our general software concepts. Though the
FETI-DP method is quasi optimal from a mathematical point of view, its very sparse and
globally distributed coarse grid matrix leads to a break-down of parallel scalability for
more than 1,000 cores. This is not due to a specific implementation as it was also observed
by others [73, 74]. To circumvent this problem of using a sparse and globally distributed
coarse grid matrix, several multilevel FETI-DP and BDDC methods were developed lately
[73, 90, 125]. Though all of them scale much better than the corresponding implementation
of the standard FETI-DP method, they have at least one drawback: either they are fixed
to an a-priori defined number of coarse grid levels and cannot easily be generalized to a real
multilevel method with an arbitrary number of coarse grid levels, or the condition number
grows with increasing number of coarse grid levels. We have derived a new multilevel
FETI-DP method, which has none of these disadvantages and thus is a good candidate
for a general purpose linear solver which is scalable up to a large number of cores. In this
work, the method is derived for two coarse levels only. But from the presentation it is
clear that it can be directly generalized in a recursive way to an arbitrary number of levels.
Furthermore, all benchmarks indicate that the condition number of the preconditioned
system is independent of the number and of the size of the coarse grid. Besides a formal
analysis of the presented multilevel FETI-DP method, a corresponding preconditioner must
be developed to make the method suited for practical use.

To further improve e�ciency of adaptive finite element simulations we considered the
usage of di�erent adaptively refined meshes for di�erent variables in systems of nonlinear,
time-dependent PDEs. The di�erent variables can have very distinct solution behavior. To
resolve this the meshes can be independently adapted for each variable. The multi-mesh

85

5 Conclusion and outlook

method, as defined in this thesis, can make use of Lagrange finite elements of arbitrary
degree and is independent of the spatial dimension. The approach is well defined, and
can be implemented in existing adaptive finite element codes with minimal e�ort. The
additional computational e�ort for assembling matrices on virtual meshes is very small and
can be neglected in most computations. Only small transformation matrices have to be
multiplied with the matrices assembled on mesh elements. These matrices can be stored in
an appropriate data structure to avoid unnecessary recalculations. We have demonstrated
for various examples that the resulting linear systems are usually much smaller, when
compared to the usage of a single mesh, and the overall computational runtime can be
more than halved in various cases.

This work is the very first rigorous derivation of a multi-mesh method. In contrast to
existing work [101, 108, 109], we have shown that using virtual meshes results in the same
matrices when combining the two meshes physically to a union of both. Our approach
is very simple to implement in existing finite element codes, as it does not rely on any
special data structure. Furthermore, it is not restricted to linear finite elements, but
generalizes to Lagrange finite elements of arbitrary degree. Though presented here for
triangles/tetrahedrons and bisectioning, it can easily be modified to other elements and
other refinement strategies. Finding a general strategy for error estimation and mesh
adaption in the multi-mesh finite element method is still an open problem.

86

Bibliography

[1] S. Aland, J. Lowengrub, and A. Voigt. Two-phase flow in complex geometries - a
di�use domain approach. Comput. Meth. Eng. Sci., 57(1):77 – 108, 2010.

[2] P. Amestoy, I. Du�, J. L’Excellent, and J. Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and
Applications, 23(1):15–41, 2001.

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling
for the parallel solution of linear systems. Parallel Computing, 32(2):136 – 156, 2006.

[4] I. Babuöka and W. C. Rheinboldt. A-posteriori error estimates for the finite element
method. International Journal for Numerical Methods in Engineering, 12(10):1597–
1615, 1978.

[5] I. Babuöka and M. Suri. The p and h-p versions of the finite element method, basic
principles and properties. SIAM Review, 36(4):578–632, 1994.

[6] R. Backofen, M. Gräf, D. Potts, S. Praetorius, A. Voigt, and T. Witkowski. A
continuous approach to discrete ordering on S2. Multiscale Modeling and Simulation,
9(1):314–334, 2011.

[7] R. Backofen, A. Rätz, and A. Voigt. Nucleation and growth by a phase field crystal
(PFC) model. Philosophical Magazine Letters, 87(11):813–820, 2007.

[8] R. Backofen, A. Voigt, and T.Witkowski. In preparation. 2013.

[9] R. Backofen, A. Voigt, and T. Witkowski. Particles on curved surfaces: A dynamic
approach by a phase-field-crystal model. Phys. Rev. E, 81:025701, Feb 2010.

[10] A. Baker, R. Falgout, T. Gamblin, T. Kolev, M. Schulz, and U. Yang. Scaling
algebraic multigrid solvers: On the road to exascale. In C. Bischof, H.-G. Hegering,
W. E. Nagel, and G. Wittum, editors, Competence in High Performance Computing
2010, pages 215–226. Springer Berlin Heidelberg, 2012.

[11] C. Baker and M. Heroux. Tpetra, and the use of generic programming in scientific
computing. Scientific Programming, 20(2):115–128, 2012.

[12] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk, R. Thakur,
and J. L. Trä�. MPI on a million processors. In Proceedings of the 16th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 20–30, Berlin, Heidelberg, 2009. Springer-Verlag.

87

Bibliography

[13] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

[14] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang. PETSc web page. http://www.mcs.anl.gov/
petsc.

[15] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data
structures for massively parallel generic adaptive finite element codes. ACM Trans.
Math. Softw., 38(2):14:1–14:28, Jan. 2012.

[16] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object
oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.

[17] W. Bangerth, T. Heister, and G. Kanschat. deal.II web page. http://www.dealii.
org.

[18] P. Bastian, M. Blatt, A. Dedner, C. Engwer, J. Fahlke, C. Gräser, R. Klöfkorn,
M. Nolte, M. Ohlberger, and O. Sander. DUNE web page. http://www.
dune-project.org.

[19] T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite
element methods for material modeling. Modelling and Simulation in Materials
Science and Engineering, 17(4):043001, 2009.

[20] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[21] M. Bercovier and O. Pironneau. Error estimates for finite element method solution
of the Stokes problem in the primitive variables. Numer. Math., 33(2):211–224, 1979.

[22] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma. Phase-field simulation
of solidification. Annual Review of Materials Research, 32(1):163–194, 2002.

[23] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, V. Leung, C. Vaughan,
U. Catalyurek, D. Bozdag, and W. Mitchell. Zoltan web page. http://www.cs.
sandia.gov/Zoltan.

[24] P. Boyanova, M. Do-Quang, and M. Neytcheva. E�cient preconditioners for large
scale binary Cahn-Hilliard models, 2012.

[25] J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite sys-
tems resulting from mixed approximations of elliptic problems. Mathematics of
Computation, 50(181):1–17, 1988.

[26] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. F. Smith. Composable
linear solvers for multiphysics. Preprint ANL/MCS-P2017-0112, Argonne National
Laboratory, submitted to the 11th International Symposium on Parallel and Distributed
Computing (ISPDC 2012), 2012.

88

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.dealii.org
http://www.dealii.org
http://www.dune-project.org
http://www.dune-project.org
http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan

Bibliography

[27] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton, and L. C.
Wilcox. Extreme-scale AMR. In SC10: Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis. ACM/IEEE,
2010.

[28] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing,
33(3):1103–1133, 2011.

[29] U. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. Heaphy, and L. A.
Riesen. A repartitioning hypergraph model for dynamic load balancing. Sandia
National Laboratories Tech. Report SAND2008-2304J, Sandia National Laboratories,
Albuquerque, NM, 2008. Submitted to J. Par. Dist. Comp.

[30] T. A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):196–199, June 2004.

[31] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Trans. Math. Softw., 30(2):165–195, June 2004.

[32] J. P. De S. R. Gago, D. W. Kelly, O. C. Zienkiewicz, and I. Babuska. A posteriori
error analysis and adaptive processes in the finite element method: Part II - adaptive
mesh refinement. International Journal for Numerical Methods in Engineering,
19(11):1621–1656, 1983.

[33] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger. A generic interface for parallel
and adaptive discretization schemes: abstraction principles and the dune-fem module.
Computing, 90:165–196, 2010. 10.1007/s00607-010-0110-3.

[34] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data
management services for parallel dynamic applications. Computing in Science and
Engineering, 4(2):90–97, 2002.

[35] Y. Di and R. Li. Computation of dendritic growth with level set model using a
multi-mesh adaptive finite element method. J. Sci. Comput., 39(3):441–453, 2009.

[36] M. Dryja, B. Smith, and O. Widlund. Schwarz analysis of iterative substructuring
algorithms for elliptic problems in three dimensions. SIAM Journal on Numerical
Analysis, 31(6):1662–1694, 1994.

[37] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in
crystal growth. Phys. Rev. Lett., 88:245701, Jun 2002.

[38] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant. Phase-field crystal
modeling and classical density functional theory of freezing. Physical Review B,
75(6):1–14, Feb. 2007.

[39] H. Elman, D. Silvester, and A. Wathen. Preformance and anlysis of saddle point
preconditioners for the discrete steady-state Navier-Stokes equations. Technical
report UMIACS-TR-2000-54, 2000.

89

Bibliography

[40] K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems
i: A linear model problem. SIAM Journal on Numerical Analysis, 28(1):43–77, 1991.

[41] R. Falgout, A. Cleary, J. Jones, E. Chow, V. Henson, C. Baldwin, P. Brown,
P. Vassilevski, and U. M. Yang. hypre web page. http://acts.nersc.gov/hypre/.

[42] R. Falgout, J. Jones, and U. M. Yang. The design and implementation of hypre, a
library of parallel high performance preconditioners. In A. Bruaset and A. Tveito,
editors, Numerical Solution of Partial Di�erential Equations on Parallel Computers,
volume 51 of Lecture Notes in Computational Science and Engineering, pages 267–294.
Springer Berlin Heidelberg, 2006.

[43] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-
primal unified FETI method-part I: A faster alternative to the two-level FETI method.
International Journal for Numerical Methods in Engineering, 50(7):1523–1544, 2001.

[44] C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition
method. Numerical Linear Algebra with Applications, 7(7-8):687–714, 2000.

[45] C. Farhat, J. Li, and P. Avery. A FETI-DP method for the parallel iterative solution
of indefinite and complex-valued solid and shell vibration problems. Internat. J.
Numer. Methods Engrg., 63(3):398–427, 2005.

[46] S. Filippone and M. Colajanni. PSBLAS: a library for parallel linear algebra
computation on sparse matrices. ACM Trans. Math. Softw., 26(4):527–550, Dec.
2000.

[47] U. Ghia, K. Ghia, and C. Shin. High-re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method. Journal of Computational Physics,
48(3):387 – 411, 1982.

[48] B. Gmeiner, T. Gradl, H. Kostler, and U. Rüde. Highly parallel geometric multigrid
algorithm for hierarchical hybrid grids. In J. Grotendorst, G. Sutmann, G. Gompper,
and D. Marx, editors, Hierarchical Methods for Dynamics in Complex Molecular
Systems, pages 323–330. Forschungszentrum Jülich, 2012.

[49] G. H. Golub and C. F. van Van Loan. Matrix Computations. The Johns Hopkins
University Press, 1996.

[50] M. T. Goodrich, R. Tamassia, and D. M. Mount. Data Structures and Algorithms in
C++. Wiley and Sons, 2011.

[51] P. Gottschling and T. Hoefler. Productive parallel linear algebra programming with
unstructured topology adaption. In Cluster, Cloud and Grid Computing (CCGrid),
2012 12th IEEE/ACM International Symposium on, pages 9 –16, 2012.

[52] P. Gottschling, D. Wise, and M. Adams. Representation-transparent matrix al-
gorithms with scalable performance. In ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, pages 116–125, New York, NY, USA,
2007. ACM.

90

http://acts.nersc.gov/hypre/

Bibliography

[53] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of system
noise on large-scale applications by simulation. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[54] J. Ho�man, J. Jansson, C. Degirmenci, N. Jansson, and M. Nazarov. Unicorn: a
Unified Continuum Mechanics Solver, chapter 18. Springer, 2012.

[55] J. Ho�man, J. Jansson, M. Nazarov, and N. Jansson. Unicorn web page. https:
//launchpad.net/unicorn.

[56] X. Hu, R. Li, and T. Tang. A multi-mesh adaptive finite element approximation to
phase field models. Commun. Comput. Phys., 5:1012–1029, 2009.

[57] K. Iglberger, G. Hager, J. Treibig, and U. Rüde. Expression templates revisited:
A performance analysis of current methodologies. SIAM Journal on Scientific
Computing, 34(2):C42–C69, 2012.

[58] I. C. F. Ipsen and C. Meyer. The idea behind Krylov methods. The American
Mathematical Monthly, 105(10):889–899.

[59] N. Jansson, J. Ho�man, and J. Jansson. Framework for massively parallel adaptive
finite element computational fluid dynamics on tetrahedral meshes. SIAM Journal
on Scientific Computing, 34(1):C24–C41, 2012.

[60] W. Joppich and M. Kürschner. MpCCI-a tool for the simulation of coupled applica-
tions. Conc. Comput. Prac. Exp., 10:183–192, 2005.

[61] M. Jung. Fast parallel solvers for fourth-order boundary value problems. In Proceed-
ings of the 10th ParCo Conference, pages 267–274, 2003.

[62] A. Karma and W.-J. Rappel. Phase-field method for computationally e�cient
modeling of solidification with arbitrary interface kinetics. Phys. Rev. E, 53:R3017–
R3020, Apr 1996.

[63] A. Karma and W.-J. Rappel. Quantitative phase-field modeling of dendritic growth
in two and three dimensions. Phys. Rev. E, 57:4323–4349, Apr 1998.

[64] D. Kaushik, M. Smith, A. Wollaber, B. Smith, A. Siegel, and W. S. Yang. Enabling
high fidelity neutron transport simulations on petascale architectures, 2009. SC’09
Gordon Bell Prize Finalist.

[65] D. Kay and D. Loghin. A Green’s function preconditioner for the steady-state
Navier-Stokes equations. Computing Laboratory Report 99/06, Oxford University,
1999.

[66] D. Kay and R. Welford. E�cient numerical solution of Cahn-Hilliard-Navier-Stokes
fluids in 2D. SIAM Journal on Scientific Computing, 29(6):2241–2257, 2007.

91

https://launchpad.net/unicorn
https://launchpad.net/unicorn

Bibliography

[67] D. W. Kelly, J. P. De S. R. Gago, O. C. Zienkiewicz, and I. Babuska. A posteriori error
analysis and adaptive processes in the finite element method: Part I - error analysis.
International Journal for Numerical Methods in Engineering, 19(11):1593–1619, 1983.

[68] H. Kim, C. Lee, and E. Park. A FETI-DP formulation for the Stokes problem without
primal pressure components. SIAM Journal on Numerical Analysis, 47(6):4142–4162,
2010.

[69] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++
Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering
with Computers, 22(3–4):237–254, 2006.

[70] A. Klawonn, L. F. Pavarino, and O. Rheinbach. Spectral element FETI-DP and
BDDC preconditioners with multi-element subdomains. Computer Methods in Applied
Mechanics and Engineering, 198(3-4):511 – 523, 2008.

[71] A. Klawonn and O. Rheinbach. Inexact FETI-DP methods. International Journal
for Numerical Methods in Engineering, 69(2):284–307, 2007.

[72] A. Klawonn and O. Rheinbach. Robust FETI-DP methods for heterogeneous three
dimensional elasticity problems. Computer Methods in Applied Mechanics and
Engineering, 196(8):1400 – 1414, 2007.

[73] A. Klawonn and O. Rheinbach. A hybrid approach to 3-level FETI. PAMM,
8(1):10841–10843, 2008.

[74] A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposition meth-
ods with an application to biomechanics. ZAMM - Journal of Applied Mathematics
and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 90(1):5–32,
2010.

[75] A. Klawonn and O. B. Widlund. Dual-primal FETI methods for linear elasticity.
Communications on Pure and Applied Mathematics, 59(11):1523–1572, 2006.

[76] T. Kozubek, M. Jaroölavá, M. Menöík, and A. Markopoulos. Hybrid total FETI
method. PRACE whitepaper, 2012.

[77] C. Landsberg, F. Stenger, A. Deutsch, M. Gelinsky, A. Rösen-Wol�, and A. Voigt.
Chemotaxis of mesenchymal stem cells within 3D biomimetic sca�olds-a modeling
approach. Journal of Biomechanics, 44(2):359 – 364, 2011.

[78] K. H. Law. A parallel finite element solution method. Computers and Structures,
23(6):845 – 858, 1986.

[79] J. Li. Dual-Primal FETI Methods for Stationary Stokes and Navier-Stokes Equations.
PhD thesis, New York University, 2002.

[80] J. Li and O. B. Widlund. FETI-DP, BDDC, and block cholesky methods. Interna-
tional Journal for Numerical Methods in Engineering, 66(2):250–271, 2006.

92

Bibliography

[81] R. Li. On multi-mesh h-adaptive methods. J. Sci. Comput., 24(3):321–341, 2005.

[82] X. Li, J. Lowengrub, A. Rätz, and A. Voigt. Solving PDEs in complex geometries.
Comm. Math. Sci., 7:81–107, 2009.

[83] A. Logg, K.-A. Mardal, G. N. Wells, and et al. FEniCS web page. http://
fenicsproject.org.

[84] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Di�erential
Equations by the Finite Element Method. Springer, 2012.

[85] A. Logg, G. N. Wells, and J. Hake. DOLFIN: a C++/Python Finite Element Library.
Springer, 2012.

[86] J. Mandel. Iterative solvers by substructuring for the p-version finite element method.
Computer Methods in Applied Mechanics and Engineering, 80(1-3):117 – 128, 1990.

[87] J. Mandel. On block diagonal and Schur complement preconditioning. Numerische
Mathematik, 58:79–93, 1990. 10.1007/BF01385611.

[88] J. Mandel. Balancing domain decomposition. Communications in Numerical Methods
in Engineering, 9(3):233–241, 1993.

[89] J. Mandel and B. Sousedík. BDDC and FETI-DP under minimalist assumptions.
Computing, 81:269–280, 2007.

[90] J. Mandel, B. Sousedík, and C. Dohrmann. Multispace and multilevel BDDC.
Computing, 83:55–85, 2008. 10.1007/s00607-008-0014-7.

[91] T. P. Matthew. Domain Decomposition Methods for the Numerical Solution of Partial
Di�erential Equations. Springer, 2008.

[92] R. T. Mills, V. Sripathi, G. Mahinthakumar, G. Hammond, P. C. Lichtner, and B. F.
Smith. Engineering PFLOTRAN for scalable performance on Cray XT and IBM
BlueGene architectures. In Proceedings of SciDAC 2010 Annual Meeting, 2010.

[93] J. M. Ortega and R. G. Voigt. Solution of partial di�erential equations on vector
and parallel computers. SIAM Review, 27(2):149–240, 1985.

[94] N. Provatas and K. Elder. Phase-field methods in materials science and engineering.
Wiley, 2010.

[95] N. Provatas, N. Goldenfeld, and J. Dantzig. E�cient computation of dendritic
microstructures using adaptive mesh refinement. Phys. Rev. Lett., 80(15):3308–3311,
Apr 1998.

[96] A. Rätz and A. Voigt. PDEs on surfaces - a di�use interface approach. Comm. Math.
Sci., 4:575–590, 2006.

93

http://fenicsproject.org
http://fenicsproject.org

Bibliography

[97] A. Ribalta, C. Stoecker, S. Vey, and A. Voigt. AMDiS - adaptive multidimen-
sional simulations: Parallel concepts. In Domain Decomposition Methods in Science
and Engineering XVII, volume 60 of Lecture Notes in Computational Science and
Engineering, pages 615–621. Springer Berlin Heidelberg, 2008.

[98] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[99] K. Schloegel, G. Karypis, and V. Kumar. ParMETIS web page. http://glaros.
dtc.umn.edu/gkhome/metis/parmetis/overview.

[100] K. Schloegel, G. Karypis, and V. Kumar. Parallel static and dynamic multi-
constraint graph partitioning. Concurrency and Computation: Practice and Experi-
ence, 14(3):219–240, 2002.

[101] A. Schmidt. A multi-mesh finite element method for phase field simulations. Lecture
Notes in Computational Science and Engineering, 32:208–217, 2003.

[102] A. Schmidt and K. G. Siebert. Design of Adaptive Finite Element Software: The
Finite Element Toolbox ALBERTA. Springer, 2005.

[103] D. Silvester, H. Elman, D. Kay, and A. Wathen. E�cient preconditioning of the
linearized Navier-Stokes equations for incompressible flow. Journal of Computational
and Applied Mathematics, 128(1-2):261–279, 2001.

[104] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace
methods for linear systems. Numerical Linear Algebra with Applications, 14(1):1–59,
2007.

[105] M. A. Smith, C. Rabiti, D. Kaushik, B. Smith, W. S. Yang, and G. Palmiotti. Fast
reactor core simulations using the UNIC code. In Proceedings of the International
Conference on the Physics of Reactors, Nuclear Power: A Sustainable Resource,
2008.

[106] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The complete
reference: volume 1, the MPI core. The MIT press, 1998.

[107] P. Solin. Hermes - web pabe. http://hpfem.org/hermes/.

[108] P. Solin, J. Cerveny, and L. Dubcova. Adaptive multi-mesh hp-fem for linear
thermoelasticity. Research Report No. 2007-08, The University of Texas at El Paso,
2007.

[109] P. Solin, L. Dubcova, and J. Kruis. Adaptive hp-fem with dynamical meshes for
transient heat and moisture transfer problems. J. Comput. Appl. Math., 233(12):3103–
3112, 2010.

[110] F. Stenger. meshconv tutorial.

[111] A. Stukowski. OVITO: The Open Visualization Tool - web page. http://www.
ovito.org/.

94

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://hpfem.org/hermes/
http://www.ovito.org/
http://www.ovito.org/

Bibliography

[112] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO-
the open visualization tool. Modelling and Simulation in Materials Science and
Engineering, 18(1):015012, 2010.

[113] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. Parallel
geometric-algebraic multigrid on unstructured forests of octrees. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 43:1–43:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press.

[114] K. Teigen, A. Rätz, and A. Voigt. A di�use-interface method for two-phase flows
with soluble surfactants. Journal of Computational Physics, 230(2):375 – 393, 2011.

[115] C. Traxler. An algorithm for adaptive mesh refinement inn dimensions. Computing,
59:115–137, 1997.

[116] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid: Basics, Parallelism
and Adaptivity. Academic Press, 2000.

[117] S. Turek. E�cient solvers for incompressible flow problems: an algorithmic and
computational approach. Springer, 1999.

[118] S. van Tee�elen, R. Backofen, A. Voigt, and H. Löwen. Derivation of the phase-field-
crystal model for colloidal solidification. Phys. Rev. E, 79:051404, May 2009.

[119] T. Vejchodsk ,̋ P. äolín, and M. Zítka. Modular hp-FEM system HERMES and
its application to Maxwell’s equations. Mathematics and Computers in Simulation,
76(1-3):223 – 228, 2007.

[120] R. Verfürth. Error estimates for a mixed finite element approximation of the Stokes
equations. RAIRO Anal. Numer., 18:175–182, 1984.

[121] R. Verfürth. A posteriori error estimates for nonlinear problems. Finite element
discretizations of elliptic equations. Math. Comp., 62(206):445–475, 1994.

[122] R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques.
In ICCAM’92: Proceedings of the fifth international conference on Computational and
applied mathematics, pages 67–83, Amsterdam, The Netherlands, The Netherlands,
1994. Elsevier Science Publishers B. V.

[123] S. Vey. Adaptive finite elements for systems of PDEs, software concepts, multi-level
techniques and parallelization. PhD thesis, TU Dresden, 2008.

[124] S. Vey and A. Voigt. AMDiS: adaptive multidimensional simulations. Computing
and Visualization in Science, 10:57–67, 2007.

[125] J. äístek, J. Mandal, B. Sousedík, and P. Burda. Parallel implementation of multilevel
BDDC. submitted, 2012.

95

Bibliography

[126] J. äístek, B. Sousedík, P. Burda, J. Mandel, and J. Novotn .̋ Application of the
parallel BDDC preconditioner to the Stokes flow. Computers and Fluids, 46(1):429 –
435, 2011.

[127] W. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. PhD thesis,
Institut für Baustatistik der Universität Stuttgart, 1999.

[128] M. Wenzla�. Numerical analysis of the fibrous structure of coloum cactouses. Bele-
garbeit, Intitut für Leichtbau und Kunststo�technik der TU Dresden, 2012.

[129] T. Witkowski, R. Backofen, and A. Voigt. The influence of membrane bound proteins
on phase separation and coarsening in cell membranes. Phys. Chem. Chem. Phys.,
14:14509–14515, 2012.

[130] M. Xue and J. Jin. Nonconformal FETI-DP methods for large-scale electromagnetic
simulation. Antennas and Propagation, IEEE Transactions on, PP(99):1, 2012.

96

	Introduction
	Overview
	Technical notes

	Adaptive meshes for finite element method
	Data structures of adaptive meshes
	Error estimation and adaptive strategies
	Mesh structure codes

	Scalable parallelization
	Formal definitions
	Distributed meshes
	Mesh structure codes for parallel mesh adaptivity
	Mesh partitioning and mesh distribution
	Parallel DOF mapping
	Efficiency and parallel scaling
	Limitations of coarse element based partitioning

	Linear solver methods
	FETI-DP
	Implementation issues
	Numerical results

	Extensions of the standard FETI-DP
	Inexact FETI-DP
	Multilevel FETI-DP

	A Navier-Stokes solver
	Implementation issues
	Numerical results
	Diffuse domain approach

	Software concepts

	Multi-mesh method for Lagrange finite elements
	Virtual mesh assembling
	Coupling terms in systems of PDEs
	Creating a virtual mesh
	Assembling element matrices
	Calculation of transformation matrices
	Implementation issues

	Numerical results
	Dendritic growth
	Coarsening
	Fluid dynamics

	Conclusion and outlook
	Bibliography

