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Extrapolation in Lie groups with approximated BCH-formula
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Abstract

We present an extrapolation algorithm for the integration of differential equations in Lie groups which is a
suitable generalization of the well-known GBS-algorithm for ODEs. Sufficiently accurate approximations to the
BCH-formula are required to reach a given order. We give such approximations with a minimized number of
commutators. 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Interest in the subject of geometric integration has been growing fast in the last years. The idea behind
this subject is to join qualitative methods for dynamical systems and the computational methods of
numerical mathematics. Whenever we have additional information about the structure of solutions or
about the nature of the flow generated by a differential equation we want to exploit this information. We
want to go back from the general purpose solver to specialized solvers for special problems.

Geometric integration includes a variety of topics from different fields of applications. We mention
a few here with no claim to completeness. Crouch and Grossman propose methods for the solution
of differential equations on manifolds [4]. Symplectic methods for Hamiltonian systems have been
investigated by several authors: Calvo and Sanz-Serna [17], Hairer [8], Blanes et al. [1] and Yoshida [22].
Hochbruck and Lubich have constructed exponential integrators that are especially designed for the
integration of highly oscillatory problems [9,10]. Several applications lead to differential equations that
are naturally formulated in Lie groups. The motion of multibody systems in robotics [13] can be viewed
this way. Further applications are found in molecular dynamics [19] and numerical linear algebra [5].
Calvo, Iserles and Zanna investigate methods for isospectral flows [3]. Munthe-Kaas investigates Runge–
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Kutta methods for the integration in Lie groups [14]. Numerical comparisons can be found in [13].
Extrapolation methods can be generalized in a different way [21] than Runge–Kutta methods. Iserles,
Martinsen and Norsett construct methods for linear differential equations [11]. An excellent overview on
Lie-group methods can be found in [12]. For a comprehensive introduction into the subject see [16].

Our setting is as follows: Be given a Lie groupG with corresponding Lie algebrag being the tangent
space at the identity. A differential equation in the Lie group is given by a mapf :G→ g. A solution of
the differential equation is a curvey(t) evolving in the Lie group satisfying

y′(t)= dRy ◦ f (
y(t)

)
, (1)

wheredRy is the differential of right multiplication.

2. The Gragg–Bulirsch–Stoer algorithm in a Lie group

Extrapolation methods are an important subclass of one-step methods for the integration of ODEs. An
extrapolation method applies a simple low order method (the underlying method) with different stepsizes
hi = H/ni to compute multiple solutions at a given pointt +H . These solutions are combined to get
a higher order approximation (extrapolation to stepsizeh= 0). Most efficient are those methods which
possess a quadratic expansion of the global error [18]. These concepts can be carried over to the Lie
group setting as in [21]:

The general one-step method in a Lie group advances from an approximationyn at timetn to timetn+1

via yn+1 = exp(hΦ(tn, yn, h))yn where the increment functionΦ maps into the Lie algebra. We have to
consider both, the local errorle and the global errore defined in this setting by

yn+1 = exp
(
le(tn, yn, h)

)
y(tn + h) with yn = y(tn), and

yn = exp
(
e(tn)

)
y(tn) with y0 = y(t0).

Within this framework it can be proved [21] that:

• The global error of a one-step method of orderp possesses, for sufficient smooth right-hand sides,
an asymptotic expansion in powers ofh, i.e., when we fixt and varyh then we have

e(t, h)= hpep(t)+ hp+1ep+1(t)+ · · · +O
(
hN+1).

• If the underlying one-step method is symmetric then this asymptotic expansion contains only even
powers ofh.

• The following generalization of the explicit midpoint rule

y1 = exp
(
hf (y0)

)
y0, yn+1 = exp

(
2hf (yn)

)
yn−1, n > 0, (2)

can be interpreted as a symmetric one-step method in the even pointst2k. Therefore the
approximationsy2k have a quadratic error expansion.

The explicit midpoint rule clearly is our number one candidate for an extrapolation procedure—it is
explicit and symmetric, both. No Runge–Kutta method possesses this property. We choose a basic
stepsizeH and the stepnumber sequenceni = i. For each stepnumberi � l we execute 2i steps of
the method (2) with stepsizehi =H/(2i):
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Y i0 = yn, Y i1 = exp
(
hif (yn)

) · yn,
Y ik+1 = exp

(
2hif

(
Y ik

)) · Y ik−1, k = 1, . . . ,2i − 1, (3)

yin+1 := Y i2i .

Let φH be a generator of the exact flow, i.e.,y(tn+1)= exp(φH )y(tn) wherey(tn)= yn. The results from
[21] together with the BCH-formula give

yin+1 = exp
(
φH + e2h

2
i + e4h

4
i + · · ·) · yn. (4)

In order to compute a higher order approximation toφH via extrapolation we have to computeφiH ∈ g

that satisfiesyin+1 = exp(φiH )yn. It is given exactly by

exp
(
φiH

) = exp
(
2hif

(
Y i2i−1

)) · exp
(
2hif

(
Y i2i−3

)) · · · ·exp
(
2hif

(
Y i1

))
. (5)

In our algorithm we approximateφiH by suitable approximations to the BCH-formula.
A complete extrapolation step of fixed orderp= 2l with basic stepsizeH is given by

(I) for i = 1, . . . , l do
(a) computeY i1, . . . , Y

i
2i−1 by (3) withhi =H/(2i)

(b) computeφ̃iH = BCH(hif (Y i1), hif (Y
i
3), . . . , hif (Y

i
2i−1),2l)

(II) computeφEXT by the standardh2-extrapolation tableau with initial entries̃φ1
H , . . . , φ̃

l
H

(III) updateyn+1 = exp(φEXT)yn.

WhenG = R
n the algorithm reduces to the classical Gragg–Bulirsch–Stoehr algorithm. Note that the

extrapolation approach differs from the RK–MK approach. There the differential equation is considered
as an equation in the Lie algebra [14]. An approximation of the dexp−1 −map is needed (in spite of BCH
in our case) for methods of order greater than 2. As a result there is a cost of 2 commutators for the
RK–MK method of order 4 based on the classical RK method [15] whereas in our method of order 4
only one commutator has to be computed.

3. Approximations to the BCH-formula

The algorithm (I)–(III) requires to consider approximations to the BCH formula up to a given order
involving the minimum number of Lie brackets. IfX andY are two elements of the Lie algebrag then

exp(X)exp(Y )= exp(Z), (6)

where

Z =
∑
i>0

Ci(X,Y ) (7)

is given by the famous Baker–Campbell–Hausdorff formula [20]. HereCi(X,Y ) lies in the free Lie
algebraG(X,Y ) generated by{X,Y }. Specifically, it is a linear combination of iterated commutators
[X1,X2, . . . ,Xi] whereXj ∈ {X,Y }. Because exp(−Z) = exp(−Y )exp(−X) we have the following
symmetries:
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Ci(−X,−Y )= (−1)iCi(X,Y ),
(8)

Ci(X,Y )= (−i)i+1Ci(Y,X).

In the particular case which we are interested in, i.e., whenX andY are sufficiently differentiable inh,
X = O(h), Y = O(h) andY −X = O(h2) we can state the following

Theorem 1. For every m� 1 it is true that C2m(X,Y )= O(h2m+1) and C2m+1(X,Y )= O(h2m+3).

Proof. Each functionCi can be written in the formCi(X,Y )= Fi(X,Y )− (−1)iFi(Y,X), whereFi is
a linear combination of terms withi − 1 nested commutators in the free Lie algebraG(X,Y ).

Our first claim is thatFi(X,Y )= O(hi+1) for all i > 2. In fact,Fi is a linear combination of terms of
the form

V := [
U1,

[
U2, . . . ,

[
Ui−2, [Ui−1,Ui]

] · · ·]],
whereUk ∈ {X,Y }. For every nonzero term of this form we may assume without loss of generality that
Ui−1 = X, Ui = Y . But [X,Y ] = [X,Y − X] = O(h3). SinceUk = O(h) for k = 1,2, . . . , i − 2, we
deduce our claim by adding the powers ofh.

Assuming thatX and Y are sufficiently differentiate inh we can expandFi in powers ofh. The
conditionY −X = O(h2) implies an expansion of the formX = Ph+Qh2 +· · · , Y = Ph+Rh2 +· · · .
Therefore the O(hi+1) in V is exactly

V0 := hi+1
[
P,

[
P, . . . , [P,Q] · · ·]].

Note further that swappingX andY , the termV0 is replaced by−V0: all thePs remain the same, while
Q is replaced with−Q. Therefore, the O(h2m+2) terms inC2m+1(X,Y )= F2m+1(X,Y )+ F2m+1(Y,X)

disappear and the proof is complete.✷
For an approximation of orderp = 2l we have to take into account iterated commutators with at most

p− 2 entries. This gives as a first result

BCH(X,Y,4)=X+ Y + 1

2
[X,Y ]. (9)

To obtain higher order approximations we apply the optimization technique presented in [2], which is
formulated in the general framework of a graded free Lie algebraG(B) generated by a set of operatorsB
[15], as follows. Given an elementZ ∈ G(B) of the form

Z =
p∑
i=1

νi∑
j=1

αi,jXi,j ,

whereXi,j denotes thej th element ofG(B) of grade i. In [2] a procedure is designed to obtain
an approximate expression forZ up to gradep involving, in principle, the minimum number of
commutators.

In the particular case ofB = {X,Y } andZ = BCH(X,Y ) this technique leads to the following results.

Order 6, 2 exponentials. We have to consider terms up toi = 4 in (7). The corresponding expression
can be written exactly in terms of only 3 commutators as

BCH(X,Y,6)=X+ Y + 1

2
d2 + 1

4
d3 (10)
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with

d1 = [X,Y ], d2 =
[
X+ 1

6
d1, Y

]
, d3 =

[
X,−2

3
d1 + d2

]
. (11)

Order 8, 2 exponentials. We cannot solve simultaneously all the equations required to expressZ up to
order 8 in terms of 5 commutators. With one additional commutator we have the following incremental
scheme:

BCH(X,Y,8)=X+ Y +
5∑
i=1

βidi + β6[d3, d4], (12)

whered1, d2, d3 are given by (11),

d4 = 1

36
[X+ α1Y + α2d2 + α3d3,4d1 − 6d2 − 3d3], (13)

d5 =
[
X+ x5,1Y +

4∑
i=2

x5,idi ,

4∑
i=1

y5,idi

]
,

and the exact values of the coefficients are

α1 = 2+ √
3, α2 = −9(4+ 5

√
3)

118
, α3 = −3(110+ 49

√
3)

236
,

x5,1 = 2− √
3, x5,2 = −3(586+ 231

√
3)

1534
,

x5,3 = −3(−17972+ 27331
√

3)

181012
, x5,4 = −9(23707+ 4721

√
3)

90506
,

y5,1 = 4− √
3

9
, y5,2 = 1+ √

3

6
, y5,3 = 1+ √

3

12
, y5,4 = 1,

β1 = −9+ 5
√

3

30
, β2 = 4

5
− 1

2
√

3
, β3 = 3

20
,

β4 = −1+ √
3

20
, β5 = 1

20
, β6 = −21(−32+ 19

√
3)

1180
.

Order 6, 3 exponentials. To computeZ = BCH(X1,X2,X3,6) with Xi = O(h) andXi −Xj = O(h2)

we first introduce the operatorsb1 = X1, b2 = X2 −X1, b3 = X3 −X1, then we expressZ in terms of
b1, b2, b3 by successive application of the BCH formula and finally apply the optimization technique of
[2] to Z as an element of the graded free Lie algebra generated by{b1, b2, b3}. As a result we can write

BCH(X1,X2,X3,6)=X1 +X2 +X3 + d3 − d4, (14)

where

d1 =
[
X1 − 13

12
X2,

11

13
X2 − 12

13
X3

]
,

d2 =
[
X1 − 13

11
X3 − 1339

704
d1,

11

824
X2 + 7

6592
X3 − 1053

8192
d1

]
,
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d3 =
[
X1 −X3 − 3965

1236
d1 − 8

3
d2,X2 +X3 − 164957

9888
d1 + 5

3
d2

]
,

M1 =X1 −X3 − 2561

309
d1 + 752

3
d2 − 2d3,

M2 = 1

2
X2 + 1

2
X3 − 160745

9888
d1 − 179

3
d2 + 3

8
d3,

d4 = [M1,M2].
This approximation requires the minimum number of 4 commutators.

4. Numerical experiments

As a test example we choose an equation that originates from [23]. The right-hand sidef :G→ g is
simply given inMATLAB notation by

f (x)= diag
(
diag(x,+1),+1

) − diag
(
diag(x,+1),−1

)
.

The solution of this differential equation evolves in the Lie groupSO(5), the group of orthogonal
matrices of dimension 5. The Lie algebra ofSO(5) is just the set of skew-symmetric matrices of di-
mension 5.

We have implemented the extrapolation procedure (I)–(III) with fixed order 4 (GBSG4) and 6
(GBSG6) inMATLAB . The method of order 4 requires 4 exponentiations and 1 commutator whereas
the method of order 6 requires 8 exponentiations and 7 commutators.

For comparison we use a RK–MK method of order 4 based on the classical Runge–Kutta method. This
method requires 4 exponentiations and 2 commutators, see [15].

Further, for flows inSO(n) Cayley methods can be applied. These methods are based on the Cayley
transformQ= (I −A)−1(I +A) whereA is skew symmetric andQ is orthogonal. For details see [6,7].
The 4th order method CAY4 is based on the classical Runge–Kutta method whereas the 6th order method
CAY6 is based on extrapolation with the explicit midpoint rule.

All methods have been applied with fixed stepsize.
The left picture in Fig. 1 displays the error in the endpoint against the stepsize. Among the methods of

order 4 the geometric GBS seems to perform slightly better than the other methods whereas the methods
of order 6 are almost comparable.

We must not forget that the Cayley methods are especially designed for problems inSO(n) while the
RKMK method and our extrapolation method works in arbitrary Lie groups. It is therefore not surprising
that we get a different picture when we plot error against the number of floating point operations as in
the right picture in 1.

Among the methods of order 4 the extrapolation procedure is almost as efficient as the Cayley method
for high accuracy. For low accuracy the Cayley method is significantly more efficient than both Lie
group methods of order 4. The most efficient method for this example is the Cayley method of order 6.
Our extrapolation procedure of order 6 is costly, especially for low up to moderate accuracies. The reason
is the high cost for the computation of matrix exponentials.
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Fig. 1. Error in endpoint of solution vs. stepsize and computational effort.

5. Open questions

Modern extrapolation codes use stepsize control and order control. For that reason we need
incremental BCH formulas where we can reuse the commutators in the lower order approximation for
the higher order approximation.

In the case of two exponentials we succeeded in giving an incremental formula for order 8 using only
3 additional commutators besides the 3 commutators computed for the order 6 approximation. A lower
bound for the required number of commutators for an order 8 approximation is 5 but we strongly believe
that there are 6 commutators required. Note that for four exponentials we can utilize the formula for two
exponentials:

BCH(X1,X2,X3,X4,p)= BCH
(
BCH(X1,X2,p),BCH(X3,X4,p),p

)
. (15)

This procedure does not work efficiently for three exponentials because of BCH(X1,X2)−X3 �= O(h2).
The computation of an efficient formula of order 8 for 3 exponentials remains an open question.
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